Theory of exciton-polaron complexes in pulsed electrically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Keevers, T. L.; Baker, W. J.; McCamey, D. R.
2015-05-01
Several microscopic pathways have been proposed to explain the large magnetic effects observed in organic semiconductors; however, it is difficult to identify and characterize the microscopic process which actually influences the overall magnetic field response in a particular instance. Pulsed electrically detected magnetic resonance provides an ideal platform for this task as it intrinsically monitors the charge carriers of interest and provides dynamical information which is inaccessible through conventional magnetoconductance measurements. Here we develop a general time-domain theory to describe the spin-dependent recombination of exciton-polaron complexes following the coherent manipulation of paramagnetic centers through electron paramagnetic resonance. A general Hamiltonian is treated, and it is shown that the transition frequencies and resonance positions of the exciton-polaron complex can be used to estimate interspecies coupling. This work also provides a general formalism for analyzing multipulse experiments which can be used to extract relaxation and transport rates.
Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Godde, T.; Kavokin, K. V.; Yakovlev, D. R.; Reshina, I. I.; Sedova, I. V.; Sorokin, S. V.; Ivanov, S. V.; Kusrayev, Yu. G.; Bayer, M.
2017-04-01
We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells by using time-resolved photoluminescence (PL). The magnetic-field and temperature dependencies of this dynamics allow us to separate the nonmagnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic-field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wave function. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200-400 ps with increasing magnetic field and temperature.
Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R
2015-11-24
Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.
NASA Astrophysics Data System (ADS)
Li, Gang; Shinar, Joseph
2002-02-01
The electroluminescence (EL)- and electrically-detected magnetic resonance (ELDMR and EDMR, respectively) of tris- (8-hydroxyquinoline) Al (Alq3)]/[buffer]/Al-based organic light-emitting devices (OLEDs) are described. Positive spin ½ ELDMR and EDMR observed at T<60K are similar to the typical photoluminescence-detected magnetic resonance of (pi) -conjugated polymers, and consequently attributed to enhanced polaron recombination and consequent reduction of singlet exciton quenching by trapped and free polarons. A negative spin ½ EL- and current-quenching (negative) resonance is observed at T>=60 K. Its amplitude increases with T, and it is much stronger in devices with an AlOx buffer layer than in those with a CsF buffer. Its behavior is consistent with magnetic resonance enhancement of the spin-dependent formation of dianions at the organic/cathode interface.
Gnatenko, Yu. P. Bukivskij, P. M.; Piryatinski, Yu. P.
2014-04-07
We have investigated dynamics of different localized exciton magnetic polarons (LEMPs) in Cd{sub 0.70}Mn{sub 0.30}Te spin glass (SG) compound below the freezing temperature T{sub f} in the crystal regions, where various microscopic magnetic spin states (MMSSs), namely, “loose” spins, finite, and infinite clusters, are formed. It was shown that there is a broad distribution of the LEMPs lifetimes. The presence of the long-lived LEMPs is caused by the admixture of the optically active bright exciton states to the dark exciton states, i.e., the “brightening” of the dark LEMPs which exist along with the bright LEMPs. The lifetimes of the dark LEMPs correspond to hundreds of nanoseconds. It was found that the time decay of photoluminescence band intensity is approximated by the sum of two functions: a single exponential function and the Kohlrausch–Williams–Watts stretched exponential function. The stretched exponential function describes the recombination processes of the LEMPs formed in the crystal regions of the finite clusters as well as the infinite cluster. This reflects the appearance of spatially heterogeneous dynamics in Cd{sub 0.70}Mn{sub 0.30}Te SG compound below T{sub f} which is due to the disorder in the spin distribution caused by the formation of different MMSSs.
Magnetic polarons in a nonequilibrium polariton condensate
NASA Astrophysics Data System (ADS)
Mietki, Paweł; Matuszewski, Michał
2017-09-01
We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
Magnetic polaron formation and exciton spin relaxation in single Cd1-xMnxTe quantum dots
NASA Astrophysics Data System (ADS)
Kłopotowski, Ł.; Cywiński, Ł.; Wojnar, P.; Voliotis, V.; Fronc, K.; Kazimierczuk, T.; Golnik, A.; Ravaro, M.; Grousson, R.; Karczewski, G.; Wojtowicz, T.
2011-02-01
We study the formation dynamics of a spontaneous ferromagnetic order in single self-assembled Cd1-xMnxTe quantum dots (QDs). By measuring time-resolved photoluminescence, we determine the formation times for QDs with Mn ion contents x varying from 0.01 to 0.2. At low x these times are orders of magnitude longer than exciton spin relaxation times evaluated from the decay of photoluminescence circular polarization. This allows us to conclude that the direction of the spontaneous magnetization is determined by a momentary Mn spin fluctuation rather than resulting from an optical orientation. At higher x, the formation times are of the same order of magnitude as found in previous studies on higher-dimensional systems. We also find that the exciton spin relaxation accelerates with increasing Mn concentration.
Effect of polaron diffusion on exciton-polaron quenching in disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Coehoorn, R.; Zhang, L.; Bobbert, P. A.; van Eersel, H.
2017-04-01
Exciton-polaron quenching (EPQ) is a major efficiency loss process in organic optoelectronic devices, in particular at high excitation densities. Within commonly used models, the rate is assumed to be given by the product of the exciton density, the polaron density, and a constant EPQ rate coefficient, which is proportional to the polaron diffusion coefficient and an EPQ capture radius. In this work, we study the effects of polaron diffusion on the EPQ rate in energetically disordered materials with a Gaussian density of states using kinetic Monte Carlo simulations, and show that the effective rate coefficient can depend strongly on the polaron concentration and on the electric field. We furthermore find that under realistic conditions, the effective value of the capture radius can exceed the expected value of ˜1 nm by up to two orders of magnitude. To a first approximation, the simulation results can be understood from macroscopic diffusion theory, adapted at finite electric fields to include the observed "polaron wind" effect. However, for strongly disordered systems we find distinct deviations from that theory, related to the very small time and spatial scales involved in the capture process.
Fine structure of triplet exciton polarons in polydiacetylene molecules
NASA Astrophysics Data System (ADS)
Kollmar, C.; Rühle, W.; Frick, J.; Sixl, H.; Schütz, J. U. v.
1988-07-01
Triplet states on conjugated polydiacetylene chains which are created by UV excitation are examined experimentally using ODMR spectroscopy. The observed fine structure shows that the triplet state can be ascribed to the conjugated chain rather than to the side groups and that it is localized. This leads to the suggestion of an exciton polaron. In the theoretical part the wave function of the exciton polaron is calculated using the configuration model in analogy to the description of pz radical electrons on carbene chain ends of reactive short-chain intermediates. The total fine structure tensor is obtained by summing up the fine structure tensors of the individual configurations weighted by their probability densities. The transfer integral t of the configuration model is fitted with respect to good agreement between experimentally observed and calculated fine structure parameters. Finally, comparison between the experimentally observed ESR linewidth and the calculated hyperfine structure splitting shows that the linewidth is motionally narrowed leading to the conclusion that the exciton polaron is mobile.
Optical dynamics of exciton and polaron formation in molecular aggregates
NASA Astrophysics Data System (ADS)
de Boer, Steven; Wiersma, Douwe A.
1989-03-01
Results of femtosecond accumulated photon echo, picosecond pump-probe and fluorescence lifetime measurements are reported on aggregates of the dyes pseudoisocyanine (PIC) and substituted thiapyrylium (TPY), embedded in a polycarbonate matrix. It is concluded that in the PIC aggregate, delocalized excitations (excitons) are formed, which are weakly coupled to the aggregate's nuclear frame. In the TPY aggregate, excitons are also initially formed, but through strong local electron-phonon coupling these excitons are not stable and decay into polarons, which become trapped. It is suggested that the nature of the excitations in aggregates crucially depends on the change of electron density distribution upon optical excitation. When this change is large, as revealed by a large change of dipole moment, polarons will be formed. In the other limit of a small change of dipole moment on optical excitation, excitons with an enhanced radiative lifetime are formed, which coherently propagate over that part of the aggregate where the molecules are electronically strongly coupled. The relevance of these findings towards energy transport in photo-biological systems is also discussed.
Polaronic trapping in magnetic semiconductors
NASA Astrophysics Data System (ADS)
Raebiger, Hannes
2012-02-01
GaN doped with iron is an interesting candidate material for magnetic semiconductors, as p-d coupling between the localized Fe-d and extended N-p hole states is expected to facilitate long-range ferromagnetic alignment of the Fe spins [1]. This picture of extended states in GaN:Fe, however, falls apart due to a polaronic localization of the hole carriers nearby the Fe impurities. To elucidate the carrier localization in GaN:Fe and related iron doped III-V semiconductors, I present a systematic study using self-interaction corrected density-functional calculations [2]. These calculations predict three distinct scenarios. (i) Some systems do sustain extended host-like hole states, (ii) some exhibit polaronic trapping, (iii) and some exhibit carrier trapping at Fe-d orbitals. These behaviors are described in detail to give an insight as to how to distinguish them experimentally. I thank T. Fujita, C. Echeverria-Arrondo, and A. Ayuela for their collaboration.[4pt] [1] T. Dietl et al, Science, 287, 1019 (2000).[0pt] [2] S. Lany and A. Zunger, Phys. Rev. B, 80, 085202 (2009).
Jahn-Teller distortion driven magnetic polarons in magnetite
NASA Astrophysics Data System (ADS)
Huang, H. Y.; Chen, Z. Y.; Wang, R.-P.; de Groot, F. M. F.; Wu, W. B.; Okamoto, J.; Chainani, A.; Singh, A.; Li, Z.-Y.; Zhou, J.-S.; Jeng, H.-T.; Guo, G. Y.; Park, Je-Geun; Tjeng, L. H.; Chen, C. T.; Huang, D. J.
2017-06-01
The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin-orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.
Theory of exciton dynamics in molecular aggregates in presence of polaronic effects
NASA Astrophysics Data System (ADS)
van Dijk, Leon; Spano, Frank C.; Bobbert, Peter A.
2012-03-01
We present a theory for the dynamics of excitons in molecular aggregates in presence of polaronic effects caused by a strong coupling to an intramolecular vibration. Transitions between exciton states are assumed to occur by weak coupling to low-energy acoustic phonons. The theory can describe measurements of the polarization anisotropy decay of helical aggregates of oligo(p-phenylene-vinylene) derivatives in solution. The fitted cut-off frequency of the acoustic phonons agrees well with an estimate of the Debye frequency of the solvent. The inclusion of polaronic effects leads for long times to a slower, but for short times to a faster exciton dynamics.
NASA Astrophysics Data System (ADS)
Hershey, Kyle W.; Holmes, Russell J.
2016-11-01
Phosphorescent organic light-emitting devices (OLEDs) can suffer a significant reduction in device efficiency under high current density excitation. This steady-state efficiency roll-off is frequently modeled by including losses from exciton-exciton and exciton-polaron quenching. Despite success in modeling the steady-state efficiency roll-off, the corresponding transient electroluminescence behavior has not been modeled as effectively using the same quenching processes. In this work, both the steady-state and transient electroluminescence behavior of phosphorescent OLEDs based on tris[2-phenylpyridinato-C2,N]Iridium(III) (Ir(ppy)3) are successfully reproduced by considering a dynamic polaron population. Within this model, polarons are able to either form excitons or leak through the device emissive layer, reducing the overall efficiency. This formalism permits a natural and rigorous connection between exciton and polaron dynamics and device charge balance, with the charge balance cast as the efficiency of exciton formation. The full dynamics model reproduces both the rise and decay of transient electroluminescence, as well as the full dependence of the external quantum efficiency on current density. Fit parameters are independently verified using separate studies of transient and steady-state photoluminescence. The model provides a complete picture for the dynamics present during the electrical operation of phosphorescent OLEDs, while also offering a direct route to elucidate exciton formation.
Energy Migration in Organic Thin Films--From Excitons to Polarons
NASA Astrophysics Data System (ADS)
Mullenbach, Tyler K.
The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.
Negative Polaron and Triplet Exciton Diffusion inOrganometallic “Molecular Wires”
Schanze, K.S.; Miller, J.; Keller, J.M.; Sean McIlroy, S.; Sreearuothai, P.; Danilov, E.O.; Jiang, H.; Glusac, K.D.; Miller, J.R.
2011-07-27
The dynamics of negative polaron and triplet exciton transport within a series of monodisperse platinum (Pt) acetylide oligomers is reported. The oligomers consist of Pt-acetylide repeats, [PtL{sub 2}-C {triple_bond} C-Ph-C {triple_bond} C-]{sub n} (where L = PBu{sub 3} and Ph = 1,4-phenylene, n = 2, 3, 6, and 10), capped with naphthalene diimide (NDI) end groups. The Pt-acetylide segments are electro- and photoactive, and they serve as conduits for transport of electrons (negative polaron) and triplet excitons. The NDI end groups are relatively strong acceptors, serving as traps for the carriers. Negative polaron transport is studied by using pulse radiolysis/transient absorption at the Brookhaven National Laboratory Laser-Electron Accelerator Facility (LEAF). Electrons are rapidly attached to the oligomers, with some fraction initially residing upon the Pt-acetylide chains. The dynamics of transport are resolved by monitoring the spectral changes associated with transfer of electrons from the chain to the NDI end group. Triplet exciton transport is studied by femtosecond-picosecond transient absorption spectroscopy. Near-UV excitation leads to rapid production of triplet excitons localized on the Pt-acetylide chains. The excitons transport to the chain ends, where they are annihilated by charge separation with the NDI end group. The dynamics of triplet transport are resolved by transient absorption spectroscopy, taking advantage of the changes in spectra associated with decay of the triplet exciton and rise of the charge-separated state. The results indicate that negative polarons and excitons are transported rapidly, on average moving distances of 3 nm in less than 200 ps. Analysis of the dynamics suggests diffusive transport by a site-to-site hopping mechanism with hopping times of 27 ps for triplets and <10 ps for electrons.
Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals.
Biadala, Louis; Shornikova, Elena V; Rodina, Anna V; Yakovlev, Dmitri R; Siebers, Benjamin; Aubert, Tangi; Nasilowski, Michel; Hens, Zeger; Dubertret, Benoit; Efros, Alexander L; Bayer, Manfred
2017-03-13
Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is ∼0.12 meV.
Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Biadala, Louis; Shornikova, Elena V.; Rodina, Anna V.; Yakovlev, Dmitri R.; Siebers, Benjamin; Aubert, Tangi; Nasilowski, Michel; Hens, Zeger; Dubertret, Benoit; Efros, Alexander L.; Bayer, Manfred
2017-07-01
Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is ∼0.12 meV.
NASA Astrophysics Data System (ADS)
Udal'tsov, Alexander V.
2016-12-01
Assemblies consisting of protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by UV-vis and infrared (IR) spectroscopy and by atomic force microscopy (AFM) in thin layers. Features of electronic absorption spectra of the assemblies are interpreted in terms of hole polaron combined with exciton theory using quantum well with parameters obtained from the dimer structure. It appears to be hole polaron moving defines kinetic energy of polaronic exciton confined in a quantum well when the electron absorbs photon. Hole polaron characteristics such as polaron self-energy, energy of Frank-Condon transitions, and radius of hole polaron moving through water are found to be 1.38 eV, 0.2445 eV, and 0.246 Å, respectively. A doublet at 1944, 1960 cm-1 (0.2412, 0.2432 eV) observed in IR spectra matches the energy of Frank-Condon transitions. Excitation energies estimated using molecular parameters for polaronic excitons in pure water and in the TPP dimers are found in a good agreement with the experimental data.
Photoinduced giant magnetic polarons in EuTe
NASA Astrophysics Data System (ADS)
Henriques, A. B.; Naupa, A. R.; Usachev, P. A.; Pavlov, V. V.; Rappl, P. H. O.; Abramof, E.
2017-01-01
Photoinduced magnetic polarons in EuTe, with a magnetic moment of several hundred Bohr magnetons, were investigated as a function of pump intensity and temperature by pump-probe Faraday rotation. The quantum efficiency for optical generation of magnetic polarons is found to be 0.09. The pump-intensity dependence of the photoinduced Faraday rotation shows a sublinear increase, from which we deduce that the population of photoexcited polarons is limited by a maximum value of 4.5 ×1015cm-3 . This is four orders of magnitude less than the concentration of polarons that would completely fill the crystal, which suggests that the photoexcited polarons are anchored by defects. In addition to the generation of polarons, at high pump densities the modulated pump light also causes a small alternating heating of the illuminated region. The temperature dependence of the polaron magnetic moment is well described by the Curie-Weiss law. Above 100 K, polarons are thermally quenched with an activation energy of 11 meV.
Excitonic-type polaron states: photoluminescence in SBN and in other ferroelectric oxides
NASA Astrophysics Data System (ADS)
Vikhnin, V. S.; Kislova, I.; Kutsenko, A. B.; Kapphan, S. E.
2002-07-01
A theoretical model for two characteristic photoluminescence (PL) bands in SBN, 'green luminescence' and 'red luminescence' is proposed on the basis of the extended photoluminescence experiments in SBN:Cr, and also in SBN:Ce and in nominally pure SBN systems under different conditions. While the RL-band is suggested to be connected with charge transfer vibronic exciton (CTVE) clusters induced by Cr3+ impurities in the Nb-sites, the GL- band is connected with Nb4+ electronic polarons in a new, charge transfer excited states. Here Nb4+ centers are the cores of the CTVE clusters induced by these charged scores. The PL mechanism is the in-cluster CTVE recombination for both bands under discussion. But the CTVE states are quasi-resonantly mixed here with 4T2 states of the Cr3+ core in the RL-band case, and with 5s-states of the Nb4+ core in the GL-band case. The role of excitonic polarons of CTVE nature is also discussed in connection with 'green' luminescence origin in KTaO3 and KNbO3 crystals.
Polaron formation and local magnetic moments in cuprate superconductors
Lorenzana, J. ); Dobry, A. )
1994-12-01
Exact diagonalization calculations show a continuous transition from delocalized to polaron behavior as a function of intersite electron-lattice coupling. A transition, found previously at the Hartree-Fock level between a magnetic and a nonmagnetic state, does not subsist when fluctuations are included. Local phonon modes become softer close to the polaron and by comparison with optical measurements of doped cuprates we conclude that they are close to the transition region between polaronic and nonpolaronic behavior. The barrier to adiabatically move a hole vanishes in that region suggesting large mobilities.
NASA Astrophysics Data System (ADS)
Kotomin, E. A.; Eglitis, R. I.; Borstel, G.
2000-09-01
Quantum chemical calculations using the intermediate neglect of the differential overlap (INDO) method, combined with the large unit cell periodic model argue for an existence of the self-trapped electrons in KNbO3 and KTaO3 perovskite crystals. An electron in the ground state occupies predominantly t2g orbital of a Nb4+ ion. Its orbital degeneracy is lifted by a combination of the breathing and Jahn-Teller modes where four nearest equatorial O atoms are displaced outwards and two oxygens shift inwards along the z axis. Triplet exciton is shown to be in a good approximation of a pair of nearest Jahn-Teller electron and hole polarons (a bipolaron) which is very likely responsible for the `green' luminescence observed in these crystals.
Two-dimensional polaron in a magnetic field
NASA Astrophysics Data System (ADS)
Xiaoguang, Wu; Peeters, F. M.; Devreese, J. T.
1985-12-01
The ground-state energy of a Fröhlich optical polaron confined to two dimensions, placed in a perpendicular magnetic field is calculated within the Feynman path-integral approach. The Feynman-model mass, the magnetization and the susceptibility are calculated as a function of the magnetic field strength for different values of the electron-phonon coupling. We find that within the generalized Feynman approximation the polaron exhibits a discontinuous transition from a dressed state to a stripped state if the electron-phonon constant α is larger than 1.60. For α<1.60, the transition occurs continuously with increasing magnetic field.
Direct Measurements of Magnetic Polarons in Cd1–xMnx Se Nanocrystals from Resonant Photoluminescence
Rice, W. D.; Liu, W.; Pinchetti, V.; ...
2017-04-07
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field Bex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd1–xMnxSe nanocrystals. Despite small Mn2+ concentrations (xmore » = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn2+ spins by Bexex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
Computer modeling of point defects, polarons, excitons, and surfaces in perovskite ferroelectrics
NASA Astrophysics Data System (ADS)
Borstel, Gunnar; Eglitis, Robert I.; Kotomin, Eugene A.; Heifets, Eugene
2003-08-01
We review results of our recent large-scale computer simulations of point defects, excitons and polarons in ABO3 perovskite crystals, focusing mostly on KNbO3 and KTaO3 as representative examples. We have calculated the atomic and electronic structure of defects, their optical absorption and defect-induced electron density redistribution. The majority of results are obtained using the quantum chemical method of the intermediate neglect of differential overlap (INDO) based on the Hartree-Frock formalism. The main findings are compared with results of ab initio Density Functional Theory (FP-LMTO) first-principles calculations. The results of the electronic structure calculations for different terminations of SrTiO3 (100) thin films are discussed. These calculations are based on the ab initio Hartree-Fock (HF) method and Density Functional Theory (DFT). Results are compared with previous ab initio plane-wave LDA and classical Shell Model (SM) calculations. Calculated considerable increase of the Ti-O chemical bond nearby the surface is confirmed by experimental data.
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication. This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; ...
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less
Bound magnetic polaron in a semimagnetic double quantum well
NASA Astrophysics Data System (ADS)
Kalpana, P.; Jayakumar, K.
2017-09-01
The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).
Effects of sp-d exchange on a bound polaron and the g-factor of the exciton in a GaMnAs quantum dot
NASA Astrophysics Data System (ADS)
Lalitha, D.; John Peter, A.; Yoo, Chang Kyoo
2013-08-01
Magneto bound polaron in a GaMnAs/Ga0.6Al0.4As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The exciton binding energy and the optical transition energy are computed as functions of dot radius and the magnetic field strength for a fixed Mn alloy content (x = 0.02) in a GaMnAs quantum dot. Numerical calculations are performed using variational method within a single band effective mass approximation. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength. The magnetization as a function of dot radius is investigated in a GaMnAs/Ga0.6Al0.4As quantum dot. The magnetic field induced size dependence of g-factor is studied. The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. The results bring out that (i) the geometrical dependence on sp-d exchange interaction in the GaMnAs/Ga0.6Al0.4As quantum dot has great influence with the magnetic field strength, (ii) the Landé factor is more sensitive if the geometrical confinement effect is included and (iii) the value of g-factor increases when the magnetic field strength is enhanced for all the dot radii. Our results are in good agreement with the other investigators.
Long-lived localized magnetic polarons in ZnMnSe/ZnSSe type-II superlattices
Maksimov, A. A. Pashkov, A. V.; Brichkin, A. S.; Kulakovskii, V. D.; Tartakovskii, I. I.; Toropov, A. A.; Ivanov, S. V.
2008-06-15
The kinetics and polarized spectra of low-temperature photoluminescence in semiconductor type-II superlattices based on ZnMnSe/ZnSSe structures have been studied in detail. Processes responsible for the formation of short-lived (about 1 ns) and long-lived (above 10 ns) localized exciton-type magnetic polarons (EMPs) in these systems are determined, and the relative contributions due to magnetic and nonmagnetic localization of heavy holes to the formation of such polarons are evaluated. A phenomenological model is constructed that takes into account the energy distribution of charge-carrier traps with respect to their level depths and employs the EMP parameters determined for ZnMnSe quantum wells. Within the proposed model, all spectral, temporal, and temperature-dependent features in the behavior of magnetophotoluminescence observed for the system under consideration can be consistently and quantitatively described.
Experimental manifestations of the Nb4+-O- polaronic excitons in KTa0.988Nb0.012O3
NASA Astrophysics Data System (ADS)
Yusupov, R. V.; Gracheva, I. N.; Rodionov, A. A.; Syrnikov, P. P.; Gubaev, A. I.; Dejneka, A.; Jastrabik, L.; Trepakov, V. A.; Salakhov, M. Kh.
2011-11-01
The formation of the photopolaronic excitons in ABO3 perovskite-type oxides has been detected experimentally by means of the photoinduced electron paramagnetic resonance (EPR) studies of KTa0.988Nb0.012O3 crystals. The corresponding microwave x-band spectrum at T< 10 K consists of a narrow, nearly isotropic signal located at g ˜ 2 and a strongly anisotropic component. The first signal, which has a rich structure due to hyperfine interactions with the lattice nuclei, is attributed to the single trapped charge carriers: the electrons and/or the holes. The anisotropic spectrum is caused by the axial centers oriented along the C4 pseudocubic principal crystalline axes. The spectrum angular dependence can be described well by an axial center with S = 1, g∥ = 0.82, g⊥ = 0.52, and D = 0.44 cm-1. The anisotropic spectrum is attributed to the Nb4+-O- polaronic excitons. The temperature dependence of the anisotropic component is characterized by two activation energies: the internal dynamics activation Ea1 = 3.7 ± 0.5 meV, which makes the EPR spectrum unobservable above 10 K, and the destruction energy Ea2 = 52 ± 4 meV. By comparing the anisotropic photo-EPR spectrum and the photoinduced optical absorption temperature dependencies, we found that the Nb4+-O- polaronic excitons also manifested themselves via the wide absorption band at ˜0.7 eV arising under ultraviolet light excitation in the weakly concentrated KTaO3:Nb crystals.
Magnetic-Polaron-Induced Enhancement of Surface Raman Scattering
Shao, Qi; Liao, Fan; Ruotolo, Antonio
2016-01-01
The studies of the effects of magnetic field on surface enhanced Raman scattering (SERS) have been so far limited to the case of ferromagnetic/noble-metal, core/shell nano-particles, where the influence was always found to be negative. In this work, we investigate the influence of magnetic field on a diluted magnetic semiconductor/metal SERS system. Guided by three dimensional finite-difference time-domain simulations, a high efficient SERS substrate was obtained by diluting Mn into Au-capped ZnO, which results in an increase of the dielectric constant and, therefore, an enhancement of Raman signals. More remarkably, an increase of intensities as well as a reduction of the relative standard deviation (RSD) of Raman signals have been observed as a function of the external magnetic strength. We ascribe these positive influences to magnetic-field induced nucleation of bound magnetic polarons in the Mn doped ZnO. The combination of diluted magnetic semiconductors and SERS may open a new avenue for future magneto-optical applications. PMID:26754049
Magnetic-polaron-induced colossal magnetocapacitance in CdCr2S4
NASA Astrophysics Data System (ADS)
Xie, Y. M.; Yang, Z. R.; Zhang, Z. T.; Yin, L. H.; Chen, X. L.; Song, W. H.; Sun, Y. P.; Zhou, S. Q.; Tong, W.; Zhang, Y. H.
2013-10-01
The origin of colossal magnetoresistance and colossal magnetocapacitance in a CdCr2S4 system was investigated. Thermoelectric-power and electronic spin resonance spectra reveal that the magnetic polaron is responsible for the colossal magnetoresistance in the n-type sample. The existence of magnetic polarons in the paramagnetic insulting matrix forms an intrinsic Maxwell-Wagner system, leading to the appearance of colossal magnetocapacitance. Being consistent with the evolution of magnetic polarons upon cooling, the Maxwell-Wagner system is valid around insulator-metal transition, where the resistance derived from impedance spectroscopy matches perfectly with DC resistance.
NASA Astrophysics Data System (ADS)
Shinar, Joseph
2005-03-01
Recent ODMR studies, including (1) photoluminescence (PL)-detected magnetic resonance (PLDMR) of small π-conjugated molecules, (2) electroluminescence (EL)- and electrically-detected magnetic resonance (ELDMR and EDMR, respectively) studies of small molecular OLEDs, (3) double modulation-PLDMR studies of π-conjugated polymers, and (4) joint PLDMR and thermally stimulated luminescence (TSL) studies of π-conjugated polymers are reviewed. The results of each of these studies are inconsistent with the model in which the positive spin 1/2 (polaron) resonance is due to enhanced delayed PL from nongeminate polaron recombination (``the delayed PL model''). Since the delayed PL model is the basis for the previous ODMR studies which predicted the yield of singlet excitons (SEs) in OLEDs, the recent ODMR studies reopen this issue. It is shown that all of the ODMR results obtained to date are consistent with ``the quenching model,'' in which the population of polarons and triplet excitons (TEs) is reduced by magnetic resonance conditions, and leads to reduced quenching of SEs by polarons and TEs. A detailed quantitative model confirms that the mechanism which causes the reduction in the polaron and TE population is the enhanced annihilation of TEs by polarons, whose populations are much larger than that of SEs under normal excitation conditions. *Operated by Iowa State University for the US Department of Energy under Contract No. W-7405-Eng-82.
Magnetic hard gap due to bound magnetic polarons in the localized regime
NASA Astrophysics Data System (ADS)
Rimal, Gaurab; Tang, Jinke
2017-02-01
We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.
Magnetic hard gap due to bound magnetic polarons in the localized regime
Rimal, Gaurab; Tang, Jinke
2017-01-01
We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields. PMID:28176857
A magnetic polaron model for the enhanced Curie temperature of EuO(1-x).
Liu, Pan; Tang, Jinke
2013-03-27
The investigation of a series of oxygen-deficient EuO thin films provided strong evidence that the doped electrons form magnetic polarons with the nearby Eu2+ 4f spins; this is responsible for the enhanced Curie temperature observed near 140 K. Unlike in the previous magnetic polaron models proposed for the metal-to-insulator transition in EuO, the exchange coupling J between the doped electron and its neighboring 4f spins is antiferromagnetic. The model explains satisfactorily the fact that the ordering temperature of the magnetic polarons occurs at ~140 K, independently of the oxygen vacancy concentration, and the contradiction that electron doping increases T(c) and yet reduces the red shift in the optical absorption. The magnetic polarons are coupled antiferromagnetically to the Eu2+ local moments that are ordered in the Heisenberg ferromagnet below 69 K. This coupling was observable in the vicinity of 69 K. We discuss how, with increasing concentration of the oxygen vacancies, their behaviors evolve from those of isolated superparamagnetic polarons to those of percolating magnetic polarons with a finite coercivity.
Kersten, S P; Schellekens, A J; Koopmans, B; Bobbert, P A
2011-05-13
We explore the magnetoelectroluminescence (MEL) of organic light-emitting diodes by evaluating the magnetic-field dependent fraction of singlet excitons formed. We use two- and multisite polaron-hopping models with spin mixing by hyperfine fields and different singlet and triplet exciton formation rates k(S) and k(T). A huge MEL is predicted when exciton formation is in competition with spin mixing and when k(T) is significantly larger than k(S). This competition also leads to a low-field structure in the MEL that is in agreement with recent experiments.
NASA Astrophysics Data System (ADS)
Kersten, S. P.; Schellekens, A. J.; Koopmans, B.; Bobbert, P. A.
2011-05-01
We explore the magnetoelectroluminescence (MEL) of organic light-emitting diodes by evaluating the magnetic-field dependent fraction of singlet excitons formed. We use two- and multisite polaron-hopping models with spin mixing by hyperfine fields and different singlet and triplet exciton formation rates kS and kT. A huge MEL is predicted when exciton formation is in competition with spin mixing and when kT is significantly larger than kS. This competition also leads to a low-field structure in the MEL that is in agreement with recent experiments.
Spin-Induced Optical Phenomena in Diluted Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Takeyama, Shojiro
The following sections are included: * INTRODUCTION * GENERAL FEATURES * Materials * Crystal Structures * Band Structure at ěc{k}≃ 0 * sp-d Exchange Interaction * Magnetic Properties and Parameters * Magnetization Steps due to Nearest-Neighbor Spin Pairs * The Physical Origin of the sp-d Exchange Constants * OPTICAL RESPONSE OF THE LOW-DIMENSIONAL DMSs * Anisotropy of the Zeeman Effect in Two-Dimensional DMSs * Magneto-Optical Method of Interface Characterization * MAGNETIC POLARONS * Bound Magnetic Polarons * Free Magnetic Polarons * OPTICAL OBSERVATION OF MAGNETIC POLARONS * A Selective Excitation Photoluminescence Study * Optical Survey of Free Magnetic Polarons * Two-Dimensional Exciton Free Magnetic Polarons * SUMMARY * REFERENCES
Modeling of magnetic polaron properties in (Zn,Mn)Te quantum dots
NASA Astrophysics Data System (ADS)
Pientka, James; Barman, B.; Schweidenback, L.; Russ, A. H.; Tsai, Y.; Murphy, J. R.; Cartwright, A. N.; Zutic, I.; McCombe, B. D.; Petrou, A.; Chou, W.-C.; Fan, W. C.; Sellers, I. R.; Petukhov, A. G.; Oszwaldowski, R.
Magnetic polarons in (Zn,Mn)Te quantum dots (QD) show unconventional behavior. These structures exhibit a small red shift of the photoluminescence peak energy in the presence of a magnetic field B and they also have a weak dependence of the polaron energy EMP on temperature T and B. We attribute these properties to a large molecular field Bm that is proportional to the heavy holes spin density. We have calculated Bm using the QD diameter and height as adjustable parameters. Assuming hole localization, this calculation yields values of Bm >20 T. The assumption that the hole localization diameter can be smaller than the QD diameter is justified due to alloy and spin disorder scattering. Using the magnetic polaron free energy, we calculate EMP as function of T and B for a variety of Bm values. To get a weak dependence of EMP on T and Bwe must assume that the polaron temperature is higher than T. This work was supported by U.S. DOE BES, Award DE-SC0004890, NSF DMR-1305770 and U.S. ONR N000141310754.
Overflow of a dipolar exciton trap at high magnetic fields
NASA Astrophysics Data System (ADS)
Dietl, S.; Kowalik-Seidl, K.; Schuh, D.; Wegscheider, W.; Holleitner, A. W.; Wurstbauer, U.
2017-08-01
We study laterally trapped dipolar exciton ensembles in coupled GaAs quantum wells at high magnetic fields in the Faraday configuration. In photoluminescence experiments, we identify three magnetic field regimes. At low fields, the exciton density is increased by a reduced charge carrier escape from the trap, and additionally, the excitons' emission energy is corrected by a positive diamagnetic shift. At intermediate fields, magnetic field dependent correction terms apply which follow the characteristics of a neutral magnetoexciton. Due to a combined effect of an increasing binding energy and lifetime, the exciton density is roughly doubled from zero to about 7 T. At the latter high field value, the charge carriers occupy only the lowest Landau level. In this situation, the exciton trap can overflow independently from the electrostatic depth of the trapping potential, and the energy shift of the excitons caused by the so-called quantum confined Stark effect is effectively compensated. Instead, the exciton energetics seem to be driven by the magnetic field dependent renormalization of the many-body interaction terms. In this regime, the impact of parasitic in-plane fields at the edge of trapping potential is eliminated.
Transport of indirect excitons in high magnetic fields
NASA Astrophysics Data System (ADS)
Kuznetsova, Y. Y.; Dorow, C. J.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Muljarov, E. A.; Campman, K. L.; Gossard, A. C.
2017-03-01
We present spatially and spectrally resolved photoluminescence measurements of indirect excitons in high magnetic fields. Long indirect exciton lifetimes give the opportunity to measure magnetoexciton transport by optical imaging. Indirect excitons formed from electrons and holes at zeroth Landau levels (0e-0h indirect magnetoexcitons) travel over large distances and form a ring emission pattern around the excitation spot. In contrast, the spatial profiles of 1e-1h and 2e-2h indirect magnetoexciton emission closely follow the laser excitation profile. The 0e-0h indirect magnetoexciton transport distance reduces with increasing magnetic field. These effects are explained in terms of magnetoexciton energy relaxation and effective mass enhancement.
NASA Astrophysics Data System (ADS)
Peter, A. John; Zheng, Jin-Liang
2010-04-01
Theoretical investigations of spin polaron in a quantum well in the spin doping superlattice systems Cd1 - xin Mn1 - xout Te/Cd1 - xout Mnxout Te are presented in this paper. A variational procedure within the effective mass approximation is employed in the presence of magnetic held to calculate the donor ionization energy. Spin polaronic shifts are estimated using a mean held theory. The results show that the donor binding energy (i) Increases with the reduction in well sizes (ii) Decreases with the magnetic held is increased for a given well width (iii) Increases to a maximum value at 90 Å and then decreases as the size of the well increases beyond 90 Å and (iv) Spin polaronic shifts to the donor binding energy not only decrease in a magnetic held but also with the well width. The results are compared with the existing available literature.
Excitonic magnetism in d6 perovskites
NASA Astrophysics Data System (ADS)
Afonso, J. Fernández; Kuneš, J.
2017-03-01
We use the LDA+U method to study the possibility of exciton condensation in perovskites of transition metals with the d6 electronic configuration such as LaCoO3. For realistic interaction parameters we find several distinct solutions exhibiting a spin-triplet exciton condensate, which gives rise to a local spin density distribution while the ordered moments are vanishingly small. Rhombohedral distortion from the ideal cubic structure suppresses the ordered state, contrary to the spin-orbit coupling which enhances the excitonic condensation energy. We explain the trends observed in the numerical simulations with the help of a simplified strong-coupling model. Our results indicate that LaCoO3 is close to the excitonic instability and suggest ways how to achieve the exciton condensation.
Anomalous magnetization of a carbon nanotube as an excitonic insulator
NASA Astrophysics Data System (ADS)
Rontani, Massimo
2014-11-01
We show theoretically that an undoped carbon nanotube might be an excitonic insulator—the long-sought phase of matter proposed by Keldysh, Kohn, and others fifty years ago. We predict that the condensation of triplet excitons, driven by intervalley exchange interaction, spontaneously occurs at equilibrium if the tube radius is sufficiently small. The signatures of exciton condensation are its sizable contributions to both the energy gap and the magnetic moment per electron. The increase of the gap might have already been measured, albeit with a different explanation [V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, Science 323, 106 (2009), 10.1126/science.1165799]. The enhancement of the quasiparticle magnetic moment is a pair-breaking effect that counteracts the weak paramagnetism of the ground-state condensate of excitons. This property could rationalize the anomalous magnitude of magnetic moments recently observed in different devices close to charge neutrality.
Compensation of dipolar-exciton spin splitting in magnetic field
NASA Astrophysics Data System (ADS)
Gorbunov, A. V.; Timofeev, V. B.
2013-03-01
Magnetoluminescence of spatially indirect dipolar excitons in 25 nm GaAs/AlGaAs single quantum well collected within a lateral potential trap has been studied in Faraday geometry. The paramagnetic spin splitting of the luminescence line of the heavy-hole excitons in the trap centre is completely compensated at magnetic field below critical value ≈2 Т. The effect of spin splitting compensation is caused by the exchange interaction in dense exciton Bose gas which is in qualitative agreement with the existing theoretical concepts.
Magnetic Proximity Effects in Transition-Metal Dichalcogenides: Converting Excitons
NASA Astrophysics Data System (ADS)
Scharf, Benedikt; Xu, Gaofeng; Matos-Abiague, Alex; Žutić, Igor
2017-09-01
The two-dimensional character and reduced screening in monolayer transition-metal dichalcogenides (TMDs) lead to the ubiquitous formation of robust excitons with binding energies orders of magnitude larger than in bulk semiconductors. Focusing on neutral excitons, bound electron-hole pairs that dominate the optical response in TMDs, it is shown that they can provide fingerprints for magnetic proximity effects in magnetic heterostructures. These proximity effects cannot be described by the widely used single-particle description but instead reveal the possibility of a conversion between optically inactive and active excitons by rotating the magnetization of the magnetic substrate. With recent breakthroughs in fabricating Mo- and W-based magnetic TMD heterostructures, this emergent optical response can be directly tested experimentally.
Magnetic brightening of dark excitons in transitional metal dichalcogenides
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Lu, Zhengguang; Cao, Ting; Zhang, Fan; Hone, James; Louie, Steven G.; Li, Zhiqiang; Smirnov, Dmitry; Heinz, Tony
Transitional metal dichalcogenides (TMDC) in the MX2 (M = Mo, W, X = S, Se) family represent an excellent platform to study of excitonic effects. At monolayer thickness, these materials exhibit both direct band-gap character and enhanced excitonic interactions. Theoretical studies suggest that both the valence and conduction bands are split and exhibit spin polarized character at the K/K' valleys. The lowest energy band-edge excitons are predicted to have different spin configurations for different materials in this family. When the lowest lying exciton has parallel electron and hole spin, radiative decay is forbidden and the state is dark. Here we demonstrate that by applying an in-plane magnetic field we can perturb the exciton spin configuration and brighten this state, allowing it to undergo radiative decay. We identify such a brightened dark state by the emergence of a new emission peak lying below the absorption peak, with a strength growing with applied in-plane magnetic field. On the other hand, for monolayer MoSe2, where no low-lying dark state is expected, we do not see the growth of a new emission feature under application of an in-plane magnetic field. Our experimental findings are in agreement with the calculated properties of dark excitons based on GW plus Bethe-Salpeter equation approach
Magnetic polarons in type-II (Zn,Mn)Se/ZnTe quantum dots
NASA Astrophysics Data System (ADS)
Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Pientka, J. M.; Zutic, I.; McCombe, B. D.; Petrou, A.; Cartwright, A. N.; Chou, W. C.; Tsou, M. H.; Yang, C. S.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A. G.
2014-03-01
We have studied magnetic polaron formation dynamics in (Zn,Mn)Se/ZnTe quantum dots2 (QDs) using time-resolved photoluminescence (TRPL) spectroscopy. The emitted light was spectrally and temporally analyzed; the emission spectra were recorded as function of time delay (Δt) from the exciting laser pulse. The recombination time at T = 10 K in our samples is 2.3 ns. The peak energy of the emission red shifts with increasing Δt due to the lowering of the hole-Mn spin complex (magnetic polaron) energy. From this shift we determined the magnetic polaron formation energy (EMP) at T = 10 K to be 20 meV, which is half the value observed in the ZnSe/(Zn,Mn)Te system studied previously.3EMP decreases with increasing temperature, in contrast to the behavior of the ZnSe/(Zn,Mn)Te system3 in which EMP is temperature independent. These results are discussed in terms of a theoretical model. This work is supported by DOE-BES, ONR and NSF.
Magnetic edge-state excitons in zigzag graphene nanoribbons.
Yang, Li; Cohen, Marvin L; Louie, Steven G
2008-10-31
We present first-principles calculations of the optical properties of zigzag-edged graphene nanoribbons (ZGNRs) employing the GW-Bethe-Salpeter equation approach with the spin interaction included. Optical response of the ZGNRs is found to be dominated by magnetic edge-state-derived excitons with large binding energy. The absorption spectrum is composed of a characteristic series of exciton states, providing a possible signature for identifying the ZGNRs. The edge-state excitons are charge-transfer excitations with the excited electron and hole located on opposite edges; they moreover induce a spin transfer across the ribbon, resulting in a photoreduction of the magnetic ordering. These novel characteristics are potentially useful in the applications.
