NASA Technical Reports Server (NTRS)
Tri, Terry O.; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy R.; Howe, A. Scott
2011-01-01
This paper describes the construction, assembly, subsystem integration, transportation, and field testing operations associated with the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) and discusses lessons learned. In a one-year period beginning summer 2009, a tightly scheduled design-develop-build process was utilized by a small NASA "tiger team" to produce the functional HDU-PEM prototype in time to participate in the 2010 Desert Research and Technology Studies (Desert RATS) field campaign. The process required the coordination of multiple teams, subcontractors, facility management and safety staff. It also required a well-choreographed material handling and transportation process to deliver the finished product from the NASA-Johnson Space Center facilities to the remote Arizona desert locations of the field test. Significant findings of this paper include the team s greater understanding of the HDU-PEM s many integration issues and the in-field training the team acquired which will enable the implementation of the next-generation of improvements and development of high-fidelity field operations in a harsh environment. The Desert RATS analog environment is being promoted by NASA as an efficient means to design, build, and integrate multiple technologies in a mission architecture context, with the eventual goal of evolving the technologies into robust flight hardware systems. The HDU-PEM in-field demonstration at Desert RATS 2010 provided a validation process for the integration team, which has already begun to retool for the 2011 field tests that require an adapted architecture.
HDU Pressurized Excursion Module (PEM) Prototype Systems Integration
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2010-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of construction, such as the eight 45 degree "pie slices" making up the module whose steel rib edges defined structural mounting and loading points, dictated much of the configurational interfaces between the major subsystems and workstations. Therefore, 'one of the lessons learned included the need to use modularity as a tool for organization in advance, and to work harder to prevent non-critical aspects of the platform from dictating the modularity that may eventually inform the fight system.
Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2011-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.
GeoLab's First Field Trials, 2010 Desert RATS: Evaluating Tools for Early Sample Characterization
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.; Graff, Trevor; Young, Kelsey
2011-01-01
As part of an accelerated prototyping project to support science operations tests for future exploration missions, we designed and built a geological laboratory, GeoLab, that was integrated into NASA's first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM). GeoLab includes a pressurized glovebox for transferring and handling samples collected on geological traverses, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM were tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASA's analog field exercise for testing mission technologies. The HDU1- PEM and GeoLab participated in two weeks of joint operations in northern Arizona with two crewed rovers and the DRATS science team.
Patriot Script 1.0.13 User Guide for PEM 1.3.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, Timothy James; Kubicek, Deborah Ann; Stroud, Phillip David
2015-11-02
This document provides an updated user guide for Patriot Script Version 1.0.13, for release with PEM 1.3.1 (LAUR-1422817) that adds description and instructions for the new excursion capability (see section 4.5.1).
The Habitat Demonstration Unit Project Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Grill, Tracy R.; Tri, Terry O.; Howe, Alan S.
2010-01-01
This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into PEM are planned to facilitate the integration process.
The Habitat Demonstration Unit System Integration
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Kennedy, Kriss J.; Tri, Terry O.; Howe, Alan S.
2010-01-01
The Lunar Surface System Habitat Demonstration Unit (HDU) will require a project team to integrate a variety of contributions from National Aeronautics and Space Administration (NASA) centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the first version of the HDU, the Pressurized Excursion Module (PEM), from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Laboratory, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into HDU PEM are planned to facilitate the integration process. A coordinated effort to establish simplified Computer Aided Design (CAD) standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU design to maximize the efficiency of both integration and field operations.
HDU Deep Space Habitat (DSH) Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.
Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang
2014-02-01
As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.
A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens
NASA Astrophysics Data System (ADS)
Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon
2014-11-01
The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.
Thermal stability control system of photo-elastic interferometer in the PEM-FTs
NASA Astrophysics Data System (ADS)
Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.
2018-01-01
A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.
Two modulator generalized ellipsometer for complete mueller matrix measurement
Jellison, Jr., Gerald E.; Modine, Frank A.
1999-01-01
A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.
Operational Evaluation of VEGGIE Food Production System in the Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.
2011-01-01
The 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. A systematic evaluation of rooting media and nutrient delivery systems were evaluated for three lettuce cultivars that have shown promise as candidates for a surface based food production system. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple operators with a minimum of training, and supported excellent lettuce growth for the duration of the test. A Hazard Analysis and Critical Control Point (HACCP) evaluation was performed using ProSan(tm) as sanitation agent prior to consumption was approved, and the crew was allowed to consume the lettuce grown using the VEGGIE light cap and gravity based nutrient delivery system at the completion of the 14-day DRAT field test. The DRAT field test validated the crew operations; Growth of all lettuce cultivars was excellent. The operational DRAT field testing in the HDU identified light quality issues related to morphology and pigment development that will need to be addressed through additional testing. Feedback from the crew, ground support personnel, and human factors leads was uniformly positive on the psychological value of having the crop production system in the excursion module. A number of areas have been identified for future work, to minimize the "footprint" of the Food Production system through creative use of unused wall and floor space in the unit.
Operation Evaluation of the VEGGIE Food Production System in the Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.
2011-01-01
The 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. A systematic evaluation of rooting media and nutrient delivery systems were evaluated for three lettuce cultivars that have shown promise as candidates for a surface based food production system. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple operators with a minimum of training, and supported excellent lettuce growth for the duration of the test. A Hazard Analysis and Critical Control Point (HACCP) evaluation was performed using ProSantm as sanitation agent prior to consumption was approved, and the crew was allowed to consume the lettuce grown using the VEGGIE light cap and gravity based nutrient delivery system at the completion of the 14-day DRAT field test. The DRAT field test validated the crew operations; Growth of all lettuce cultivars was excellent. The operational DRAT field testing in the HDU identified light quality issues related to morphology and pigment development that will need to be addressed through additional testing. Feedback from the crew, ground support personnel, and human factors leads was uniformly positive on the psychological value of having the crop production system in the excursion module. A number of areas have been identified for future work, to minimize the "footprint" of the Food Production system through creative use of unused wall and floor space in the unit.
A Modular Instrumentation System for NASA's Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul
2010-01-01
NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.
Madsen, Tracy E; Riese, Alison; Choo, Ester K; Ranney, Megan L
2014-08-01
Youth seen in the emergency department (ED) with injuries from youth violence (YV) have increased risk for future violent injury and death. Pediatric emergency medicine (PEM) physicians rarely receive training in, or perform, YV screening and intervention. Our objective was to examine effects of a web-based educational module on PEM physicians' knowledge, attitudes, and behaviors regarding YV screening and interventions in the ED. We invited all PEM fellows and attendings at an urban Level I pediatric trauma center to complete an interactive web-based education module (and 1-month booster) with information on YV's public health impact and how to screen, counsel and refer YV-involved patients. Consenting subjects completed electronic assessments of YV prevention knowledge and attitudes (using validated measures when possible) before and after the initial module and after the booster. To measure behavior change, chart review identified use of YV-specific discharge instructions in visits by YV-injured PEM patients (age 12-17; identified by E codes) 6 months before and after the intervention. We analyzed survey data were analyzed with Fisher's exact for binary outcomes and Kruskal-Wallis for Likert responses. Proportion of patients given YV discharge instructions before and after the intervention was compared using chi-square. Eighteen (67%) of 27 PEM physicians participated; 1 was lost at post-module assessment and 5 at 1 month. Module completion time ranged from 15-30 minutes. At baseline, 50% of subjects could identify victims' re-injury rate; 28% were aware of ED YV discharge instructions. After the initial module and at 1 month, there were significant increases in knowledge (p<0.001) and level of confidence speaking with patients about avoiding YV (p=0.01, df=2). Almost all (94%) said the module would change future management. In pre-intervention visits, 1.6% of patients with YV injuries were discharged with YV instructions, versus 15.7% in the post-intervention period (p=0.006, 95%CI for difference 3.6%-24.5%). A brief web-based module influenced PEM physicians' knowledge and attitudes about YV prevention and may have affected behavior changes related to caring for YV victims in the ED. Further research should investigate web-based educational strategies to improve care of YV victims in a larger population of PEM physicians.
