Beyond clay: Towards an improved set of variables for predicting soil organic matter content
Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota
2018-01-01
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
NASA Astrophysics Data System (ADS)
Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.
2011-12-01
There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature, changes in catchment vegetation, such as forest-line or shrub advancement affecting carbon and nutrient transport into lakes, act on considerably longer time-scales. This study therefore emphasizes the recurring challenge for ecological climate change studies related to species interactions within and across ecosystem compartments and the response time of ecosystems.
ERIC Educational Resources Information Center
Avant, Tamara Spangler; Gazelle, Heidi; Faldowski, Richard
2011-01-01
This study tests the ability of classroom emotional climate to moderate anxious solitary children's risk for peer exclusion over a 3-year period from 3rd through 5th grade. Six hundred eighty-eight children completed peer nominations for anxious solitude and peer exclusion in the fall and spring semesters of each grade, and observations of…
Perceived climate in physical activity settings.
Gill, Diane L; Morrow, Ronald G; Collins, Karen E; Lucey, Allison B; Schultz, Allison M
2010-01-01
This study focused on the perceived climate for LGBT youth and other minority groups in physical activity settings. A large sample of undergraduates and a selected sample including student teachers/interns and a campus Pride group completed a school climate survey and rated the climate in three physical activity settings (physical education, organized sport, exercise). Overall, school climate survey results paralleled the results with national samples revealing high levels of homophobic remarks and low levels of intervention. Physical activity climate ratings were mid-range, but multivariate analysis of variation test (MANOVA) revealed clear differences with all settings rated more inclusive for racial/ethnic minorities and most exclusive for gays/lesbians and people with disabilities. The results are in line with national surveys and research suggesting sexual orientation and physical characteristics are often the basis for harassment and exclusion in sport and physical activity. The current results also indicate that future physical activity professionals recognize exclusion, suggesting they could benefit from programs that move beyond awareness to skills and strategies for creating more inclusive programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Exclusive License: The Development of Modified T-cells for the Treatment of Multiple Myeloma AGENCY... Targeting B-cell Maturation Antigen'' [HHS Ref. E-040-2012/0-US-01]. The patent rights in these inventions..., development, and manufacture of chimeric antigen receptor (CAR)-expressing human T-cells directed against B...
Patterns and biases in climate change research on amphibians and reptiles: a systematic review.
Winter, Maiken; Fiedler, Wolfgang; Hochachka, Wesley M; Koehncke, Arnulf; Meiri, Shai; De la Riva, Ignacio
2016-09-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species-study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians.
Patterns and biases in climate change research on amphibians and reptiles: a systematic review
2016-01-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species–study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians. PMID:27703684
Extra-Mediterranean refugia: The rule and not the exception?
2012-01-01
Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas. PMID:22953783
Rescue of the mouse DDK syndrome by parent-of-origin-dependent modifiers.
Ideraabdullah, Folami Y; Kim, Kuikwon; Pomp, Daniel; Moran, Jennifer L; Beier, David; de Villena, Fernando Pardo-Manuel
2007-02-01
When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.
U.S. Tuna Fisheries: a trifecta of sustainable practices at odds with climate change mitigation
NASA Astrophysics Data System (ADS)
McKuin, B.; Campbell, J. E.
2016-12-01
Environmental concerns have given rise to eco-label initiatives in the seafood industry and a shift to more sustainable fishing practices in the U.S. Currently, the greenhouse gas emissions of fisheries are being considered in the sustainability criteria of the consumer advocacy group Seafood Watch. We looked at sustainable practices employed by U.S. tuna fisheries and find the term "sustainably sourced" changes when climate forcing is added to the criteria. Specifically, there are three sustainable practices at odds with climate change mitigation: 1) the use of selective fishing gear reduces bycatch but increases fuel use; 2) fishing within exclusive economic zones is more equitable to coastal fishermen, and allows the high seas to serve as an ecological bank, but fishing within these regions means fisheries are subject to more stringent fuel sulfur laws thereby diminishing the cooling effects of sulfate aerosols and increasing climate forcing; and 3) removing sulfur from fuels improves air quality but there are added emissions from the refinery process. We used ship registry data, historical sulfur levels in fuels, gear-specific fishery fuel use data collected from the literature, historical gear-specific tuna landings data, and a range of global warming potentials to estimate the climate forcing of U.S. tuna fisheries over the last fifteen years. We found that for tuna caught within exclusive economic zones, the net fuel-related climate forcing has more than doubled over the last fifteen years. We also normalized the fuel-related climate forcing results to a unit of tuna protein and compared these results to other farmed sources of protein. We found that tuna caught within exclusive economic zones has the highest climate impact of all land-based protein sources considered, with the exception of beef. Our results can inform policy makers and consumer advocacy groups which is an important step in communicating the climate impact of dietary choices to consumers.
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hubs
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hub
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
Root cold hardiness and native distribution of subalpine conifers
Mark D. Coleman; Thomas M. Hinckley; Geoffrey McNaughton; Barbara A. Smit
1992-01-01
Root and needle cold hardiness were compared in seedlings of subalpine conifers to determine if differences existed among species originating from either cold continental climates or mild maritime climates. Abies amabilis (Dougl.) Carr. and Tsuga mertensiana (Bong.) Carr. are exclusively distributed in maritime environments,...
Listopad, Claudia M C S; Köbel, Melanie; Príncipe, Adriana; Gonçalves, Paula; Branquinho, Cristina
2018-01-01
Climate change and increasing socio-economic pressure is placing many ecosystems of high ecological and economic value at risk. This is particularly urgent in dryland ecosystems, such as the montado, a multifunctional savannah-like system heavily modeled by grazing. There is still an ongoing debate about the trade-offs between livestock grazing and the potential for ecosystem regeneration. While it is consensual that overgrazing hinders the development of the shrubs and trees in this system, the effects of undergrazing or grazing exclusion are unclear. This study provides the unique opportunity to study the impact of grazing on compositional and structural biodiversity by examining the ecological chronosequence in a long-term ecological research site, located in Portugal, where grazing exclusion was controlled for over 15years. As the threat of intensification persists, even in areas where climate shifts are evident, there is a critical need to understand if and how the montado might recover by removing grazing pressure. We evaluate succession on structural and compositional diversity after grazing pressure is removed from the landscape at 5, 10, and 15years post-cattle exclusion and contrast it with currently grazed plots. A LiDAR-derived structural diversity index (LHDI), a surrogate of ecosystem structure and function first developed for the pine-grassland woodland systems, is used to quantify the impact of grazing exclusion on structure and natural regeneration. The distribution of the vegetation, particularly those of the herbaceous and shrub strata (>10≤150cm), presents statistically significant changes. The LHDI closely mimics the compositional biodiversity of the shrubs, with an increase in diversity with increased years without grazing. Under present climate conditions, both shrub regeneration and the establishment of tree saplings were strongly promoted by grazing exclusion, which has important management implications for the long-term sustainability of montado systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Interacting effects of wildlife loss and climate on ticks and tick-borne disease.
Titcomb, Georgia; Allan, Brian F; Ainsworth, Tyler; Henson, Lauren; Hedlund, Tyler; Pringle, Robert M; Palmer, Todd M; Njoroge, Laban; Campana, Michael G; Fleischer, Robert C; Mantas, John Naisikie; Young, Hillary S
2017-09-13
Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens ( Coxiella burnetii and Rickettsia spp . ) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics. © 2017 The Author(s).
ERIC Educational Resources Information Center
Parsons, Carl
2009-01-01
The enquiries into police action in the Stephen Lawrence murder, the Macpherson report and the subsequent race relations legislation have altered the political, professional and wider social climate of debate on equality issues, including inequalities in minority ethnic exclusions. The paper analyses the meanings given to racism and institutional…
Educational Exclusion: Drop Out, Push Out, and School-to-Prison Pipeline among LGBTQ Youth
ERIC Educational Resources Information Center
Gay, Lesbian and Straight Education Network (GLSEN), 2016
2016-01-01
"Educational Exclusion: Drop Out, Push Out, and the School-to-Prison Pipeline among LGBTQ Youth" provides an in-depth look at the conditions that effectively push LGBTQ youth out of school and potentially into the criminal justice system. The report provides specific, real world guidance to address the hostile school climates and…
Zhang, Xiaofeng; Xu, Yi; Zhang, Qing; Cao, Kun; Mu, Xiuni
2016-09-15
A dual-task method for the simultaneous separation and purification of (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) from crude extract of green tea was established by size exclusion effect onto hydroquinone modified porous adsorbents. The results showed that hydroquinone modified porous adsorbents P4 provided the best separation power due to it has more porous structure and phenolic hydroxyl group. The adsorption-desorption behaviors of EGCG and CAF onto P4 adsorbents were investigated. Adsorption kinetics of EGCG and CAF results showed that the adsorption followed the pseudo-second-order kinetic model. The results also indicated that the equilibrium adsorption data best fit the Langmuir model. Meanwhile, EGCG and CAF were separated successfully onto P4 adsorbents packed columns in a gradient eluent process, and P4 adsorbents exhibited the size exclusion effect for small molecules CAF. Based on the phenolic hydroxyl group and size exclusion effect of P4 adsorbents, the high purity EGCG and CAF were obtained with 40% (v/v) ethanol eluent successively. The process fulfilled the task of simultaneous separation and purification of EGCG and CAF, and proved to be a promising basis for preparations of difficult to obtain active components that have similar polarity and different sizes of molecules and derived from the same natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Stochastic thermodynamics for Ising chain and symmetric exclusion process.
Toral, R; Van den Broeck, C; Escaff, D; Lindenberg, Katja
2017-03-01
We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.
76 FR 63763 - National Environmental Policy Act Implementing Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
...The U.S. Department of Energy (DOE or the Department) is revising its National Environmental Policy Act (NEPA) Implementing Procedures. The majority of the changes are being made to the categorical exclusion provisions. These revisions are intended to better align the Department's regulations, particularly its categorical exclusions, with DOE's current activities and recent experiences, and to update the provisions with respect to current technologies and regulatory requirements. DOE is establishing 20 new categorical exclusions and removing two categorical exclusion categories, one environmental assessment category, and three environmental impact statement categories. Other changes modify and clarify DOE's existing provisions.
Cache coherency without line exclusivity in MP systems having store-in caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomerene, J.H.; Puzak, T.R.; Rechtschaffen, R.N.
1983-11-01
By modifying the function of the storage control unit, a multiprocessor (MP) system having store-in caches is enabled to operate with the same versatility as an MP system having store-through caches, thereby eliminating the requirement for line exclusivity and greatly reducing the occurrence of cross-interrogates.
Restoring whitebark pine ecosystems in the face of climate change
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...
Energy and Climate Change Report Provides Options for the White House
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
A newly approved energy and climate change report prepared by the President's Council of Advisors on Science and Technology (PCAST) provides a menu of options for President Barack Obama to consider in dealing with climate change and includes components for a national climate preparedness strategy. The report was approved at a 15 March PCAST meeting in Washington, D. C., and is subject to final edits. It is the first report by the advisory council that focuses exclusively on climate, according to PCAST member Daniel Schrag, who provided a presentation about the document at the meeting.
NASA Astrophysics Data System (ADS)
Kovács, Attila; Unger, János; Gál, Csilla V.; Kántor, Noémi
2016-07-01
This study introduces new methodological concepts for integrating seasonal subjective thermal assessment patterns of people into the thermal components of two tourism climatological evaluation tools: the Tourism Climatic Index (TCI) and the Climate-Tourism/Transfer-Information-Scheme (CTIS). In the case of the TCI, we replaced the air temperature and relative humidity as the basis of the initial rating system with the physiologically equivalent temperature (PET)—a complex human biometeorological index. This modification improves the TCI's potential to evaluate the thermal aspects of climate. The major accomplishments of this study are (a) the development of a new, PET-based rating system and its integration into the thermal sub-indices of the TCI and (b) the regionalization of the thermal components of CTIS to reflect both the thermal sensation and preference patterns of people. A 2-year-long (2011-2012) thermal comfort survey conducted in Szeged, Hungary, from spring to autumn was utilized to demonstrate the implementation of the introduced concepts. We found considerable differences between the thermal perception and preference patterns of Hungarians, with additional variations across the evaluated seasons. This paper describes the proposed methodology for the integration of the new seasonal, perception-based, and preference-based PET rating systems into the TCI, and presents the incorporation of new PET thresholds into the CTIS. In order to demonstrate the utility of the modified evaluation tools, we performed case study climate analyses for three Hungarian tourist destinations. The additional adjustments introduced during the course of those analyses include the reduction of TCI's temporal resolution to 10-day intervals and the exclusion of nocturnal and winter periods from the investigation.
Myers, J; Young, T; Galloway, M; Manyike, P; Tucker, T
2011-11-01
Anthropogenic climate change and anticipated adverse impacts on human health as outlined by the Intergovernmental Panel on Climate Change (IPCC) are taken as given. A conceptual model for thinking about the spectrum of climate-related health risks ranging from distal and infrastructural to proximal and behavioural and their relation to the burden of disease pattern typical of sub-Saharan Africa is provided. The model provides a tool for identifying modifiable risk factors with a view to future research, specifically into the performance of interventions to reduce the impact of climate change.
Eric E. Knapp; Carl N. Skinner; Malcolm P. North; Becky L. Estes
2013-01-01
In many forests of the western US, increased potential for fires of uncharacteristic intensity and severity is frequently attributed to structural changes brought about by fire exclusion, past land management practices, and climate. Extent of forest change and effect on understory vegetation over time are not well understood, but such information is useful to forest...
Interactions between above- and belowground organisms modified in climate change experiments
NASA Astrophysics Data System (ADS)
Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren
2012-11-01
Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.
LOUNIBOS, L. P.; O'MEARA, G. F.; JULIANO, S. A.; NISHIMURA, N.; ESCHER, R. L.; REISKIND, M. H.; CUTWA, M.; GREENE, K.
2010-01-01
Within 2 yr of the arrival of the invasive container mosquito Aedes albopictus (Skuse), the previously dominant invasive mosquito Aedes aegypti (L.) disappeared from many Florida cemeteries. At some cemeteries, however, Ae. aegypti populations seem stable despite Ae. albopictus invasion. We sought to understand this variation in the outcome (exclusion, coexistence) of this invasion, given that previous experiments show that Ae. albopictus is the superior larval competitor. We tested experimentally the hypothesis that climate-dependent egg survivorship differs between exclusion and coexistence cemeteries and that differences in invasion outcome are associated with microclimate. Viability of eggs oviposited in the laboratory and suspended in vases at six cemeteries was significantly greater for Ae. aegypti than for Ae. albopictus, and greater in 2001 than in 2006. Cemeteries differed significantly in egg survivorship of Ae. albopictus, but not of Ae. aegypti, which is consistent with the hypothesis that Ae. albopictus suffers site-specific, climate-driven egg mortality that mitigates the competitive superiority of larval Ae. albopictus. Principal component (PC) analysis of microclimate records from vases during the experiments yielded three PCs accounting for >96% of the variance in both years of experiments. Multivariate analysis of variance of the three PCs revealed significant microclimate differences among the six cemeteries and between exclusion versus coexistence cemeteries. Stepwise logistic regression of egg survivorship versus microclimate PCs yielded significant fits for both species, and twice as much variance explained for Ae. albopictus as for Ae. aegypti in both years. Higher mortalities in 2006 were associated with high average daily maximum temperatures in vases, with lethal thresholds for both species at ≈40°C. From 1990 to 2007, vase occupancy by Ae. albopictus increased and that by Ae. aegypti decreased, with increasing seasonal precipitation at one well-sampled cemetery. Results support the hypothesis that locally variable climate-driven mortality of Ae. albopictus eggs contributes to patterns of exclusion of, or coexistence with, Ae. aegypti. PMID:20852732
USDA-ARS?s Scientific Manuscript database
The publication heretofore referred to as Er et al. (Er et al. 2013) conflicts with worldwide observations that citrus black spot (CBS) caused by Phyllosticta citricarpa occurs exclusively in climates with summer rainfall, i.e., high temperatures accompanied by high moisture levels. Surprisingly, E...
Relationship between organizational climate and empowerment of nurses in Hong Kong.
Mok, Esther; Au-Yeung, Betty
2002-05-01
The authors explore the relationship between organizational climate and empowerment among the nursing staff of a regional hospital in Hong Kong. The main purpose of the study was to apply the modified Spreitzer measure of empowerment in a hospital and to examine the relationship of organizational climate to perceptions of empowerment. From 658 questionnaires sent out, 331 nurses participated in the study with a response rate of 50.3%. Survey measures administered included the modified Litwin and Stringer Organizational Climate Questionnaire (LSOCQ) and the modified Spreitzer empowerment instrument. The relationships between organizational climate and empowerment were examined in a series of bivariate correlational analyses. The final section of the questionnaire asked the respondents to list three elements in the organizational climate that they perceived would further increase their feelings of empowerment. Exploratory factor analysis of the modified LSOCQ resulted in six factors: leadership, working harmony, challenge, recognition, teamwork and decision making. There was a positive correlation between organizational climate and psychological empowerment. Using multiple regression analysis, all the six derived climate factors significantly accounted for 44% of the variance. Among the six predicting factors, leadership and teamwork showed the most positive relationship with psychological empowerment. Responses from the open questions on perception of organizational climate that further enhance nurses' feelings of empowerment were categorized into eight areas. They include leadership, communication, working relationship, recognition, structure, training, teamwork and stress management. The study echoes previous studies in finding that organizational climate and, in particular, supportive leadership and teamwork are related to empowerment. The findings also suggest that the nurses in the study did not put much emphasis on the importance of participative decision making.
The global distribution of ecosystems in a world without fire.
Bond, W J; Woodward, F I; Midgley, G F
2005-02-01
This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.
Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder
2013-10-05
A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants under tropical climate. Copyright © 2013 Elsevier B.V. All rights reserved.
I predict that human-generated particles have modified clouds and cooled climate, somewhat masking the effect of greenhouse gases and that these particles have also modified the amount of sunlight reaching the ground, changing the thermodynamic cycles in the atmosphere. Wi...
Eskelinen, Anu; Kaarlejärvi, Elina; Olofsson, Johan
2017-01-01
Herbivory and nutrient limitation can increase the resistance of temperature-limited systems to invasions under climate warming. We imported seeds of lowland species to tundra under factorial treatments of warming, fertilization, herbivore exclusion and biomass removal. We show that warming alone had little impact on lowland species, while exclusion of native herbivores and relaxation of nutrient limitation greatly benefitted them. In contrast, warming alone benefitted resident tundra species and increased species richness; however, these were canceled by negative effects of herbivore exclusion and fertilization. Dominance of lowland species was associated with low cover of tundra species and resulted in decreased species richness. Our results highlight the critical role of biotic and abiotic filters unrelated to temperature in protecting tundra under warmer climate. While scarcity of soil nutrients and native herbivores act as important agents of resistance to invasions by lowland species, they concurrently promote overall species coexistence. However, when these biotic and abiotic resistances are relaxed, invasion of lowland species can lead to decreased abundance of resident tundra species and diminished diversity. © 2016 John Wiley & Sons Ltd.
Modified Kneser-Ney Smoothing of n-Gram Models
NASA Technical Reports Server (NTRS)
James, Frankie
2000-01-01
This report examines a series of tests that were performed on variations of the modified Kneser Ney smoothing model outlined in a study by Chen and Goodman. We explore several different ways of choosing and setting the discounting parameters, as well as the exclusion of singleton contexts at various levels of the model.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... published on September 26, 2012, modifying equipment and operational requirements for freezer longliners... Pacific cod at sea with hook-and-line gear in the Bering Sea and Aleutian Islands Management Area (BSAI... modifying equipment and operational requirements for freezer longliners published September 26, 2012, NMFS...
Diethrich, E B
1998-01-01
The exclusion of abdominal aortic aneurysms with endoluminal grafts has generated a great deal of interest since the early 1990s, and many centers are currently evaluating the procedure and comparing it to classic surgical exclusion. Although endoluminal grafting procedures show promise, development and clinical testing of devices is a time-consuming process that is influenced greatly by the regulatory climate in the country where the clinical trials take place. Nevertheless, a number of devices are currently under study, and the advantages of 2nd- and 3rd-generation technology are reflected in reduced rates of complications such as endoleaks and thrombosis. Further study will be required to perfect these devices and observe their long-term success in the exclusion of abdominal aortic aneurysms. Images PMID:9566057
Diethrich, E B
1998-01-01
The exclusion of abdominal aortic aneurysms with endoluminal grafts has generated a great deal of interest since the early 1990s, and many centers are currently evaluating the procedure and comparing it to classic surgical exclusion. Although endoluminal grafting procedures show promise, development and clinical testing of devices is a time-consuming process that is influenced greatly by the regulatory climate in the country where the clinical trials take place. Nevertheless, a number of devices are currently under study, and the advantages of 2nd- and 3rd-generation technology are reflected in reduced rates of complications such as endoleaks and thrombosis. Further study will be required to perfect these devices and observe their long-term success in the exclusion of abdominal aortic aneurysms.
Teaching the relationship between health and climate change: a systematic scoping review protocol.
Osama, Tasnime; Brindley, David; Majeed, Azeem; Murray, Kris A; Shah, Hiral; Toumazos, Mel; Van Velthoven, Michelle; Car, Josip; Wells, Glenn; Meinert, Edward
2018-05-20
The observed and projected impacts of climate change on human health are significant. While climate change has gathered global momentum and is taught frequently, the extent to which the relationships between climate change and health are taught remains uncertain. Education provides an opportunity to create public engagement on these issues, but the extent to which historical implementation of climate health education could be leveraged is not well understood. To address this gap, we propose to conduct a scoping review of all forms of teaching that have been used to illustrate the health effects of climate change between 2005 and 2017, coinciding with a turning point in the public health and climate change agendas following the 2005 Group of 7/8 (G7/8) Summit. Using Arksey/O'Malley's and Levac's methodological framework, MEDLINE/PubMed, Embase, Scopus, Education Resource Information Centre, Web of Science, Global Health, Health Management Information Consortium, Georef, Ebsco and PROSPERO will be systematically searched. Predetermined inclusion and exclusion criteria will be applied by two independent reviewers to determine study eligibility. Studies published in English and after 2005 only will be examined. Following selection of studies, data will be extracted and analysed. No ethical approval is required as exclusively secondary data will be used. Our findings will be communicated to the European Institute of Innovation & Technology Health-Knowledge and Innovation Communities to assist in the development of a FutureLearn Massive Open Online Course on the health effects of climate change. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change
NASA Astrophysics Data System (ADS)
Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.
2011-12-01
The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Han, X.
2015-12-01
The climate elasticity based on the Budyko curves has been widely used to evaluate the hydrological responses to climate change. The Mezentsev-Choudhury-Yang formula is one of the representative analytical equations for Budyko curves. Previous researches mostly used the variation of runoff (R) caused by the changes of annual precipitation (P) and potential evapotranspiration (ET0) as the hydrological response to climate change and evaluated it by a first-order approximation in a form of total differential, the major components of which include the partial derivatives of R to P and ET0, as well as climate elasticity on this basis. Based on analytic derivation and the characteristics of Budyko curves, this study proposed a modified formula of the first-order approximation to reduce the errors from the approximation. In the calculation of partial derivatives and climate elasticity, the values of P and ET0 were taken to the sum of their base values and half increments, respectively. The calculation was applied in 33 catchments of the Hai River basin in China and the results showed that the mean absolute value of relative error of approximated runoff change decreased from 8.4% to 0.4% and the maximum value, from 23.4% to 1.3%. Given the variation values of P, ET0 and the controlling parameter (n), the modified formula can exactly quantify the contributions of climate fluctuation and underlying surface change to runoff. Taking the Murray-Darling basin in Australia as an example of the contribution calculated by the modified formula, the reductions of mean annual runoff caused by changes of P, ET0 and n from 1895-1996 to 1997-2006 were 2.6, 0.6 and 2.9 mm, respectively, and the sum of them was 6.1 mm, which was completely consistent with the observed runoff. The modified formula of the first-order approximation proposed in this study can be not only used to assess the contributions of climate change to the runoff, but also widely used to analyze the effects of similar issues based on a certain functional relationship in hydrological and climate changes.
76 FR 213 - National Environmental Policy Act Implementing Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
...The U.S. Department of Energy (DOE or the Department) proposes to amend its existing regulations governing compliance with the National Environmental Policy Act (NEPA). The majority of the changes are proposed for the categorical exclusions provisions contained in its NEPA Implementing Procedures, with a small number of related changes proposed for other provisions. These proposed changes are intended to better align the Department's regulations, particularly its categorical exclusions, with DOE's current activities and recent experiences, and to update the provisions with respect to current technologies and regulatory requirements. DOE proposes to establish 20 new categorical exclusions, and to remove two categorical exclusion categories, one environmental assessment (EA) category, and two environmental impact statement (EIS) categories. Other proposed changes modify and clarify DOE's existing provisions.
Vikholm, Per; Schiller, Petter; Hellgren, Laila
2014-01-01
OBJECTIVES Right ventricular failure after left ventricular assist device implantation is a serious complication with high rates of mortality and morbidity. It has been demonstrated in experimental settings that volume exclusion of the right ventricle with a modified Glenn shunt can improve haemodynamics during ischaemic right ventricular failure. However, the concept of a modified Glenn shunt is dependent on a normal pulmonary vascular resistance, which can limit its use in some patients. The aim of this study was to explore the effects of volume exclusion with a modified Glenn shunt during right ventricular failure due to pulmonary banding, and to study the alterations in genetic expression in the right ventricle due to pressure and volume overload. METHODS Experimental right ventricular failure was induced in pigs (n = 11) through 2 h of pulmonary banding. The pigs were randomized to either treatment with a modified Glenn shunt and pulmonary banding (n = 6) or solely pulmonary banding (n = 5) as a control group. Haemodynamic measurements, blood samples and right ventricular biopsies for genetic analysis were sampled at baseline, at right ventricular failure (i.e. 2 h of pulmonary banding) and 1 h post-right ventricular failure in both groups. RESULTS Right atrial pressure increased from 10 mmHg (9.0–12) to 18 mmHg (16–22) (P < 0.01) and the right ventricular pressure from 31 mmHg (26–35) to 57 mmHg (49–61) (P < 0.01) after pulmonary banding. Subsequent treatment with the modified Glenn shunt resulted in a decrease in right atrial pressure to 13 mmHg (11–14) (P = 0.03). In the control group, right atrial pressure was unchanged at 19 mmHg (16–20) (P = 0.18). At right heart failure, there was an up-regulation of genes associated with heart failure, inflammation, angiogenesis, negative regulation of cell death and proliferation. CONCLUSIONS Volume exclusion with a modified Glenn shunt during right ventricular failure reduced venous congestion compared with the control group. The state of right heart failure was verified through genetic expressional changes. PMID:24396048
Climate change and North American rangelands: Assessment of mitigation and adaptation strategies
Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey
2013-01-01
Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...
Modeling erosion under future climates with the WEPP model
Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan
2010-01-01
The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...
Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.
2018-01-01
Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.
Anderson, T Michael; Griffith, Daniel M; Grace, James B; Lind, Eric M; Adler, Peter B; Biederman, Lori A; Blumenthal, Dana M; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; MacDougall, Andrew S; McCulley, Rebecca L; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W; Stevens, Carly J; Sullivan, Lauren L; Wragg, Peter D; Borer, Elizabeth T
2018-04-01
Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites. © 2018 by the Ecological Society of America.
A New Tool for Climatic Analysis Using the Koppen Climate Classification
ERIC Educational Resources Information Center
Larson, Paul R.; Lohrengel, C. Frederick, II
2011-01-01
The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…
Ethical Climate Typology and Questionnaire: A Discussion of Instrument Modifications
ERIC Educational Resources Information Center
Webber, Sheri
2007-01-01
The Ethical Climate Typology (ECT) and Ethical Climate Questionnaire (ECQ) are instruments traditionally used to examine the ethical work climate in organizations. The instruments were modified to correct shortcomings acknowledged in the literature and tested on a sample of libraries. Data analysis suggested that some modifications improved the…
Factors Influencing Exclusive Breastfeeding in Tabuk, Saudi Arabia
Alzaheb, Riyadh A
2017-01-01
Background: Breast milk contains all the nutrients infants need for their first 6 months of life. However, only a minority of Saudi Arabian mothers exclusively breastfeed, so the influencing factors must be examined to encourage more to do so. The study aimed to determine the prevalence of exclusive breastfeeding at 6 months and its associated factors in Tabuk, North West Saudi Arabia. Methods: A total of 589 mothers of healthy infants aged between 6 and 24 months were interviewed while attending Well-Baby Clinics within 5 primary health care centers. Interviews deployed a structured questionnaire to collect sociodemographic information and detailed data concerning breastfeeding practices. A logistic regression analysis was then performed on the data to identify the factors independently associated with exclusive breastfeeding practice for infants at 6 months. Results: Exclusive breastfeeding was practiced by 31.4% of mothers for the first 6 months of their infant’s life. The logistic regressions indicated that exclusive breastfeeding at 6 months was less likely to be practiced by working mothers, Saudi nationals, and for babies born via cesarean delivery or at low birth weights. Conversely, the mother’s awareness of the recommended exclusive breastfeeding duration was positively associated with exclusive breastfeeding. Conclusions: Programs promoting 6 months of exclusive breastfeeding should target high-risk groups. Two factors identified by this study are modifiable: working mothers and mothers’ awareness of the exclusive breastfeeding duration recommendation. Strategies to improve exclusive breastfeeding rates should therefore focus on workplace facilities and increasing awareness of the exclusive breastfeeding recommendation. PMID:28469519
Non-climatic constraints on upper elevational plant range expansion under climate change
Brown, Carissa D.; Vellend, Mark
2014-01-01
We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion. PMID:25253462
An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"
ERIC Educational Resources Information Center
Larson, Paul R.; Lohrengel, C. Frederick, II
2014-01-01
The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…
NASA Astrophysics Data System (ADS)
Mäntysaari, Heikki; Venugopalan, Raju
2018-06-01
We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number A and the virtuality Q2 of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.
NASA Astrophysics Data System (ADS)
Orsag, M.; Fischer, M.; Trnka, M.
2016-12-01
The production of woody biomass in short rotation woody coppice (SRWC) is considered as a suitable source of renewable energy for climate conditions prevailing in central European countries. The productivity of SRWC is largely dependent on the environmental conditions and the biomass yield can be severely compromised when water supply is limited. One of the climate change consequences predicted for Central Europe is the increasing frequency and duration of drought spells as a result of increased air temperature and temporally uneven distribution of precipitation. Therefore, a small-scale rain-throughfall exclusion experiment was established in 2011 in an operational SRWC plantation (hybrid poplar NM6) in the Bohemian-Moravian highlands (Czech Republic). Three times replicated experimental block comprised a treatment with 70 % rain-throughfall exclusion (R) and an adjacent control treatment (C) of the same size (25 m2). Above-ground biomass productivity (ABP) and soil moisture patterns were measured and evaluated during growing seasons 2011-2015. We observed high heterogeneity of soil moisture among blocks, resulting in high variability in ABP. The treatment effect was more pronounced with increasing seasonal precipitation. Generally, the R treatments showed lower ABP by 8.4 %, higher mortality by 6.7 % and strong competitive relationships among neighboring trees, which led to formation of few dominant trees, comprising 30 % of the total biomass at particular plot, accounting for 50 % of the annual ABP per 25 m2 plot. Our results suggests considerable resilience of hybrid poplar NM6 to decreased soil-water availability over long-term, while keeping minimal annual ABP of about 4.5 ton hectare (dry matter).
Chapter 3: Climate change and the relevance of historical forest conditions
H.D. Safford; M. North; M.D. Meyer
2012-01-01
Increasing human emissions of greenhouse gases are modifying the Earth's climate. According to the Intergovernmental Panel on Climate Change (IPCC), "Warming of the climate system is unequivocal, as is now evident from observation of increases in average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea...
Report of the panel on the land surface: Process of change, section 5
NASA Technical Reports Server (NTRS)
Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.
1991-01-01
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.
NASA Astrophysics Data System (ADS)
Oyler, J.; Anderson, R.; Running, S. W.