Magnetic-field and quantum confinement asymmetry effects on excitons
Pereyra, P.; Ulloa, S. E.
2000-01-15
A theoretical analysis and calculation of the excitonic states in asymmetric quantum dots is carried out in the presence of magnetic fields. The lack of rotational symmetry, introduced by strains and structural factors, produces splittings of the excitonic states with corresponding consequences on the optical oscillator strengths and polarization dependence. For example, we find that the asymmetry produces Zeeman splittings that are smaller than those for symmetric dots at small fields, which could be used as an additional diagnostic of the geometry of the structure. We focus our calculations on naturally occurring quantum dots due to layer fluctuations in narrow quantum wells. Moreover, we observe that increasing magnetic fields produce an interesting crossover to pure angular momentum states for all the excitonic eigenstates, regardless of the degree of asymmetry of the dots and their size. Explicit calculations of photoluminescence excitation yields are presented and related to the different degrees of freedom of the system. (c) 2000 The American Physical Society.
Zhang, Yingjie; Aziz, Hany
2016-06-08
The root causes of the differences in electroluminescence stability among phosphorescent organic light-emitting devices (PHOLEDs) utilizing different emitter guests are studied. The results show that the host material plays a more influential role in limiting device stability in comparison to the guest. During the operation of a PHOLED, the host undergoes aggregation as a result of interactions between the excitons and positive polarons. The rate of this aggregation is found to be the limiting factor for device lifetime and is influenced by the choice of the guest material and its concentration. Finally, it is shown that phase segregation between the host and the guest is an important aspect of the aggregation process. As a result of this segregation, energy transfer from the host to the guest becomes increasingly less efficient, resulting in the observed gradual loss in electroluminescence efficiency in the devices over time. The findings explain why PHOLEDs utilizing different guest materials but otherwise identical material systems can have significantly different lifetimes and provide an answer to a long-lasting question in the field.
NASA Astrophysics Data System (ADS)
Pradhan, S.; Taraphder, A.
2016-10-01
A spinless, extended Falicov-Kimball model in the presence of a perpendicular magnetic field is investigated employing a self-consistent mean-field theory in two dimensions. In the presence of the field the excitonic average Δ =< di † fi > is modified: the exciton responds in subtle different ways for different values of the magnetic flux. We examine the effects of Coulomb interaction and hybridization between the localized and itinerant electrons on the excitonic average, for rational values of the applied magnetic field. The excitonic average is found to get enhanced exponentially with the Coulomb interaction while it saturates at large hybridization. The orbital magnetic field suppresses the excitonic average in general, though a strong commensurability effect of the magnetic flux on the behaviour of the excitonic order parameter is observed.
NASA Astrophysics Data System (ADS)
Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.
2017-06-01
We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.
Energy levels of an anisotropic three-dimensional polaron in a magnetic field
NASA Astrophysics Data System (ADS)
Brancus, D. E.; Stan, G.
2001-06-01
In the context of the improved Wigner-Brillouin theory, the energy levels are found of a Fröhlich polaron in a uniaxial anisotropic polar semiconductor with complex structure, placed in a magnetic field directed either along the optical axis or orthogonal to it. All sources of anisotropy that are contained in the shape of constant-energy surfaces of the bare electron, the electron-optical-phonon interaction, and the frequency spectrum of the extraordinary phonon modes are considered. Analytical results for the electron-phonon interaction correction to the Landau levels below the optical-phonon continuum are given and, numerical results for the magnetic-field dependence of the cyclotron resonance frequency at low temperature are presented for the particular case of the layered semiconductors InSe and GaSe. Although the interaction between the bare electron and quasitransverse optical-phonon modes is weak, these modes play an important role in the pinning of Landau levels. The results given by Das Sarma for a two-dimensional isotropic magnetopolaron are generalized to the anisotropic uniaxial case by taking formally m∥-->∞ in the expression of the perturbed Landau levels found when the magnetic field is directed along the optical axis, m∥ being the component of the bare-electron effective-mass tensor along the optical axis.
NASA Astrophysics Data System (ADS)
Li, L. L.; Zarenia, M.; Xu, W.; Dong, H. M.; Peeters, F. M.
2017-01-01
The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
2 s exciton-polariton revealed in an external magnetic field
NASA Astrophysics Data System (ADS)
Pietka, B.; Molas, M. R.; Bobrovska, N.; Król, M.; Mirek, R.; Lekenta, K.; Stepnicki, P.; Morier-Genoud, F.; Szczytko, J.; Deveaud, B.; Matuszewski, M.; Potemski, M.
2017-08-01
We demonstrate the existence of the excited state of an exciton-polariton in a semiconductor microcavity. The strong coupling of the quantum well heavy-hole exciton in an excited 2 s state to the cavity photon is observed in nonzero magnetic field due to surprisingly fast increase of Rabi energy of the 2 s exciton-polariton in magnetic field. This effect is explained by a strong modification of the wave function of the relative electron-hole motion for the 2 s exciton state.
NASA Astrophysics Data System (ADS)
Barman, Biplob; Oszwaldowski, Rafal; Schweidenback, Lars; Russ, Andreas; Murphy, Joseph; Cartwright, Alexander; Zutic, Igor; McCombe, Bruce; Petrou, Athos; Chou, Wu-Ching; Chung Fan, Wen; Sellers, Ian; Petukhov, Andre
2013-03-01
We have extended our previous investigation of time evolution of PL from (Zn,Mn)Te/ZnSe quantum dots in a magnetic field B. PL studies at T = 5 K in these type-II dots reveal formation of magnetic polarons (MP). We find their formation time τMP to be 0.5 ns, which varies little with B. The circular polarization P of the emission shows a surprising behavior. For all fields, the characteristic time τP is longer than τMP. Furthermore, τP decreases from 10 ns to 1.9 ns as B increases from 1 to 4 tesla. We attribute this effect to a low- B bottleneck in the σ+ recombination channel, due to the almost equal populations of the spin +/- 1 / 2 electrons participating in the interband transitions. In contrast, the +/- 3 / 2 holes in the (Zn,Mn)Te QDs, are affected mostly by the effective field due to exchange interaction between hole and Mn spins around it. This effective field is much larger than B. Work supported by DOE-BES, ONR and NSF.
Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite
NASA Astrophysics Data System (ADS)
Mahato, Dev K.; Majumder, Sumit; Banerjee, S.
2017-08-01
Single phase MgFe2O4 (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe2O4. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, TB∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (Ms) may mainly result from the improvement of crystallinity and decrease of concentration of oxygen vacancies. Electrical properties were studied by ac conductivity, impedance and electric modulus measurements. The conduction in MFO is due to overlapping large polaron hopping mechanism.
Magnetic field effects of Rydberg Excitons in Cu2O
NASA Astrophysics Data System (ADS)
Thewes, J.; Heckötter, J.; Aßmann, M.; Fröhlich, D.; Grünwald, P.; Scheel, S.; Bayer, M.
2016-02-01
Rydberg excitons are semiconductor analogues to Rydberg atoms, where one electron is promoted to an energy level of large principal quantum number η and which behave in a manner similar to hydrogen. Their huge spatial extent results in giant dipole moments and interaction effects, which can be used to create nonlinearities at the single excitation level. In contrast to hydrogen, the effective masses and Rydberg energies involved are moderately small, so that in contrast to Rydberg atoms the high field limit of Rydberg physics can be studied using fields strengths that can be realized in the lab. Here we investigate the effects of external magnetic fields of up to 7T on Rydberg excitons both in Faraday and Voigt geometry. In both cases complicated splitting patterns emerge. We investigate the differences between the two geometries and highlight spectroscopic features that are especially easy to access using them. We show that the large number of resonances in the spectrum renders a microscopic treatment of each individual resonance implausible. We instead demonstrate general effects introduced by the field like avoided crossings and discuss alternative approaches to the level structure in terms of collective descriptions.
Two-Exciton and Exciton-Magnon Bands in DIMANGANESE(+) Magnets.
NASA Astrophysics Data System (ADS)
Darwish, Saqer Mohammed
The temperature dependence of several exciton -magnon and two-exciton bands in the optical absorption spectra of three antiferromagnets have been studied using a Cary 14 spectrophotometer in conjunction with an Air Product Displex, closed-cycle helium refrigerator. The three antiferromagnets with their T_{ rm N} are: KMnF_3, T_{rm N} = 88.3 K; RbMnF_3, T_{ rm N} = 82.6 K; and MnF_2 , T_{rm N} = 67.3 K. In this work the temperature dependence (10 ^circK to 300^ circK) of the line position E, the oscillator strength f, and the half-width of half maximum delta, for several of these bands were measured. For the two-exciton bands f increases where as for the exciton-magnon and exciton-magnon-phonon bands f decreases as the temperature is lowered through T _{rm N}. The temperature dependence of f for the two-exciton bands in the three antiferromagnets agrees well with the theoretical predictions of Fujiwara et al. For the exciton-magnon bands, f increases with increasing T up to T_{rm N} and then remains essentially constant above T_{rm N}, in reasonable agreement with the theory of Shinagawa and Tanabe. For the exciton-magnon-phonon bands, a slight increase in f above T_{rm N} is believed to be due to the role of a phonon. The temperature dependence of the line positions E(T) is also different for the exciton-magnon and two-exciton bands. The exciton-magnon or exciton-magnon-phonon bands undergo a blue shift in E(T) as the temperature is lowered through T_{rm N}. This is semiquantitatively understood in terms of the exchange field using the molecular field theory of Yen et al. On the other hand, most of the two-exciton bands do not show any anomaly in E(T) below T_{rm N}. Instead their line positions are described well by the Einstein-type relation E(T) = E(O) + A ^{*}/ (exp(T^ {*}/T) - 1), where T^{*} represents an odd symmetry phonon with frequency upsilon * = kT^{*} /h. Above T_{rm N} , the exciton-magnon-phonon bands also follow the same equation. From these fits
Ding, Baofu Alameh, Kamal
2014-07-07
The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.
Exciton condensation in an extended Falicov-Kimball model in the presence of orbital magnetic fields
NASA Astrophysics Data System (ADS)
Pradhan, Subhasree; Taraphder, A.
2016-12-01
We investigate the exciton condensation in the presence of an external, perpendicular magnetic field in a two-dimensional extended spinless Falicov-Kimball model involving itinerant (c) and localized (f) electrons in the half-filled limit, using self-consistent, mean-field approximations. On tuning the orbital magnetic field the excitonic averages Δi =< c_i^\\dagger f_i> are affected in several ways: the external field usually suppresses the excitonic average but we find that it is also possible to enhance excitonic response at some values of the magnetic field. We further examine the effect of Coulomb interaction and the f-electron hopping on the condensation of excitons for some rational values of the applied magnetic fields. The interband Coulomb interaction enhances Δ exponentially and the effect is more pronounced for low hybridization. The strength of excitonic average drops when f-electrons have a dispersion. This trend is independent of the relative sign of the c- and f-electron hopping; although the excitonic response is different for different parity of the c- and f-electrons.
NASA Astrophysics Data System (ADS)
Kolodiazhnyi, Taras; Charoonsuk, Thitirat; Seo, Yu-Seong; Chang, Suyong; Vittayakorn, Naratip; Hwang, Jungseek
2017-01-01
We report magnetic susceptibility, electrical conductivity and optical absorption of Ce1 -xMxO2 where M = Nb,Ta and 0 ≤x ≤0.03 . The dc conductivity follows a simple thermally activated Arrhenius-type behavior in the T =70 -700 K range with a change in slope at T*≈155 K. The high-temperature activation energy shows gradual increase from ≈170 to 220 meV as the dopant concentration increases. The activation energy of the low-temperature conductivity shows a broad minimum of ≈77 meV at x ≈0.01 . Electron transport and localization mechanisms are analyzed in the framework of the Holstein small polaron, Anderson localization, and Jahn-Teller distortion models. The fit to the small polaron mobility is dramatically improved when, instead of the longitudinal phonons, the transverse optical phonons are considered in the phonon-assisted electron transport. This serves as an indirect evidence of a strong 4 f1 orbital interaction with the oxygen ligands, similar to the case of PrO2. Based on comparison of the experimental data to the models, it is proposed that the defect-induced random electric fields make the dominant contribution to the electron localization in donor-doped ceria.
Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok
2015-05-15
The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.
A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.
In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.
NASA Astrophysics Data System (ADS)
Berciu, Mona
2014-06-01
We show that even in the presence of a transverse magnetic field, the eigenstates of an exciton remain invariant to the full lattice translation group. This is expected if the exciton is viewed as a neutral quasiparticle, but not if one views it as a bound electron-hole pair. Single electron and hole wave functions are invariant only to the magnetic translation group, and their momenta are restricted to the magnetic Brillouin zone; the associated folding is the origin of their Hofstadter butterfly spectra. We find that such folding is not necessary for exciton eigenstates, which are characterized by momenta in the full Brillouin zone and thus have higher symmetry than the Hamiltonian. The magnetic field can have a significant effect on the shape of the exciton dispersion, however. While similar effects have been noted in continuous models, we find qualitatively different behavior for Frenkel excitons, whose origin we clarify. We also derive an analytical solution for the Hofstadter butterfly on a square lattice and analyze its dispersion in the full Brillouin zone.
Quantum vibrational polarons: Crystalline acetanilide revisited
NASA Astrophysics Data System (ADS)
Hamm, Peter; Edler, Julian
2006-03-01
We discuss a refined theoretical description of the peculiar spectroscopy of crystalline acetanilide (ACN). Acetanilide is a molecular crystal with quasi-one-dimensional chains of hydrogen-bonded units, which is often regarded as a model system for the vibrational spectroscopy of proteins. In linear spectroscopy, the CO stretching (amide I) band of ACN features a double-peak structure, the lower of which shows a pronounced temperature dependence which has been discussed in the context of polaron theory. In nonlinear spectroscopy, both of these peaks respond distinctly differently. The lower-frequency band exhibits the anharmonicity expected from polaron theory, while the higher-frequency band responds as if it were quasiharmonic. We have recently related the response of the higher-frequency band to that of a free exciton [J. Edler and P. Hamm, J. Chem. Phys. 117, 2415 (2002)]. However, as discussed in the present paper, the free exciton is not an eigenstate of the full quantum version of the Holstein polaron Hamiltonian, which is commonly used to describe these phenomena. In order to resolve this issue, we present a numerically exact solution of the Holstein polaron Hamiltonian in one dimension (1D) and 3D. In 1D, we find that the commonly used displaced oscillator picture remains qualitatively correct, even for relatively large exciton coupling. However, the result is not in agreement with the experiment, as it fails to explain the free-exciton band. In contrast, when taking into account the 3D nature of crystalline acetanilide, certain parameter regimes exist where the displaced oscillator picture breaks down and states appear in the spectrum that indeed exhibit the characteristics of a free exciton. The appearance of these states is a speciality of vibrational polarons, whose source of exciton coupling is transition dipole coupling which is expected to have opposite signs of interchain and intrachain coupling.
NASA Astrophysics Data System (ADS)
Liu, Yun-Fei; Xiao, Jing-Lin
2009-03-01
In a two-dimensional quantum dot (QD) with parabolic confinement potential, we investigate pure dephasing due to deformation potential exciton-bulk longitudinal acoustic phonons (LAP) interaction for exciton qubits under the influence of external static electric and magnetic fields by adopting the full quantum-mechanical method of Kunihiro Kojima and Akihisa Tomita. The wave function is found and the dependence of the pure dephasing factor on the confinement length of the QD and time and temperature is discussed. We find the external electric and magnetic fields have important effects on pure dephasing of exciton qubits because exciton-LAP interaction increases, leading to more pure dephasing.
Magnetic brightening and control of dark excitons in monolayer WSe2.
Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F
2017-09-01
Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.
Magnetic brightening and control of dark excitons in monolayer WSe2
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C.; Robinson, Joshua A.; Smirnov, Dmitry; Louie, Steven G.; Heinz, Tony F.
2017-09-01
Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.
Magnetic brightening and control of dark excitons in monolayer WSe2
Zhang, Xiao -Xiao; Cao, Ting; Lu, Zhengguang; ...
2017-06-26
Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light–matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons aremore » obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. Furthermore, these studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.« less
Dark excitons in a quantum-dot-cavity system under a tilted magnetic field
NASA Astrophysics Data System (ADS)
Jiménez-Orjuela, C. A.; Vinck-Posada, H.; Villas-Bôas, José M.
2017-09-01
We report on dark-exciton dynamics in a single quantum dot embedded in a bimodal cavity under the effect of an external magnetic field and laser excitation. By means of a fast laser pulse in resonance with the cavity modes and a varying intensity magnetic field in different tilted angles, we are able to identify the optimal condition where dark-exciton states can be efficiently populated. Using the set of parameters, we focus on the steady regime for the system that is continuously excited. Our results show that the presence of dark-exciton states strongly modifies the cavity modes' occupation and, for a specific set of parameters, only dark states are present in the cavity.
Effective Landé factor in a GaMnAs quantum dot; with the effects of sp-d exchange on a bound polaron
Lalitha, D. Peter, A. John
2014-04-24
The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. Magneto bound polaron in a GaMnAs/Ga{sub 0.6}Al{sub 0.4}As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength.
NASA Astrophysics Data System (ADS)
Beaulac, Remi
2010-03-01
An attractive approach to controlling spin effects in semiconductor nanostructures for applications in electronics is to use light to generate, manipulate, or read out spins. The main focus of this presentation will be on the recent demonstration of spontaneous photoinduced polarization of Mn(II) spins in doped colloidal CdSe quantum dots, an effect due to the formation of excitonic magnetic polarons. Photoexcitation generates large dopant-carrier exchange fields, enhanced by strong spatial confinement, that lead to giant Zeeman splittings of the semiconductor band structure in the absence of applied magnetic fields. These internal exchange fields allow spontaneous magnetic saturation of the Mn(II) spins to be achieved at zero external magnetic field up to ca. 50 K, and photomagnetic effects are observed all the way up to room temperature. The factors that allow this fascinating effect to be observed in colloidal Mn(II)-doped CdSe nanoparticles will be discussed. Relevant Publications: 1) Beaulac, Schneider, Archer, Bacher, and Gamelin. Science, 325, 973 (2009) 2) Beaulac, Archer, Ochsenbein, and Gamelin, Adv. Funct. Mat., 18, 3873 (2008)
A huge renormalization of transport effective mass in the magnetic-polaronic state of EuB 6
NASA Astrophysics Data System (ADS)
Glushkov, V.; Bogach, A.; Demishev, S.; Gon'kov, K.; Ignatov, M.; Khayrullin, Eu.; Samarin, N.; Shubin, A.; Shitsevalova, N.; Flachbart, K.; Sluchanko, N.
2008-04-01
The comprehensive study of galvanomagnetic, thermoelectric and magnetic properties was carried out on the single crystals of low carrier density ferromagnetic metal EuB 6 ( TC≈13.9 K, Tm=15.8 K) in a wide range of temperatures (1.8-300 K) and magnetic fields (up to 80 kOe). The analysis of the microscopic characteristics estimated from the data revealed a giant renormalization of the charge carriers’ effective mass meff, which is observed in the paramagnetic state of this compound with strong electron correlations. The gradual decrease of meff from the maximum of meff∼30 meff detected at T*≈80 K to the low temperature values of meff ( T⩽ TC)∼0.2-1 m0 is discussed in terms of the phase separation with the formation of low resistive ferromagnetic nano-sized regions (ferrons) in the dielectric magnetic polaronic state ( T> Tm). The observed unusual behavior of meff favors recent explanation of the genesis of the metal-insulator transition scenario proposed for La-doped EuB 6 systems [U. Yu, B.I. Min, Phys. Rev. Lett. 94 (2005) 117202.].
Sinito, Chiara; Fernée, Mark J; Goupalov, Serguei V; Mulvaney, Paul; Tamarat, Philippe; Lounis, Brahim
2014-11-25
We use nominally spheroidal CdSe nanocrystals with a zinc blende crystal structure to study how shape perturbations lift the energy degeneracies of the band-edge exciton. Nanocrystals with a low degree of symmetry exhibit splitting of both upper and lower bright state degeneracies due to valence band mixing combined with the isotropic exchange interaction, allowing active control of the level splitting with a magnetic field. Asymmetry-induced splitting of the bright states is used to reveal the entire 8-state band-edge fine structure, enabling complete comparison with band-edge exciton models.
NASA Astrophysics Data System (ADS)
Wilkes, J.; Muljarov, E. A.
2017-08-01
Excitons and microcavity polaritons that possess a macroscopic dipole alignment are attractive systems to study. This is due to an enhancement of collective many body effects and an ability to electrostatically control their transport and internal structure. Here, we present an overview of a rigorous calculation of spatially-indirect exciton states in semiconductor coupled quantum wells in externally applied electric and magnetic fields. We also treat dipolaritons that form when such structures are positioned at the antinode of a resonant cavity mode. Our approach is general and can be applied to various planar solid state heterostructures inside optical resonators. It offers a thorough description of the properties of excitons and polaritons that are important for modelling their respective fluids. In particular, we calculate the exciton Bohr radius, binding energy, optical lifetime and magnetic field induced enhancement of the effective mass. We also describe electric and magnetic field control of the exciton and polariton dipole moment and brightness.
Excitonic spin-splitting in quantum wells with a tilted magnetic field.
dos Santos, L Fernandes; Castelano, L K; Padilha, J X; Pusep, Y; Marques, G E; Smirnov, D; Bakarov, A K; Toropov, A I; Lopez-Richard, V
2016-02-10
This work aims to investigate the effects of magnetic field strength and direction on the electronic properties and optical response of GaAs/AlGaAs-based heterostructures. An investigation of the excitonic spin-splitting of a disordered multiple quantum well embedded in a wide parabolic quantum well is presented. The results for polarization-resolved photoluminescence show that the magnetic field dependencies of the excitonic spin-splitting and photoluminescence linewidth are crucially sensitive to magnetic field orientation. Our experimental results are in good agreement with the calculated Zeeman splitting obtained by the Luttinger model, which predicts a hybridization of the spin character of states in the valence band under tilted magnetic fields.
Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates.
Ohadi, H; Del Valle-Inclan Redondo, Y; Dreismann, A; Rubo, Y G; Pinsker, F; Tsintzos, S I; Hatzopoulos, Z; Savvidis, P G; Baumberg, J J
2016-03-11
Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin polarize spontaneously. We observe a crossover from an antiferromagnetic to a ferromagnetic pair state by reducing the coupling barrier in real time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.
Podlesnyak, Andrey A; Ehlers, Georg; Frontzek, Matthias D; Sefat, A. S.; Furrer, Albert; Straessle, Thierry; Pomjakushina, Ekaterina; Conder, Kazimierz; Demmel, F.; Khomskii, D. I.
2011-01-01
We investigate the doping dependence of the nanoscale electronic and magnetic inhomogeneities in the hole-doping range 0.002 < x < 0.1 of cobalt based perovskites, La{sub 1-x}Sr{sub x}CoO{sub 3}. Using single-crystal inelastic neutron scattering and magnetization measurements we show that the lightly doped system exhibits magnetoelectronic phase separation in the form of spin-state polarons. Higher hole doping leads to a decay of spin-state polarons in favor of larger scale magnetic clusters, due to competing ferromagnetic correlations of Co{sup 3+} ions which are formed by neighboring polarons. The present data give evidence for two regimes of magnetoelectronic phase separation in this system: (i) x {approx}< 0.05, dominated by ferromagnetic intrapolaron interactions, and (ii) x {approx}> 0.05, dominated by Co{sup 3+}-Co{sup 3+} intracluster interactions. Our conclusions are in good agreement with a recently proposed model of the phase separation in cobalt perovskites.
Tracking the coherent generation of polaron pairs in conjugated polymers
NASA Astrophysics Data System (ADS)
de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
NASA Astrophysics Data System (ADS)
Liu, Guanghui; Guo, Kangxian; Wu, Qingjie; Wu, Jing-He
2013-01-01
Polaron effects on the optical rectification (OR) and the second harmonic generation (SHG) in cylindrical quantum dots (CQDs) with the radial parabolic potential and the z-direction linear potential in the presence of the magnetic field are theoretically investigated. The expressions for both the OR and the SHG are obtained within the framework of the compact-density-matrix approach and the iterative method. After considering the electron-LO-phonon interaction (ELOPI) as perturbation, the energy levels and the wave functions of an electron confined in CQD are obtained by perturbation theory. Numerical calculations are presented for GaAs/AlGaAs. It is found that when we consider the ELOPI, the resonant peak of the OR χ0(2) is enhanced, whereas the magnitude of the SHG χ2ω(2) is greatly enhanced. It is also found that when we ignore the ELOPI, with the increase of the radial confinement frequency ωρ and the magnetic field B, respectively, the resonant peak of the OR χ0(2) remains constant, whereas the magnitude of the SHG χ2ω(2) becomes small. However, when we consider the ELOPI, with the increase of ωρ,B and V respectively, both the resonant peak of the OR χ0(2) and the magnitude of the SHG χ2ω(2) become small. Our results also find that whether the ELOPI is considered or not, with the increase of ωρ, B and V, respectively, both χ0(2) and χ2ω(2) exhibit a blue shift.
Exciton mass increase in a GaAs/AlGaAs quantum well in a transverse magnetic field
NASA Astrophysics Data System (ADS)
Bodnar, S. Yu.; Grigoryev, P. S.; Loginov, D. K.; Davydov, V. G.; Efimov, Yu. P.; Eliseev, S. A.; Lovtcius, V. A.; Ubyivovk, E. V.; Mikhailovskii, V. Yu.; Ignatiev, I. V.
2017-05-01
In this work we have investigated the exciton reflectance spectra of a high quality heterostructure with a GaAs/AlGaAs quantum well in a transverse magnetic field (Voigt geometry). It has been shown that application of the magnetic field leads to a decrease of energy distance between spectral features related to the excitonlike polariton modes. This effect has been treated as the magneto-induced increase of the exciton mass. We have shown that the hydrogenlike and diamagnetic exciton models are insufficient to describe the exciton behavior in the intermediate magnetic fields studied. Considering the symmetry of the problem, we have developed a phenomenological model which adequately describes the experimental data.
NASA Astrophysics Data System (ADS)
Rakshit, Rupali; Serita, Kazunori; Tonouchi, Masayoshi; Mandal, Kalyan
2016-11-01
Herein, terahertz (THz) time domain spectroscopy is used to measure the complex conductivity of semi-insulating CoFe2O4 nanoparticles (NPs) and nano-hollow spheres (NHSs) with different diameters ranging from 100 to 350 nm having a nanocrystalline shell thickness of 19 to 90 nm, respectively. Interestingly, the magnitude of conductivity for CoFe2O4 NPs and NHSs of same average diameter (˜100 nm) for a given frequency of 0.3 THz is found to be 0.33 S/m and 9.08 S/m, respectively, indicating that the hollow structure exhibits greater THz conduction in comparison to its solid counterpart. Moreover, THz conductivity can be tailored by varying the nano-shell thickness of NHSs, and a maximum conductivity of 15.61 S/m is observed at 0.3 THz for NHSs of average diameter 250 nm. A detailed study reveals that thermally activated polaronic hopping plays the key role in determining the electrical transport property of CoFe2O4 nanostructures, which is found to solely depend on their magnitude of THz absorptivity. The non-Drude conductivity of all CoFe2O4 nanostructures is well described by the Polaron model instead of the Drude-Smith model, which is relevant for backscattering of free electrons in a nanostructured material. The Polaron model includes intra-particle and interparticle polaronic conductivities for closely spaced magnetic nanostructures and provides a mean free path of 29 nm for CoFe2O4 NPs of diameter 100 nm, which is comparable with its average crystallite size, indicating the applicability of the developed model for nanomaterials where charge transport is determined by polaronic hopping. Finally, we have demonstrated the morphology and size dependent magnetic measurements of ferrimagnetically aligned CoFe2O4 nanostructures through a vibrating sample magnetometer in the temperature range of 80-250 K, revealing that the disordered surface spin layer of nanostructures significantly controls their magnetism.
Polarons in π-Conjugated Polymers: Anderson or Landau?
Barford, William; Marcus, Max; Tozer, Oliver Robert
2016-02-04
Using both analytical expressions and the density matrix renormalization group method, we study the fully quantized disordered Holstein model to investigate the localization of charges and excitons by vibrational or torsional modes-i.e., the formation of polarons-in conformationally disordered π-conjugated polymers. We identify two distinct mechanisms for polaron formation, namely Anderson localization via disorder (causing the formation of Anderson polarons) and self-localization by self-trapping via normal modes (causing the formation of Landau polarons). We identify the regimes where either description is more valid. The key distinction between Anderson and Landau polarons is that for the latter the particle wave function is a strong function of the normal coordinates, and hence the "vertical" and "relaxed" wave functions are different. This has theoretical and experimental consequences for Landau polarons. Theoretically, it means that the Condon approximation is not valid, and so care needs to be taken when evaluating transition rates. Experimentally, it means that the self-localization of the particle as a consequence of its coupling to the normal coordinates may lead to experimental observables, e.g., ultrafast fluorescence depolarization. We apply these ideas to poly(p-phenylenevinylene). We show that the high frequency C-C bond oscillation only causes Landau polarons for a very narrow parameter regime; generally we expect disorder to dominate and Anderson polarons to be a more applicable description. Similarly, for the low frequency torsional fluctuations we show that Anderson polarons are expected for realistic parameters.
Exciton-phonon interaction breaking all antiunitary symmetries in external magnetic fields
NASA Astrophysics Data System (ADS)
Schweiner, Frank; Rommel, Patric; Main, Jörg; Wunner, Günter
2017-07-01
Recent experimental investigations by M. Aßmann et al. [Nat. Mater. 15, 741 (2016), 10.1038/nmat4622] on the spectrum of magnetoexcitons in cuprous oxide revealed the statistics of a Gaussian unitary ensemble (GUE). The model of F. Schweiner et al. [Phys. Rev. Lett. 118, 046401 (2017), 10.1103/PhysRevLett.118.046401], which includes the complete cubic valence band structure of the solid, can explain the appearance of GUE statistics if the magnetic field is not oriented in one of the symmetry planes of the cubic lattice. However, it cannot explain the experimental observation of GUE statistics for all orientations of the field. In this paper we investigate the effect of quasiparticle interactions or especially the exciton-phonon interaction on the level statistics of magnetoexcitons and show that the motional Stark field induced by the exciton-phonon interaction leads to the occurrence of GUE statistics for arbitrary orientations of the magnetic field in agreement with experimental observations. Importantly, the breaking of all antiunitary symmetries can be explained only by considering both the exciton-phonon interaction and the cubic crystal lattice.
F Bridges; L Downward; J Neumeier; T Tyson
2011-12-31
We present detailed local structure measurements (using the extended x-ray absorption fine structure technique) for the colossal magnetoresistive material La{sub 1-x}Ca{sub x}MnO{sub 3} (0.21 < x < 0.45) as a function of temperature and magnetic field. The local distortions of the Mn-O bonds are parameterized using {sigma}, the width of the Mn-O pair-distribution function (PDF). After subtracting thermal phonon contributions, we show that the contributions to {sigma}{sup 2} from polaron and Jahn-Teller (JT) distortions, {sigma}{sub JT/polaron}{sup 2}, are a universal function of the magnetization, independent of how the magnetization is achieved via changes in temperature or magnetic field. However this universal behavior is only observed for B fields {ge} 2 T, likely as a result of domain canting in low B fields. The resulting curve is well described by two straight lines with significantly different slopes. These regimes represent two distinctly differ distortions of the oxygen octahedra about the Mn. For low magnetizations up to {approx}65% of the theoretical maximum magnetization, M{sub T}, the slope is low and the distortion removed as the sample becomes magnetized is small - we argue this arises from polarons which have a low distortion around two (or possibly three) Mn sites. At high magnetizations large distortions per Mn site are removed as these sites become magnetized. The data are also analyzed in terms of a two Mn-O peak distribution using experimental standards for Mn-O. The results agree well with recent neutron PDF results but not with some earlier results. We discuss the limitations of assuming a two peak distribution in view of the two distortions needed to describe the Mn-O distortions as a function of T and B for B {ge} 2 T. It is likely that there is a distribution of longer bonds. Finally we show that with increasing B field, the Mn-Mn peak also has a small B-field-induced change - a measure at the unit cell level of magnetostriction but find
High energy sideband on the magnetic polaron related luminescence in EuTe
NASA Astrophysics Data System (ADS)
Heredia, E.; Motisuke, P.; de Oliveira Rappl, P. H.; Brasil, M. J. S. P.; Iikawa, F.
2012-08-01
We investigated the near band gap luminescence of EuTe thin films grown by molecular beam epitaxy, using excitation intensities up to 2 × 105 W/cm2. Besides the previously reported high energy emissions MX1 and MX2, we observed an additional emission band at higher energies. This higher-energy band is only detected when high excitation intensities, over 2 kW/cm2, are used. With increasing externally applied magnetic field, this additional emission band shifts to lower energies at a rate even higher than the MX1. The two bands, however, have different temperature dependences and decay times, suggesting that distinct electronic states are involved in their emission.
Chang, Wen-Hao; Lin, Chia-Hsien; Fu, Ying-Jhe; Lin, Ta-Chun; Lin, Hsuan; Cheng, Shuen-Jen; Lin, Sheng-Di; Lee, Chien-Ping
2010-01-21
We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs) and quantum rings (QRs). For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X), biexcitons (XX), and positive trions (X-). For negative trions (X-) in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.
NASA Astrophysics Data System (ADS)
Trojnar, Anna H.; Kadantsev, Eugene S.; Korkusiński, Marek; Hawrylak, Pawel
2011-12-01
A theory of the fine structure of correlated exciton states in self-assembled parabolic semiconductor quantum dots in a magnetic field perpendicular to the quantum dot plane is presented. The correlated exciton wave function is expanded in configurations consisting of products of electron and heavy-hole 2D harmonic oscillator states (HO) in a magnetic field and the electron spin Sz=±1/2 and a heavy-hole spin τz=±3/2 states. Analytical expressions for the short- and long-range electron-hole exchange Coulomb interaction matrix elements are derived in the HO and spin basis for arbitrary magnetic field. This allows the incorporation of short- and long-range electron-hole exchange, direct electron-hole interaction, and quantum dot anisotropy in the exact diagonalization of the exciton Hamiltonian. The fine structure of ground and excited correlated exciton states as a function of a number of confined shells, quantum dot anisotropy, and magnetic field is obtained using exact diagonalization of the many-body Hamiltonian. The effects of correlations are shown to significantly affect the energy splitting of the two bright exciton states.
NASA Astrophysics Data System (ADS)
Zhu, Liangqing; Shao, Jun; Lin, Tie; Lü, Xiang; Zhu, Junyu; Tang, Xiaodong; Chu, Junhao
2012-04-01
Temperature-dependent magnetic (2-300 K), DC Hall (10-300 K), and infrared transmission (11.5-300 K) measurements are performed on a series of p-type Hg1-xMnxTe (0.12 ≤ x ≤ 0.26) single crystals in the spin-glass regime. Photoionization absorption (PIA) of acceptor-bound magnetic polarons (acceptor-BMPs) is observed to evolve with temperature, which is better accounted for by the classical oscillator model than by the quantum defect method. At low temperatures, p-type Hg1-xMnxTe manifests distinct phenomena of paramagnetic enhancement, negative magnetoresistance, and decrease of the effective binding energy and blueshift of the PIA of the acceptor-BMPs with nearly the same degree as temperature declines. A spin-splitting model is proposed, which can well reproduce the experimentally observed zero-field spin splitting of the acceptor-BMP level at low temperatures and the increase of the spin splitting as temperature drops. The results suggest that the acceptor-BMPs in Hg1-xMnxTe may have potential applications in light-driven polaronic memories, tunable far-infrared lasers, and detectors.
Weak coupling polaron and Landau-Zener scenario: Qubits modeling
NASA Astrophysics Data System (ADS)
Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.
2017-06-01
The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors
NASA Astrophysics Data System (ADS)
Sidler, Meinrad; Back, Patrick; Cotlet, Ovidiu; Srivastava, Ajit; Fink, Thomas; Kroner, Martin; Demler, Eugene; Imamoglu, Atac
2016-10-01
The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultracold Fermi gases. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity coupling favouring ultralow-mass polariton formation and exciton-electron interactions leading to polaron or trion formation. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe2 (ref. ) exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive exciton-polaron resonance to the lower-energy attractive exciton-polaron state. Simultaneous observation of polariton formation in both attractive and repulsive branches indicates a new regime of polaron physics where the polariton impurity mass can be much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi mixtures.
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors
NASA Astrophysics Data System (ADS)
Sidler, Meinrad; Back, Patrick; Cotlet, Ovidiu; Srivastava, Ajit; Fink, Thomas; Kroner, Martin; Demler, Eugene; Imamoglu, Atac
2017-03-01
The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultracold Fermi gases. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity coupling favouring ultralow-mass polariton formation and exciton-electron interactions leading to polaron or trion formation. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe2 (ref. ) exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive exciton-polaron resonance to the lower-energy attractive exciton-polaron state. Simultaneous observation of polariton formation in both attractive and repulsive branches indicates a new regime of polaron physics where the polariton impurity mass can be much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi mixtures.
NASA Astrophysics Data System (ADS)
Patterson, C. H.
2008-03-01
We report hybrid density functional theory calculations on hole doped Ca2-xNaxCuO2Cl2 performed in 4×4 , 42×42 , and 8×2 supercells with hole concentrations x=0.0625 and x=0.125 . Holes at the lower concentration form small polarons, in which the hole is mainly localized on four oxygen ions surrounding one copper ion. The polaron is a spin one-half ferromagnetic polaron (Cu5O4) , in which the moment on the central copper ion is parallel to those on the four neighboring copper ions and the moment on the oxygen ions is opposed to that on the copper ions. This is therefore an Emery-Reiter spin polaron rather than a Zhang-Rice singlet. At the higher hole concentration (x=0.125) , many cuprates form stripes. Hybrid density functional theory calculations on linear chains of spin polarons separated by 4a0 show a group of bands localized mainly on the stripe. Spins on neighboring copper ions in the stripe are parallel and so the stripe forms a magnetic antiphase boundary between antiferromagnetically ordered blocks of copper spins. Stripes of this kind, which run in one direction only, may explain recent scanning tunneling microscopy data from Ca2-xNaxCuO2Cl2 by Kohsaka [Science 315, 1380 (2007)]. We also consider an ordered spin polaron phase where magnetic antiphase boundaries intersect at right angles. In this case, sets of four copper ions in squares at stripe intersections have parallel spins. This phase may be the 4×4 checkerboard pattern reported by Hanaguri [Nature (London) 430, 1001 (2004)].
Magnetic-field control of the exciton quantum beats phase in InGaAs/GaAs quantum dots
NASA Astrophysics Data System (ADS)
Siarry, B.; Eble, B.; Bernardot, F.; Grinberg, P.; Testelin, C.; Chamarro, M.; LemaÃ®tre, A.
2015-10-01
We demonstrate here the phase control of the neutral exciton quantum beats in InGaAs/GaAs quantum dots. A longitudinal magnetic field is used as a tuning parameter to change the phase of the oscillations in a deterministic way. This effect arises from the competition between the Zeeman splitting and the electron/hole exchange interaction on the exciton dipole symmetry. To explore this mechanism, we have developed a pump-probe setup based on the optical heterodyne detection of the quantum dots reflectivity allowing one to measure the exciton dynamics from a small quantum dots ensemble (˜300 ). Particular attention is paid to give a detailed theoretical analysis of the measurements. The experimental results are in excellent agreement with the model.
Exciton formation in dye doped OLEDs using electrically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Batagin-Neto, Augusto; Gómez, Jorge A.; Castro, Fernando A.; Nüesch, Frank; Zuppiroli, Libero; Graeff, Carlos F. O.
2011-11-01
Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping molecules on spin-dependent exciton formation in Aluminum (III) 8-hydroxyquinoline (Alq3) based OLEDs with different device structures and temperature ranges. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. A strong temperature dependence have been observed for doped OLEDs, with a decrease of two orders of magnitude in EDMR signal for temperatures above ~200 K. The signal temperature dependence were fitted supposing different spin-lattice relaxation processes. The results suggest that thermally activated vibrations of dopants molecules induce spin pair dissociation, reducing the signal.
Exciton formation in dye doped OLEDs using electrically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Batagin-Neto, Augusto; Gómez, Jorge A.; Castro, Fernando A.; Nüesch, Frank; Zuppiroli, Libero; Graeff, Carlos F. O.
2012-02-01
Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping molecules on spin-dependent exciton formation in Aluminum (III) 8-hydroxyquinoline (Alq3) based OLEDs with different device structures and temperature ranges. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. A strong temperature dependence have been observed for doped OLEDs, with a decrease of two orders of magnitude in EDMR signal for temperatures above 200 K. The signal temperature dependence were fitted supposing different spin-lattice relaxation processes. The results suggest that thermally activated vibrations of dopants molecules induce spin pair dissociation, reducing the signal.
Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve; ...
2016-11-09
Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode opticalmore » fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.« less
Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve; Xu, Xiaodong; Crooker, Scott A.
2016-11-09
Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe_{2} monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.
Zhu, Zengwei; McDonald, R. D.; Shekhter, A.; ...
2017-05-04
Here, the excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematicmore » study of the BCS-BEC-like crossover by means of conventional condensed matter probes.« less
NASA Astrophysics Data System (ADS)
Scott, Alwyn C.; Bigio, Irving J.; Johnston, Clifford T.
1989-06-01
The best available data are presented of the integrated intensity of the 1650-cm-1 band in crystalline acetanilide as a function of temperature. A concise theory of polaron states is presented and used to interpret the data.
Scott, A. C.; Bigio, I. J.; Johnston, C. T.
1989-06-15
The best available data are presented of the integrated intensity of the1650-cm/sup /minus/1/ band in crystalline acetanilide as a function oftemperature. A concise theory of polaron states is presented and used tointerpret the data.
Semiclassical and quantum polarons in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Hamm, P.; Tsironis, G. P.
2007-08-01
Crystalline acetanilide is a an organic solid with peptide bond structure similar to that of proteins. Two states appear in the amide I spectral region having drastically different properties: one is strongly temperature dependent and disappears at high temperatures while the other is stable at all temperatures. Experimental and theoretical work over the past twenty five years has assigned the former to a selftrapped state while the latter to an extended free exciton state. In this article we review the experimental and theoretical developments on acetanilide paying particular attention to issues that are still pending. Although the interpretation of the states is experimentally sound, we find that specific theoretical comprehension is still lacking. Among the issues that that appear not well understood is the effective dimensionality of the selftrapped polaron and free exciton states.
Magnon Polarons in the Spin Seebeck Effect
NASA Astrophysics Data System (ADS)
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A.; Uchida, Ken-ichi; Qiu, Zhiyong; Bauer, Gerrit E. W.; Saitoh, Eiji
2016-11-01
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt /Y3Fe5 O12 at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Magnon Polarons in the Spin Seebeck Effect.