40 CFR 1065.915 - PEMS instruments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... max 0.5 % of max. Engine torque estimator, BSFC (This is a signal from an engine's ECM) T or BSFC 1 s... standards to account for ambient effects on PEMS. (d) ECM signals. You may use signals from the engine's electronic control module (ECM) in place of values measured by individual instruments within a PEMS, subject...
The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.
2011-01-01
NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.
Growth of Three Lettuce Cultivars in NASA's HDU PEM During the 2010 DRATS Test
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Newsham, Gerard; Wheeler, Raymond
2011-01-01
NASA's 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. Rooting media and slow release fertilizers were evaluated for three lettuce cultivars that had shown promise as candidates for a surface based food production system. These tests involved comparing growth, color and quality of the lettuce cultivars grown under VEGGIE LED array (Orbitec, Madison, WI) or Biomass Production System for Education ((BSEe), Orbitec, Madison, WI) compact fluorescent lamps using a gravity feed water delivery system. Mission relevant conditions of CO2, temperature and RH were maintained using controlled environment chambers (EGC, Chagrin Falls, OH). Growth data was obtained for the two red leaf lettuce cultivars, Outredgeous and Firecracker, and the green Bibb lettuce cultivar, Flandria. Growth and quality was evaluated using different concentrations (7.5 g/L and 15 g/L) of commercial slow release fertilizer (Osmocote Plus 15-9-12, Scotts, Maryville, OH) and Nutricote 18-6-8 (Florikan, Sarasota, FL) in either a peat/vermiculite media (sunshine LP5 MiX, Sungro, Bellview, WA) or calcined montmorillonite clay [(arcillite,)Turface Proleague, Profile LLC, Buffalo Grove, IL]. The commercial peat/vermiculite mix generally resulted in larger plants than those grown in arcillite. Increasing the concentration of Osmocote from 7.5 to 15 g/L increased the height, dry mass, and leaf area of lettuce cultivars. In contrast, there was a decrease in growth parameters when concentration of Nutricote was increased from 7.5 to 15 g/L. The best growth was obtained with the 7.5 g/L Nutricote using a commercial peat/vermiculite mixture. This media was used for field testing VEGGIE plant system in the 2010 DRAT test. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple operators with a minimum of training, and supported excellent lettuce growth for the duration of the 14-day test. The operational DRAT field testing in the HDU identified light quality issues related to morphology and pigment development that will need to be addressed through additional testing. Feedback from the crew, ground support personnel, and human factors leads was uniformly positive on the psychological value of having the crop production system in the pressurized excursion module. Data are being used to design a plant atrium with LED lighting to evaluate salad crop growth during NASA's 2011 DRATS test.
A distributed control approach for power and energy management in a notional shipboard power system
NASA Astrophysics Data System (ADS)
Shen, Qunying
The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
Human habitation field study of the Habitat Demonstration Unit (HDU)
NASA Astrophysics Data System (ADS)
Litaker, Harry L.; Archer, Ronald D.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.
2013-10-01
Landing and supporting a permanent outpost on a planetary surface represents humankind's capability to expand its own horizons and challenge current technology. With this in mind, habitability of these structures becomes more essential given the longer durations of the missions. The purpose of this evaluation was to obtain preliminary human-in-the-loop performance data on the Habitat Demonstration Unit (HDU) in a Pressurized Excursion Module (PEM) configuration during a 14-day simulated lunar exploration field trial and to apply this knowledge to further enhance the habitat's capabilities for forward designs. Human factors engineers at the NASA/Johnson Space Center's Habitability and Human Factors Branch recorded approximately 96 h of crew task performance with four work stations. Human factors measures used during this study included the NASA Task Load Index (TLX) and customized post questionnaires. Overall the volume for the PEM was considered acceptable by the crew; however; the habitat's individual work station volume was constrained when setting up the vehicle for operation, medical operations, and suit maintenance while general maintenance, logistical resupply, and geo science was considered acceptable. Crew workload for each station indicated resupply as being the lowest rated, with medical operations, general maintenance, and geo science tasks as being light, while suit maintenance was considered moderate and general vehicle setup being rated the highest. Stowage was an issue around the habitat with the Space Exploration Vehicle (SEV) resupply stowage located in the center of the habitat as interfering with some work station volumes and activities. Ergonomics of the geo science station was considered a major issue, especially with the overhead touch screens.
Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Harris, Aaron P.
2013-01-01
A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle,more » powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.« less
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
40 CFR 1065.915 - PEMS instruments.
Code of Federal Regulations, 2011 CFR
2011-07-01
....5% of max. Engine torque estimator, BSFC (This is a signal from an engine's ECM) T or BSFC 1 s 1 Hz... PEMS. (d) ECM signals. You may use signals from the engine's electronic control module (ECM) in place...) Recording ECM signals. If your ECM updates a broadcast signal more or less frequently than 1 Hz, process...
NASA Technical Reports Server (NTRS)
Borroni-Bird, Christopher E. (Inventor); Lapp, Anthony Joseph (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Bluethmann, William J. (Inventor); Ridley, Justin S. (Inventor); Junkin, Lucien Q. (Inventor); Ambrose, Robert O. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor)
2015-01-01
A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.
Dual-Photoelastic-Modulator-Based Polarimetric Imaging Concept for Aerosol Remote Sensing
NASA Technical Reports Server (NTRS)
Diner, David J.; Davis, Ab; Hancock, Bruce; Gutt, Gary; Chipman, Russell A.; Cairns, Brian
2007-01-01
A dual-photoelastic-modulator- (PEM-) based spectropolarimetric camera concept is presented as an approach for global aerosol monitoring from space. The most challenging performance objective is to measure degree of linear polarization (DOLP) with an uncertainty of less than 0.5% in multiple spectral bands, at moderately high spatial resolution, over a wide field of view, and for the duration of a multiyear mission. To achieve this, the tandem PEMs are operated as an electro-optic circular retardance modulator within a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a beat signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. The Stokes parameter ratio q = Q/I is obtained from measurements acquired from each pixel during a single frame, providing insensitivity to pixel responsivity drift and minimizing polarization artifacts that conventionally arise when this quantity is derived from differences in the signals from separate detectors. Similarly, u = U/I is obtained from a different pixel; q and u are then combined to form the DOLP. A detailed accuracy and tolerance analysis for this polarimeter is presented.
Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.
Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J
2005-12-01
It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.
Chiu, Yu-Chieh; Gammon, Joshua M; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M
2016-07-27
While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.
A simple electric circuit model for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.
Long-distance delivery of multi-channel polarization signals in nuclear fusion research
NASA Astrophysics Data System (ADS)
Ko, Jinseok; Chung, Jinil; Lee, Kyuhang
2017-04-01
A polarization-preserving optical system that includes a dual photoelastic modulator (PEM) has been designed and fabricated for the motional Stark effect (MSE) diagnostic system which measures internal magnetic field structures inside the tokamak for the Korea Superconducting Tokamak Advanced Research. The collection optics located outside the vacuum window is composed of four lenses, a dielectric coated mirror, and a dichroic beam splitter in addition to the PEM and a polarizer. The fiber dissector is designed based on the focal plane that aligns 25 lines of sight, each of which constitutes a bundle of 19 600-μm fibers. The fibers run about 40 m from the front optics in the tokamak vacuum vessel to the detector in the diagnostic area remote from the tokamak hall. This takes the advantage of the fact that the polarization information is intensity-modulated once going through the PEM and the polarizer. The polarization signals measured by the MSE diagnostic successfully demonstrates its proof-of-principle physics that is critical in the stable and steady-state operation of the tokamak plasmas.
Polyelectrolyte Multilayers in Tissue Engineering
Detzel, Christopher J.; Larkin, Adam L.