2010-12-01
In topographically complex landscapes, there is often a mismatch in scale between global climate model projections and more local climate-forcing factors and related ecological/hydrological processes. To overcome this limitation, the objective of this study was to downscale climate projections to the rugged Crown of the Continent Ecosystem (CCE) within the U.S. Northern Rockies and assess future impacts on water balances, vegetation dynamics, and carbon fluxes. A 40-year (1970-2009) spatial historical climate dataset (800m resolution, daily timestep) was generated for the CCE and modified for terrain influences. Regional climate projections were downscaled by applying them to the fine-scale historical dataset using a modified delta downscaling method and stochastic weather generator. The downscaled projections were used to drive the Biome-BGC ecosystem model. Overall CCE impacts included decreases in April 1 snow water equivalent, less days with snow on the ground, increased vegetation water stress, and increased growing degree days. The relaxing of temperature constraints increased annual net primary productivity (NPP) throughout most of the CCE landscape. However, an increase in water stress seems to have limited the growth in NPP and, in some areas, NPP actually decreased. Thus, CCE vegetation productivity trends under increasing temperatures will likely be determined by local changes in hydrologic function. Given the greater uncertainty in precipitation projections, future work should concentrate on determining thresholds in water constraints that greatly modify the magnitude and direction of carbon accumulation within the CCE under a warming climate.
CCDST: A free Canadian climate data scraping tool
NASA Astrophysics Data System (ADS)
Bonifacio, Charmaine; Barchyn, Thomas E.; Hugenholtz, Chris H.; Kienzle, Stefan W.
2015-02-01
In this paper we present a new software tool that automatically fetches, downloads and consolidates climate data from a Web database where the data are contained on multiple Web pages. The tool is called the Canadian Climate Data Scraping Tool (CCDST) and was developed to enhance access and simplify analysis of climate data from Canada's National Climate Data and Information Archive (NCDIA). The CCDST deconstructs a URL for a particular climate station in the NCDIA and then iteratively modifies the date parameters to download large volumes of data, remove individual file headers, and merge data files into one output file. This automated sequence enhances access to climate data by substantially reducing the time needed to manually download data from multiple Web pages. To this end, we present a case study of the temporal dynamics of blowing snow events that resulted in ~3.1 weeks time savings. Without the CCDST, the time involved in manually downloading climate data limits access and restrains researchers and students from exploring climate trends. The tool is coded as a Microsoft Excel macro and is available to researchers and students for free. The main concept and structure of the tool can be modified for other Web databases hosting geophysical data.
New climatic classification of Nepal
NASA Astrophysics Data System (ADS)
Karki, Ramchandra; Talchabhadel, Rocky; Aalto, Juha; Baidya, Saraju Kumar
2016-08-01
Although it is evident that Nepal has an extremely wide range of climates within a short latitudinal distance, there is a lack of comprehensive research in this field. The climatic zoning in a topographically complex country like Nepal has important implications for the selection of scientific station network design and climate model verification, as well as for studies examining the effects of climate change in terms of shifting climatic boundaries and vegetation in highly sensitive environments. This study presents a new high-resolution climate map of Nepal on the basis of long-term (1981-2010) monthly precipitation data for 240 stations and mean air temperature data for 74 stations, using original and modified Köppen-Geiger climate classification systems. Climatic variables used in Köppen-Geiger system were calculated (i) at each station and (ii) interpolated to 1-km spatial resolution using kriging which accounted for latitude, longitude, and elevation. The original Köppen-Geiger scheme could not identify all five types of climate (including tropical) observed in Nepal. Hence, the original scheme was slightly modified by changing the boundary of coldest month mean air temperature value from 18 °C to 14.5 °C in order to delineate the realistic climatic condition of Nepal. With this modification, all five types of climate (including tropical) were identified. The most common dominant type of climate for Nepal is temperate with dry winter and hot summer (Cwa).
Li, Yongfu; Meunier, David M; Partain, Emmett M
2014-09-12
Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...
Social Support and Exclusive Breast feeding among Canadian Women.
Laugen, Chris M; Islam, Nazrul; Janssen, Patricia A
2016-09-01
The World Health Organization recommendation for exclusive breast feeding for 6 months has been endorsed by Health Canada, the Canadian Pediatric Society, Dietitians of Canada, and the Breastfeeding Committee for Canada as of 2012. This study examines whether social support is associated with exclusive breast feeding up to 6 months among Canadian mothers. We utilised data from the Canadian Community Health Survey and limited our sample to mothers who gave birth in the 5 years prior to the 2009-2010 survey (n = 2133). Multivariable logistic regression was used to examine the relationship between exclusive breast feeding and four dimensions of social support: (i) tangible, (ii) affectionate, (iii) positive social interaction, and (iv) emotional and informational, based on the Medical Outcomes Study Social Support Scale. Absolute and relative differences in the probability of breast feeding exclusively and their 95% confidence intervals were calculated. In adjusted models, differences in the probability of exclusive breast feeding for 6 months were not different among women with high vs. low social support. The association between social support and breastfeeding exclusively was modified by education level, with significantly higher probability of breast feeding exclusively among women with lower education and high vs. low levels of tangible and affectionate support. Among women with education below a high school level, high tangible and affectionate support significantly increased probability of exclusive breast feeding for 6 months in this study. Efforts to encourage exclusive breast feeding need to address social support for mothers, especially those with lower education. © 2016 John Wiley & Sons Ltd.
10 CFR 81.32 - Terms of exclusive license grant.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission a written notice of the Commission's intention to modify or revoke the license, and the licensee... other books, documents, papers, and records pertaining to such suit. If, as a result of any such...
Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae.
Rossi, Francesca; Gribsholt, Britta; Gazeau, Frederic; Di Santo, Valentina; Middelburg, Jack J
2013-01-01
Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.
ERIC Educational Resources Information Center
Wood Lee, Mary
This study focuses on the prevention and basic treatment of recurring mold growth in tropical climates where library-wide environmental control is not always possible. The introduction discusses major climatic groups; the effects of climate on specific materials found in library resources; and the range of options for modifying the environment.…
Projections of suitable habitat for rare species under global warming scenarios
F. Thomas Ledig; Gerald E. Rehfeldt; Cuauhtemoc Saenz-Romero; Flores-Lopez Celestino
2010-01-01
Premise of the study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. Methods: We used recently developed spline climatic models and modifi ed Random Forests...
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News National Centers for Environmental Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Climate Prediction Center Web Team Page last modified: December 13, 2005
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.
Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E
2015-07-07
We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.
Relationships of Exclusion and Cohesion with Health: The Case of Bangladesh
2009-01-01
The concept of social exclusion, applied widely in the European Union, has in recent years been gaining use in Bangladesh, mostly by international development agencies. Does this discourse of deprivation, developed in the welfare states of northern Europe, have salience in its application to deprivation in countries like Bangladesh where, for example, 31% of the rural population lives in chronic poverty? The concept of social exclusion has three principal components: a dynamic and relational perspective which requires the identification of who or what causes exclusion; an explicit recognition of multiple dimensions of deprivation; and a longitudinal perspective, recognizing that individuals and groups are dynamic intra- and intergenerationally. The Social Exclusion Knowledge Network of the World Health Organization Commission on Social Determinants of Health expanded the concept to include health status as a contributor to and an outcome of exclusion and to show that actors beyond the state or public sector can critically impact exclusionary processes. In the Bangladesh application, the relevance of the modified model was explored to find that while there are negative associations between social exclusion and health status, much stronger documentation is needed of the relationship. The modification of including multiple sectors, such as private enterprise and civil society, in addition to the state, as having potential to impact exclusionary processes is fundamental to the application of the social exclusion model in Bangladesh. PMID:19761078
NASA Astrophysics Data System (ADS)
Chen, X.; Huang, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.
2016-12-01
As of today, most state-of-the-art GCMs still assumes blackbody surface in their longwave radiation scheme. Recent works by Chen et al. (2014) and Feldman et al. (2014) have suggested that the surface spectral emissivity can impact the simulated radiation budget and climate change in a discernible way, especially in high latitudes. Using a recently developed global emissivity database that covers both far-IR and mid-IR, we incorporated the LW surface spectral emissivity into the radiation scheme of the CESM. Effort has been made to ensure a consistent treatment of surface upward LW broadband flux in both the land module and the atmospheric module of the CESM, an important aspect overlooked by the previous study. Then we assess impacts of the inclusion of surface spectral emissivity on simulated mean-state climate and climate changes by carrying out two sets of parallel runs. The first pair of experiments uses the standard slab-ocean CESM v1.1.1 to run two experiments: one control run using forcings at year 2000 level and one sensitivity run abruptly doubling the CO2. The second pair of experiment setup is identical to the first one but using the CESM that we have modified (Surface emissivity is a prognostic variable in our second pair of experiments). The current climate simulation results show that the Sahara desert region in the modified CESM has a warmer surface temperature than in the standard CESM by 2-3K. Over the high-latitude regions, the modified CESM tends to have a colder surface temperature than the standard CESM by 1-2.5K. As a result, the climatological sea ice coverage in the modified CESM is 8% more than it in the standard CESM in both Polar Regions. All these differences are statistically significant. As for simulated climate change in response to a doubling of CO2, the Arctic region in the modified CESM warms consistently faster than in the standard CESM by 1-2K while the Antarctic region shows a non-uniform pattern of differences between two models. Differences in the changes of sea ice coverage between two models show a zonally-uniform dipole pattern over both polar oceans. The reasons for such differences and its linkage with the change of surface spectral emissivity are further explained.
Matthew D. Hurteau; Timothy A. Robards; Donald Stevens; David Saah; Malcolm North; George W. Koch
2014-01-01
Quantifying the impacts of changing climatic conditions on forest growth is integral to estimating future forest carbon balance. We used a growth-and-yield model, modified for climate sensitivity, to quantify the effects of altered climate on mixed-conifer forest growth in the Lake Tahoe Basin, California. Estimates of forest growth and live tree carbon stocks were...
Byron, Reginald A; Lowe, Maria R; Billingsley, Brianna; Tuttle, Nathan
2017-01-01
This study employs quantitative and qualitative methods to examine how heterosexual, bisexual, and gay students rate and describe a Southern, religiously affiliated university's sexual orientation climate. Using qualitative data, queer theory, and the concept tyranny of sexualized spaces, we explain why non-heterosexual students have more negative perceptions of the university climate than heterosexual male students, in both bivariate and multivariate analyses. Although heterosexual students see few problems with the campus sexual orientation climate, bisexual men and women describe being challenged on the authenticity of their orientation, and lesbian and, to a greater extent, gay male students report harassment and exclusion in a number of settings. These distinct processes are influenced by broader heteronormative standards. We also shed much-needed light on how gendered sexual performativity double standards within an important campus microclimate (fraternity parties) contribute to creating a tyrannical sexualized space and negatively affect overall campus climate perceptions.
The Plant Foliage Projective Coverage Change over the Northern Tibetan Plateau during 1957-2009
NASA Astrophysics Data System (ADS)
Cuo, L.
2015-12-01
Northern Tibetan Plateau is the headwater of the Yellow River, the Yangtze River and the Mekong River that support billions of the population. Vegetation change will affect the regional ecosystem and water balances through the changes in biomass and evapotranspiration. Dynamic vegetation growth is determined by physiological, morphological, bioclimatic and phenological properties. These properties are affected by climate variables such as air temperature, precipitation, soil temperature and concentration of CO2, etc. Due to climate change, some parts of the northern Tibetan Plateau are under the threat of desertification. Identifying the places of vegetation degradation and the dominant driven climatic factors will help mitigate the climate change impacts on ecosystem and water resources in this region. In this study, the changes of foliage projective coverages (FPCs) of various plant functional types (PFTs) existed in the northern Tibetan Plateau and the responses of FPCs to the four climate variables over 1957-2009 are examined. The dominant factors among the four climate variables are also identified. The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) is modified and used for the investigation. The modified LPJ-DGVM can better account for soil temperature in the top 0.4-m depth where vegetation root concentrates over the northern Tibetan Plateau. The modified model is evaluated by using monthly and annual soil temperature observed at stations across the region, and the eco-geographic maps that describe plant types and spatial distributions developed from field surveys and satellite images for this region.
Representation of the Great Lakes in the Coupled Model Intercomparison Project Version 5
NASA Astrophysics Data System (ADS)
Briley, L.; Rood, R. B.
2017-12-01
The U.S. Great Lakes play a significant role in modifying regional temperatures and precipitation, and as the lakes change in response to a warming climate (i.e., warmer surface water temperatures, decreased ice cover, etc) lake-land-atmosphere dynamics are affected. Because the lakes modify regional weather and are a driver of regional climate change, understanding how they are represented in climate models is important to the reliability of model based information for the region. As part of the Great Lakes Integrated Sciences + Assessments (GLISA) Ensemble project, a major effort is underway to evaluate the Coupled Model Intercomparison Project version (CMIP) 5 global climate models for how well they physically represent the Great Lakes and lake-effects. The CMIP models were chosen because they are a primary source of information in many products developed for decision making (i.e., National Climate Assessment, downscaled future climate projections, etc.), yet there is very little description of how well they represent the lakes. This presentation will describe the results of our investigation of if and how the Great Lakes are represented in the CMIP5 models.
Nakanishi, Miharu; Tei-Tominaga, Maki
2018-05-08
Background : Quality improvement initiatives can help nursing homes strengthen psychosocial work environments. The aim of the present study was to examine the association between supportive psychosocial work environment, and professional and organizational characteristics regarding quality improvement initiatives in dementia care. Methods : A paper questionnaire survey was administered to a convenience sample of 365 professional caregivers in 12 special nursing homes in Japan. Psychosocial work environment was assessed using the Social Capital and Ethical Climate at the Workplace Scale to calculate a score of social capital in the workplace, ethical leadership, and exclusive workplace climate. Variables for quality improvement initiatives included type of home (unit-type or traditional), presence of additional benefit for dementia care, and professionalism in dementia care among caregivers evaluated using the Japanese version of the Sense of Competence in Dementia Care Staff Scale. Results : Elevated professionalism and unit-type home were significantly associated with high social capital, strong ethical leadership, and low exclusive workplace climate. The presence of dementia care benefit was not associated with any subscale of psychosocial work environment. Conclusions : Quality improvement initiatives to foster supportive psychosocial work environment should enhance professionalism in dementia care with unit-based team building of professional caregivers in special nursing homes.
Tei-Tominaga, Maki; Nakanishi, Miharu
2018-01-01
The healthcare industry in Japan has experienced many cases of work-related injuries, accidents, and workers’ compensation claims because of mental illness. This study examined the influence of supportive and ethical work environments on work-related accidents, injuries, and serious psychological distress among hospital nurses. Self-reported questionnaires were distributed to nurses (n = 1114) from 11 hospitals. Valid responses (n = 822, 93% women, mean age = 38.49 ± 10.09 years) were used for analyses. The questionnaire included items addressing basic attributes, work and organizational characteristics, social capital and ethical climate at the workplace, psychological distress, and experience of work-related accidents or injuries in the last half year. The final model of a multivariate logistic regression analysis revealed that those who work less than 4 h of overtime per week (OR = 0.313), those who work on days off more than once per month (OR = 0.424), and an exclusive workplace climate (OR = 1.314) were significantly associated with work-related accidents or injuries. Additionally, an exclusive workplace climate (OR = 1.696) elevated the risk of serious psychological distress. To prevent work-related compensation cases, which are caused by these variables, strengthening hospitals’ occupational health and safety is necessary. PMID:29385044
Tei-Tominaga, Maki; Nakanishi, Miharu
2018-01-31
The healthcare industry in Japan has experienced many cases of work-related injuries, accidents, and workers' compensation claims because of mental illness. This study examined the influence of supportive and ethical work environments on work-related accidents, injuries, and serious psychological distress among hospital nurses. Self-reported questionnaires were distributed to nurses ( n = 1114) from 11 hospitals. Valid responses ( n = 822, 93% women, mean age = 38.49 ± 10.09 years) were used for analyses. The questionnaire included items addressing basic attributes, work and organizational characteristics, social capital and ethical climate at the workplace, psychological distress, and experience of work-related accidents or injuries in the last half year. The final model of a multivariate logistic regression analysis revealed that those who work less than 4 h of overtime per week (OR = 0.313), those who work on days off more than once per month (OR = 0.424), and an exclusive workplace climate (OR = 1.314) were significantly associated with work-related accidents or injuries. Additionally, an exclusive workplace climate (OR = 1.696) elevated the risk of serious psychological distress. To prevent work-related compensation cases, which are caused by these variables, strengthening hospitals' occupational health and safety is necessary.
School Vouchers in a Climate of Political Change
ERIC Educational Resources Information Center
Sutton, Lenford C.; King, Richard A.
2011-01-01
Legal scrutiny of school voucher policies initially focused on the establishment clause concerning with allocating public dollars to schools sponsored by religious organizations. In recent years, advocates asserted that the exclusion of faith-based organizations from voucher plans that permit expenditures in secular private organizations violates…
Escolar, Cristina; Maestre, Fernando T.; Rey, Ana
2015-01-01
Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increased air temperature and decreased precipitation on soil respiration dynamics during dry (2009) and wet (2010) years, and investigated the relative importance of soil temperature and moisture as environmental drivers of soil respiration, in a semiarid grassland from central Spain. Soil respiration rates were significantly lower in the dry than during the wet year, regardless of biocrust cover. Warming increased soil respiration rates, but this response was only significant in biocrust-dominated areas (> 50% biocrust cover). Warming also increased the temperature sensitivity (Q10 values) of soil respiration in biocrust-dominated areas, particularly during the wet year. The combination of warming and rainfall exclusion had similar effects in low biocrust cover areas. Our results highlight the importance of biocrusts as a modulator of soil respiration responses to both warming and rainfall exclusion, and indicate that they must be explicitly considered when evaluating soil respiration responses to climate change in drylands. PMID:25914428
This is a regulation page for the final rule EPA issued on July 31, 2013 that modifies the hazardous waste management regulations for solvent-contaminated wipes under the Resource Conservation and Recovery Act (RCRA).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... efficiency and flexibility storing, retrieving, and modifying data in any language representation''; U.S... switching and monitoring batteries''; U.S. Patent No. 6,298,144 entitled ``Device for and method of...
Ogbo, Felix Akpojene; Page, Andrew; Idoko, John; Agho, Kingsley E
2018-02-13
Non-exclusive breastfeeding (non-EBF) is a risk factor for many of the 2300 under-five deaths occurring daily in Nigeria - a developing country with approximately 40 million children. This study aimed to quantify and compare the attributable burden of key modifiable risk factors associated with non-EBF in Nigeria to inform strategic policy responses and initiatives. Relative risk and exposure prevalence for selected modifiable risk factors were used to calculate population attributable fractions based on Nigeria Demographic and Health Surveys data for the period (1999-2013). Scenarios based on feasible impact of community-based interventions in reducing exposure prevalence were also considered to calculate comparative potential impact fractions. In Nigeria, an estimated 22.8% (95% Confidence Interval, CI: 9.2-37.0%) of non-EBF was attributable to primary and no maternal education; 24.7% (95% CI: 9.5-39.5%) to middle and poor household wealth, 9.7% (1.7-18.1%) to lower number (1-3) and no antenatal care visits; 18.8% (95% CI: 6.9-30.8%) to home delivery and 16.6% (95% CI: 3.0-31.3%) to delivery assisted by a non-health professional. In combination, more than half of all cases of non-EBF (64.5%; 95% CI: 50.0-76.4%) could be attributed to those modifiable risk factors. Scenarios based on feasible impacts of community-based approaches to improve health service access and human capacity suggest that an avoidable burden of non-EBF practice of approximately 11% (95% CI: -5.4; 24.7) is achievable. Key modifiable risk factors contribute significantly to non-EBF in Nigerian women. Community-based initiatives and appropriate socio-economic government policies that specifically consider those modifiable risk factors could substantially reduce non-EBF practice in Nigeria.
Appendix 2. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3
NASA Technical Reports Server (NTRS)
Hudson, Nicholas; Ruane, Alexander Clark
2013-01-01
This Guide explains how to create climate series and climate change scenarios by using the AgMip Climate team's methodology as outlined in the AgMIP Guide for Regional Assessment: Handbook of Methods and Procedures. It details how to: install R and the required packages to run the AgMIP Climate Scenario Generation scripts, and create climate scenarios from CMIP5 GCMs using a 30-year baseline daily weather dataset. The Guide also outlines a workflow that can be modified for application to your own climate data.
NASA Astrophysics Data System (ADS)
Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.
2016-05-01
Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.
Temperate and boreal forest mega-fires: characteristics and challenges
Scott L. Stephens; Neil Burrows; Alexander Buyantuyev; Robert W. Gray; Robert E. Keane; Rick Kubian; Shirong Liu; Francisco Seijo; Lifu Shu; Kevin G. Tolhurst; Jan W. van Wagtendonk
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors - climate change, fire exclusion, and antecedent disturbance, collectively referred to as the "mega-fire triangle" - likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate...
Interactive effects of elevated temperature and ozone on soybean biomass production and seed yield
USDA-ARS?s Scientific Manuscript database
Predicting the impacts of air pollution and climate change on vegetation requires understanding of the interactions between elevated air temperature and atmospheric gases such as ozone. The air exclusion system (AES) developed by our group was used to expose soybean plants to combinations of elevate...
ERIC Educational Resources Information Center
Custred, Glynn
2005-01-01
Decency would suggest that people should be allowed to bury their own dead. But, with the help of a climate of racial intimidation, modern Indian tribes, backed by the federal government, asserted exclusive ownership of everything before Columbus. Glynn Custred remembers a stalwart anthropologist who cried foul and preserved the knowledge of our…
Urban climate, weather and sustainability
NASA Astrophysics Data System (ADS)
Mills, Gerald
As concentrated areas of human activities, urban areas and urbanization are key drivers of global environmental change and pose a challenge to the achievement of sustainability. One of the key goals of sustainable development is to separate increases in non-renewable resource use (particularly fossil fuels) from economic growth. This is to be accomplished by modifying individual practices, encouraging technological innovation and redesigning systems of production and consumption. Settlements represent a scale at which significant advances on each of these can be made and where there is an existing management structure. However, urban areas currently consume a disproportionate share of the Earth's resources and urbanization has modified local climate and weather significantly, usually to the detriment of urban dwellers. There is now a lengthy history of urban climate study that links existing settlement form to climatic consequences yet, there is little evidence that climate information is incorporated into urban designs or that the climatic impact of different plans is considered. Consequently, opportunities for planning sustainable urban forms that are suitable to local climates and promote energy conservation and healthy atmospheres are not taken and much effort is later expended in `fixing' problems that emerge. This paper will outline the links between urban climate and sustainability, identify gaps in our urban climate knowledge and discuss the opportunities and barriers to the application of this knowledge to urban design and planning.
Can the Climate of an Organization be Modified and Managed to Ensure Organizational Excellence?
1988-03-30
Since climate is directly related to effectiveness, CDRs shape the climate through both direct and indirect application of their leadership. 5 Sigmund ... Freud clearly describes the leader’s impact on a group: The leader can be central to the cohesion and viability not only of nations and armies but of
Migration out of 1930s Rural Eastern Oklahoma: Insights for Climate Change Research
ERIC Educational Resources Information Center
McLeman, Robert
2006-01-01
The question of how communities and individuals adapt to changing climatic conditions is of pressing concern to scientists and policymakers in light of the growing evidence that human activity has modified the Earth's climate. A number of authors have suggested that widespread changes in human settlement and migration patterns may occur in…
Population response to climate change: linear vs. non-linear modeling approaches.
Ellis, Alicia M; Post, Eric
2004-03-31
Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.
Food Elimination Diet and Nutritional Deficiency in Patients with Inflammatory Bowel Disease.
Lim, Hee-Sook; Kim, Soon-Kyung; Hong, Su-Jin
2018-01-01
Certain types of foods are common trigger for bowel symptoms such as abdominal discomfort or pain in patients with inflammatory bowel disease (IBD). But indiscriminate food exclusions from their diet can lead extensive nutritional deficiencies. The aim of this study was to investigate nutritional status, food restriction and nutrient intake status in IBD patients. A total 104 patients (food exclusion group: n = 49; food non-exclusion group: n = 55) participated in the survey. The contents were examined by 3 categories: 1) anthropometric and nutritional status; 2) diet beliefs and food restriction; and 3) nutrient intake. The malnutrition rate was significantly higher in the food exclusion group (p = 0.007) compared to food non-exclusion group. Fifty-nine percent of patients in the food exclusion group held dietary beliefs and reported modifying their intake according to their dietary belief. The most common restricted food was milk, dairy products (32.7%), raw fish (24.5%), deep-spicy foods (22.4%), and ramen (18.4%). The mean daily intake of calcium (p = 0.002), vitamin A (p < 0.001), and zinc (p = 0.001) were significantly lower in the food exclusion group. Considering malnutrition in IBD patients, nutrition education by trained dietitians is necessary for the patients to acquire disease-related knowledge and overall balanced nutrition as part of strategies in treating and preventing nutrition deficiencies.
Yang, Xiao; Ip, Wan-Yim; Gao, Ling-Ling
2018-02-01
to examine postpartum maternal recall of their intentions to exclusively breast feed among breastfeeding women and identify its predictors. a cross-sectional descriptive study was conducted in a regional teaching hospital at Guangzhou, China between April 1 and July 14, 2014. 571 mothers who were within four days after delivery were recruited to the study. data were collected by four research assistants with maternal intention to breast feed data sheet, the Network Support for Breastfeeding Scale (NSBS), and a socio-demographic data sheet. greater than half of the mothers (69.5%) intended to exclusively breast feed. The logistic regression analysis revealed six variables which predicted postpartum maternal recall of their intentions to exclusively breast feed. They were support from husband, being breast-fed as an infant, previous breast feeding experience, attending antenatal breast feeding class, time of decision to breast feed, and the rating of the importance of my baby's health. health care professionals could develop strategies to enhance mothers' intention to exclusively breast feed, such as providing antenatal breast feeding class on internet, a strong focus on the benefits of exclusive breast feeding on the baby's health in the education programme, and more efforts directed toward educating school-aged children and adolescents to modify societal perceptions of what are considered normal infant feeding. Mothers' husband could be encouraged in supporting exclusive breast feeding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heating up relations between cold fish: competition modifies responses to climate change.
Urban, Mark C; Holt, Robert D; Gilman, Sarah E; Tewksbury, Joshua
2011-05-01
Most predictions about species responses to climate change ignore species interactions. Helland and colleagues (2011) test whether this assumption is valid by evaluating whether ice cover affects competition between brown trout [Salmo trutta (L.)] and Arctic charr [Salvelinus alpines (L.)]. They show that increasing ice cover correlates with lower trout biomass when Arctic charr co-occur, but not in charr's absence. In experiments, charr grew better in the cold, dark environments that typify ice-covered lakes. Decreasing ice cover with warmer winters could mean more trout and fewer charr. More generally, their results provide an excellent example, suggesting that species interactions can strongly modify responses to climate change. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
43 CFR 4140.1 - Acts prohibited on public lands.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA... terms, conditions, and stipulations of cooperative range improvement agreements or range improvement permits; (5) Refusing to install, maintain, modify, or remove range improvements when so directed by the...
43 CFR 4140.1 - Acts prohibited on public lands.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA... terms, conditions, and stipulations of cooperative range improvement agreements or range improvement permits; (5) Refusing to install, maintain, modify, or remove range improvements when so directed by the...
43 CFR 4140.1 - Acts prohibited on public lands.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA... terms, conditions, and stipulations of cooperative range improvement agreements or range improvement permits; (5) Refusing to install, maintain, modify, or remove range improvements when so directed by the...
75 FR 73935 - Miscellaneous Administrative Changes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... on October 18, 2004 In a petition for rulemaking (PRM) submitted by the Nuclear Energy Institute on... entity regulated by the NRC. Environmental Impact: Categorical Exclusion The NRC has determined that this... modify existing regulations. Therefore, neither an environmental impact statement nor an environmental...
Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.
Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel
2017-01-01
Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba
2018-03-01
The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.
Acoustic emission analysis: A test method for metal joints bonded by adhesives
NASA Technical Reports Server (NTRS)
Brockmann, W.; Fischer, T.
1978-01-01
Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.
Gunnar C. Carnwath; David W. Peterson; Cara R. Nelson
2012-01-01
There is increasing interest in actively managing forests to increase their resilience to climate-related changes. Although forest managers rely heavily on the use of silvicultural treatments that manipulate stand structure and stand dynamics to modify responses to climate change, few studies have directly assessed the effects of stand structure or canopy position on...
Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species
Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.
2016-01-01
Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
NASA Astrophysics Data System (ADS)
Jørstad, Hanne; Webersik, Christian
2016-12-01
In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base and struggle with poverty, existing inequalities and historical injustices will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change. The empirical part of the paper answers the question as to what extent local women engaged in fish processing in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. The article assesses an adaptation project designed to make those women more resilient to a warmer and more variable climate. The research results show that marketing and improving fish processing as strategies to adapt to climate change have their limitations. The study concludes that livelihood diversification can be a more effective strategy for Malawian women to adapt to a more variable and unpredictable climate rather than exclusively relying on a resource base that is threatened by climate change.
Cold truths: how winter drives responses of terrestrial organisms to climate change.
Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J
2015-02-01
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Size-exclusive Nanosensor for Quantitative Analysis of Fullerene C60: A Concept Paper
This paper presents the first development of a mass-sensitive nanosensor for the isolation and quantitative analyses of engineered fullerene (C60) nanoparticles, while excluding mixtures of structurally similar fullerenes. Amino-modified beta cyclodextrin (β-CD-NH
Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay
2012-01-01
The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833
Estimation of ozone dry deposition over Europe for the period 2071-2100
NASA Astrophysics Data System (ADS)
Komjáthy, Eszter; Gelybó, Györgyi; László Lagzi, István.; Mészáros, Róbert
2010-05-01
Ozone in the lower troposphere is a phytotoxic air pollutant which can cause injury to plant tissues, causing reduction in plant growth and productivity. In the last decades, several investigations have been carried out for the purpose to estimate ozone load over different surface types. At the same time, the changes of atmospheric variables as well as surface/vegetation parameters due to the global climate change could also strongly modify both temporal and spatial variations of ozone load over Europe. In this study, the possible effects of climate change on ozone deposition are analyzed. Using a sophisticated deposition model, ozone deposition was estimated on a regular grid over Europe for the period 2071-2100. Our aim is to determine the uncertainties and the possible degree of change in ozone deposition velocity as an important predictor of total ozone load using climate data from multiple climate models and runs. For these model calculations, results of the PRUDENCE (Predicting of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) climate prediction project were used. As a first step, seasonal variations of ozone deposition over different vegetation types in case of different climate scenarios are presented in this study. Besides model calculations, in the frame of a sensitivity analyses, the effects of surface/vegetation parameters (e.g. leaf area index or stomatal resistance) on ozone deposition under a modified climate regime have also been analyzed.
Classroom Research and Child and Adolescent Development in South America
ERIC Educational Resources Information Center
Preiss, David Daniel; Calcagni, Elisa; Grau, Valeska
2015-01-01
The article reviews recent classroom research developed in South America related to child and adolescent development. We review work about three themes: ethnicity, school climate and violence, and the learning process. The few studies found on ethnicity and classroom experiences told a story of invisibility, if not exclusion and discrimination.…
Unalienated Recognition as a Feature of Democratic Schooling
ERIC Educational Resources Information Center
Rheingold, Alison
2012-01-01
The current era of standards and accountability in U.S. public schooling narrows recognition and assessment to an almost exclusive focus on the production of test scores as legitimate markers of student achievement. This climate prevents rather than encourages democratic forms of exchange within and across social worlds. Via a case study of one…
Social Inequalities in Body Weight and Physical Activity: Exploring the Role of Fitness Centers
ERIC Educational Resources Information Center
McLaren, Lindsay; Rock, Melanie J.; McElgunn, Jamie
2012-01-01
Fitness centers are a viable option for physical activity, particularly in climates with significant weather variation. Due to variation in economic and social expressions of exclusivity, fitness centers may have some relation to social inequalities in physical inactivity and related health outcomes; thus, our objective was to explore this…
Re-measurement of whitebark pine infection and mortality in the Canadian Rockies
Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith
2011-01-01
Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...