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji
2016-11-11
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Solnyshkov, D. D.; Malpuech, G.; Shelykh, I. A.
2009-10-15
We establish a phase diagram of a spinor exciton-polariton condensate in a disordered microcavity in the presence of an external magnetic field. We find that the combination of the full paramagnetic screening and Anderson localization leads to the formation of a condensed phase having both localized and superfluid components. This is reflected by different dispersions of elementary excitations for the two polarization components.
NASA Astrophysics Data System (ADS)
Ungar, F.; Cygorek, M.; Axt, V. M.
2017-06-01
Quantum kinetic equations of motion for the description of the exciton spin dynamics in II-VI diluted magnetic semiconductor quantum wells with laser driving are derived. The model includes the magnetic as well as the nonmagnetic carrier-impurity interaction, the Coulomb interaction, Zeeman terms, and the light-matter coupling, allowing for an explicit treatment of arbitrary excitation pulses. Based on a dynamics-controlled truncation scheme, contributions to the equations of motion up to second order in the generating laser field are taken into account. The correlations between the carrier and the impurity subsystems are treated within the framework of a correlation expansion. For vanishing magnetic field, the Markov limit of the quantum kinetic equations formulated in the exciton basis agrees with existing theories based on Fermi's golden rule. For narrow quantum wells excited at the 1 s exciton resonance, numerical quantum kinetic simulations reveal pronounced deviations from the Markovian behavior. In particular, the spin decays initially with approximately half the Markovian rate and a nonmonotonic decay in the form of an overshoot of up to 10 % of the initial spin polarization is predicted.
Verma, Kuldeep Chand; Kotnala, R K
2016-02-21
Zn0.94TM0.03Ce0.03O [Zn0.94Fe0.03Ce0.03O (ZFCeO) and Zn0.94Co0.03Ce0.03O (ZCCeO)] nanoparticles were synthesized by a sol-gel process. Elemental analysis of these nanoparticles detects the weight percentage of Zn, Co, Fe, Ce and O in each sample. The Rietveld refinement of the X-ray diffraction pattern obtains the occupancy of dopant atoms, Wurtzite ZnO structure, crystallinity and lattice deformation with doping. The Ce doping into ZFO and ZCO form nanoparticles than nanorods was observed in pure ZnO, ZFO and ZCO samples that described due to chemical and ionic behavior of Ce, Fe, Co and Zn ions. The Raman active modes have peak broadening, intensity changes and peak shifts with metal doping that induces lattice defects. Photoluminescence spectra show blue-shifts at near-band edges and defects that influence broad visible emission with Ce doping. An enhancement in ferromagnetism in the magnetic hysteresis at 5 K is measured. The zero-field cooling and field cooling at H = 500 Oe and T = 300-5 K could confirm antiferromagnetic interactions mediated by defect carriers. The bound magnetic polaron at defect sites is responsible for the observed ferromagnetism. The ac magnetic susceptibility measurements determine the antiferromagnetic to ferromagnetic transition with some magnetic clustered growth in the samples and reveal a frequency independent peak that shows the Neel temperature. Weak room temperature ferromagnetism and optical quenching in ZFCeO are described by valance states of Fe and Ce ions, respectively. Using first-principle calculations, we studied the occupancy of Ce (replacing Zn atoms) in the Wurtzite structure.
Tracking the coherent generation of polaron pairs in conjugated polymers
De Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-01-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials. PMID:27929115
Tracking the coherent generation of polaron pairs in conjugated polymers.
De Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F; Plenio, Martin B; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-08
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
NASA Astrophysics Data System (ADS)
Singh, Sunny; Kaur, Harsimran; Sharma, Shivalika; Aggarwal, Priyanka; Hazra, Ram Kuntal
2017-04-01
The understanding of the physics of exciton, bi-exciton, tri-exciton and the subsequent insight into controlling the properties of mesoscopic systems holds the key to various exotic optical, electrical and magnetic phenomena like superconductivity, Mott insulation, Quantum Hall effect etc. Many of exciton properties are similar to atomic hydrogen that attracts researchers to explore electronic structure of exciton in quantum dots, but nontriviality arises due to coulombic interactions among electrons and holes. We propose an exact integral of coulomb (exchange) correlation in terms of finitely summed Lauricella functions to examine 3-D exciton of harmonic dots confined in zero and non-zero arbitrary magnetic field. The highlight of our work is the use of exact variational solution for coloumbic interaction between the hole and the electron and evaluation of the cross terms arising out of the coupling among centre-of-mass and relative coordinates. We also have extended the size of the system to generalized N-body problem with N=3,4 for tri-exciton (e-e-h/e-h-h)
NASA Astrophysics Data System (ADS)
Karaiskaj, Denis
2017-02-01
Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well [1]. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab (NHMFL) in Tallahassee, Florida will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics. [1] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre, V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj, Phys. Rev. Lett.116, 157401 (2016).
NASA Astrophysics Data System (ADS)
Butov, L. V.
2017-08-01
Indirect excitons can be controlled by voltage, can travel over large distances before recombination, and can cool down close to the temperature of semiconductor crystal lattice and below the temperature of quantum degeneracy. These properties form the basis for the development of excitonic devices with indirect excitons. In this contribution, we overview our studies of excitonic devices. We present traps, lattices, conveyers, and ramps for studying basic properties of cold indirect excitons - cold bosons in semiconductor materials. We also present proof-of-principle demonstration for excitonic signal processing devices.
Intrachain exciton dynamics in conjugated polymer chains in solution.
Tozer, Oliver Robert; Barford, William
2015-08-28
We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang
2013-05-15
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.
The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe2O4
Lee, J.; Trugman, S. A.; Zhang, C. L.; ...
2015-07-27
Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.
Pulsed magnetic field study of the spin gap in intermediate valence compound SmB 6
NASA Astrophysics Data System (ADS)
Flachbart, K.; Bartkowiak, M.; Demishev, S.; Gabani, S.; Glushkov, V.; Herrmannsdorfer, T.; Moshchalkov, V.; Shitsevalova, N.; Sluchanko, N.
2009-10-01
In this work, we report the behavior of electrical resistivity of SmB 6 at temperatures between 2.2 and 70 K in pulsed magnetic fields up to 54 T. A strong negative magnetoresistance was detected with increasing magnetic field, when lowering the temperature in the range T<30 K. We show that the amplitude of negative magnetoresistance reaches its maximum dR/R~70% at B=54 T, in the vicinity of phase transition occurring in this strongly correlated electron system at TC~5 K. The crossover from negative magnetoresistance to positive magnetoresistance found at intermediate temperatures at T>30 K is discussed within the framework of exciton-polaron model of local charge fluctuations in SmB 6 proposed by Kikoin and Mishchenko. It seems that these exciton-polaron in-gap states are influenced both by temperature and magnetic field.
NASA Astrophysics Data System (ADS)
Schweiner, Frank; Main, Jörg; Wunner, Günter; Uihlein, Christoph
2017-05-01
Recent investigations of excitonic absorption spectra in cuprous oxide (Cu2O ) have shown that it is indispensable to account for the complex valence-band structure in the theory of excitons. In Cu2O , parity is a good quantum number and thus the exciton spectrum falls into two parts: the dipole-active exciton states of negative parity and odd angular momentum, which can be observed in one-photon absorption (Γ4- symmetry), and the exciton states of positive parity and even angular momentum, which can be observed in two-photon absorption (Γ5+ symmetry). The unexpected observation of D excitons in two-photon absorption has given first evidence that the dispersion properties of the Γ5+ orbital valence band are giving rise to a coupling of the yellow and green exciton series. However, a first theoretical treatment by Uihlein et al. [Phys. Rev. B 23, 2731 (1981), 10.1103/PhysRevB.23.2731] was based on a simplified spherical model. The observation of F excitons in one-photon absorption is a further proof of a coupling between yellow and green exciton states. Detailed investigations on the fine structure splitting of the F exciton by F. Schweiner et al. [Phys. Rev. B 93, 195203 (2016), 10.1103/PhysRevB.93.195203] have proved the importance of a more realistic theoretical treatment including terms with cubic symmetry. In this paper we show that the even and odd parity exciton system can be consistently described within the same theoretical approach. However, the Hamiltonian of the even parity system needs, in comparison to the odd exciton case, modifications to account for the very small radius of the yellow and green 1 S exciton. In the presented treatment, we take special care of the central-cell corrections, which comprise a reduced screening of the Coulomb potential at distances comparable to the polaron radius, the exchange interaction being responsible for the exciton splitting into ortho and para states, and the inclusion of terms in the fourth power of p in the
Snedden, Edward W; Monkman, Andrew P; Dias, Fernando B
2013-04-04
Geminate polaron-pair recombination directly to the triplet state of the small dye molecule copper(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H- phthalocyanine (CuPC) and exciton trapping in CuPC domains, combine to reduce the internal quantum efficiency of free polaron formation in the bulk-heterojunction blends of CuPC doped with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor.
Mrowiński, P.; Musiał, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Sęk, G.; Somers, A.; Reithmaier, J. P.; Höfling, S.
2015-02-02
We investigated the neutral and charged exciton fine structure in single InAs/InGaAlAs/InP quantum dashes emitting at 1.55 μm using polarization-resolved microphotoluminescence in a magnetic field. Inverted spin configuration of horizontally [1–10] and vertically [110] polarized transitions has been observed. An in-plane magnetic field of up to 5 Tesla has been applied to tailor the fine structure, and eventually to reduce the splitting of the bright exciton states down to zero. This inverted structure has been observed for all the investigated excitons, making it a characteristic feature for this class of nanostructures with the largest splitting reduction of 170 μeV.
Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb
Lyo, S. K.; Pan, W.
2015-11-21
We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by the electric and magnetic fields.
NASA Astrophysics Data System (ADS)
Shamirzaev, T. S.; Rautert, J.; Yakovlev, D. R.; Debus, J.; Gornov, A. Yu.; Glazov, M. M.; Ivchenko, E. L.; Bayer, M.
2017-07-01
The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic field induced circular polarization of photoluminescence Pc is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behavior of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole g factor, gh h=+3.5 , and the spin relaxation times of electron, τs e=33 μ s , and hole, τs h=3 μ s , bound in the exciton.
Polaron stability in oligoacene crystals.
Pereira Junior, Marcelo Lopes; Ribeiro Junior, Luiz Antonio
2017-03-01
The polaron stability in organic molecular crystals is theoretically investigated in the scope of a two-dimensional Holstein-Peierls model that includes lattice relaxation. Particularly, the investigation is focused on designing a model Hamiltonian that can address properly the polaron properties in different model oligoacene crystals. The findings showed that a suitable choice for a set of parameters can play the role of distinguishing the model crystals and, consequently, different properties related to the polaron stability in these systems are observed. Importantly, the usefulness of this model is stressed by investigating the electronic localization of the polaron, which provides a deeper understanding into the properties associated with the polaron stability in oligoacene crystals.
Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers
NASA Astrophysics Data System (ADS)
Kim, Jonghwan; Hong, Xiaoping; Jin, Chenhao; Shi, Su-Fei; Chang, Chih-Yuan S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, Feng
2015-03-01
The valley pseudospin emerges as a new degree of freedom in atomically thin two-dimensional transition metal dichalcogenides (MX2). In analogy to the control of spin in spintronics, the capability to manipulate the valley pseudospin can provide exciting opportunities in valleytronics. Here we present that femtosecond pulses with circular polarization can generate ultrafast and ultrahigh valley pseudomagnetic field in a monolayer MX2. Our polarization-resolved transient absorption measurement shows that the degeneracy of valley exciton transitions at K and K' valley in WSe2 monolayers can be lifted by optical Stark effect from the non-resonant pump. Energy splitting due to the optical Stark effect is linear with both the pump intensity and the inverse of pump detuning. We observe that valley-selective optical Stark effect can create an energy splitting more than 10 meV which corresponds to a pseudomagnetic field over 60 Tesla. Our study demonstrates efficient and ultrafast control of the valley excitons with optical light which can open up the possibility of coherent manipulation of the valley polarization in MX2.
NASA Astrophysics Data System (ADS)
Christian, Kenfack Sadem; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.
2017-06-01
We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Physical theory of excitons in conducting polymers.
Brazovskii, Serguei; Kirova, Natasha
2010-07-01
In this tutorial review, we cover the solid state physics approach to electronic and optical properties of conducting polymers. We attempt to bring together languages and advantages of the solid state theory for polymers and of the quantum chemistry for monomers. We consider polymers as generic one-dimensional semiconductors with features of strongly correlated electronic systems. Our model combines the long range electron-hole Coulomb attraction with a specific effect of strong intra-monomer electronic correlations, which results in effective intra-monomer electron-hole repulsion. Our approach allows to go beyond the single-chain picture and to compare excitons for polymers in solutions and in films. The approach helps connecting such different questions as shallow singlet and deep triplet excitons, stronger binding of interchain excitons in films, crossings of excitons' branches, 1/N energies shifts in oligomers. We describe a strong suppression of the luminescence from free charge carriers by long-range Coulomb interactions. Main attention is devoted to the most requested in applications phenyl based polymers. The specifics of the benzene ring monomer give rise to existence of three possible types of excitons: Wannier-Mott, Frenkel and intermediate ones. We discuss experimental manifestations of various excitons and of their transformations. We touch effects of the time-resolved self-trapping by libron modes leading to formation of torsion polarons.
TOPICAL REVIEW: O- bound small polarons in oxide materials
NASA Astrophysics Data System (ADS)
Schirmer, O. F.
2006-11-01
Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO3 and KTaO3, quartz, the sillenites (e.g. Bi12TiO20), Al2O3, LiNbO3, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO3, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated can be used to explain radiation and light
NASA Astrophysics Data System (ADS)
Chacham, Helio; Alexandre, Simone S.; Soler, Jose M.; Artacho, Emilio
2004-03-01
The phenomenon of charge transport in DNA has been attracting attention of both biologists and physicists. From the biology side, there are evidences that charge injection can be associated to damage, mutation, and repair processes in DNA. From the physical sciences side, recent developments in nanotechnology now allow the measurement of currents through single DNA molecules in dried samples, which depict semiconductor behavior. Several mechanisms have been proposed for charge migration and transport in DNA. In that respect, detailed electrical transport measurements through DNA molecules containing identical base pairs (poly(dA)-poly(dT) and poly(dG)-poly(dC)) have been recently reported by Yoo et al [1]. These results fit extremely well a model in which the conduction is due to small polaron motion. In particular, these results indicate that the I-V characteristic of poly(dG)-poly(dC) DNA above 200 K is consistent with a small polaron hopping regime with an activation energy of 0.12 eV. In this work [2] we investigate the polaron formation in dry DNA by applying ab initio calculations to both neutral and charged fragments of dry poly(dG)-poly(dC). Our calculations show that the hole polaron in dry poly(dG)-poly(dC) DNA is a clear case of small polaron. This is verified by four basic properties: (i) the small variation of the polaron binding energy as a function of the DNA fragment size, for small fragment sizes, which is an indication of polaron localization; (ii) the fact that the width of the uppermost valence band is an order of magnitude smaller than the polaron binding energy; (iii) the explicit localization of the hole wavefunction for the largest considered fragment (four base pairs), indicated by the fact that about half of the norm of the hole is localized on a single guanine site; (iv) the localization of structural deformations at the nucleotides where the hole is concentrated. Our calculations also give a polaron binding energy of 0.30 eV. This allows
Mixed-dimensional Bose polaron
NASA Astrophysics Data System (ADS)
Loft, Niels Jakob Søe; Wu, Zhigang; Bruun, G. M.
2017-09-01
A new generation of cold atom experiments trapping atomic mixtures in species-selective optical potentials opens up the intriguing possibility to create systems in which different atoms live in different spatial dimensions. Inspired by this, we investigate a mixed-dimensional Bose polaron consisting of an impurity particle moving in a two-dimensional (2D) layer immersed in a 3D Bose-Einstein condensate (BEC), using a theory that includes the mixed-dimensional vacuum scattering between the impurity and the bosons exactly. We show that similarly to the pure 3D case, this system exhibits a well-defined polaron state for attractive boson-impurity interaction that evolves smoothly into a mixed-dimensional dimer for strong attraction, as well as a well-defined polaron state for weak repulsive interaction, which becomes overdamped for strong interaction. We furthermore find that the properties of the polaron depend only weakly on the gas parameter of the BEC as long as the Bogoliubov theory remains a valid description for the BEC. This indicates that higher-order correlations between the impurity and the bosons are suppressed by the mixed-dimensional geometry in comparison to a pure 3D system, which led us to speculate that the mixed-dimensional polaron has universal properties in the unitarity limit of the impurity-boson interaction.
Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes
Chen, Hung Cheng; Sreearunothai, Paiboon; Cook, Andrew R.; ...
2017-03-01
Bimolecular equilibria measured the one-electron reduction potentials and triplet free energies (ΔG°T) of oligo(9,9-dihexyl)fluorenes and a polymer with lengths of n = 1–10 and 57 repeat units. We can accurately measure one-electron potentials electrochemically only for the shorter oligomers. Starting at n = 1 the free energies change rapidly with increasing length and become constant for lengths longer than the delocalization length. Both the reduction potentials and triplet energies can be understood as the sum of a free energy for a fixed polaron and a positional entropy. Furthermore, the positional entropy increases gradually with length beyond the delocalization length duemore » to the possible occupation sites of the charge or the triplet exciton. Our results reinforce the view that charges and triplet excitons in conjugated chains exist as polarons and find that positional entropy can replace a popular empirical model of the energetics.« less
Some approaches to polaron theory
NASA Astrophysics Data System (ADS)
Bogolubov, N. N.; Bogolubov, N. N.
1985-11-01
Here, in our approximation of polaron theory, we examine the importance of introducing the T product, which turn out to be a very convenient theoretical approach for the calculation of thermodynamical averages. We focus attention on the investigation of the so-called linear polaron Hamiltonian and present in detail the calculation of the correlation function, spectral function, and Green function for such a linear system. It is shown that the linear polaron Hamiltonian provides an exactly solvable model of our system, and the result obtained with this approach holds true for an arbitrary coupling constant which describes the strength of interaction between the electron and the lattice vibrations. Then, with the help of a variational technique, we show the possibility of reducing the real polaron Hamiltonian to a socalled trial or approximate linear model Hamiltonian. We also consider the exact calculation of free energy with a special technique that reduces calculations with the help of the T product, which, in our opinion, works much better and is easier than other analogous considerations, for example, the path-integral or Feynman-integral method.(1,2) Here we furthermore recall our own work,(4) where it was shown that the results of Refs. 7 and 8 concerning the impedance calculation in the polaron model may be obtained directly without the use of the path-integral method. The study of the polaron system's thermodynamics is carried out by us in the framework of the functional method. A calculation of the free energy and the momentum distribution function is proposed. Note also that the polaron systems with strong coupling(9) proved to be useful in different quantum field models in connection with the construction of dynamical models of composite particles. A rigorous solution of the special strong-coupling polaron problem, describing the interaction of a nonrelativistic particle with a quantum field, was given by Bogolubov.(3) The works of Tavkhelidze, Fedyanin
Magnetic Field Induced Charged Exciton Studies in a GaAs/Al(0.3)Ga(0.7)As Single Heterojunction
Kim, Yongmin; Munteanu, F.M.; Perry, C.H.; Reno, J.L.; Rickel, D.G.; Simmons, J.A.
1999-05-25
The magnetophotoluminescence (MPL) behavior of a GaAs/Al_{0.3}Ga_{0.7}As single heterojunction has been investigated to 60T. We observed negatively charged singlet and triplet exciton states that are formed at high magnetic fields beyond the {nu}=l quantum Hall state. The variation of the charged exciton binding energies are in good agreement with theoretical predictions. The MPL transition intensities for these states showed intensity variations (maxima and minima) at the {nu}=l/3 and 1/5 fractional quantum Hall (FQH) state as a consequence of a large reduction of electron-hole screening at these filling factors.
Optically detected magnetic resonance studies of pi-conjugated polymer-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Swanson, Leland S.
1993-08-01
The X-band photoluminescence (PL)-, electroluminescence (EL)-, conductivity ((sigma) )-, and photoconductivity ((sigma) ph)-detected magnetic resonance of poly(p- phenylenevinylene) (PPV) and poly(p-phenyleneacetylene) (PPA)-based LEDs is described and discussed. A strong narrow PL-enhancing and EL-quenching resonance is observed at g approximately equals 2.0023 in all cases. However, while the (sigma) - and (sigma) ph-detected resonances are also quenching in the PPV-based diodes, the (sigma) -detected resonance of the PPA-based diodes is enhancing. The g-values and lineshapes of all of the resonances are identical in each type of diode, and they are attributed to polaron-polaron fusion to singlet excitons or bipolarons. The implications of this picture to the issues of polaron and bipolaron mobility in these diodes and a potential upper limit of their efficiency is discussed. In addition to the narrow resonance, half-field PL-, EL-, (sigma) - and (sigma) ph-detected resonances due to the (Delta) ms equals 2 transitions of triplet excitons are also observed. These resonances are believed to result from singlet exciton generation via triplet-triplet fusion.
Hot exciton dissociation in polymer solar cells.
Grancini, G; Maiuri, M; Fazzi, D; Petrozza, A; Egelhaaf, H-J; Brida, D; Cerullo, G; Lanzani, G
2013-01-01
The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.
NASA Astrophysics Data System (ADS)
Jeon, H. C.; Kang, T. W.; Kim, T. W.; Cho, Y. H.
2006-06-01
(Ga 1- xMn x)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga 1- xMn x)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga 1- xMn x)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga 1- xMn x)N thin films appeared. These results indicate that the (Ga 1- xMn x)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.
Polaron in a Quasi 0D Nanocrystal
NASA Astrophysics Data System (ADS)
Fai, L. C.; Fotue, A. J.; Mborong, V. B.; Domngang, S.; Issofa, N.; Tchassem, D.
2005-01-01
Polaron states in a spherical quantum dot with a spherical symmetric parabolic confinement potential are investigated applying the Feynman variational principle. Effects of the dot radius on the polaron ground state energy level, the self-action potential energy, the mass and the Fröhlich electron phonon-coupling constant are obtained for a spherical quantum dot. The electron phonon-coupling amplitude derived from the Maxwell equation in a material medium is used. This yields a better upper bound for strong coupling polaron energy in a spherical quantum dot. The polaron mass, energy and self-action potential energy are found to have a monotonous decrease as the structures' radius increases. As the spherical quantum dot radius is reduced the regimes of weak and intermediate coupling polaron shorten and the strong coupling polaron region broadens and extends into weak and intermediate ones. The main contribution to polaron energy and mass comes from the self-action potential.
NASA Astrophysics Data System (ADS)
Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai
2017-03-01
Oxides with 4d/5d transition metal ions are physically interesting for their particular crystalline structures as well as the spin–orbit coupled electronic structures. Recent experiments revealed a series of 4d/5d transition metal oxides R 3 MO7 (R: rare earth; M: 4d/5d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La3OsO7 and La3RuO7. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p ‑ d hybridization with oxygen ions, instead of the spin–orbit coupling. The Ca-doping to La3OsO7 and La3RuO7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La3RuO7 but not in La3OsO7.
Spin dynamics of polarons and polaron pairs in a random hyperfine field
NASA Astrophysics Data System (ADS)
Roundy, Robert C.
Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up
Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB₆.
Friemel, G; Li, Yuan; Dukhnenko, A V; Shitsevalova, N Y; Sluchanko, N E; Ivanov, A; Filipov, V B; Keimer, B; Inosov, D S
2012-05-15
Resonant magnetic excitations are recognised as hallmarks of unconventional superconductivity in copper oxides, iron pnictides and heavy-fermion compounds. Model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms of their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting antiferromagnetic heavy-fermion metal CeB(6). Unlike conventional magnons, the mode is non-dispersive and is sharply peaked around a wave vector separate from those characterising the antiferromagnetic order. It is likely associated with a co-existing order parameter of the unusual antiferro-quadrupolar phase of CeB(6), which has long remained hidden to neutron-scattering probes. The mode energy increases continuously below the onset temperature for antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap throughout the Brillouin zone. These attributes are similar to those of the resonant modes in unconventional superconductors. This unexpected commonality between the two disparate ground states indicates the dominance of itinerant spin dynamics in the ordered low-temperature phases of CeB(6) and throws new light on the interplay between antiferromagnetism, superconductivity and 'hidden' order parameters in correlated-electron materials.
Walker, P; Liew, T C H; Sarkar, D; Durska, M; Love, A P D; Skolnick, M S; Roberts, J S; Shelykh, I A; Kavokin, A V; Krizhanovskii, D N
2011-06-24
A key property of equilibrium exciton-polariton condensates in semiconductor microcavities is the suppression of the Zeeman splitting under a magnetic field. By studying magnetophotoluminescence spectra from a GaAs microcavity, we show experimentally that a similar effect occurs in a nonequilibrium polariton condensate arising from polariton parametric scattering. In this case, the quenching of Zeeman splitting is related to a phase synchronization of spin-up and spin-down polarized polariton condensates caused by a nonlinear coupling via the coherent pump state.
NASA Astrophysics Data System (ADS)
Haldar, S.; Dixit, V. K.; Vashisht, Geetanjali; Porwal, S.; Sharma, T. K.
2017-08-01
The influence of ultra-low defects and atomic irregularities at the hetero-junction on the optical properties of free and bound excitons are investigated by the magneto photoluminescence (PL) spectroscopy. Magneto PL spectra of GaAs/AlGaAs multiple quantum wells (MQWs) are recorded in Faraday and Voigt configuration to understand the kinetics of excitons under the different extents of quantum confinement. Magnetic field induced suppression of the asymmetry in the PL line-shape is identified as the reduced effect of disorder due to the in-plane confinement of exciton. Such effects are distinctly observed in Faraday configuration compared to the Voigt configuration. It is due to the strong magnetic field dependent dimensionality confinement of the excitons, which is illustrated by comparing the diamagnetic/Landau energy for the two configurations via experimental and theoretical results. A simple model, based on the suppression of bound exciton PL with the magnetic field, is proposed to estimate the density of disorder in the GaAs/AlGaAs MQW system, which is found to be ∼2×1015 cm-3 for the QWs. Additionally, the magnetic field driven re-distribution of charge carrier at the Landau levels and its effect on the free exciton luminescence is investigated. Thus, the magneto-PL spectroscopy in this study is found to be an excellent tool for the quantitative estimation of ultra-low disorder and QW parameters governing the optical properties of excitons, which shall be highly useful in the development of advanced optoelectronic devices.
Band Structures of Plasmonic Polarons
NASA Astrophysics Data System (ADS)
Caruso, Fabio; Lambert, Henry; Giustino, Feliciano
2015-03-01
In angle-resolved photoemission spectroscopy (ARPES), the acceleration of a photo-electron upon photon absorption may trigger shake-up excitations in the sample, leading to the emission of phonons, electron-hole pairs, and plasmons, the latter being collective charge-density fluctuations. Using state-of-the-art many-body calculations based on the `GW plus cumulant' approach, we show that electron-plasmon interactions induce plasmonic polaron bands in group IV transition metal dichalcogenide monolayers (MoS2, MoSe2, WS2, WSe2). We find that the energy vs. momentum dispersion relations of these plasmonic structures closely follow the standard valence bands, although they appear broadened and blueshifted by the plasmon energy. Based on our results we identify general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.
Scaling laws of Rydberg excitons
NASA Astrophysics Data System (ADS)
Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.
2017-09-01
Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to
Polaron assisted charge transfer in model biological systems
NASA Astrophysics Data System (ADS)
Li, Guangqi; Movaghar, Bijan
2016-11-01
We use a tight binding Hamiltonian to simulate the electron transfer from an initial charge-separating exciton to a final target state through a two-arm transfer model. The structure is copied from the model frequently used to describe electron harvesting in photosynthesis (photosystems I). We use this network to provide proof of principle for dynamics, in quantum system/bath networks, especially those involving interference pathways, and use these results to make predictions on artificially realizable systems. Each site is coupled to the phonon bath via several electron-phonon couplings. The assumed large energy gaps and weak tunneling integrals linking the last 3 sites give rise to"Stark Wannier like" quantum localization; electron transfer to the target cluster becomes impossible without bath coupling. As a result of the electron-phonon coupling, local electronic energies relax when the site is occupied, and transient polaronic states are formed as photo-generated electrons traverse the system. For a symmetric constructively interfering two pathway network, the population is shared equally between two sets of equivalent sites and therefore the polaron energy shift is smaller. The smaller energy shift however makes the tunnel transfer to the last site slower or blocks it altogether. Slight disorder (or thermal noise) can break the symmetry, permitting essentially a "one path", and correspondingly more efficient transfer.
NASA Astrophysics Data System (ADS)
Fishchuk, I. I.; Kadashchuk, A.; Hoffmann, S. T.; Athanasopoulos, S.; Genoe, J.; Bässler, H.; Köhler, A.
2013-09-01
We developed an analytical model to describe hopping transport in organic semiconductors including both energetic disorder and polaronic contributions due to geometric relaxation. The model is based on a Marcus jump rate in terms of the small-polaron concept with a Gaussian energetic disorder, and it is premised upon a generalized effective medium approach yet avoids shortcomings involved in the effective transport energy or percolation concepts. It is superior to our previous treatment [Phys. Rev. B1098-012110.1103/PhysRevB.76.045210 76, 045210 (2007)] since it is applicable at arbitrary polaron activation energy Ea with respect to the energy disorder parameter σ. It can be adapted to describe both charge-carrier mobility and triplet exciton diffusion. The model is compared with results from Monte Carlo simulations. We show (i) that the activation energy of the thermally activated hopping transport can be decoupled into disorder and polaron contributions whose relative weight depend nonlinearly on the σ/Ea ratio, and (ii) that the choice of the density of occupied and empty states considered in configurational averaging has a profound effect on the results of calculations of the Marcus hopping transport. The σ/Ea ratio governs also the carrier-concentration dependence of the charge-carrier mobility in the large-carrier-concentration transport regime as realized in organic field-effect transistors. The carrier-concentration dependence becomes considerably weaker when the polaron energy increases relative to the disorder energy, indicating the absence of universality. This model bridges a gap between disorder and polaron hopping concepts.
Singlet exciton fission photovoltaics.
Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A
2013-06-18
Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses
Microscopic theories of excitons and their dynamics
NASA Astrophysics Data System (ADS)
Berkelbach, Timothy C.
those that evolve "fast" and "slow," as compared to the internal system dynamics. This method is tested and applied to the spin-boson model, a two-site Frenkel exciton model, and the seven-site Fenna-Matthews-Olson complex. I conclude with a collaborative analysis of a recently developed polaron-transformed quantum master equation, which is shown to accurately interpolate between the well-known Redfield and Forster theories, even in challenging donor-bridge-acceptor arrangements.
NASA Astrophysics Data System (ADS)
Gnatenko, Yu. P.; Bukivskij, P. M.
2012-11-01
We have investigated microscopic magnetic spin states (MMSSs) ("loose spins, finite superparamagnetic, `locked' and infinite clusters") both above and below the freezing temperature in Cd0.70Mn0.30Te spin glass (SG). We used the localized exciton magnetic polarons, which we observed in the photoluminescence spectra, as a probe. This makes it possible to estimate the MMSS's relative concentrations and to study their temperature evolution and thus to elucidate one of the most important issues in this field of research. Furthermore, the findings described here open new prospects for further studies of spin freezing in the different SGs, especially, in dilute magnetic semiconductors.
Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon
NASA Astrophysics Data System (ADS)
Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie
2017-03-01
For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.
Conjugated “Molecular Wire” for Excitons
Shibano, Y.; Miller, J.; Imahori, H.; Sreearunothai, P.; Cook, A.R.
2010-05-06
We have synthesized new conjugated, rigid rod oligomers of fluorene, F{sub n}(C{sub 60}){sub 2}, n = 4, 8, 12, and 16. These pure compounds have F{sub n} chains up to 140 {angstrom} long. The C{sub 60} groups covalently attached at both ends serve as traps for excitons created in the F{sub n} chains. Excitons created in the chains by photoexcitation reacted rapidly with the C{sub 60} groups with decays described well by the sum of two exponentials. Mean reaction times were 2.3, 5.5, and 10.4 ps for n = 8, 12, and 16. In F{sub 16}(C{sub 60}){sub 2}, the 10.4 ps reaction time was 40 times faster than that found in earlier reports on molecules of slightly longer length. The simplest possible model, that of one-dimensional diffusion of excitonic polarons that react whenever they encounter the end of a chain, fits the results to obtain diffusion coefficients. Deviations of those fits from the data may point to the need for alternative pictures or may just indicate that diffusion is not ideal. The definite lengths of these molecules enable a stringent test for theories. These results reveal that exciton transport can be much faster than previously believed, a finding that could, along with appropriate nanoassembly, enable new kinds of high-efficiency organic photovoltaics.
NASA Astrophysics Data System (ADS)
Martucci, Mary B.
The field of spintronics, the development of spin-based devices that utilize the spin degree of freedom to increase memory capacity, has emerged as a solution to faster more efficient memory storage for electronic devices. One class of materials that has been extensively studied is the half-metallic ferromagnets, compounds that are 100% spin-polarized at the Fermi level. One material in this group that has been investigated is chromium telluride (Cr 1-xTe), whose family of compounds is known to exhibit a wide range of interesting magnetic and electronic properties. We have developed a hot injection solution synthesis of Cr5Te8 nanoplatlets which show similar magnetic behavior to the bulk material. It has also been shown that selenium and sulfur analogues can be obtained without changing the reaction conditions, making progress toward a better understanding of the reaction as well as an interesting family of compounds. Using real-space simulations, the effect of polarons in the high-Tc superconducting cuprates has been studied. The simulations demonstrate energetically favorable sites for the defects and show evidence of longer-range pairing interactions. Variations of the stripe show similar energetic results. X-ray absorption fine structure spectroscopy and neutron scattering have been utilized to examine the local structure of Ni-doped Mg nanoparticles, a hydrogen storage material as well as Cu2ZnSnS4 (CZTS) nanoparticles, a photovoltaic material. The Mg-Ni material shows much local disorder upon hydrogen cycling. The CZTS data demonstrate a loss of sulfur from around the copper sites upon annealing, helping to explain the changes observed in the optical absorption properties resulting from the annealing process.
Ballistic spin transport in exciton gases
NASA Astrophysics Data System (ADS)
Kavokin, A. V.; Vladimirova, M.; Jouault, B.; Liew, T. C. H.; Leonard, J. R.; Butov, L. V.
2013-11-01
Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals. The challenges for the realization of long-range electron spin transport include rapid spin relaxation due to electron scattering. Scattering and, in turn, spin relaxation can be effectively suppressed in excitonic devices where the spin currents are carried by electrically neutral bosonic quasiparticles: excitons or exciton-polaritons. They can form coherent quantum liquids that carry spins over macroscopic distances. The price to pay is a finite lifetime of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied to a range of systems supporting bosonic spin transport, in particular to indirect excitons in coupled quantum wells. We describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account for the Zeeman effect induced by external magnetic fields and long-range and short-range exchange splittings of the exciton resonances. We also consider exciton transport in the nonlinear regime and discuss the definitions of the exciton spin current, polarization current, and spin conductivity.
Dow, J. D.; Hjalmarson, H. P.; Sankey, O. F.; Allen, R. E.; Buettner, H.
1980-01-01
The observation of core excitons with binding energies much larger than those of the valence excitons in the same material has posed a long-standing theoretical problem. A proposed solution to this problem is presented, and Frenkel excitons and Wannier excitons are shown to coexist naturally in a single material. (GHT)
Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons
NASA Astrophysics Data System (ADS)
Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi
2016-07-01
We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.
Magnetic Field Induced Type-II σ- Excitons in ZnSe/Zn_1-x-yCd_xMn_ySe Quantum Well Structures.
NASA Astrophysics Data System (ADS)
Yu, W. Y.; Salib, M. S.; Petrou, A.; Jonker, B. T.; Warnock, J.
1996-03-01
A magneto-optical study (reflectance and Photoluminescence) of two MBE-grown (100ÅÅZnSe/Zn_1-x-yCd_xMn_ySe Quantum Well Structures has been carried out. Both samples are Type-I at zero magnetic field with electrons and holes confined in the ZnCdMnSe layers^1. In the x=0.03, y=0.04 structure, the magnetic field induced valence band splittings confine the m_j=+3/2(-3/2) hole in the ZnSe(ZnCdMnSe) layers; both electron spin states (m_j=±1/2) are confined in the ZnCdMnSe layers. For B>3 tesla, the σ- (+1/2, +3/2) exciton becomes Type-II and its intensity is only a few percent of the ground state Type-I σ+ (-1/2, -3/2) transition. Structures in which the upper σ- exciton is Type-II offer the possibility of hole spin-population inversion under optical pumping. The second structure studied (x=0.05, y=0.04) has a zero field valence band offset which is larger than the heavy hole saturation magnetic field splitting of the ZnCdMnSe layers. As a result, both σ+ and σ- transitions remain Type-I and their intensities are comparable. øbeylines ^1W.J. Walecki et. al, Appl. Phys. Lett. 57, 466 (1990). Supported by NSF, Grant No. DMR-9223054. ^**Supported by ONR.
Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E
2016-07-21
Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.
El-Khatib, S.; Phelan, D.; Barker, J. G.; Zheng, H.; Mitchell, J. F.; Leighton, C.
2015-08-01
Recent progress with the thermally-driven spin-state crossover in LaCoO3 has made it increasingly apparent that the nominally non-magnetic low spin ground state of this material actually hosts novel defect-'based magnetism. This is investigated here via a small-angle neutron scattering (SANS) study of LaCoO3-s crystals. The results provide: (i) the surprising finding that the spin-state crossover is clearly reflected in SANS via quasielastic/inelastic scattering from paramagnetic spin fluctuations/excitations, and (ii) evidence for the formation, likely around oxygen defects, of local entities known as magnetic excitons. The latter generate distinct magnetic scattering below 60 K, providing valuable quantitative information on exciton densities and interactions. Potential relevance to the unexpected ferromagnetism recently discovered in epitaxial LaCoO3 films is discussed.
Exciton-Exciton Interaction in KMnF3
NASA Astrophysics Data System (ADS)
Strauss, E.; Maniscalco, W. J.; Yen, W. M.; Kellner, U. C.; Gerhardt, V.
1980-03-01
Exciton dynamics in KMnF3 at exciton densities up to 1016 cm-3 are examined with time-resolved emission spectroscopy. The exciton emission line shifts and broadens with increasing exciton density. A nonlinear exciton decay channel is observed. These effects are found to be consistent with an exciton-exciton process. The shift scales with the exciton density and suggests that the effect is dominated by pairwise interactions up to the densities reached in these experiments.
Bose Polarons in the Strongly Interacting Regime
NASA Astrophysics Data System (ADS)
Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.
2016-07-01
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.
Polarons and Mobile Impurities Near a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Shadkhoo, Shahriar
aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.
Chiral topological excitons in the monolayer transition metal dichalcogenides
Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.
2017-01-01
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications. PMID:28186154
Chiral topological excitons in the monolayer transition metal dichalcogenides.
Gong, Z R; Luo, W Z; Jiang, Z F; Fu, H C
2017-02-10
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.
Chiral topological excitons in the monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.
2017-02-01
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.
Path-integral approach to lattice polarons
NASA Astrophysics Data System (ADS)
Kornilovitch, P. E.
2007-06-01
The basic principles behind a path integral approach to the lattice polaron are reviewed. Analytical integration of phonons reduces the problem to one self-interacting imaginary-time path, which is then simulated by Metropolis Monte Carlo. Projection operators separate states of different symmetry, which provides access to various excited states. Shifted boundary conditions in imaginary time enable calculation of the polaron mass, spectrum and density of states. Other polaron characteristics accessible by the method include the polaron energy, number of excited phonons and isotope exponent on mass. Monte Carlo updates are formulated in continuous imaginary time on infinite lattices and as such provide statistically unbiased results without finite-size and finite time-step errors. Numerical data are presented for models with short-range and long-range electron-phonon interactions.
Polaron action for multimode dispersive phonon systems
NASA Astrophysics Data System (ADS)
Kornilovitch, P. E.
2006-03-01
The path-integral approach to the tight-binding polaron is extended to multiple optical phonon modes of arbitrary dispersion and polarization. The nonlinear lattice effects are neglected. Only one electron band is considered. The electron-phonon interaction is of the density-displacement type, but can be of arbitrary spatial range and shape. Feynman’s analytical integration of ion trajectories is performed by transforming the electron-ion forces to the basis in which the phonon dynamical matrix is diagonal. The resulting polaron action is derived for the periodic and shifted boundary conditions in imaginary time. The former can be used for calculating polaron thermodynamics while the latter for the polaron mass and spectrum. The developed formalism is the analytical basis for numerical analysis of such models by path-integral Monte Carlo methods.
Excitons in nanoscale systems.
Scholes, Gregory D; Rumbles, Garry
2006-09-01
Nanoscale systems are forecast to be a means of integrating desirable attributes of molecular and bulk regimes into easily processed materials. Notable examples include plastic light-emitting devices and organic solar cells, the operation of which hinge on the formation of electronic excited states, excitons, in complex nanostructured materials. The spectroscopy of nanoscale materials reveals details of their collective excited states, characterized by atoms or molecules working together to capture and redistribute excitation. What is special about excitons in nanometre-sized materials? Here we present a cross-disciplinary review of the essential characteristics of excitons in nanoscience. Topics covered include confinement effects, localization versus delocalization, exciton binding energy, exchange interactions and exciton fine structure, exciton-vibration coupling and dynamics of excitons. Important examples are presented in a commentary that overviews the present understanding of excitons in quantum dots, conjugated polymers, carbon nanotubes and photosynthetic light-harvesting antenna complexes.
Excitons in the Fractional Quantum Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
Spin currents in a coherent exciton gas.
High, A A; Hammack, A T; Leonard, J R; Yang, Sen; Butov, L V; Ostatnický, T; Vladimirova, M; Kavokin, A V; Liew, T C H; Campman, K L; Gossard, A C
2013-06-14
We report the observation of spin currents in a coherent gas of indirect excitons. The realized long-range spin currents originate from the formation of a coherent gas of bosonic pairs--a new mechanism to suppress the spin relaxation. The spin currents result in the appearance of a variety of polarization patterns, including helical patterns, four-leaf patterns, spiral patterns, bell patterns, and periodic patterns. We demonstrate control of the spin currents by a magnetic field. We also present a theory of coherent exciton spin transport that describes the observed exciton polarization patterns and indicates the trajectories of the spin currents.
Optical and electronic properties of quantum dots with magnetic impurities
NASA Astrophysics Data System (ADS)
Govorov, Alexander O.
2008-10-01
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The "periodic" table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).