2011-01-01
The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation. PMID:21210759
Characterization of the LBNL PEM Camera
NASA Astrophysics Data System (ADS)
Wang, G.-C.; Huber, J. S.; Moses, W. W.; Qi, J.; Choong, W.-S.
2006-06-01
We present the tomographic images and performance measurements of the LBNL positron emission mammography (PEM) camera, a specially designed positron emission tomography (PET) camera that utilizes PET detector modules with depth of interaction measurement capability to achieve both high sensitivity and high resolution for breast cancer detection. The camera currently consists of 24 detector modules positioned as four detector banks to cover a rectangular patient port that is 8.2/spl times/6 cm/sup 2/ with a 5 cm axial extent. Each LBNL PEM detector module consists of 64 3/spl times/3/spl times/30 mm/sup 3/ LSO crystals coupled to a single photomultiplier tube (PMT) and an 8/spl times/8 silicon photodiode array (PD). The PMT provides accurate timing, the PD identifies the crystal of interaction, the sum of the PD and PMT signals (PD+PMT) provides the total energy, and the PD/(PD+PMT) ratio determines the depth of interaction. The performance of the camera has been evaluated by imaging various phantoms. The full-width-at-half-maximum (FWHM) spatial resolution changes slightly from 1.9 mm to 2.1 mm when measured at the center and corner of the field of the view, respectively, using a 6 ns coincidence timing window and a 300-750 keV energy window. With the same setup, the peak sensitivity of the camera is 1.83 kcps//spl mu/Ci.
NASA Astrophysics Data System (ADS)
Gribble, Adam; Alali, Sanaz; Vitkin, Alex
2016-03-01
Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.
NASA Astrophysics Data System (ADS)
Picot, D.; Metkemeijer, R.; Bezian, J. J.; Rouveyre, L.
In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW e prototype using Nafion® 117, a 5 and a 10 kW e module using Nafion® 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification.
Kaburagi, Tomoko; Yamano, Toshihiko; Fukushima, Yoichi; Yoshino, Haruka; Mito, Natsuko; Sato, Kazuto
2007-04-01
Protein-energy malnutrition (PEM) is a serious nutritional problem that causes immune dysfunction in elderly people. Probiotic lactic acid bacteria may potentially modify immunity; however, there is little evidence to elucidate the influence of these bacteria on PEM in the elderly. The immune modulation effects of lactic acid bacterium Lactobacillus johnsonii La1 (La1) were examined in aged mice and aged mice with PEM. Twenty-month-old male 57BL6/n mice (n = 28) were divided into four groups and received the following diet for 14 d: a complete diet (20% protein) without Lal (control) or with Lal or a low-protein diet (5% protein) to induce PEM, with or without La1. All mice were immunized with diphtheria toxin (DT) with alfacalciferol at 7 d and sacrificed 14 d after starting the experimental diets. Serum albumin concentrations and body weight, both of which were reduced by the low-protein diet, were ameliorated by La1 intake and were the same as in mice receiving the control diet. Anti-DT immunoglobulin (Ig) A in fecal extract was increased by La1 intake in mice receiving the complete and low-protein diets. Serum anti-DT IgA, IgG, splenocyte proliferation, and CD8(+) T cells were reduced by the low-protein diet and restored by La1 intake. La1 enhances intestinal IgA production and helps recover nutritional status and systemic immune responses in aged mice with PEM. It is possible that La1 may contribute to immune system recovery in immunocompromised hosts such as elderly humans with PEM.
1970-01-01
As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed the use of a Nuclear Shuttle in conjunction with a space station module, illustrated in this 1970 artist's concept, as the basis for a Mars excursion module.
Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.
USDA-ARS?s Scientific Manuscript database
Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...
PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease
USDA-ARS?s Scientific Manuscript database
Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...
Integration Process for the Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott
2010-01-01
The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of presently unanticipated systems Results of the HDU field tests will influence future designs of habitat systems.
Non-Flow Through Fuel Cell Power Module Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Guzik, Monica; Bennett, William R.; Edwards, Lawrence
2017-01-01
NASA demonstrated the Advanced Product Water Removal (APWR) Non-Flow-Through (NFT) PEM fuel cell technology by powering the Scarab rover over three-(3) days of field operations. The latest generation APWR NFT fuel cell stackwas packaged by the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) team into a nominallyrated 1-kW fuel cell power module. This power module was functionally verified in a laboratory prior to field operations on the Scarab rover, which concluded on 2 September 2015. During this demonstration, the power module satisfied all required success criteria by supporting all electrical loads as the Scarab navigated the NASA Glenn Research Center.
Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C
2018-04-13
Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein
2015-03-01
Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.
Promotion of Cultural Content Knowledge through the Use of the History and Philosophy of Science
ERIC Educational Resources Information Center
Galili, Igal
2012-01-01
Historical excurse was suggested as a beneficial form of using the history and philosophy of science in the modules of learning materials developed within the History and Philosophy in Science Teaching project. The paper briefly describes the theoretical framework of the produced modules, addressing ontological and epistemological aspects of…
Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
2000-01-01
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.
Earth's magnetic field is probably not reversing.
Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney
2018-05-15
The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.
Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, John; Fritz Intwala, Katrina
Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.
Oh, Sang-Eun; Logan, Bruce E
2006-03-01
Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A (PEM)=3.5, 6.2, or 30.6 cm(2)). For a fixed anode and cathode surface area (A (An)=A (Cat)=22.5 cm(2)), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m(2) (A (PEM)=3.5 cm(2)), 68 mW/m(2) (A (PEM)=6.2 cm(2)), and 190 mW/m(2) (A (PEM)=30.6 cm(2)). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A (Cat)=A(PEM)=2A (An), the maximum power densities of the three different MFCs, based on the surface area of the PEM (A (PEM)=3.5, 6.2, or 30.6 cm(2)), were the same (168+/-4.53 mW/m(2)). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.
NASA Astrophysics Data System (ADS)
Gryspolakis, Nikolaos
The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 dB. Next, we introduce modulated channels to the amplifier in order to compare their effect on the Bit Error Rate (BER) performance. We consider the impact on FOPAs when employing different modulation formats, such as RZ, NRZ and RZ-DPSK. Carefully selected modulation formats can improve BER performance and reduce the effects of cross-phase modulation, four wave mixing (FWM) products generation or dispersion (non-linear and linear inter-channel interference). Especially for the case of FOPAs, because of the ultra-fast interaction times of the FWM phenomenon, cross gain modulation can be a great deterrent for using FOPAs. We use RZ-DPSK in order to suppress the WDM signal crosstalk. Only by using RZ-DPSK, we obtain an improved receiver sensitivity of 5 dB when operating at 40 Gb/s. Finally, we investigate ways to mitigate such effects as the ones described above (gain excursions, gain tilt, etc.). We demonstrate that by using a ring configuration with optical feedback for the first time in FOPAs, we can achieve all-optical gain clamping (AOGC), mitigating gain excursions and attaining gain, independent of channel input power for a large range of PCIP. For example, with the use of AOGC, we reduce the add/drop-induced gain excursions from 4 dB to 0.6 dB. Also, by the combined use of AOGC and RZ-DPSK, we mitigate most of the aforementioned hindrances described above.
Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua
2014-11-01
For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc.