Climate change drives expansion of Antarctic ice-free habitat.
Lee, Jasmine R; Raymond, Ben; Bracegirdle, Thomas J; Chadès, Iadine; Fuller, Richard A; Shaw, Justine D; Terauds, Aleks
2017-07-06
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km 2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Climate change drives expansion of Antarctic ice-free habitat
NASA Astrophysics Data System (ADS)
Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks
2017-07-01
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Changing climate shifts timing of European floods.
Blöschl, Günter; Hall, Julia; Parajka, Juraj; Perdigão, Rui A P; Merz, Bruno; Arheimer, Berit; Aronica, Giuseppe T; Bilibashi, Ardian; Bonacci, Ognjen; Borga, Marco; Čanjevac, Ivan; Castellarin, Attilio; Chirico, Giovanni B; Claps, Pierluigi; Fiala, Károly; Frolova, Natalia; Gorbachova, Liudmyla; Gül, Ali; Hannaford, Jamie; Harrigan, Shaun; Kireeva, Maria; Kiss, Andrea; Kjeldsen, Thomas R; Kohnová, Silvia; Koskela, Jarkko J; Ledvinka, Ondrej; Macdonald, Neil; Mavrova-Guirguinova, Maria; Mediero, Luis; Merz, Ralf; Molnar, Peter; Montanari, Alberto; Murphy, Conor; Osuch, Marzena; Ovcharuk, Valeryia; Radevski, Ivan; Rogger, Magdalena; Salinas, José L; Sauquet, Eric; Šraj, Mojca; Szolgay, Jan; Viglione, Alberto; Volpi, Elena; Wilson, Donna; Zaimi, Klodian; Živković, Nenad
2017-08-11
A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Shen, H.; Li, Z.
2017-12-01
Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.
Climatic and density influences on recruitment in an irruptive population of Roosevelt elk
Starns, Heath D.; Ricca, Mark A.; Duarte, Adam; Weckerly, Floyd W.
2014-01-01
Current paradigms of ungulate population ecology recognize that density-dependent and independent mechanisms are not always mutually exclusive. Long-term data sets are necessary to assess the relative strength of each mechanism, especially when populations display irruptive dynamics. Using an 18-year time series of population abundances of Roosevelt elk (Cervus elaphus roosevelti) inhabiting Redwood National Park in northwestern California we assessed the influence of population size and climatic variation on elk recruitment and whether irruptive dynamics occurred. An information-theoretic model selection analysis indicated that abundance lagged 2 years and neither climatic factors nor a mix of abundance and climatic factors influenced elk recruitment. However, density-dependent recruitment differed between when the population was declining and when the population increased and then stabilized at an abundance lower than at the start of the decline. The population displayed irruptive dynamics.
Taking climate change seriously: An analysis of op-ed articles in Spanish press.
Domínguez, Martí; Lafita, Íngrid; Mateu, Anna
2017-10-01
In this article, we study the evolution of opinion genres regarding climate change in three Spanish newspapers ( El País, El Mundo, and ABC). Analyzing the op-ed articles in these newspapers, we observe a significant change in the evolution of opinion. While denialism was very present in conservative press in 2007, 7 years later it is almost absent from El Mundo, and its presence in ABC is much lower and inactive: this shows that scientific consensus has prevailed over time and Spanish denialism has weakened, exclusively supported by political arguments by the most conservative parties.
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
22 CFR 121.1 - General. The United States Munitions List.
Code of Federal Regulations, 2012 CFR
2012-04-01
... specifically designed or modified for the articles in this category: * (1) Guidance and control components for... controls of the ITAR. (f) Developmental aircraft, engines, and components thereof specifically designed... (including propellers) designed exclusively for civil, non-military aircraft (see § 121.3 of this subchapter...
22 CFR 121.1 - General. The United States Munitions List.
Code of Federal Regulations, 2013 CFR
2013-04-01
... specifically designed or modified for the articles in this category: * (1) Guidance and control components for... controls of the ITAR. (f) Developmental aircraft, engines, and components thereof specifically designed... (including propellers) designed exclusively for civil, non-military aircraft (see § 121.3 of this subchapter...
32 CFR Appendix B to Part 989 - Categorical Exclusions
Code of Federal Regulations, 2014 CFR
2014-07-01
... influence, activity, or effect in areas not already significantly modified from their natural condition. A2... areas of critical environmental concern, such as prime or unique agricultural lands, wetlands, coastal zones, wilderness areas, floodplains, or wild and scenic river areas. A2.2.8. Proposals with...
32 CFR Appendix B to Part 989 - Categorical Exclusions
Code of Federal Regulations, 2010 CFR
2010-07-01
... influence, activity, or effect in areas not already significantly modified from their natural condition. A2... areas of critical environmental concern, such as prime or unique agricultural lands, wetlands, coastal zones, wilderness areas, floodplains, or wild and scenic river areas. A2.2.8. Proposals with...
32 CFR Appendix B to Part 989 - Categorical Exclusions
Code of Federal Regulations, 2012 CFR
2012-07-01
... influence, activity, or effect in areas not already significantly modified from their natural condition. A2... areas of critical environmental concern, such as prime or unique agricultural lands, wetlands, coastal zones, wilderness areas, floodplains, or wild and scenic river areas. A2.2.8. Proposals with...
32 CFR Appendix B to Part 989 - Categorical Exclusions
Code of Federal Regulations, 2011 CFR
2011-07-01
... influence, activity, or effect in areas not already significantly modified from their natural condition. A2... areas of critical environmental concern, such as prime or unique agricultural lands, wetlands, coastal zones, wilderness areas, floodplains, or wild and scenic river areas. A2.2.8. Proposals with...
32 CFR Appendix B to Part 989 - Categorical Exclusions
Code of Federal Regulations, 2013 CFR
2013-07-01
... influence, activity, or effect in areas not already significantly modified from their natural condition. A2... areas of critical environmental concern, such as prime or unique agricultural lands, wetlands, coastal zones, wilderness areas, floodplains, or wild and scenic river areas. A2.2.8. Proposals with...
NASA Technical Reports Server (NTRS)
1975-01-01
Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba
2018-03-14
The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.
Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe
2016-01-01
Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød. PMID:26789523
Climate change as a migration driver from rural and urban Mexico
NASA Astrophysics Data System (ADS)
Nawrotzki, Raphael J.; Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando
2015-11-01
Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on US-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.
Climate Change as Migration Driver from Rural and Urban Mexico.
Nawrotzki, Raphael J; Hunter, Lori M; Runfola, Daniel M; Riosmena, Fernando
2015-11-01
Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.
Khan, Ashraful Islam; Kabir, Iqbal; Eneroth, Hanna; El Arifeen, Shams; Ekström, Eva-Charlotte; Frongillo, Edward A; Persson, Lars Åke
2017-01-01
It is unknown whether maternal malnutrition reduces the effect of counselling on exclusive breastfeeding. This study evaluated the effect of breastfeeding counselling on the duration of exclusive breastfeeding, and whether the timing of prenatal food and different micronutrient supplements further prolonged this duration. Pregnant women in Matlab, Bangladesh, were randomised to receive daily food supplements of 600 kcal at nine weeks of gestation or at the standard 20 weeks. They also were allocated to either 30 mg of iron and 400 μg folic acid, or the standard programme 60 mg of iron and folic acid or multiple micronutrients. At 30 weeks of gestation, 3188 women were randomised to receive either eight breastfeeding counselling sessions or the usual health messages. The median duration of exclusive breastfeeding was 135 days in the counselling group and 75 days in the usual health message group (p < 0.001). Prenatal supplements did not modify the effects of counselling. Women in the usual health message group who were randomised to multiple micronutrients exclusively breastfed for 12 days longer than mothers receiving the standard iron-folate combination (p = 0.003). Breastfeeding counselling increased the duration of exclusive breastfeeding by 60 days. This duration was not influenced by the supplements. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.
Wintertime urban heat island modified by global climate change over Japan
NASA Astrophysics Data System (ADS)
Hara, M.
2015-12-01
Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.
Zhang, Tao; Zhang, Yangjian; Xu, Mingjie; Zhu, Juntao; Wimberly, Michael C; Yu, Guirui; Niu, Shuli; Xi, Yi; Zhang, Xianzhou; Wang, Jingsheng
2015-10-30
To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate.
Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic
Lachenbruch, A.H.; Marshall, B.V.
1986-01-01
Temperature profiles measured in permafrost in northernmost Alaska usually have anomalous curvature in the upper 100 meters or so. When analyzed by heat-conduction theory, the profiles indicate a variable but widespread secular warming of the permafrost surface, generally in the range of 2 to 4 Celsius degrees during the last few decades to a century. Although details of the climatic change cannot be resolved with existing data, there is little doubt of its general magnitude and timing; alternative explanations are limited by the fact that heat transfer in cold permafrost is exclusively by conduction. Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.
78 FR 48828 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... cylinder. We identified two independent failure modes resulting in the cylinder head separations; however... cylinders to be $82,620,000. Our cost estimate is exclusive of possible warranty coverage. Authority for... any other maintenance event, or were installed when the engine was modified and are currently...
USDA-ARS?s Scientific Manuscript database
Exclusive breastfeeding is known to be protective against gastrointestinal disorders and may modify gut development. Although the gut microbiome has been implicated, little is known about how early diet impacts the small intestinal microbiome, and how microbial shifts impact gut metabolic physiology...
78 FR 68719 - Floodplain Management and Protection of Wetlands
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... advisory base flood elevations in post-disaster situations where the FEMA has determined that the official... chosen if all other factors are considered to be equal. For a full discussion of the proposed rule... modify the Categorical Exclusion (CatEx) from environmental review under NEPA for minor rehabilitation of...
DOT National Transportation Integrated Search
2008-11-01
The Texas Department of Transportation (TxDOT) uses the modified triaxial design procedure to check : pavement designs from the flexible pavement system program. Since its original development more than : 50 years ago, little modification has been ma...
Arjan J. H. Meddens; Crystal A. Kolden; James A. Lutz; John T. Abatzoglou; Andrew T. Hudak
2018-01-01
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is...
Running dry: Where will the West get its water?
J. Thompson
2007-01-01
Late summer streamflow in western and central Oregon and northern California is almost exclusively due to immense groundwater storage in the Cascade Range. The volume of water stored in permeable lava flows in the Cascades is seven times that stored as snow. Nonetheless, until recently, virtually all examinations of streamflow trends under future climates in the West...
A Program Review of a Middle School Gay-Straight Alliance Club
ERIC Educational Resources Information Center
Quasha, Scott; McCabe, Paul C.; Ortiz, Samuel O.
2014-01-01
This program review examined a middle school Gay-Straight Alliance (GSA) club within a northeastern suburban school situated in a large metropolitan area. The GSA was the first in the region to start exclusively in a standalone middle school. The review was accomplished through a staff survey comparing school climates for lesbian, gay, bisexual,…
ERIC Educational Resources Information Center
Odora Hoppers, Catherine A.
2015-01-01
"In a time of unacceptable global injustice, growing inequalities in the distribution of power, accelerating climate change, and unwavering racism and social exclusion, we are today facing the biggest challenges of human history" (European Conference on Intercultural Dialogue in Development Education, 2008: 1). A favourable wind is…
Forest structure and fire hazard in dry forests of the Western United States
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2005-01-01
Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...
Wildfire communication and climate risk mitigation
Robyn S. Wilson; Sarah M. McCaffrey; Eric Toman
2017-01-01
Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well as contributing to larger and more damaging wildfires over time. Although federal fire...
Between Too Little and Too Late: Political Opportunity Costs in Climate Policy Analysis
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Vandenbergh, M. P.
2014-12-01
Discussion of climate policy has focused almost exclusively on comprehensive regulatory instruments to price emissions with tradeable permits or emissions taxes. More recently, a number of proposals have been advanced to abandon comprehensive emissions pricing in favor of focusing exclusively on clean-energy innovation. Neither approach adequately accounts for the combination of timing and scale. Advocates of emissions pricing are persuasive that this is the most likely way to reduce emissions sufficiently to stabilize greenhouse gas (GHG) concentrations at desirable levels. However, as innovation advocates point out, the political climate is inhospitable to such sweeping regulations and it is unlikely that comprehensive carbon pricing can be enacted and implemented in the next decade. However, clean-energy innovation by itself is a high-stakes gamble that may fail to reduce emissions sufficiently to stabilize GHG concentrations, and may reduce support for the kind of comprehensive pricing measures that could stabilize GHG concentrations.We propose that analysis of climate policies take account of the opportunity costs associated with the process of enacting a proposed policy: If one measure is much more controversial than another, how does the difference in time necessary to persuade the public and legislators to adopt them affect their ultimate impact? As General Patton is reputed to have said, "A good solution applied with vigor now is better than a perfect solution applied ten minutes later." Similarly, it is important to consider whether adopting one measure would build or erode support for complementary ones. As an example, we consider the largely neglected role of nonregulatory measures, such as private governance and household-level behavior change, as examples of actions that could buy time by producing rapid, although modest, impacts without eroding support for more comprehensive measures later on.
Global Assessment of Exploitable Surface Reservoir Storage under Climate Change
NASA Astrophysics Data System (ADS)
Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.
2016-12-01
Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields worldwide: 30% of reservoir potential would be unavailable because of land occupation by environmental and human development. Results from this study will help decision makers to understand the reliability of infrastructure systems particularly sensitive to future water availability.
Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model
NASA Astrophysics Data System (ADS)
Fonseca, R. M.; Zhang, T.; Yong, K.-T.
2015-09-01
The successful modelling of the observed precipitation, a very important variable for a wide range of climate applications, continues to be one of the major challenges that climate scientists face today. When the Weather Research and Forecasting (WRF) model is used to dynamically downscale the Climate Forecast System Reanalysis (CFSR) over the Indo-Pacific region, with analysis (grid-point) nudging, it is found that the cumulus scheme used, Betts-Miller-Janjić (BMJ), produces excessive rainfall suggesting that it has to be modified for this region. Experimentation has shown that the cumulus precipitation is not very sensitive to changes in the cloud efficiency but varies greatly in response to modifications of the temperature and humidity reference profiles. A new version of the scheme, denoted "modified BMJ" scheme, where the humidity reference profile is more moist, was developed. In tropical belt simulations it was found to give a better estimate of the observed precipitation as given by the Tropical Rainfall Measuring Mission (TRMM) 3B42 data set than the default BMJ scheme for the whole tropics and both monsoon seasons. In fact, in some regions the model even outperforms CFSR. The advantage of modifying the BMJ scheme to produce better rainfall estimates lies in the final dynamical consistency of the rainfall with other dynamical and thermodynamical variables of the atmosphere.
[Exclusive use of blue dye to detect sentinel lymph nodes in breast cancer].
Bühler H, Simón; Rojas P, Hugo; Cayazzo M, Daniela; Cunill C, Eduardo; Vesperinas A, Gonzalo; Hamilton S, James
2008-08-01
The use of a dye and radiocolloid to detect sentinel lymph nodes in breast cancer increases the detection rates. However the use of either method alone does not modify the false negative rate. Therefore there is no formal contraindication for the exclusive use of dye to detect nodes. To report a prospective analysis of the exclusive blue dye technique for sentinel node biopsy in patients with early breast cancer. We analyzed the first 100 women with pathologically proven breast cancer who met the inclusion criteria. Patent blue dye was used as colorant. In the first 25 cases sentinel node was identified using radiocolloid and blue dye an then an axillary dissection performed. In the next 25 women, blue dye was used exclusively for detection and an axillary dissection was performed. In the next 50 cases, blue dye was used and only isolated sentinel node biopsy was performed. In 92 of the 100 women a sentinel node was successfully detected. In the first 50 women, the false negative rate of sentinel lymph node detection was 6.9%. No complications occurred. During follow-up, lasting three to 29 months, no axillary relapse was observed. Sentinel node biopsy in patients with early breast cancer using exclusively blue dye is feasible and safe.
Stampfli, Andreas; Bloor, Juliette M G; Fischer, Markus; Zeiter, Michaela
2018-05-01
Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land-use intensity has enhanced productivity and promoted resource-acquisitive species at the expense of resource-conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12-site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land-use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was -15% to -56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < -100 kPa, irrespective of land-use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by -10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource-acquisitive grasses increased at the expense of the deeper-rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land-use intensity. Our study suggests a synergistic impact of land-use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Model falsifiability and climate slow modes
NASA Astrophysics Data System (ADS)
Essex, Christopher; Tsonis, Anastasios A.
2018-07-01
The most advanced climate models are actually modified meteorological models attempting to capture climate in meteorological terms. This seems a straightforward matter of raw computing power applied to large enough sources of current data. Some believe that models have succeeded in capturing climate in this manner. But have they? This paper outlines difficulties with this picture that derive from the finite representation of our computers, and the fundamental unavailability of future data instead. It suggests that alternative windows onto the multi-decadal timescales are necessary in order to overcome the issues raised for practical problems of prediction.
Exclusions for resolving urban badger damage problems: outcomes and consequences.
Ward, Alastair I; Finney, Jason K; Beatham, Sarah E; Delahay, Richard J; Robertson, Peter A; Cowan, David P
2016-01-01
Increasing urbanisation and growth of many wild animal populations can result in a greater frequency of human-wildlife conflicts. However, traditional lethal methods of wildlife control are becoming less favoured than non-lethal approaches, particularly when problems involve charismatic species in urban areas. Eurasian badgers ( Meles meles ) excavate subterranean burrow systems (setts), which can become large and complex. Larger setts within which breeding takes place and that are in constant use are known as main setts. Smaller, less frequently occupied setts may also exist within the social group's range. When setts are excavated in urban environments they can undermine built structures and can limit or prevent safe use of the area by people. The most common approach to resolving these problems in the UK is to exclude badgers from the problem sett, but exclusions suffer a variable success rate. We studied 32 lawful cases of badger exclusions using one-way gates throughout England to evaluate conditions under which attempts to exclude badgers from their setts in urban environments were successful. We aimed to identify ways of modifying practices to improve the chances of success. Twenty of the 32 exclusion attempts were successful, but success was significantly less likely if a main sett was to be excluded in comparison with another type of sett and if vegetation was not completely removed from the sett surface prior to exclusion attempts. We recommend that during exclusions all vegetation is removed from the site, regardless of what type of sett is involved, and that successful exclusion of badgers from a main sett might require substantially more effort than other types of sett.
Richard P. Thompson; Steve R. Auten
2012-01-01
To quantify the benefits and costs of modifying forest management for additional climate benefits, Cal Poly's Swanton Pacific demonstration forest was used to test the Climate Action Reserve's protocol and identify management strategies for both wood and carbon markets. Residing in the Southern Sub-district with its clearcutting restrictions, Swanton offers...
Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder
Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.
2016-01-01
The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons. PMID:27630378
Climate not to blame for African civil wars
Buhaug, Halvard
2010-01-01
Vocal actors within policy and practice contend that environmental variability and shocks, such as drought and prolonged heat waves, drive civil wars in Africa. Recently, a widely publicized scientific article appears to substantiate this claim. This paper investigates the empirical foundation for the claimed relationship in detail. Using a host of different model specifications and alternative measures of drought, heat, and civil war, the paper concludes that climate variability is a poor predictor of armed conflict. Instead, African civil wars can be explained by generic structural and contextual conditions: prevalent ethno-political exclusion, poor national economy, and the collapse of the Cold War system. PMID:20823241
Curriculum Development Guide Based on a Technical Program.
ERIC Educational Resources Information Center
Belle-Isle, Louis Phillip
This "Guide" is intended for educators who have been mandated to develop or modify an educational program's curriculum. The guide presupposes the formulation of an exit-profile and focuses exclusively on activities after the exit-profile has been developed. The development of a curriculum is based on an exit-profile that mirrors the…
2 CFR 180.520 - Who places the information into the EPLS?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Who places the information into the EPLS? 180.520 Section 180.520 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE... disqualified person, generally within five working days, after— (1) Taking an exclusion action; (2) Modifying...
Linking vegetation patterns to potential smoke production and fire hazard
Roger D. Ottmar; Ernesto Alvarado
2004-01-01
During the past 80 years, various disturbances (such as wildfire and wind events) and management actions (including fire exclusion, logging, and domestic livestock grazing) have significantly modified the composition and structure of forests and ranges across the western United States. The resulting fuel loadings directly influence potential smoke production from...
Impacts of climate change on the future of biodiversity.
Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck
2012-04-01
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. © 2012 Blackwell Publishing Ltd/CNRS.
Impacts of climate change on the future of biodiversity
Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck
2013-01-01
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g., phenology), space (e.g., range) and self (e.g., physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesize their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. PMID:22257223
Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
NASA Astrophysics Data System (ADS)
Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.
2012-07-01
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
Modeling and assessing international climate financing
NASA Astrophysics Data System (ADS)
Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng
2016-06-01
Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.
Climate variability has a stabilizing effect on the coexistence of prairie grasses
Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.
2006-01-01
How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862
Nelissen, Philippe T J H; Hülsheger, Ute R; van Ruitenbeek, Gemma M C; Zijlstra, Fred R H
2017-09-01
Purpose People with disabilities often encounter difficulties at the workplace such as exclusion or unfair treatment. Researchers have therefore pointed to the need to focus on behavior that fosters inclusion as well as variables that are antecedents of such 'inclusive behavior'. Therefore the purpose of this study was to research the relationship between prosocial motivation, team inclusive climate and employee inclusive behavior. Method A survey was conducted among a sample of 282 paired employees and colleagues, which were nested in 84 teams. Employees self-rated prosocial motivation and team inclusive climate, their inclusive behavior was assessed by colleagues. Hypotheses were tested using multilevel random coefficient modeling. Results Employees who are prosocially motivated will display more inclusive behavior towards people with disabilities, and this relationship is moderated by team inclusive climate in such a way that the relationship is stronger when the inclusive climate is high. Conclusion This study shows that inclusive organizations, which value a diverse workforce, need to be aware of not only individual employee characteristics, but also team level climate to ensure the smooth integrations of people with disabilities into regular work teams.
Environmental conditions regulate the impact of plants on cloud formation
Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.
2017-01-01
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253
Environmental conditions regulate the impact of plants on cloud formation.
Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F
2017-02-20
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
Erin L. Landguth; Zachary A. Holden; Mary F. Mahalovich; Samuel A. Cushman
2017-01-01
Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the...
ERIC Educational Resources Information Center
Healey, Ruth L.
2012-01-01
Many controversial subjects characterize geography in the 21st century. Issues such as climate change, sustainability and social exclusion generate much discussion and often involve clear differences in opinion of how they might be addressed. Higher education is an important space for critical engagement with challenging issues. Preparing for and…
Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...
Robert E. Keane; Rachel A. Loehman; Lisa M. Holsinger
2011-01-01
Fire management faces important emergent issues in the coming years such as climate change, fire exclusion impacts, and wildland-urban development, so new, innovative means are needed to address these challenges. Field studies, while preferable and reliable, will be problematic because of the large time and space scales involved. Therefore, landscape simulation...
Russell T. Graham; Theresa B. Jain
2007-01-01
In the western United States and throughout the world, three general classes of coniferous forests can be identified with each having similar vegetative complexes, native disturbances, and climate (Daubenmire and Daubenmire 1968, Hann et al. 1997). Dry forests, often dominated by pines (Pinus), cold forests often dominated by spruces (Picea...
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the speciesâ decline and...
Zhang, Tao; Zhang, Yangjian; Xu, Mingjie; Zhu, Juntao; Wimberly, Michael C.; Yu, Guirui; Niu, Shuli; Xi, Yi; Zhang, Xianzhou; Wang, Jingsheng
2015-01-01
To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate. PMID:26515954
Mehdi, B Layla; Rutkowska, Iwona A; Kulesza, Pawel J; Cox, James A
2013-06-01
Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh 2 PMo 11 ), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH 3 ) 3 SiOCH 3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH 3 ) 3 SiOCH 3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh 2 PMo 11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.
Gradations of awareness in a modified sequence learning task.
Norman, Elisabeth; Price, Mark C; Duff, Simon C; Mentzoni, Rune A
2007-12-01
We argue performance in the serial reaction time (SRT) task is associated with gradations of awareness that provide examples of fringe consciousness [Mangan, B. (1993b). Taking phenomenology seriously: the "fringe" and its implications for cognitive research. Consciousness and Cognition, 2, 89-108, Mangan, B. (2003). The conscious "fringe": Bringing William James up to date. In B. J. Baars, W. P. Banks & J. B. Newman (Eds.), Essential sources in the scientific study of consciousness (pp. 741-759). Cambridge, MA: The MIT Press.], and address limitations of the traditional SRT procedure, including criticism of exclusion generation tasks. Two experiments are conducted with a modified SRT procedure where irrelevant stimulus attributes obscure the sequence rule. Our modified paradigm, which includes a novel exclusion task, makes it easier to demonstrate a previously controversial influence of response stimulus interval (RSI) on awareness. It also allows identification of participants showing fringe consciousness rather than explicit sequence knowledge, as reflected by dissociations between different awareness measures. The NEO-PI-R variable Openness to Feelings influenced the diversity of subjective feelings reported during two awareness measures, but not the degree of learning and awareness as previously found with traditional SRT tasks [Norman, E., Price, M. C., & Duff, S. C. (2006). Fringe consciousness in sequence learning: the influence of individual differences. Consciousness and Cognition, 15(4), 723-760.]. This suggests possible distinctions between two components of fringe consciousness.
Measuring safety climate in elderly homes.
Yeung, Koon-Chuen; Chan, Charles C
2012-02-01
Provision of a valid and reliable safety climate dimension brings enormous benefits to the elderly home sector. The aim of the present study was to make use of the safety climate instrument developed by OSHC to measure the safety perceptions of employees in elderly homes such that the factor structure of the safety climate dimensions of elderly homes could be explored. In 2010, surveys by mustering on site method were administered in 27 elderly homes that had participated in the "Hong Kong Safe and Healthy Residential Care Home Accreditation Scheme" organized by the Occupational Safety and Health Council. Six hundred and fifty-one surveys were returned with a response rate of 54.3%. To examine the factor structure of safety climate dimensions in our study, an exploratory factor analysis (EFA) using principal components analysis method was conducted to identify the underlying factors. The results of the modified seven-factor's safety climate structure extracted from 35 items better reflected the safety climate dimensions of elderly homes. The Cronbach alpha range for this study (0.655 to 0.851) indicated good internal consistency among the seven-factor structure. Responses from managerial level, supervisory and professional level, and front-line staff were analyzed to come up with the suggestion on effective ways of improving the safety culture of elderly homes. The overall results showed that managers generally gave positive responses in the factors evaluated, such as "management commitment and concern to safety," "perception of work risks and some contributory influences," "safety communication and awareness," and "safe working attitude and participation." Supervisors / professionals, and frontline level staff on the other hand, have less positive responses. The result of the lowest score in the factors - "perception of safety rules and procedures" underlined the importance of the relevance and practicability of safety rules and procedures. The modified OSHC safety climate tool provided better evidence of structural validity and reliability for use by elderly homes' decision makers as an indicator of employee perception of safety in their institution. The findings and suggestions in the study provide useful information for the management, supervisors/professionals and frontline level staff to cultivate the safety culture in the elderly home sector. Most important, elderly homes can use the modified safety climate scale to identify problem areas in their safety culture and safety management practices and then target these for intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Climate change is relevant to life around the globe. A rise in ambient temperature and CO2 may have various impacts on arthropods such as altered life cycles, modified reproductive patterns, and changes in distribution. The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a global agricultural...
Increasing concentrations of carbon dioxide (CO2) and other greenhouse gases are expected to modify the climate of the earth in the next 50-100 years. echanisms of plant response to these changes need to be incorporated in models that predict crop yield to obtain an understanding...
Climate change's impact on key ecosystem services and the human well-being they support in the US
USDA-ARS?s Scientific Manuscript database
Climate change alters the structure and functions of ecological systems and as a result can modify their provision of ecosystem services. Some American communities have already experienced economic hardship due to spatial shifts in fish biomass caused by warming ocean waters. Documented reductions i...
An evidence-based public health approach to climate change adaptation.
Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George
2014-11-01
Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.
NASA Technical Reports Server (NTRS)
Lee, Pascal; Boucher, M.; Desportes, C.; Glass, B. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Parnell, J.; Schutt, J. W.
2005-01-01
Analysis of crater modification on Mars and at Haughton Crater, Devon Island, High Arctic, which was recently shown to be significantly older than previously believed (Eocene age instead of Miocene) [1], suggest that Mars may have never been climatically wet and warm for geological lengths of time during and since the Late Noachian. Impact structures offer particularly valuable records of the evolution of a planet s climate and landscape through time. The state of exposure and preservation of impact structures and their intracrater fill provide clues to the nature, timing, and intensity of the processes that have modified the craters since their formation. Modifying processes include weathering, erosion, mantling, and infilling. In this study, we compare the modification of Haughton through time with that of impact craters in the same size class on Mars. We derive upper limits for time-integrated denudation rates on Mars during and since the Late Noachian. These rates are significantly lower than previously published and provide important constraints for Mars climate evolution.
Geoengineering as a design problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
2016-01-01
Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less
Climate, phylogeny and the ecological distribution of C4 grasses.
Edwards, Erika J; Still, Christopher J
2008-03-01
'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the pathway evolved exclusively in grass lineages of tropical origin, suggesting that the prevalence of C4 grasses in warm climates could be due to other traits inherited from their non-C4 ancestors. Here we investigate the relative influences of phylogeny and photosynthetic pathway in determining the ecological distributions of C4 grasses in Hawaii. We find that the restriction of C4 grasses to warmer areas is due largely to their evolutionary history as members of a warm-climate grass clade, but that the pathway does appear to confer a competitive advantage to grasses in more arid environments.
Impacts of Insect Herbivores on Plant Populations.
Myers, Judith H; Sarfraz, Rana M
2017-01-31
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Zhao, Qing; Boomer, G. Scott; Kendall, William L.
2018-01-01
On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.
Climate Change as Migration Driver from Rural and Urban Mexico
Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando
2015-01-01
Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986–1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture. PMID:26692890
Climatic change by cloudiness linked to the spatial variability of sea surface temperatures
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.
NASA Astrophysics Data System (ADS)
Khezri, Khezrollah; Fazli, Yousef
2017-10-01
Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandbeck, K.A.; Hitzman, D.O.
1995-12-31
Biogenic formation of sulfide in reservoirs by Sulfate Reducing Bacteria (SRB) causes serious plugging, corrosion, and environmental safety problems. The production of sulfide can be decreased, and its concentration reduced, by the establishment and growth of an indigenous microbial population which results in a replacement of the SRB population. This approach to modify the reservoir ecology utilizing preexisting carbon sources coupled with the introduction of an alternate electron acceptor forms the basis of a new Biocompetitive Exclusion technology which has the potential to enhance oil recovery and decrease paraffin deposition and corrosion. Preliminary field results from an ongoing DOE-sponsored researchmore » program will be discussed.« less
Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K
2017-06-01
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non-native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.
An assessment of yield gains under climate change due to genetic modification of pearl millet.
Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S
2017-12-01
Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raju Pokkuluri, Venkat; Rao, Diwakar Parsi Guru; Hazra, Sugata; Srikant Kulkarni, Sunil
2017-04-01
India uses its 85 percent of available water resources for irrigation making it the country with largest net irrigated area in the world. With one of the largest delta plains, sustaining the needs of irrigation supplies is critical for food security and coping with challenges of climate change. The extensive development of upstream river basins/catchments is posing serious challenge and constrains to the water availability to delta regions, which depend on the controlled/regulated flows from the upstream catchments. The irrigation water demands vary due to changes in agricultural practices, cropping pattern and changing climate conditions. Estimation of realistic irrigation water demand and its trend over time is critical for meeting the supplementary water needs of productive agricultural lands in delta plains and there by coping the challenges of extensive upstream river basin development and climate change. The present study carried out in delta districts of Mahanadi river in Odisha State of India, wherein the long-term trends in field level irrigation water requirements were estimated, both on spatial & temporal scales, using hydrological modeling framework. This study attempts to estimate field level irrigation water requirements through simulation of soil water balance during the crop growing season through process based hydrological modeling framework. The soil water balance computations were carried out using FAO-56 framework, by modifying the crop coefficient (Kc) proportional to the water stress coefficient (Ks), which is a function of root zone depletion of water. Daily meteorological data, spatial cropping pattern, terrain are incorporated in the soil water balance simulation in the model. The irrigation water demand is derived considering the exclusion of soil water stress for each model time step. The field level irrigation water requirement at 8 day interval had been estimated for the each Rabi season (post-monsoon) spanning over 1986 to 2015. The results indicate that irrigation water requirements show spatial and temporal changes and tend to deviate from notional/envisaged demands. Validation of estimated irrigation demand is attempted through correlation of gap in supply and demand with the trends in crop water stress and crop production during the study years. Crop water Stress Index (CWSI), which is the ratio of deficit of actual evapotranspiration (AET) from the potential evapotranspiration (PET) and is derived from MODIS Evapotranspiration data. Agricultural production data is used from State/Central government statistics. The attempted methodology provides opportunities to estimate future irrigation water demand under projected climate change scenarios and for planning for basin level water resources development sustaining the delta agriculture, which are projected to be more vulnerable to climate change.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... modifies the fishery management unit (FMU) for octocorals in the South Atlantic exclusive economic zone... specifications in the South Atlantic region. CE-BA 2 also designates new Essential Fish Habitat (EFH) for... that described the economic impact of the rule. As described in the IRFA, the only action in this rule...
Integrating fuel and forest management: developing prescriptions for the Central Hardwood Region
Edward F. Loewenstein; Keith W. Grabner; George W. Hartman; Erin R. McMurry
2003-01-01
The oak dominated forests in the Ozarks of southern Missouri evolved under the influence of fire for thousands of years. However, fire exclusion and timber harvests have changed historical fuel loads and modified vegetative structure. The resurgent interest in restoration of fire dependent ecosystems in conjunction with the needs of resource managers to control fuel...
Alternative Fuels Data Center: Vehicle Conversion Basics
engine is one modified to use a different fuel or power source than the one for which it was originally ; configurations, meaning they operate exclusively on one alternative fuel. They can also be converted to "bi -fuel" configurations that have two separate tanks-one for conventional fuel and another for an
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... catch, all fish passing over the motion-compensated scale, and all crew actions in these areas. (ii.... ACTION: Final rule. SUMMARY: NMFS issues regulations that modify equipment and operational requirements... options: carry two observers so that all catch can be sampled, or carry one observer and use a motion...
USDA-ARS?s Scientific Manuscript database
Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to s...
Local variability mediates vulnerability of trout populations to land use and climate change
Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...
USDA-ARS?s Scientific Manuscript database
The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; how...
Influence of altitude and aspect on daily variations in factors of forest fire danger
G. Lloyd. Hayes
1941-01-01
Altitude, in broad subdivisions, exerts recognized and well-understood effects on climate. Aspect further modifies the altitudinal influence. Many publications have dealt with the interrelations of these geographic factors with climate and life zones or have discussed variations of individual weather elements as influenced by local altitude and aspect differences and...
Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad; Matthew P. Peters; Paul G. Rodewald
2011-01-01
Species distribution models (SDMs) to evaluate trees' potential responses to climate change are essential for developing appropriate forest management strategies. However, there is a great need to better understand these models' limitations and evaluate their uncertainties. We have previously developed statistical models of suitable habitat, based on both...
Tourism climate and thermal comfort in Sun Moon Lake, Taiwan.
Lin, Tzu-Ping; Matzarakis, Andreas
2008-03-01
Bioclimate conditions at Sun Moon Lake, one of Taiwan's most popular tourist destinations, are presented. Existing tourism-related climate is typically based on mean monthly conditions of air temperature and precipitation and excludes the thermal perception of tourists. This study presents a relatively more detailed analysis of tourism climate by using a modified thermal comfort range for both Taiwan and Western/Middle European conditions, presented by frequency analysis of 10-day intervals. Furthermore, an integrated approach (climate tourism information scheme) is applied to present the frequencies of each facet under particular criteria for each 10-day interval, generating a time-series of climate data with temporal resolution for tourists and tourism authorities.
Tourism climate and thermal comfort in Sun Moon Lake, Taiwan
NASA Astrophysics Data System (ADS)
Lin, Tzu-Ping; Matzarakis, Andreas
2008-03-01
Bioclimate conditions at Sun Moon Lake, one of Taiwan’s most popular tourist destinations, are presented. Existing tourism-related climate is typically based on mean monthly conditions of air temperature and precipitation and excludes the thermal perception of tourists. This study presents a relatively more detailed analysis of tourism climate by using a modified thermal comfort range for both Taiwan and Western/Middle European conditions, presented by frequency analysis of 10-day intervals. Furthermore, an integrated approach (climate tourism information scheme) is applied to present the frequencies of each facet under particular criteria for each 10-day interval, generating a time-series of climate data with temporal resolution for tourists and tourism authorities.
ERIC Educational Resources Information Center
Cole, Eddie R.
2018-01-01
This essay revisits college presidents during the early 1960s to investigate the long history of how academic leaders manage racial unrest on college campuses. Throughout time, the concept of a welcoming and inclusive climate for black students on majority-white campuses has functioned as an illusion alongside the prevailing reality of racism on…
Decrease in sapling nutrient concentrations for six northern Rocky Mountain coniferous species
Theresa B. Jain; Russell T. Graham
2015-01-01
In the west, fire exclusion, timber harvest, and last centuryâs climate led to copious regeneration on millions of ha that now need tending. Without treatment, overcrowding increases competition, snow and ice damage potential, and ladder fuels. Limited funding prevents treating all of the affected ha, but by selling small trees for wood pellets, biofuel, or methanol,...
Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate
2016-01-01
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...
Joseph B. Fontaine; Daniel C. Donato; W. Douglas Robinson; Beverly E. Law; J. Boone Kauffman
2009-01-01
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahata, S.; Mahato, S. S.; Nandi, M. M.
2012-07-23
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less
Sterile Neutrinos in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Benjamin J.P.
Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Partmore » II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 22θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2, and the LSND and MiniBooNE allowed regions are excluded at >99% confidence level.« less
Open-system coral ages reveal persistent suborbital sea-level cycles.
Thompson, William G; Goldstein, Steven L
2005-04-15
Sea level is a sensitive index of global climate that has been linked to Earth's orbital variations, with a minimum periodicity of about 21,000 years. Although there is ample evidence for climate oscillations that are too frequent to be explained by orbital forcing, suborbital-frequency sea-level change has been difficult to resolve, primarily because of problems with uranium/thorium coral dating. Here we use a new approach that corrects coral ages for the frequently observed open-system behavior of uranium-series nuclides, substantially improving the resolution of sea-level reconstruction. This curve reveals persistent sea-level oscillations that are too frequent to be explained exclusively by orbital forcing.
Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B
2017-08-01
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2 s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2 s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.
Climate Change Implications to Vegetation Production in Alaska
NASA Technical Reports Server (NTRS)
Neigh, Christopher S.R.
2008-01-01
Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.
Has climate change driven urbanization in Africa?
Henderson, J Vernon; Storeygard, Adam; Deichmann, Uwe
2017-01-01
This paper documents strong but differentiated links between climate and urbanization in large panels of districts and cities in Sub-Saharan Africa, which has dried substantially in the past fifty years. The key dimension of heterogeneity is whether cities are likely to have manufacturing for export outside their regions, as opposed to being exclusively market towns providing local services to agricultural hinterlands. In regions where cities are likely to be manufacturing centers (25% of our sample), drier conditions increase urbanization and total urban incomes. There, urban migration provides an "escape" from negative agricultural moisture shocks. However, in the remaining market towns (75% of our sample), cities just service agriculture. Reduced farm incomes from negative shocks reduce demand for urban services and derived demand for urban labor. There, drying has little impact on urbanization or total urban incomes. Lack of structural transformation in Africa inhibits a better response to climate change.
Has climate change driven urbanization in Africa?
Henderson, J. Vernon; Storeygard, Adam; Deichmann, Uwe
2017-01-01
This paper documents strong but differentiated links between climate and urbanization in large panels of districts and cities in Sub-Saharan Africa, which has dried substantially in the past fifty years. The key dimension of heterogeneity is whether cities are likely to have manufacturing for export outside their regions, as opposed to being exclusively market towns providing local services to agricultural hinterlands. In regions where cities are likely to be manufacturing centers (25% of our sample), drier conditions increase urbanization and total urban incomes. There, urban migration provides an “escape” from negative agricultural moisture shocks. However, in the remaining market towns (75% of our sample), cities just service agriculture. Reduced farm incomes from negative shocks reduce demand for urban services and derived demand for urban labor. There, drying has little impact on urbanization or total urban incomes. Lack of structural transformation in Africa inhibits a better response to climate change. PMID:28458445
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
Madhusoodhanan, C G; Sreeja, K G; Eldho, T I
2016-10-01
Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
Challenges in predicting climate change impacts on pome fruit phenology
NASA Astrophysics Data System (ADS)
Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E. W. R.
2014-08-01
Climate projection data were applied to two commonly used pome fruit flowering models to investigate potential differences in predicted full bloom timing. The two methods, fixed thermal time and sequential chill-growth, produced different results for seven apple and pear varieties at two Australian locations. The fixed thermal time model predicted incremental advancement of full bloom, while results were mixed from the sequential chill-growth model. To further investigate how the sequential chill-growth model reacts under climate perturbed conditions, four simulations were created to represent a wider range of species physiological requirements. These were applied to five Australian locations covering varied climates. Lengthening of the chill period and contraction of the growth period was common to most results. The relative dominance of the chill or growth component tended to predict whether full bloom advanced, remained similar or was delayed with climate warming. The simplistic structure of the fixed thermal time model and the exclusion of winter chill conditions in this method indicate it is unlikely to be suitable for projection analyses. The sequential chill-growth model includes greater complexity; however, reservations in using this model for impact analyses remain. The results demonstrate that appropriate representation of physiological processes is essential to adequately predict changes to full bloom under climate perturbed conditions with greater model development needed.
Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6
Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.
2018-01-01
The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.
Climate change and mammals: evolutionary versus plastic responses.
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.
Climate change and mammals: evolutionary versus plastic responses
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made. PMID:24454546
ERIC Educational Resources Information Center
Bitar, Maysa H.
2012-01-01
This non-experimental quantitative study followed a correlational design that examined the relationship between five factors of school climate: a) leadership, b) professional development, c) salary, d) working condition, and e) teacher collaboration as measured by the modified version of Teacher's Perception of Factors Leading to Attrition (TPFLA)…
Nancy E. Grulke
2009-01-01
The chapters in Section III of this book provide an overview of how components of climate change, including air pollution, are likely to interact with fire in modifying key ecosystem processes, whether those processes were demographic, successional, or elemental cycling. These chapters primarily  discuss increased temperature, reduced available soil moisture, and...
Impact of Antarctic mixed-phase clouds on climate.
Lawson, R Paul; Gettelman, Andrew
2014-12-23
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-01-01
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069
Evaluation of the educational climate for specialty trainees in dermatology.
Goulding, J M R; Passi, V
2016-06-01
Dermatology specialty trainees (STs) in the United Kingdom (UK) are few in number and will join a thinly spread national consultant body. It is of paramount importance to deliver training programmes of the highest quality for these doctors, central to which is the establishment and maintenance of an educational climate conducive to learning. To conduct a pilot study to evaluate the educational climate for dermatology STs in one UK deanery (West Midlands). Secondary analysis of published data was performed, from the UK's General Medical Council (GMC) national training survey, and the Job Evaluation Survey Tool (JEST) administered by the West Midlands deanery. A modified online version of the Postgraduate Hospital Educational Environment Measure (PHEEM) was circulated among dermatology STs. The GMC's survey data show that UK dermatology STs rated their training highly in comparison with undifferentiated UK postgraduate trainees. West Midlands dermatology STs (n = 22) scored very similarly to UK dermatology STs. The JEST gave broadly encouraging results, with 21/22 (95%) happy to recommend their posts to colleagues. The modified PHEEM yielded a global mean score of 96.5/152, attracting the descriptor 'more positive than negative but room for improvement'. Despite inherent methodological limitations, the GMC, JEST and modified PHEEM surveys have revealed useful comparative triangulated data which allows the conclusion that West Midlands dermatology STs seem to be training in a favourable educational climate. This represents an important facet of the quality assurance process for medical education, and allows insight into areas which may require improvement. © 2015 European Academy of Dermatology and Venereology.
Stenseth, Nils Chr; Durant, Joël M; Fowler, Mike S; Matthysen, Erik; Adriaensen, Frank; Jonzén, Niclas; Chan, Kung-Sik; Liu, Hai; De Laet, Jenny; Sheldon, Ben C; Visser, Marcel E; Dhondt, André A
2015-05-22
Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Exclusive destruction of mitotic spindles in human cancer cells.
Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka
2017-03-28
We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... Island Habitat Conservation Area (SMIHCA). Four minor changes to the FMP also are made, three of which do... Flexibility Act (RFA). However, based on their combined groundfish revenues, none of the four catcher vessels... states that, for each rule or group of related rules for which an agency is required to prepare a FRFA...
ERIC Educational Resources Information Center
Kwong See, Sheree T.; Nicoladis, Elena
2010-01-01
This study examined young children's (M = 38 months) beliefs about the aging of language competence using a modified mutual exclusivity paradigm (cf. Markman, 1990). Children were shown pairs of objects (familiar and unfamiliar) and were asked by a younger and older experimenter to point to the object in the pair to which a novel non-word…
Improvements in decay resistance based on moisture exclusion
Roger M. Rowell; Rebecca E. Ibach
2000-01-01
Moisture content has an effect on the biological decay of wood. The literature states that serious decay occurs when the moisture content of wood is above the fiber saturation point (FSP), which is the measurement of the moisture content of wood when the cell walls are saturated and the cell cavities free from water (average 30%). We can chemically modify wood...
75 FR 41123 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea Subarea
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Bering Sea Research Area to establish the Modified Gear Trawl Zone (MGTZ) and to expand the Saint Matthew... Research Area (NBSRA) to establish the MGTZ, and would expand the Saint Matthew Island Habitat Conservation... can be more than 1,000 feet (304.8 m) in length. Based on research by the Alaska Fisheries Science...
Fixing the Sky: Why the History of Climate Engineering Matters (Invited)
NASA Astrophysics Data System (ADS)
Fleming, J. R.
2010-12-01
What shall we do about climate change? Is a planetary-scale technological fix possible or desirable? The joint AMS and AGU “Policy Statement on Geoengineering the Climate System” (2009) recommends “Coordinated study of historical, ethical, legal, and social implications of geoengineering that integrates international, interdisciplinary, and intergenerational issues and perspectives and includes lessons from past efforts to modify weather and climate.” I wrote Fixing the Sky: The Checkered History of Weather and Climate Control (Columbia University Press, 2010) with this recommendation in mind, to be fully accessible to scientists, policymakers, and the general public, while meeting or exceeding the scholarly standards of history. It is my intent, with this book, to bring history to bear on public policy issues.
NASA Astrophysics Data System (ADS)
Heinonsalo, Jussi; Kulmala, Liisa; Mäkelä, Annikki; Oinonen, Markku; Fontaine, Sebastien; Palonen, Vesa; Pumpanen, Jukka
2017-04-01
In ecosystem models, the decomposition of soil organic matter (SOM) is estimated using temperature and moisture as main controlling parameters. However, there is increasing evidence that the decomposition is significantly affected by easily available carbohydrates. The C assimilation by the boreal forest trees will increase in the future due to climate change. As trees allocate large part of assimilated C to roots and soil microorganisms, particularly to ectomycorrhizal fungi, the rhizosphere priming effect (RPE) is assumed to increase. The aim of the experiment was to identify and quantify RPE in the field conditions. We established a three-year long trenching experiment in a boreal Scots pine forest where the belowground C flow from standing pine forest was controlled using root-exclusion with mesh fabrics. The mesh size of 1 μm excluded both tree roots and fungal hyphae and served as priming controls with decreased C supply. The unaltered C input entered the non-trenched field plots. Soil CO2 flux and 14C concentrations were measured. We were able to quantify the RPE in field conditions and show that plant-derived C flow into the soil increases SOM decomposition. Quantification of RPE allows more detailed estimation of soil organic matter decomposition in future changing climate.
Towards a comprehensive climate impacts assessment of solar geoengineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.
Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less
Towards a comprehensive climate impacts assessment of solar geoengineering
Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; ...
2016-11-23
Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less
Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B
2009-02-01
We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.
2013-12-01
The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
Modeling Feedbacks Between Water and Vegetation in the Climate System
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2001-01-01
Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.
Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he
2011-04-01
Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.
Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D.; Cañellas, Isabel; Gea-Izquierdo, Guillermo
2017-01-01
Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris may eventually limit carbon uptake in this species. Our results suggest that both species are potentially vulnerable to the forecasted increase in drought stress, although P. sylvestris might experience a higher risk of drought-induced decline at its low elevational limit. PMID:28744292
Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D; Cañellas, Isabel; Gea-Izquierdo, Guillermo
2017-01-01
Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1-3 weeks earlier in P. sylvestris . The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris may eventually limit carbon uptake in this species. Our results suggest that both species are potentially vulnerable to the forecasted increase in drought stress, although P. sylvestris might experience a higher risk of drought-induced decline at its low elevational limit.
Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.
Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten
2018-03-02
Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Analyzing climate variations at multiple timescales can guide Zika virus response measures.
Muñoz, Ángel G; Thomson, Madeleine C; Goddard, Lisa; Aldighieri, Sylvain
2016-10-06
The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014-2016 occurred during a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015-2016 El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014-2016 epidemic may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control. Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in 2013-2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the warm temperatures of 2014-2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability. ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event, may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in 2016-2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals. The Author(s)
Williams, Nathaniel J; Ehrhart, Mark G; Aarons, Gregory A; Marcus, Steven C; Beidas, Rinad S
2018-06-25
Behavioral health organizations are characterized by multiple organizational climates, including molar climate, which encompasses clinicians' shared perceptions of how the work environment impacts their personal well-being, and strategic implementation climate, which includes clinicians' shared perceptions of the extent to which evidence-based practice implementation is expected, supported, and rewarded by the organization. Theory suggests these climates have joint, cross-level effects on clinicians' implementation of evidence-based practice and that these effects may be long term (i.e., up to 2 years); however, no empirical studies have tested these relationships. We hypothesize that molar climate moderates implementation climate's concurrent and long-term relationships with clinicians' use of evidence-based practice such that strategic implementation climate will have its most positive effects when it is accompanied by a positive molar climate. Hypotheses were tested using data collected from 235 clinicians in 20 behavioral health organizations. At baseline, clinicians reported on molar climate and implementation climate. At baseline and at a 2-year follow-up, all clinicians who were present in the organizations reported on their use of cognitive-behavioral psychotherapy techniques, an evidence-based practice for youth psychiatric disorders. Two-level mixed-effects regression models tested whether baseline molar climate and implementation climate interacted in predicting clinicians' evidence-based practice use at baseline and at 2-year follow-up. In organizations with more positive molar climates at baseline, higher levels of implementation climate predicted increased evidence-based practice use among clinicians who were present at baseline and among clinicians who were present in the organizations at 2-year follow-up; however, in organizations with less positive molar climates, implementation climate was not related to clinicians' use of evidence-based practice at either time point. Optimizing clinicians' implementation of evidence-based practice in behavioral health requires attention to both molar climate and strategic implementation climate. Strategies that focus exclusively on implementation climate may not be effective levers for behavior change if the organization does not also engender a positive molar climate. These findings have implications for the development of implementation theory and effective implementation strategies.
Climate change and health: impacts, vulnerability, adaptation and mitigation.
Kjellstrom, Tord; Weaver, Haylee J
2009-01-01
Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles.
An Evidence-Based Public Health Approach to Climate Change Adaptation
Eidson, Millicent; Tlumak, Jennifer E.; Raab, Kristin K.; Luber, George
2014-01-01
Background: Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Objectives: Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. Methods: We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. Discussion: A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. Conclusions: The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders. Citation: Hess JJ, Eidson M, Tlumak JE, Raab KK, Luber G. 2014. An evidence-based public health approach to climate change adaptation. Environ Health Perspect 122:1177–1186; http://dx.doi.org/10.1289/ehp.1307396 PMID:25003495
St-Pierre, Gabrielle; Pal, Sudip; Østergaard, Michael E; Zhou, Tianyuan; Yu, Jinghua; Tanowitz, Michael; Seth, Punit P; Hanessian, Stephen
2016-06-01
Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determinants of Market Exclusivity for Prescription Drugs in the United States.
Kesselheim, Aaron S; Sinha, Michael S; Avorn, Jerry
2017-11-01
The high prices of brand-name prescription drugs are a growing source of controversy in the United States. Manufacturers of brand-name drugs can command high prices because they are protected from generic competition by two types of government-granted monopoly rights. The first are patents on the drugs that generally define the basic period of brand-name-only sales. The second is awarded at the time of US Food and Drug Administration (FDA) approval and usually defines the minimum time until a generic can be sold. The initial patents last for 20 years and may be extended to account for time spent in clinical trials and regulatory review; other laws prevent approval of other manufacturers' versions of new drugs for about 6 to 7 years, and for new biologics for 12 years. Overall, most new drugs receive about 12 to 16 years of market exclusivity from both kinds of monopoly protection combined. We reviewed the peer-reviewed medical and health policy literature to identify studies that described the different types of patent protection and regulatory exclusivities that shield brand-name prescription drugs from competition and thus help to sustain high drug prices. We also identified potential policy reforms intended to modify exclusivity periods to address public health needs by balancing drug affordability and industry revenue. The goal of policy in this area should be to ensure that drug market exclusivity periods provide for fair return on investment but do not indefinitely block availability of lower-cost generic drugs.
Corruble, Emmanuelle; Chouinard, Virginie-Anne; Letierce, Alexia; Gorwood, Philip A P M; Chouinard, Guy
2009-08-01
To assess the DSM-IV major depressive episode (MDE) bereavement exclusion criterion by comparing severity and pattern of symptoms in bereavement-excluded individuals satisfying all other DSM-IV MDE criteria to these same variables in MDE controls. A case-control, cross-sectional study of self-referred individuals seeking treatment for depressive symptoms was conducted. A total of 17,988 subjects met DSM-IV MDE symptom criteria. Of these, 1,521 individuals (8.5%) met all MDE criteria except the bereavement exclusion. They were matched by age, gender, marital status, and educational level with 1,521 MDE controls. Among the MDE controls, 292 had a recent bereavement and 1,229 did not. Severity of depression was measured by the number of MDE symptoms and the Montgomery-Asberg Depression Rating Scale (MADRS) score. Symptom cues of the bereavement-exclusion criterion were analyzed. The study was conducted between September 2003 and May 2004. Bereavement-excluded subjects were more severely depressed than MDE controls without bereavement and similar to MDE controls with bereavement. Two symptom cues, suicidal ideation and worthlessness, and the majority of other depressive symptoms were more pronounced in bereavement-excluded individuals than in MDE controls. Symptom cues of the DSM-IV MDE bereavement exclusion criterion should be modified since they could result in patients failing to be correctly diagnosed and treated. ©Copyright 2009 Physicians Postgraduate Press, Inc.
Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.
Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer
2017-08-16
Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.
Climate Prediction Center - 6-10 Day Wind Chill Outlook
8-14 Day Obsrv'd About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team 6-10 & official Web portal to all federal, state, and local government Web resources and services. 6-10 Day Lowest Park, Maryland 20740 Climate Prediction Center Web Team Page last modified: August 30, 2012 Disclaimer
Hammond, Suzan M; McClorey, Graham; Nordin, Joel Z; Godfrey, Caroline; Stenler, Sofia; Lennox, Kim A; Smith, C I Edvard; Jacobi, Ashley M; Varela, Miguel A; Lee, Yi; Behlke, Mark A; Wood, Matthew J A; Andaloussi, Samir E L
2014-11-25
Splice switching oligonucleotides (SSOs) induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, "ZEN™") to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2'-O-methyl (2'OMe) oligonucleotide, increasing melting temperature and potency over unmodified 2'OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2'OMe phosphorothioate (PS) oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2'OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury
2017-04-01
A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year periods. The largest ensemble mean anomaly was about minus 8% by the end of XXI century under the most severe RCP8.5 scenario. We compared the mean annual runoff anomalies projected under the GCM-based data for the XXI century with the corresponding anomalies projected under a modified observed climatology using the delta-change (DC) method. Use of the modified observed records as driving forces for hydrological model-based projections can be considered as an alternative to the GCM-based scenarios if the latter are uncertain. The main advantage of the DC approach is its simplicity: in its simplest version only differences between present and future climates (i.e. between the long-term means of the climatic variables) are considered as DC-factors. In this study, the DC-factors for the reference meteorological series (1986-2005) of climate parameters were calculated from the GCM-based scenarios. The modified historical data were used as input into the hydrological models. For each of four 20-year period, runoff anomalies simulated under the delta-changed historical time series were compared with runoff anomalies simulated under the corresponding GCM-data with the same mean. We found that the compared projections are closely correlated. Thus, for the Amur basin, the modified observed climatology can be used as driving force for hydrological model-based projections and considered as an alternative to the GCM-based scenarios if only annual flow projections are of the interest.
Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose.
Thongsomboon, Wiriya; Serra, Diego O; Possling, Alexandra; Hadjineophytou, Chris; Hengge, Regine; Cegelski, Lynette
2018-01-19
Cellulose is a major contributor to the chemical and mechanical properties of plants and assumes structural roles in bacterial communities termed biofilms. We find that Escherichia coli produces chemically modified cellulose that is required for extracellular matrix assembly and biofilm architecture. Solid-state nuclear magnetic resonance spectroscopy of the intact and insoluble material elucidates the zwitterionic phosphoethanolamine modification that had evaded detection by conventional methods. Installation of the phosphoethanolamine group requires BcsG, a proposed phosphoethanolamine transferase, with biofilm-promoting cyclic diguanylate monophosphate input through a BcsE-BcsF-BcsG transmembrane signaling pathway. The bcsEFG operon is present in many bacteria, including Salmonella species, that also produce the modified cellulose. The discovery of phosphoethanolamine cellulose and the genetic and molecular basis for its production offers opportunities to modulate its production in bacteria and inspires efforts to biosynthetically engineer alternatively modified cellulosic materials. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Keeler, A. G.; McNamara, D. E.; Irish, J. L.
2018-04-01
Most existing coastal climate-adaptation planning processes, and the research supporting them, tightly focus on how to use land use planning, policy tools, and infrastructure spending to reduce risks from rising seas and changing storm conditions. While central to community response to sea level rise, we argue that the exclusive nature of this focus biases against and delays decisions to take more discontinuous, yet proactive, actions to adapt—for example, relocation and aggressive individual protection investments. Public policies should anticipate real estate market responses to risk reduction to avoid large costs—social and financial—when and if sea level rise and other climate-related factors elevate the risks to such high levels that discontinuous responses become the least bad alternative.
Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes.
Robertson, G Philip; Hamilton, Stephen K; Barham, Bradford L; Dale, Bruce E; Izaurralde, R Cesar; Jackson, Randall D; Landis, Douglas A; Swinton, Scott M; Thelen, Kurt D; Tiedje, James M
2017-06-30
Cellulosic crops are projected to provide a large fraction of transportation energy needs by mid-century. However, the anticipated land requirements are substantial, which creates a potential for environmental harm if trade-offs are not sufficiently well understood to create appropriately prescriptive policy. Recent empirical findings show that cellulosic bioenergy concerns related to climate mitigation, biodiversity, reactive nitrogen loss, and crop water use can be addressed with appropriate crop, placement, and management choices. In particular, growing native perennial species on marginal lands not currently farmed provides substantial potential for climate mitigation and other benefits. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Leach, Heather; Van Timmeren, Steven; Isaacs, Rufus
2016-07-14
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a new frugivorous pest of raspberries and other soft fruits in North America, causing infestation of fruit at harvest time. Control of this pest has primarily been through the application of broad-spectrum insecticides to prevent oviposition and larval development, and there is an urgent need for alternative approaches. Over two growing seasons, we compared D. suzukii control in a research planting with insecticide and exclusion treatments in a factorial design, monitoring first-, second-, and third-instar Drosophila larvae in ripening, ripe, and overripe berries. Each of the two control approaches provided significant reduction of infestation in raspberry fruit, but the combination treatment had the lowest overall abundance of larvae in fruit. This pattern was seen for all larval instars in both years. The combination treatment also delayed the first detected larval infestation by 10 d compared to the untreated plots. Exclusion netting applied to commercial size high tunnels resulted in a significant reduction in overall D. suzukii infestation in raspberries, as well as a 3-wk delay in the average first detectable fruit infestation. Raspberry size and quality were not affected by the exclusion treatments, indicating that this approach can be an important component of growers' response to invasion by D. suzukii in temperate climates. We discuss the opportunities and limitations for implementing exclusion netting in raspberry production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Impacts of fine particulate matter on premature mortality under future climate change
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.; Lim, C. H.
2016-12-01
Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.
Grelpois, Gérard; Sabbagh, Charles; Cosse, Cyril; Robert, Brice; Chapuis-Roux, Emilie; Ntouba, Alexandre; Lion, Thierry; Regimbeau, Jean-Marc
2016-11-01
Day case surgery (DCS) for uncomplicated acute appendicitis (NCAA) is evaluated. The objective of this prospective, single-center, descriptive, nonrandomized, intention-to-treat cohort study was to assess the feasibility of DCS for NCAA with a critical analysis of the reasons for exclusion and treatment failures and a focus on patients discharged to home and admitted for DCS on the following day. From April 2013 to December 2015, NCAA patients meeting the inclusion criteria were included in the study. The primary end point was the success rate for DCS (length of stay less than 12 hours) in the intention-to-treat population (all NCAA) and in the per-protocol population (no pre- or perioperative exclusion criteria). The secondary end points were morbidity, DCS quality criteria, predictive factors for successful DCS, patient satisfaction, quality of life, and reasons for pre- or perioperative exclusion. A subgroup of patients discharged to home the day before operation was also analyzed. A total of 240 patients were included. The success rate of DCS was 31.5% in the intention-to-treat population and 91.5% in the per-protocol population. The rates of unplanned consultations, hospitalization, and reoperation were 13%, 4%, and 1%, respectively. An analysis of the reasons for DCS exclusion showed that 73% could have been modified. For the 68 patients discharged to home on the day before operation, the DCS success rate was 91%. Day case surgery is feasible in NCAA. A critical analysis of the reasons for exclusion from DCS showed that it should be possible to dramatically increase the eligible population. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Explaining socioeconomic inequalities in exclusive breast feeding in Norway.
Bærug, Anne; Laake, Petter; Løland, Beate Fossum; Tylleskär, Thorkild; Tufte, Elisabeth; Fretheim, Atle
2017-08-01
In high-income countries, lower socioeconomic position is associated with lower rates of breast feeding, but it is unclear what factors explain this inequality. Our objective was to examine the association between socioeconomic position and exclusive breast feeding, and to explore whether socioeconomic inequality in exclusive breast feeding could be explained by other sociodemographic characteristics, for example, maternal age and parity, smoking habits, birth characteristics, quality of counselling and breastfeeding difficulties. We used data from a questionnaire sent to mothers when their infants were five completed months as part of a trial of a breastfeeding intervention in Norway. We used maternal education as an indicator of socioeconomic position. Analyses of 1598 mother-infant pairs were conducted using logistic regression to assess explanatory factors of educational inequalities in breast feeding. Socioeconomic inequalities in exclusive breast feeding were present from the beginning and persisted for five completed months, when 22% of the most educated mothers exclusively breast fed compared with 7% of the least educated mothers: OR 3.39 (95% CI 1.74 to 6.61). After adjustment for all potentially explanatory factors, the OR was reduced to 1.49 (95% CI 0.70 to 3.14). This decrease in educational inequality seemed to be mainly driven by sociodemographic factors, smoking habits and breastfeeding difficulties, in particular perceived milk insufficiency. Socioeconomic inequalities in exclusive breast feeding at 5 months were largely explained by sociodemographic factors, but also by modifiable factors, such as smoking habits and breastfeeding difficulties, which can be amenable to public health interventions. NCT01025362. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.