Excitonic susceptibility in near triangular quantum wells
NASA Astrophysics Data System (ADS)
Anitha, A.; Arulmozhi, M.
2017-03-01
Diamagnetic susceptibility and binding energy of an exciton in a near triangular quantum well, with potential profile proportional to |z|2/3 composed of GaAs/Ga1- x Al x As and ZnO/Zn1- x Mg x O are calculated as a function of the wellwidth and concentration of Al and Mg respectively varying the magnetic field applied along growth direction (i.e. z-axis). Diamagnetic susceptibility of light hole exciton and heavy hole exciton, shows inverse behaviors in the two materials below 20 nm wellwidth and the binding energy of both excitons increases, as the magnetic field increases. The results obtained, are compared with those of quantum wells with varied potential profiles and the experimental results reported in the literature.
Comments on polaron-phonon scattering theory
NASA Astrophysics Data System (ADS)
Tulub, A. V.
2015-10-01
We use the polaron state function described in terms of coupled classical and quantum fields to calculate the cross section of phonon scattering on a polaron. The value of the resonance momentum is determined by asymptotic values of several integrals. Calculating them with crystal parameters taken into account leads to bounds on the maximum value of the coupling constant. We confirm that the applicability domain of the strong-coupling approximation is near zero.
Small-polaron theory of doped antiferromagnets
NASA Astrophysics Data System (ADS)
Auerbach, Assa; Larson, Brond E.
1991-04-01
The spin-hole coherent-state path integral is used to generate a systematic large-spin expansion of the t-J model on the square lattice. The single hole's classical energy is minimized by small polarons with short-ranged interactions. Intersublattice hopping of polarons is forbidden by a tunneling selection rule. We derive the low-energy Lagrangian which reduces to the model of Wiegmann, Wen, Shankar, and Lee of Néel-gauge-field induced superconductivity.
Bose polarons in the strongly interacting regime
NASA Astrophysics Data System (ADS)
Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah
2016-05-01
Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.
Theory of exciton transfer and diffusion in conjugated polymers
Barford, William; Tozer, Oliver Robert
2014-10-28
We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral
Exciton-phonon system on a star graph: A perturbative approach.
Yalouz, Saad; Pouthier, Vincent
2016-05-01
Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.
Exciton-phonon system on a star graph: A perturbative approach
NASA Astrophysics Data System (ADS)
Yalouz, Saad; Pouthier, Vincent
2016-05-01
Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.
Localization length scales of triplet excitons in singlet fission materials
NASA Astrophysics Data System (ADS)
Bayliss, Sam L.; Thorley, Karl J.; Anthony, John E.; Bouchiat, Hélène; Greenham, Neil C.; Chepelianskii, Alexei D.
2015-09-01
We measure the dielectric confinement length scales of triplet excitons in organic semiconductors by jointly measuring their microwave-domain electric and magnetic susceptibilities. We apply this technique to characterize triplet excitons in two singlet fission materials with distinct solid-state packing and correlate the extracted localization length scales with the role of the excitonic environment. By using the magnetic susceptibility simultaneously determined through our experiments, we compare the independently extracted dielectric and spin-spin localization length scales, highlighting the role of local anisotropy on the properties of excitonic triplet states.
Complex magneto-polaron spectrum of the layer compound InSe
NASA Astrophysics Data System (ADS)
Brancus, D. E. N.; Stan, G.; Dafinei, A.
2005-06-01
We analyse the energy magneto-polaron spectrum of the polar uniaxial layer compound InSe in a magnetic field directed along the optical axis. A quasi-bidimensional behaviour of the electron gas in this particular structure was considered. In the framework of the Wigner-Brillouin perturbational theory we systematically take into account all the sources of anisotropy. We found that the implied anisotropy brings distinctive contributions to the complex energy magneto-polaron spectrum of polar uniaxial crystals. The theory is used to examine the experimental results obtained from cyclotron resonance frequency measurements in InSe at low temperature.
The Holstein polaron problem revisited
NASA Astrophysics Data System (ADS)
Tayebi, Amin; Zelevinsky, Vladimir
2016-06-01
The Holstein Hamiltonian was proposed half a century ago; since then, decades of research have come up empty handed in the pursuit of a closed-form solution. An exact solution to the two-site Holstein model is presented in this paper. The obtained results provide a clear image of the Hamiltonian structure and allow for the investigation of the symmetry, energy level crossings and polaronic characteristics of the system. The main mathematical tool is a three-term recurrence relation between the wave function amplitudes, which was obtained using the properties of a family of orthogonal functions, namely the Poisson-Charlier polynomials. It is shown that, with the appropriate choice of basis, the eigenfunctions of the problem naturally fall into two families (parities) associated with the discrete {{{Z}}}2 symmetry of the Hamiltonian. The asymptotic solution to the recurrence relation is found by using the Birkhoff expansion. The asymptotic sets the truncation criterion for the wave function, which ensures the accurate calculation of the energy levels for any strength of electron-phonon interaction. The level crossing of states with different parities is discussed and the exact points of broken symmetry are found analytically. The results are used as the building blocks for studying a four-site system. The inherited symmetries lead to the formation of a sparse matrix that is convenient for numerical calculations.
Breakdown of the lattice polaron picture in La{sub 0.7}Ca{sub 0.3}MnO{sub 3} single crystals
Chun, S. H.; Salamon, M. B.; Tomioka, Y.; Tokura, Y.
2000-04-01
When heated through the magnetic transition at T{sub C}, La{sub 0.7}Ca{sub 0.3}MnO{sub 3} changes from a band metal to a polaronic insulator. The Hall constant R{sub H}, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R{sub H} and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4T{sub C}, the polaron picture holds in detail, while below, the activation energies of both R{sub H} and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases. (c) 2000 The American Physical Society.
Engineering Polarons at a Metal Oxide Surface
NASA Astrophysics Data System (ADS)
Yim, C. M.; Watkins, M. B.; Wolf, M. J.; Pang, C. L.; Hermansson, K.; Thornton, G.
2016-09-01
Polarons in metal oxides are important in processes such as catalysis, high temperature superconductivity, and dielectric breakdown in nanoscale electronics. Here, we study the behavior of electron small polarons associated with oxygen vacancies at rutile TiO2(110 ) , using a combination of low temperature scanning tunneling microscopy (STM), density functional theory, and classical molecular dynamics calculations. We find that the electrons are symmetrically distributed around isolated vacancies at 78 K, but as the temperature is reduced, their distributions become increasingly asymmetric, confirming their polaronic nature. By manipulating isolated vacancies with the STM tip, we show that particular configurations of polarons are preferred for given locations of the vacancies, which we ascribe to small residual electric fields in the surface. We also form a series of vacancy complexes and manipulate the Ti ions surrounding them, both of which change the associated electronic distributions. Thus, we demonstrate that the configurations of polarons can be engineered, paving the way for the construction of conductive pathways relevant to resistive switching devices.
Large polarons in lead halide perovskites
Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.
2017-01-01
Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647
Visualizing the Efimov Correlation in Bose Polarons
NASA Astrophysics Data System (ADS)
Sun, Mingyuan; Zhai, Hui; Cui, Xiaoling
2017-07-01
The Bose polaron is a quasiparticle of an impurity dressed by surrounding bosons. In few-body physics, it is known that two identical bosons and a third distinguishable particle can form a sequence of Efimov bound states in the vicinity of interspecies scattering resonance. On the other hand, in the Bose polaron system with an impurity atom embedded in many bosons, no signature of Efimov physics has been reported in the existing spectroscopy measurements to date. In this Letter, we propose that a large mass imbalance between a light impurity and heavy bosons can help produce visible signatures of Efimov physics in such a spectroscopy measurement. Using the diagrammatic approach in the virial expansion to include three-body effects from pair-wise interactions, we determine the impurity self-energy and its spectral function. Taking the 6Li - 133Cs system as a concrete example, we find two visible Efimov branches in the polaron spectrum, as well as their hybridizations with the attractive polaron branch. We also discuss the general scenarios for observing the signature of Efimov physics in polaron systems. This work paves the way for experimentally exploring intriguing few-body correlations in a many-body system in the near future.
Triplet-polaron quenching in conjugated polymers.
Hertel, D; Meerholz, K
2007-10-25
We studied the triplet-polaron quenching in a platinum(II) porphyrin- (PtOEP-) doped polyspirobifluorene (PSF-TAD) copolymer. The copolymer contains a hole-transporting phenylenediamine unit (TAD) as a comonomer. Triplet-polaron quenching was probed by the change in PtOEP phosphorescence lifetime under an applied voltage in a unipolar device. The charge-induced reduction of the optically excited lifetime of PtOEP is one-third for the highest applied bias. The charge density can be obtained from current-voltage characteristics in the space-charge-limited (SCL) regime. The obtained hole mobility under SCL conditions is (7 +/- 2) x 10(-5) cm(2)/(V s). This result is in accord with recent mobility measurements of the time-of-flight mobility in our polymer. The triplet-polaron recombination constant was evaluated to be (4 +/- 1) x 10(-13) cm(3)/s, implying a triplet-polaron interaction radius of 2 x 10(-10) m. The results show that triplet-polaron annihilation cannot be neglected in device models for phosphorescent light-emitting diodes.
Polaron spin echo envelope modulations in an organic semiconducting polymer
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less
Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect.
Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko
2008-10-03
We studied exciton structures and the Aharonov-Bohm effect in a single carbon nanotube using micro-photoluminescence (PL) spectroscopy under a magnetic field at low temperatures. A single sharp PL peak from the bright exciton state of a single carbon nanotube was observed under zero magnetic field, and the additional PL of dark exciton state appeared below the bright exciton peak under high magnetic fields. It was found that the split between the bright and dark exciton states is several millielectron volts at zero field. The tube diameter dependence of the splitting arises from the intervalley short-range Coulomb interaction.
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Stationary Phonon Squeezing by Optical Polaron Excitation
NASA Astrophysics Data System (ADS)
Papenkort, T.; Axt, V. M.; Kuhn, T.
2017-03-01
We demonstrate that a stationary squeezed phonon state can be prepared by a pulsed optical excitation of a semiconductor quantum well. Unlike previously discussed scenarios for generating squeezed phonons, the corresponding uncertainties become stationary after the excitation and do not oscillate in time. The effect is caused by two-phonon correlations within the excited polaron. We demonstrate by quantum kinetic simulations and by a perturbation analysis that the energetically lowest polaron state comprises two-phonon correlations which, after the pulse, result in an uncertainty of the lattice momentum that is continuously lower than in the ground state of the semiconductor. The simulations show the dynamics of the polaron formation process and the resulting time-dependent lattice uncertainties.
Huber, Rachel C; Ferreira, Amy S; Thompson, Robert; Kilbride, Daniel; Knutson, Nicholas S; Devi, Lekshmi Sudha; Toso, Daniel B; Challa, J Reddy; Zhou, Z Hong; Rubin, Yves; Schwartz, Benjamin J; Tolbert, Sarah H
2015-06-19
The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.
The asymmetric quantum Rabi model in the polaron picture
NASA Astrophysics Data System (ADS)
Liu, Maoxin; Ying, Zu-Jian; An, Jun-Hong; Luo, Hong-Gang; Lin, Hai-Qin
2017-02-01
The concept of the polaron in condensed matter physics has been extended to the Rabi model, where polarons resulting from the coupling between a two-level system and single-mode photons represent two oppositely displaced oscillators. Interestingly, tunneling between these two displaced oscillators can induce an anti-polaron, which has not been systematically explored in the literature, especially in the presence of an asymmetric term. In this paper, we present a systematic analysis of the competition between the polaron and anti-polaron under the interplay of the coupling strength and the asymmetric term. While intuitively the anti-polaron should be secondary owing to its higher potential energy, we find that, under certain conditions, the minor anti-polaron may gain a reversal in the weight over the major polaron. If the asymmetric amplitude ɛ is smaller than the harmonic frequency ω, such an overweighted anti-polaron can occur beyond a critical value of the coupling strength g; if ɛ is larger, the anti-polaron can even be always overweighted at any g. We propose that the explicit occurrence of the overweighted anti-polaron can be monitored by a displacement transition from negative to positive values. This displacement is an experimentally accessible observable, which can be measured by quantum optical methods, such as balanced Homodyne detection.
Coherent state polarons in quantum wells
NASA Astrophysics Data System (ADS)
Thilagam, A.; Lohe, M. A.
2005-01-01
We investigate the polaronic effects of an electron confined in a quantum well, which we describe through its algebraic properties using su (1 , 1), taking into account the electron-bulk longitudinal-optical phonon interaction. We construct the variational wave function as the direct product of an electronic part and a part describing coherent phonons generated by the Low-Lee-Pines transformation from the vacuum state. We use two explicit forms of coherent states, Perelomov and Barut-Girardello states, to represent the electronic part in the quantum well spectrum. Our results show that in a coherent state basis for electrons the basic polaron parameters such as the energy gap shift and effective mass are further enhanced compared to those obtained with the conventional sinusoidal form of the basis. The difference between the two types of quantum well coherent states appears in polaronic interactions in quantum wells. We extend the calculations in order to estimate polaron lifetimes for a variety of different material systems.
Electrons on helium — The ``polaron'' transition
NASA Astrophysics Data System (ADS)
Andrei, E. Y.; Grimes, C. C.; Adams, G.
1984-07-01
We describe the observation of the polaronic transition of a system of electrons supported above a helium film. The electron mobility drops sharply by more than four orders of magnitude as the film thickness is reduced below ≈ 1000 Å. The transition was observed in the temperature range 0.4 ⩽ T ⩽ 1 K.
Kinetic theory of exciton-exciton annihilation.
May, Volkhard
2014-02-07
Weakly excited states of dye aggregates and supramolecular complexes can be characterized by single or two exciton states. Stronger excitation results in the presence of multiple excited molecules, and complex processes of internal energy transfer dynamics take place. The direct consideration of all excited states is limited to systems with a few molecules only. Therefore, an approach is used based on transition operators among the molecular states of interest and resulting in a dynamic theory for excitation energy transfer in strongly excited molecular systems. As a first application of this theory a detailed description of exciton-exciton annihilation is given. The obtained novel nonlinear theory is related to the standard description. Possible further approximation schemes in the offered theoretical framework are discussed.
Polarons and bipolarons in cis-polyacetylene
NASA Astrophysics Data System (ADS)
Utz, Wolfram; Förner, Wolfgang
1998-05-01
We present a parametrization for the Pariser-Parr-Pople Hamiltonian for the description of cis-polyacetylene (cPA). In contrast to trans-polyacetylene, we have to include symmetry breaking between neighboring sites into the Su-Schrieffer-Heeger-type one-electron part of the Hamiltonian. Our parametrization is based on correlated ab initio calculations on cis-hexatriene and on the results of independent calculations found in the literature. For open-shell systems (singly charged polarons) we use the annihilated unrestricted Hartree-Fock method to avoid the artificial spin contaminations inherent in UHF (unrestricted HF) calculations, which lead to the inclusion of fractions of the correlation energy in UHF total energies which cannot be controlled and are different for different systems and even for different geometries of the same system. Thus UHF is useless for the calculation of potential hypersurfaces and thus in turn for dynamical simulations. We find that in cPA singly-charged polarons are formed, while in doubly-charged chains stable bipolarons are found, although of a quite large width. This is in contrast to recent results reported by Shimoi and Abe [Y. Shimoi and S. Abe, Synth. Met. 69, 687 (1995) and Phys. Rev. B 50, 14 781 (1994)] who found that two singly-charged polarons are more stable for realistic parameter values than a doubly-charged bipolaron. We further find that the charged polarons are mobile in the chain and thus we conclude that polarons and bipolarons can serve as charge carriers (the latter ones spinless) in doped cPA.
2002-01-01
system are important for laser and solar cell applications. In particular, this material system’s bandgap energy can be tuned by the phenomenon known...as spontaneous ordering, where, depending on the growth conditions, the InGaP crystal structure can be a randomly disordered alloy with the zinc...like structures , in the small-bore pulsed-field magnet solenoid. Figure 1 shows 4-K spectra for the two InGaP samples discussed here. Spectrum (a) is
Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.
Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie
2017-03-10
For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of (4) T 1((4) G) → (6) A 1((6) s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn(2+)-Mn(2+) pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.
Disorder effects on small-polaron formation and hopping
Emin, D.
1993-10-01
Small-polarons will only form in covalent crystals whose electronic halfbandwidths are sufficiently narrow, E{sub b} > W. The absence of small polaronic carriers in most covalent crystals presumably indicates that E{sub b} < W in these instances. However, evidence of small polarons is commonly found in disordered materials despite the estimates of E{sub b} and W not being significantly different from those of crystals. This result is ration by stating that disorder has slowed carrier motion enough to permit small-polaron formation. Recently the question of how disorder affects the stability of quasifree carriers with respect to small-polaron formation has been addressed. It is found that only modest energetic disorder is required to induce small-polaron formation. Here I first succinctly describe essential elements of this work. Second, I address the role of disorder on the adiabatic hopping motion of small polarons. Energy bands in most materials in which small-polarons are found are thought to be sufficiently wide (> a phonon energy) that the small-polaronic hopping is ``adiabatic.`` That is, the electronic carriers move between sites sufficienfly rapidly to follow the atomic motions. In this situation the small-polaron jump rates are independent of intersite separations. The magnitudes of the preexponential factors of the measured hopping mobilities typically support this view. Further support for this picture is found from experiments that determine weak dependences of the mobility on hydrostatic pressure.
Dynamical frustration versus kinetic enhancement with excitons in strongly correlated bilayers
NASA Astrophysics Data System (ADS)
Rademaker, Louk
2014-03-01
Recently the condensation of electron-hole pairs in semiconductor bilayers has been achieved. This has opened up the pursuit of exciton condensation in other layered materials. Here I will present recent theoretical work on exciton physics in complex oxide heterostructures. The poorly understood high temperature superconducting cuprates are ideal candidates for bilayer exciton condensation. Therefore we study the dynamics and the phase diagram of bilayer excitons in a Mott insulating p/n heterostructure, which shows rich exciton-spin interaction phenomena. I will discuss the dynamical frustration experienced by an exciton moving through an antiferromagnetic background. In sharp contrast, I will show how in the exciton superfluid phase the magnetic excitations 'borrow' kinetic energy from the excitons.
NASA Astrophysics Data System (ADS)
Zhao, Guo-Meng
2007-07-01
A penetration depth measurement was carried out on the optimally doped bismuthate superconductor Ba0.63K0.37BiO3 (Tc=29.2K) using the muon-spin-relaxation technique. We find that the temperature dependence of the penetration depth λ(T) of this compound is in excellent agreement with strong-coupling phonon-mediated superconductivity with a reduced energy gap of 2Δ(0)/kBTc=4.4 and a retarded electron-phonon coupling constant λe-p=1.4 . The observed large reduced energy gap rules out the possibility of pairing mechanisms based on coupling to high-energy electronic excitations. Quantitative data analyses indicate that high-temperature superconductivity in bismuthates arises from the Cooper pairing of polaronic charge carriers.
Bose polarons: Dynamical decay and RF signatures
NASA Astrophysics Data System (ADS)
Corson, John; Bohn, John
2016-05-01
Interactions of a single impurity with a quantum many-body environment are known to alter the character of the impurity, thereby forming a ``quasiparticle''. The condensed matter tradition often identifies quasiparticles as poles of a Green function in the complex plane, a notion whose sophistication sometimes obscures the underlying physics. The problem of a single quantum impurity in a Bose condensate, or Bose polaron, is an illustrative example where the meaning of the impurity Green function, and hence the quasiparticle itself, becomes especially transparent. Using direct diagonalization in a truncated Hilbert space, we examine the dynamical evolution and quasiparticle decay of the repulsive Bose polaron. This approach also allows us to simulate RF spectroscopy across a Feshbach resonance and outside the linear regime, as well as account for motional and thermal effects in a harmonic trap.
Control of exciton fluxes in an excitonic integrated circuit.
High, Alex A; Novitskaya, Ekaterina E; Butov, Leonid V; Hanson, Micah; Gossard, Arthur C
2008-07-11
Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.
Exciton-exciton annihilation in organic polariton microcavities
Akselrod, G. M.; Tischler, Jonathan R.; Young, E. R.; Nocera, D.G.; Bulovic, Vladimir
2010-09-27
We investigate the incoherent diffusion of excitons in thin films (5.1±0.1 nm thick) of a highly absorbing J-aggregated cyanine dye material (10^{6} cm^{-1} absorption constant) as the excitonic component of a polariton microcavity. Under high-intensity pulsed laser excitation, the J-aggregated molecular films exhibit significant exciton-exciton annihilation, indicating a large exciton diffusion radius of more than 100 nm. When the material is strongly coupled to a cavity, the polaritonic structure also shows exciton-exciton annihilation, which is a competing process against the establishment of a threshold population of polaritons needed for polariton lasing. This study suggests that exciton-exciton annihilation is a loss process which can significantly increase the lasing threshold in polariton microcavities.
Ground state energy of large polaron systems
Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.
2015-02-15
The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.
Triplet excitons in 4,4'-dichlorobenzophenone
Singham, S.B.; Pratt, D.W.
1982-02-18
Low-temperature optical and magnetic resonance experiments, both continuous-wave (CW) and time-resolved, have been performed on photoexcited single crystals of 4,4'-dichlorobenzophenone (DCBP). The CW results show the presence of both triplet excitons and several intrinsic traps in this system. A kinetic model is developed to describe excitation transport between exciton and trap states in the presence of resonant microwaves. By comparing the results of the time-resolved experiments with the predictions of the model, we conclude that the triplet exciton lifetime in DCBP is of the order of microseconds or less. This lifetime, which is much shorter than those in pseudo-one-dimensional systems, appears to be a consequence of the two-dimensional nature of the exchange interaction in the DCBP crystal.
Possible formation of chiral polarons in graphene.
Kandemir, B S
2013-01-16
A theoretical investigation of the possible existence of chiral polaron formation in graphene is reported. We present an analytical method to calculate the ground-state of the electron-phonon system within the framework of the Lee-Low-Pines theory. On the basis of our model, the influence of electron-optical phonon interaction on the graphene electronic spectrum is investigated. We considered only the doubly degenerate optical phonon modes of E(2g) symmetry near the zone center Γ. It is analytically shown that the energy dispersions of both valence and conduction bands of the pristine graphene differ significantly from those obtained through the standard electron self-energy calculations arising from the electron-optical phonon interactions. In this paper, we also show for the first time that the degenerate band structure of the graphene promotes the chiral polaron formation. Furthermore, due to the k-dependent nature of the polaronic self-energy, in analogy with quantum chromodynamics, we also propose a running electron-phonon coupling constant as a function of energy.
Polaron dynamics in anisotropic Holstein-Peierls systems.
Ribeiro Junior, Luiz Antonio; Stafström, Sven
2017-02-01
Polaron dynamics in anisotropic organic molecular semiconductors is theoretically investigated and simulated in the framework of a semi-classical Holstein-Peierls model. Our computational protocol is presented and applied to studies of a two-dimensional molecular crystal. The intermolecular (Peierls) parameters for a particular crystal direction are systematically changed in order to study the effect of anisotropy in the system. The usefulness of this methodology is highlighted by studying the polaron dynamics on a picosecond timescale, which provides a microscopic insight into the influence of the interplay between different intramolecular parameters on the charge transport mechanism. Our results show that the polaron mobility is substantially reduced in going from an anisotropic to an isotropic relationship between the Peierls parameters for different directions in the crystal. Interestingly, the molecular charge distribution presents three different signatures corresponding to a one-dimensional polaron, a two-dimensional polaron, and an intermediate state for which the polaron localization depends on the degree of anisotropy. Importantly, the two-dimensional polaron, which is present in the essentially isotropic system, is immobile whereas the other two types of polarons are mobile. This, in order for polaron transport to occur in a two-dimensional molecular based system, this system has to be anisotropic.
Large magnetic field effects in electrochemically doped organic light-emitting diodes
NASA Astrophysics Data System (ADS)
van Reenen, S.; Kersten, S. P.; Wouters, S. H. W.; Cox, M.; Janssen, P.; Koopmans, B.; Bobbert, P. A.; Kemerink, M.
2013-09-01
Large negative magnetoconductance (MC) of ˜12% is observed in electrochemically doped polymer light-emitting diodes at sub-band-gap bias voltages (Vbias). Simultaneously, a positive magnetoefficiency (Mη) of 9% is observed at Vbias = 2 V. At higher bias voltages, both the MC and Mη diminish while a negative magnetoelectroluminescence (MEL) appears. The negative MEL effect is rationalized by triplet-triplet annihilation that leads to delayed fluorescence, whereas the positive Mη effect is related to competition between spin mixing and exciton formation leading to an enhanced singlet:triplet ratio at nonzero magnetic field. The resultant reduction in triplet exciton density is argued to reduce detrapping of polarons in the recombination zone at low-bias voltages, explaining the observed negative MC. Regarding organic magnetoresistance, this study provides experimental data to verify existing models describing magnetic field effects in organic semiconductors, which contribute to better understanding hereof. Furthermore, we present indications of strong magnetic field effects related to interactions between trapped carriers and excitons, which specifically can be studied in electrochemically doped organic light-emitting diodes (OLEDs). Regarding light-emitting electrochemical cells (LECs), this work shows that delayed fluorescence from triplet-triplet annihilation substantially contributes to the electroluminescence and the device efficiency.
Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.
2014-10-13
We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
Exciton-exciton interaction in transition-metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Shahnazaryan, V.; Iorsh, I.; Shelykh, I. A.; Kyriienko, O.
2017-09-01
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction, specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the nonmonotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.
NASA Astrophysics Data System (ADS)
Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A.; Ossau, W.; Christianen, P. C. M.; Rudenkov, V. V.; Karczewski, G.; Wojtowicz, T.; Kossut, J.
2004-02-01
We present comprehensive study of negatively charged exciton in high magnetic fields for filling factors < 1. In magneto-optical spectra the fine structure was found to be contributed by neutral exciton and different a set of bound states of charged exciton. These states were identified due to their unique polarization properties charecteristics in emission and absorption spectra.
NASA Astrophysics Data System (ADS)
Lioudakis, Emmanouil; Alexandrou, Ioannis; Othonos, Andreas
2009-12-01
Nowadays, organic solar cells have the interest of engineers for manufacturing flexible and low cost devices. The considerable progress of this nanotechnology area presents the possibility of investigating new effects from a fundamental science point of view. In this letter we highlight the influence of the concentration of fullerene molecules on the ultrafast transport properties of charged electrons and polarons in P3HT/PCBM blended materials which are crucial for the development of organic solar cells. Especially, we report on the femtosecond dynamics of localized (P2 at 1.45 eV) and delocalized (DP2 at 1.76 eV) polaron states of P3HT matrix with the addition of fullerene molecules as well as the free-electron relaxation dynamics of PCBM-related states. Our study shows that as PCBM concentration increases, the amplified exciton dissociation at bulk heterojunctions leads to increased polaron lifetimes. However, the increase in PCBM concentration can be directly related to the localization of polarons, creating thus two competing trends within the material. Our methodology shows that the effect of changes in structure and/or composition can be monitored at the fundamental level toward optimization of device efficiency.
Origin of the crossover from polarons to Fermi liquids in transition metal oxides
NASA Astrophysics Data System (ADS)
Verdi, Carla; Caruso, Fabio; Giustino, Feliciano
2017-06-01
Transition metal oxides host a wealth of exotic phenomena ranging from charge, orbital and magnetic order to nontrivial topological phases and superconductivity. In order to translate these unique materials properties into device functionalities these materials must be doped; however, the nature of carriers and their conduction mechanism at the atomic scale remain unclear. Recent angle-resolved photoelectron spectroscopy investigations provided insight into these questions, revealing that the carriers of prototypical metal oxides undergo a transition from a polaronic liquid to a Fermi liquid regime with increasing doping. Here, by performing ab initio many-body calculations of angle-resolved photoemission spectra of titanium dioxide, we show that this transition originates from non-adiabatic polar electron-phonon coupling, and occurs when the frequency of plasma oscillations exceeds that of longitudinal-optical phonons. This finding suggests that a universal mechanism may underlie polaron formation in transition metal oxides, and provides a pathway for engineering emergent properties in quantum matter.
Origin of the crossover from polarons to Fermi liquids in transition metal oxides.
Verdi, Carla; Caruso, Fabio; Giustino, Feliciano
2017-06-08
Transition metal oxides host a wealth of exotic phenomena ranging from charge, orbital and magnetic order to nontrivial topological phases and superconductivity. In order to translate these unique materials properties into device functionalities these materials must be doped; however, the nature of carriers and their conduction mechanism at the atomic scale remain unclear. Recent angle-resolved photoelectron spectroscopy investigations provided insight into these questions, revealing that the carriers of prototypical metal oxides undergo a transition from a polaronic liquid to a Fermi liquid regime with increasing doping. Here, by performing ab initio many-body calculations of angle-resolved photoemission spectra of titanium dioxide, we show that this transition originates from non-adiabatic polar electron-phonon coupling, and occurs when the frequency of plasma oscillations exceeds that of longitudinal-optical phonons. This finding suggests that a universal mechanism may underlie polaron formation in transition metal oxides, and provides a pathway for engineering emergent properties in quantum matter.
The polaron: Ground state, excited states, and far from equilibrium
Trugman, S.A.; Bonca, J. |
1998-12-01
The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.
Neutral and positively charged excitons in narrow quantum ring
Porras Monroy, L. C.; Rodríguez-Prada, F. A.; Mikhailov, I. D.
2014-05-15
We study theoretically quantized states of a neutral and a positively charged exciton (trion X{sup +}) confined in a heterostructure with the ring-like geometry. In order to assess the experimentally relevant domain of parameters, we adopt a simple model of a narrow ring when 3D wave equations for the neutral and positively charged excitons can be separated. By using the Fourier series method, we have calculated the energy spectra of excitons complexes in a quantum ring as a function of the electron-to-hole mass ratio, the ring radius, and the magnetic field strength. The quantum-size effect and the size-dependent magnetic oscillations of energy levels of excitons' complexes spectra have been revealed.
Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.
Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V
2016-01-21
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.
Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry
Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.
2016-01-01
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534
Doping dependent evolution of the polaron metal
NASA Astrophysics Data System (ADS)
Mannella, N.; Tanaka, K.; Mo, S.-K.; Yang, W.; Zheng, H.; Mitchell, J.; Zaanen, J.; Deveraux, T. P.; Nagaosa, N.; Hussain, Z.; Shen, Z.-X.
2009-03-01
Experimental and theoretical evidence has already suggested that the ferromagnetic metallic (FM) phase in colossal magnetoresistive manganites is not a conventional metal but rather a polaronic conductor. In the bilayer manganites La2-2xSr1+2xMn2O7 (LSMO), Angle Resolved Photoemission (ARPES) experiment revealed that the FM phase is a polaronic metal with a strong anisotropic character of the electronic excitations [1,2]. A small but well-defined quasiparticle (QP) with heavy mass along the [110] or ``nodal'' direction is found to account for the metallic properties and their temperature dependent evolution [2]. In this talk, we will discuss recent ARPES results on the x = 0.60 composition and contrast them to the x = 0.40 results. Recent work has shown that the region in proximity of x = 0.60 constitute the most metallic bilayer manganite with DC conductivity about one order of magnitude higher than that corresponding to the region 0.30 < x < 0.40. Much as in the x = 0.40 composition, for x = 0.60 along the nodal direction we observe a peak-dip-hump structure with QP of heavy effective mass. Quantitative differences in the electron-phonon coupling constant λ, the QP spectral weight and the hump energy are fully consistent with the doping evolution of the transport properties. [1] Nature 438, 474 (2005), [2] Phys. Rev. B 76, 233102 (2007).
Size dependent polaronic conduction in hematite
NASA Astrophysics Data System (ADS)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-05-01
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe2O3 has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe2O3 with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe2O3 may be a better alternative anode material for lithium ion batteries than earlier reported systems.
Size dependent polaronic conduction in hematite
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-05-23
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.
Dual coupling effective band model for polarons
NASA Astrophysics Data System (ADS)
Marchand, Dominic J. J.; Stamp, Philip C. E.; Berciu, Mona
2017-01-01
Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling found previously in the pure SSH model, at which the k =0 effective mass diverges, now becomes a transition line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios. The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with a finite ground-state momentum, but with everywhere a continuously evolving band shape. No "self-trapping transition" exists in any of these models. The physics may be understood entirely in terms of competition between different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is suggested by the results.
electric dipole superconductor in bilayer exciton system
NASA Astrophysics Data System (ADS)
Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.
Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.
Machine learning exciton dynamics
Häse, Florian; Valleau, Stéphanie; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán
2016-04-01
Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna–Matthews–Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree of accuracy with prediction errors contained within 0.01 eV (0.5%). Spectral densities and exciton dynamics are also in agreement with the TDDFT results. The acceleration and accurate prediction of dynamics strongly encourage the combination of machine learning techniques with ab initio methods.
Diamagnetic excitons in semiconductors (Review)
NASA Astrophysics Data System (ADS)
Seisyan, R. P.
2016-05-01
Optical properties of semiconductor crystals in the presence of a high magnetic field have been considered. The field turn-on gives rise to oscillations of the optical-absorption edge or, more specifically, the formation of a complex absorption spectrum with a periodic structure, referred to as the spectrum of "diamagnetic excitons." Such spectra appear a source of the most accurate knowledge about the band structure of semiconductors. Moreover, these spectra can be used for simulating the low-dimensional state in semiconductors and possible interpretation of the emission spectra of neutron stars. The proposed analytical review is based on extensive experimental and theoretical data contained mostly in cited original works of the author with colleagues.
NASA Astrophysics Data System (ADS)
Li, G.; Shinar, J.; Jabbour, G. E.
2005-06-01
The electroluminescence (EL)-detected magnetic resonance (ELDMR) of 0, 1, 2.5, 6, and 20wt.% Pt octaethyl porphyrin (PtOEP)-doped tris(8-hydroxyquinolinate) Al (Alq3) -based phosphorescent multilayer organic light-emitting devices (OLEDs) is described. In 1wt.% -doped devices, the ELDMR from the PtOEP and Alq3 emission are both very similar to that of undoped devices. They exhibit a positive (EL-enhancing) spin- (1)/(2) polaron resonance at 10⩽T⩽50K , whose magnitude ΔIEL/IEL increases with current and weakens with increasing T , and a negative (EL-quenching) resonance at 50K⩽T , which grows with T . At 295K , ∣ΔIEL/IEL∣ decreases with current. The enhancing resonance is attributed to the magnetic-resonance reduction of singlet exciton (SE) quenching by a reduced population of polarons and host triplet excitons (TEs). The reduction in the TE and polaron populations is, in turn, due to the spin-dependent annihilation of host TEs by polarons, which is enhanced under magnetic resonance conditions. Since the polaron and host TE populations are much greater than the SE population, the polaron-host TE interaction is identified as one of the major interactions which govern the dynamics of the excited states in OLEDs. The quenching resonance is attributed to magnetic resonance enhancement of formation of dianions at the organic/cathode interface, which increases the charge density at that interface, and consequently the rate of field-induced host SE dissociation. Both the enhancing and quenching resonances weaken as the PtOEP concentration increases; at 6wt.% , the enhancing resonance is undetectable and the quenching resonance is very weak (∣ΔIEL/IEL∣˜2×10-5) . The results can be explained by assuming that the ELDMR of the guest emission is due to the effect of magnetic resonance conditions on the host SEs. A rate equation model is established to explain the evolution of the ELDMR with dye concentration. Since the foregoing quenching mechanisms are
Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
Heiber, Michael C; Dhinojwala, Ali
2012-07-07
A general dynamic Monte Carlo model for exciton dissociation at a donor-acceptor interface that includes exciton delocalization and hot charge separation is developed to model the experimental behavior observed for the poly(3-hexylthiophene):fullerene system and predict the theoretical performance of future materials systems. The presence of delocalized excitons and the direct formation of separated charge pairs has been recently measured by transient photo-induced absorption experiments and has been proposed to facilitate charge separation. The excess energy of the exciton dissociation process has also been observed to have a strong correlation with the charge separation yield for a series of thiophene based polymer:fullerene systems, suggesting that a hot charge separation process is also occurring. Hot charge separation has been previously theorized as a cause for highly efficient charge separation. However, a detailed model for this process has not been implemented and tested. Here, both conceptual models are implemented into a dynamic Monte Carlo simulation and tested using a simple bilayer donor-acceptor system. We find that exciton delocalization can account for a significant reduction in geminate recombination when compared to the traditional, bound polaron pair model. In addition, the hot charge separation process could further reduce the geminate recombination, but only if the hot charge mobility is several orders of magnitude larger than the standard charge mobility.
Artificially Constructed Plasmarons and Plasmon-Exciton Molecules in 2D Metals
NASA Astrophysics Data System (ADS)
Zhuravlev, A. S.; Kuznetsov, V. A.; Kulik, L. V.; Bisti, V. E.; Kirpichev, V. E.; Kukushkin, I. V.; Schmult, S.
2016-11-01
Resonant optical excitation was used to create a macroscopic nonequilibrium ensemble of "dark" excitons with an unprecedented long lifetime in a two-dimensional electron system placed in a quantizing magnetic field. Exotic three-particle and four-particle states, plasmarons and plasmon-exciton molecules, coupled with the surrounding electrons through the collective plasma oscillations are engineered. Plasmarons and plasmon-exciton molecules are manifested as new features in the recombination spectra of nonequilibrium systems.
Small hole polarons in rare-earth titanates
Bjaalie, L.; Moetakef, P.; Cain, T. A.; Janotti, A.; Himmetoglu, B.; Stemmer, S.; Van de Walle, C. G.; Ouellette, D. G.; Allen, S. J.
2015-06-08
We investigate the behavior of hole polarons in rare-earth titanates by combining optical conductivity measurements with first-principles hybrid density functional calculations. Sr-doped GdTiO{sub 3} (Gd{sub 1−x}Sr{sub x}TiO{sub 3}) was grown by molecular beam epitaxy. We show that a feature in the optical conductivity that was previously identified with the Mott-Hubbard gap is actually associated with the excitation of a small polaron. The assignment is based on an excellent match between the experimental spectra and first-principles calculations for polaron excitation mechanisms.
Holstein polarons and triplet bipolarons with NNN hopping
NASA Astrophysics Data System (ADS)
Chakraborty, Monodeep; Taraphder, A.; Berciu, Mona
2017-05-01
We study the ground state of 1D Holstein single polaron with next nearest neighbour electron hopping (NNN), employing a variational approximation based on exact diagonalization. Our investigation reveals that, depending upon the sign and magnitude of the NNN hopping integral with respect to nearest neighbour hopping, the polaron band minima may occur at non-zero kGS. We compare the present scenario with the SSH polarons, where a similar feature is also observed, albeit, due to very different mechanism. Our initial investigation of triplet bipolarons, in presence of an attractive extended Hubbard interactions, further substantiates the differences between the present model and the SSH model.
Method of time-ordered products in polaron theory
Bogolyupov, N.N.; Kireev, A.N.; Kurbatov, A.M.
1986-10-01
The method of time-ordered products is used to investigate the equilibrium thermodynamic properties of the Frolich model in polaron theory. The polaron free energy at finite temperatures is calculated on the basis of Bogolyubov's variational principle. The trial functional is chosen in the most general form corresponding to an arbitrary number of harmonic oscillators interacting with the electron. An upper bound for the polaron ground-state energy is obtained and studied in the case of weak coupling and low temperatures. It is shown that the accuracy of the bound increases with increasing number of oscillators.
Small polaron formation in porous WO3-x nanoparticle films
NASA Astrophysics Data System (ADS)
Ederth, J.; Hoel, A.; Niklasson, G. A.; Granqvist, C. G.
2004-11-01
Porous tungsten oxide nanoparticle films were prepared by reactive gas evaporation. The structure was studied by x-ray diffraction and scanning electron microscopy, and the oxygen nonstoichiometry was inferred by x-ray photoelectron spectroscopy, elastic recoil detection analysis, and neutron scattering. Specifically, the films consisted of WO3-x with 0.25
Excitonic giant-dipole potentials in cuprous oxide
NASA Astrophysics Data System (ADS)
Kurz, Markus; Grünwald, Peter; Scheel, Stefan
2017-06-01
In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.
Polaronic quantum diffusion in dynamic localization regime
NASA Astrophysics Data System (ADS)
Yao, Yao
2017-04-01
We investigate the quantum dynamics in a disordered electronic lattice by the time-dependent density matrix renormalization group algorithm. The on-site energy in the lattice follows the Fibonacci sequence and the electron off-diagonally couples to a sub-Ohmic phonon bath. It is found that the slope of the inverse participation ratio versus the coupling strength undergoes a sudden change that indicates a transition from static to dynamic localization, and that the generated polarons coherently diffuse via hopping-like processes, evidenced by the saturated entanglement entropy, providing a novel scenario for a transportation mechanism in strongly disordered systems. Moreover, the mean-square displacement is revealed to be insensitive to the coupling strength, implying the quantum diffusion behavior survives the energy disorder that prevails in real organic materials.
Quantum Dynamics of Ultracold Bose Polarons
NASA Astrophysics Data System (ADS)
Shchadilova, Yulia E.; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene
2016-09-01
We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T -matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.
Polaronic interactions between oxygen vacancies in rutile Ti O2
NASA Astrophysics Data System (ADS)
Zhao, Liang; Magyari-Köpe, Blanka; Nishi, Yoshio
2017-02-01
Oxygen vacancy-vacancy interactions in rutile Ti O2 are studied in conjunction with polaron formation trends using density functional theory calculations. It is found that polarons strongly enhance the formation of oxygen vacancies in this material and also mediate the interactions between existing vacancies. At distances below 1 nm, two isolated and charge-neutral vacancies exhibit attractive interactions with an equilibrium distance of about 4 Å. The attractive forces between vacancies partly arise from the polaronic transfer of excess electrons to reduce the potential energy. These discoveries provide microscopic explanations to the vacancy clustering phenomena, as well as a practical approach to stabilize the polarons at arbitrary Ti atoms in Ti O2 .
Extreme electron polaron spatial delocalization in π-conjugated materials
Rawson, Jeff; Angiolillo, Paul J.; Therien, Michael J.
2015-10-28
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. In this paper, we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Finally, because the electron polaron dimension can be linked tomore » key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.« less
Extreme electron polaron spatial delocalization in π-conjugated materials
Rawson, Jeff; Angiolillo, Paul J.; Therien, Michael J.