Kumar, Gunjan; Howard, Steven K; Kou, Alex; Kim, T Edward; Butwick, Alexander J; Mariano, Edward R
2017-10-01
Patient education materials (PEM) should be written at a sixth-grade reading level or lower. We evaluated the availability and readability of online PEM related to regional anesthesia and compared the readability and content of online PEM produced by fellowship and nonfellowship institutions. With IRB exemption, we constructed a cohort of online regional anesthesia PEM by searching Websites from North American academic medical centers supporting a regional anesthesiology and acute pain medicine fellowships and used a standardized Internet search engine protocol to identify additional nonfellowship Websites with regional anesthesia PEM based on relevant keywords. Readability metrics were calculated from PEM using the TextStat 0.1.4 textual analysis package for Python 2.7 and compared between institutions with and without a fellowship program. The presence of specific descriptive PEM elements related to regional anesthesia was also compared between groups. PEM from 17 fellowship and 15 nonfellowship institutions were included in analyses. The mean (SD) Flesch-Kincaid Grade Level for PEM from the fellowship group was 13.8 (2.9) vs 10.8 (2.0) for the nonfellowship group (p = 0.002). We observed no other differences in readability metrics between fellowship and nonfellowship institutions. Fellowship-based PEM less commonly included descriptions of the following risks: local anesthetic systemic toxicity (p = 0.033) and injury due to an insensate extremity (p = 0.003). Available online PEM related to regional anesthesia are well above the recommended reading level. Further, fellowship-based PEM posted are at a higher reading level than PEM posted by nonfellowship institutions and are more likely to omit certain risk descriptions. 2016 American Academy of Pain Medicine. This work is written by US Government employees and is in the public domain in the US.
Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian
2011-09-01
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.
Post-Exertional Malaise in Patients with ME and CFS with Comorbid Fibromyalgia.
McManimen, Stephanie L; Jason, Leonard A
2017-01-01
Myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) share some similar symptoms with fibromyalgia (FM). Prior research has found increased illness severity when patients have FM that is comorbid with ME and CFS. For example, post-exertional malaise (PEM) has been shown to be more severe in those with comorbid FM. However, PEM can be separated into two factors, Muscle and General PEM. It is unknown if the more severe PEM findings in comorbid FM are due to the Muscle or General PEM factor. The purpose of this study was to determine if the PEM differences seen between patients with and without comorbid FM exist for the Muscle or General PEM factors. An international convenience sample was collected via an online questionnaire. The questionnaire assessed the frequency and severity of several PEM-related symptoms. Additionally, participants provided information regarding the course and characteristics of their illness. Participants that indicated a comorbid diagnosis of FM displayed significantly more frequent and severe PEM symptoms in the Muscle and General PEM factors. The FM group also indicated significantly worse physical functioning compared to the group without comorbid FM. The secondary diagnosis of FM in addition to ME and CFS appears to amplify the PEM symptomatology and worsen patients' physical functioning. The findings of this study have notable implications on the inclusion of patients with comorbid FM in ME and CFS research studies.
Reliability analysis and utilization of PEMs in space application
NASA Astrophysics Data System (ADS)
Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi
2009-11-01
More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.
ERIC Educational Resources Information Center
Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels Henrik; Dau, Torsten
2014-01-01
Purpose: Frequency fluctuations in human voices can usually be described as coherent frequency modulation (FM). As listeners with hearing impairment (HI listeners) are typically less sensitive to FM than listeners with normal hearing (NH listeners), this study investigated whether hearing loss affects the perception of a sung vowel based on FM…
Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A
2012-04-10
Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi
2017-11-01
Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.
Integration Process for the Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tn, Terry; Toups, Larry; Howe, A. Scott; Smitherman, David
2011-01-01
The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities. The HDU previously served as a test bed for testing technologies and sub-systems in a terrestrial surface environment. in 2010 in the Pressurized Excursion Module (PEM) configuration. Due to the amount of work involved to make the HDU project successful, the HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators The size of the team and number of systems involved With the HDU makes Integration a complicated process. However, because the HDU shell manufacturing is complete, the team has a head start on FY--11 integration activities and can focus on integrating upgrades to existing systems as well as integrating new additions. To complete the development of the FY-11 HDU from conception to rollout for operations in July 2011, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads. The highlighted HDU work for FY-11 will focus on performing upgrades to the PEM configuration, adding the X-Hab as a second level, adding a new porch providing the astronauts a larger work area outside the HDU for EVA preparations, and adding a Hygiene module. Together these upgrades result in a prototype configuration of the Deep Space Habitat (DSH), an element under evaluation by NASA's Human Exploration Framework Team (HEFT) Scheduled activates include early fit-checks and the utilization of a Habitat avionics test bed prior to installation into HDU. A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development. Modeling tools have been effective in hardware systems layout, cable routing, sub-system interface length estimation and human factors analysis. Decision processes on integration and use of all new subsystems will be defined early in the project to maximize the efficiency of both integration and field operations. In addition a series of tailored design reviews are utilized to quickly define the systems and their integration into the DSH configuration. These processes are necessary to ensure activities, such as partially reversing integration of the X-Hab second story of the HDU and deploying and stowing the new work porch for transportation to the JSC Rock Yard and to the Arizona Black Point Lava Flow Site are performed with minimal or no complications. In addition, incremental test operations leading up to an Integrated systems test allows for an orderly systems test program. For FY-11 activities, the HDU DSH will act as a laboratory utilizing a new X-Hab inflatable second floor with crew habitation features. In addition to the day to day operations involving maintenance of the HDU and exploring the surrounding terrain, testing and optimizing the use of the new X-Hab, work porch, Hygiene Module, and other sub-system enhancements will be the focus of the FY-11 test objectives. The HDU team requires a successful integration strategy using a variety of tools and approaches to prepare the DSH for these test objectives. In a challenging environment where the prototyping influences the system design, as well as Vice versa, results of the HDU DSH field tests will influence future designs of habitat systems.
Satellite-based terrestrial production efficiency modeling
McCallum, Ian; Wagner, Wolfgang; Schmullius, Christiane; Shvidenko, Anatoly; Obersteiner, Michael; Fritz, Steffen; Nilsson, Sten
2009-01-01
Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite-based biomass measurements to improve Ra estimation; and satellite-based soil moisture data could improve determination of soil water stress. PMID:19765285
Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.
Li, Bingyun; Haynie, Donald T
2004-01-01
Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.
APOLLO/SATURN (A/S) 201 - LAUNCH - CAPE
1966-02-26
A/S 201 was launched from the Kennedy Space Center Launch Complex 34 at 11:12 a.m., 02/26/1966. The instrumented Apollo Command and Service Module, and, a spacecraft Lunar Excursion Module Adapter, was successfully launched on the unmanned suborbital mission by the Saturn 1B to check spacecraft launch vehicle mechanical compatibility and to test the spacecraft heat shield in a high-velocity re-entry mode. CAPE KENNEDY, FL
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
1999-12-14
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.
Maciolek, Kimberly A; Jarrard, David F; Abel, E Jason; Best, Sara L
2017-11-01
To evaluate the accuracy, readability, understandability, and actionability of Internet patient education materials (PEM) about transrectal ultrasound-guided prostate biopsy. A comprehensive Internet search was performed to find PEM with pre- or postbiopsy instructions. PEM that were duplicates, government affiliated, international, or video based were excluded. Biopsy instructions were evaluated for accuracy and presence of essential topics. Readability was assessed via word count and Flesch-Kincaid Grade Level. Understandability and actionability were measured using the Patient Education Materials Assessment Tool (PEMAT). Effects of authorship and geographical variation were determined using Fischer exact and Kruskal-Wallis tests. We identified 148 unique PEM. Only 31 (21%) sites adhered to the recommended <8th grade reading level. Most PEM did not contain recommended graphics (14%), checklists (2%), or summaries (6%). The PEMAT understandability score for academic PEM was higher than private (P = .02) and unaffiliated PEM (P = .01). No websites had inaccurate content. Only 2 PEM sites (1%) included all essential content (stop anticoagulants, antibiotics, need for urinalysis, biopsy pain, when to resume activity, and bleeding complications). Few significant differences based on geographic region were observed for word count, readability, PEMAT scores, or content. Transrectal ultrasound-guided prostate biopsy PEM adhere poorly to guidelines for easy-to-understand materials. Most PEM lack vital information and are written at a reading level that is too complex for patient comprehension. The urology community can construct better websites by consulting PEM advisory materials and providing nontechnical language, figures, and specific instructions. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Scott, A. D., Jr.