2012-08-01
Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.
Greenhouse Effect, Radiative Forcing and Climate Sensitivity
NASA Astrophysics Data System (ADS)
Ponater, Michael; Dietmüller, Simone; Sausen, Robert
Temperature conditions and climate on Earth are controlled by the balance between absorbed solar radiation and outgoing terrestrial radiation. The greenhouse effect is a synonym for the trapping of infrared radiation by radiatively active atmospheric constituents. It generally causes a warming of the planet's surface, compared to the case without atmosphere. Perturbing the radiation balance of the planet, e.g., by anthropogenic greenhouse gas emissions, induces climate change. Individual contributions to a total climate impact are usually quantified and ranked in terms of their respective radiative forcing. This method involves some limitations, because the effect of the external forcing is modified by radiative feedbacks. Here the current concept of radiative forcing and potential improvements are explained.
2018-01-01
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests. Measuring changes in the suitable climate space for lineage groups is an important step beyond models that assume species are genetically homogenous. The suitable climate space for bristlecone pine in the year 2090 is projected to decline by 74% and the proportional distribution of suitable climate space for genetic lineages shifts toward those associated with warmer and wetter conditions. The 2090 climate space for bristlecone pine exhibits a bimodal distribution along an elevation gradient, presumably due to the persistence of the climate space in the Southern Rocky Mountains and exclusion at mid-elevations by conditions that favor the climate space of other species. These shifts have implications for changes in fire regimes, vulnerability to pest and pathogens, and altered carbon dynamics across the southern Rockies, which may reduce the likelihood of bristlecone pine trees achieving exceptional longevity in the future. The persistence and expansion of climate space for southern bristlecone pine genetic lineage groups in 2090 suggests that these sources may be the least vulnerable in the future. While these lineages may be more likely to persist and therefore present opportunities for proactive management (e.g., assisted migration) to maintain subalpine forest ecosystem services in a warmer world, our findings also imply heighted conservation concern for vulnerable northern lineages facing range contractions. PMID:29554097
NASA Astrophysics Data System (ADS)
Almazroui, Mansour; Islam, M. Nazrul; Balkhair, Khaled S.; Şen, Zekâi; Masood, Amjad
2017-06-01
Groundwater reservoirs are important water resources all over the world. Especially, they are of utmost significance for arid and semi-arid regions, and therefore, a sustainable exploitation of these reservoirs needs to be ensured. The natural and most exclusive water supplier to groundwater reservoirs in Saudi Arabia is rainfall, which is characterized by sporadic and random temporal and spatial distributions, particularly under the impacts of climate change; giving rise to uncertainty in groundwater recharge quantification. Although in Saudi Arabia, intense and frequent rainfall events are rare, but they generate significant flash floods with huge amounts of surface water. Under such circumstances, any simple but effective water storage augmentation facility such as rainwater harvesting (RWH) structures gain vital importance for sustainability of water supply and survivals in arid and semi-arid regions. The objective of this study is to explore the possibility of RWH over a basin in the western province of Saudi Arabia called Wadi Al-Lith under climate change. Climatic data is obtained from the IPCC AR5 GCMs, which is further downscaled using a regional climate model RegCM4 for the Arabian Peninsula domain. The RegCM4 is driven to simulate climatic parameters including rainfall at 25 km grid resolution for the present climate (1971-2000), and future climate (2006-2099) with representative concentration pathways, RCP4.5 and RCP8.5. Results indicate that more durable and longer wet durations are expected with increasing surplus rainfall amounts in the far future because of climate change impacts. Consequently, future climate scenarios are expected to enhance floods and flash floods occurrences, which call for progressive measures to harness the RWH opportunity.
Climate change and human health: what are the research trends? A scoping review protocol.
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-12-23
For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
Climate change and human health: what are the research trends? A scoping review protocol
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-01-01
Introduction For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. Methods and analysis A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. Ethics and dissemination No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. PMID:28011805
John V. Syring; Jacob A. Tennessen; Tara N. Jennings; Jill Wegrzyn; Camille Scelfo-Dalbey; Richard Cronn
2016-01-01
Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats â climate change, white pine blister rust, mountain pine beetle, and fire exclusion â and it is suffering significant mortality range-wide, prompting the tree to be listed as â...
Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel
2013-01-01
Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.
Black carbon reduction will weaken the aerosol net cooling effect
NASA Astrophysics Data System (ADS)
Wang, Z. L.; Zhang, H.; Zhang, X. Y.
2014-12-01
Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.
SPAGETTA, a Gridded Weather Generator: Calibration, Validation and its Use for Future Climate
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Rotach, Mathias W.; Huth, Radan
2017-04-01
Spagetta is a new (started in 2016) stochastic multi-site multi-variate weather generator (WG). It can produce realistic synthetic daily (or monthly, or annual) weather series representing both present and future climate conditions at multiple sites (grids or stations irregularly distributed in space). The generator, whose model is based on the Wilks' (1999) multi-site extension of the parametric (Richardson's type) single site M&Rfi generator, may be run in two modes: In the first mode, it is run as a classical generator, which is calibrated in the first step using weather data from multiple sites, and only then it may produce arbitrarily long synthetic time series mimicking the spatial and temporal structure of the calibration weather data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. In the second mode, the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the surface weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying autoregressive model, which produces the multi-site weather series. In the latter mode of operation, the user is allowed to prescribe the spatially varying trend, which is superimposed to the values produced by the generator; this feature has been implemented for use in developing the methodology for assessing significance of trends in multi-site weather series (for more details see another EGU-2017 contribution: Huth and Dubrovsky, 2017, Evaluating collective significance of climatic trends: A comparison of methods on synthetic data; EGU2017-4993). This contribution will focus on the first (classical) mode. The poster will present (a) model of the generator, (b) results of the validation tests made in terms of the spatial hot/cold/dry/wet spells, and (c) results of the pilot climate change impact experiment, in which (i) the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and then (ii) the effect on the above spatial validation indices derived from the synthetic series produced by the modified WG is analysed. In this experiment, the generator is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulation (taken from the CORDEX database).
Mineral resources of the Atlantic Exclusive Economic Zone
Dillon, William P.
1984-01-01
Potential mineral resources of the Atlantic Exclusive Economic Zone (including the Gulf of Mexico and US Caribbean areas) include petroleum, sand and gravel, phosphorite, placer deposits of heavy mineral sands, ferromanganese nodules, and fresh water. Although major efforts have been made to search for petroleum, the oil and gas resources of the region are well known only in the western Gulf Shelf and more exploration is under way. Heavy-mineral placer deposits, which may be sources of titanium, gold, rare earths, etc. , have been sampled, but the extent and, therefore, economic value of the deposits have not been identified. Sand and gravel, phosphorite, and ferromanganese nodules all are represented by fairly well established deposits, and only modified market conditions would be necessary to cause detailed exploration and mining.
Strategic plant choices can alleviate climate change impacts: A review.
Espeland, Erin K; Kettenring, Karin M
2018-09-15
Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.
Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables
NASA Astrophysics Data System (ADS)
Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen
2017-07-01
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.
Simulation of the West African Monsoon using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.
2013-04-01
We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.
Climate variability and conflict risk in East Africa, 1990-2009.
O'Loughlin, John; Witmer, Frank D W; Linke, Andrew M; Laing, Arlene; Gettelman, Andrew; Dudhia, Jimy
2012-11-06
Recent studies concerning the possible relationship between climate trends and the risks of violent conflict have yielded contradictory results, partly because of choices of conflict measures and modeling design. In this study, we examine climate-conflict relationships using a geographically disaggregated approach. We consider the effects of climate change to be both local and national in character, and we use a conflict database that contains 16,359 individual geolocated violent events for East Africa from 1990 to 2009. Unlike previous studies that relied exclusively on political and economic controls, we analyze the many geographical factors that have been shown to be important in understanding the distribution and causes of violence while also considering yearly and country fixed effects. For our main climate indicators at gridded 1° resolution (~100 km), wetter deviations from the precipitation norms decrease the risk of violence, whereas drier and normal periods show no effects. The relationship between temperature and conflict shows that much warmer than normal temperatures raise the risk of violence, whereas average and cooler temperatures have no effect. These precipitation and temperature effects are statistically significant but have modest influence in terms of predictive power in a model with political, economic, and physical geographic predictors. Large variations in the climate-conflict relationships are evident between the nine countries of the study region and across time periods.
Lancaster, Lesley T; Morrison, Gavin; Fitt, Robert N
2017-01-19
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Morrison, Gavin; Fitt, Robert N.
2017-01-01
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920390
Karamchandani, Rahul Ramesh; Fletcher, Jeffrey James; Pandey, Aditya Swarup; Rajajee, Venkatakrishna
2014-09-01
Current guidelines recommend against the use of phenytoin following aneurysmal subarachnoid hemorrhage (aSAH) but consider other anticonvulsants, such as levetiracetam, acceptable. Our objective was to evaluate the risk of poor functional outcomes, delayed cerebral ischemia (DCI) and delayed seizures in aSAH patients treated with levetiracetam versus phenytoin. Medical records of patients with aSAH admitted between 2005-2012 receiving anticonvulsant prophylaxis with phenytoin or levetiracetam for >72 hours were reviewed. The primary outcome measure was poor functional outcome, defined as modified Rankin Scale (mRS) score >3 at first recorded follow-up. Secondary outcomes measures included DCI and the incidence of delayed seizures. The association between the use of levetiracetam and phenytoin and the outcomes of interest was studied using logistic regression. Medical records of 564 aSAH patients were reviewed and 259 included in the analysis after application of inclusion/exclusion criteria. Phenytoin was used exclusively in 43 (17%), levetiracetam exclusively in 132 (51%) while 84 (32%) patients were switched from phenytoin to levetiracetam. Six (2%) patients had delayed seizures, 94 (36%) developed DCI and 63 (24%) had mRS score >3 at follow-up. On multivariate analysis, only modified Fisher grade and seizure before anticonvulsant administration were associated with DCI while age, Hunt-Hess grade and presence of intraparenchymal hematoma were associated with mRS score >3. Choice of anticonvulsant was not associated with any of the outcomes of interest. There was no difference in the rate of delayed seizures, DCI or poor functional outcome in patients receiving phenytoin versus levetiracetam after aSAH. The high rate of crossover from phenytoin suggests that levetiracetam may be better tolerated. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Langston, Lance; O’Donnell, Mike
2017-01-01
Replicative helicases are ring-shaped hexamers that encircle DNA for duplex unwinding. The currently accepted view of hexameric helicase function is by steric exclusion, where the helicase encircles one DNA strand and excludes the other, acting as a wedge with an external DNA unwinding point during translocation. Accordingly, strand-specific blocks only affect these helicases when placed on the tracking strand, not the excluded strand. We examined the effect of blocks on the eukaryotic CMG and, contrary to expectations, blocks on either strand inhibit CMG unwinding. A recent cryoEM structure of yeast CMG shows that duplex DNA enters the helicase and unwinding occurs in the central channel. The results of this report inform important aspects of the structure, and we propose that CMG functions by a modified steric exclusion process in which both strands enter the helicase and the duplex unwinding point is internal, followed by exclusion of the non-tracking strand. DOI: http://dx.doi.org/10.7554/eLife.23449.001 PMID:28346143
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-12-08
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. In this paper, we modify the National Center for Atmospheric Research (NCAR) Community Earthmore » System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm –2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. Finally, these sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than –20 °C.« less
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
NASA Astrophysics Data System (ADS)
Cherkauer, K. A.; Chin, N.
2016-12-01
The agricultural and forestry sectors in the state of Indiana are highly dependent on climate and, subsequently, highly vulnerable to the impacts of climate change. Higher temperatures, shifts in precipitation patterns, more widespread prevalence of pests and pathogens, and increased frequency and severity of extreme weather events could all have negative effects on these two sectors in the future. Agricultural and forest producers are already modifying their management strategies in response to perceptions of changes in climate risk, but such responses have been primarily reactive in nature and, in many cases, demonstrate a disconnect between scientific findings and stakeholder perceptions of the greatest climate risks. This research has been conducted to help improve understanding of climate change risks to agriculture and forestry in Indiana; stakeholder perceptions of climate risks and their current management strategies; and the effectiveness of these management strategies for dealing with current and future climate risk. Sector-specific focus groups, expert panel assessments and surveys have all been utilized in this work, which will also contribute to the new Indiana Climate Change Impacts Assessment report.
Aggregation and fusion of modified low density lipoprotein.
Pentikäinen, M O; Lehtonen, E M; Kovanen, P T
1996-12-01
In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.
Drought, multi-seasonal climate, and wildfire in northern New Mexico
Margolis, Ellis; Woodhouse, Connie A.; Swetnam, Thomas W.
2017-01-01
Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.
Bellamy, Rob; Chilvers, Jason; Vaughan, Naomi E.
2014-01-01
Appraisals of deliberate, large-scale interventions in the earth’s climate system, known collectively as ‘geoengineering’, have largely taken the form of narrowly framed and exclusive expert analyses that prematurely ‘close down’ upon particular proposals. Here, we present the findings from the first ‘upstream’ appraisal of geoengineering to deliberately ‘open up’ to a broader diversity of framings, knowledges and future pathways. We report on the citizen strand of an innovative analytic–deliberative participatory appraisal process called Deliberative Mapping. A select but diverse group of sociodemographically representative citizens from Norfolk (United Kingdom) were engaged in a deliberative multi-criteria appraisal of geoengineering proposals relative to other options for tackling climate change, in parallel to symmetrical appraisals by diverse experts and stakeholders. Despite seeking to map divergent perspectives, a remarkably consistent view of option performance emerged across both the citizens’ and the specialists’ deliberations, where geoengineering proposals were outperformed by mitigation alternatives. PMID:25224904
Bellamy, Rob; Chilvers, Jason; Vaughan, Naomi E
2016-04-01
Appraisals of deliberate, large-scale interventions in the earth's climate system, known collectively as 'geoengineering', have largely taken the form of narrowly framed and exclusive expert analyses that prematurely 'close down' upon particular proposals. Here, we present the findings from the first 'upstream' appraisal of geoengineering to deliberately 'open up' to a broader diversity of framings, knowledges and future pathways. We report on the citizen strand of an innovative analytic-deliberative participatory appraisal process called Deliberative Mapping. A select but diverse group of sociodemographically representative citizens from Norfolk (United Kingdom) were engaged in a deliberative multi-criteria appraisal of geoengineering proposals relative to other options for tackling climate change, in parallel to symmetrical appraisals by diverse experts and stakeholders. Despite seeking to map divergent perspectives, a remarkably consistent view of option performance emerged across both the citizens' and the specialists' deliberations, where geoengineering proposals were outperformed by mitigation alternatives. © The Author(s) 2014.
Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.
Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S
2017-10-06
In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Regulatory science requirements of labeling of genetically modified food.
Moghissi, A Alan; Jaeger, Lisa M; Shafei, Dania; Bloom, Lindsey L
2018-05-01
This paper provides an overview of the evolution of food labeling in the USA. It briefly describes the three phases of agricultural development consisting of naturally occurring, cross-bred, and genetically engineered, edited or modified crops, otherwise known as Genetically Modified Organisms (GMO). It uses the Best Available Regulatory Science (BARS) and Metrics for Evaluation of Regulatory Science Claims (MERSC) to evaluate the scientific validity of claims applicable to GMO and the Best Available Public Information (BAPI) to evaluate the pronouncements by public media and others. Subsequently claims on health risk, ecological risk, consumer choice, and corporate greed are evaluated based on BARS/MERSC and BAPI. The paper concludes by suggesting that labeling of food containing GMO should consider the consumer's choice, such as the food used by those who desire kosher and halal food. Furthermore, the consumer choice is already met by the exclusion of GMO in organic food.
Nonperturbative quantum control via the nonresonant dynamic Stark effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Benjamin J.; Stolow, Albert; Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6
2005-05-15
The nonresonant dynamic Stark effect (NRDSE) is investigated as a general tool for quantum control in the intermediate field strength regime (nonperturbative but nonionizing). We illustrate this scheme for the case of nonadiabatic molecular photodissociation at an avoided crossing. Using the NRDSE exclusively, both the electronic branching ratio and predissociation lifetime may be controlled. Infrared control pulses are used to modify the field-free dynamical evolution during traversal of the avoided crossing, thus controlling the nonadiabatic branching ratio. Predissociation lifetimes may be either increased or decreased using properly timed short infrared pulses to modify phase differences between the diabatic wave packets.more » In contrast with the limiting cases of perturbative control (interference between transitions) and strong field control with ionizing laser fields, control via the NRDSE may be thought of as reversibly modifying the effective Hamiltonian during system propagation.« less
Gan, Patrick; Foord, John S; Compton, Richard G
2015-10-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.
Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew
2017-12-01
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.
Thompson, R.S.; Fleming, R.F.
1996-01-01
The general characteristics of global vegetation during the middle Pliocene warm period can be reconstructed from fossil pollen and plant megafossil data. The largest differences between Pliocene vegetation and that of today occurred at high latitudes in both hemispheres, where warming was pronounced relative to today. In the Northern Hemisphere coniferous forests lived in the modern tundra and polar desert regions, whereas in the Southern Hemisphere southern beech apparently grew in coastal areas of Antarctica. Pliocene middle latitude vegetation differed less, although moister-than-modern conditions supported forest and woodland growth in some regions now covered by steppe or grassland. Pliocene tropical vegetation reflects essentially modern conditions in some regions and slightly cooler-than-or warmer-than- modern climates in other areas. Changes in topography induced by tectonics may be responsible for many of the climatic changes since the Pliocene in both middle and lower latitudes. However, the overall latitudinal progression of climatic conditions on land parallels that seen in the reconstruction of middle Pliocene sea-surface temperatures. Pliocene paleovegetational data was employed to construct a 2????2?? global grid of estimated mid-Pliocene vegetational cover for use as boundary conditions for numerical General Circulation Model simulations of middle Pliocene climates. Continental outlines and topography were first modified to represent the Pliocene landscape on the 2????2?? grid. A modern 1????1?? vegetation grid was simplified and mapped on this Pliocene grid, and then modified following general geographic trends evident in the Pliocene paleovegetation data set.
NASA Astrophysics Data System (ADS)
Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.
2017-10-01
Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.
Lease, Richard O.; Ehlers, T.A.; Enkelmann, E.
2016-01-01
Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward propagation of deformation.
Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality
Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer
2017-01-01
Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979
Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.
Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia
2011-01-01
Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.
Environmental and dietary risk factors for infantile atopic eczema among a Slovak birth cohort.
Dunlop, Anne L; Reichrtova, Eva; Palcovicova, Luba; Ciznar, Peter; Adamcakova-Dodd, Andrea; Smith, S J; McNabb, Scott J N
2006-03-01
Infantile atopic eczema (AE) is a risk marker for future asthma. This study assesses the contribution of modifiable exposures to infantile AE. If modifiable exposures contribute substantially to infantile AE, its prevention might be a sensible approach to asthma prevention. Pregnant women (n = 1978) were systematically recruited from maternity hospitals of the Slovak Republic; their birthed cohort of 1990 children were prospectively followed for 1 yr. Children's exposures to selected environmental and dietary factors were assessed via maternal questionnaires administered at delivery and 1 yr of age. A child was considered to have AE, based on physical examination (SCORAD index >2) or mother's report of a previous physician diagnosis. Multivariate logistic regression was used to calculate adjusted odds ratios and percent total regression scores (TRS) for each variable. At 1 yr of age 1326 (67%) of the children remained in the cohort and 207 (15.6%) developed AE. Various modifiable environmental and dietary exposures increased the likelihood of AE (ownership of cats; consumption of infant formula, eggs, and fish) while others decreased the likelihood of AE (ownership of livestock; exclusive breast feeding for > or =4 months). Overall, modifiable exposures contributed less to the TRS than did non-modifiable exposures (38% vs. 62%, respectively). The modifiable exposure category that contributed most to the TRS was infant feeding practices (27.5% TRS). Modifiable exposures -- especially those related to infant feeding practices -- significantly contribute to infantile AE, although modifiable factors contribute less overall than do non-modifiable exposures.
A two-column flash chromatography approach to pyoverdin production from Pseudomonas putida GB1.
Duckworth, Owen W; Markarian, Dawn S; Parker, Dorothy L; Harrington, James M
2017-04-01
Our knowledge of the biological and environmental reactivity of siderophores is limited by the difficulty and cost of obtaining reasonable quantities by purification or synthesis. In this note, we describe a modified procedure for the low-cost, mg-scale purification of pyoverdin-type siderophores using a dual-flash chromatography (reverse-phase absorption and size exclusion) approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Alves, Hayda; Escorel, Sarah
2013-12-01
To understand the impact of Bolsa Família (PBF), a federal cash transfer program, and to analyze its effects on social inclusion and exclusion processes experienced by low-income families in Brazil, with a focus on the program's potential to help overcome health inequity. This qualitative investigation used a case study methodology including observant participation, review of documents, and semi-structured interviews with current and former PBF beneficiaries, as well as with the program's local managers. The study was conducted in a small city in the state of Rio de Janeiro with a high social exclusion index and 100% coverage by the Family Health Strategy (Estratégia Saúde da Família, ESF) program. The economic, political, social, and cultural dimensions of social exclusion and inclusion processes were used to guide data collection and analysis. The program facilitated social inclusion of low-income families, especially in the economic and social dimensions. Nevertheless, it did not produce the changes desired by the beneficiaries in the work dimension. The effects on the political dimension were limited by the insufficient social engagement of the PBF. The interviewees underscored the positive effects of the ESF, which allowed them to exercise their right to health by granting them wider access to primary health care services. However, these effects appeared to be unrelated to the PBF. The results reveal effects, limitations, and challenges of the PBF towards modifying the social determinants of health inequity, in order to promote more effective changes in the social exclusion/inclusion dynamics affecting low-income families.
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Grant, J. A.; Crumpler, L. S.; Greeley, R.; Arvidson, R. E.
2005-01-01
Mars Exploration Rover Opportunity discovered sedimentary dirty evaporites in Meridiani Planum that were deposited in salt-water playas or sabkhas in the Noachian, roughly coeval with a variety of geomorphic indicators (valley networks, degraded craters and highly eroded terrain) of a possible early warmer and wetter environment. In contrast, the cratered plains of Gusev that Spirit has traversed (exclusive of the Columbia Hills) have been dominated by impact and eolian processes and a gradation history that argues for a dry and desiccating environment since the Late Hesperian. This paper reviews the surficial geology and gradation history of the plains in Gusev crater as observed along the traverse by Spirit that supports this climate change from the two landing sites on Mars.
The species velocity of trees in Alaska
NASA Astrophysics Data System (ADS)
Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.
2017-12-01
Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly with minimal loss of optimal habitat. Our results suggest that these species do not exclusively redistribute to higher latitudes and elevations in a warming climate, suggesting that 1) microtopography plays a significant role in the distribution of a species and 2) many species may not be tracking temperature change, but other climate restrictions.
W. Devine; C. Aubry; J. Miller; K. Potter; A. Bower
2012-01-01
This guide provides a step-by-step description of the methodology used to apply the Forest Tree Genetic Risk Assessment System (ForGRAS; Potter and Crane 2010) to the tree species of the Pacific Northwest in a recent climate change vulnerability assessment (Devine et al. 2012). We describe our modified version of the ForGRAS model, and we review the modelâs basic...
NASA Astrophysics Data System (ADS)
Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.
2010-12-01
Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and stories documenting the effectiveness of the program design from a research, engagement and business perspective. In US, the program has successfully collected over 10,000 hours of data collection in just 2 years and has contributed to our understanding of positive growth response to climate change in the Chesapeake Bay forests. Additionally, preliminary results are indicating that invasive species recruitment in recently logging areas is modifying the future crown species dominance. By the end of the program, nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications on forest responses to climate change, policy development and citizen engagement.
Wu, Y.; Liu, S.; Abdul-Aziz, O. I.
2012-01-01
Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.
Harms, Tamara K.; Edmonds, Jennifer W.; Genet, Hélène; ...
2016-01-10
Spatial patterns in carbon (C) and nitrogen (N) cycles of high-latitude catchments have been linked to climate and permafrost and used to infer potential changes in biogeochemical cycles under climate warming. However, inconsistent spatial patterns across regions indicate that factors in addition to permafrost and regional climate may shape responses of C and N cycles to climate change. In this paper, we hypothesized that physical attributes of catchments modify responses of C and N cycles to climate and permafrost. We measured dissolved organic C (DOC) and nitrate (NO 3 ¯) concentrations, and composition of dissolved organic matter (DOM) in 21more » streams spanning boreal to arctic Alaska, and assessed permafrost, topography, and attributes of soils and vegetation as predictors of stream chemistry. Multiple regression analyses indicated that catchment slope is a primary driver, with lower DOC and higher NO 3 ¯ concentration in streams draining steeper catchments, respectively. Depth of the active layer explained additional variation in concentration of DOC and NO 3 ¯. Vegetation type explained regional variation in concentration and composition of DOM, which was characterized by optical methods. Composition of DOM was further correlated with attributes of soils, including moisture, temperature, and thickness of the organic layer. Finally, regional patterns of DOC and NO 3 ¯ concentrations in boreal to arctic Alaska were driven primarily by catchment topography and modified by permafrost, whereas composition of DOM was driven by attributes of soils and vegetation, suggesting that predicting changes to C and N cycling from permafrost-influenced regions should consider catchment setting in addition to dynamics of climate and permafrost.« less
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
Increasing elevation of fire in the Sierra Nevada and implications for forest change
Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.
2015-01-01
Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.
U.S. 2013 National Climate Assessment of Oceans and Marine Resources
NASA Astrophysics Data System (ADS)
Doney, S. C.; Rosenberg, A.
2012-12-01
We will discuss the key findings from the Oceans and Marine Resources chapter of the U.S. 2013 National Climate Assessment. As a nation, we depend on the ocean for seafood, recreation and tourism, cultural heritage, transportation of goods, and increasingly, energy and other critical resources. The U.S. ocean Exclusive Economic Zone extends 200 nautical miles seaward from the coast, spanning an area about 1.7 times the land area of the continental United States and encompassing waters along the U.S. east, west and Gulf coasts, around Alaska and Hawaii, and including the U.S. territories in the Pacific and Caribbean. This vast region is host to a rich diversity of marine plants and animals and a wide range of ecosystems from tropical coral reefs to sea-ice covered, polar waters in the Arctic. We will highlight the current state of knowledge on changing ocean climate conditions, such as warming, sea-ice retreat and ocean acidification, and how these may be impacting valuable marine ecosystems and the array of resources and services we derive from the sea now and into the future. We will also touch on the interaction of climate change impacts with other human factors including pollution and over-fishing.
Software Testing and Verification in Climate Model Development
NASA Technical Reports Server (NTRS)
Clune, Thomas L.; Rood, RIchard B.
2011-01-01
Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.
NASA Astrophysics Data System (ADS)
Varela, Augusto N.; Raigemborn, M. Sol; Richiano, Sebastián; White, Tim; Poiré, Daniel G.; Lizzoli, Sabrina
2018-01-01
Although there is general consensus that a global greenhouse climate characterized the mid-Cretaceous, details of the climate state of the mid-Cretaceous Southern Hemisphere are less clearly understood. In particular, continental paleoclimate reconstructions are scarce and exclusively derived from paleontological records. Using paleosol-derived climofunction studies of the mid- to Upper Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina, we present a reconstruction of the mid-Cretaceous climate of southern South America. Our results indicate that at 60° south paleolatitude during the Cenomanian-Santonian stages, the climate was subtropical temperate-warm (12 °C ± 2.1 °C) and humid (1404 ± 108 mm/yr) with marked rainfall seasonality. These results are consistent with both previous estimations from the fossil floras of the Mata Amarilla Formation and other units of the Southern Hemisphere, and with the previous observations of the displacement of tropical and subtropical floras towards the poles in both hemispheres. The data presented here show a more marked seasonality and slightly lower mean annual precipitation and mean annual temperature values than those recorded at the same paleolatitudes in the Northern Hemisphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddei, Laura; Martinelli, Matteo; Amendola, Luca, E-mail: taddei@thphys.uni-heidelberg.de, E-mail: martinelli@lorentz.leidenuniv.nl, E-mail: amendola@thphys.uni-heidelberg.de
2016-12-01
The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called G {sub eff}) by using currently available f σ{sub 8} data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraintsmore » significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.« less
Inferential reasoning by exclusion in great apes, lesser apes, and spider monkeys.
Hill, Andrew; Collier-Baker, Emma; Suddendorf, Thomas
2011-02-01
Using the cups task, in which subjects are presented with limited visual or auditory information that can be used to deduce the location of a hidden reward, Call (2004) found prima facie evidence of inferential reasoning by exclusion in several great ape species. One bonobo (Pan paniscus) and two gorillas (Gorilla gorilla) appeared to make such inferences in both the visual and auditory domains. However, common chimpanzees (Pan troglodytes) were successful only in the visual domain, and Bornean orangutans (Pongo pygmaeus) in neither. The present research built on this paradigm, and Experiment 1 yielded prima facie evidence of inference by exclusion in both domains for two common chimpanzees, and in the visual domain for two Sumatran orangutans (Pongo abelii). Experiments 2 and 3 demonstrated that two specific associative learning explanations could not readily account for these results. Because an important focus of the program of research was to assess the cognitive capacities of lesser apes (family Hylobatidae), we modified Call's original procedures to better suit their attentional and dispositional characteristics. In Experiment 1, testing was also attempted with three gibbon genera (Symphalangus, Nomascus, Hylobates), but none of the subjects completed the standard task. Further testing of three siamangs (Symphalangus syndactylus) and a spider monkey (Ateles geoffroyi) using a faster method yielded prima facie evidence of inferential reasoning by exclusion in the visual domain among the siamangs (Experiment 4).
Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS
NASA Astrophysics Data System (ADS)
Zeng, Sibo; Jiang, Yongjun; Liu, Zaihua
2016-09-01
Riverine carbon fluxes of some catchments in the world have significantly changed due to contemporary climate change and human activities. As a large region with an extensive karstic area of nearly 7.5 × 105 km2, Southwest (SW) China has experienced dramatic climate changes during recent decades. Although some studies have investigated the karst-related carbon sink in some parts of this region, the importance of climate impacts have not been assessed. This research examined the impacts of recent climate change on the karst-related carbon sink in the SW China for the period 1970-2013, using a modified maximal potential dissolution (MPD) method and GIS. We first analyzed the major determinants of carbonate dissolution at a spatial scale, calculated the total karst-related carbon sink (TCS) and carbon sink fluxes (CSFs) in the SW China karst region with different types of carbonate rocks, and then compared with other methods, and analyzed the causes of CSFs variations under the changed climate conditions. The results show that the TCS in SW China experienced a dramatic change with regional climate, and there was a trend with TCS decreasing by about 19% from 1970s to 2010s. This decrease occurred mostly in Guizhou and Yunnan provinces, which experienced larger decreases in runoff depth in the past 40 years (190 mm and 90 mm, respectively) due to increased air temperature (0.33 °C and 1.04 °C, respectively) and decreased precipitation (156 mm and 106 mm, respectively). The mean value of CSFs in SW China, calculated by the modified MPD method, was approximately 9.36 t C km- 2 a- 1. In addition, there were large differences in CSFs among the provinces, attributed to differences in regional climate and to carbonate lithologies. These spatiotemporal changes depended mainly on hydrological variations (i.e., discharge or runoff depth). This work, thus, suggests that the karst-related carbon sink could respond to future climate change quickly, and needs to be considered in the modern global carbon cycle model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less
The seasonal CO2 cycle on Mars - An application of an energy balance climate model
NASA Technical Reports Server (NTRS)
James, P. B.; North, G. R.
1982-01-01
Energy balance climate models of the Budyko-Sellers variety are applied to the carbon-dioxide cycle on Mars. Recent data available from the Viking mission, in particular the seasonal pressure variations measured by Viking landers, are used to constrain the models. No set of parameters was found for which a one-dimensional model parameterized in terms of ground temperature gave an adequate fit to the observed pressure variations. A modified, two-dimensional model including the effects of dust storms and the polar hood reasonably reproduces the pressure curve, however. The implications of these results for Martian climate changes are discussed.