2015-01-01
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. Here we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Because the electron polaron dimension can be linked to key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties. PMID:26512097
Optical nonlinearities of small polarons in lithium niobate
NASA Astrophysics Data System (ADS)
Imlau, Mirco; Badorreck, Holger; Merschjann, Christoph
2015-12-01
An overview of optical nonlinearities of small bound polarons is given, which can occur in the congruently melting composition of LiNbO3. Such polarons decisively influence the linear and nonlinear optical performance of this material that is important for the field of optics and photonics. On the basis of an elementary phenomenological approach, the localization of carriers in a periodic lattice with intrinsic defects is introduced. It is applied to describe the binding energies of four electron and hole small polarons in LiNbO3: small free NbNb4 + polarons, small bound NbLi4 + polarons, small bound NbLi4 +:NbNb4 + bipolarons, and small bound O- hole polarons. For the understanding of their linear interaction with light, an optically induced transfer between nearest-neighboring polaronic sites is assumed. It reveals spectrally well separated optical absorption features in the visible and near-infrared spectral range, their small polaron peak energies and lineshapes. Nonlinear interaction of light is assigned to the optical formation of short-lived small polarons as a result of carrier excitation by means of band-to-band transitions. It is accompanied by the appearance of a transient absorption being spectrally constituted by the individual fingerprints of the small polarons involved. The relaxation dynamics of the transients is thermally activated and characterized phenomenologically by a stretched exponential behavior, according to incoherent 3D small polaron hopping between regular and defect sites of the crystal lattice. It is shown that the analysis of the dynamics is a useful tool for revealing the recombination processes between small polarons of different charge. Nonlinear interaction of small polarons with light furthermore results in changes of the index of refraction. Besides its causal relation to the transients via Kramers-Kronig relation, pronounced index changes may occur due to optically generated electric fields modulating the index of refraction
Tunable Polaronic Conduction in Anatase TiO2
NASA Astrophysics Data System (ADS)
Moser, S.; Moreschini, L.; Jaćimović, J.; Barišić, O. S.; Berger, H.; Magrez, A.; Chang, Y. J.; Kim, K. S.; Bostwick, A.; Rotenberg, E.; Forró, L.; Grioni, M.
2013-05-01
Oxygen vacancies created in anatase TiO2 by UV photons (80-130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.
Disorder-induced breakdown of soliton and polaron particles
Bishop, A.R.; Cai, D.; Gronbech-Jensen, N.; Salkola, M.I.
1995-12-31
Using examples of the perturbed (1+1) dimensional sine-Gordon, the continuous and discrete nonlinear Schroedinger systems, and a three-site quantum polaron problem, the authors briefly review some phenomena related to the fascinating interplays between nonlinearity, disorder, noise, nonadiabaticity, and lattice discreteness. The concept of competing length-scales and time-scales is emphasized as they pertain to the common concept of solitons and polarons behaving as {open_quotes}particles.{close_quotes}
Polaron formation and transport in olivine cathode materials
NASA Astrophysics Data System (ADS)
Johannes, Michelle; Hoang, Khang
2011-03-01
One of the critical factors limiting Li ion battery performance is electronic conduction through the cathode material. In the olivine structure type materials, such as LiFe PO4 , the parent materials are insulators with a gap of approximately 4 (or more) eV. The withdrawal of an electron results not in a band-type hole state, but rather a localized polaronic state. Transport then occurs via hopping of the polaron through the crystal. The measured electronic conduction in olivine materials depends on the transition metal cation type. In this study, we use density functional theory to compare formation of polarons in olivine materials with different transition metal cations: Mn, Fe, Co, and Ni. We show that the underlying electronic structure of the fully lithiated material (or fully delithiated material) essentially determines whether or not polaron formation is possible in localized d -states or whether the holes that result from adding or removing an electron reside in oxygen-derived states. We also investigate the facility of polaronic hopping by calculating the barrier between adjacent polaron sites in each of the four materials.
Nuclear polaron beyond the mean-field approximation
NASA Astrophysics Data System (ADS)
Scalbert, D.
2017-06-01
In III-V semiconductors it was shown theoretically that under optical cooling the nuclear-spin polaron bound to neutral donors would form below some critical nuclear-spin temperature Tc [Merkulov, Phys. Solid State 40, 930 (1998), 10.1134/1.1130450]. The predicted critical behavior is a direct consequence of the use of the mean-field approximation. It is known however that in any finite-size system a critical behavior must be absent. Here we develop a model of the optically cooled nuclear polaron, which goes beyond the mean-field approximation. An expression of the generalized free energy of the optically cooled nuclear polaron, valid for a finite, albeit large, number of spins, is derived. This model permits us to describe the continuous transition from the fluctuation dominated regime to the collective regime, as the nuclear-spin temperature decreases. It is shown that due to the finite number of nuclear spins involved in the polaron, the critical effects close to Tc are smoothed by the spin fluctuations. Particularly, instead of a divergence, the nuclear-spin fluctuations exhibit a sharp peak at Tc, before being depressed well below Tc. Interestingly, the formation of the nuclear polaron can, in certain conditions, boost the nuclear polarization beyond the value obtained solely by optical pumping. Finally, we suggest that the nuclear polaron could be detected by spin noise spectroscopy or via its superparamagnetic behavior.
Polarons in semiconducting polymers: Study within an extended Holstein model
NASA Astrophysics Data System (ADS)
Meisel, K. D.; Vocks, H.; Bobbert, P. A.
2005-05-01
We present a study of electron- (hole-) phonon interaction and polaron formation in semiconducting polymers within an extended Holstein model. A minimization of the lowest electronic state of this Hamiltonian with respect to lattice degrees of freedom yields the polaronic ground state. Input parameters of this Hamiltonian are obtained from ab initio calculations based on the density-functional theory. We calculate optical phonon modes and the coupling constants of these modes to the highest occupied and lowest unoccupied molecular orbital bands, respectively. For the studied polymers [polythiophene, poly(phenylenevinylene), poly(para-phenylene)] the polaron binding energy, its size, and the lattice deformation as a function of conjugation length have been determined. Self-trapped polarons are found for long conjugation lengths. Energies of prominent PPV modes involved in polaron formation agree with infrared spectra. The polaron binding energies we find are much smaller than the width of the energy disorder in polymeric systems of practical importance, thus self-trapping effects can be ignored in practice.
Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning.
Fischer, Andrea M; Campo, Vivaldo L; Portnoi, Mikhail E; Römer, Rudolf A
2009-03-06
We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.
Exciton Storage in a Nanoscale Aharonov-Bohm Ring with Electric Field Tuning
Fischer, Andrea M.; Roemer, Rudolf A.; Campo, Vivaldo L. Jr.; Portnoi, Mikhail E.
2009-03-06
We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.
Quantum Hall drag of exciton condensate in graphene
NASA Astrophysics Data System (ADS)
Liu, Xiaomeng; Watanabe, Kenji; Taniguchi, Takashi; Halperin, Bertrand I.; Kim, Philip
2017-08-01
An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.
Energy spectrum of the bound polaron
NASA Astrophysics Data System (ADS)
Adamowski, Janusz
1985-08-01
An eigenvalue problem for an electron interacting with a Coulomb center and a field of LO phonons is solved by a method of optimized canonical transformation. This method can be applied to arbitrary values of the electron-phonon coupling constant α. The energy eigenvalues for the 1s through 4f states have been calculated as function of α and of the ratio R of the donor rydberg mee4/2ħ2ɛ20 to the LO-phonon energy ħω. These values are the upper bounds to the energy E1s of the ground state as well to all the energy levels of the excited states lying below E1s+ħω. In a broad range of α and R, the present upper bounds are lower than previous variational results for the states 1s, 2s, and 2p. The energy levels for the 3s-4f states have been calculated for the first time by variational means. The calculated energy eigenvalues Enl lie always below the corresponding hydrogenlike levels, i.e., Enl/ħω<=-α-R/n2, where n and l are the principal and angular momentum quantum numbers, respectively. For all values of α and R, the following sequence of the energy levels for a given n has been obtained: Enl<=Enl' if l>l'. In particular, it leads to the positive Lamb shift E2s-E2p. The model of the bound polaron has been applied to the description of shallow donor spectra. The calculated values agree rather well with the measured 1s-2p transition energies for CdTe and ZnSe, and 1s-2s transition energies for CdS. For AgBr, AgCl, and CdF2 the upper bounds for the 1s level are too low, but the 2p-3p energy differences agree well with the experimental data. It means that the short-range donor potential neglected in the polaron model is repulsive for the considered impurities in the ionic crystals.
Ulbricht, Ronald; Pijpers, Joep J H; Groeneveld, Esther; Koole, Rolf; Donega, Celso de Mello; Vanmaekelbergh, Daniel; Delerue, Christophe; Allan, Guy; Bonn, Mischa
2012-09-12
We report on the gradual evolution of the conductivity of spherical CdTe nanocrystals of increasing size from the regime of strong quantum confinement with truly discrete energy levels to the regime of weak confinement with closely spaced hole states. We use the high-frequency (terahertz) real and imaginary conductivities of optically injected carriers in the nanocrystals to report on the degree of quantum confinement. For the smaller CdTe nanocrystals (3 nm < radius < 5 nm), the complex terahertz conductivity is purely imaginary. For nanocrystals with radii exceeding 5 nm, we observe the onset of real conductivity, which is attributed to the increasingly smaller separation between the hole states. Remarkably, this onset occurs for a nanocrystal radius significantly smaller than the bulk exciton Bohr radius a(B) ∼ 7 nm and cannot be explained by purely electronic transitions between hole states, as evidenced by tight-binding calculations. The real-valued conductivity observed in the larger nanocrystals can be explained by the emergence of mixed carrier-phonon, that is, polaron, states due to hole transitions that become resonant with, and couple strongly to, optical phonon modes for larger QDs. These polaron states possess larger oscillator strengths and broader absorption, and thereby give rise to enhanced real conductivity within the nanocrystals despite the confinement.
Artificial gravity effect on spin-polarized exciton-polaritons.
Sedov, E S; Kavokin, A V
2017-08-29
The pseudospin dynamics of long-living exciton-polaritons in a wedged 2D cavity has been studied theoretically accounting for the external magnetic field effect. The cavity width variation plays the role of the artificial gravitational force acting on a massive particle: exciton-polariton. A semi-classical model of the spin-polarization dynamics of ballistically propagating exciton-polaritons has been developed. It has been shown that for the specific choice of the magnetic field magnitude and the initial polariton wave vector the polariton polarization vector tends to an attractor on the Poincaré sphere. Based on this effect, the switching of the polariton polarization in the ballistic regime has been demonstrated. The self-interference of the polariton field emitted by a point-like source has been shown to induce the formation of interference patterns.
Topological Excitonic Superfluids in Three Dimensions
NASA Astrophysics Data System (ADS)
Gilbert, Matthew; Hankiewicz, Ewelina; Kim, Youngseok
2013-03-01
We study the equilibrium and non-equilibrium properties of topological dipolar intersurface exciton condensates within time-reversal invariant topological insulators in three spatial dimensions without a magnetic field. We elucidate that, in order to correctly identify the proper pairing symmetry within the condensate order parameter, the full three-dimensional Hamiltonian must be considered. As a corollary, we demonstrate that only particles with similar chirality play a significant role in condensate formation. Furthermore, we find that the intersurface exciton condensation is not suppressed by the interconnection of surfaces in three-dimensional topological insulators as the intersurface polarizability vanishes in the condensed phase. This eliminates the surface current flow leaving only intersurface current flow through the bulk. We conclude by illustrating how the excitonic superfluidity may be identified through an examination of the terminal currents above and below the condensate critical current. Army Research Office (ARO) under contract number W911NF-09-1-0347, the Office of Naval Research (ONR) under contract number N0014-11-1-0728, and the Air Force Office of Scientific Research (AFOSR) under contract number FA9550-10-1-0459, DFG Grant HA 5893
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gao, Weilu; Watson, John; Manfra, Michael; Kono, Junichiro
2015-03-01
Density-dependent Coulomb interactions can drive electron-hole (e - h) pairs in semiconductors through an excitonic Mott transition from an excitonic gas into an e - h plasma. Theoretical studies suggest that these interactions can be strongly modified by an external magnetic field, including the absence of inter-exciton interactions in the high magnetic field limit in two dimensions, due to an e - h charge symmetry, which results in ultrastable magneto-excitons. Here, we present a systematic experimental study of e - h pairs in photo-excited undoped GaAs quantum wells in magnetic fields with ultrafast terahertz spectroscopy. We simultaneously monitored the dynamics of the intraexcitonic 1 s-2 p transition (which splits into 1 s-2p+ and 1 s-2p- transitions in a magnetic field) and the cyclotron resonance of unbound electrons and holes up to 10 Tesla. We found that the 1 s-2p- absorption feature is robust at high magnetic fields even under high excitation fluences, indicating magnetically enhanced stability of excitons. We will discuss the Mott physics of magneto-excitons as a function of temperature, e - h pair density, optical pump delay time, as well as magnetic field, and also compare two-dimensional excitons in GaAs quantum wells with three-dimensional excitons in bulk GaAs.
Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers.
Mosquera, Martín A; Jackson, Nicholas E; Fauvell, Thomas J; Kelley, Matthew S; Chen, Lin X; Schatz, George C; Ratner, Mark A
2017-03-15
The theoretical description of the time-evolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further developments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.
NASA Astrophysics Data System (ADS)
Ishii, A.; Yoshida, M.; Kato, Y. K.
2015-03-01
Luminescence properties of carbon nanotubes are strongly affected by exciton diffusion, which plays an important role in various nonradiative decay processes. Here we perform photoluminescence microscopy on hundreds of individual air-suspended carbon nanotubes to elucidate the interplay between exciton diffusion, end quenching, and exciton-exciton annihilation processes. A model derived from random-walk theory as well as Monte Carlo simulations are utilized to analyze nanotube length dependence and excitation power dependence of emission intensity. We have obtained the values of exciton diffusion length and absorption cross section for different chiralities, and diameter-dependent photoluminescence quantum yields have been observed. The simulations have also revealed the nature of a one-dimensional coalescence process, and an analytical expression for the power dependence of emission intensity is given.
Exciton-photon correlations in bosonic condensates of exciton-polaritons.
Kavokin, Alexey V; Sheremet, Alexandra S; Shelykh, Ivan A; Lagoudakis, Pavlos G; Rubo, Yuri G
2015-07-08
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.
Editorial on indirect excitons: Physics and applications
NASA Astrophysics Data System (ADS)
2017-08-01
This special issue contains 9 original review papers, research papers and discussion papers on indirect excitons. An exciton is a Coulomb-correlated electron-hole pair. Frenkel excitons dominate optical properties of organic semiconductors, while Wannier-Mott excitons are responsible for the hydrogen-like absorption spectra of inorganic semiconductors at low temperatures. The interest to the physics of excitons has strongly increased in the new century. This interest is motivated by unique bosonic properties of excitons that lead to the phenomena of exciton-polariton lasing and stimulated scattering, build-up of the spontaneous coherence and polarisation in cold exciton gases. In addition to the rich fundamental physics, excitons offer the perspective of applications in opto-electronic devices such as exciton transistors, switches, optical integrated circuits, etc.
Transient Exciton Spin Splitting in GaAs Quantum Wells under Near-Resonant Excitation
NASA Astrophysics Data System (ADS)
Zin Latt, Kyaw; Lai, Chih-Wei
2010-03-01
We investigated spin dependent exciton-exciton interaction and energy relaxation under near-resonant circularly polarized ps pulsed excitation in single, multiple, or double coupled GaAs/AlGaAs quantum wells. Transient exciton spin splitting and relaxation were determined from time-resolved photoluminescence (TRPL) spectroscopy and polarimetry with a streak camera system. In contrast to standard TRPL measurements based on up-conversion and pump-probe techniques, the streak-camera setup allows for speedy spectroscopy and Stokes polarimetry measurements as a function of the exciton density and magnetic/electric field under near -resonant excitation (˜3 to 10 meV from the exciton resonance). For 6-nm and 14-nm GaAs/AlGaAs quantum wells at intermediate density (a few 10^10 cm-2), a spin splitting of 2 and 1 meV appeared instantly within 10 ps after excitation and exhibited a decay time constant of ˜100 and 500 ps, respectively. In the presence of magnetic fields, the spin splitting and relaxation dynamics became non-exponential and exhibited asymmetric and nonlinear dependence on the direction and magnitude of the field up to 10 Tesla. We analyzed the spin splitting and relaxation dynamics in terms of inter-exciton and intra-exciton exchange interaction and exciton-carrier interaction.
Use of site symmetry in supercell models of defective crystals: polarons in CeO2.
Evarestov, R A; Gryaznov, D; Arrigoni, M; Kotomin, E A; Chesnokov, A; Maier, J
2017-03-22
In supercell calculations of defective crystals, it is common to place a point defect or vacancy in the atomic position with the highest possible point symmetry. Then, the initial atomic structure is often arbitrary distorted before its optimization, which searches for the total energy minimum. In this paper, we suggest an alternative approach to the application of supercell models and show that it is necessary to preliminarily analyze the site symmetry of the split Wyckoff positions of the perfect crystal supercell atoms (which will be substituted or removed in defective crystals) and then perform supercell calculations with point defects for different possible site symmetries, to find the energetically most favorable defect configuration, which does not necessarily correspond to the highest site symmetry. Using CeO2 as an example, it is demonstrated that this use of the site symmetry of the removed oxygen atoms in the supercells with vacancies allows us to obtain all the possible atomic and magnetic polaron configurations, and predict which vacancy positions correspond to the lowest formation energies associated with small polarons. We give a simple symmetry based explanation for the existence of controversies in the literature on the nature of the oxygen vacancies in CeO2. In particular, the experimentally observed small polaron formation could arise for oxygen vacancies with the lowest Cs site symmetry, which exist in 3 × 3 × 3 and larger supercells. The results of first principles calculations using a linear combination of atomic orbitals and hybrid exchange-correlation functionals are compared with those from previous studies, obtained using a widely used DFT+U approach.
Momentum dependence of the excitons in pentacene
Roth, Friedrich; Schuster, Roman; Koenig, Andreas; Knupfer, Martin; Berger, Helmuth
2012-05-28
We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a*, b* reciprocal lattice plane. The lowest singlet exciton can move coherently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.
Numerical simulation of photoexcited polaron states in water
Zemlyanaya, E. V. Volokhova, A. V.; Amirkhanov, I. V.; Puzynin, I. V.; Puzynina, T. P.; Rikhvitskiy, V. S.; Lakhno, V. D.; Atanasova, P. Kh.
2015-10-28
We consider the dynamic polaron model of the hydrated electron state on the basis of a system of three nonlinear partial differential equations with appropriate initial and boundary conditions. A parallel numerical algorithm for the numerical solution of this system has been developed. Its effectiveness has been tested on a few multi-processor systems. A numerical simulation of the polaron states formation in water under the action of the ultraviolet range laser irradiation has been performed. The numerical results are shown to be in a reasonable agreement with experimental data and theoretical predictions.
Theory of polaron bandwidth narrowing in organic molecular crystals
NASA Astrophysics Data System (ADS)
Hannewald, K.; Stojanović, V. M.; Schellekens, J. M.; Bobbert, P. A.; Kresse, G.; Hafner, J.
2004-02-01
We present a theoretical description of polaron bandwidth narrowing in organic molecular crystals. Based on a solution of a Holstein-Peierls model for tightly bound electrons interacting with phonons, an explicit expression for the temperature dependence of the electronic bandwidths is found. This formula generalizes the result of Holstein polaron theory by treating local and nonlocal electron-phonon coupling on equal footing. The usefulness of the method is demonstrated by model studies for oligo-acene crystals from which microscopic insight into the relevance of the different coupling mechanisms is obtained.
Transient electrically detected magnetic resonance spectroscopy applied to organic solar cells
Kraffert, Felix; Steyrleuthner, Robert; Meier, Christoph; Bittl, Robert; Behrends, Jan
2015-07-27
The influence of light-induced paramagnetic states on the photocurrent generated by polymer:fullerene solar cells is studied using spin-sensitive techniques in combination with laser-flash excitation. For this purpose, we developed a setup that allows for simultaneous detection of transient electron paramagnetic resonance as well as transient electrically detected magnetic resonance (trEDMR) signals from fully processed and encapsulated solar cells. Combining both techniques provides a direct link between photoinduced triplet excitons, charge transfer states, and free charge carriers as well as their influence on the photocurrent generated by organic photovoltaic devices. Our results obtained from solar cells based on poly(3-hexylthiophene) as electron donor and a fullerene-based electron acceptor show that the resonant signals observed in low-temperature (T = 80 K) trEDMR spectra can be attributed to positive polarons in the polymer as well as negative polarons in the fullerene phase, indicating that both centers are involved in spin-dependent processes that directly influence the photocurrent.
Phonon-assisted dark exciton preparation in a quantum dot
NASA Astrophysics Data System (ADS)
Lüker, S.; Kuhn, T.; Reiter, D. E.
2017-05-01
In semiconductor quantum dots, coupling to the environment, i.e., to phonons, plays a crucial role for optical state preparation. We analyze the phonon impact on two methods for direct optical preparation of the dark exciton, which is enabled by a tilted magnetic field: excitation with a chirped laser pulse and excitation with a detuned pulse. Our study reveals that for both methods, phonons either do not impede the proposed mechanism or they are made useful by widening the parameter range where dark state preparation is possible due to phonon-assisted dark exciton preparation. In view of the positive impact of phonons on optical preparation, the use of dark excitons in quantum dots becomes even more attractive.
NASA Astrophysics Data System (ADS)
Ganiev, Orifjon
2017-06-01
Polaron effects and charge carrier mobility in high-T_c cuprate superconductors (HTSCs) have been investigated theoretically. The appropriate Boltzmann transport equations under relaxation time approximation were used to calculate the mobility of polaronic charge carriers and bosonic Cooper pairs above and below the pseudogap (PG) temperature T^*. It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by PG cross-over temperature on the cuprate phase diagram.
Superexchange coupling and electron transfer in globular proteins via polaron excitations.
Chuev, G N; Lakhno, V D; Ustitnin, M N
2000-06-01
The polaron approach is used to treat long-range electron transfersbetween globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions forits use. Assuming that electrons transfer via a superexchange couplingdue to a polaron excitation, we have estimated the distance dependenceof the rate constant for the self-exchange reactions between globularproteins in solutions. The distance dependence of the polaron coupling andsolvent reorganization energy are provided as a basis forunderstanding and interpreting a long-range electron transfer experiment.The difficulties and problems of the polaron treatment of long-rangeelectron transfers are discussed, and suggestions for new experimentsare made.
Low-Energy Excitation Spectra in the Excitonic Phase of Cobalt Oxides
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2017-04-01
We study the excitonic phase and low-energy excitation spectra of perovskite cobalt oxides. Constructing the five-orbital Hubbard model defined on the three-dimensional cubic lattice for the 3d bands of Pr0.5Ca0.5CoO3, we calculate the excitonic susceptibility in the normal state in the random-phase approximation (RPA) to show the presence of the instability toward excitonic condensation. On the basis of the excitonic ground state with a magnetic multipole obtained in the mean-field approximation, we calculate the dynamical susceptibility of the excitonic phase in the RPA and find that there appear a gapless collective excitation in the spin-transverse mode (Goldstone mode) and a gapful collective excitation in the spin-longitudinal mode (Higgs mode). The experimental relevance of our results is discussed.
Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault
NASA Astrophysics Data System (ADS)
Karin, Todd; Linpeng, Xiayu; Glazov, M. M.; Durnev, M. V.; Ivchenko, E. L.; Harvey, Sarah; Rai, Ashish K.; Ludwig, Arne; Wieck, Andreas D.; Fu, Kai-Mei C.
2016-07-01
We investigate the magneto-optical properties of excitons bound to single stacking faults in high-purity GaAs. We find that the two-dimensional stacking fault potential binds an exciton composed of an electron and a heavy hole, and we confirm a vanishing in-plane hole g -factor, consistent with the atomic-scale symmetry of the system. The unprecedented homogeneity of the stacking-fault potential leads to ultranarrow photoluminescence emission lines (with a full width at half-maximum ≲80 μ eV ) and reveals a large magnetic nonreciprocity effect that originates from the magneto-Stark effect for mobile excitons. These measurements unambiguously determine the direction and magnitude of the giant electric dipole moment (≳e ×10 nm ) of the stacking-fault exciton, making stacking faults a promising new platform to study interacting excitonic gases.
Origin of the crossover from polarons to Fermi liquids in transition metal oxides
Verdi, Carla; Caruso, Fabio; Giustino, Feliciano
2017-01-01
Transition metal oxides host a wealth of exotic phenomena ranging from charge, orbital and magnetic order to nontrivial topological phases and superconductivity. In order to translate these unique materials properties into device functionalities these materials must be doped; however, the nature of carriers and their conduction mechanism at the atomic scale remain unclear. Recent angle-resolved photoelectron spectroscopy investigations provided insight into these questions, revealing that the carriers of prototypical metal oxides undergo a transition from a polaronic liquid to a Fermi liquid regime with increasing doping. Here, by performing ab initio many-body calculations of angle-resolved photoemission spectra of titanium dioxide, we show that this transition originates from non-adiabatic polar electron–phonon coupling, and occurs when the frequency of plasma oscillations exceeds that of longitudinal-optical phonons. This finding suggests that a universal mechanism may underlie polaron formation in transition metal oxides, and provides a pathway for engineering emergent properties in quantum matter. PMID:28593950
A Nonempirical Comparison of the Polaron and Mowat Sensor.
ERIC Educational Resources Information Center
Moore, Karyl A.
1995-01-01
This article compares two electronic aids that send out an elliptical cone of ultrasonic sound that bounces back as a usable information signal for individuals with blindness. The Polaron is better for people who are predominantly route travelers or with limited hand use. The Mowat Sensor is better for travelers in a variety of environments. (JDD)
Polaron mass of charge carriers in semiconductor quantum wells
Maslov, A. Yu. Proshina, O. V.
2015-10-15
A theory of the interaction of charge carriers with optical phonons in a quantum well is developed with consideration for interface optical phonons. The dependence of the polaron effective mass on the quantum-well dimensions and dielectric characteristics of barriers is analyzed in detail. It is shown that, in narrow quantum wells, a quasi-two-dimensional polaron can be formed. In this case, however, the interaction parameters are defined by the charge-carrier effective mass in the quantum well and by the frequencies of interface optical phonons. If barriers are made of a nonpolar material, the polaron effective mass depends on the quantum-well width. As the quantum-well width is increased, a new mechanism of enhancement of the electron–phonon interaction develops. The mechanism is implemented, if the optical phonon energy is equal to the energy of one of the electronic transitions. This condition yields an unsteady dependence of the polaron effective mass on the quantum-well width.
Polaron formation, native defects, and electronic conduction in metal tungstates
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-07-01
Iron tungstate (FeWO4 ) and manganese tungstate (MnWO4 ) belong to a family of wolframite-type materials that has applications in various areas, including supercapacitors, batteries, and multiferroics. A detailed understanding of bulk properties and defect physics in these transition-metal tungstates has been lacking, however, impeding possible improvement of their functional properties. Here, we report a first-principles study of FeWO4 and MnWO4 using screened hybrid density-functional calculations. We find that in both compounds the electronic structures near the band edges are predominantly the highly localized transition-metal d states, which allows for the formation of both hole polarons at the Fe (Mn) sites and electron polarons at the W sites. The dominant native point defects in FeWO4 (MnWO4 ) under realistic synthesis conditions are, however, the hole polarons at the Fe (Mn) sites and negatively charged Fe (Mn) vacancies. The presence of low-energy and highly mobile polarons provides an explanation for the good p -type conductivity observed in experiments and the ability of the materials to store energy via a pseudocapacitive mechanism.
A Nonempirical Comparison of the Polaron and Mowat Sensor.
ERIC Educational Resources Information Center
Moore, Karyl A.
1995-01-01
This article compares two electronic aids that send out an elliptical cone of ultrasonic sound that bounces back as a usable information signal for individuals with blindness. The Polaron is better for people who are predominantly route travelers or with limited hand use. The Mowat Sensor is better for travelers in a variety of environments. (JDD)
NASA Astrophysics Data System (ADS)
Bastardis, Roland; Guihéry, Nathalie; de Graaf, Coen
2006-07-01
The low-energy spectrum of the Zener polaron in half-doped manganite is studied by means of correlated ab initio calculations. It is shown that the electronic structure of the low-energy states results from a subtle interplay between double-exchange configurations and O 2pσ to Mn 3d charge-transfer configurations that obey a Heisenberg logic. The comparison of the calculated spectrum to those predicted by the Zener Hamiltonian reveals that this simple description does not correctly reproduces the Zener polaron physics. A better reproduction of the calculated spectrum is obtained with either a Heisenberg model that considers a purely magnetic oxygen or the Girerd-Papaefthymiou double-exchange model. An additional significant improvement is obtained when different antiferromagnetic contributions are combined with the double-exchange model, showing that the Zener polaron spectrum is actually ruled by a refined double-exchange mechanism where non-Hund atomic states play a non-negligible role. Finally, eight states of a different nature have been found to be intercalated in the double-exchange spectrum. These states exhibit an O to Mn charge transfer, implying a second O 2p orbital of approximate π character instead of the usual σ symmetry. A small mixing of the two families of states occurs, accounting for the final ordering of the states.
Collective phenomena in cold indirect excitons
Butov, L. V.
2016-03-15
Due to their long lifetimes, indirect excitons can cool to below the temperature of quantum degeneracy. This gives an opportunity to experimentally study cold composite bosons. Both theoretically predicted phenomena and phenomena that have not been anticipated were observed in a cold gas of indirect excitons. In this contribution, we overview our studies of cold indirect excitons over the past decade, presenting spontaneous coherence and condensation of excitons, spatially modulated exciton state, long-range spin currents and spin textures, and exciton localization–delocalization transitions.
The structure of nanoscale polaron correlations in the layered manganites
NASA Astrophysics Data System (ADS)
Campbell, Branton
2002-03-01
Recent x-ray and neutron scattering experiments have uncovered nanoscale polaron correlations that play an essential role in the colossal magnetoresistive (CMR) behavior of the perovskite manganites. Short-range polaronic order decreases the charge-carrier mobility of the high-temperature paramagnetic state, and subsequently becomes unstable at the ferromagnetic transition, contributing to a pronounced resistivity decrease at T_C. In the bilayered perovskite system La_2-2xSr_1+2xMn_2O7 (0.3 < x < 0.5), weak x-ray diffuse scattering maxima reveal a one-dimensional incommensurate structural modulation with wavevector q = (0.3, 0, ± 1) and a correlation length of 10 to 30 Angstroms. A crystallographic analysis of the diffuse satellite intensities yields a longitudinal Jahn-Teller stretch mode suggestive of charge-density-wave fluctuations. Within the correlated regions, polaronic eg electrons form a striped pattern of occupied d(3x^2-r^2) orbitals. Dynamic polaron correlations of the zig-zag orbital type are also observed above TC and exhibit distinctly glassy behavior. These structures provide unique insights into the nature of strongly correlated polaronic systems. Collaborators: R. Osborn, D.N. Argyriou, S. Rosenkranz, L. Vasiliu-Doloc, J.F. Mitchell, S.K. Sinha, J.W. Lynn, C.D. Ling, Z. Islam, U. Ruett, and A. Berger. This work was supported by the U.S. DOE Office of Science contract No. W-31-109-ENG-38.
Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites
NASA Astrophysics Data System (ADS)
Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.
2016-03-01
UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.
NASA Astrophysics Data System (ADS)
Li, G.; Kim, C. H.; Lane, P. A.; Shinar, J.
2004-04-01
The electroluminescence (EL)-, electrical current density (J)-, and photoluminescence (PL)- detected magnetic resonance (ELDMR, EDMR, and PLDMR, respectively) of tris-(8-hydroxyquinoline) aluminum (Alq3)-based organic light-emitting devices (OLEDs) and Alq3 films is described. At low temperatures, a positive spin-1/2 resonance is observed, i.e., the changes in J, the EL intensity IEL, and the PL intensity IPL are positive (ΔJ/J, ΔIEL/IEL, and ΔIPL/IPL>0). ΔJ/J and ΔIEL/IEL are insensitive to the nature of the Alq3/cathode interface. They weaken with increasing T and become unobservable above 60 K. ΔIPL/IPL also decreases with T, but is still observable at 250 K. Since the resonances all have the same g value, similar linewidths, and a similar dependence on T and the excitation level (J or the laser power), they are all attributed to the same mechanism. That mechanism is either the reduction of singlet exciton (SE) quenching by a reduced population of polarons in the bulk of the Alq3 layer (“the quenching mechanism”), or the enhanced formation of SEs from singlet polaron pairs at the expense of triplet excitons (TEs) (“the delayed PL mechanism”). However, the latter mechanism implies that the yield of SEs in Alq3-based OLEDs is greater than 25%. Due to evidence to the contrary, and other evidence which is inconsistent with the delayed PL mechanism, we conclude that the positive spin-1/2 resonance is due to the quenching mechanism. At T≈60 K, another spin-1/2 resonance, which reduces both J and IEL (but is unobservable in the PL), emerges and grows with increasing T. This negative EDMR and ELDMR is sensitive to the buffer layer between Alq3 and the cathode, and is attributed to the magnetic resonance enhancement of the spin-dependent formation of negative spinless bipolarons from spin-1/2 negative polarons at the organic/cathode interface. The increased trapping of injected electrons at the interface reduces J and consequently IEL. However, at 295 K
Vinolin, Ada; Peter, A. John
2015-06-24
Magneto-LO-polaron in a cylindrical GaAs{sub 0.9} P{sub 0.1} / GaAs{sub 0.6} P{sub 0.4} quantum dot is investigated taking into consideration of geometrical confinement effect. The effects of phonon on the exciton binding energy and the interband emission energy as a function of dot radius are found. The calculations are performed within the single band effective mass approximation using the variational method based on the Lee-Low-Pine LLP transformation.
The Aharonov-Bohm effect for an exciton
NASA Astrophysics Data System (ADS)
Römer, R. A.; Raikh, M. E.
2000-03-01
We study theoretically the exciton absorption (luminescence) of a ring-like quantum dot shreded by a magnetic flux. We consider the limit when the width of the ring is smaller than the excitonic Bohr radius a_B. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption (luminescence), and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0 --- the universal flux quantum. Assuming that the attraction between electron and hole is short-ranged we find analytically the functional form of these oscillations for both quantities.^1 This enables us to trace the magnitude of the effect with changing the ratio 2 π R/aB where R is the radius of the ring. Physically, the origin of the oscillations is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring. Possible candidates for the experimental observation of the effect are recently discovered self-assembled quantum ring-like structures of InAs embedded in GaAs.^2,3 ^1R.A. Römer and M.E. Raikh, preprint cond-mat/9906314. ^2A. Lorke et al., Microelectronic Engeneering 47, 95 (1999). ^3H. Petterson et al., Proceedings of EP2DS-13, to be published in Physica E, (1999).
Exciton dispersion in molecular solids.
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-25
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Exciton dispersion in molecular solids
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-01
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Spin Textures of Exciton-Polaritons in a Tunable Microcavity with Large TE-TM Splitting.
Dufferwiel, S; Li, Feng; Cancellieri, E; Giriunas, L; Trichet, A A P; Whittaker, D M; Walker, P M; Fras, F; Clarke, E; Smith, J M; Skolnick, M S; Krizhanovskii, D N
2015-12-11
We report an extended family of spin textures of zero-dimensional exciton-polaritons spatially confined in tunable open microcavity structures. The transverse-electric-transverse-magnetic (TE-TM) splitting, which is enhanced in the open cavity structures, leads to polariton eigenstates carrying quantized spin vortices. Depending on the strength and anisotropy of the cavity confining potential and of the TE-TM induced splitting, which can be tuned via the excitonic or photonic fractions, the exciton-polariton emissions exhibit either spin-vortex-like patterns or linear polarization, in good agreement with theoretical modeling.
Excitonic polaritons in Fibonacci quasicrystals.
Hendrickson, J; Richards, B C; Sweet, J; Khitrova, G; Poddubny, A N; Ivchenko, E L; Wegener, M; Gibbs, H M
2008-09-29
The fabrication and characterization of light-emitting one-dimensional photonic quasicrystals based on excitonic resonances is reported. The structures consist of high-quality GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with wavelength-scale spacings satisfying a Fibonacci sequence. The polaritonic (resonant light-matter coupling) effects and light emission originate from the quantum well excitonic resonances. Measured reflectivity spectra as a function of detuning between emission and Bragg wavelength are in good agreement with excitonic polariton theory. Photoluminescence experiments show that active photonic quasicrystals, unlike photonic crystals, can be good light emitters: While their long-range order results in a stopband similar to that of photonic crystals, the lack of periodicity results in strong emission.
Exciton-photon correlations in bosonic condensates of exciton-polaritons
Kavokin, Alexey V.; Sheremet, Alexandra S.; Shelykh, Ivan A.; Lagoudakis, Pavlos G.; Rubo, Yuri G.
2015-01-01
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers. PMID:26153979
Bosonic cascades of indirect excitons
NASA Astrophysics Data System (ADS)
Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.
2017-08-01
Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.
Tunable spin-polaron state in a singly clamped semiconducting carbon nanotube
NASA Astrophysics Data System (ADS)
Pistolesi, F.; Shekhter, R.
2015-07-01
We consider a semiconducting carbon nanotube (CNT) lying on a ferromagnetic insulating substrate with one end passing the substrate and suspended over a metallic gate. We assume that the polarized substrate induces an exchange interaction acting as a local magnetic field for the electrons in the nonsuspended CNT side. Generalizing the approach of I. Snyman and Yu.V. Nazarov [Phys. Rev. Lett. 108, 076805 (2012), 10.1103/PhysRevLett.108.076805], we show that one can generate electrostatically a tunable spin-polarized polaronic state localized at the bending end of the CNT. We argue that at low temperatures manipulation and detection of the localized quantum spin state are possible.
NASA Astrophysics Data System (ADS)
Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko
2009-03-01
We have performed micro-photoluminescence (PL) spectroscopy for single carbon nanotubes under magnetic fields at various temperatures. Sharp PL spectra of single carbon nanotubes allow us to directly observe the dark exciton PL peak a few meV below the bright exciton PL peak due to the Aharonov-Bohm effect [1]. From the PL intensity ratio of the dark to the bright excitons under magnetic fields, we found that the non-equilibrium (non-Boltzmann) distribution occurs between the bright and dark states, because phonons cannot scatter excitons between the two states with different parities [2]. Furthermore, we discuss the diameter dependence of the exciton population of the bright and dark states in single carbon nanotubes. [1] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 101, 147404 (2008). [2] V. Perebeinos, J. Tersoff, and Ph. Avouris, Nano Lett. 5, 2495 (2005).
Bound small polarons in high-T sub c superconductors
Szymczak, H.; Genzel, L.; Wittlin, A. )
1990-06-01
The thermal and acoustic anomalies in high-T{sub c} superconductors are interpreted in terms of contributions arising from the tunneling motion of bound small polarons. The small polarons arise in YBa{sub 2}Cu{sub 3}O{sub 7} oxides due to the localization of the holes on one of the four O{sup 2{minus}} ions surrounding the Cu(2) site in the CuO{sub 2} plane. The optical absorption band located at 0.4 eV is explained as a light-induced transfer of holes between the equivalent O{sup 2{minus}} sites. It is argued that the strong hole-lattice interaction is responsible for the enhanced oscillator strength of optical phonons in YBa{sub 2}Cu{sub 3}O{sub 7}.
A polaron model for electron transfer in globular proteins.
Chuev, G N; Lakhno, V D
1993-07-07
Polaron models have been considered for the electron states in protein globules existing in a solvent. These models account for two fundamental effects, viz, polarization interaction of an electron with the conformational vibrations and the heterogeneity of the medium. Equations have been derived to determine the electron state in a protein globule. The parameters of this state show that it is an extended state with an energy of 2 eV. The electron transfer rate for cyt C self-exchange reaction has been calculated in the polaron model. Reorganization energy, tunneling matrix element and the rate constant have also been estimated. The results are compared with experimental data. The influence of model parameters on the significance of the data obtained has been studied. The potentialities of the model are discussed.
Spin-dependent polaron formation in pristine graphene
NASA Astrophysics Data System (ADS)
Mogulkoc, A.; Modarresi, M.; Kandemir, B. S.
2015-02-01
We investigate the effects of spin-orbit couplings on the electron (hole)-E2g phonon interaction in graphene. We examine the effects of spin-orbit couplings on electron and hole polaron formation as well as DC conductivity, and spin polarizations of charge carriers. We use Fröhlich type Hamiltonian to describe the electron-phonon system within the continuum limit. Our theoretical analysis shows that, the polaronic effect is decreased due to the spin-orbit couplings, for both spin and pseudospin states, but it is enhanced beyond some critical values of wavevector for spin-up states of both sublattices in the presence of spin-orbit couplings. The Rashba spin-orbit coupling in the graphene single layer splits up- and down- states, and produces perfect spin polarized conductivity. Also the phonon-restricted and phonon-assisted conduction are reported for positive and negative Fermi energies.
Small polarons and point defects in barium cerate
NASA Astrophysics Data System (ADS)
Swift, Michael; Janotti, Anderson; Van de Walle, Chris G.
2015-12-01
Barium cerate (BaCeO3) is a well-known ionic conductor of both hydrogen and oxygen. In applications, it is frequently doped (for instance with Y) to increase stability and promote diffusion. However, the effects of doping and native defects are not fully understood. Computational studies have been stymied by the nature of the conduction band, which is made up of cerium 4 f states. These states present a challenge to ab initio techniques based on density functional theory within the standard approximations for exchange and correlation. Using a hybrid functional, we investigate the effects of hydrogen impurities and native defects on the electrical and optical properties of BaCeO3. We discuss the tendency of excess electrons or holes to localize in the form of small polarons. We also explore the interactions of polarons with hydrogen impurities and oxygen vacancies, and their impact on luminescence properties.
A generalised Davydov-Scott model for polarons in linear peptide chains
NASA Astrophysics Data System (ADS)
Luo, Jingxi; Piette, Bernard M. A. G.
2017-08-01
We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.
Polaron theory of electrons solvated in molten salts
NASA Astrophysics Data System (ADS)
Malescio, G.; Parrinello, M.
1987-01-01
A suitably modified version of the polaron theory of Chandler et al. [J. Chem. Phys. 81, 1975 (1984)] is applied to the study of the solvation of electrons in molten salts. The results obtained compare favorably with recent numerical simulations and confirm the picture of the formation in the melt of an F-center analog. A novel expression for the explicit evaluation of the electron kinetic energy is given.
Measurement of exciton correlations using electrostatic lattices
NASA Astrophysics Data System (ADS)
Remeika, M.; Leonard, J. R.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.
2015-09-01
We present a method for determining correlations in a gas of indirect excitons in a semiconductor quantum well structure. The method involves subjecting the excitons to a periodic electrostatic potential that causes modulations of the exciton density and photoluminescence (PL). Experimentally measured amplitudes of energy and intensity modulations of exciton PL serve as an input to a theoretical estimate of the exciton correlation parameter and temperature. We also present a proof-of-principle demonstration of the method for determining the correlation parameter and discuss how its accuracy can be improved.
Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes.
Rettie, Alexander J E; Chemelewski, William D; Emin, David; Mullins, C Buddie
2016-02-04
Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
Polaronic transport in Ag-based quaternary chalcogenides
NASA Astrophysics Data System (ADS)
Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy; Woods, Lilia M.; Nolas, George S.
2017-09-01
Low temperature resistivity measurements on dense polycrystalline quaternary chalcogenides Ag2+xZn1-xSnSe4, with x = 0, 0.1, and 0.3, indicate polaronic type transport which we analyze employing a two-component Holstein model based on itinerant and localized polaron contributions. Electronic structure property calculations via density functional theory simulations on Ag2ZnSnSe4 for both energetically similar kesterite and stannite structure types were also performed in order to compare our results to those of the compositionally similar but well known Cu2ZnSnSe4. This theoretical comparison is crucial in understanding the bonding that results in polaronic type transport for Ag2ZnSnSe4, as well as the structural and electronic properties of both crystal structure types. In addition to possessing this unique electronic transport, the thermal conductivity of Ag2ZnSnSe4 is low and decreases with increasing silver content. This work reveals unique structure-property relationships in materials that continue to be of interest for thermoelectric and photovoltaic applications.
Hole polaron formation and migration in olivine phosphate materials
NASA Astrophysics Data System (ADS)
Johannes, M. D.; Hoang, Khang; Allen, J. L.; Gaskell, K.
2012-03-01
By combining first-principles calculations and experimental x-ray photoemission (XPS) spectroscopy measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn, Fe, Co, Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach, we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong- or weak-bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4.
Novel, discontinuous polaron transition in a two-band model
NASA Astrophysics Data System (ADS)
Moeller, Mirko M.; Sawatzky, George A.; Berciu, Mona
The coupling of charge carriers (electrons or holes) to phonons leads to the formation of a polaron, a coherent quasi-particle consisting of the charge carrier and the cloud of phonons surrounding it and moving coherently with it. Here we present exact diagonalization and momentum average approximation results for the single polaron properties of a two-band model with phonon modulated hopping, inspired by the perovskite BaBiO3. For large coupling we find that the ground state momentum changes discontinuously from k = π to k = 0 . Such sharp transitions of the polaron's ground state properties cannot occur in the well-studied models of the Holstein or Fröhlich type in which the carrier-phonon coupling modulates the on-site energies. However, they can occur in models where the carrier-phonon coupling modulates the hopping integrals such as the SSH model for which a similar yet smooth transition of the ground state momentum was recently shown to exist. We compare our findings to the SSH model and point out qualitative differences which we believe to be due to the two band nature of our model versus the single band SSH model. This work was supported by NSERC, QMI and the UBC 4YF.
Rotational polarons and transport in short molecular devices
NASA Astrophysics Data System (ADS)
Ulloa, Sergio E.; Sierra-Ortega, J.; Zhang, Wei
2003-03-01
In many organic materials and/or complex molecular structures, there are twist/rotational modes that appear at low temperature and are easily excitable. The interaction between these rotational phonon modes and electrons generates a new quasiparticle, the rotational polaron. We study here a two-site rotational Holstein polaron. Our model gives nontrivial polaron physics due to anharmonic oscillations and nonlinear electron-phonon interactions. The results are relevant for molecular electronic devices composed of two molecular units with excitable intra-molecular rotations. Analytical and numerical calculations allow a full quantum mechanical description. We study all frequency and coupling regimes, paying special attention to the transition/crossover between different coupling ratios. We find that under resonant conditions between the electron level splitting and the phonon frequency, complex level crossings and anticrossings occur, indicating mixing of excited states with different characters, which depend on underlying symmetries of the system. The mixing is accompanied by charge and phonon amplitude transfer which yields observable signatures in electronic transport through this system. Supported by NSF-NIRT, US-DOE, and OU-CMSS.
Exciton size and quantum transport in nanoplatelets.
Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets
NASA Astrophysics Data System (ADS)
Pelzer, Kenley M.; Darling, Seth B.; Gray, Stephen K.; Schaller, Richard D.
2015-12-01
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets
Pelzer, Kenley M. Gray, Stephen K.; Darling, Seth B.; Schaller, Richard D.
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Effect of interchain coupling on the excited polaron in conjugated polymers
NASA Astrophysics Data System (ADS)
Li, Xiao-xue; Chen, Gang
2017-02-01
Based on the one-dimensional extended Su-Schrieffer-Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value.
Lloyd-Hughes, J. Failla, M.; Ye, J.; Jones, S. P. P.; Teo, K. L.; Jagadish, C.
2015-05-18
The cyclotron resonance of polarons in Zn{sub 1−x}Mg{sub x}O/ZnO heterostructures (with 0.15
Fine structure of a resonantly excited p -shell exciton in a CdTe quantum dot
NASA Astrophysics Data System (ADS)
Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Wojnar, P.; Kossacki, P.
2016-05-01
We present a polarization-resolved photoluminescence excitation study of the absorption spectrum of a p -shell neutral exciton in a single CdTe/ZnTe quantum dot. We find that the fine structure of the p -shell exciton is completely analogous to the fine structure of the s -shell exciton, including the selection rules and the effects of a magnetic field applied in Faraday and Voigt configurations. The energy spectrum of the p -shell exciton is found to be well described by introducing respective isotropic and anisotropic constants of the exchange interaction between a p -shell electron and a p -shell hole. The typical values of these exchange constants averaged over several randomly selected quantum dots yield δ0p p=(0.92 ±0.16 ) meV and δ1p p=(0.58 ±0.25 ) meV. Additionally, we demonstrate that the nonresonant relaxation of the p -shell exciton conserves the exciton spin to a very high degree for both bright and dark exciton configurations.
NASA Astrophysics Data System (ADS)
Basel, Tek Prasad
We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that
Exciton-exciton scattering: Composite boson versus elementary boson
NASA Astrophysics Data System (ADS)
Combescot, M.; Betbeder-Matibet, O.; Combescot, R.
2007-05-01
This paper shows the necessity of introducing a quantum object, the “coboson,” to properly describe, through a fermion scheme, any composite particle, such as the exciton, which is made of two fermions. Although commonly dealt with as elementary bosons, these composite bosons—cobosons in short—differ from them due to their composite nature which makes the handling of their many-body effects quite different from the existing treatments valid for elementary bosons. As a direct consequence of this composite nature, there is no correct way to describe the interaction between cobosons as a potential V . This is rather dramatic because, with the Hamiltonian not written as H=H0+V , all the usual approaches to many-body effects fail. In particular, the standard form of the Fermi golden rule, written in terms of V , cannot be used to obtain the transition rates of two cobosons. To get them, we have had to construct an unconventional expression for this Fermi golden rule in which H only appears. Making use of this expression, we give here a detailed calculation of the time evolution of two excitons. We compare the results of this exact approach with the ones obtained by using an effective bosonic Hamiltonian in which the excitons are considered as elementary bosons with effective scatterings between them, these scatterings resulting from an elaborate mapping between the two-fermion space and the ideal boson space. We show that the relation between the inverse lifetime and the sum of the transition rates for elementary bosons differs from the one of the composite bosons by a factor of 1/2 , so that it is impossible to find effective scatterings between bosonic excitons giving these two physical quantities correctly, whatever the mapping from composite bosons to elementary bosons is. The present paper thus constitutes a strong mathematical proof that, in spite of a widely spread belief, we cannot forget the composite nature of these cobosons, even in the extremely low
Spatially indirect excitons in coupled quantum wells
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)^{2} were
NASA Astrophysics Data System (ADS)
Yu, Ting
2015-03-01
Two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers (TMD 1Ls), have aroused great interest because of the underlying fundamental physics (e.g. many body effects and wealth excitonic states) and the promising optoelectronic applications such as light-emitting diodes and solar cells. Here, we report excitonic emission and valley splitting of monolayer WS2 and MoS2 under electrical, optical and magnetic manipulation. Through electrical and optical injection of charge carriers, tunable excitonic emission has been realized due to interplay of various excitonic states, and basic binding energies of trions have been extracted. At low temperature, the Zeeman shifts of excitons and trions have been determined by polarization-dependent photoluminescence measurements under perpendicular magnetic fields, which reveal the breaking of valley degeneracy. Our studies provide the fundamental understanding on large excitonic and unique valleytronic effects in TMD 1Ls. Moreover, we also develop multiple strategies for managing the light emission, which opens up many possibilities for improving the performance and creating the multifunction of 2D TMD-based light emitting applications. Also at Department of Physics, Faculty of Science, National University of Singapore 117542, Singapore; Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore 117546, Singapore.
NASA Astrophysics Data System (ADS)
Meier, Christoph; Teutloff, Christian; Behrends, Jan; Bittl, Robert; Astakhov, Oleksandr; Lips, Klaus
2016-07-01
Electrically detected magnetic resonance (EDMR) spectroscopy is employed to study the influence of triplet excitons on the photocurrent in state-of-the-art microcrystalline silicon thin-film solar cells. These triplet excitons are used as sensitive spin probes for the investigation of their electronic and nuclear environment in this mixed-phase material. According to low-temperature EDMR results obtained from solar cells with different
Contrastive analysis of multiple exciton generation theories
NASA Astrophysics Data System (ADS)
Tan, Hengyu; Chang, Qing
2015-10-01
Multiple exciton generation (MEG) is an effect that semiconductor nanocrystals (NCs) quantum dots (QDs) generate multiple excitons (electron-hole pairs) through absorbing a single high energy photon. It can translate the excess photon energy of bandgap (Eg) into new excitons instead of heat loss and improve the photovoltaic performance of solar cells. However, the theories of MEG are not uniform. The main MEG theories can be divided into three types. The first is impact ionization. It explains MEG through a conventional way that a photogenerated exciton becomes multiple excitons by Coulomb interactions between carriers. The Second is coherent superposition of excitonic states. Multiple excitons are generated by the coherent superposition of single photogenerated exciton state with enough excess momentum and the two-exciton state with the same momentum. The third is excitation via virtual excitonic states. The nanocrystals vacuum generates a virtual biexciton by coulomb coupling between two valence band electrons. The virtual biexciton absorbing a photon with an intraband optical transition is converted into a real biexciton. This paper describes the MEG influence on solar photoelectric conversion efficiency, concludes and analyzes the fundamentals of different MEG theories, the MEG experimental measure, their merits and demerits, calculation methods of generation efficiency.
Coherent Exciton Dynamics in Atomically Thin Semiconductors
NASA Astrophysics Data System (ADS)
Li, Xiaoqin (Elaine)
The near band-edge optical response of an emerging class of semiconductors, known as the transitional metal dichalcogenides (TMDs), is dominated by tightly-bound excitons and charged excitons (i.e. trions). A fundamental property of these quasiparticles (excitons and trions) is quantum decoherence time, which reflects irreversible quantum dissipation arising from system (excitons and trions) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Dephasing time is also equivalent to the intrinsic homogeneous linewidth of exciton resonance. In addition, excitons in TMDs are localized at the corners of the Brillouin zone and provide a convenient way to optical manipulate the valley degree of freedom, which may act as a useful information carrier analogous to electronic charge or spin. Direct measurement of valley coherence time is challenging because it corresponds to a non-radiative coherence between two degenerate states. Using ultrafast multi-dimensional optical spectroscopy, we investigate the intrinsic homogeneous linewidth of excitons, exciton valley coherence as well as coupling between excitons and trions. Our studies reveal coherent electronic dynamics on the order of ~100 fs in monolayer TMDs. We gratefully acknowledge financial support from NSF, AFOSR, and the Welch Foundation.
The effective excitonic g factors of Mn-doped InAs nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen
2017-04-01
Based on the derived eight-band k · p Hamiltonian, the electronic structures of Mn-doped InAs nanowires in the magnetic field are calculated. We find the lowest optical transition will be split to four individual transitions when the magnetic field is applied along z axis, and two of them are σ polarized light. Furthermore, the Zeeman splitting energy at the Γ point of two σ polarized light will increase nonlinearly as the increase of the magnetic field. Additionally, an effective excitonic g factor at the Γ point is defined, and the effective excitonic g factors will decrease greatly with the increase of the radius of nanowires and the decrease of the concentration of manganese ions, while the effective excitonic g factors decrease slightly when the magnetic field increases. Interestingly, the effective excitonic g factors can experience a substantial decrease when the temperature increases from 10 K to 100 K and is almost not affected when the temperature varies from 100 K to 300 K. Therefore, we can infer that large effective excitonic g factors can be obtained when small radius of nanowires, high concentration of manganese ions and low temperature are satisfied.
Coherent exciton-polariton devices
NASA Astrophysics Data System (ADS)
Fraser, Michael D.
2017-09-01
The Bose-Einstein condensate of exciton-polaritons has emerged as a unique, coherent system for the study of non-equilibrium, macroscopically coherent Bose gases, while the full confinement of this coherent state to a semiconductor chip has also generated considerable interest in developing novel applications employing the polariton condensate, possibly even at room temperature. Such devices include low-threshold lasers, precision inertial sensors, and circuits based on superfluidity with ultra-fast non-linear elements. While the demonstration and development of such devices are at an early stage, rapid progress is being made. In this review, an overview of the exciton-polariton condensate system and the established and emerging material systems and fabrication techniques are presented, followed by a critical, in-depth assessment of the ability of the coherent polariton system to deliver on its promise of devices offering either new functionality and/or room-temperature operation.
Exciton-polariton integrated circuits
NASA Astrophysics Data System (ADS)
Liew, T. C. H.; Kavokin, A. V.; Ostatnický, T.; Kaliteevski, M.; Shelykh, I. A.; Abram, R. A.
2010-07-01
We show that logical signals encoded in bistable states in semiconductor microcavities can be generated and controlled electronically by exploiting the electrical sensitivity of Tamm-plasmon-exciton-polariton modes. The signals can be transported along polariton neurons, created with a patterned metal surface. Using the Gross-Pitaevskii equations, we simulate an electrically controlled transistor and find that high repetition rates (10 GHz) are possible.
Zener Polarons Ordering Variants Induced by A-Site Ordering in Half-Doped Manganites
NASA Astrophysics Data System (ADS)
Daoud-Aladine, Aziz
2006-03-01
Zener Polaron (ZP) ordering [1] provides a still polemic [2] and elusive interpretation of the charge ordering (CO) phenomenon in A site disordered half doped (A1/2Ca1/2) MnO3, which is classically pictured by the Goodenough model (GM) of Mn^3+ and Mn^4+ CO [3,4]. ZP ordering considers instead the ordering of pre-formed ferromagnetic Mn pairs sharing an charge and keeping Mn in a Mn^+3.5 valence state. The recently synthesized A site cation ordered ABaMn2O6 were shown to not present the generic magnetic CE state found of (A1/2Ca1/2)MnO3 [5]. We present our magnetic structure determination of YBaMn2O6: the non- collinear magnetic order obtained unexpectedly reveals ferromagnetic plaquettes of four Mn attributable to larger 4-Mn ZPs, whose presence additionally fits very well the effective paramagnetic moments inferred from susceptibility measurements. The results unambiguously reveal the possible existence of ZP ordering variant in charge ordered manganites. [1] A. Daoud-Aladine et al., Phys. Rev. Lett. 89, 097205 (2002) [2] S. Grenier et al., Phys. Rev. B 69, 134419 (2004) [3] J. B. Goodenough, Phys. Rev. 100, 564 (1955) [4] P.G. Radaelli et al., Phys. Rev. B, 55, 3015 (1997) [5] T. Arima et al., Phys. Rev. B 66, 140408 (2002)
The Influence of Surface Phonons on Polaron States in Quantum Dots
NASA Astrophysics Data System (ADS)
Maslov, A. Yu.; Proshina, O. V.; Rusina, A. N.
2007-04-01
The influence of the surface phonons on the polaron effect in a quantum dot is investigated. We consider the polar quantum dot embedded into the polar matrix. The polaron energy shift for the electron and hole ground states is calculated. It is shown that the contribution of the surface phonons may exceed the bulk phonon contribution.
Exciton Seebeck effect in molecular systems.
Yan, Yun-An; Cai, Shaohong
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
Exciton Seebeck effect in molecular systems
Yan, Yun-An; Cai, Shaohong
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
NASA Astrophysics Data System (ADS)
Dinh, Van An; Nara, Jun; Ohno, Takahisa
2012-04-01
Based on the Heyd-Scuseria-Ernzerhof hybrid density functionals study, we proposed a new insight into the diffusion of polaron-Li vacancy complexes in LiFe1-yMnyPO4 (y=0,1/2,1). It is found that the polaron migrates along a crossing or a parallel path relative to the Li moving direction. In LiFePO4, the complex diffusion along the zigzag pathway is favorable and has a barrier of 600 meV, while the diffusion along the parallel pathway with a barrier of 623 meV is favorable in LiMnPO4. For LiFe1/2Mn1/2PO4, since the polaron is formed within a single Fe layer, the diffusion proceeds along the parallel pathway with a barrier of 635 meV.
Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers
NASA Astrophysics Data System (ADS)
Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B.
2016-10-01
The direct gap interband transitions in transition metal dichalcogenide monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Linearly polarized laser excitation prepares a coherent superposition of valley states. Here, we demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. We show rotation of this coherent superposition of valley states by angles as large as 30° in applied fields up to 9 T. This exciton valley coherence control on the ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom.
Superexchange coupling and electron transfer in globular proteins via polaron excitations.
Chuev, G N; Lakhno, V D; Ustitnin, M N
1999-06-01
The polaron approach is used to treat long-range electron transfers between globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions for its use. Assuming that electrons transfer via a superexchange coupling due to a polaron excitation, we have estimated the distance dependence of the rate constant for the self-exchange reactions between globular proteins in solutions. The distance dependence of the polaron coupling and solvent reorganization energy are provided as a basis for understanding and interpreting a long-range electron transfer experiment. The difficulties and problems of the polaron treatment of long-range electron transfers are discussed, and suggestions for new experiments are made.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; ...
2015-01-15
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong
2015-05-13
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. It is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong
2015-01-15
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Ground state energy of N Frenkel excitons
NASA Astrophysics Data System (ADS)
Pogosov, W.; Combescot, M.
2009-03-01
By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.
Scattering amplitudes for dark and bright excitons
NASA Astrophysics Data System (ADS)
Shiau, Shiue-Yuan; Combescot, Monique; Combescot, Roland; Dubin, François; Chang, Yia-Chung
2017-05-01
Using the composite boson many-body formalism that takes single-exciton states rather than free carrier states as a basis, we derive the integral equation fulfilled by the exciton-exciton effective scattering from which the role of fermion exchanges can be unraveled. For excitons made of (+/-1/2) -spin electrons and (+/-3/2) -spin holes, as in GaAs heterostructures, one major result is that most spin configurations lead to brightness-conserving scatterings with equal amplitude Δ, despite differences in the carrier exchanges involved. A brightness-changing channel also exists when two opposite-spin excitons scatter: dark excitons (2,-2) can end either in the same dark states with an amplitude Δe , or in opposite-spin bright states (1,-1) , with a different amplitude Δo , the number of carrier exchanges involved in these scatterings being even or odd, respectively. Another major result is that these amplitudes are linked by a striking relation, Δ_e+Δ_o=Δ , which has decisive consequence on exciton Bose-Einstein condensation. By using Born values, we show that the exciton condensate can be optically observed through a bright part when excitons have large dipole only, that is, when the electrons and holes are in two well-separated layers, as in current experiments.
Tang, Yanhao; Xie, Wei; McGuire, John A. Lai, Chih Wei; Mandal, Krishna C.
2015-09-21
We analyze exciton spin dynamics in GaSe under nonresonant circularly polarized optical pumping with an exciton spin-flip rate-equation model. The model reproduces polarized time-dependent photoluminescence measurements in which the initial circular polarization approaches unity even when pumping with 0.15 eV excess energy. At T = 10 K, the exciton spin relaxation exhibits a biexponential decay with sub-20 ps and >500 ps time constants, which are also reproduced by the rate-equation model assuming distinct spin-relaxation rates for hot (nonequilibrium) and cold band-edge excitons.
Theoretical study of excitons in semiconductor quantum wires and related systems
NASA Astrophysics Data System (ADS)
Sidor, Yosyp
The main goal of this thesis is a theoretical study of the excitonic properties in semiconductor quantum wires. Excitons dominate the optical properties of these one-dimensional structures, producing broad or sharp absorption and photoluminescence lines. The confinement of the electron and the hole is responsible for the properties of the exciton in a quantum wire. Confinement of the particles can be controlled through the size and shape of the quantum wire as well as through the selection of structure and barrier materials to produce various band offsets. The application of a magnetic field can give important information about the exciton confinement. Therefore, theoretical investigations of excitons in quantum wires is a strong theoretical tool to provide valuable information about quantum wire characteristics, as size uniformity, dimensions and photoluminescence spectrum. In the present thesis self-assembled InAs/InP and GaAs/AlGaAs V-shaped quantum wires are considered. The calculated photoluminescence transition energies in these structures are compared with available experimental data in order to deduce the dimensions of the wires. Both wires are investigated theoretically in the presence of an external magnetic field applied along different directions of the quantum wires. The computed exciton diamagnetic shift for both V-shaped and self-assembled quantum wires are reported and a detailed comparison is obtained with available magneto-photoluminescence experimental data. Since strain is important for the formation of the self-assembled quantum wires, results on the influence of strain on the electron and hole confinement will also be presented. Further, exciton coupling in self-assembled InAs/InP coupled quantum wires is considered. The charge confinement in InAs/InP based quantum wells and self-assembled quantum wires is examined, where for the narrow quantum well a local circular width fluctuation is included in order to describe the localization of the
NASA Astrophysics Data System (ADS)
Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.
2016-06-01
We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g < 1) and a strong (g > 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.
Josephson effects in condensates of excitons and exciton polaritons
Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.
2008-07-15
We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.
Polaronic behavior and electron-phonon interaction in cuprates
NASA Astrophysics Data System (ADS)
Gunnarsson, Olle
2005-03-01
Photoemission and neutron scattering indicate a substantial electron-phonon coupling in high-Tc cuprates. To address the associated anomalous softening of a half-breathing Cu-O bond-stretching phonon, we derive a t-J model with electron-phonon coupling.^1 Using input parameters from band structure calculations and solving the model by exact diagonalization, we obtain a good description of the phonon softening.^1 We study the interplay of the electron-phonon and Coulomb interactions for a (weakly) doped Mott-Hubbard insulator. Using sum-rules, we find that that the effect of the electron-phonon interaction on the phonon self-energy is strongly suppressed, while there is no corresponding suppression for the electron self-energy or the phonon-induced carrier-carrier interaction.^2 Photoemission suggests polaronic behavior in undoped cuprates. Calculating the electron-phonon interaction in a shell model of an undoped cuprate, we find sufficiently strong coupling to give polaronic behavior. Using an adiabatic approximation, we discuss the dispersion and width of the corresponding phonon side-band. ^1O. Rösch and O. Gunnarsson, Phys. Rev. Lett. 92, 146403 (2004); ^2O. Rösch and O. Gunnarsson, Phys. Rev. Lett. (in press), cond-mat/0407064.
Spectroscopic Evidence of Formation of Small Polarons in Doped Manganites
NASA Astrophysics Data System (ADS)
Moritomo, Yutaka; Machida, Akihiko; Nakamura, Arao
1998-03-01
Temperature dependence of absorption spectra for thin films of doped manganites R_0.6Sr_0.4MnO_3, where R is rare-earth atom, has been investigated systematically changing averaged ionic radius < rA > of perovskite A-site. We have observed a specific absorption band at ~1.5eV due to optical excitations from small polarons (SP)(Machida et al.), submitted.. Spectral weight of the SP band increases with decreasing temperature and eventually disappears at the insulator-metal (IM) transition, indicating that SP in the paramagnetic state (T >= T_C) changes into bare electrons (or large polarons) in the ferromagnetic state due to the enhanced one-electron bandwidth W. We further derived important physical quantities, i.e., W, on-site exchange interaction J and binding energy Ep of SP, and discuss material dependence of stability of SP. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.
Bilayer manganites: polarons in the midst of a metallic breakdown
NASA Astrophysics Data System (ADS)
Golden, Mark; Massee, Freek; de Jong, Sanne; Huang, Yingkai; Boothroyd, Andrew; Prabhakaran, D.; Follath, Rolf; Varykhalov, Andrei; Patthey, Luc; Shi, Ming; Goedkoop, Jeroen
2011-03-01
The exact nature of the low temperature electronic phase of the manganite materials family, and hence the origin of their colossal magnetoresistive (CMR) transition is still a flagship issue in emergent correlated matter research. By combining new photoemission and tunneling data, we show that in the bilayer (N = 2) manganite La 2-2x Sr 1+2x Mn 2 O7 the lattice/spin/orbital polaronic degrees of freedom win out, all across the CMR region of the phase diagram. This means that the generic ground state is that of a system in which strong interactions result in vanishing coherent quasi--particle spectral weight at the Fermi level for all locations in k --space. The incoherence of the charge carriers offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopic data. The stacking number N is the key factor for true metallic behavior, as an intergrowth-driven breakdown of the polaronic domination to give a robust metal possessing a traditional Fermi surface is seen in the bilayer system.
Small Polarons and Point Defects in Barium Cerate
NASA Astrophysics Data System (ADS)
Swift, Michael; Janotti, Anderson; van de Walle, Chris G.
2015-03-01
Barium cerate (BaCeO3) is a well-known proton-conducting material. In applications, it is frequently doped (for instance with yttrium) to increase stability and promote hydrogen uptake. However, the microscopic mechanisms of ionic conductivity and the effects of doping and native defects are still not fully understood. Many of the obstacles to the theoretical study of this material stem from the nature of the conduction band, which is made up of cerium 4 f states. These states present a challenge to first-principles techniques based on density functional theory within the standard approximations for exchange and correlation. Using a hybrid functional, we investigate the effects of hydrogen impurities and native defects on the electrical and optical properties of BaCeO3. We discuss the tendency of excess electrons or holes to localize in the form of small polarons. We also explore the interactions of polarons with hydrogen impurities and oxygen vacancies, and their impact on luminescence properties. This work was supported by the DOE and ARO.
Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro
2014-11-11
The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.
Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes
Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro
2014-01-01
The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1st sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2nd sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs. PMID:25385545
NASA Astrophysics Data System (ADS)
Bardeen, Christopher J.
2016-09-01
The ability to downconvert (1 photon to 2 photons) and upconvert (2 photons to 1 photon) energy can boost solar energy conversion efficiencies by 30% or more. Downconversion can be accomplished through exciton fission, in which an initially created high energy singlet exciton spontaneously splits into a pair of lower energy triplet excitons. In organic semiconductors like tetracene and rubrene, the Frenkel character of the excitons leads to energetically separate singlet and triplet bands, providing an ideal set of energy levels for both processes to take place. In this talk, our efforts to understand the basic photophysics of singlet fission using time-resolved transient absorption, photoluminescence and magnetic field effects will be described. The role of molecular packing in controlling the fission rate will be emphasized. Upconversion occurs via the reverse process, where a pair of triplet excitons fuse into a high-energy singlet state. While most approaches to upconversion require a sensitizer to populate the dark triplet states, an alternate approach is to take advantage of low-energy intermolecular states in organic crystals to sensitize triplet states. We show that this process can be surprisingly efficient in certain molecular crystals, even in the absence of sensitizers. The exciton interactions responsible for this process are investigated using steady-state and time-resolved spectroscopy.
Two-Dimensional Polaronic Behavior in the Binary Oxides m-HfO2 and m-ZrO2
Mckenna, Keith P.; Wolf, Matthew J.; Shluger, Alexander L.; Lany, Stephan; Zunger, Alex
2012-03-14
We demonstrate that the three-dimensional (3D) binary monoclinic oxides HfO2 and ZrO2 exhibit quasi-2D polaron localization and conductivity, which results from a small difference in the coordination of two oxygen sublattices in these materials. The transition between a 2D large polaron into a zerodimensional small polaron state requires overcoming a small energetic barrier. These results demonstrate how a small asymmetry in the lattice structure can determine the qualitative character of polaron localization and significantly broaden the realm of quasi-2D polaron systems.
Exciton spin coherence in InGaAs/GaAs quantum dots revisited by heterodyne pump-probe experiment
NASA Astrophysics Data System (ADS)
Eble, B.; Siarry, B.; Bernardot, F.; Grinberg, P.; Testelin, C.; Lemaître, A.
2016-10-01
We demonstrate here the phase control of the neutral exciton quantum beats in InGaAs/GaAs quantum dots. A longitudinal magnetic field is used as a tuning parameter to change the phase of the oscillations in a deterministic way. This effect arises from the competition between the Zeeman splitting and the electron/hole exchange interaction on the exciton dipole symmetry. To explore this mechanism, we have developed a pump-probe setup based on the optical heterodyne detection of the quantum dots reflectivity allowing one to measure the exciton dynamics from a small quantum dots ensemble (˜300).
Bound exciton and free exciton states in GaSe thin slab
Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng
2016-01-01
The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission. PMID:27654064
Bound exciton and free exciton states in GaSe thin slab
NASA Astrophysics Data System (ADS)
Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng
2016-09-01
The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.
Landau levels of the C-exciton in CuInSe{sub 2} studied by magneto-transmission
Yakushev, M. V.; Rodina, A. V.; Shuchalin, G. M.; Seisian, R. P.; Abdullaev, M. A.; Rockett, A.; Zhivulko, V. D.; Mudryi, A. V.; Faugeras, C.; Martin, R. W.
2014-10-06
The electronic structure of the solar cell absorber CuInSe{sub 2} is studied using magneto-transmission in thin polycrystalline films at magnetic fields up to 29 T. A, B, and C free excitons are resolved in absorption spectra at zero field and a Landau level fan generated by diamagnetic exciton recombination is observed for fields above 7 T. The dependence of the C band exciton binding energy on magnetic fields, calculated using a hydrogenic approximation, is used to determine the C exciton Rydberg at 0 T (8.5 meV), band gap (1.2828 eV), and hole effective mass m{sub so} = (0.31 ± 0.12)m{sub 0} for the C valence sub-band.
Quantum Tunneling, Field Induced Injecting Contact, and Excitons
NASA Astrophysics Data System (ADS)
Liu, Yixin
1995-01-01
This thesis consists of three parts: Quantum tunneling simulation, Schottky barrier induced injecting contact on wide band gap II-VI materials, and excitons in semiconductor heterostructures. Part I presents a new method for quantum transport calculations in semiconductor tunnel structures using multiband {bf k}cdot{bf p} theory. This method circumvents the numerical instability problems that arise in the standard transfer -matrix method. In addition to being numerically stable, efficient, and easy to implement, this method can also be easily generalized to include the magnetic field and strain effects, and extended to the calculations of electronic band structures in quantum confinement and superlattice structures. We have applied this technique to the study of magnetotunneling in InAs/GaSb/AlSb based interband tunnel structures. Part II describes a novel approach to achieve ohmic injecting contact on wide bandgap II-VI semiconductors. The method consists of forming the device structure in an electric field at elevated temperatures in the Schottky barrier region to spatially separate the ionized dopants from the compensating centers. Large net concentration of dopants in a thin surface layer can thus be obtained, resulting in a depletion layer that is sufficiently thin to allow tunneling injection. Calculations of band profiles, distributions of dopant concentrations, and current-voltage characteristics were performed on Al doped ZnTe. Results show for Schottky barrier heights above 1 eV, doping concentrations as high as 10^{20} cm ^{-3} are needed to achieve the injecting current density required for LED and laser diode operations. In part III, calculations of exciton binding energies and oscillator strengths are performed for both Type-I strained CdTe/ZnTe and Type-II strained ZnTe/ZnSe superlattices using variational approach. We have also studied exciton coherent transfer between quantum wells, quantum wires and quantum dots, respectively. The results show
NASA Astrophysics Data System (ADS)
Li, Zhi-xin; Wang, Xiao-yu
2016-12-01
On the basis of Lee-Low-Pines unitary transformation, the influences of Rashba spin-orbit (RSO) coupling energy and Zeeman splitting energy on the ground-state energy of polaron in a quantum rod (QRD) have been studied by using a variational method of Pekar type. Taking the RSO interaction and the Zeeman splitting into account, we derive the variational relations of the absolute ratios ζ1 and ζ2 of the RSO coupling energy and the Zeeman splitting energy to the ground-state energy of polaron with the transverse confinement radius (TCR) and the longitudinal confinement length (LCL) of QRD, as well as and the magnetic field adjusting length (MFAL). The results show that the absolute ratios ζ1 and ζ2 will increase when the TCR and the LCL become larger, but will slowly decrease while the MFAL and the aspect ratio of the ellipsoid δ increase, respectively. The above results can be attributed to the spin effects and interesting quantum size confining.
DNA-mediated excitonic upconversion FRET switching
Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.
2015-11-17
Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.
Exciton-polaritons condensate in a microwire
NASA Astrophysics Data System (ADS)
Kamoun, O.; Jaziri, S.
2013-12-01
Recently, polariton condensation has been claimed in microwires. Numerical solutions of the time-dependent Gross-Pitaevskii equation that describes the behavior of the condensate in a trap and exciton-polariton interaction, have been obtained. In this work we study theoretically exciton-polariton one dimensional condensation in several quantized states.
Effects of excitons on solar cells
NASA Astrophysics Data System (ADS)
Zhang, Yong; Mascarenhas, Angelo; Deb, Satyen
1998-10-01
We have studied the effects of excitons on the two key parameters of a Si solar cell: the dark-saturation current and short-circuit current. We have found that the effect of excitons on the dark-saturation current is very sensitive to the boundary condition for excess excitons at the edge of the depletion region. With the assumption of near equilibrium between the electrons and excitons, we find that the exciton effect is rather small, which is contrary to the conclusion of significant reduction in the dark-saturation current made in previous work with the assumption of no excess excitons at the edge [J. Appl. Phys. 79, 195 (1996)]. The results for the short-circuit current are very similar to the previous work. However, the analytical results for the carrier concentrations and the corresponding currents are now presented in a simple way in which the physical meaning of each individual term is elucidated or revealed. Furthermore, we have found, for practical purposes, very accurate approximate solutions for the carrier concentrations and corresponding currents. Our conclusion is that the major effect of excitons on the Si solar cell performance relies on whether the effective diffusion length (L1) of the coupled electron-exciton system is significantly greater than that of the electron itself (Le).
DNA-mediated excitonic upconversion FRET switching
Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...
2015-11-17
Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less
Disentangling the role of small polarons and oxygen vacancies in Ce O2
NASA Astrophysics Data System (ADS)
Sun, Lu; Huang, Xiaowei; Wang, Ligen; Janotti, Anderson
2017-06-01
The outstanding performance of cerium oxide (Ce O2) as ion conductor or catalyst strongly depends on the ease of C e4 +↔C e3 + conversion and oxygen vacancy formation. An accurate description of C e3 + and oxygen vacancy is therefore essential to further progress in this area. Using the HSE06 hybrid functional, we investigate the formation and migration of small polarons (C e3 +) and their interaction with oxygen vacancies in Ce O2 , considering the small polaron and vacancy as independent entities. Oxygen vacancies are double donors and can bind up to two small polarons, forming a positively charged or neutral complex. We compute the electron self-trapping energy (i.e., energy gain when forming a small polaron), the small-polaron migration barrier, vacancy formation and migration energies, and vacancy-polaron binding energies. We find that small polarons weakly bind to oxygen vacancies, yet this interaction significantly contributes to the activation energy for hopping electronic conductivity. The results are compared with previous calculations and discussed in the light of available experimental data.
Excitons and optical spectra of phosphorene nanoribbons
NASA Astrophysics Data System (ADS)
Nourbakhsh, Zahra; Asgari, Reza
2016-07-01
On the basis of many-body ab initio calculations, using the single-shot G0W0 method and Bethe-Salpeter equation, we study phosphorene nanoribbons (PNRs) in the two typical zigzag and armchair directions. The electronic structure, optical absorption, electron-hole (exciton) binding energy, exciton exchange splitting, and exciton wave functions are calculated for different sizes of PNRs. The typically strong splitting between singlet and triplet excitonic states make PNRs favorable systems for optoelectronic applications. Quantum confinement occurs in both kinds of PNRs, and it is stronger in the zPNRs, which behave like quasi-zero-dimensional systems. Scaling laws are investigated for the size-dependent behaviors of PNRs. The first bright excitonic state in PNRs is explored in detail.
Exciton binding energy in semiconductor quantum dots
Pokutnii, S. I.
2010-04-15
In the adiabatic approximation in the context of the modified effective mass approach, in which the reduced exciton effective mass {mu} = {mu}(a) is a function of the radius a of the semiconductor quantum dot, an expression for the exciton binding energy E{sub ex}(a) in the quantum dot is derived. It is found that, in the CdSe and CdS quantum dots with the radii a comparable to the Bohr exciton radii a{sub ex}, the exciton binding energy E{sub ex}(a) is substantially (respectively, 7.4 and 4.5 times) higher than the exciton binding energy in the CdSe and CdS single crystals.
Influence of lithium vacancies on the polaronic transport in olivine phosphate structure
Murugavel, Sevi Sharma, Monika; Shahid, Raza
2016-01-28
Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity between the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.
Excitonic energy transfer in light-harvesting complexes in purple bacteria
Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu
2012-06-28
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.
Excitonic energy transfer in light-harvesting complexes in purple bacteria.
Ye, Jun; Sun, Kewei; Zhao, Yang; Yu, Yunjin; Lee, Chee Kong; Cao, Jianshu
2012-06-28
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.
NASA Astrophysics Data System (ADS)
Zerai Tedlla, B.; Zhu, F.; Cox, M.; Koopmans, B.; Goovaerts, E.
2015-02-01
Lightly fullerene-doped polymers are suitable composite systems to study spin-dependent bimolecular interactions among charge excitations due to their long lifetimes in these systems. These interactions can affect the photocurrent as well as the open-circuit voltage in an organic solar cell. Combining photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR) spectroscopies we study films and devices of poly(p -phenylene vinylene) polymers poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) and superyellow PPV (SY-PPV) lightly doped with various fullerene derivatives [6,6]-phenyl C61 butyric acid methyl ester (PCBM), bis[60]PCBM (bis-PCBM), indene-C60 bisadduct (ICBA), and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM). (i) We demonstrate strong fullerene triplet exciton (TE) production in SY-PPV:fullerene blends, whereas this is absent in MDMO-PPV:PCBM and only very weak in MDMO-PPV:ICBA. The low TE production in blends with MDMO-PPV is attributed to a weaker singlet-singlet energy-transfer coupling and an unfavorable triplet level alignment between the blend components. (ii) The fullerene TE spectra are analyzed on the basis of a single type of triplet excitation in PCBM, bis-PCBM, and ICBA, and two triplet species in PC70BM which are attributed to the α- and β-type isomers of the latter molecule. (iii) The sign change with increasing temperature of the g ˜2 sharp central line in photo-EDMR, which is observed both in pristine SY-PPV and in blends with fullerene, is correlated to a transition from dominant TE-polaron annihilation to nongeminate polaron recombination processes.
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather
Polaron transport in TiO{sub 2} thin films
Yildiz, Abdullah; Iacomi, Felicia; Mardare, Diana
2010-10-15
Undoped and Fe-doped TiO{sub 2} thin films were obtained by rf-sputtering technique onto heated glass substrates (250 deg. C) covered with indium tin oxide. The temperature dependence of the electrical conductivity was investigated in the temperature range 13-320 K, and it shows that the conduction mechanism in the studied samples is described by small-polaron hopping (SPH) at temperatures higher than half of the Debye temperature ({theta}{sub D}). It was found that the magnitude of the SPH coupling increases by Fe doping in TiO{sub 2} thin films. With decreasing temperature, the conduction behavior transited from SPH conduction to variable-range hopping (VRH) conduction. In the intermediate temperature domain (200 K
Bose polaron problem: Effect of mass imbalance on binding energy
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2016-12-01
By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.
Hybrid functional studies of defects and hole polarons in oxides
NASA Astrophysics Data System (ADS)
Varley, Joel
Transparent conducting oxides (TCOs) are ubiquitous, appearing in windows, flat-panel displays, solar cells, solid-state lighting, and transistors that all exploit TCOs' combination of high electrical conductivity and optical transparency. Thanks to this large and growing list of applications, there has been a surge of interest in the science of these materials, focusing on the fundamental properties and doping opportunities in traditional TCOs as well as the exploration of promising new candidate materials. Hybrid density functional theory has proven instrumental in elucidating the physics of TCOs. One example is the study of dopants and defects that determine the conductivity. Accurate formation energies and charge-state transition levels can now be obtained thanks to the accurate electronic structure provided by a hybrid functional. This allows us to address the origins of unintentional conductivity: for SnO2, In2O3, and Ga2O3, we demonstrate that this is not due to native defects such as oxygen vacancies, but must be attributed to unintentional incorporation of impurities. We can also provide guidelines for achieving higher doping levels, suggesting several impurities as candidate donors with high solubility. Limitations on doping due to the formation or incorporation of compensating centers are addressed as well. Hybrid functional calculations also overcome the shortcomings associated with traditional local or semi-local functionals, which do not properly describe charge localization. Hybrid functionals accurately describe polaron formation, i.e., the self-trapping of holes when p - type doping of the oxide materials is attempted. Consequences of polaron formation for optical characterization of the material will be discussed. This work was performed in collaboration with Anderson Janotti and Chris G. Van de Walle, and was in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Magnetic Studies of Photovoltaic Processes in Organic Solar Cells
Zang, Huidong; Ivanov, Ilia N; Hu, Bin
2010-01-01
In this paper, we use magnetic field effects of photocurrent (MFEPC ) to study the photovoltaic processes in pristine conjugated polymer, bulk heterojunction, and double-layer solar cells, respectively, based on poly(3-alkylthiophene) (P3HT). The MFEPC reveals that the photocurrent generation undergoes the dissociation in polaron pair states and the charge reaction in excitonic states in pristine conjugated polymers. As for the bulk-heterojunction solar cells consisting of electron donor P3HT and electron acceptor [6,6]-phenyl C61-butyric acid methyl ester (PCBM), the MFEPC indicates that the dissociated electrons and holes inevitably form the intermolecular charge-transfer (CT) complexes at donor and acceptor interfaces. Essentially, the photocurrent generation relies on the further dissociation of intermolecular CT complexes. Moreover, we use double-layer solar cell to further study the intermolecular CT complexes with well-controlled donor acceptor interfaces based on double-layer P3HT/TiOx design. We find that the increase in free energies can significantly reduce the density of CT complexes upon thermal annealing.
Comment on 'Topological stability of the half-vortices in spinor exciton-polariton condensates'
Toledo Solano, M.; Rubo, Yuri G.
2010-09-15
We show that the conclusions of recent paper by Flayac et al. [Phys. Rev. B 81, 045318 (2010)] concerning the stability of half-quantum vortices are misleading. We demonstrate the existence of static half-quantum vortices in exciton-polariton condensates and calculate the warping of their texture produced by transverse-electric-transverse-magnetic splitting of polariton band.