1995-01-01
This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-A (PEM West-A). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. The PEM- West program encompassed two expeditions to study contrasting meteorological regimes in the Pacific. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic sources; and to investigate sulfur chemistry -- continental versus marine sulfur sources. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air is from the mid-Pacific (marine) regions, but (at times) is modified/mixed with Asian continental outflow. PEM West-B was conducted during February 1994, a period characterized by maximum continental outflow. PEM-B data (not included) will become public domain during the Summer of 1995. PEM West-A flight experiments were based at Japan, Hong Kong, and Guam. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC), which include numerous data such as meteorological observations, modeling products, results from surface studies, satellite observations, and sonde releases.
NASA Technical Reports Server (NTRS)
Gregory, Gerald L.; Scott, A. Donald, Jr.
1995-01-01
This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-B (PEM West-B). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic/continental sources; and to investigate sulfur chemistry -- continental and marine sulfur sources. The PEM West program encompassed two expeditions. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air was from mid-Pacific (marine) regions, but (at times) was modified by Asian outflow. PEM West-B was conducted during February 1994, a period characterized by maximum Asian outflow. Results from PEM West-A and B are public domain. PEM West-A data are summarized in NASA TM 109177 (published February 1995). Flight experiments were based at Guam, Hong Kong, and Japan. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The DAAC includes numerous other data such as meteorological and modeling products, results from surface studies, satellite observations, and sonde releases.
Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.
The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.
Critical flow rate of anode fuel exhaust in a PEM fuel cell system
NASA Astrophysics Data System (ADS)
Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.
A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.
Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J
2008-07-01
The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.
[Organizational forms of emergency medicine in international comparison].
Lipp, M
1993-09-01
The tasks of preclinical emergency medicine systems (PEMS) are to stabilize and maintain the vital functions and to guarantee qualified transport to the hospital. Worldwide, different structures exist as a result of historical developments. Legal regulations for PEMS have been introduced in most of the industrialized countries since 1960. More and more aspects have been subject to detailed regulations. PEMS are provided either by state-owned or by state-controlled (private) organisations. In most of the "underdeveloped" countries legal regulations do not exist and PEMS is often provided by social workers, by the army or by volunteers. In most countries, PEMS are financed by the state with a charge on the patient. In a few states PEMS are totally financed by the public health structure. Modern PEMS are controlled from dispatch centres which receive emergency calls (mostly by telephone) and send the appropriate rescue unit. In most states the staff of dispatch centres are paramedics; in some countries and in some urban areas physicians control the dispatch centre. In PEMS without physicians on the scene, an information exchange between the scene and the hospital can be observed frequently, in contrast to systems with physicians on the scene. Worldwide, ground-based PEMS are preferred, but in most countries an additional air rescue system has been established. The quality and quantity of the technical equipment of the ground-based PEMS differ widely: nationwide regulations exist, however, in the USA and Germany. Generally, there are two main concepts concerning the personnel structure: PEMS are either physician based or not. Requirements for emergency physicians differ greatly: in some countries no formal requirements exist, in others extensive practical and theoretical training is required.(ABSTRACT TRUNCATED AT 250 WORDS)
Apollo 16 lunar module 'Orion' photographed from distance during EVA
NASA Technical Reports Server (NTRS)
1972-01-01
The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.
Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production
2010-02-10
PEM Fuel Cell Anode + -Cathode e- e- e- e- Electric load...BOP system. • Enables new product launch (C- Series) Proton PEM cell stack for UK Vanguard subs 18UNCLASSIFIED: Dist A. Approved for public release...UNCLASSIFIED: Dist A. Approved for public release “Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production” Alternative Energy
Alali, Sanaz; Gribble, Adam; Vitkin, I Alex
2016-03-01
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.
Young Children's Participation and Environment Measure: Swedish Cultural Adaptation.
Åström, Frida Marie; Khetani, Mary; Axelsson, Anna Karin
2018-08-01
To culturally adapt and evaluate the psychometric properties of the Young Children's Participation and Environment Measure (YC-PEM) for use by caregivers of Swedish children with and without disabilities, aged 2-5 years. Thirteen cognitive interviews and two focus groups with caregivers of children with and without disabilities were conducted to evaluate the cultural relevance of YC-PEM content for use in Sweden. Per participant feedback, a revised version of the Swedish YC-PEM was created and pilot tested with caregivers of children with disabilities (n = 11) and children with typical development (n = 22). User feedback informed content revisions to 7% of items. Internal consistency estimates of the Swedish YC-PEM pilot version were acceptable and ranged from .70 to .92 for all but two of the YC-PEM scales. Mean percentage agreement between raters ranged from 47% to 93% across YC-PEM scales for inter-rater, and 44% to 86% for test-retest. One of twelve YC-PEM scales revealed significant group differences between young children with and without disabilities. This study contributes preliminary evidence for the use of some scales within a culturally adapted YC-PEM in Sweden. Further validation with larger samples will allow for parametric testing to evaluate its psychometric properties.
Assessing the reading level of online sarcoma patient education materials.
Patel, Shaan S; Sheppard, Evan D; Siegel, Herrick J; Ponce, Brent A
2015-01-01
Cancer patients rely on patient education materials (PEMs) to gather information regarding their disease. Patients who are better informed about their illness have better health outcomes. The National Institutes of Health (NIH) recommends that PEMs be written at a sixth- to seventh-grade reading level. The purpose of this study was to evaluate the readability of online PEMs of bone and soft-tissue sarcomas and related conditions. We identified relevant online PEMs from the following websites: American Academy of Orthopaedic Surgeons, academic training centers, sarcoma specialists, Google search hits, Bonetumor.org, Sarcoma Alliance, Sarcoma Foundation of America, and Medscape. We used 10 different readability instruments to evaluate the reading level of each website's PEMs. In assessing 72 websites and 774 articles, we found that none of the websites had a mean readability score at or below 7 (seventh grade). Collectively, all websites had a mean readability score of 11.4, and the range of scores was grade level 8.9 to 15.5. None of the PEMs in this study of bone and soft-tissue sarcomas and related conditions met the NIH recommendation for PEM reading levels. Concerted efforts to improve the reading level of orthopedic oncologic PEMs are necessary.
1969-01-16
Concept model of the Lunar Excursion Module tested in the Full-Scale wind tunnel. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 356.-L69-670 Bell Lunar Landing Training Vehicle (LLTV): Following the crash of a sister Lunar Landing Training Vehicle at Ellington Field in Houston, Texas, the LLTV NASA 952 was sent from Houston to Langley for tests in the 30 x 60 Full Scale Tunnel. The LLTV was returned to Houston for further training use a short time later. NASA 952 is now on exhibit at the Johnson Space Center in Houston, Texas.
Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound
NASA Astrophysics Data System (ADS)
Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.
2014-03-01
ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.
Essentials of PEM Fellowship Part 2: The Profession in Entrustable Professional Activities.
Hsu, Deborah; Nypaver, Michele; Fein, Daniel M; McAneney, Constance; Santen, Sally; Nagler, Joshua; Zuckerbraun, Noel; Roskind, Cindy Ganis; Reynolds, Stacy; Zaveri, Pavan; Stankovic, Curt; House, Joseph B; Langhan, Melissa; Titus, M Olivia; Dahl-Grove, Deanna; Klasner, Ann E; Ramirez, Jose; Chang, Todd; Jacobs, Elizabeth; Chapman, Jennifer; Lumba-Brown, Angela; Thompson, Tonya; Mittiga, Matthew; Eldridge, Charles; Heffner, Viday; Herman, Bruce E; Kennedy, Christopher; Madhok, Manu; Kou, Maybelle
2016-06-01
This article is the second in a 7-part series that aims to comprehensively describe the current state and future directions of pediatric emergency medicine (PEM) fellowship training from the essential requirements to considerations for successfully administering and managing a program to the careers that may be anticipated upon program completion. This article describes the development of PEM entrustable professional activities (EPAs) and the relationship of these EPAs with existing taxonomies of assessment and learning within PEM fellowship. It summarizes the field in concepts that can be taught and assessed, packaging the PEM subspecialty into EPAs.