The evolution of the early Martian climate and the initial emplacement of crustal H2O
NASA Technical Reports Server (NTRS)
Clifford, S. M.
1993-01-01
Given the geomorphic evidence for the widespread occurrence of water and ice in the early Martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the Martian valley networks to terrestrial runoff channels and their almost exclusive occurrence in the planet's ancient (approximately 4-b.y.-old) heavily cratered terrain are often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was groundwater sapping, a process that does not require that surface water exists in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered here from two perspectives: (1) the early climate started warm and wet, but gradually cooled with time, and (2) the early climate never differed substantially from that of today.
Prokopy, Linda S; Arbuckle, J G; Barnes, Andrew P; Haden, V R; Hogan, Anthony; Niles, Meredith T; Tyndall, John
2015-08-01
Climate change has serious implications for the agricultural industry-both in terms of the need to adapt to a changing climate and to modify practices to mitigate for the impacts of climate change. In high-income countries where farming tends to be very intensive and large scale, it is important to understand farmers' beliefs and concerns about climate change in order to develop appropriate policies and communication strategies. Looking across six study sites-Scotland, Midwestern United States, California, Australia, and two locations in New Zealand-this paper finds that over half of farmers in each location believe that climate change is occurring. However, there is a wide range of beliefs regarding the anthropogenic nature of climate change; only in Australia do a majority of farmers believe that climate change is anthropogenic. In all locations, a majority of farmers believe that climate change is not a threat to local agriculture. The different policy contexts and existing impacts from climate change are discussed as possible reasons for the variation in beliefs. This study compared varying surveys from the different locations and concludes that survey research on farmers and climate change in diverse locations should strive to include common questions to facilitate comparisons.
Viking '79 Rover study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1974-01-01
The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.
Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo
2002-12-06
Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.
2018-03-01
Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Climate change helplessness and the (de)moralization of individual energy behavior.
Salomon, Erika; Preston, Jesse L; Tannenbaum, Melanie B
2017-03-01
Although most people understand the threat of climate change, they do little to modify their own energy conservation behavior. One reason for this gap between belief and behavior may be that individual actions seem unimpactful and therefore are not morally relevant. This research investigates how climate change helplessness-belief that one's actions cannot affect climate change-can undermine the moralization of climate change and personal energy conservation. In Study 1, climate change efficacy predicted both moralization of energy use and energy conservation intentions beyond individual belief in climate change. In Studies 2 and 3, participants read information about climate change that varied in efficacy message, that is, whether individual actions (e.g., using less water, turning down heat) make a difference in the environment. Participants who read that their behavior made no meaningful impact reported weaker moralization and intentions (Study 2), and reported more energy consumption 1 week later (Study 3). Moreover, effects on intentions and actions were mediated by changes in moralization. We discuss ways to improve climate change messages to foster environmental efficacy and moralization of personal energy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Moisan, John R.
2009-01-01
Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
Ronald Raunikar; Joseph Buongiorno; James A. Turner; Shushuai Zhu
2010-01-01
The Global Forest Products Model (GFPM) was modified to link the forest sector to two scenarios of the Intergovernmental Panel on Climate Change (IPCC), and to represent the utilization of fuelwood and industrial roundwood to produce biofuels. The scenarios examined were a subset of the âstory linesâ prepared by the IPCC. Each scenario has projections of population and...
Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient
NASA Astrophysics Data System (ADS)
Shia, R.
2011-12-01
The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.
Modeled impact of anthropogenic land cover change on climate
Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.
2007-01-01
Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.
How light competition between plants affects their response to climate change.
van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R
2014-09-01
How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Brown, Gregory P; Shine, Richard
2007-11-01
To predict the impacts of climate change on animal populations, we need long-term data sets on the effects of annual climatic variation on the demographic traits (growth, survival, reproductive output) that determine population viability. One frequent complication is that fecundity also depends upon maternal body size, a trait that often spans a wide range within a single population. During an eight-year field study, we measured annual variation in weather conditions, frog abundance and snake reproduction on a floodplain in the Australian wet-dry tropics. Frog numbers varied considerably from year to year, and were highest in years with hotter wetter conditions during the monsoonal season ("wet season"). Mean maternal body sizes, egg sizes and post-partum maternal body conditions of frog-eating snakes (keelback, Tropidonophis mairii, Colubridae) showed no significant annual variation over this period, but mean clutch sizes were higher in years with higher prey abundance. Larger females were more sensitive to frog abundance in this respect than were smaller conspecifics, so that the rate at which fecundity increased with body size varied among years, and was highest when prey availability was greatest. Thus, the link between female body size and reproductive output varied among years, with climatic factors modifying the relative reproductive rates of larger (older) versus smaller (younger) animals within the keelback population.
Warming combined with more extreme precipitation regimes modifies the water sources used by trees.
Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G
2017-01-01
The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Heyn, K.; Campbell, E.
2016-12-01
The Portland Water Bureau has been studying the anticipated effects of climate change on its primary surface water source, the Bull Run Watershed, since the early 2000's. Early efforts by the bureau were almost exclusively reliant on outside expertise from climate modelers and researchers, particularly those at the Climate Impacts Group (CIG) at the University of Washington. Early work products from CIG formed the basis of the bureau's understanding of the most likely and consequential impacts to the watershed from continued GHG-caused warming. However, by mid-decade, as key supply and demand conditions for the bureau changed, it found it lacked the technical capacity and tools to conduct more refined and updated research to build on the outside analysis it had obtained. Beginning in 2010 through its participation in the Pilot Utility Modeling Applications (PUMA) project, the bureau identified and began working to address the holes in its technical and institutional capacity by embarking on a process to assess and select a hydrologic model while obtaining downscaled climate change data to utilize within it. Parallel to the development of these technical elements, the bureau made investments in qualified staff to lead the model selection, development and utilization, while working to establish productive, collegial and collaborative relationships with key climate research staff at the Oregon Climate Change Research Institute (OCCRI), the University of Washington and the University of Idaho. This presentation describes the learning process of a major metropolitan area drinking water utility as its approach to addressing the complex problem of climate change evolves, matures, and begins to influence broader aspects of the organization's planning efforts.
A Search for the Decay B+ --> K+ nu nubar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, B
In this work the authors report the results of a search for the exclusive decay mode B{sup +} --> K{sup +}{nu}{bar {nu}}. By modifying the particle identification (PID) criteria used in the search, they additionally obtain a limit on the related decay B{sup +} --> {pi}{sup +}{nu}{bar {nu}}. The data used in this analysis were collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} storage ring.
Comment on "The extent of forest in dryland biomes".
Griffith, Daniel M; Lehmann, Caroline E R; Strömberg, Caroline A E; Parr, Catherine L; Pennington, R Toby; Sankaran, Mahesh; Ratnam, Jayashree; Still, Christopher J; Powell, Rebecca L; Hanan, Niall P; Nippert, Jesse B; Osborne, Colin P; Good, Stephen P; Anderson, T Michael; Holdo, Ricardo M; Veldman, Joseph W; Durigan, Giselda; Tomlinson, Kyle W; Hoffmann, William A; Archibald, Sally; Bond, William J
2017-11-17
Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than previously estimated using tree cover data. However, their forest definition does not reflect ecosystem function or biotic composition. These structural and climatic definitions inflate forest estimates across the tropics and undermine conservation goals, leading to inappropriate management policies and practices in tropical grassy ecosystems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The commercial evolution of the Titan program
NASA Astrophysics Data System (ADS)
Isakowitz, Steven
1988-07-01
The present status evaluation of proprietary efforts to turn the once exclusively government-requirements-oriented Titan launch vehicle into a successful commercial competitor is divided into three phases. The first phase notes recent changes in U.S. space transportation policy and the Titan configurations evaluated for commercial feasibility. The second phase is a development history for the current vehicle's marketing organization and the right-to-use agreement for a launch site. Phase three projects the prospective marketing climate for a commercial Titan vehicle and its planned improvements.
On the role of ozone feedback in the ENSO amplitude response under global warming.
Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A
2017-04-28
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.
[Consumer reaction to information on the labels of genetically modified food].
Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina
2014-02-01
To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.
Simulation of modern climate with the new version of the INM RAS climate model
NASA Astrophysics Data System (ADS)
Volodin, E. M.; Mortikov, E. V.; Kostrykin, S. V.; Galin, V. Ya.; Lykosov, V. N.; Gritsun, A. S.; Diansky, N. A.; Gusev, A. V.; Yakovlev, N. G.
2017-03-01
The INMCM5.0 numerical model of the Earth's climate system is presented, which is an evolution from the previous version, INMCM4.0. A higher vertical resolution for the stratosphere is applied in the atmospheric block. Also, we raised the upper boundary of the calculating area, added the aerosol block, modified parameterization of clouds and condensation, and increased the horizontal resolution in the ocean block. The program implementation of the model was also updated. We consider the simulation of the current climate using the new version of the model. Attention is focused on reducing systematic errors as compared to the previous version, reproducing phenomena that could not be simulated correctly in the previous version, and modeling the problems that remain unresolved.
Principles of Public Reason in the UNFCCC: Rethinking the Equity Framework.
Boran, Idil
2017-10-01
Since 2011, the focus of international negotiations under the UNFCCC has been on producing a new climate agreement to be adopted in 2015. This phase of negotiations is known as the Durban Platform for Enhanced Action. The goal has been to update the global effort on climate for long-term cooperation. In this period, various changes have been contemplated on the design of the architecture of the global climate effort. Whereas previously, the negotiation process consisted of setting mandated targets exclusively for developed countries, the current setting requests of each country to pledge its contribution to the climate effort in the form of Intended Nationally Determined Contributions (INDCs). The shift away from establishing negotiated targets for rich countries alone towards a universal system of participation through intended contributions raised persistent questions on how exactly the new agreement can ensure equitable terms. How to conceptualize equity within the 2015 climate agreement, and beyond, is the focus of this paper. The paper advances a framework on equity, which moves away from substantive moral conceptions of burden allocation toward refining principles of public reason specially designed for the negotiation process under the UNFCCC. The paper outlines the framework's main features and discusses how it can serve a facilitating role for multilateral discussion on equity on a long-term basis capable of adapting to changing circumstances.
Climate change, extreme weather events, air pollution and respiratory health in Europe.
De Sario, M; Katsouyanni, K; Michelozzi, P
2013-09-01
Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.
Climate Change Vulnerability Assessment for Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte
2014-10-01
The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less
Acting on social exclusion: neural correlates of punishment and forgiveness of excluders
Crone, Eveline A.; Güroğlu, Berna
2015-01-01
This functional magnetic resonance imaging study examined the neural correlates of punishment and forgiveness of initiators of social exclusion (i.e. ‘excluders’). Participants divided money in a modified Dictator Game between themselves and people who previously either included or excluded them during a virtual ball-tossing game (Cyberball). Participants selectively punished the excluders by decreasing their outcomes; even when this required participants to give up monetary rewards. Punishment of excluders was associated with increased activation in the pre-supplementary motor area (pre-SMA) and bilateral anterior insula. Costly punishment was accompanied by higher activity in the pre-SMA compared with punishment that resulted in gains or was non-costly. Refraining from punishment (i.e. forgiveness) was associated with self-reported perspective-taking and increased activation in the bilateral temporoparietal junction, dorsomedial prefrontal cortex, dorsal anterior cingulate cortex, and ventrolateral and dorsolateral prefrontal cortex. These findings show that social exclusion can result in punishment as well as forgiveness of excluders and that separable neural networks implicated in social cognition and cognitive control are recruited when people choose either to punish or to forgive those who excluded them. PMID:24652858
Isoform specificity of progesterone receptor antibodies.
Fabris, Victoria; Abascal, María F; Giulianelli, Sebastián; May, María; Sequeira, Gonzalo R; Jacobsen, Britta; Lombès, Marc; Han, Julie; Tran, Luan; Molinolo, Alfredo; Lanari, Claudia
2017-10-01
Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone-dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N-terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin-fixed paraffin-embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D-YA and -YB cells expressing PRA or PRB, respectively, MDA-MB-231 cells modified to synthesize PRB, and MDA-MB-231/iPRAB cells which can bi-inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H-190, clone 636, clone 16, and Ab-6 anti-PR antibodies, the latter exclusively recognizing PRB. Except for Ab-6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H-190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA-specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer.
Accelerated transport and growth with symmetrized dynamics
NASA Astrophysics Data System (ADS)
Merikoski, Juha
2013-12-01
In this paper we consider a model of accelerated dynamics with the rules modified from those of the recently proposed [Dong et al., Phys. Rev. Lett. 109, 130602 (2012), 10.1103/PhysRevLett.109.130602] accelerated exclusion process (AEP) such that particle-vacancy symmetry is restored to facilitate a mapping to a solid-on-solid growth model in 1+1 dimensions. In addition to kicking a particle ahead of the moving particle, as in the AEP, in our model another particle from behind is drawn, provided it is within the "distance of interaction" denoted by ℓmax. We call our model the doubly accelerated exclusion process (DAEP). We observe accelerated transport and interface growth and widening of the cluster size distribution for cluster sizes above ℓmax, when compared with the ordinary totally asymmetric exclusion process (TASEP). We also characterize the difference between the TASEP, AEP, and DAEP by computing a "staggered" order parameter, which reveals the local order in the steady state. This order in part explains the behavior of the particle current as a function of density. The differences of the steady states are also reflected by the behavior of the temporal and spatial correlation functions in the interface picture.
Zhu, Juntao; Zhang, Yangjian; Liu, Yaojie
2016-06-15
Grazing exclusion (GE) has been widely considered as an effective avenue for restoring degraded grasslands throughout the world. GE, via modifying abiotic and biotic environments, inevitably affects phenological development. A five-year manipulative experiment was conducted in a Tibetan alpine meadow to examine the effects of GE on phenological processes and reproductive success. The study indicated that GE strongly affected phenological development of alpine plant species. Specifically, the low-growing, shallow-rooted species (LSS), such as Kobresia pygmaea, are more sensitive to GE-caused changes on upper-soil moisture and light. GE advanced each phonological process of K. pygmaea, except in the case of the treatment of fencing for 5 years (F5), which postponed the reproductive stage and lowered the reproductive success of K. pygmaea. Increased soil moisture triggered by GE, especially in the upper soil, may stimulate growth of LSS. However, the thick litter layer under the F5 treatment can influence the photoperiod of LSS, resulting in suppression of its reproductive development. These findings indicate that plant traits associated with resource acquisition, such as rooting depth and plant height, mediate plant phenology and reproductive responses to grazing exclusion treatments.
Acting on social exclusion: neural correlates of punishment and forgiveness of excluders.
Will, Geert-Jan; Crone, Eveline A; Güroğlu, Berna
2015-02-01
This functional magnetic resonance imaging study examined the neural correlates of punishment and forgiveness of initiators of social exclusion (i.e. 'excluders'). Participants divided money in a modified Dictator Game between themselves and people who previously either included or excluded them during a virtual ball-tossing game (Cyberball). Participants selectively punished the excluders by decreasing their outcomes; even when this required participants to give up monetary rewards. Punishment of excluders was associated with increased activation in the pre-supplementary motor area (pre-SMA) and bilateral anterior insula. Costly punishment was accompanied by higher activity in the pre-SMA compared with punishment that resulted in gains or was non-costly. Refraining from punishment (i.e. forgiveness) was associated with self-reported perspective-taking and increased activation in the bilateral temporoparietal junction, dorsomedial prefrontal cortex, dorsal anterior cingulate cortex, and ventrolateral and dorsolateral prefrontal cortex. These findings show that social exclusion can result in punishment as well as forgiveness of excluders and that separable neural networks implicated in social cognition and cognitive control are recruited when people choose either to punish or to forgive those who excluded them. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Vulnerability of social-ecological system to climate change in Mongolia
NASA Astrophysics Data System (ADS)
Kakinuma, K.; Yanagawa, A.; Sasaki, T.; Kanae, S.
2017-12-01
Coping with future climate changes are one of the most important issues in the world. IPCC (2014) suggested that vulnerability and exposure of social-ecological systems to extreme climatic events (hazard) determine the impact of climate changes. Although the schematic framework is widely accepted, there are high uncertainty of vulnerability of social and ecological systems and it makes difficult to examine it in empirical researches. Our objective is to assess the climate change impact on the social-ecological system in Mongolia. We review researches about trends of climate (Hazard), vegetation, pastoral mobility (Vulnerability) and livestock distribution (Exposure) across Mongolia Climate trends are critical for last several decades and thus hazard may be increasing in Mongolia. Temperature is increasing with high confidence in all regions. Precipitation are slightly decreasing with medium confidence across the country, especially in northern and central regions. Exposure would also be increasing especially in northern, central and western regions, because livestock population are concentrating these regions after 1990. Generally, less productive ecosystems (e.g. few plant productivity and less species richness) are vulnerable to extreme climatic events such as drought. In that sense, southern region may be more vulnerable to climate changes than other regions. However, if we focus on pastoral mobility forms for drought, we get contractive conclusions. Pastoralists in southern region keep mobility to variable and scarce vegetation while pastoralists in northern region less mobile because of stable and much vegetation. Exclusive managements in northern region is able to maximized the number of livestock only under stable precipitation regimes. But at the same time, it is difficult to escape from hazardous areas when it is drought. Thus, in term of rangeland management, northern region would be more vulnerable to increase of drought intensity. Although northern and central regions have high ecological productivity, they have high livestock density (high exposure) and their rangeland management don't adapt well to drought (high vulnerability). Therefore, we suggested that these regions have to prepare to climate changes for sustainable rangeland managements.
Hydrological and Climatic Significance of Martian Deltas
NASA Astrophysics Data System (ADS)
Di Achille, G.; Vaz, D. A.
2017-10-01
We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.
Reasons for non-exclusive breast-feeding in the first 6 months.
Zielinska, Monika A; Hamulka, Jadwiga
2018-03-01
Maternal sociodemographic, delivery- and infant-related factors as well as hospital practice are relevant for breast-feeding practice. The aim of this study was to identify the sociodemographic and delivery-related factors that may affect exclusive breast-feeding (EBF) of infants aged 0-6 months in Poland. A total of 446 mothers (18-42 years old) of infants aged 0-6 months were interviewed using the computer-assisted Web interview method. The questionnaire collected information about maternal sociodemographic situation and anthropometrics, delivery-related factors, and infant feeding-related factors. Data were analyzed using the chi-squared test and Mann-Whitney U-test. Predictors of non-exclusive breast-feeding (N-EBF) in the first 6 months of life were assessed on multivariate logistic regression. A total of 43% of mothers did not breast-feed exclusively (n = 191; N-EBF group) and 57% did breast-feed exclusively during the study period (n = 255; EBF group). After adjustment for other potential risk factors, the highest risk factors for N-EBF were maternal age <20 years (OR, 6.12; P ≤ 0.01), and inadequate breast-feeding knowledge (OR, 3.43; P ≤ 0.01), whereas the lowest risk was associated with pre-pregnancy intention to breast-feed (OR, 0.35; P ≤ 0.01), very good knowledge about breast-feeding (OR, 0.45; P ≤ 0.001) and maternal age 26-30 years (OR, 0.48; P ≤ 0.001). In a multivariate model, maternal education, employment status and preterm delivery were no longer statistically significant. Breast-feeding practice is influenced by a variety of factors, including sociodemographic and psychosocial conditions, maternal obesity and mode of delivery. Further work is needed to establish the role of education and prophylactic programs in modifying the aforementioned risk factors. © 2017 Japan Pediatric Society.
Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival
Li, Hui; Ma, XianYong; Wang, Jinglan; Koontz, Jason; Nucci, Marisa; Sklar, Jeffrey
2007-01-01
Polycomb group genes (PcGs) have been implicated in cancer based on altered levels of expression observed in certain tumors and the behavior of cultured cells containing inserted PcG transgenes. Endometrial stromal tumors provide evidence for a direct causal relationship because they contain several chromosomal translocations and resultant gene fusions involving PcGs, the most common of which joins portions of theJAZF1 gene to the PcGJJAZ1/SUZ12. We show here that both benign and malignant forms of this tumor have theJAZF1–JJAZ1 fusion but only the malignant form also exhibits exclusion of the unrearrangedJJAZ1 allele. To evaluate the effects of both theJJAZ1/SUZ12 fusion and allelic exclusion on functions related to cell growth, we studied HEK293 cells that were modified with respect toJJAZ1 expression. We found that theJAZF1–JJAZ1 fusion restored levels of the polycomb protein EZH2 and histone 3 lysine 27 trimethylation, which were reduced by knockdown of endogenous JJAZ1. At the same time, the presence ofJAZF1–JJAZ1 markedly inhibited apoptosis and induced above normal proliferation rates, although the latter effect occurred only when normalJJAZ1 was suppressed. Our findings suggest a genetic pathway for progression of a benign precursor to a sarcoma involving increased cell survival associated with acquisition of a PcG rearrangement, followed by accelerated cellular proliferation upon allelic exclusion of the unrearranged copy of that gene. Furthermore, these results indicate the likely functional importance of allelic exclusion of genes disrupted by chromosomal translocations, as seen in a variety of other cancers. PMID:18077430
Size exclusion deep bed filtration: Experimental and modelling uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badalyan, Alexander, E-mail: alexander.badalyan@adelaide.edu.au; You, Zhenjiang; Aji, Kaiser
A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspendedmore » particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.« less
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-01-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5–7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues. PMID:12937287
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-11-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5-7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues.
Hygrothermal analysis of surface layers of historical masonry
NASA Astrophysics Data System (ADS)
Kočí, Václav; Maděra, Jiří; Keppert, Martin; Černý, Robert
2017-11-01
The paper deals with the hygrothermal analysis of surface layers of historical masonry. Solid brick provided with a traditional and two modified lime-based plasters is studied. The heat and moisture transport in the envelope is induced by an exposure of the wall from the exterior side to dynamic climatic conditions of Olomouc, Czech Republic. The transport processes are described using diffusion type of mathematical model based on experimentally determined material properties. The computational results indicate that hygric transport and accumulation properties of exterior plasters affect the hygrothermal performance of the underlying solid brick in a very significant way, being able to regulate the amount of transported moisture. The modified lime plasters are not found generally superior to the traditional lime plasters in that respect. Therefore, their suitability for historical masonry should be assessed case by case, with a particular attention to the climatic conditions and to the properties of the load bearing structure.
Empowering people to change occupational behaviours to address critical global issues.
Ikiugu, Moses N; Westerfield, Madeline A; Lien, Jamie M; Theisen, Emily R; Cerny, Shana L; Nissen, Ranelle M
2015-06-01
The greatest threat to human well-being in this century is climate change and related global issues. We examined the effectiveness of the Modified Instrumentalism in Occupational Therapy model as a framework for facilitating occupational behaviour change to address climate change and related issues. Eleven individuals participated in this mixed-methods single-subject-design study. Data were gathered using the Modified Assessment and Intervention Instrument for Instrumentalism in Occupational Therapy and Daily Occupational Inventories. Quantitative data were analyzed using two- and three-standard deviation band methods. Qualitative data were analyzed using heuristic phenomenological procedures. Occupational performance changed for five participants. Participants' feelings shifted from frustration and helplessness to empowerment and a desire for action. They felt empowered to find occupation-based solutions to the global issues. Occupation-based interventions that increase personal awareness of the connection between occupational performance and global issues could empower people to be agents for action to ameliorate the issues.
Safety climate practice in Korean manufacturing industry.
Baek, Jong-Bae; Bae, Sejong; Ham, Byung-Ho; Singh, Karan P
2008-11-15
Safety climate survey was sent to 642 plants in 2003 to explore safety climate practices in the Korean manufacturing plants, especially in hazardous chemical treating plants. Out of 642 plants contacted 195 (30.4%) participated in the surveys. Data were collected by e-mail using SQL-server and mail. The main objective of this study was to explore safety climate practices (level of safety climate and the underlying problems). In addition, the variables that may influence the level of safety climate among managers and workers were explored. The questionnaires developed by health and safety executive (HSE) in the UK were modified to incorporate differences in Korean culture. Eleven important factors were summarized. Internal reliability of these factors was validated. Number of employees in the company varied from less than 30 employees (9.2%) to over 1000 employees (37.4%). Both managers and workers showed generally high level of safety climate awareness. The major underlying problems identified were inadequate health and safety procedures/rules, pressure for production, and rule breaking. The length of employment was a significant contributing factor to the level of safety climate. In this study, participants showed generally high level of safety climate, and length of employment affected the differences in the level of safety climate. Managers' commitment to comply safety rules, procedures, and effective safety education and training are recommended.
Climate modifies response of non-native and native species richness to nutrient enrichment.
Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T
2016-05-19
Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. © 2016 The Author(s).
Climate modifies response of non-native and native species richness to nutrient enrichment
Flores-Moreno, Habacuc; Reich, Peter B.; Lind, Eric M.; Sullivan, Lauren L.; Seabloom, Eric W.; Yahdjian, Laura; MacDougall, Andrew S.; Reichmann, Lara G.; Alberti, Juan; Báez, Selene; Bakker, Jonathan D.; Cadotte, Marc W.; Caldeira, Maria C.; Chaneton, Enrique J.; D'Antonio, Carla M.; Fay, Philip A.; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; Iribarne, Oscar; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Laungani, Ramesh; Leakey, Andrew D. B.; McCulley, Rebecca L.; Moore, Joslin L.; Pascual, Jesus; Borer, Elizabeth T.
2016-01-01
Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. PMID:27114575
Modeling the Impact of Soil Conditions on Global Water Balance
NASA Astrophysics Data System (ADS)
Wang, P. L.; Feddema, J. J.
2016-12-01
The amount of water the soil can hold for plant use, defined as soil water-holding capacity (WHC), has a large influence on the water cycle and climatic variables. Although soil properties vary widely worldwide, many climate modeling applications assume WHC to be spatially invariant. This study explores how a more realistic soil WHC estimate affects the global water balance relative to commonly assumed soil properties. We use a modified Thornthwaite water balance model combined with a newly developed soil WHC and soil thickness data at a 30 arc second resolution. The soil WHC data was obtained by integrating WHCs to a depth of 2 m and modified by the soil thickness data on a grid-by-grid basis, and then resampling to the 0.5 degree climatology data. We observed that down scaling soils data before modifying soil depths greatly increases global soil WHCs. This new dataset is compared to WHC information with a fixed 2-m soil depth, and a constant 150-mm soil WHC. Results indicate higher soil WHC results in increased soil moisture, decreased moisture surplus and deficits, and increased actual evapotranspiration (AE), and vice-versa. However, due to high variability in soil characteristics across climate gradients, this generalization does not hold true for regionally averaged outcomes. Compared to using a constant 150-mm WHC, more realistic soil WHC increases global averaged AE 1%, and decreases deficit 2% and surplus 3%. Most change is observed in areas with pronounced wet and dry seasons; using a constant 2-m soil depth doubles the differences. Regionally, Europe was most affected: AE increases 4%, and the deficit and surplus decrease 20% and 12%. Australia shows that regionally averaged results are not equivocal for moisture surplus and deficit; deficit decreases 0.4%, while surplus decreases 9%. This research highlights the importance of soil condition for climate modeling and how a better representation of soil moisture conditions affects global water balance modeling.
NASA Astrophysics Data System (ADS)
Stysiak, Aleksander Andrzej; Bergen Jensen, Marina; Mahura, Alexander
2016-04-01
Like most other places, European metropolitan areas will face a range of climate-related challenges over the next decades that may influence the nature of urban life across the continent. Under future urbanization and climate change scenarios the well-being and comfort of the urban population might become progressively compromised. In urban areas, the effects of the warming climate will be accelerated by combination of Urban Heat Island effect (UHI) and extreme heat waves. The land cover composition directly influences atmospheric variability, and can either escalate or downscale the projected changes. Vegetation, forest ecosystems in particular, are anticipated to play an important role in modulating local and regional climatic conditions, and to be vital factor in the process of adapting cities to warming climate. This study investigates the impact of forest and land-cover change on formation and development of temperature regimes in the Copenhagen Metropolitan Area (CPH-MA). Potential to modify the UHI effect in CPH-MA is estimated. Using 2009 meteorological data, and up-to-date 2012 high resolution land-cover data we employed the online integrated meteorology-chemistry/aerosols Enviro-HIRLAM (Environment - High Resolution Limited Area Model) modeling system to simulate air temperature (at 2 meter height) fields for a selected period in July 2009. Employing research tools (such as METGRAF meteorological software and Geographical Information Systems) we then estimated the influence of different afforestation and urbanization scenarios with new forests being located after the Danish national afforestation plan, after proximity to the city center, after dominating wind characteristics, and urbanization taking place as densification of the existing conurbation. This study showed the difference in temperature up to 3.25°C, and the decrease in the spatial extent of temperature fields up to 68%, depending on the selected scenario. Performed simulations demonstrated that well-positioned and well-sized afforestation at the regional scale can significantly affect the spatial distribution, structure and intensity of the temperature field. This study points to vegetation having practical applications in urban and regional planning for modifying local climatic conditions. Keywords: Urban Heat Island, Afforestation, Land cover change, Urban planning, Climate change adaptation, Enviro-HIRLAM
Large scale obscuration and related climate effects open literature bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, N.A.; Geitgey, J.; Behl, Y.K.
1994-05-01
Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.
Climate sensitivity of shrub growth across the tundra biome
NASA Astrophysics Data System (ADS)
Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S. A.; Wilmking, Martin; Hallinger, Martin; Blok, Daan; Tape, Ken D.; Rayback, Shelly A.; Macias-Fauria, Marc; Forbes, Bruce C.; Speed, James D. M.; Boulanger-Lapointe, Noémie; Rixen, Christian; Lévesque, Esther; Schmidt, Niels Martin; Baittinger, Claudia; Trant, Andrew J.; Hermanutz, Luise; Collier, Laura Siegwart; Dawes, Melissa A.; Lantz, Trevor C.; Weijers, Stef; Jørgensen, Rasmus Halfdan; Buchwal, Agata; Buras, Allan; Naito, Adam T.; Ravolainen, Virve; Schaepman-Strub, Gabriela; Wheeler, Julia A.; Wipf, Sonja; Guay, Kevin C.; Hik, David S.; Vellend, Mark
2015-09-01
Rapid climate warming in the tundra biome has been linked to increasing shrub dominance. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate-growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ~42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing and most of the global permafrost soil carbon pool is stored. The observed variation in climate-shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.
Boreal forests, aerosols and the impacts on clouds and climate.
Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S
2008-12-28
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.
Jealousy increased by induced relative left frontal cortical activity.
Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J
2015-10-01
Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).
Yuan, Huiming; Zhou, Yuan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui
2009-10-30
An integrated platform with the combination of proteins and peptides separation was established via the unit of on-line proteins digestion, by which proteins were in sequence separated by column switch recycling size exclusion chromatography (csrSEC), on-line digested by an immobilized trypsin microreactor, trapped and desalted by two parallel C8 precolumns, separated by microRPLC with the linear gradient of organic modifier concentration, and identified by ESI-MS/MS. A 6-protein mixture, with Mr ranging from 10 kDa to 80 kDa, was used to evaluate the performance of the integrated platform, and all proteins were identified with sequence coverage over 5.67%. Our experimental results demonstrate that such an integrated platform is of advantages such as good time compatibility, high peak capacity, and facile automation, which might be a promising approach for proteome study.
Asylum applications respond to temperature fluctuations.
Missirian, Anouch; Schlenker, Wolfram
2017-12-22
International negotiations on climate change, along with recent upsurges in migration across the Mediterranean Sea, have highlighted the need to better understand the possible effects of climate change on human migration-in particular, across national borders. Here we examine how, in the recent past (2000-2014), weather variations in 103 source countries translated into asylum applications to the European Union, which averaged 351,000 per year in our sample. We find that temperatures that deviated from the moderate optimum (~20°C) increased asylum applications in a nonlinear fashion, which implies an accelerated increase under continued future warming. Holding everything else constant, asylum applications by the end of the century are predicted to increase, on average, by 28% (98,000 additional asylum applications per year) under representative concentration pathway (RCP) scenario 4.5 and by 188% (660,000 additional applications per year) under RCP 8.5 for the 21 climate models in the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Will China be the first to initiate climate engineering?