NASA Astrophysics Data System (ADS)
Hellerich, Emily; Chen, Ying; Cai, Min; Shinar, Joseph
2009-08-01
The electroluminescence (EL)-detected magnetic resonance (ELDMR) of abrupt junction and mixed layer N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB) / tris(quinolinolate) Al (Alq3) OLEDs was measured at room temperature and at 20K, at current densities 0.83 <= J <= 83 mA/cm2. The abrupt junction and mixed layer devices were indium tin oxide (ITO) / 5 nm copper phthalocyanine (CuPc) / 50 nm NPB / 40 nm Alq3 / 1 nm CsF / Al, and ITO / 5 nm CuPc / 40 nm NPB / 20 nm 1:1 NPB:Alq3 / 30 nm Alq3 / 1 nm CsF / Al, respectively. As expected, the devices exhibited a positive (EL-enhancing) spin 1/2 resonance at T = 20 K and a negative (ELquenching) spin 1/2 resonance at room temperature. It was found that the positive and negative resonance was stronger in the abrupt junction and in the mixed layer devices, respectively. The results are discussed in relation to the mechanisms responsible for these resonances, namely reduced quenching of singlet excitons by polarons and triplet excitons, and enhanced quenching by trions, respectively.
Excitonic polaritons of zinc diarsenide single crystals
NASA Astrophysics Data System (ADS)
Syrbu, N. N.; Stamov, I. G.; Zalamai, V. V.; Dorogan, A.
2017-02-01
Excitonic polaritons of ZnAs2 single crystals had been investigated. Parameters of singlet excitons with D2bar(z) symmetry and orthoexcitons 2D1bar(y)+D2bar(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V1) and electron (C1) bands. The values of effective masses of electrons (mc*=0.10 m0) and holes (mv1*=0.89 m0) had been estimated. It was revealed that the hole mass mv1* changes from 1.03 m0 to 0.55 m0 at temperature increasing from 10 K up to 230 K and that the electron mass mc* does not depend on temperature. The integral absorption A (eV cm-1) of the states n=1, 2 and 3 of D2bar(z) excitons depends on the An≈n-3 equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for D2bar(z) and D2bar(D) excitons differ. The ground states of B and C excitons formed by V3 - C1 and V4 - C1 bands and its parameters had been determined.
Polarons in endohedral Li+@C60- dimers and in 1D and 2D crystals
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshiyuki; Belosludov, Vladimir R.; Zhdanov, Ravil K.; Belosludov, Rodion V.
2017-10-01
The electron charge distribution and polaron formation on the carbon sites of dimer clusters Li+@C60- and of 1D or 2D Li+@C60- periodic systems are studied with the use of the generalized Su-Schrieffer-Heeger model with respect to the intermolecular and intramolecular degrees of freedom. The charge distributions over the molecular surface and Jahn-Teller bond distortions of carbon atoms are calculated using the self-consistent iterative methods. Polarons formed in periodic 1D and 2D systems (chains and planar layers) as well as in dimer cluster system are examined. In the periodic systems polaron formation may be described by the cooperative Jahn-Teller effect. Orientation of the polarons on the molecule surface depends on the doping of the system, moreover, electron doping changes the energy levels in the system.
NASA Astrophysics Data System (ADS)
Braun, Artur; Chen, Qianli
2017-06-01
Hydration of oxygen-deficient metal oxides causes filling of oxygen vacancies and formation of hydroxyl groups with interstitial structural protons, rotating around the oxygen in localized motion. Thermal activation from 500 to 800 K triggers delocalization of the protons by jumping to adjacent oxygen ions, constituting proton conductivity. We report quantitative analyses of proton and lattice dynamics by neutron-scattering data, which reveal the interaction of protons with the crystal lattice and proton-phonon coupling. The motion for the proton trapped in the elastic crystal field yields Eigen frequencies and coupling constants, which satisfy Holstein's polaron model for electrons and thus constitutes first experimental evidence for a proton polaron at high temperature. Proton jump rates follow a polaron model for cerium-oxygen and hydroxyl stretching modes, which are thus vehicles for proton conductivity. This confirms that the polaron mechanism is not restricted to electrons, but a universal charge carrier transport process.
Formation and local symmetry of the Holstein polaron in the t-J model
NASA Astrophysics Data System (ADS)
Ma, Han; Lee, T. K.; Chen, Yan
2013-04-01
The formation and local symmetry of a spin-lattice polaron has been investigated semiclassically in planar Holstein t-J-like models within the exact diagonalization method. Due to the interplay of strong correlations and electron-lattice interaction, the doped hole may either move freely or lead to the localized spin-lattice distortion and form a Holstein polaron. The formation of a polaron breaks the translational symmetry by suppression of antiferromagnetic correlations and inducement of ferromagnetic correlations locally. Moreover, the breaking of local rotational symmetry around the polaron has been shown. The ground state is generically a parity singlet and the first excited state may be a parity doublet. Further consequences of the density of states spectra for comparison with scanning tunneling microscopy experiments are discussed.
Dynamics of light-induced NIR-absorption of Nb4 polarons in SBN
NASA Astrophysics Data System (ADS)
Gao, Ming; Vikhnin, V.; Kapphan, S.
The dynamics of light-induced (Kr+-, Ar+-laser) electronic polarons (Nb4+ centers with broad absorption band around 0.8 eV) and light-induced centers of other types were investigated in SrxBa1-xNb2O6: Cr (SBN:Cr) and in SBN: Ce using FTIR absorption measurements at low temperature. A theoretical model involving Cr3+/Cr4+, Ce3+/Ce4+, Nb4+ electronic polarons and trapping X-centers is proposed. The trapping of polarons at Cr4+/Ce4+ centers with subsequent recharging is shown to play an important role in the polaron dynamics. The predictions of the model are in very good agreement with the experimental results.
Topological Exciton Bands in Moire Heterojunctions.
Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.
2017-04-05
Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.
Ultracold Gas of Excitons in Traps
2012-06-08
Excitons in a GaAs Quantum-Well Structurewith a Diamond-Shaped Electrostatic Trap, Physical Review Letters, (08 2009): 87403. doi: 2012/06/08 14:38:06 19...Kinetics of the inner ring in the exciton emission pattern in coupled GaAs quantum wells, Physical Review B, (10 2009): 155331. doi: 2012/06/08 14:28:30...17 Sen Yang, , L. V. Butov, , L. S. Levitov, , B. D. Simons,, A. C. Gossard. Exciton front propagation in photoexcited GaAs quantum wells, Physical
Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?
NASA Astrophysics Data System (ADS)
Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran
2008-09-01
The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.
[Long-range electron transfer in globular proteins by polaron excitation].
Lakhno, V L; Chuev, G N
1997-01-01
Considering polaron model, we have calculated an electron state localized in the protein heme. Using these calculations: the electron density and electron energy, we estimated the self-exchange rate constant for cyt c (horse heart), its reorganization energy, matrix element, and dependence of this rate on the distance between hemes. The results are compared with the experimental data and other theoretical estimations. We discuss the role of polaron excitations in the long-range electron transfer in globular proteins.
Magneto-optical properties of Rydberg excitons: Center-of-mass quantization approach
NASA Astrophysics Data System (ADS)
Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard
2017-02-01
We show how to compute the magneto-optical functions (absorption, reflection, and transmission) when Rydberg exciton polaritons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field, and the polaritonic effect. Using the real density-matrix approach the analytical expressions for magneto-optical functions are obtained and numerical calculations for Cu2O crystal are performed. The influence of the strength of applied external magnetic field on the resonance displacement of excitonic spectra is discussed. We report a good agreement with recently published experimental data.
Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect
Climente, Juan I.; Planelles, Josep
2014-05-12
We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.
Multiple Exciton Generation Solar Cells
Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.
2012-01-01
Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.
Diagrammatic Monte Carlo study of mass-imbalanced Fermi-polaron system
NASA Astrophysics Data System (ADS)
Pollet, Lode
After a brief introduction and review of diagrammatic Monte Carlo, I present our results for the three-dimensional Fermi-polaron system with mass-imbalance, where an impurity interacts resonantly with a noninteracting Fermi sea whose atoms have a different mass. This method allows to go beyond frequently used variational techniques by stochastically summing all relevant impurity Feynman diagrams up to a maximum expansion order limited by the sign problem. The polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and allows to locate in addition also the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave-functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures like 6Li-40K. I will discuss some open questions and links with recent experiments.
Diagrammatic Monte Carlo study of a mass-imbalanced Fermi-polaron system
NASA Astrophysics Data System (ADS)
Kroiss, Peter; Pollet, Lode
2015-04-01
We apply the diagrammatic Monte Carlo approach to three-dimensional Fermi-polaron systems with mass imbalance, where an impurity interacts resonantly with a noninteracting Fermi sea whose atoms have a different mass. This method allows us to go beyond frequently used variational techniques by stochastically summing all relevant impurity Feynman diagrams up to a maximum expansion order limited by the sign problem. Polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and allows us to locate in addition also the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as 6Li-40K.
Enhancing the Efimov correlation in Bose polarons with large mass imbalance
NASA Astrophysics Data System (ADS)
Sun, Mingyuan; Cui, Xiaoling
2017-08-01
We study the effect of Efimov physics (in the few-body sector) on the spectral response of the Bose polaron, a many-body system consisting of an impurity immersed in a bath of bosonic atoms. We find that the Efimov correlation can be greatly enhanced by increasing the mass ratio between the bosons and the impurity, which results in visible signatures in the rf spectrum of the polaron. Using a diagrammatic approach up to the third-order virial expansion, we show how the mass imbalance and the enhanced three-body effect modify the line shape and linewidth of the polaron spectrum. Moreover, we study the effect of a finite boson-boson interaction on the spectrum. Taking the realistic system of Li impurities immersed in Cs bosons with a positive Cs-Cs scattering length, we find a visible Efimov branch, which is associated with the second lowest Efimov trimer, in the polaron spectrum. In particular, by adjusting the boson density the Efimov branch can greatly hybridize with the attractive polaron branch, leading to spectrum broadening near their avoided level crossing. Our results can be directly probed in the cold atoms experiments on Li-Cs and Li-Rb Bose polarons.
Optical nutation in the exciton range of spectrum
Khadzhi, P. I.; Vasiliev, V. V.
2013-08-15
Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level.
Acoustic-excitonic effects in a two-dimensional gas of dipolar excitons
NASA Astrophysics Data System (ADS)
Boev, M. V.; Kovalev, V. M.; Chaplik, A. V.
2016-08-01
The theory of the interaction of a two-dimensional gas of indirect dipolar excitons with Rayleigh surface elastic waves has been developed. The absorption and renormalization of the phase velocity of a surface wave, as well as the drag of excitons by the surface acoustic wave and the generation of bulk acoustic waves by a twodimensional gas of dipolar excitons irradiated by external electromagnetic radiation, have been considered. These effects have been studied both in a normal phase at high temperatures and in a condensed phase of the exciton gas. The calculations have been performed in the ballistic and diffusion limits for both phases.
Probing dark exciton diffusion using photovoltage
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor–acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways. PMID:28128206
Exciton absorption in narrow armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Monozon, B. S.; Schmelcher, P.
2016-11-01
We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron-hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.
Radiative lifetime of excitons in carbon nanotubes.
Perebeinos, Vasili; Tersoff, J; Avouris, Phaedon
2005-12-01
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes within a tight-binding approach including the electron-hole correlations via the Bethe-Salpeter equation. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temperatures and decreases at low temperature because the lowest-energy excitons are optically forbidden. The intrinsic phonons cannot scatter excitons between optically active and forbidden bands, so sample-dependent extrinsic effects that break the symmetries can play a central role. We calculate the diameter-dependent energy splittings between singlet and triplet excitons of different symmetries and the resulting dependence of radiative lifetime on temperature and tube diameter.
Excitons in boron nitride single layer
NASA Astrophysics Data System (ADS)
Galvani, Thomas; Paleari, Fulvio; Miranda, Henrique P. C.; Molina-Sánchez, Alejandro; Wirtz, Ludger; Latil, Sylvain; Amara, Hakim; Ducastelle, François
2016-09-01
Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are currently receiving considerable attention. Strong excitonic effects have already been observed in the bulk and still stronger effects are predicted for single layers. We present here a detailed study of these properties by combining ab initio calculations and a tight-binding Wannier analysis in both real and reciprocal space. Due to the simplicity of the band structure with single valence (π ) and conduction (π*) bands the tight-binding analysis becomes quasiquantitative with only two adjustable parameters and provides tools for a detailed analysis of the exciton properties. Strong deviations from the usual hydrogenic model are evidenced. The ground-state exciton is not a genuine Frenkel exciton, but a very localized tightly bound one. The other ones are similar to those found in transition-metal dichalcogenides and, although more localized, can be described within a Wannier-Mott scheme.
Probing dark exciton diffusion using photovoltage
NASA Astrophysics Data System (ADS)
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor-acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways.
Signatures of Quantum Coherences in Rydberg Excitons
NASA Astrophysics Data System (ADS)
Grünwald, P.; Aßmann, M.; Heckötter, J.; Fröhlich, D.; Bayer, M.; Stolz, H.; Scheel, S.
2016-09-01
Coherent optical control of individual particles has been demonstrated both for atoms and semiconductor quantum dots. Here we demonstrate the emergence of quantum coherent effects in semiconductor Rydberg excitons in bulk Cu2O . Because of the spectral proximity between two adjacent Rydberg exciton states, a single-frequency laser may pump both resonances with little dissipation from the detuning. As a consequence, additional resonances appear in the absorption spectrum that correspond to dressed states consisting of two Rydberg exciton levels coupled to the excitonic vacuum, forming a V -type three-level system, but driven only by one laser light source. We show that the level of pure dephasing in this system is extremely low. These observations are a crucial step towards coherently controlled quantum technologies in a bulk semiconductor.
Exciton properties of selected aromatic hydrocarbon systems
NASA Astrophysics Data System (ADS)
Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin
2013-02-01
We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.
Exciton-polariton wakefields in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Terças, H.; Mendonça, J. T.
2016-02-01
We consider the excitation of polariton wakefields due to a propagating light pulse in a semiconductor microcavity. We show that two kinds of wakes are possible, depending on the constituents fraction (either exciton or photon) of the polariton wavefunction. The nature of the wakefields (pure excitonic or polaritonic) can be controlled by changing the speed of propagation of the external pump. This process could be used as a diagnostic for the internal parameters of the microcavity.
Ultrafast exciton dynamics at molecular surfaces
NASA Astrophysics Data System (ADS)
Monahan, Nicholas R.
Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge
Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots.
Raymond, S; Studenikin, S; Sachrajda, A; Wasilewski, Z; Cheng, S J; Sheng, W; Hawrylak, P; Babinski, A; Potemski, M; Ortner, G; Bayer, M
2004-05-07
Performing optical spectroscopy of highly homogeneous quantum dot arrays in ultrahigh magnetic fields, an unprecedently well resolved Fock-Darwin spectrum is observed. The existence of up to four degenerate electronic shells is demonstrated where the magnetic field lifts the initial degeneracies, which reappear when levels with different angular momenta come into resonance. The resulting level shifting and crossing pattern also show evidence of many-body effects such as the mixing of configurations and exciton condensation at the resonances.
Neither Goodenough ionic model nor Zener polaron model for Bi 0.5Ca 0.5Mn 1- xNi xO 3- δ system
NASA Astrophysics Data System (ADS)
Toulemonde, O.; Skovsen, I.; Mesguich, F.; Gaudin, E.
2008-04-01
The magnetic susceptibilities of three Bi 0.5Ca 0.5MnO 3- δ compounds synthesised by three different methods were characterised and analysed. Large magnetic Mn x clusters ( x ≥ 4) were considered to explain the high value of the Curie-Weiss constant. Unlike previous studies on similar systems, Goodenough ionic model or Zener polaron model is not suitable. In all cases, cluster behaviour is observed at low field and at low temperature. The influence of the oxygen stoichiometry and the homogeneity of the cation distribution depending on the method of the synthesis used is discussed. Finally, the effects of nickel doping on the magnetic properties were studied and the cluster behaviour was confirmed. The distribution in size of the clusters depends on the amount of nickel and it induces a glassy magnetic behaviour.
Exciton Resonances in Novel Silicon Carbide Polymers
NASA Astrophysics Data System (ADS)
Burggraf, Larry; Duan, Xiaofeng
2015-05-01
A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.
Exciton Dynamics in Monolayer Transition Metal Dichalcogenides
Moody, Galan; Schaibley, John; Xu, Xiaodong
2017-01-01
Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding. PMID:28890600
Interaction of Dirac Fermion excitons and biexciton-exciton cascade in graphene quantum dots
NASA Astrophysics Data System (ADS)
Ozfidan, Isil; Korkusinski, Marek; Hawrylak, Pawel
2015-03-01
We present a microscopic theory of interacting Dirac quasi-electrons and quasi-holes confined in graphene quantum dots. The single particle states of quantum dots are described using a tight binding model and screened direct, exchange, and scattering Coulomb matrix elements are computed using Slater pz orbitals. The many-body ground and excited states are expanded in a finite number of electron-hole pair excitations from the Hartree-Fock ground state and computed using exact diagonalization techniques. The resulting exciton and bi-exciton spectrum reflects the degeneracy of the top of the valence and bottom of the conduction band characteristic of graphene quantum dots with C3 symmetry. We study the interaction of multi-electron and hole complexes as a function of quantum dot size, shape and strength of Coulomb interactions. We identify two degenerate bright exciton (X) states and a corresponding biexciton (XX) state as XX-X cascade candidates, a source of entangled photon pairs. We next calculate the exciton to bi-exciton transitions detected in transient absorption experiments to extract the strength of exciton-exciton interactions and biexciton binding energies. We further explore the possibility of excitonic instability.
Fragility, Intermediate Phase and Polaronic conductivity in heavy metal oxides
NASA Astrophysics Data System (ADS)
Chakraborty, Shibalik; Gunasekera, Kapila; Boolchand, Punit; Malki, Mohammed; Micoulaut, Matthieu
2013-03-01
The (B2O3)5 (TeO2)95-x (V2O5)x ternary forms bulk glasses over a wide range of compositions, 18% < x < 35%. Complex Cp(x) measurements as a function of modulation frequency reveal that melt fragility (m) show a global minimum (m = 52(2)) in the 23% < x < 26% range with m > 65 outside that window. These results suggest more stable network structure in the window than outside it. The fragility window coincides with a global minimum of the non-reversing enthalpy of relaxation at Tg, the reversibility window (23% < x < 27%), a behavior also found in chalcogenide glasses. Conductivity (σ) data show three regimes of variation; a low σ at x < 23%, a plateau in 23% < x < 27%, and an exponential increase at x > 27%. The reduced activation energy for conductivity at x > 27% is consistent with increased polaronic mobility as the network becomes flexible. These findings show glasses at x < 23% are stressed-rigid, in 23% < x < 27% range in the Intermediate Phase, and at x > 27% to be flexible. Supported by NSF grant DMR 08-53957.
Reference interaction site model polaron theory of the hydrated electron
NASA Astrophysics Data System (ADS)
Laria, Daniel; Wu, David; Chandler, David
1991-09-01
We have extended the reference interaction site model (RISM)-polaron theory of Chandler et al. [J. Chem. Phys. 81, 1975 (1984)] to treat self-trapping and localized states of excess electrons in polar fluids. The extension is based on a new closure of the RISM equation presented herein. The theory is applied to the hydrated electron employing a simple class of electron-water pseudopotentials. Included in this class are models coinciding with those already examined by others using computer simulations. In those cases, the results for both structural and energetic properties compare well with those of simulation. The work function, or equivalently, the excess chemical potential of the hydrated electron are also computed; the theoretical result agrees with experiment to about 1%. Most interesting, however, is that as the parameter characterizing the pseudopotentials is varied, a critical parameter is found where the electron behavior changes essentially discontinuously from a trapped state to a ``super''-trapped state. This transition may have a direct bearing on theoretical efforts to explain the properties of solvated electrons.
Effects of compositional defects on small polaron hopping in micas.
Rosso, Kevin M; Ilton, Eugene S
2005-06-22
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.
Liquid-state polaron theory of the hydrated electron revisited
NASA Astrophysics Data System (ADS)
Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.
2014-07-01
The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.
Liquid-state polaron theory of the hydrated electron revisited.
Donley, James P; Heine, David R; Tormey, Caleb A; Wu, David T
2014-07-14
The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.
Light induced polaron formation in perovskite solar cell devices
NASA Astrophysics Data System (ADS)
Neukirch, Amanda; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad; Sfeir, Matthew; Katan, Claudine; Even, Jacky; Crochet, Jared; Gupta, Gautum; Mohite, Aditya; Tretiak, Sergei
The need for a low-cost, clean, and abundant source of energy has generated large amounts of research in solution processed solar cell materials. The lead halide perovskite has rapidly developed as a serious candidate for the active layer of photovoltaic devices. The efficiencies of devices made with this material have increased from 3.5% to over 20% in around 5 years. Despite the remarkable progress associated with perovskite materials, there are still fundamental questions regarding their lack of photo-stability over prolonged solar irradiation that need to be addressed. Recent experiments on photo-degradation under constant illumination have found fast self-healing by resting the device in the dark for less than 1 minute. Density functional theory and symmetry analysis show that localized charge states couple to local structural lattice distortions and methyl ammonium quasistatic configurations. Once translational symmetry is lost, additional bonding configurations become symmetry allowed, triggering localized charges in the vicinity over time under constant illumination, thus seeding the formation of macroscopic charged domains and preventing efficient charge extraction. Here we present an in-depth study of polaron formation and binding energy at the atomistic level.
Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.
Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo
2017-10-09
Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamics of the polaron master equation at finite bias
Krause, Thilo Brandes, Tobias; Schaller, Gernot; Esposito, Massimiliano
2015-04-07
We study coherent transport through a double quantum dot. Its two electronic leads induce electronic matter and energy transport and a phonon reservoir contributes further energy exchanges. By treating the system-lead couplings perturbatively, whereas the coupling to vibrations is treated non-perturbatively in a polaron-transformed frame, we derive a thermodynamic consistent low-dimensional master equation. When the number of phonon modes is finite, a Markovian description is only possible when these couple symmetrically to both quantum dots. For a continuum of phonon modes however, also asymmetric couplings can be described with a Markovian master equation. We compute the electronic current and dephasing rate. The electronic current enables transport spectroscopy of the phonon frequency and displays signatures of Franck-Condon blockade. For infinite external bias but finite tunneling bandwidths, we find oscillations in the current as a function of the internal bias due to the electron-phonon coupling. Furthermore, we derive the full fluctuation theorem and show its identity to the entropy production in the system.
Liquid-state polaron theory of the hydrated electron revisited
Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.
2014-07-14
The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the “two-chain” equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.
Yan, Yun-An
2016-01-14
The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.
Exciton polarizability in semiconductor nanocrystals.
Wang, Feng; Shan, Jie; Islam, Mohammad A; Herman, Irving P; Bonn, Mischa; Heinz, Tony F
2006-11-01
The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.
Exciton transport and dissociation at organic interfaces
NASA Astrophysics Data System (ADS)
Beljonne, David
2011-03-01
This paper focuses on modeling studies of exciton transport and dissociation at organic interfaces and includes three parts: 1) Experiments have shown that the values of exciton diffusion length LD in conjugated polymers (CPs) are rather low, in the range of 5-10 nm, apparently regardless of their chemical structure and solid-state packing. In contrast, larger LD values have been reported in molecular materials that are chemically more well-defined than CPs. Here we demonstrate that energetic disorder alone reduces the exciton diffusion length more than one order of magnitude, from values typically encountered in molecules (> 50nm) to values actually measured in CPs (<10nm). 2) A number of organic crystals show anisotropic excitonic couplings, with weak interlayer interactions between molecules that are more strongly coupled within the layers. The resulting energy carriers are intra-layer 2D excitons that diffuse along the interlayer direction. We model this analytically for infinite layers and using quantum-chemical calculations of the electronic couplings for anthracene clusters. We show that the exciton hopping rates and diffusion lengths depend in a subtle manner on the size and shape of the interacting aggregates, temperature and the presence of energetic disorder. 3) The electronic structure at organic/organic interfaces plays a key role, among others, in defining the quantum efficiency of organic-based photovoltaic cells. Here, we perform quantum-chemical and microelectrostatic calculations on molecular aggregates of various sizes and shapes to characterize the interfacial dipole moment at pentacene/C60 heterojunctions. The results show that the interfacial dipole mostly originates in polarization effects due to the asymmetry in the multipolar expansion of the electronic density distribution between the interacting molecules. We will discuss how the quadrupoles on the pentacene molecules produce direct electrostatic interactions with charge carriers and how
Aharonov-Bohm Beats in Excitonic Luminescence from Quantum Rings and Type-II Quantum Dots
NASA Astrophysics Data System (ADS)
Dias da Silva, Luis; Shahbazyan, Tigran
2005-03-01
We study the absorption spectrum of neutral magnetoexcitons confined in ring-like structures. Despite their neutral character, excitons exhibit strong modulation effects on the energy and oscillator strength in the presence of magnetic fields [1] that have been recently observed [2]. We calculate the absorption coefficient α for neutral excitons confined in circular ring geometries with radii Re for electrons and Rh for holes. A particularly interesting situation comes about when Re!=Rh and a net radial charge polarization arises. In this case, we consider an attractive Coulomb interaction proportional to (Re- Rh)-1 and the excitonic absorption peak shows oscillatory behavior as function of the applied magnetic field both in position and amplitude. Such oscillations strongly depend on the dipole moment P=e(Rh-Re) of the exciton and on the dielectric constant of the system. Such intensity changes could in principle be experimentally observed with single dot spectroscopy in quantum rings [3]. Supported by the NSF-IMC and NSF-RUI [1] A.O. Govorov et al. Phys. Rev. B 66 081309 (2002); A.O. Govorov et al. Physica E 13, 297 (2002). [2] E. Ribeiro et al. Phys Rev. Lett. 92 126402 (2004). [3] R.J. Warburton et al. Nature 405 (6789) 926 (2000).
Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites
NASA Astrophysics Data System (ADS)
Odenthal, Patrick; Talmadge, William; Gundlach, Nathan; Wang, Ruizhi; Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Valy Vardeny, Z.; Li, Yan S.
2017-09-01
Hybrid organic-inorganic perovskites have emerged as a new class of semiconductors that exhibit excellent performance as active layers in photovoltaic solar cells. These compounds are also highly promising materials for the field of spintronics due to their large and tunable spin-orbit coupling, spin-dependent optical selection rules, and their predicted electrically tunable Rashba spin splitting. Here we demonstrate the optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3-x. Time-resolved Faraday rotation measurement in zero magnetic field reveals unexpectedly long spin lifetimes exceeding 1 ns at 4 K, despite the large spin-orbit couplings of the heavy lead and iodine atoms. The quantum beating of exciton states in transverse magnetic fields shows two distinct frequencies, corresponding to two g-factors of 2.63 and -0.33, which we assign to electrons and holes, respectively. These results provide a basic picture of the exciton states in hybrid perovskites, and suggest they hold potential for spintronic applications.
Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
Kim, Jeongho; Wong, Cathy Y; Scholes, Gregory D
2009-08-18
semiconductors, fast energy relaxation among the QD exciton fine structure states is selectively measured. The measured exciton fine structure relaxation, which is a nanoscale analogue of molecular radiationless transitions, contains direct information on the relaxation of spin densities of electron and hole carriers, that is, spin relaxation in QDs. From the exciton fine structure relaxation rates measured for CdSe nanorods and complex-shaped nanocrystals using nonlinear polarization spectroscopy, we elucidated the implications of QD size and shape on the QD exciton properties as well, for example, size- and shape-scaling laws governing exciton spin flips and how an exciton is delocalized in a QD. We envision that the experimental development and the discoveries of QD exciton properties presented in this Account will inspire further studies toward revealing the characteristics of QD excitons and spin relaxation therein, for example, spin relaxation in QDs made of various materials with different electronic structures, spin relaxation under an external perturbation of QD electronic states using magnetic fields, and spin relaxation of separated electrons and holes in type-II QD heterostructures.
NASA Astrophysics Data System (ADS)
Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu
2017-06-01
The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.
Percolation Magnetism in Ferroelectric Nanoparticles.
Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N
2017-12-01
Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe(3+) ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Percolation Magnetism in Ferroelectric Nanoparticles
NASA Astrophysics Data System (ADS)
Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.
2017-06-01
Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Small polaron hopping conduction mechanism in LiFePO4 glass and crystal
NASA Astrophysics Data System (ADS)
Banday, Azeem; Murugavel, Sevi
2017-01-01
The optimization of a cathode material is the most important criterion of lithium ion battery technology, which decides the power density. In order to improve the rate capability, a cathode material must possess high electronic and ionic conductivities. Therefore, it is important to understand the charge transport mechanism in such an advanced cathode material in its intrinsic state before modifying it by various means. In this work, we report the thermal, structural, and electrical conductivity studies on lithium iron phosphate, LiFePO4, both in its polycrystalline (LFPC) and glassy (LFPG) counterpart states. The vibrational spectroscopic measurements reveal the characteristic vibrational modes, which are the intrinsic part of LFPC, whereas in LFPG, the phonon modes become broader and overlap with each other due to the lattice disorder. The electrical conductivity measurements reveal that LFPG exhibits a higher polaronic conductivity of 1.6 orders than the LFPC sample. The temperature dependent dc conductivity has been analyzed with the Mott model of polarons and reveals the origin of enhanced polaronic conductivity in LFPG. Based on the analysis, the enhanced polaronic conductivity in LFPG has been attributed to the combined effect of reduced hopping length, decreased activation energy, and enhanced polaron concentration.
First-principles study of hole polaron formation and migration in SrI2
NASA Astrophysics Data System (ADS)
Zhou, Fei; Sadigh, Babak; Aberg, Daniel
2015-03-01
We investigate the formation of self-trapped holes (STH) in the high performance scintillator material SrI2 using a recently developed first principles method, polaron self-interaction correction (pSIC). pSIC removes the significant spurious self-interaction of localized polaron states. It is capable of accurately reproduce the configurational energy landscape of polaronic states from optimized hybrid functionals at the computational cost of the local density approximation. We searched for and identified all symmetrically distinct STH states localized on neighboring I-I dimers, i.e. Vk centers, and found non-trivial relation between the STH formation energies and dimer separation. All possible polaron hopping paths of the type IAIB -->IBIC are investigated systematically with pSIC and the elastic band method, and paths with low migration barrier energy of about 0.2 eV were identified, suggesting high mobility in SrI2. We expect that the present approach can be applied to study polaron formation and migration in other materials. Support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) is acknowledged. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore N We acknowledge funding from the NA-22 agency.
Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Fleischhauer, Michael
2016-02-01
When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons.
Phase-breaking effect on polaron transport in organic conjugated polymers
Meng, Ruixuan; Yin, Sun; Zheng, Yujun; ...
2017-06-15
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
All-coupling polaron optical response: Analytic approaches beyond the adiabatic approximation
NASA Astrophysics Data System (ADS)
Klimin, S. N.; Tempere, J.; Devreese, J. T.
2016-09-01
In the present work, the problem of an all-coupling analytic description for the optical conductivity of the Fröhlich polaron is treated, with the goal being to bridge the gap in the validity range that exists between two complementary methods: on the one hand, the memory-function formalism and, on the other hand, the strong-coupling expansion based on the Franck-Condon picture for the polaron response. At intermediate coupling, both methods were found to fail as they do not reproduce diagrammatic quantum Monte Carlo results. To resolve this, we modify the memory-function formalism with respect to the Feynman-Hellwarth-Iddings-Platzman approach in order to take into account a nonquadratic interaction in a model system for the polaron. The strong-coupling expansion is extended beyond the adiabatic approximation by including in the treatment nonadiabatic transitions between excited polaron states. The polaron optical conductivity that we obtain at T =0 by combining the two extended methods agrees well, both qualitatively and quantitatively, with the diagrammatic quantum Monte Carlo results in the whole available range of the electron-phonon coupling strength.
Plasmon-excitonic polaritons in superlattices
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.
2017-05-01
A theory for propagation of polaritons in superlattices with resonant plasmon-exciton coupling is presented. A periodical superlattice consists of a finite number of cells with closely located a quantum well and a monolayer of metal nanoparticles. Under study is the spectrum of hybrid modes formed of the quasitwo- dimensional excitons of quantum wells and the dipole plasmons of metal particles. The problem of electrodynamics is solved by the method of Green's functions with taking account of the resonant polarization of quantum wells and nanoparticles in a self-consistent approximation. The effective polarizability of spheroidal particles occupying a square lattice is calculated with taking into consideration the local-field effect of dipole plasmons of the layer and their images caused by the excitonic polarization of nearest quantum well. Optical reflection spectra of superlattices with GaAs/AlGaAs quantum wells and silver particles are numerically analyzed. Special attention is paid to the superradiant regime originated in the Bragg diffraction of polaritons in superlattice. Superradiance is investigated separately for plasmons and excitons, and then for hybrid plasmonexcitonic polaritons. It is demonstrated that the broad spectrum of reflectance associated with plasmons depends on the number of cells in superlattice, and it has a narrow spectral dip in the range of plasmon-excitonic Rabi splitting.
Excitonic Coupling Modulated by Mechanical Stimuli.
Pirrotta, Alessandro; Solomon, Gemma C; Franco, Ignacio; Troisi, Alessandro
2017-09-21
Understanding energy transfer is of vital importance in a diverse range of applications from biological systems to photovoltaics. The ability to tune excitonic coupling in any of these systems, however, is generally limited. In this work, we have simulated a new class of single-molecule spectroscopy in which force microscopy is used to control the excitonic coupling between chromophores. Here we demonstrate that the excitonic coupling can be controlled by mechanical manipulation of the molecule (perylenediimide dimers and terrylenediimide-perylenediimide heterodimers) and can be tuned over a broad range of values (0.02-0.15 eV) that correspond to different regimes of exciton dynamics going from the folded to the elongated structure of the dimer. In all of the systems considered here, the switching from high to low coupling takes place simultaneously with the mechanical deformation detected by a strong increase and subsequent decay of the force. These simulations suggest that single-molecule force spectroscopy can be used to understand and eventually aid the design of excitonic devices.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; ...
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonic coherence lifetimemore » is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS2.« less
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas
2016-01-01
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures. PMID:27819288
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas
2016-11-01
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS_{2} and MoSe_{2}) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS_{2}.
Exciton-Exciton Annihilation in Copper-Phthalocyanine Single-Crystal Nanowires
Ma, Yingzhong; Xiao, Kai; Shaw, Robert W
2012-01-01
Femtosecond one-color pump-probe spectroscopy was applied to study exciton dynamics in single-crystal copper-phthalocyanine (CuPc) nanowires grown on an opaque silicon substrate. The transient reflectance kinetics measured at different pump fluences exhibit a remarkable intensity-dependent decay behavior which accelerates significantly with increasing pump pulse intensity. All the kinetic decays can be satisfactorily described using a bi-exponential decay function with lifetimes of 22 and 204 ps, and corresponding relative amplitudes depending on the pump intensity. The accelerated decay behavior observed at high pump intensities arises from a nonlinear exciton-exciton annihilation process. While this phenomenon has been found previously in crystalline metallophthalocyanine (MPc) polymorphs such as colloidal particles and thin films, the results obtained using the CuPc nanowires are markedly distinct, namely, much longer decay times and a linear intensity dependence of the initial peak amplitudes. Despite these differences, detailed data analysis further shows that, as found for other metal-phthalocyanine polymorphs, exciton-exciton annihilation in the CuPc nanowires is one-dimensional (1D) diffusion-limited, which possibly involves intra-chain exciton diffusion along 1D molecular stacks. The significantly long-lived excitons of CuPc nanowires in comparison to those of other crystalline polymorphs make them particularly suitable for photovoltaic applications.
NASA Astrophysics Data System (ADS)
Xue, Fei; Wu, Feng Cheng; MacDonald, Allan
BEC of excitons and polaritons have drawn attention in recent years because of the demonstration of their ability to host macroscopic quantum phenomena and because of their promise for applications. We study the case of a system containing two TMD monolayers that are separated and surrounded by h-BN. Under appropriate conditions this system is expected to support a spatially indirect thermal equilibrium exciton condensate. We combine a microscopic mean-field calculation and a weakly interacting boson model to explore the bilayer exciton condensates phase diagram. By varying the layer separation and exciton density, we find a phase transition occurs between states containing one and two condensate flavors. We also use a microscopic time-dependent mean-field theory to address condensate collective mode spectra and quantum fluctuations. Next we study the case of exciton-polariton formed by strong coupling between quantum well excitons and confined photon modes when the system is placed in a vertical microcavity. We build a microscopic mean-field theory starting from electrons and holes, and account for their coupling to coherent light field. We compare our model with the normal weakly interacting boson model that starts from weakly interacting excitons that are coupled to photons. This work was supported by the SRC and NIST under the Nanoelectronic Research Initiative (NRI) and SWAN, by the Welch Foundation under Grant No. F1473, and by the ARO Grant No. 26-3508-81.
Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3.
Carneiro, Lucas M; Cushing, Scott K; Liu, Chong; Su, Yude; Yang, Peidong; Alivisatos, A Paul; Leone, Stephen R
2017-08-01
Small polaron formation is known to limit ground-state mobilities in metal oxide photocatalysts. However, the role of small polaron formation in the photoexcited state and how this affects the photoconversion efficiency has yet to be determined. Here, transient femtosecond extreme-ultraviolet measurements suggest that small polaron localization is responsible for the ultrafast trapping of photoexcited carriers in haematite (α-Fe2O3). Small polaron formation is evidenced by a sub-100 fs splitting of the Fe 3p core orbitals in the Fe M2,3 edge. The small polaron formation kinetics reproduces the triple-exponential relaxation frequently attributed to trap states. However, the measured spectral signature resembles only the spectral predictions of a small polaron and not the pre-edge features expected for mid-gap trap states. The small polaron formation probability, hopping radius and lifetime varies with excitation wavelength, decreasing with increasing energy in the t2g conduction band. The excitation-wavelength-dependent localization of carriers by small polaron formation is potentially a limiting factor in haematite's photoconversion efficiency.
NASA Astrophysics Data System (ADS)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3
NASA Astrophysics Data System (ADS)
Carneiro, Lucas M.; Cushing, Scott K.; Liu, Chong; Su, Yude; Yang, Peidong; Alivisatos, A. Paul; Leone, Stephen R.
2017-08-01
Small polaron formation is known to limit ground-state mobilities in metal oxide photocatalysts. However, the role of small polaron formation in the photoexcited state and how this affects the photoconversion efficiency has yet to be determined. Here, transient femtosecond extreme-ultraviolet measurements suggest that small polaron localization is responsible for the ultrafast trapping of photoexcited carriers in haematite (α-Fe2O3). Small polaron formation is evidenced by a sub-100 fs splitting of the Fe 3p core orbitals in the Fe M2,3 edge. The small polaron formation kinetics reproduces the triple-exponential relaxation frequently attributed to trap states. However, the measured spectral signature resembles only the spectral predictions of a small polaron and not the pre-edge features expected for mid-gap trap states. The small polaron formation probability, hopping radius and lifetime varies with excitation wavelength, decreasing with increasing energy in the t2g conduction band. The excitation-wavelength-dependent localization of carriers by small polaron formation is potentially a limiting factor in haematite's photoconversion efficiency.
Disorder-enhanced exciton delocalization in an extended dendrimer
NASA Astrophysics Data System (ADS)
Pouthier, Vincent
2014-08-01
The exciton dynamics in a disordered extended dendrimer is investigated numerically. Because a homogeneous dendrimer exhibits few highly degenerate energy levels, a dynamical localization arises when the exciton is initially located on the periphery. However, it is shown that the disorder lifts the degeneracy and favors a delocalization-relocalization transition. Weak disorder enhances the delocalized nature of the exciton and improves any quantum communication, whereas strong disorder prevents the exciton from propagating in accordance with the well-known Anderson theory.
Probing Bose-Einstein condensation of excitons with electromagnetic radiation.
Johnsen, K; Kavoulakis, G M
2001-01-29
We examine the absorption spectrum of electromagnetic radiation from excitons, where an exciton in the 1s state absorbs a photon and makes a transition to the 2p state. We demonstrate that the absorption spectrum depends strongly on the quantum degeneracy of the exciton gas, and that it will generally manifest many-body effects. Based on our results we propose that absorption of infrared radiation could resolve recent contradictory experimental results on excitons in Cu(2)O.
Bose-Einstein condensation and indirect excitons: a review
NASA Astrophysics Data System (ADS)
Combescot, Monique; Combescot, Roland; Dubin, François
2017-06-01
We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is ‘gray’. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath
Excitons in Time-Dependent Density-Functional Theory.
Ullrich, Carsten A; Yang, Zeng-hui
2016-01-01
This chapter gives an overview of the description of the optical and dielectric properties of bulk insulators and semiconductors in time-dependent density-functional theory (TDDFT), with an emphasis on excitons. We review the linear-response formalism for periodic solids, discuss excitonic exchange-correlation kernels, calculate exciton binding energies for various materials, and compare the treatment of excitons with TDDFT and with the Bethe-Salpeter equation.
Influence of excitonic effects on luminescence quantum yield in silicon
NASA Astrophysics Data System (ADS)
Sachenko, A. V.; Kostylyov, V. P.; Vlasiuk, V. M.; Sokolovskyi, I. O.; Evstigneev, M.
2017-03-01
Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.
Bose-Einstein condensation and indirect excitons: a review.
Combescot, Monique; Combescot, Roland; Dubin, François
2017-06-01
We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath
Excitonic superfluid phase in double bilayer graphene
NASA Astrophysics Data System (ADS)
Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R.
2017-08-01
A spatially indirect exciton is created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite boson. Such excitons are long-lived, and in the limit of strong interactions are predicted to undergo a Bose-Einstein condensate-like phase transition into a superfluid ground state. Here, we report evidence of an exciton condensate in the quantum Hall effect regime of double-layer structures of bilayer graphene. Interlayer correlation is identified by quantized Hall drag at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. A selection rule for the condensate phase is observed involving both the orbital and valley indices of bilayer graphene. Our results establish double bilayer graphene as an ideal system for studying the rich phase diagram of strongly interacting bosonic particles in the solid state.