Liu, Hong; Logan, Bruce E
2004-07-15
Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.
Building a Predictive Capability for Decision-Making that Supports MultiPEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Joshua Daniel
Multi-phenomenological explosion monitoring (multiPEM) is a developing science that uses multiple geophysical signatures of explosions to better identify and characterize their sources. MultiPEM researchers seek to integrate explosion signatures together to provide stronger detection, parameter estimation, or screening capabilities between different sources or processes. This talk will address forming a predictive capability for screening waveform explosion signatures to support multiPEM.
Khetani, Mary; Marley, Jenifer; Baker, Megan; Albrecht, Erin; Bedell, Gary; Coster, Wendy; Anaby, Dana; Law, Mary
2014-04-01
Participation in home, school, and community activities is an important indicator of child health and well-being. Evaluating environmental influences on children's participation can inform efforts to develop sustainable built environments, but few validated measures exist. To examine the concurrent validity and utility of the Participation and Environment Measure for Children and Youth (PEM-CY) for Health Impact Assessment in non-urban sustainable development projects affecting children with disabilities. Eighty-nine parents of children and youth with disabilities who identified as residing in a small town or rural community were sampled. Sixty-six caregivers completed the PEM-CY online, and 23 caregivers completed the PEM-CY and CHIEF-CP paper forms. Spearman correlational analyses were conducted to establish the concurrent validity of the PEM-CY environment sections against the CHIEF-CP. Group comparisons by child's age, number of functional limitations, and annual household income were used to examine differences in summary and item-level responses on the PEM-CY community section. Moderate to strong associations were found between CHIEF-CP Total Product and Magnitude Scores and all PEM-CY Environment Summary Scores. CHIEF-CP Physical/Structural and Policies Subscale Scores were most consistently associated with PEM-CY Environment Summary Scores. Group differences by household income were found for participation frequency and number of supports, including perceived availability and adequacy of money and information about programs and services, even when controlling child's age and number of functional limitations. Study results lend support to the use of the PEM-CY in HIA to reliably assess for environmental impact on children's participation. Implications for using the PEM-CY to inform decision-making in non-urban sustainable development projects affecting families of children and youth with disabilities are discussed. Published by Elsevier Inc.
Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells
NASA Technical Reports Server (NTRS)
Kinder, James D.
2005-01-01
Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.
Cai, Rui; Tao, Gang; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing
2017-01-01
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application. PMID:28820482
Fluctuation-Noise Model for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.
2017-08-01
The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.
Wang, Qiang; Cha, Chuan-Sin; Lu, Juntao; Zhuang, Lin
2009-01-28
The nature and properties of Pt surfaces in contact with pure water in PEM-H2O reactors were mimetically studied by employing CV measurements with microelectrode techniques. These "Pt/water" interfaces were found to be electrochemically polarizable, and the local interfacial potential relative to reversible hydrogen electrode (RHE) potential in pure water is numerically the same as the potential value measured against a RHE in contact with PEM as the reference electrode. However, the structural parameters of the electric double layer at the "Pt/water" interfaces can be quite different from those at the "Pt/PEM" interfaces, and the kinetics of electrode processes could be seriously affected by the structure of electric double layer in pure water media. Besides, there is active diffusional flow of intermediates of electrode reactions between the "Pt/water" and the "Pt/PEM" interfaces, thus facilitating the active involvement of the "Pt/water" interfaces in the current-generation mechanism of PEM fuel cells and other types of PEM-H2O reactors.
Post-marketing studies: the work of the Drug Safety Research Unit.
Mackay, F J
1998-11-01
The Drug Safety Research Unit (DSRU) is the centre for prescription-event monitoring (PEM) in England. PEM studies are noninterventional observational cohort studies which monitor the safety of newly marketed drugs. The need for post-marketing surveillance is well recognised in the UK and general practice is an ideal source of data. PEM studies are general practitioner (community)-based and exposure is based on dispensed prescription data in England. To date, 65 PEM studies have been completed with a mean cohort size of 10 979 patients and the DSRU database has clinical information on over 700000 patients prescribed new drugs. Unlike spontaneous reporting schemes, PEM produces incidence rates for events reported during treatment. Comparative studies can be conducted for drugs in the same class. The DSRU aggregates outcome data for pregnancies exposed to new drugs. Data for children and the elderly can also be specifically examined. PEM data have a number of advantages over data from computerised general practice databases in the UK. PEM is the only technique within the UK capable of monitoring newly marketed drugs in such a comprehensive and systematic way.
NASA Technical Reports Server (NTRS)
Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.
1999-01-01
This paper presents viewgraphs on Plastic Encapsulated Microcircuits (PEMs). Different approaches are addressed to ensure good performance and reliability of PEMs. The topics include: 1) Mitigating Risk; and 2) Program results.
Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.
Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin
2014-02-01
As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.
Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system.
Min, Bockki; Bae, In Young; Lee, Hyeon Gyu; Yoo, Sang-Ho; Lee, Suyong
2010-07-01
Water soluble pectin-enriched materials (PEMs) from apple pomace, were evaluated as a fat replacer in a model food system. When PEM solutions were subjected to steady-shear measurements, shear-thinning behavior was observed. The flow behaviors could be described by the Cross model (R(2)=0.99), and temperature effects were investigated by the Arrhenius equation. The addition of PEMs significantly increased the pasting parameters of wheat flour as measured by a starch pasting rheometer. Gelatinization temperature and enthalpy increased with increasing PEM concentrations. When PEMs were incorporated into cookie formulations in place of shortening (semisolid fat generally used in baked foods) up to 30% by the weight of shortening, the cookie spread diameter was reduced while an increase in the moisture content was observed. Moreover, replacement of shortening with PEMs contributed to a more tender texture and lighter surface color. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander; Sahu, Kusum
2003-01-01
Potential users of plastic encapsulated microcircuits (PEMs) need to be reminded that unlike the military system of producing robust high-reliability microcircuits that are designed to perform acceptably in a variety of harsh environments, PEMs are primarily designed for use in benign environments where equipment is easily accessed for repair or replacement. The methods of analysis applied to military products to demonstrate high reliability cannot always be applied to PEMs. This makes it difficult for users to characterize PEMs for two reasons: 1. Due to the major differences in design and construction, the standard test practices used to ensure that military devices are robust and have high reliability often cannot be applied to PEMs that have a smaller operating temperature range and are typically more frail and susceptible to moisture absorption. In contrast, high-reliability military microcircuits usually utilize large, robust, high-temperature packages that are hermetically sealed. 2. Unlike the military high-reliability system, users of PEMs have little visibility into commercial manufacturers proprietary design, materials, die traceability, and production processes and procedures. There is no central authority that monitors PEM commercial product for quality, and there are no controls in place that can be imposed across all commercial manufacturers to provide confidence to high-reliability users that a common acceptable level of quality exists for all PEMs manufacturers. Consequently, there is no guaranteed control over the type of reliability that is built into commercial product, and there is no guarantee that different lots from the same manufacturer are equally acceptable. And regarding application, there is no guarantee that commercial products intended for use in benign environments will provide acceptable performance and reliability in harsh space environments. The qualification and screening processes contained in this document are intended to detect poor-quality lots and screen out early random failures from use in space flight hardware. However, since it cannot be guaranteed that quality was designed and built into PEMs that are appropriate for space applications, users cannot screen in quality that may not exist. It must be understood that due to the variety of materials, processes, and technologies used to design and produce PEMs, this test process may not accelerate and detect all failure mechanisms. While the tests herein will increase user confidence that PEMs with otherwise unknown reliability can be used in space environments, such testing may not guarantee the same level of reliability offered by military microcircuits. PEMs should only be used where due to performance needs there are no alternatives in the military high-reliability market, and projects are willing to accept higher risk.
Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen
2016-04-26
Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.
Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.
2001-05-01
The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.
NASA Astrophysics Data System (ADS)
Baker, Andrew M.
Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was not observed to leave the cell during stress testing, however, it does irreversibly accumulate in the CLs, which reduces its scavenging efficacy in the system. In order to model Ce migration during fuel cell operation, the relevant Ce transport coefficients were determined under a range of conditions. This knowledge enables the development of additional system control and material engineering strategies to mitigate Ce migration in order to reduce performance losses and improve cell durability.
Drevet, S; Bioteau, C; Mazière, S; Couturier, P; Merloz, P; Tonetti, J; Gavazzi, G
2014-10-01
One percent of falls in over-75 years old cause hip fracture (HF). Protein-energy malnutrition (PEM) is associated with falls and fracture. PEM screening and perioperative nutritional management are recommended by the European Society of Parenteral and Enteral Nutrition, yet data on nutritional status in elderly HF patients are sparse. The Mini Nutritional Assessment (MNA) score is presently the most effective screening tool for PEM in over-75 years old. The principal objective of the present study was to determine the prevalence on MNA of PEM in patients aged over 75 years admitted for HF. Secondary objectives were to identify factors associated with PEM and its role as a factor of evolution. A prospective observational epidemiological study included 50 patients aged over 75 years admitted for HF in an 8-bed orthopedic surgery department with a geriatric follow-up unit. PEM was defined by MNA<17/30. Assessment systematically comprised associated comorbidity (Cumulative Illness Rating Scale-Geriatric [CIRS-G]), cognitive status on the Mini Mental State Examination (MMSE), functional status on activities of daily life (ADL), and mean hospital stay (MHS). Scores were compared on quantitative tests (Student t) with the significance threshold set at P<0.05. Mean age for the 50 patients was 86.1 years (range, 77-94 years). Prevalence of PEM was 28%; a further 58% of patients were at risk for PEM. PEM was associated with elevated CIRS-G (P<0.006), greater numbers of severe comorbidities (P=0.006), more severe cognitive disorder (P=0.005) and functional dependence (P=0.002), and 8 days' longer MHS (P=0.012). The present study confirmed the high prevalence of PEM in HF patients aged over 75 years, supporting longer hospital stay. MNA is a diagnostic gold standard, not to be replaced by albuminemia or body-mass index in this perioperative clinical situation. Given the present economic stakes relating to geriatric trauma patients' hospital stay, it is essential to prevent, diagnose and treat PEM in elderly subjects. Level IV; prospective cohort study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert
2012-08-01
This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-10-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa; Jackson, Tom
2017-09-01
This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at different operating condition, with characterization test data taken at predefined inspection times, and uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By matching the model to the collected polarization curves from the PEM fuel cell system, the variation of fuel cell internal behaviour can be obtained through the determined model parameters. From the results, the source of PEM fuel cell degradation during its lifetime at different conditions can be better understood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be obtained by predicting the future model parameters. By comparing with prognostic results using adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell performance.
Investigation of low glass transition temperature on COTS PEMs reliability
NASA Technical Reports Server (NTRS)
Sandor, M.; Agarwal, S.
2002-01-01
Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.
The use of experimental design to find the operating maximum power point of PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria
2015-03-10
Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.
Plastic packaged microcircuits: Quality, reliability, and cost issues
NASA Astrophysics Data System (ADS)
Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan
1993-12-01
Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.
Maes, Michael; Twisk, Frank N M; Johnson, Cort
2012-12-30
There is much debate on the diagnostic classification of Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS) and chronic fatigue (CF). Post-exertional malaise (PEM) is stressed as a key feature. This study examines whether CF and CFS, with and without PEM, are distinct diagnostic categories. Fukuda's criteria were used to diagnose 144 patients with chronic fatigue and identify patients with CFS and CF, i.e. those not fulfilling the Fukuda's criteria. PEM was rated by means of a scale with defined scale steps between 0 and 6. CFS patients were divided into those with PEM lasting more than 24h (labeled: ME) and without PEM (labeled: CFS). The 12-item Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale was used to measure severity of illness. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, and lysozyme, and serum neopterin were employed as external validating criteria. Using fatigue, a subjective feeling of infection and PEM we found that ME, CFS, and CF were distinct categories. Patients with ME had significantly higher scores on concentration difficulties and a subjective experience of infection, and higher levels of IL-1, TNFα, and neopterin than patients with CFS. These biomarkers were significantly higher in ME and CFS than in CF patients. PEM loaded highly on the first two factors subtracted from the data set, i.e. "malaise-sickness" and "malaise-hyperalgesia". Fukuda's criteria are adequate to make a distinction between ME/CFS and CF, but ME/CFS patients should be subdivided into ME (with PEM) and CFS (without PEM). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Genova, Juliana; Nahon-Serfaty, Isaac; Dansokho, Selma Chipenda; Gagnon, Marie-Pierre; Renaud, Jean-Sébastien; Giguère, Anik M C
2014-01-01
There is little guidance available on strategies to improve the communication quality of printed educational materials (PEMs) for clinicians. The purposes of this study were to conceptualize PEM communication quality, develop a checklist based on this conceptualization, and validate the checklist with a selection of PEMs. From a literature review of the strategies influencing communication quality, we generated a conceptual map and developed the Communication AssessmenT Checklist in Health (CATCH) consisting of 55 items nested in 12 concepts. Two raters independently applied CATCH to 45 PEMs evaluated in the studies included in a Cochrane systematic review. From these results, we conducted an item analysis and assessed content validity of CATCH using a hierarchical cluster analysis to explore the extent to which our CATCH operationalization truly represented the communication quality concepts. Some concepts were better covered in the studied PEMs, whereas others were not covered consistently. We observed 3 contrasting PEM clusters. A first cluster (n = 22) was characterized by longer PEMs and comprised mostly high-impact peer-reviewed scientific articles or clinical practice guidelines. A second cluster (n = 22) consisted of PEMs shorter than 4 pages that used special fonts, color, pictures, and graphics. A third cluster consisted of a single brief PEM. With CATCH it is possible to categorize and understand the mechanisms that can trigger a change in behavior in health care providers. Additional research is needed to validate CATCH before it can be recommended for use. © 2014 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
A Survey of Graduates of Combined Emergency Medicine-Pediatrics Residency Programs: An Update.
Strobel, Ashley M; Chasm, Rose M; Woolridge, Dale P
2016-10-01
In 1998, emergency medicine-pediatrics (EM-PEDS) graduates were no longer eligible for the pediatric emergency medicine (PEM) sub-board certification examination. There is a paucity of guidance regarding the various training options for medical students who are interested in PEM. We sought to to determine attitudes and personal satisfaction of graduates from EM-PEDS combined training programs. We surveyed 71 graduates from three EM-PEDS residences in the United States. All respondents consider their combined training to be an asset when seeking a job, 92% find it to be an asset to their career, and 88% think it provided added flexibility to job searches. The most commonly reported shortcoming was their ineligibility for the PEM sub-board certification. The lack of this designation was perceived to be a detriment to securing academic positions in dedicated children's hospitals. When surveyed regarding which training offers the better skill set for the practice of PEM, 90% (44/49) stated combined EM-PEDS training. When asked which training track gives them the better professional advancement in PEM, 52% (23/44) chose combined EM-PEDS residency, 27% (12/44) chose a pediatrics residency followed by a PEM fellowship, and 25% (11/44) chose an EM residency then a PEM fellowship. No EM-PEDS respondents considered PEM fellowship training after the completion of the dual training program. EM-PEDS graduates found combined training to be an asset in their career. They felt that it provided flexibility in job searches, and that it was ideal training for the skill set required for the practice of PEM. EM-PEDS graduates' practices varied, including mixed settings, free-standing children's hospitals, and community emergency departments. Copyright © 2016 Elsevier Inc. All rights reserved.