NASA Astrophysics Data System (ADS)
Moore, John C.; Chen, Ying; Cui, Xuefeng; Yuan, Wenping; Dong, Wenjie; Gao, Yun; Shi, Peijun
2016-12-01
Over the last 30 years, China has industrialized more rapidly than any other society in history and become the world's largest emitter of CO2. This has demonstrated unprecedented ability to change the socioeconomic landscape, produced great wealth, and led to some catastrophic environmental damage. This is the background that has motivated several authors to postulate that China would initiate geoengineering using solar radiation management. But will China be the first to pioneer climate engineering? The answer, we argue here, is likely to be "no!" We reach this conclusion from an analysis of the historic philosophical tradition that informs the Chinese world view, China's experience of mega-engineering projects both ancient and modern, and the policies implemented over the last 60 years. The debate on geoengineering has to-date been almost exclusively Euro-American, but China has mega-engineering experience, huge resources, and a radically different world-view that needs to be acknowledged. Furthermore we contend that these experiences can be useful internationally in helping to frame the debate on climate mitigation from the perspective of the earth as shared, multiuse and finite.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
JPRS Report, Science & Technology, USSR: Science & Technology Policy.
1989-02-23
duction of pectin, food dyes, and modified starch with set properties of the aromatizers for the obtaining of fructose - glucose syrups and the canning of...mine coal as in the old days, but cut and transport it with water . Here is an entirely fantastic example—nanotechnology (nano is from Greek—dwarf...temporarily or acciden- tally in USSR waters , on the condition that the indicated means are used exclusively for the needs of the vessel; — the use of
Wahbeh, Ghassan T; Ward, Brian T; Lee, Dale Y; Giefer, Matthew J; Suskind, David L
2017-09-01
Exclusive enteral nutrition is effective in pediatric Crohn disease but challenging as maintenance therapy. There is interest in food-based therapies such as the specific carbohydrate diet (SCD) but paucity of data on efficacy and effect on mucosal healing, an evolving target of IBD therapy. We conducted a retrospective review of the mucosal healing effect of the SCD in pediatric Crohn disease (CD). The endoscopic findings for children younger than 18 years with CD treated exclusively with the SCD or modified SCD (mSCD; SCD + addition of "illegal foods") were reviewed before and after the diet. Ileocolonoscopic examinations were scored according to the Simple Endoscopic Score for CD and findings on upper endoscopy were described. Seven subjects were identified, all on mSCD. The average age at starting the SCD was 11 ± 3.4 years and median duration of SCD/mSCD therapy was 26 months. All subjects reported no active symptoms before repeat endoscopic evaluation on mSCD, the majority had consistently normal C-reactive protein, albumin and hematocrit assessments, and mildly elevated fecal calprotectin (>50 μg/g, median 201, range 65-312) at any point within 3 months before the repeat endoscopy. One patient showed complete ileocolonic healing but persistent upper gastrointestinal tract ulceration. Complete macroscopic mucosal healing of both the ileocolon and upper gastrointestinal tract was not seen in any patient.
Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).
Kiepiel, Ian; Johnson, Steven D
2014-01-01
Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.
[Cardiovascular risk factors in the population at risk of poverty and social exclusión].
Álvarez-Fernández, Carlos; Vaquero-Abellán, Manuel; Ruíz-Gandara, África; Romero-Saldaña, Manuel; Álvarez-López, Carlos
2017-03-01
Detect if there are differences in prevalence, distribution of cardiovascular risk factors and risk according to REGICOR and SCORE's function; between people belonging to different occupational classes and population at risk of social exclusion. Cross-sectional. SITE: Occupational health unit of the City Hall of Córdoba. Sample availability of 628 people, excluding 59 by age or incomplete data. The group of municipal workers was obtained randomly while all contracted exclusion risk was taken. No preventive, diagnostic or therapeutic actions that modify the course of the previous situation of workers were applied. Smoke, glucose, lipids, blood pressure and BMI as main variables. T-student were used for comparison of means and percentages for Chi 2 . Statistical significance attached to an alpha error <5% and confidence interval with a 95% security. Receiver operator curves (ROC) were employed to find out what explanatory variables predict group membership of workers at risk of exclusion. Smoking (95% CI: -.224;-.443), hypercholesterolemia (95% CI: -.127;-.320), obesity (95% CI: -.005;-0.214), diabetes (95% CI: -.060;-.211) and cardiovascular risk were higher in men at risk of exclusion. In women there were differences in the same variables except smoking (P=.053). The existence of inequalities in prevalence of cardiovascular risk factors is checked. In a context of social crisis, health promotion and primary prevention programs directing to the most vulnerable, they are needed to mit. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-01-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640
Strudwick, Gillian
2015-05-01
The benefits of healthcare technologies can only be attained if nurses accept and intend to fully use them. One of the most common models utilized to understand user acceptance of technology is the Technology Acceptance Model. This model and modified versions of it have only recently been applied in the healthcare literature among nurse participants. An integrative literature review was conducted on this topic. Ovid/MEDLINE, PubMed, Google Scholar, and CINAHL were searched yielding a total of 982 references. Upon eliminating duplicates and applying the inclusion and exclusion criteria, the review included a total of four dissertations, three symposium proceedings, and 13 peer-reviewed journal articles. These documents were appraised and reviewed. The results show that a modified Technology Acceptance Model with added variables could provide a better explanation of nurses' acceptance of healthcare technology. These added variables to modified versions of the Technology Acceptance Model are discussed, and the studies' methodologies are critiqued. Limitations of the studies included in the integrative review are also examined.
Climate change's impact on key ecosystem services and the human well-being they support in the US
Nelson, Erik J.; Kareiva, Peter; Ruckelshaus, Mary; Arkema, Katie; Geller, Gary; Girvetz, Evan; Goodrich, Dave; Matzek, Virginia; Pinsky, Malin; Reid, Walt; Saunders, Martin; Semmens, Darius J.; Tallis, Heather
2013-01-01
Climate change alters the functions of ecological systems. As a result, the provision of ecosystem services and the well-being of people that rely on these services are being modified. Climate models portend continued warming and more frequent extreme weather events across the US. Such weather-related disturbances will place a premium on the ecosystem services that people rely on. We discuss some of the observed and anticipated impacts of climate change on ecosystem service provision and livelihoods in the US. We also highlight promising adaptive measures. The challenge will be choosing which adaptive strategies to implement, given limited resources and time. We suggest using dynamic balance sheets or accounts of natural capital and natural assets to prioritize and evaluate national and regional adaptation strategies that involve ecosystem services.
Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.; McFadden, Andrew K.
2015-01-01
This volume of the atlas provides numerous changes, updates, and enhancements from previous volumes. Its geographic coverage is now restricted to Canada and the continental United States, and the source and time period of the climatic data have changed. New variables were added, including monthly values for temperature and precipitation, and measures of interannual variability. The distribution maps for all previously published species were redigitized, some distribution maps were revised, and 148 new species were added from the arid and semiarid western United States. The graphical displays were expanded to illustrate the new climatic variables, and the data tables were modified to provide more detail on the population distributions of plant taxa relative to climatic variables.
NASA Astrophysics Data System (ADS)
Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.
2014-08-01
While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.
Calibration of the physiological equivalent temperature index for three different climatic regions
NASA Astrophysics Data System (ADS)
Krüger, E.; Rossi, F.; Drach, P.
2017-07-01
In human biometeorology, the integration of several microclimatic variables as a combined index facilitates the understanding of how users perceive thermal environments. Indices, such as the physiological equivalent temperature (PET) index, translate the combined effects of meteorological variables on humans in terms of thermal stress or comfort and serve as important aids to climate-responsive urban and regional planning as well as heat stress and thermal comfort analyses. However, there is a need for adjusting proposed comfort/stress ranges of a given index when using it in different climatic contexts. The purpose of this study is to present a preliminary calibration procedure for the PET index for three different climatic regions: Curitiba, Brazil, a subtropical location; Rio de Janeiro, Brazil, a tropical city; and Glasgow, UK, a high-latitude location. Field studies have been carried out by the authors according to a similar protocol and using similar equipment, yielding actual thermal sensation votes and microclimate data, post-processed as PET data. The calibration procedure uses exclusively thermal sensation data as reported by pedestrians during outdoor comfort campaigns and concurrent microclimatic data recorded during the interviews. PET comfort/stress classes differ among the three locations and, in general, are less restrictive as in the original ranges proposed by the index developers.
Climatic irregular staircases: generalized acceleration of global warming
De Saedeleer, Bernard
2016-01-01
Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867
Response of ice caves to weather extremes in the southeastern Alps, Europe
NASA Astrophysics Data System (ADS)
Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.
2016-05-01
High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.
Climatic irregular staircases: generalized acceleration of global warming.
De Saedeleer, Bernard
2016-01-27
Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.
Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes
NASA Astrophysics Data System (ADS)
Chisolm, R. E.; McKinney, D. C.
2016-12-01
The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.
Harnik, Paul G; Maherali, Hafiz; Miller, Joshua H; Manos, Paul S
2018-03-01
The geographic ranges of taxa change in response to environmental conditions. Yet whether rates of range movement (biotic velocities) are phylogenetically conserved is not well known. Phylogenetic conservatism of biotic velocities could reflect similarities among related lineages in climatic tolerances and dispersal-associated traits. We assess whether late Quaternary biotic velocities were phylogenetically conserved and whether they correlate with climatic tolerances and dispersal-associated traits. We used phylogenetic regression and nonparametric correlation to evaluate associations between biotic velocities, dispersal-associated traits, and climatic tolerances for 28 woody plant genera and subgenera in North America. The velocities with which woody plant taxa shifted their core geographic range limits were positively correlated from time step to time step between 16 and 7 ka. The strength of this correlation weakened after 7 ka as the pace of climate change slowed. Dispersal-associated traits and climatic tolerances were not associated with biotic velocities. Although the biotic velocities of some genera were consistently fast and others consistently slow, biotic velocities were not phylogenetically conserved. The rapid late Quaternary range shifts of plants lacking traits that facilitate frequent long-distance dispersal has long been noted (i.e., Reid's Paradox). Our results are consistent with this paradox and show that it remains robust when phylogenetic information is taken into account. The lack of association between biotic velocities, dispersal-associated traits, and climatic tolerances may reflect several, nonmutually exclusive processes, including rare long-distance dispersal, biotic interactions, and cryptic refugia. Because late Quaternary biotic velocities were decoupled from dispersal-associated traits, trait data for genera and subgenera cannot be used to predict longer-term (millennial-scale) floristic responses to climate change.
Global climate changes, natural disasters, and travel health risks.
Diaz, James H
2006-01-01
Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.
Climate change and children's health--a call for research on what works to protect children.
Xu, Zhiwei; Sheffield, Perry E; Hu, Wenbiao; Su, Hong; Yu, Weiwei; Qi, Xin; Tong, Shilu
2012-09-10
Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children's health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children's health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children's vulnerability to climate change; (3) projecting children's disease burden under climate change scenarios; (4) exploring children's disease burden related to climate change in low-income countries; and (5) identifying the most cost-effective mitigation and adaptation actions from a children's health perspective.
Climate change and future wildfire in the western USA: what model projections do and don't tell us
NASA Astrophysics Data System (ADS)
Littell, J. S.; McKenzie, D.; Cushman, S. A.; Wan, H. Y.
2017-12-01
We developed statistical climate-fire models describing area burned for 70 ecosections in the western U.S. Historically, these ecosections collectively represent a gradient of climate-fire relationships from purely fuel limited (characterized by antecedent positive water balance anomalies and/or negative energy balance anomalies) to purely flammability limited (characterized by antecedent negative water balance anomalies and/or positive energy balance anomalies). Sixty-eight ecosection linear models included significant climate predictors, and 56 ecosections satisfied regression diagnostics, yielding acceptable climate-fire models. There is considerable diversity in seasonality, dominant variables, and prevalence of lagged climatic terms in the climate-fire regression models, indicating variation in mechanisms of climate-fire linkages across ecosystems. This diversity, however, is not random - there is a clear pattern in the fuzzy set membership of the relative dominance of regression predictor variables. This pattern defines a fuel-flammability gradient of limitations, with a tendency toward warm season drought on the flammability end and a tendency toward antecedent moisture on the fuel end. Projected area burned under a multi-model composite future climate scenarios varies, with increasing area burned in 41 ecosections in the West by 2030-2059 (median 132% among 10 purely flammability limited ecosections, median 240% among 25 flammability limited systems with a fuel limitation component, and median 43% among 6 systems with equal control) but decreasing (median -119% among 13 fuel limited systems with a flammability component). For the period 2070-2099, the projected area burned increases much more in the flammability (769%) and flammability-fuel hybrid (442%) systems than those with joint control (139%), and continues to decrease (-178%) in fuel-flammability hybrid systems. Filtering the projected results with fire rotation limits projections biased high by the static assumptions of the statistical models. Exceedence probabilities for 95th%ile fire years increases for the 2040s and 2080s and are largest in exclusively flammability limited ecosections compared with other fuel controls.
Climatic variation and the distribution of an amphibian polyploid complex
Otto, C.R.V.; Snodgrass, J.W.; Forester, D.C.; Mitchell, J.C.; Miller, R.W.
2007-01-01
1. The establishment of polyploid populations involves the persistence and growth of the polyploid in the presence of the progenitor species. Although there have been a number of animal polyploid species documented, relatively few inquiries have been made into the large-scale mechanisms of polyploid establishment in animal groups. Herein we investigate the influence of regional climatic conditions on the distributional patterns of a diploid-tetraploid species pair of gray treefrogs, Hyla chrysoscelis and H. versicolor (Anura: Hylidae) in the mid-Atlantic region of eastern North America. 2. Calling surveys at breeding sites were used to document the distribution of each species. Twelve climatic models and one elevation model were generated to predict climatic and elevation values for gray treefrog breeding sites. A canonical analysis of discriminants was used to describe relationships between climatic variables, elevation and the distribution of H. chrysoscelis and H. versicolor. 3. There was a strong correlation between several climatic variables, elevation and the distribution of the gray treefrog complex. Specifically, the tetraploid species almost exclusively occupied areas of higher elevation, where climatic conditions were relatively severe (colder, drier, greater annual variation). In contrast, the diploid species was restricted to lower elevations, where climatic conditions were warmer, wetter and exhibited less annual variation. 4. Clusters of syntopic sites were associated with areas of high variation in annual temperature and precipitation during the breeding season. 5. Our data suggest that large-scale climatic conditions have played a role in the establishment of the polyploid H. versicolor in at least some portions of its range. The occurrence of the polyploid and absence of the progenitor in colder, drier and more varied environments suggests the polyploid may posses a tolerance of severe environmental conditions that is not possessed by the diploid progenitor. 6. Our findings support the hypothesis that increased tolerance to severe environmental conditions is a plausible mechanism of polyploid establishment.
NASA Astrophysics Data System (ADS)
Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris
2018-02-01
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.
Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer
Plard, Floriane; Gaillard, Jean-Michel; Coulson, Tim; Hewison, A. J. Mark; Delorme, Daniel; Warnant, Claude; Bonenfant, Christophe
2014-01-01
Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early springs resulting from recent environmental change, but although changes in the timing of reproduction have been well studied in birds, these questions have only recently been addressed in mammals. To track peak resource availability, large herbivores like roe deer, with a widespread distribution across Europe, should also modify their life-history schedule in response to changes in vegetation phenology over time. In this study, we analysed the influence of climate change on the timing of roe deer births and the consequences for population demography and individual fitness. Our study provides a rare quantification of the demographic costs associated with the failure of a species to modify its phenology in response to a changing world. Given these fitness costs, the lack of response of roe deer birth dates to match the increasingly earlier onset of spring is in stark contrast with the marked phenotypic responses to climate change reported in many other mammals. We suggest that the lack of phenotypic plasticity in birth timing in roe deer is linked to its inability to track environmental cues of variation in resource availability for the timing of parturition. PMID:24690936
Fine-scale modeling of bristlecone pine treeline position in the Great Basin, USA
NASA Astrophysics Data System (ADS)
Bruening, Jamis M.; Tran, Tyler J.; Bunn, Andrew G.; Weiss, Stuart B.; Salzer, Matthew W.
2017-01-01
Great Basin bristlecone pine (Pinus longaeva) and foxtail pine (Pinus balfouriana) are valuable paleoclimate resources due to their longevity and climatic sensitivity of their annually-resolved rings. Treeline research has shown that growing season temperatures limit tree growth at and just below the upper treeline. In the Great Basin, the presence of precisely dated remnant wood above modern treeline shows that the treeline ecotone shifts at centennial timescales tracking long-term changes in climate; in some areas during the Holocene climatic optimum treeline was 100 meters higher than at present. Regional treeline position models built exclusively from climate data may identify characteristics specific to Great Basin treelines and inform future physiological studies, providing a measure of climate sensitivity specific to bristlecone and foxtail pine treelines. This study implements a topoclimatic analysis—using topographic variables to explain patterns in surface temperatures across diverse mountainous terrain—to model the treeline position of three semi-arid bristlecone and/or foxtail pine treelines in the Great Basin as a function of growing season length and mean temperature calculated from in situ measurements. Results indicate: (1) the treeline sites used in this study are similar to other treelines globally, and require a growing season length of between 147-153 days and average temperature ranging from 5.5°C-7.2°C, (2) site-specific treeline position models may be improved through topoclimatic analysis and (3) treeline position in the Great Basin is likely out of equilibrium with the current climate, indicating a possible future upslope shift in treeline position.
Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.
2013-01-01
Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675
This report report details the issues involved in implementing the Clean Air Act's Prevention of Significant Deterioration (PSD) program permittingrequirements for new and modified sources of greenhouse gases (GHGs).
Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T
2007-01-01
Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon
NASA Astrophysics Data System (ADS)
Mölg, Thomas; Maussion, Fabien; Collier, Emily; Chiang, John C. H.; Scherer, Dieter
2017-12-01
High Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper-tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July-September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well-established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes.
System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer
NASA Astrophysics Data System (ADS)
Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.
2010-12-01
Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.
Berking, Matthias; Poppe, Christine; Luhmann, Maike; Wupperman, Peggilee; Jaggi, Verena; Seifritz, Erich
2012-09-01
In order to clarify mechanisms underlying the association between emotion regulation and psychopathology, we tested whether the ability to modify negative emotions mediates the associations of other emotion-regulation skills with psychopathological symptoms in two studies. The first study included 151 college students; the second included 121 psychiatric inpatients. Bootstrapping-enhanced mediation analyses were utilized to assess associations between self-reports of emotion-regulation skills and psychopathology, as well as potential mediation effects. In both samples, the ability to modify emotions completely mediated the association between symptoms and skills for most skills, but not for the skill of accepting/tolerating negative emotions. Major limitations include the use of a cross-sectional design as well as exclusive use of self-report data. The ability to modify negative emotions may be the common pathway by which many emotion-regulation skills exert their influence on mental health; however, the skill of accepting/tolerating negative emotions may be beneficial to mental health regardless of whether or not it facilitates modification of emotions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2018-01-16
Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.
Bordet, Régis; Ihl, Ralf; Korczyn, Amos D; Lanza, Giuseppe; Jansa, Jelka; Hoerr, Robert; Guekht, Alla
2017-05-24
Vascular cognitive impairment (VCI) is a complex spectrum encompassing post-stroke cognitive impairment (PSCI) and small vessel disease-related cognitive impairment. Despite the growing health, social, and economic burden of VCI, to date, no specific treatment is available, prompting the introduction of the concept of a disease modifier. Within this clinical spectrum, VCI and PSCI remain advancing conditions as neurodegenerative diseases with progression of both vascular and degenerative lesions accounting for cognitive decline. Disease-modifying strategies should integrate both pharmacological and non-pharmacological multimodal approaches, with pleiotropic effects targeting (1) endothelial and brain-blood barrier dysfunction; (2) neuronal death and axonal loss; (3) cerebral plasticity and compensatory mechanisms; and (4) degenerative-related protein misfolding. Moreover, pharmacological and non-pharmacological treatment in PSCI or VCI requires valid study designs clearly stating the definition of basic methodological issues, such as the instruments that should be used to measure eventual changes, the biomarker-based stratification of participants to be investigated, and statistical tests, as well as the inclusion and exclusion criteria that should be applied. A consensus emerged to propose the development of a disease-modifying strategy in VCI and PSCI based on pleiotropic pharmacological and non-pharmacological approaches.
Rapid emergence of climate change in environmental drivers of marine ecosystems.
Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L
2017-03-07
Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.
Habitat-based conservation strategies cannot compensate for climate-change-induced range loss
NASA Astrophysics Data System (ADS)
Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz
2017-11-01
Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.
Rapid emergence of climate change in environmental drivers of marine ecosystems
Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.
2017-01-01
Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144
Martin, Thomas E.; Auer, Sonya K.
2013-01-01
Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.
Interactive Ice Sheet Flowline Model for High School and College Students
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.
2017-12-01
Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.
Rapid emergence of climate change in environmental drivers of marine ecosystems
NASA Astrophysics Data System (ADS)
Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.
2017-03-01
Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.
Lee, Chang-Hun; Song, Juyoung
2012-08-01
This study uses an ecological systems theory to understand bullying behavior. Emphasis is given to overcome limitations found in the literature, such as very little empirical research on functions of parental involvement and the impacts of school climate on bullying as an outcome variable. Two functions of parental involvement investigated are (a) bridging the negative experiences within the family with bullying behaviors at schools, and (b) influencing school climate. Bullying behaviors were measured by a modified Korean version of Olweus' bully/victim questionnaire (reliability range: .78-.84) from 1,238 randomly selected Korean middle school students in 2007. Findings from structural equation modeling (SEM) analyses showed that (a) individual traits are one of the most important influence on bullying, (b) negative experiences in the family do not have direct influence on bullying behaviors at school, (c) parental involvement influences school climate, and (d) positive school climate was negatively related to bullying behaviors.
Addressing Criticisms of Large-Scale Marine Protected Areas.
O'Leary, Bethan C; Ban, Natalie C; Fernandez, Miriam; Friedlander, Alan M; García-Borboroglu, Pablo; Golbuu, Yimnang; Guidetti, Paolo; Harris, Jean M; Hawkins, Julie P; Langlois, Tim; McCauley, Douglas J; Pikitch, Ellen K; Richmond, Robert H; Roberts, Callum M
2018-05-01
Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social-ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans.
Addressing Criticisms of Large-Scale Marine Protected Areas
Ban, Natalie C; Fernandez, Miriam; Friedlander, Alan M; García-Borboroglu, Pablo; Golbuu, Yimnang; Guidetti, Paolo; Harris, Jean M; Hawkins, Julie P; Langlois, Tim; McCauley, Douglas J; Pikitch, Ellen K; Richmond, Robert H; Roberts, Callum M
2018-01-01
Abstract Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans. PMID:29731514
Connectivity planning to address climate change.
Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J
2013-04-01
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático. © 2013 Society for Conservation Biology.
Framing and sources: a study of mass media coverage of climate change in Peru during the V ALCUE.
Takahashi, Bruno
2011-07-01
Studies about mass media framing have found divergent levels of influence on public opinion; moreover, the evidence suggests that issue attributes can contribute to this difference. In the case of climate change, studies have focused exclusively on developed countries, suggesting that media influence perceptions about the issue. This study presents one of the first studies of media coverage in a developing country. It examines newspapers' reporting in Peru during the Fifth Latin America, Caribbean and European Union Summit in May 2008. The study focuses on the frames and the sources to provide an initial exploratory assessment of the coverage. The results show that the media relied mostly on government sources, giving limited access to dissenting voices such as environmentalists. Additionally, a prominence of "solutions" and "effects" frames was found, while "policy" and "science" frames were limited. The results could serve as a reference point for more comprehensive studies.
Breakup of last glacial deep stratification in the South Pacific.
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-23
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
Temperate and boreal forest mega-fires: characteristics and challenges
Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.
Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann
1999-01-01
Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...
OLIO+: an osteopathic medicine database.
Woods, S E
1991-01-01
OLIO+ is a bibliographic database designed to meet the information needs of the osteopathic medical community. Produced by the American Osteopathic Association (AOA), OLIO+ is devoted exclusively to the osteopathic literature. The database is available only by subscription through AOA and may be accessed from any data terminal with modem or IBM-compatible personal computer with telecommunications software that can emulate VT100 or VT220. Apple access is also available, but some assistance from OLIO+ support staff may be necessary to modify the Apple keyboard.
Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander
2012-02-07
The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.
2013-06-01
produce a more efficient, productive, and safe transportation system while adequately addressing the Purpose and Need defined in the 20 l 0 EA...Hurlburt Field from U.S. 98/S.R. 30 have adequate traffic storage capacity during peak times, the drainage requirements such as stormwater management pond... drainage swale for driveway construction 10 c. Modified Campaigne Street to include exclusive northbound right turn lane d. Added relocation of brick
NASA Astrophysics Data System (ADS)
Rouhani, Hassan; Leconte, Robert
2018-06-01
Climate change will affect precipitation and flood regimes. It is anticipated that the Probable Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) will be modified in a changing climate. This paper aims to quantify and analyze climate change influences on PMP and PMF in three watersheds with different climatic conditions across the province of Québec, Canada. Output data from the Canadian Regional Climate Model (CRCM) was used to estimate PMP and Probable Maximum Snow Accumulation (PMSA) in future climate projections, which was then used to force the SWAT hydrological model to estimate PMF. PMP and PMF values were estimated for two time horizons each spanning 30 years: 1961-1990 (recent past) and 2041-2070 (future). PMP and PMF were separately analyzed for two seasons: summer-fall and spring. Results show that PMF in the watershed located in southern Québec would remain unchanged in the future horizon, but the trend for the watersheds located in the northeastern and northern areas of the province is an increase of up to 11%.
Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis
Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.
2010-01-01
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.
Plant responses, climate pivot points, and trade-offs in water-limited ecosystems
NASA Astrophysics Data System (ADS)
Munson, S. M.; Bunting, E.
2017-12-01
Ecosystem transitions and thresholds are conceptually well-defined and have become a framework to address vegetation response to climate change and land-use intensification, yet there are few approaches to define the environmental conditions which can lead to them. We demonstrate a novel climate pivot point approach using long-term monitoring data from a broad network of permanent plots, satellite imagery, and experimental treatments across the southwestern U.S. The climate pivot point identifies conditions that lead to decreased plant performance and serves as an early warning sign of increased vulnerability of crossing a threshold into an altered ecosystem state. Plant responses and climate pivot points aligned with the lifespan and structural characteristics of species, were modified by soil and landscape attributes of a site, and had non-linear dynamics in some cases. Species with strong increases in abundance when water was available were most susceptible to losses during water shortages, reinforcing plant energetic and physiological tradeoffs. Future research to uncover the heterogeneity of plant responses and climate pivot points at multiple scales can lead to greater understanding of shifts in ecosystem productivity and vulnerability to climate change.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Neandertal versus Modern Human Dietary Responses to Climatic Fluctuations
El Zaatari, Sireen; Grine, Frederick E.; Ungar, Peter S.; Hublin, Jean-Jacques
2016-01-01
The Neandertal lineage developed successfully throughout western Eurasia and effectively survived the harsh and severely changing environments of the alternating glacial/interglacial cycles from the middle of the Pleistocene until Marine Isotope Stage 3. Yet, towards the end of this stage, at the time of deteriorating climatic conditions that eventually led to the Last Glacial Maximum, and soon after modern humans entered western Eurasia, the Neandertals disappeared. Western Eurasia was by then exclusively occupied by modern humans. We use occlusal molar microwear texture analysis to examine aspects of diet in western Eurasian Paleolithic hominins in relation to fluctuations in food supplies that resulted from the oscillating climatic conditions of the Pleistocene. There is demonstrable evidence for differences in behavior that distinguish Upper Paleolithic humans from members of the Neandertal lineage. Specifically, whereas the Neandertals altered their diets in response to changing paleoecological conditions, the diets of Upper Paleolithic humans seem to have been less affected by slight changes in vegetation/climatic conditions but were linked to changes in their technological complexes. The results of this study also indicate differences in resource exploitation strategies between these two hominin groups. We argue that these differences in subsistence strategies, if they had already been established at the time of the first contact between these two hominin taxa, may have given modern humans an advantage over the Neandertals, and may have contributed to the persistence of our species despite habitat-related changes in food availabilities associated with climate fluctuations. PMID:27119336
Neandertal versus Modern Human Dietary Responses to Climatic Fluctuations.
El Zaatari, Sireen; Grine, Frederick E; Ungar, Peter S; Hublin, Jean-Jacques
2016-01-01
The Neandertal lineage developed successfully throughout western Eurasia and effectively survived the harsh and severely changing environments of the alternating glacial/interglacial cycles from the middle of the Pleistocene until Marine Isotope Stage 3. Yet, towards the end of this stage, at the time of deteriorating climatic conditions that eventually led to the Last Glacial Maximum, and soon after modern humans entered western Eurasia, the Neandertals disappeared. Western Eurasia was by then exclusively occupied by modern humans. We use occlusal molar microwear texture analysis to examine aspects of diet in western Eurasian Paleolithic hominins in relation to fluctuations in food supplies that resulted from the oscillating climatic conditions of the Pleistocene. There is demonstrable evidence for differences in behavior that distinguish Upper Paleolithic humans from members of the Neandertal lineage. Specifically, whereas the Neandertals altered their diets in response to changing paleoecological conditions, the diets of Upper Paleolithic humans seem to have been less affected by slight changes in vegetation/climatic conditions but were linked to changes in their technological complexes. The results of this study also indicate differences in resource exploitation strategies between these two hominin groups. We argue that these differences in subsistence strategies, if they had already been established at the time of the first contact between these two hominin taxa, may have given modern humans an advantage over the Neandertals, and may have contributed to the persistence of our species despite habitat-related changes in food availabilities associated with climate fluctuations.
Developing Climate Resilience Toolkit Decision Support Training Sectio
NASA Astrophysics Data System (ADS)
Livezey, M. M.; Herring, D.; Keck, J.; Meyers, J. C.
2014-12-01
The Climate Resilience Toolkit (CRT) is a Federal government effort to address the U.S. President's Climate Action Plan and Executive Order for Climate Preparedness. The toolkit will provide access to tools and products useful for climate-sensitive decision making. To optimize the user experience, the toolkit will also provide access to training materials. The National Oceanic and Atmospheric Administration (NOAA) has been building a climate training capability for 15 years. The target audience for the training has historically been mainly NOAA staff with some modified training programs for external users and stakeholders. NOAA is now using this climate training capacity for the CRT. To organize the CRT training section, we collaborated with the Association of Climate Change Officers to determine the best strategy and identified four additional complimentary skills needed for successful decision making: climate literacy, environmental literacy, risk assessment and management, and strategic execution and monitoring. Developing the climate literacy skills requires knowledge of climate variability and change, as well as an introduction to the suite of available products and services. For the development of an environmental literacy category, specific topics needed include knowledge of climate impacts on specific environmental systems. Climate risk assessment and management introduces a process for decision making and provides knowledge on communication of climate information and integration of climate information in planning processes. The strategic execution and monitoring category provides information on use of NOAA climate products, services, and partnership opportunities for decision making. In order to use the existing training modules, it was necessary to assess their level of complexity, catalog them, and develop guidance for users on a curriculum to take advantage of the training resources to enhance their learning experience. With the development of this CRT training section, NOAA has made significant progress in sharing resources with the external community.
Design for waste-management system
NASA Technical Reports Server (NTRS)
Guarneri, C. A.; Reed, A.; Renman, R.
1973-01-01
Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2015-06-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2016-01-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
NASA Technical Reports Server (NTRS)
Bhattacharya, K.; Ghil, M.
1979-01-01
A slightly modified version of the one-dimensional time-dependent energy-balance climate model of Ghil and Bhattacharya (1978) is presented. The albedo-temperature parameterization has been reformulated and the smoothing of the temperature distribution in the tropics has been eliminated. The model albedo depends on time-lagged temperature in order to account for finite growth and decay time of continental ice sheets. Two distinct regimes of oscillatory behavior which depend on the value of the albedo-temperature time lag are considered.
Jing, Xin; Sanders, Nathan J; Shi, Yu; Chu, Haiyan; Classen, Aimée T; Zhao, Ke; Chen, Litong; Shi, Yue; Jiang, Youxu; He, Jin-Sheng
2015-09-02
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.