Excitonic interaction in the fluorene dimer
NASA Astrophysics Data System (ADS)
Wessel, John; Beck, Steven; Highstrete, Clark
1994-12-01
The fluorene van der Waals dimer exhibits a complex origin spectrum. This region has been studied by resonance two-photon ionization and by fluorescence excitation spectroscopies. The spectra can be interpreted on the basis of intermediate strength exciton coupling, in which the electronic interaction is comparable to the van der Waals vibrational energies. The spectra are reasonably well described by two distorted adiabatic potential surfaces, which correspond to the two excitonic components of the origin system. A single Franck-Condon active intermolecular mode provides a reasonable description of the system, however the potentials have significant cubic and quartic contributions. Non-Born-Oppenheimer nuclear momentum coupling is present and intermodal (IVR) interactions are observed, even for intermolecular modes as low as v=1. The results are remarkably different from prior observations of excitonic structure in other systems, providing a detailed picture of coupling between electronic and intermolecular motion in a van der Waals dimer.
Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.
Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D
2008-05-01
The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.
The effect of thermal fluctuations on Holstein polaron dynamics in electric field
NASA Astrophysics Data System (ADS)
Voulgarakis, Nikolaos K.
2017-08-01
In this work, we have studied the effects of thermal fluctuations on the stability of polaron motion under the influence of an external electric field. Zero temperature calculations have been reported previously showing the existence of critical electric field, Ecr, where the system transitions from a stable polaron motion to a Bloch-like oscillation. In this study, we further report that for intermediate polaron sizes the lifetime of such Bloch-like oscillations decay with time due to excessive phonon emission. Our numerical simulations show that the value of Ecr is finite for small temperatures. However, Ecr rapidly decreases with increasing T and becomes practically zero for T > Tcr. In this small but finite temperature window, we report how temperature affects (a) the electric current density, and (b) the Bloch-like frequencies.
Bloch oscillations as generators of polarons in a 1D crystal
NASA Astrophysics Data System (ADS)
Nazareno, H. N.; Brito, P. E. de
2016-08-01
The main purpose of this work is to characterize the kind of propagation/localization of carriers in a one-dimensional crystalline structure along the tight-binding model while the electron-phonon interaction is taken into account through a deformation potential and the system is under the action of a dc electric field. The lattice was treated in the classical formalism of harmonic vibrations. A remarkable effect is obtained due to the presence of the electric field. On one side the particle performs Bloch oscillations and at the same time it interacts with the lattice and as a result at each turning point of its trajectory phonons are generated that carry with them a fraction of the electronic wave packet, it is the polaron formation. This way the Bloch oscillations pump polarons into the system. We explain why the polaron is formed at returning points of the oscillations.
Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems
Chen, Ying
2011-01-01
Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at Δm_{S}=±1 and Δm_{S}=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal
Zhou, Fei; Sadigh, Babak; Aberg, Daniel; ...
2016-08-12
The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpectedmore » high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less
Zhou, Fei; Sadigh, Babak; Aberg, Daniel; Erhart, Paul
2016-08-12
The excellent light yield proportionality of europium-doped strontium iodide (SrI_{2}:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI_{2}, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI_{2}. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI_{2} is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.
Eersel, H. van Coehoorn, R.; Bobbert, P. A.; Janssen, R. A. J.
2014-10-06
We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.
NASA Astrophysics Data System (ADS)
van Eersel, H.; Bobbert, P. A.; Janssen, R. A. J.; Coehoorn, R.
2014-10-01
We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy)3) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J90, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.
PREFACE: International Conference on Optics of Excitons in Confined Systems
NASA Astrophysics Data System (ADS)
Viña, Luis; Tejedor, Carlos; Calleja, José M.
2010-01-01
The OECS11 (International Conference on Optics of Excitons in Confined Systems) was the eleventh of a very successful series of conferences that started in 1987 in Rome (Italy). Afterwards the conference was held at Naxos (Sicily, Italy, 1991), Montpellier (France, 1993), Cortona (Italy, 1995), Göttingen (Germany, 1997), Ascona (Switzerland, 1999), Montpellier (France, 2001), Lecce (Italy, 2003), Southampton (UK, 2005) and Patti (Sicily, Italy, 2007). It is addressed to scientists who lead fundamental and applied research on the optical properties of excitons in novel condensed-matter nanostructures. The 2009 meeting (7-11 September 2009) has brought together a large representation of the world leading actors in this domain, with the aim of stimulating the exchange of ideas, promoting international collaborations, and coordinating research on the newest exciton-related issues such as quantum information science and exciton quantum-collective phenomena. The meeting has included invited lectures, contributed oral presentations and posters, covering the following general topics: low-dimensional heterostructures: quantum wells, quantum wires and quantum dots polaritons quantum optics with excitons and polaritons many-body effects under coherent and incoherent excitation coherent optical spectroscopy quantum coherence and quantum-phase manipulation Bose-Einstein condensation and other collective phenomena excitons in novel materials The OECS 11 was held at the campus of the Universidad Autónoma de Madrid in Cantoblanco. The scientific program was composed of more than 200 contributions divided into 16 invited talks, 44 oral contributions and 3 poster sessions with a total of 150 presentations. The scientific level of the presentations was guaranteed by a selection process where each contribution was rated by three members of the Program Committee. The Conference has gathered 238 participants from 21 different countries, with the following distribution: Germany (43
Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane.
Cudazzo, Pierluigi; Attaccalite, Claudio; Tokatly, Ilya V; Rubio, Angel
2010-06-04
Using first principles many-body theory methods (GW+Bethe-Salpeter equation) we demonstrate that the optical properties of graphane are dominated by localized charge-transfer excitations governed by enhanced electron correlations in a two-dimensional dielectric medium. Strong electron-hole interaction leads to the appearance of small radius bound excitons with spatially separated electron and hole, which are localized out of plane and in plane, respectively. The presence of such bound excitons opens the path towards an excitonic Bose-Einstein condensate in graphane that can be observed experimentally.
Observation of charged excitons in V-groove quantum wires
NASA Astrophysics Data System (ADS)
Otterburg, T.; Oberli, D. Y.; Dupertuis, M.-A.; Dwir, B.; Pelucchi, E.; Kapon, E.
2004-02-01
We report on the observation of negatively and positively charged excitons in the photoluminescence spectra of V-groove quantum wires. The charged exciton binding energy increases with the strength of the quantum confinement. We demonstrate that the charged excitons are localized by the fluctuations of the confinement potential and estimate a minimal value of the localization length.
Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates
Wan, Yan; Stradomska, Anna; Fong, Sarah; Guo, Zhi; Schaller, Richard D.; Wiederrecht, Gary P; Knoester, Jasper; Huang, Libai
2014-10-30
We present an account of the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical spectroscopy and stochastic exciton modeling, we address both linear and nonlinear exciton absorption, relaxation pathways, and the role of disorder. The static disorder-dominated absorption and fluorescence line widths show little temperature dependence for the lowest excitons (Q band), which we successfully simulate using a model of exciton scattering on acoustic phonons in the host matrix. Temperature-dependent transient absorption of and fluorescence from the excitons in the tubular aggregates are marked by nonexponential decays with time scales ranging from a few picoseconds to a few nanoseconds, reflecting complex relaxation mechanisms. Combined experimental and theoretical investigations indicate that nonradiative pathways induced by traps and defects dominate the relaxation of excitons in the tubular aggregates. We model the pumpprobe spectra and ascribe the excited-state absorption to transitions from one-exciton states to a manifold of mixed one- and two-exciton states. Our results demonstrate that while the delocalized Frenkel excitons (over 208 (1036) molecules for the optically dominant excitons in the Q (B) band) resulting from strong intermolecular coupling in these aggregates could potentially facilitate efficient energy transfer, fast relaxation due to defects and disorder probably present a major limitation for exciton transport over large distances.
Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Turyanska, L.; Hill, R. J. A.; Makarovsky, O.; Moro, F.; Knott, A. N.; Larkin, O. J.; Patanè, A.; Meaney, A.; Christianen, P. C. M.; Fay, M. W.; Curry, R. J.
2014-07-01
We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid and the strength of the sp-d exchange interaction between the exciton and the Mn-ions. With increasing Mn-content from 0.1% to 7%, the mass magnetic susceptibility increases at a rate of ~10-7 m3 kg-1 per Mn percentage; correspondingly, the exciton g-factor decreases from 0.47 to 0.10. The controlled modification of the paramagnetism, fluorescence and exciton g-factor of the nanocrystals is relevant to the implementation of these paramagnetic semiconductor nanocrystals in quantum technologies ranging from quantum information to magnetic resonance imaging.We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid and the strength of the sp-d exchange interaction between the exciton and the Mn-ions. With increasing Mn-content from 0.1% to 7%, the mass magnetic susceptibility increases at a rate of ~10-7 m3 kg-1 per Mn percentage; correspondingly, the exciton g-factor decreases from 0.47 to 0.10. The controlled modification of the paramagnetism, fluorescence and exciton g-factor of the nanocrystals is relevant to the implementation of these paramagnetic semiconductor nanocrystals in quantum technologies ranging from quantum information to magnetic resonance imaging. Electronic supplementary information (ESI) available: Details of the experiments techniques and results are available for the following studies: Raman and PL
Polaronic approach to strongly correlated electron systems with strong electron-phonon interaction
NASA Astrophysics Data System (ADS)
Makarov, I. A.; Shneyder, E. I.; Kozlov, P. A.; Ovchinnikov, S. G.
2015-10-01
The three-band p -d model of strongly correlated electrons interacting with optical phonons via diagonal and off-diagonal electron-phonon interactions is considered within the cluster perturbation theory. In the beginning, the exact diagonalization of the Hamiltonian of a CuO4 cluster results in the construction of local polaronic eigenstates |p > with hole numbers nh=0 ,1 ,2 per unit cell. The intercluster hoppings and interactions are exactly written in terms of Hubbard operators Xfp q=|p >polaronic eigenstates |p > at site f . The Fermi-type single-electron quasiparticle dispersion and spectral weight are calculated for the undoped antiferromagnetic parent insulator like La2CuO4 . The quasiparticle dispersion of Hubbard polarons is determined by a hybridization of the Hubbard fermion subbands with local Franck-Condon resonances so the main polaronic effect of the quasiparticle band structure is a splitting of the Hubbard bands on the number of Hubbard polaron subbands. Increasing of the EPI constant results in an increase of splitting, decrease of the subband width, transfer of the spectral weight to high-energy multiphonon excitations, and subsequent localization of the charge carriers. Herewith, the effect of such renormalization for the conduction band and the valence one differs depending on the ratio of the diagonal and off-diagonal EPI. In the framework of the GTB method, the Franck-Condon broadening of the spectral function of polaronic excitations is also reproduced for strongly correlated systems with strong electron-phonon interaction.
Exciton dynamics in perturbed vibronic molecular aggregates
Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.
2015-01-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
NASA Astrophysics Data System (ADS)
M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai
2016-04-01
In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.
Zeković, Slobodan; Ivić, Zoran
2009-01-01
The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.
Polaronic effects on diamagnetic susceptibility of a hydrogenic donor in nanostructures
NASA Astrophysics Data System (ADS)
Jeice, A. R.; Jayam G., Sr.; Wilson, K. S. J.
2016-07-01
The binding energy and diamagnetic susceptibility of a hydrogenic donor in nanostructures like quantum well, quantum wire and quantum dot have been calculated for the finite and infinite barrier square well potential and are computed using variational technique. The binding energy of cubic nanostructures formed by GaAs/Ga1- x Al x As has also been obtained using conduction band non-parabolicity and polaronic correction. Our results demonstrate that the effect of polaronic mass and band non-parabolicity which exhibits effective binding energy and diamagnetic susceptibility for the nanostructures having narrow width sizes and it is not significant to the low dimensional nanostructures.
Evidence for Light-Induced Hole Polarons in LiNbO3
NASA Astrophysics Data System (ADS)
Herth, P.; Granzow, T.; Schaniel, D.; Woike, Th.; Imlau, M.; Krätzig, E.
2005-08-01
Transient light-induced absorption in LiNbO3 is observed in the blue-green spectral range after pulsed illumination with 532 nm. Its buildup and decay in Fe-doped LiNbO3 is satisfactorily described by a sum of two stretched exponential functions. For undoped LiNbO3, however, only one stretched exponential decay is observed. These experimental results are explained by the formation of both small Nb4+Li electron polarons and O- hole polarons. The mechanism is discussed on the basis of a proposed band scheme.
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; ...
2016-02-09
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately –230 μeV T–1 (g-factor ≃–4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radiimore » of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). Lastly, these results highlight the utility of high magnetic fields for understanding new two-dimensional materials.« less
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla
NASA Astrophysics Data System (ADS)
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; Kono, Junichiro; Crooker, Scott A.
2016-02-01
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 μeV T-1 (g-factor ~=-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.
Bright and dark excitons in semiconductor carbon nanotubes
Tretiak, Sergei
2008-01-01
We report electronic structure calculations of finite-length semiconducting carbon nanotubes using the time dependent density functional theory (TD-DFT) and the time dependent Hartree Fock (TD-HF) approach coupled with semiempirical AM1 and ZINDO Hamiltonians. We specifically focus on the energy splitting, relative ordering, and localization properties of the optically active (bright) and optically forbidden (dark) states from the lowest excitonic band of the nanotubes. These excitonic states are very important in competing radiative and non-radiative processes in these systems. Our analysis of excitonic transition density matrices demonstrates that pure DFT functionals overdelocalize excitons making an electron-hole pair unbound; consequently, excitonic features are not presented in this method. In contrast, the pure HF and A111 calculations overbind excitons inaccurately predicting the lowest energy state as a bright exciton. Changing AM1 with ZINDO Hamiltonian in TD-HF calculations, predicts the bright exciton as the second state after the dark one. However, in contrast to AM1 calculations, the diameter dependence of the excitation energies obtained by ZINDO does not follow the experimental trends. Finally, the TD-DFT approach incorporating hybrid functions with a moderate portion of the long-range HF exchange, such as B3LYP, has the most generality and predictive capacity providing a sufficiently accurate description of excitonic structure in finite-size nanotubes. These methods characterize four important lower exciton bands. The lowest state is dark, the upper band is bright, and the two other dark and nearly degenerate excitons lie in-between. Although the calculated energy splittings between the lowest dark and the bright excitons are relatively large ({approx}0.1 eV), the dense excitonic manifold below the bright exciton allows for fast non-radiative relaxation leasing to the fast population of the lowest dark exciton. This rationalizes the low
Free-exciton states in crystalline GaTe
NASA Astrophysics Data System (ADS)
Wan, J. Z.; Brebner, J. L.; Leonelli, R.
1995-12-01
Polarized properties of both the singlet and triplet ground exciton states in the photoluminescence and transmission spectra of crystalline GaTe are explained based on the possible symmetry properties of the energy band edge of GaTe. Some experimental results about excited exciton states in GaTe are presented and discussed. The energy positions of exciton series in GaTe follow the three-dimensional direct allowed Wannier exciton formula just as in the the other III-VI layered compounds of GaSe and InSe. The nonthermalized, ``hot'' nature of excitons inside GaTe under higher optical excitation intensities is also discussed.
Exciton dynamics in a single layer MoS2
NASA Astrophysics Data System (ADS)
Kim, Jonghwan; Hong, Xiaoping; Shi, Sufei; Jin, Chenhao; Sun, Yinghui; Wang, Feng
2014-03-01
In a low dimensional semiconductor, exciton plays a crucial role in the optical property. Recently, a single layer of MoS2 has attracted significant attention due to its unique excitonic features. For example, exciton in MoS2 is predicted to have order of magnitude larger binding energy than conventional direct band gap material. For deeper understanding on such properties, however, it is important to understand how exciton is formed and decays in time domain. Our work on exciton dynamics in MoS2 by pump probe spectroscopy will be presented with control of both power and wavelength.
Exciton-plasmaritons in graphene/semiconductor structures
NASA Astrophysics Data System (ADS)
Velizhanin, Kirill A.; Shahbazyan, Tigran V.
2014-08-01
We study strong coupling between plasmons in monolayer charge-doped graphene and excitons in a narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that the Coulomb interaction between excitons and plasmons results in mixed states described by a Hamiltonian similar to that for exciton-polaritons and derive the exciton-plasmon coupling constant that depends on system parameters. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach values of up to 50-100 meV.
Strong exciton-plasmon coupling in graphene-semiconductor structures
NASA Astrophysics Data System (ADS)
Velizhanin, Kirill A.; Shahbazyan, Tigran V.
2014-09-01
We study strong coupling between plasmons in monolayer charge-doped graphene and excitons in a narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that the Coulomb interaction between excitons and plasmons result in mixed states described by a Hamiltonian similar to that for exciton-polaritons and derive the exciton-plasmon coupling constant that depends on system parameters. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach values of up to 50 - 100 meV.
Strong exciton-plasmon coupling in graphene-semiconductor structures
NASA Astrophysics Data System (ADS)
Shahbazyan, Tigran V.; Velizhanin, Kirill A.
2015-03-01
We study strong coupling between plasmons in monolayer doped graphene and excitons in narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that Coulomb interactions between excitons and plasmons result in mixed states described by Hamiltonian similar to one describing exciton-polaritons and derive the exciton-plasmon coupling parameter that depends on system geometry and material properties. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach 100 meV for small graphene and quantum well separations.
NASA Astrophysics Data System (ADS)
Li, Sheng; Tong, Guo-Ping; George, Thomas F.
2009-10-01
After a hole injection layer is inserted into a polymer light-emitting diode (PLED), the positive polaron is easily injected into the polymer layer. An applied electrical field drives the positive polaron to approach and collide with the nonemissive triplet exciton. The collision between the positive polaron and neutral triplet exciton induces the exciton to emit light. Based on this physical picture, the maximum quantum efficiency of the PLEDs, 61.6%, is consistent with the experimental result of 60%. With the help of an external magnetic field, a structure of PLEDs with high electroluminescent efficiency is designed.
Polaron dynamics with off-diagonal coupling: beyond the Ehrenfest approximation.
Huang, Zhongkai; Wang, Lu; Wu, Changqin; Chen, Lipeng; Grossmann, Frank; Zhao, Yang
2017-01-04
Treated traditionally by the Ehrenfest approximation, the dynamics of a one-dimensional molecular crystal model with off-diagonal exciton-phonon coupling is investigated in this work using the Dirac-Frenkel time-dependent variational principle with the multi-D2Ansatz. It is shown that the Ehrenfest method is equivalent to our variational method with the single D2Ansatz, and with the multi-D2Ansatz, the accuracy of our simulated dynamics is significantly enhanced in comparison with the semi-classical Ehrenfest dynamics. The multi-D2Ansatz is able to capture numerically accurate exciton momentum probability and help clarify the relation between the exciton momentum redistribution and the exciton energy relaxation. The results demonstrate that the exciton momentum distributions in the steady state are determined by a combination of the transfer integral and the off-diagonal coupling strength, independent of the excitonic initial conditions. We also probe the effect of the transfer integral and the off-diagonal coupling on exciton transport in both real and reciprocal space representations. Finally, the variational method with importance sampling is employed to investigate temperature effects on exciton transport using the multi-D2Ansatz, and it is demonstrated that the variational approach is valid in both low and high temperature regimes.
Morphology effects of self-assembled quantum dots on the energy spectrum of magneto-excitons
NASA Astrophysics Data System (ADS)
Villamil, Pablo; Sierra Ortega, José
2014-02-01
In this paper we analyze the changes experienced by the energy spectra of a confined exciton in type II semiconductor quantum dots, considering the quantum dot as a possible functional part that, in the future devices, can be applied in spintronics, optoelectronics, and quantum information technologies. We studied the lowest energy states of an exciton (X) confined in type II InP/GaInP self-assembled quantum dot (SAQDs), with axial symmetry in the presence of a uniformly applied magnetic field in the growth direction. In our model, it is considered that the electron is located within the point of InP and the hole is in the GaInP barrier. The solution of the Schrödinger equation for this system is obtained by a variational separation process of variables in the adiabatic approximation limit and within the effective mass approximation. We study the energy levels associated with the electron and the hole, and the energy of the exciton. Due to the axial symmetry of the problem the z component of the total orbital angular momentum, Lz=le+lh, is preserved and the exciton states are classified according to the values of this component. Quantum dots have a finite and variable thickness, with the purpose of analyzing the effects related to the variation of the morphology and the presence of a wet layer.
Revealing the nature of excitons in liquid exfoliated monolayer tungsten disulphide
NASA Astrophysics Data System (ADS)
Kłopotowski, Ł.; Backes, C.; Mitioglu, A. A.; Vega-Mayoral, V.; Hanlon, D.; Coleman, J. N.; Ivanov, V. Y.; Maude, D. K.; Plochocka, P.
2016-10-01
Transition metal dichalcogenides (TMD) hold promise for applications in novel optoelectronic devices. There is therefore a need for materials that can be obtained in large quantities and with well understood optical properties. In this report, we present thorough photoluminescence (PL) investigations of monolayer tungsten disulphide obtained via liquid phase exfoliation. As shown by microscopy studies, the exfoliated nanosheets have dimensions of tens of nanometers and thickness of 2.5 monolayers on average. The monolayer content is about 20%. Our studies show that at low temperature the PL is dominated by excitons localized on nanosheet edges. As a consequence, the PL is strongly sensitive to the environment and exhibits an enhanced splitting in magnetic field. As the temperature is increased, the excitons are thermally excited out of the defect states and the dominant transition is that of the negatively charged exciton. Furthermore, upon excitation with a circularly polarized light, the PL retains a degree of polarization reaching 50% and inherited from the valley polarized photoexcited excitons. The studies of PL dynamics reveal that the PL lifetime is on the order of 10 ps, which is probably limited by non-radiative processes. Our results underline the potential of liquid exfoliated TMD monolayers in large scale optoelectronic devices.
Multiple exciton generation in colloidal silicon nanocrystals.
Beard, Matthew C; Knutsen, Kelly P; Yu, Pingrong; Luther, Joseph M; Song, Qing; Metzger, Wyatt K; Ellingson, Randy J; Nozik, Arthur J
2007-08-01
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.
(Gene sequencing by scanning molecular exciton microscopy)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Spin-triplet negatively charged excitons in GaAs quantum wells
NASA Astrophysics Data System (ADS)
Shields, A. J.; Pepper, M.; Simmons, M. Y.; Ritchie, D. A.
1995-09-01
We observe magnetic-field-induced transitions in the interband optical spectra of GaAs quantum wells with a small excess electron density. Their strengthening with excess electron density, in addition to their light polarization dependence, demonstrate that these correspond to (excited) spin-triplet states of the negatively charged exciton. The second-electron binding energy of both singlet and triplet X- strengthens with field.
Warping and interactions of vortices in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Toledo-Solano, M.; Mora-Ramos, M. E.; Figueroa, A.; Rubo, Y. G.
2014-01-01
We investigate the properties of the vortex singularities in two-component exciton-polariton condensates in semiconductor microcavities in the presence of transverse-electric-transverse-magnetic (TE-TM) splitting of the lower polariton branch. This splitting does not change qualitatively the basic (lemon and star) geometry of half-quantum vortices (HQVs), but results in warping of both the polarization field and the supercurrent streamlines around these entities. The TE-TM splitting has a pronounced effect on the HQV energies and interactions, as well as on the properties of integer vortices, especially on the energy of the hedgehog polarization vortex. The energy of this vortex can become smaller than the energies of HQVs. This leads to modification of the Berezinskii-Kosterlitz-Thouless transition from the proliferation of half-vortices to the proliferation of hedgehog-based vortex molecules.
Light-hole exciton in a nanowire quantum dot
NASA Astrophysics Data System (ADS)
Jeannin, Mathieu; Artioli, Alberto; Rueda-Fonseca, Pamela; Bellet-Amalric, Edith; Kheng, Kuntheak; André, Régis; Tatarenko, Serge; Cibert, Joël; Ferrand, David; Nogues, Gilles
2017-01-01
Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state-based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient geometry for electrical contacting. Having a complete determination and full control of their emission properties is one of the key goals of nanoscience researchers. Here we use strain as a tool to create in a single magnetic nanowire quantum dot a light-hole exciton, an optically active quasiparticle formed from a single electron bound to a single light hole. In this frame, we provide a general description of the mixing within the hole quadruplet induced by strain or confinement. A multi-instrumental combination of cathodoluminescence, polarization-resolved Fourier imaging, and magneto-optical spectroscopy, allows us to fully characterize the hole ground state, including its valence band mixing with heavy-hole states.
Excitons in Cuprous Oxide: Photoionization and Other Multiphoton Processes
NASA Astrophysics Data System (ADS)
Frazer, Nicholas Laszlo
In cuprous oxide (Cu2O), momentum from the absorption of two infrared photons to make an orthoexciton is conserved and detected through the photon component of a resulting mixed exciton/photon (quadrupole exciton polariton) state. I demonstrated that this process, which actually makes the photon momentum more precisely defined, is disrupted by photoionization of excitons. Some processes are known to affect exciton propagation in both the pump and exciton stages, such as phonon emission, exciton-exciton (Auger) scattering, and third harmonic generation. These processes alone were not able to explain all observed losses of excitons or all detected scattering products, which lead me to design an optical pump-probe experiment to measure the exciton photoionization cross section, which is (3.9+/-0.2) x 10-22 m2. This dissertation describes the synthesis of cuprous oxide crystals using oxidation of copper, crystallization from melt with the optical floating zone method, and annealing. The cuprous oxide crystals were characterized using time and space resolved luminescence, leading to the discovery of new defect properties. Selection rules and overall efficiency of third harmonic generation in these crystals were characterized. Exciton photoionization was demonstrated through the depletion of polariton luminescence by an optical probe, the production of phonon linked luminescence as a scattering product, temporal delay of the probe, and time resolved luminescence. The results are integrated with the traditional dynamical model of exciton densities. An additional investigation of copper/cuprous oxide/gold photovoltaic devices is appended.
Coupled exciton-photon Bose condensate in path integral formalism
NASA Astrophysics Data System (ADS)
Elistratov, A. A.; Lozovik, Yu. E.
2016-03-01
We study the behavior of exciton polaritons in an optical microcavity with an embedded semiconductor quantum well. We use a two-component exciton-photon approach formulated in terms of path integral formalism. In order to describe spatial distributions of the exciton and photon condensate densities, the two coupled equations of the Gross-Pitaevskii type are derived. For a homogeneous system, we find the noncondensate photon and exciton spectra, calculate the coefficients of transformation from the exciton-photon basis to the lower-upper polariton basis, and obtain the exciton and photon occupation numbers of the lower and upper polariton branches for nonzero temperatures. For an inhomogeneous system, the set of coupled equations of the Bogoliubov-de Gennes type is derived. The equations govern the spectra and spatial distributions of noncondensate photons and excitons.
Exciton strings in an organic charge-transfer crystal
NASA Astrophysics Data System (ADS)
Kuwata-Gonokami, M.; Peyghambarian, N.; Meissner, K.; Fluegel, B.; Sato, Y.; Ema, K.; Shimano, R.; Mazumdar, S.; Guo, F.; Tokihiro, T.; Ezaki, H.; Hanamura, E.
1994-01-01
COLLECTIVE excitations resulting from many-body Coulomb interactions have been studied extensively in the solid state1: for example, the exchange interaction between the electrons in two excitons (bound electron-hole pairs) can bind the excitons together, forming a biexciton. At the other extreme, if the number of excitons is sufficiently large (~106), they can condense into a degenerate 'liquid' phase known as an electron-hole drop. But in conventional semiconductors, intermediate bound states, consisting of more than two excitons, are not formed. We show here, both theoretically and experimentally, that bound states of multiple excitons can form in the organic charge-transfer solid anthracene-(pyromellitic acid dianhydride). Coulomb interactions along the one-dimensional stacks of this material can stabilize trains of several charge-transfer excitons, and we refer to the resulting collective excitations as exciton strings.
Polaron pair mediated triplet generation in polymer/fullerene blends
Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.
2015-01-01
Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188
Panda, J.; Sasmal, I.; Nath, T. K. E-mail: tapnath@gmail.com
2016-03-15
In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn{sup 2+} state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.
Characterization of Macroscopic Ordering in Exciton Rings
NASA Astrophysics Data System (ADS)
Yang, Sen; Levitov, L. S.; Simons, B. D.; Gossard, A. C.
2005-03-01
Recently observed complex PL patterns in 2D QW structures exhibit the inner [1,3] and the outer [1-4] exciton rings, localized bright spots [1,3], and the macroscopically ordered exciton state (MOES) [1,3]. The latter appears at the outer ring via its fragmentation into a periodic array of aggregates. While the gross features have been explained within classical framework, attributing the inner rings to nonradiative exciton transport and cooling [1], and the outermost rings and the bright spots to macroscopic charge separation [3,4], the origin of the MOES remains unidentified [5]. Here, for the first time, we report experiments demonstrating the exciton energy modulation over the MOES as well as the phase diagram of MOES in exciton density and temperature coordinates. The experiments shed new light on the dynamical origin of MOES. Besides, we present the studies of dynamical processes within MOES including the observation of aggregate instabilities and bifurcations that point to the spontaneous character of the instability.[1] L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002). [2] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature 418, 754 (2002). [3] L.V. Butov, L.S. Levitov, A.V. Mintsev, B.D. Simons, A.C. Gossard, D.S. Chemla PRL 92, 117404 (2004). [4] R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K. West, Y. Liu, S. Denev PRL 92, 117405 (2004). [5] L.S. Levitov, B.D. Simons, L.V. Butov, cond-mat/0403377.
Dynamics of exciton transfer in coupled polymer chains
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Liu, X. J.; Sun, Z.; An, Z.
2013-05-01
The dynamics of singlet and triplet exciton transfer in coupled polymer chains are investigated within the Su-Schrieffer-Heeger+Pariser-Parr-Pople model including both electron-phonon (e-p) coupling and electron-electron (e-e) interactions, using a multi-configurational time-dependent Hartree-Fock dynamic method. In order to explain the processes involved, the effects of on-site and long-range e-e interactions on the locality of the singlet and triplet excitons are first investigated on an isolated chain. It is found that the locality of the singlet exciton decreases, while the locality of the triplet exciton increases with an increase in the on-site e-e interactions. On the other hand, an increase in the long-range e-e interaction results in a more localized singlet exciton and triplet exciton. In coupled polymer chains, we then quantitatively show the yields of singlet and triplet exciton transfer products under the same interchain coupling. It is found that the yield of singlet interchain excitons is much higher than that of triplet interchain excitons, that is to say, singlet exciton transfer is significantly easier than that for triplet excitons. This results from the fact that the singlet exciton is more delocalized than the triplet exciton. In addition, hopping of electrons with opposite spins between the coupled chains can facilitate the transfer of singlet excitons. The results are of great significance for understanding the photoelectric conversion process and developing high-power organic optoelectronic applications.
Dichotomy in ultrafast atomic dynamics as direct evidence of polaron formation in manganites
NASA Astrophysics Data System (ADS)
Li, Junjie; Yin, Wei-Guo; Wu, Lijun; Zhu, Pengfei; Konstantinova, Tatianna; Tao, Jing; Yang, Junjie; Cheong, Sang-Wook; Carbone, Fabrizio; Misewich, James A.; Hill, John P.; Wang, Xijie; Cava, Robert J.; Zhu, Yimei
2016-11-01
Polaron transport, in which electron motion is strongly coupled to the underlying lattice deformation or phonons, is crucial for understanding electrical and optical conductivities in many solids. However, little is known experimentally about the dynamics of individual phonon modes during polaron motion. It remains elusive whether polarons have a key role in materials with strong electronic correlations. Here we report the use of a new experimental technique, ultrafast MeV-electron diffraction, to quantify the dynamics of both electronic and atomic motions in the correlated LaSr2Mn2O7. Using photoexcitation to set the electronic system in motion, we find that Jahn-Teller-like O, Mn4+ and La/Sr displacements dominate the lattice response and exhibit a dichotomy in behaviour—overshoot-and-recovery for one sublattice versus normal behaviour for the other. This dichotomy, attributed to slow electronic relaxation, proves that polaron transport is a key process in doped manganites. Our technique promises to be applicable for specifying the nature of electron-phonon coupling in complex materials.
NASA Astrophysics Data System (ADS)
Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp
2016-10-01
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.
Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp
2016-01-01
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices. PMID:27731421
Polaron effect on the optical rectification in spherical quantum dots with electric field
NASA Astrophysics Data System (ADS)
Feng, Zhen-Yu; Yan, Zu-Wei
2016-10-01
The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-x Cd x Se/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field. Project supported by the National Natural Science Foundation of China (Grant No. 11364028), the Major Projects of the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2013ZD02), and the Project of “Prairie Excellent” Engineering in Inner Mongolia Autonomous Region, China.
Generalized Hartree-Fock-Bogoliubov description of the Fröhlich polaron
NASA Astrophysics Data System (ADS)
Kain, Ben; Ling, Hong Y.
2016-07-01
We adapt the generalized Hartree-Fock-Bogoliubov (HFB) method to an interacting many-phonon system free of impurities. The many-phonon system is obtained from applying the Lee-Low-Pine (LLP) transformation to the Fröhlich model which describes a mobile impurity coupled to noninteracting phonons. We specialize our general HFB description of the Fröhlich polaron to Bose polarons in quasi-one-dimensional cold-atom mixtures. The LLP-transformed many-phonon system distinguishes itself with an artificial phonon-phonon interaction which is very different from the usual two-body interaction. We use the quasi-one-dimensional model, which is free of an ultraviolet divergence that exists in higher dimensions, to better understand how this unique interaction affects polaron states and how the density and pair correlations inherent to the HFB method conspire to create a polaron ground state with an energy in good agreement with and far closer to the prediction from Feynman's variational path integral approach than mean-field theory where HFB correlations are absent.
Emin, David
2016-01-28
Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy.
Polaron dynamics in two types of long oligothiophenes revealed by Q - and X -band ESR measurements
NASA Astrophysics Data System (ADS)
Kanemoto, Katsuichi; Furukawa, Ko; Negishi, Nobukazu; Aso, Yoshio; Otsubo, Tetsuo
2007-10-01
The polaron dynamics has been investigated through the X - and Q -band ESR measurements for two types of iodine-doped long oligothiophenes, the 20-mer with octyl substituents (o-20T) and the 16-mer with hexyl substituents (h-16T) . o-20T , used as a model compound of conjugated polymers with crystalline grains, gives anisotropic ESR spectra attributed to g anisotropy at low temperatures. The anisotropic spectra are found to be brought by polarons moving within the crystalline grains consisting of parallel chains. The anisotropy is shown to decrease with increasing temperature. This provides definite evidence that the polarons transfer among some grains by the assist of temperature. In contrast, h-16T , used as a model of the polymers with amorphous morphology, gives almost isotropic ESR spectra even in the Q -band measurement. This feature of h-16T is explained to be caused by a rapid interchain transfer of polarons. Spectral simulations performed for obtained spectra reveal that the ESR linewidth in the Q -band measurement is larger than that in the X band for both oligothiophenes. The difference of the linewidth is analyzed by a simplified motional narrowing model in order to draw the information of polaron dynamics. Analyses for o-20T show that the intergrain motion almost follows the variable range hopping model. The interchain motion in h-16T is found to have a much weaker temperature dependence than the intergrain motion in o-20T . This result suggests that the interchain dynamics of h-16T revealed by the ESR technique includes a variety of processes of motion.
Etzold, Fabian; Howard, Ian A; Mauer, Ralf; Meister, Michael; Kim, Tae-Dong; Lee, Kwang-Sup; Baek, Nam Seob; Laquai, Frédéric
2011-06-22
that then contribute to the extracted photocurrent. Despite the high yield of free charges the power conversion efficiency of devices remains moderate at about 3.0%. This is largely a consequence of the low fill factor of devices. We relate the low fill factor to significant energetic disorder present in the pristine polymer and in the polymer:fullerene blends. In the former we observed a significant spectral relaxation of exciton emission (fluorescence) and in the latter of the polaron-induced ground-state bleaching, implying that the density of states (DOS) for both excitons and charge carriers is significantly broadened by energetic disorder in pristine PCDTBT and in its blend with PCBM. This disorder leads to charge trapping in solar cells, which in turn causes higher carrier concentrations and more significant nongeminate recombination. The nongeminate recombination has a significant impact on the IV curves of devices, namely its competition with charge carrier extraction causes a stronger bias dependence of the photocurrent of devices, in turn leading to the poor device fill factor. In addition our results demonstrate the importance of ultrafast free carrier generation and suppression of interfacial CT-state formation and question the applicability of the often used Braun-Onsager model to describe the bias dependence of the photocurrent in polymer:fullerene organic photovoltaic devices.
Final Report, DOE grant DE-FG02-99ER45780, "Indirect Excitons in Coupled Quantum Wells"
Snoke, david W.
2014-07-21
The is the final technical report for this project, which was funded by the DOE from 1999 to 2012. The project focused on experimental studies of spatially indirect excitons in coupled quantum wells, with the aim of understanding the quantum physics of these particles, including such effects as pattern formation due to electron-hole charge separation, the Mott plasma-insulator transition, luminescence up-conversion through field-assisted tunneling, luminescence line shifts due to many-body renormalization and magnetic field effects on tunneling, and proposed effects such as Bose-Einstein condensation of indirect excitons and phase separation of bright and dark indirect excitons. Significant results are summarized here and the relation to other work is discussed.
A new class of collective excitations: Exciton strings
NASA Astrophysics Data System (ADS)
Mazumdar, S.; Guo, F.; Meissner, K.; Fluegel, B.; Peyghambarian, N.
1996-06-01
Optical excitation in a strongly neutral quasi-one-dimensional mixed-stack charge-transfer solid results in an exciton state, in which the electron and the hole are bound by electrostatic Coulomb interactions that are large compared to the one-electron hopping. We present a joint theoretical-experimental demonstration of a new class of collective excitations, multiexcitons or exciton strings, consisting of a string of several (more than two) bound excitons, in a prototype neutral charge-transfer solid. The stability of the multiexciton states arise from the combined effects of one dimensionality and strong Coulomb interactions. Theoretically, we show that in narrow band one-dimensional semiconductors with long range Coulomb interactions, the occurrence of stable 2-exciton string (biexciton) necessarily implies stable higher multiexcitons. Experimentally, evidence for the multiexciton strings is demonstrated by femtosecond pump-probe spectroscopy of anthracene pyromellitic acid dianhydride. Excellent qualitative agreement is found between the calculated and the measured differential transmission spectra. Photoinduced absorptions to the 2-exciton string at low pump intensity and to the 3-exciton string at high pump intensity are observed, in agreement with the theory of excited state absorption. The 2-exciton string is confirmed also by a direct two-photon absorption measurement. The binding energies of the 2-exciton and the 3-exciton strings are obtained from the experimental data. The larger binding energy of the 3-exciton is in agreement with theory.
Exciton radiative lifetime in transition metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B.; Marie, X.
2016-05-01
We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measure τrad0=1.8 ±0.2 ps at T =7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WS e2 monolayers. Our detailed analysis suggests the following scenario: at low temperature (T ≲50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.
Fine structure of the exciton electroabsorption in semiconductor superlattices
NASA Astrophysics Data System (ADS)
Monozon, B. S.; Schmelcher, P.
2017-02-01
Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.
Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions
NASA Astrophysics Data System (ADS)
Henderson, Mark
The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of
Taming excitons in II-VI semiconductor nanowires and nanobelts
NASA Astrophysics Data System (ADS)
Xu, Xinlong; Zhang, Qing; Zhang, Jun; Zhou, Yixuan; Xiong, Qihua
2014-10-01
Excitons are one of the most important fundamental quasi-particles, and are involved in a variety of processes forming the basis of a wide range of opto-electronic and photonic devices based on II-VI semiconductor nanowires and nanobelts, such as light-emitting diodes, photovoltaic cells, photodetectors and nanolasers. A clear understanding of their properties and unveiling the potential engineering for excitons is of particular importance for the design and optimization of nanoscale opto-electronic and photonic devices. Herein, we present a comprehensive review on discussing the fundamental behaviours of the excitons in one-dimensional (1D) II-VI semiconductor nanomaterials (nanowires and nanobelts). We will start with a focus on the unique properties (origin, generation, etc) and dynamics of excitons and exciton complexes in the II-VI semiconductor nanowires and nanobelts. Then we move to the recent progress on the excitonic response in 1D nanomaterials and focus on the tailoring and engineering of excitonic properties through rational controlling of the physical parameters and conditions, intrinsically and extrinsically. These include (1) exciton-exciton interaction, which is important for 1D nanomaterial nanolasing; (2) exciton-phonon interaction, which has interesting applications for laser cooling; and (3) exciton-plasmon interaction, which is the cornerstone towards the realization of plasmonic lasers. The potential of electric field, morphology and size control for excitonic properties is also discussed. Unveiling and controlling excitonic properties in II-VI semiconductor nanowires and nanobelts would promote the development of 1D nanoscience and nanotechnology.
Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes
Neumann, M. D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T. A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R.
2011-07-01
The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg{sub x}Zn{sub 1-x}O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model.
NASA Astrophysics Data System (ADS)
Hoshi, Yusuke; Kuroda, Takashi; Okada, Mitsuhiro; Moriya, Rai; Masubuchi, Satoru; Watanabe, Kenji; Taniguchi, Takashi; Kitaura, Ryo; Machida, Tomoki
2017-06-01
We investigates exciton-exciton annihilation (EEA) in tungsten disulfide (W S2) monolayers encapsulated by hexagonal boron nitride (hBN). It is revealed that decay signals observed by time-resolved photoluminescence (PL) are not strongly dependent on the exciton densities of hBN-encapsulated W S2 monolayers (W S2/hBN ) . In contrast, the sample without the bottom hBN layer (W S2/Si O2) exhibits a drastic decrease of decay time with increasing exciton density due to the appearance of a rapid PL decay component, signifying nonradiative EEA-mediated recombination. Furthermore, the EEA rate constant of W S2/hBN was determined as (6.3 ±1.7 ) ×10-3c m2s-1 , being about 2 orders of magnitude smaller than that of W S2/Si O2 . Thus, the observed EEA rate reduction played a key role in enhancing luminescence intensity at high exciton densities in the W S2 monolayer.
Two-dimensional coherent spectroscopy of excitons, biexcitons, and exciton-polaritons
NASA Astrophysics Data System (ADS)
Bristow, Alan D.
2016-10-01
Semiconductors systems exhibiting excitonic properties are discussed in terms of their coherent response, which is extracted using two-dimensional coherent spectroscopy. This control method allows for separation of quantum pathways that comprise the optical response, such as interactions between excitons, their dephasing rates, the effects of many-body interactions and the role of structure on the microscopic electronic environment. Additional controls, such as polarization can be used to further distinguish biexcitons and suppress many-body interactions. These result are compared and contrasted with those from a semiconductor microcavity where the excitons form polaritonic modes due to normal-mode splitting. Rephrasing spectra map the detuning dependence of the exciton-polariton branches. Increasing the detuning shifts all features to higher energy and the expected anti-crossing is observed. An isolated biexciton is seen only at negative detuning, separated by a binding energy. For positive detuning, the spectral weight of the off-diagonal features swap, as the lower polariton branch and biexciton come into resonance. This indicates that the off-diagonal features are sensitive to the interactions of the exciton-polaritons and other resonances in the system.