Climate of Hungary in the twentieth century according to Feddema
NASA Astrophysics Data System (ADS)
Ács, Ferenc; Breuer, Hajnalka; Skarbit, Nóra
2015-01-01
Feddema's (Physical Geography 26:442-466, 2005) bioclimatic classification scheme is applied to Hungary for the twentieth century using the Climatic Research Unit (CRU) data series. The method is tested in two modes. In the first, its original form is used which is suitable for global scale analysis. In the second, the criteria used in the method are slightly modified for mesoscale classification purposes. In both versions, potential evapotranspiration (PET) is calculated using McKenney and Rosenberg's (Meteorol 64:81-110, 1993) formula. We showed that McKenney and Rosenberg's formula could be applied to Hungary. According to Feddema's global scale application, local climates of the three main geographical regions, the Great Hungarian Plain, the North Hungarian Mountains, and Transdanubia, can be distinguished. However, the spatial distribution pattern within the regions is poorly reproduced, if at all. According to Feddema's mesoscale application, a picture of climatic subregions could be observed.
Impacts of climate change on surface water quality in relation to drinking water production.
Delpla, I; Jung, A-V; Baures, E; Clement, M; Thomas, O
2009-11-01
Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.
Accelerating Climate Simulations Through Hybrid Computing
NASA Technical Reports Server (NTRS)
Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark
2009-01-01
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.
Validation of an organizational communication climate assessment toolkit.
Wynia, Matthew K; Johnson, Megan; McCoy, Thomas P; Griffin, Leah Passmore; Osborn, Chandra Y
2010-01-01
Effective communication is critical to providing quality health care and can be affected by a number of modifiable organizational factors. The authors performed a prospective multisite validation study of an organizational communication climate assessment tool in 13 geographically and ethnically diverse health care organizations. Communication climate was measured across 9 discrete domains. Patient and staff surveys with matched items in each domain were developed using a national consensus process, which then underwent psychometric field testing and assessment of domain coherence. The authors found meaningful within-site and between-site performance score variability in all domains. In multivariable models, most communication domains were significant predictors of patient-reported quality of care and trust. The authors conclude that these assessment tools provide a valid empirical assessment of organizational communication climate in 9 domains. Assessment results may be useful to track organizational performance, to benchmark, and to inform tailored quality improvement interventions.
Jing, Xin; Sanders, Nathan J.; Shi, Yu; ...
2015-09-02
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation inmore » EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.« less
Jing, Xin; Sanders, Nathan J.; Shi, Yu; Chu, Haiyan; Classen, Aimée T.; Zhao, Ke; Chen, Litong; Shi, Yue; Jiang, Youxu; He, Jin-Sheng
2015-01-01
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems. PMID:26328906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Xin; Sanders, Nathan J.; Shi, Yu
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation inmore » EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.« less
Potential climatic impacts of vegetation change: A regional modeling study
NASA Astrophysics Data System (ADS)
Copeland, Jeffrey H.; Pielke, Roger A.; Kittel, Timothy G. F.
1996-03-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage.
Potential climatic impacts of vegetation change: A regional modeling study
Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.
1996-01-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.
Climate change impacts on marine ecosystems.
Doney, Scott C; Ruckelshaus, Mary; Duffy, J Emmett; Barry, James P; Chan, Francis; English, Chad A; Galindo, Heather M; Grebmeier, Jacqueline M; Hollowed, Anne B; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N; Sydeman, William J; Talley, Lynne D
2012-01-01
In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.
Climate change can alter predator-prey dynamics and population viability of prey.
Bastille-Rousseau, Guillaume; Schaefer, James A; Peers, Michael J L; Ellington, E Hance; Mumma, Matthew A; Rayl, Nathaniel D; Mahoney, Shane P; Murray, Dennis L
2018-01-01
For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.
Milly, Paul C.D.; Dunne, Krista A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, G. Page; Mueller, C.; Calvin, Katherine V.
This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to themore » GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.« less
Isoform specificity of progesterone receptor antibodies
Fabris, Victoria; Abascal, María F; Giulianelli, Sebastián; May, María; Sequeira, Gonzalo R; Jacobsen, Britta; Lombès, Marc; Han, Julie; Tran, Luan; Molinolo, Alfredo
2017-01-01
Abstract Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone‐dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N‐terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin‐fixed paraffin‐embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D‐YA and ‐YB cells expressing PRA or PRB, respectively, MDA‐MB‐231 cells modified to synthesize PRB, and MDA‐MB‐231/iPRAB cells which can bi‐inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H‐190, clone 636, clone 16, and Ab‐6 anti‐PR antibodies, the latter exclusively recognizing PRB. Except for Ab‐6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H‐190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA‐specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer. PMID:29085663
Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee
2016-01-01
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.
Climate change and health in Bangladesh: a baseline cross-sectional survey.
Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat
2016-01-01
Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years' stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65-2.56) and malaria 13.86 (95% CI 6.00-32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16-11.66) and 7.3% (95% CI 6.35-8.46), respectively. The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be beneficial to minimise climate change attributed health burden of Bangladesh.
Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee
2016-01-01
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597
Assessment of Coastal Governance for Climate Change Adaptation in Kenya
NASA Astrophysics Data System (ADS)
Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina
2017-11-01
The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.
The feeding tube of cyst nematodes: characterisation of protein exclusion.
Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.
The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Ault, James R.; Ashcroft, Alison E.; Jones, John T.; Urwin, Peter E.
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry – mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins. PMID:24489891
Field windbreaks for bioenergy production and carbon sequestration
USDA-ARS?s Scientific Manuscript database
Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...
A generalized forest growth projection system applied to the Lake States region.
USDA FS
1979-01-01
A collection of 12 papers describing the need, design, calibration database, potential diameter growth function, crown ratio, modifier, and mortality functions, as well as a diameter growth allocation rule, management algorithms, computer program, tests, and Lake State climate during calibration.
Biodiversity of Saline and Brakish Marshes of the Indian River Lagoon: Historic and Current Patterns
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.
1995-01-01
The Indian River Lagoon (IRL) crosses a zone of climatic transition. Historically, marshes dominated saline and brackish environments in the north of the lagoon, while mangroves became important to the south. Distribution of marsh communities was influenced by hydrology, salinity, soil characteristics, and fire, as well as periodic freezes. Marshes of the IRL have been greatly modified since the 1940s. Despite significant modifications, marsh plant species have not been lost from the region, but community and landscape patterns have been greatly modified and ecosystem processes altered.
Watterson, J.R.
1985-01-01
Many of the world's richest gold placer deposits now occur in cold regions despite differences in their climatic history. It therefore seems possible that there may be some fundamental connection between freezing climates and the local chemical behavior of gold in the weathering cycle. This hypothesis, along with the problematical occurrence of gold as euhedral crystals in arctic gravel and soil placers, has led me to review low temperature phenomena that may bear on the geochemistry of gold. Several effects which may influence the weathering of natural gold-bearing rocks, the chemical complexation of gold, and its subsequent mobility and deposition appear to be strongly connected with freeze action. The exclusion of dissolved solutes, solute gases, and particles from ice, subjects rock and soil minerals to increased corrosion from thin, unfrozen, adsorbed water films which remain at particle surfaces throughout the freezing of rocks and soils. The preferential exclusion of cations (over anions) from growing ice crystals creates charge separations and measurable current flow across waterice phase boundaries in freezing soil - a phenomenon which leads to troublesome seasonal electrolytic corrosion of pipelines buried in soil; this phenomenon may also favor the dissolution of normally insoluble metals such as gold during geologic time periods. The ice-induced accumulation of clays, organic acids, bacteria, and other organic matter at mineral surfaces may also speed chemical attack by providing a nearby sink of alternate cation-binding sites and hence rapid removal of liberated cations from solution. The latter mechanism may be operative in both the dissolution and redeposition of gold. These physical, chemical, and electrical effects are favorable to the dissolution of rocks (in addition to frost shattering) and to the dissolution, mobilization, and redeposition of gold and other noble metals and must therefore contribute significantly to the behavior of gold at low temperatures. The occurrence of large numbers of gold placer deposits in northern Canada, Alaska, and Siberia may thus be due in part to the low temperatures common to these regions. ?? 1985.
Warming-induced changes in predation, extinction and invasion in an ectotherm food web.
Seifert, Linda I; Weithoff, Guntram; Gaedke, Ursula; Vos, Matthijs
2015-06-01
Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 °C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 °C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 °C, but consistently failed at 25 °C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery.
Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.
2015-01-01
The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238
Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao
2017-02-01
High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effect of Longer-Term and Exclusive Breastfeeding Promotion on Visual Outcome in Adolescence
Owen, Christopher G.; Oken, Emily; Rudnicka, Alicja R.; Patel, Rita; Thompson, Jennifer; Rifas-Shiman, Sheryl L.; Vilchuck, Konstatin; Bogdanovich, Natalia; Hameza, Mikhail; Kramer, Michael S.; Martin, Richard M.
2018-01-01
Purpose Breastfeeding may influence early visual development. We examined whether an intervention to promote increased duration and exclusivity of breastfeeding improves visual outcomes at 16 years of age. Methods Follow-up of a cluster-randomized trial in 31 Belarusian maternity hospitals/polyclinics randomized to receive a breastfeeding promotion intervention, or usual care, where 46% vs. 3% were exclusively breastfed at 3 months respectively. Low vision in either eye was defined as unaided logMAR vision of ≥0.3 or worse (equivalent to Snellen 20/40) and was used as the primary outcome. Open-field autorefraction in a subset (n = 963) suggested that 84% of those with low vision were myopic. Primary analysis was based on modified intention-to-treat, accounting for clustering within hospitals/clinics. Observational analyses also examined the effect of breastfeeding duration and exclusivity, as well as other sociodemographic and environmental determinants of low vision. Results A total of 13,392 of 17,046 (79%) participants were followed up at 16 years. Low vision prevalence was 19.6% (95% confidence interval [CI]: 17.5, 22.0%) in the experimental group versus 21.6% (19.5, 23.8%) in the control group. Cluster-adjusted odds ratio (OR) of low vision associated with the intervention was 0.92 (95% CI: 0.73, 1.16); 0.88 (95% CI: 0.74, 1.05) after adjustment for parental and early life factors. In observational analyses, breastfeeding duration and exclusivity had no significant effect on low vision. However, maternal age at birth (OR: 1.13, 95% CI: 1.07, 1.14/5-year increase) and urban versus rural residence were associated with increased risk of low vision. Lower parental education, number of older siblings was associated with a lower risk of low vision; boys had lower risk compared with girls (0.64, 95% CI: 0.59,0.70). Conclusions Exclusive breastfeeding promotion had no significant effect on visual outcomes in this study, but other environmental factors showed strong associations. (ClinicalTrials.gov number, NCT01561612.) PMID:29860453
Ennis, William J; Hoffman, Rachel A; Gurtner, Geoffrey C; Kirsner, Robert S; Gordon, Hanna M
2017-08-01
Chronic wounds are increasing in prevalence and are a costly problem for the US healthcare system and throughout the world. Typically outcomes studies in the field of wound care have been limited to small clinical trials, comparative effectiveness cohorts and attempts to extrapolate results from claims databases. As a result, outcomes in real world clinical settings may differ from these published studies. This study presents a modified intent-to-treat framework for measuring wound outcomes and measures the consistency of population based outcomes across two distinct settings. In this retrospective observational analysis, we describe the largest to date, cohort of patient wound outcomes derived from 626 hospital based clinics and one academic tertiary care clinic. We present the results of a modified intent-to-treat analysis of wound outcomes as well as demographic and descriptive data. After applying the exclusion criteria, the final analytic sample includes the outcomes from 667,291 wounds in the national sample and 1,788 wounds in the academic sample. We found a consistent modified intent to treat healing rate of 74.6% from the 626 clinics and 77.6% in the academic center. We recommend that a standard modified intent to treat healing rate be used to report wound outcomes to allow for consistency and comparability in measurement across providers, payers and healthcare systems. © 2017 by the Wound Healing Society.
Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.
Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen
2017-07-28
Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.
Projected avifaunal responses to climate change across the U.S. National Park System.
Wu, Joanna X; Wilsey, Chad B; Taylor, Lotem; Schuurman, Gregor W
2018-01-01
Birds in U.S. national parks find strong protection from many longstanding and pervasive threats, but remain highly exposed to effects of ongoing climate change. To understand how climate change is likely to alter bird communities in parks, we used species distribution models relating North American Breeding Bird Survey (summer) and Audubon Christmas Bird Count (winter) observations to climate data from the early 2000s and projected to 2041-2070 (hereafter, mid-century) under high and low greenhouse gas concentration trajectories, RCP8.5 and RCP2.6. We analyzed climate suitability projections over time for 513 species across 274 national parks, classifying them as improving, worsening, stable, potential colonization, and potential extirpation. U.S. national parks are projected to become increasingly important for birds in the coming decades as potential colonizations exceed extirpations in 62-100% of parks, with an average ratio of potential colonizations to extirpations of 4.1 in winter and 1.4 in summer under RCP8.5. Average species turnover is 23% in both summer and winter under RCP8.5. Species turnover (Bray-Curtis) and potential colonization and extirpation rates are positively correlated with latitude in the contiguous 48 states. Parks in the Midwest and Northeast are expected to see particularly high rates of change. All patterns are more extreme under RCP8.5 than under RCP2.6. Based on the ratio of potential colonization and extirpation, parks were classified into overall trend groups associated with specific climate-informed conservation strategies. Substantial change to bird and ecological communities is anticipated in coming decades, and current thinking suggests managing towards a forward-looking concept of ecological integrity that accepts change and novel ecological conditions, rather than focusing management goals exclusively on maintaining or restoring a static set of historical conditions.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
McDonough, Molly M; Šumbera, Radim; Mazoch, Vladimír; Ferguson, Adam W; Phillips, Caleb D; Bryja, Josef
2015-10-01
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity. © 2015 John Wiley & Sons Ltd.
Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy.
Moulton, Anthony Drummond; Schramm, Paul John
Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity.
NASA Astrophysics Data System (ADS)
Mayer, S. A.; Kirby, M. E.; Anderson, W. T., Jr.; Stout, C.; Palermo, J. A.
2015-12-01
The focal point of most lacustrine studies in the Mojave National Preserve (MNP) to date has been on lakes fed by the Mojave River. The source of the Mojave River is found on the northern flank of the San Bernardino Mountains. Consequently, the lakes that receive these waters are predominantly responding to the winter-only coastal southwest United States climate (e.g., Kirby et al., 2015 - Silver Lake); to a lesser degree, these lakes are also influenced by the Mojave's bimodal winter/summer climate. Ford Lake, located in the southeastern Mojave Desert is a small closed basin lake with its drainage basin located exclusively within the Mojave Desert. Therefore, sediment collected from Ford Lake contains a 100% Mojave-only climate signal. A 2.18 m sediment core was collected from the lake's depocenter in May 2015. Sediment analyses at 1 cm contiguous intervals include: magnetic susceptibility (MS), percent total organic matter, percent total carbonate content, and grain size analysis; C:N ratios, C and N isotope (δ13C and δ15N) analyses, and macrofossil counts are determined at 2 cm intervals. The site's age model is based on accelerator mass spectrometry (AMS) radiocarbon ages from discrete organic macrofossils or bulk organic carbon. To deconvolve the coastal climate, winter-only signal from the Mojave-only climate signal the data from Ford Lake will be compared to one Mojave River fed lake (Silver) and several southern California lakes (Lower Bear, Lake Elsinore, Dry Lake, and Zaca Lake). Our results will be analyzed in the context of climate forcings such as insolation and ocean - atmosphere dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Eric T.; Toon, Owen B.; Shields, Aomawa L.
Conventional definitions of habitability require abundant liquid surface water to exist continuously over geologic timescales. Water in each of its thermodynamic phases interacts with solar and thermal radiation and is the cause for strong climatic feedbacks. Thus, assessments of the habitable zone require models to include a complete treatment of the hydrological cycle over geologic time. Here, we use the Community Atmosphere Model from the National Center for Atmospheric Research to study the evolution of climate for an Earth-like planet at constant CO{sub 2}, under a wide range of stellar fluxes from F-, G-, and K-dwarf main sequence stars. Aroundmore » each star we find four stable climate states defined by mutually exclusive global mean surface temperatures ( T {sub s}); snowball ( T {sub s} ≤ 235 K), waterbelt (235 K ≤ T {sub s} ≤ 250 K), temperate (275 K ≤ T {sub s} ≤ 315 K), and moist greenhouse ( T {sub s} ≥ 330 K). Each is separated by abrupt climatic transitions. Waterbelt, temperate, and cooler moist greenhouse climates can maintain open-ocean against both sea ice albedo and hydrogen escape processes respectively, and thus constitute habitable worlds. We consider the warmest possible habitable planet as having T {sub s} ∼ 355 K, at which point diffusion limited water-loss could remove an Earth ocean in ∼1 Gyr. Without long timescale regulation of non-condensable greenhouse species at Earth-like temperatures and pressures, such as CO{sub 2}, habitability can be maintained for an upper limit of ∼2.2, ∼2.4, and ∼4.7 Gyr around F-, G-, and K-dwarf stars respectively, due to main sequence brightening.« less
NASA Astrophysics Data System (ADS)
Wolf, Eric T.; Shields, Aomawa L.; Kopparapu, Ravi K.; Haqq-Misra, Jacob; Toon, Owen B.
2017-03-01
Conventional definitions of habitability require abundant liquid surface water to exist continuously over geologic timescales. Water in each of its thermodynamic phases interacts with solar and thermal radiation and is the cause for strong climatic feedbacks. Thus, assessments of the habitable zone require models to include a complete treatment of the hydrological cycle over geologic time. Here, we use the Community Atmosphere Model from the National Center for Atmospheric Research to study the evolution of climate for an Earth-like planet at constant CO2, under a wide range of stellar fluxes from F-, G-, and K-dwarf main sequence stars. Around each star we find four stable climate states defined by mutually exclusive global mean surface temperatures (T s); snowball (T s ≤ 235 K), waterbelt (235 K ≤ T s ≤ 250 K), temperate (275 K ≤ T s ≤ 315 K), and moist greenhouse (T s ≥ 330 K). Each is separated by abrupt climatic transitions. Waterbelt, temperate, and cooler moist greenhouse climates can maintain open-ocean against both sea ice albedo and hydrogen escape processes respectively, and thus constitute habitable worlds. We consider the warmest possible habitable planet as having T s ˜ 355 K, at which point diffusion limited water-loss could remove an Earth ocean in ˜1 Gyr. Without long timescale regulation of non-condensable greenhouse species at Earth-like temperatures and pressures, such as CO2, habitability can be maintained for an upper limit of ˜2.2, ˜2.4, and ˜4.7 Gyr around F-, G-, and K-dwarf stars respectively, due to main sequence brightening.
Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy
Moulton, Anthony Drummond; Schramm, Paul John
2017-01-01
Context Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Objective Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Methods Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Findings Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. Conclusions A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity. PMID:28169865
Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation
NASA Astrophysics Data System (ADS)
Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.
2011-12-01
A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA
Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.
2007-01-01
The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.
Lehnert, L W; Wesche, K; Trachte, K; Reudenbach, C; Bendix, J
2016-04-13
The Tibetan Plateau (TP) is a globally important "water tower" that provides water for nearly 40% of the world's population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.
"The upper limits of vegetation on Mauna Loa, Hawaii": a 50th-anniversary reassessment.
Juvik, James O; Rodomsky, Brett T; Price, Jonathan P; Hansen, Eric W; Kueffer, Christoph
2011-02-01
In January 1958, a survey of alpine flora was conducted along a recently constructed access road across the upper volcanic slopes of Mauna Loa, Hawaii (2525-3397 m). Only five native Hawaiian species were encountered on sparsely vegetated historic and prehistoric lava flows adjacent to the roadway. A resurvey of roadside flora in 2008 yielded a more than fourfold increase to 22 species, including nine native species not previously recorded. Eight new alien species have now invaded this alpine environment, although exclusively limited to a few individuals in ruderal habitat along the roadway. Alternative explanations for species invasion and altitudinal change over the past 50 years are evaluated: (1) changes related to continuing primary succession on ameliorating (weathering) young lava substrates; (2) local climate change; and (3) road improvements and increased vehicular access which promote enhanced car-borne dispersal of alien species derived from the expanding pool of potential colonizers naturalized on the island in recent decades. Unlike alpine environments in temperate latitudes, the energy component (warming) in climate change on Mauna Loa does not appear to be the unequivocal driver of plant invasion and range extension. Warming may be offset by other climate change factors including rainfall and evapotranspiration.
Growth response of oaks, beech and pine to Standardized Precipitation Index (SPI)
NASA Astrophysics Data System (ADS)
Stojanovic, Dejan; Levanič, Tom; Matović, Bratislav; Orlović, Saša
2017-04-01
Climate change may have various consequences on forests, from more frequent forest fires and windstorms to pest and disease outbreaks. Standardized Precipitation Index (SPI) was chosen for the evaluation of climate change impact to radial forest growth, after comprehensive testing of different climate parameters from CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different forest stands (lowland and mountainous parts of Serbia, Southeast Europe). Observed were following tree species: Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris. Bootstrapped Pearson's correlation between SPI monthly indices and tree-ring widths was calculated and ranked for all species. We found that 12-month SPI for summer months may be a good predictor for growth of different species at different sites. The strongest positive correlation between tree-ring width indices and SPI was particularly from the year of growth, since the strongest negative correlation for all four species was exclusively from the year prior to growth. The strongest positive correlation were between 12 and 14-month SPI from June to September, which suggests that the high growth rates are expected when autumn of previous-year, winter, spring and summer of the current year are with high precipitation rates.
Climate variability and conflict risk in East Africa, 1990–2009
O’Loughlin, John; Witmer, Frank D. W.; Linke, Andrew M.; Laing, Arlene; Gettelman, Andrew; Dudhia, Jimy
2012-01-01
Recent studies concerning the possible relationship between climate trends and the risks of violent conflict have yielded contradictory results, partly because of choices of conflict measures and modeling design. In this study, we examine climate–conflict relationships using a geographically disaggregated approach. We consider the effects of climate change to be both local and national in character, and we use a conflict database that contains 16,359 individual geolocated violent events for East Africa from 1990 to 2009. Unlike previous studies that relied exclusively on political and economic controls, we analyze the many geographical factors that have been shown to be important in understanding the distribution and causes of violence while also considering yearly and country fixed effects. For our main climate indicators at gridded 1° resolution (∼100 km), wetter deviations from the precipitation norms decrease the risk of violence, whereas drier and normal periods show no effects. The relationship between temperature and conflict shows that much warmer than normal temperatures raise the risk of violence, whereas average and cooler temperatures have no effect. These precipitation and temperature effects are statistically significant but have modest influence in terms of predictive power in a model with political, economic, and physical geographic predictors. Large variations in the climate–conflict relationships are evident between the nine countries of the study region and across time periods. PMID:23090992
NASA Astrophysics Data System (ADS)
Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.
2014-12-01
While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.
Godsoe, William; Larson, Megan A; Glennon, Kelsey L; Segraves, Kari A
2013-03-01
Polyploidization is a key factor involved in the diversification of plants. Although polyploids are commonly found, there remains controversy on the mechanisms that lead to their successful establishment. One major problem that has been identified is that newly formed polyploids lack mates of the appropriate ploidy level and may experience severely reduced fertility due to nonproductive intercytotype crosses. Niche differentiation has been proposed as a primary mechanism that can alleviate this reproductive disadvantage and facilitate polyploid establishment. Here we test whether the establishment of tetraploid cytotypes of Heuchera cylindrica (Saxifragaceae) is consistent with climatic niche differentiation. • We use a combination of field surveys, flow cytometry and species distribution models to: (1) examine the distribution of diploid and tetraploid cytotypes; and (2) determine whether tetraploid Heuchera cylindrica occupy climates that differ from those of its diploid progenitors. • The geographic distributions of diploid and tetraploid cytotypes are largely allopatric as an extensive survey of 636 plants from 43 locations failed to detect any populations with both cytotypes. Although diploids and tetraploids occur in different geographic areas, polyploid Heuchera cylindrica occur almost exclusively in environments that are predicted to be suitable to diploid populations. • Climatic niche differentiation does not explain the geographic distribution of tetraploid Heuchera cylindrica. We propose instead that tetraploid lineages were able to establish by taking advantage of glacial retreat and expanding into previously unoccupied sites.
NASA Astrophysics Data System (ADS)
Hazen, E. L.
2016-02-01
Highly migratory species regularly traverse human-imposed boundaries including exclusive economic zones and marine protected areas, thus are difficult to manage using traditional spatial approaches. Blue whales (Balaenoptera musculus) are seasonal visitors to the California Current System that target a single prey resource, krill (Euphausia pacifica, Thysanoessa spinifera), and migrate large distances to find and exploit ephemeral prey patches. Successful management of blue whales requires improved understanding of how fine-scale foraging ecology translates to population abundances. Specifically, sub-lethal factors such as anthropogenic noise and climate change, and lethal factors such as ship strikes may be limiting recovery and can be difficult to account for in current management strategies. Here we use an extensive dataset of fine-scale accelerometers (55) and broad-scale satellite tags (104) deployed on Northeast Pacific blue whales to examine the energetics of foraging, overlap with human risk, and projections of future habitat with climate change. We quantify the importance of dense prey patches (> 100 krill per cubic meter) for blue whale energetics and fitness. Distribution models can be used in concert with industry and regional offices to produce dynamic rules to reduce vessel interactions. We propose telemetry data are ripe for use in establishing dynamic management approaches that account for daily to seasonal management areas to minimize anthropogenic risks, and are also adaptable to long-term climate-driven changes in habitat.
NASA Astrophysics Data System (ADS)
Hazen, E. L.
2016-12-01
Highly migratory species regularly traverse human-imposed boundaries including exclusive economic zones and marine protected areas, thus are difficult to manage using traditional spatial approaches. Blue whales (Balaenoptera musculus) are seasonal visitors to the California Current System that target a single prey resource, krill (Euphausia pacifica, Thysanoessa spinifera), and migrate large distances to find and exploit ephemeral prey patches. Successful management of blue whales requires improved understanding of how fine-scale foraging ecology translates to population abundances. Specifically, sub-lethal factors such as anthropogenic noise and climate change, and lethal factors such as ship strikes may be limiting recovery and can be difficult to account for in current management strategies. Here we use an extensive dataset of fine-scale accelerometers (55) and broad-scale satellite tags (104) deployed on Northeast Pacific blue whales to examine the energetics of foraging, overlap with human risk, and projections of future habitat with climate change. We quantify the importance of dense prey patches (> 100 krill per cubic meter) for blue whale energetics and fitness. Distribution models can be used in concert with industry and regional offices to produce dynamic rules to reduce vessel interactions. We propose telemetry data are ripe for use in establishing dynamic management approaches that account for daily to seasonal management areas to minimize anthropogenic risks, and are also adaptable to long-term climate-driven changes in habitat.
NASA Astrophysics Data System (ADS)
Zampieri, M.; Ceglar, A., , Dr; Dentener, F., , Dr; van den Berg, M., , Dr; Toreti, A., , Dr
2017-12-01
Heat waves and drought are often considered the most damaging climatic stressors for wheat and maize. In this study, based on data derived from observations, we characterize and attribute the effects of these climate extremes on wheat and maize yield anomalies (at global and national scales) with respect to the mean trend from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (i.e. the Heat Magnitude Day, HMD, and the Standardized Precipitation Evapotranspiration Index, SPEI), we have developed a composite indicator (i.e. the Combined Stress Index, CSI) that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains the 42% and the 50% of the inter-annual wheat and maize production variabilities, respectively. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Compared to maize, and in contrast to common perception, water excess affects wheat production more than drought in several countries. The index definition can be modified in order to quantify the role of combined heat and water stress events occurrence in determining the recorded yield trends as well. Climate change is increasingly limiting maize yields in several countries, especially in Europe and China. A comparable opposite signal, albeit less statistically significant, is found for the USA, which is the main world producer. As for rice, we provide a statistical evidence pointing out to the importance of considering the interactions with the horizontal surface waters fluxes carried out by the rivers. In fact, compared to wheat and maize, the CSI statistical skills in explaining rice production variability are quite reduced. This issue is particularly relevant in paddy fields and flooded lowlands where rice is mainly grown. Therefore, we have modified the procedure including a proxy for the surface freshwater availability i.e. the Standardized River Discharge Index (SRDI), defined in this study. The modified CSI explains the 35% of the global rice production inter-annual anomalies.
Climate modifies response of non-native and native species richness to nutrient enrichment
USDA-ARS?s Scientific Manuscript database
Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the int...
Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic
USDA-ARS?s Scientific Manuscript database
Climate warming is modifying host-parasite interactions in the Arctic. Invasion of an arctic island by protostrongylid nematodes appears mediated by sporadic dispersal of muskoxen and seasonal migration by caribou from the Canadian mainland. A newly permissive environment likely facilitated initial ...
Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor
Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...
Implementation & Evaluation of a New Shallow Convection Scheme in WRF
Clouds are well-known to be a crucial component of the weather and climate system since they transport heat, moisture and momentum vertically in the atmosphere, and strongly modify shortwave and longwave radiation budgets. From the air quality point of view, cloud processes, in p...
Haro, A.; Kynard, B.
1997-01-01
Movement and behavior of adult American shad Alosa sapidissima and sea lamprey Petromyzon marinus were monitored by closed-circuit video at several locations within a modified Ice Harbor fishway. American shad ascended and descended the fishway exclusively by surface weirs, while sea lampreys used both surface weirs and submerged orifices. Upstream movement of American shad during the day was higher than at night at both lower and middle fishway observation sites. Peak downstream movement of American shad at both locations was associated with decreasing light levels in the evening. Sea lampreys moved primarily at night at the lower and middle fishway sites. Mean daily passage efficiency was low (1% for American shad, -2% for sea lamprey) at the lower fishway surface weir, but passage efficiency at the middle fishway surface weir was moderate (70% for American shad, 35% for sea lamprey). High water velocity, air entrainment, and turbulence of the modified Ice Harbor fishway design appeared to inhibit American shad and sea lamprey passage by disrupting upstream migratory motivation and visual and rheotactic orientation.
NASA Astrophysics Data System (ADS)
Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2016-12-01
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to deforestation. Although the overall performance of the modified model did not considerably change, in 51 % of all the evaluated hydrological signatures, considering all three catchments, improvements were observed when adding a time-variant representation of the root-zone storage to the model.In summary, it is shown that root-zone moisture storage capacities can be highly affected by deforestation and climatic influences and that a simple method exclusively based on climate data can not only provide robust, catchment-scale estimates of this critical parameter, but also reflect its time-dynamic behaviour after deforestation.
Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2014-01-01
The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.
Regional climate models reduce biases of global models and project smaller European summer warming
NASA Astrophysics Data System (ADS)
Soerland, S.; Schar, C.; Lüthi, D.; Kjellstrom, E.
2017-12-01
The assessment of regional climate change and the associated planning of adaptation and response strategies are often based on complex model chains. Typically, these model chains employ global and regional climate models (GCMs and RCMs), as well as one or several impact models. It is a common belief that the errors in such model chains behave approximately additive, thus the uncertainty should increase with each modeling step. If this hypothesis were true, the application of RCMs would not lead to any intrinsic improvement (beyond higher-resolution detail) of the GCM results. Here, we investigate the bias patterns (offset during the historical period against observations) and climate change signals of two RCMs that have downscaled a comprehensive set of GCMs following the EURO-CORDEX framework. The two RCMs reduce the biases of the driving GCMs, reduce the spread and modify the amplitude of the GCM projected climate change signal. The GCM projected summer warming at the end of the century is substantially reduced by both RCMs. These results are important, as the projected summer warming and its likely impact on the water cycle are among the most serious concerns regarding European climate change.
A Climate Change Adaptation Strategy for Management of ...
Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa
NASA Astrophysics Data System (ADS)
Zhang, X.
2015-12-01
In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to save water resources.
Synthesis of eukaryotic lipid biomarkers in the bacterial domain
NASA Astrophysics Data System (ADS)
Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.
2017-12-01
Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.