Assessment of printed patient-educational materials for chronic kidney disease
Tuot, Delphine S; Davis, Elizabeth; Velasquez, Alexandra; Banerjee, Tanushree; Powe, Neil R
2013-01-01
Background Awareness of chronic kidney disease (CKD) is suboptimal among patients with CKD, perhaps due to poor readability of patient education materials (PEMs). We reviewed the suitability and readability of common PEMs that focused on 5 content areas: basics of CKD, risk factors for CKD development, risk factors for CKD progression, complications of CKD and self-management strategies to improve kidney health. Methods Three reviewers (nephrologist, primary care physician, patient) used the Suitability Assessment of Materials to rate PEMs on message content/stimulation of learning, typography, visuals and layout and determined literacy level. Mean ratings were calculated for each PEM by content area and overall (Superior=70–100; Adequate=40–69; Inadequate=<40). Linear regression was used to determine the impact of literacy level on mean rating. Results We reviewed 69 PEMs from 19 organizations, divided into 113 content area sections. Most (79%) PEM sections were “Adequate” (mean rating, 58.3%). Inclusion of patient-centered content and opportunities for patient interaction were associated with “Superior” ratings. Mean ratings (SD) were similar across content areas: basics of CKD, 58.9% [9.1]; risk factors for CKD development, 57.0% [12.3]; risk factors for CKD progression, 58.5% [12.0]; CKD complications, 62.3% [15.7] and self-management strategies, 62.2% [12.3]. ≤ 6th grade literacy level (vs >6th grade) was associated with an 11.7 point higher mean rating. Conclusion Most PEMs for kidney disease were adequate. Outstanding PEMs shared characteristics of patient centeredness, a low literacy level, and patient interaction. Providers should be aware of strengths and limitations of PEMs when educating their patients about CKD. PMID:23970127
Assessment of printed patient-educational materials for chronic kidney disease.
Tuot, Delphine S; Davis, Elizabeth; Velasquez, Alexandra; Banerjee, Tanushree; Powe, Neil R
2013-01-01
Awareness of chronic kidney disease (CKD) is suboptimal among patients with CKD, perhaps due to poor readability of patient education materials (PEMs). We reviewed the suitability and readability of common PEMs that focused on 5 content areas: basics of CKD, risk factors for CKD development, risk factors for CKD progression, complications of CKD and self-management strategies to improve kidney health. Three reviewers (nephrologist, primary care physician, patient) used the Suitability Assessment of Materials to rate PEMs on message content/stimulation of learning, typography, visuals and layout and determined literacy level. Mean ratings were calculated for each PEM by content area and overall (superior = 70-100; adequate = 40-69; inadequate = <40). Linear regression was used to determine the impact of literacy level on mean rating. We reviewed 69 PEMs from 19 organizations, divided into 113 content area sections. Most (79%) PEM sections were 'adequate' (mean rating, 58.3%). Inclusion of patient-centered content and opportunities for patient interaction were associated with 'superior' ratings. Mean ratings (SD) were similar across content areas: basics of CKD, 58.9% (9.1); risk factors for CKD development, 57.0% (12.3); risk factors for CKD progression, 58.5% (12.0); CKD complications, 62.3% (15.7), and self-management strategies, 62.2% (12.3). ≤6th grade literacy level (vs. >6th grade) was associated with an 11.7 point higher mean rating. Most PEMs for kidney disease were adequate. Outstanding PEMs shared characteristics of patient centeredness, a low literacy level, and patient interaction. Providers should be aware of strengths and limitations of PEMs when educating their patients about CKD. Copyright © 2013 S. Karger AG, Basel.
Ji, Liang; Nazarali, Adil J.; Paterson, Phyllis G.
2013-01-01
Protein–energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor κB (NFκB), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11–12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NFκB activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NFκB activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NFκB activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NFκB. Since PEM increased NFκB activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM. PMID:18430555
Investigation of low glass transition temperature on COTS PEM's reliability for space applications
NASA Technical Reports Server (NTRS)
Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.
2003-01-01
Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.
Energy Systems Integration Partnerships: NREL + Giner
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-03-22
This fact sheet highlights work done at the ESIF in partnership with Giner. Giner, a developer of proton-exchange membrane (PEM) technologies, has contracted with NREL to validate the performance of its large-scale PEM electrolyzer stacks. PEM electrolyzers work much like fuel cells run in reverse.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Wu, Liang; Zhang, Zhenghui; Ran, Jin; Zhou, Dan; Li, Chuanrun; Xu, Tongwen
2013-04-14
Proton-exchange membranes (PEM) display unique ion-selective transport that has enabled a breakthrough in high-performance proton-exchange membrane fuel cells (PEMFCs). Elemental understanding of the morphology and proton transport mechanisms of the commercially available Nafion® has promoted a majority of researchers to tune proton conductive channels (PCCs). Specifically, knowledge of the morphology-property relationship gained from statistical and segmented copolymer PEMs has highlighted the importance of the alignment of PCCs. Furthermore, increasing efforts in fabricating and aligning artificial PCCs in field-aligned copolymer PEMs, nanofiber composite PEMs and mesoporous PEMs have set new paradigms for improvement of membrane performances. This perspective profiles the recent development of the channels, from the self-assembled to the artificial, with a particular emphasis on their formation and alignment. It concludes with an outlook on benefits of highly aligned PCCs for fuel cell operation, and gives further direction to develop new PEMs from a practical point of view.
Grudniewicz, Agnes; Bhattacharyya, Onil; McKibbon, K Ann; Straus, Sharon E
2016-01-01
It is challenging for primary care physicians (PCPs) to review and apply the growing amount of clinical evidence available. Printed educational materials (PEMs), which synthesize evidence, are often ineffective at improving knowledge, possibly due to poor design and limited uptake. In this study, we collected PCP preferences for the design and content of physician-oriented PEMs and determined key attributes that may increase their usability and uptake. We held 90-minute focus groups with PCPs in Toronto, ON, Canada. Focus groups included discussion about whether and how participants use PEMs, feedback on three examples of PEMs, and a discussion on general format and design preferences in PEMs. We analyzed focus group transcripts using a thematic analysis and summarized results in a list of user preferences. Four focus groups were held with 13 PCPs. We found that participants only read PEMs relevant to their patients and prefer short, concise documents, with links to sources that can provide more detailed information. Simplicity of materials was important, with many participants preferring PEMs without lengthy backgrounds or scientific explanations. Most participants wanted to see key messages highlighted to easily assess the relevance of the materials to their practice. Some participants shared physician-oriented PEMs with patients. This study shows that PCPs may prefer shorter, simpler, and more concise documents that have less scientific detail but provide references to further information sources. It is important to understand end user preferences for the design and content of these materials to enhance their uptake.
Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Kathyayani
Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationarymore » generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).« less
Zhang, Yuxuan; Ramirez, Rocio A; Li, Hongdi; Liu, Shitao; An, Shaohui; Wang, Chao; Baghaei, Hossain; Wong, Wai-Hoi
2010-02-01
A lower-cost high-sensitivity high-resolution positron emission mammography (PEM) camera is developed. It consists of two detector modules with the planar detector bank of 20 × 12 cm(2). Each bank has 60 low-cost PMT-Quadrant-Sharing (PQS) LYSO blocks arranged in a 10 × 6 array with two types of geometries. One is the symmetric 19.36 × 19.36 mm(2) block made of 1.5 × 1.5 × 10 mm(3) crystals in a 12 × 12 array. The other is the 19.36 × 26.05 mm(2) asymmetric block made of 1.5 × 1.9 × 10 mm(3) crystals in 12 × 13 array. One row (10) of the elongated blocks are used along one side of the bank to reclaim the half empty PMT photocathode in the regular PQS design to reduce the dead area at the edge of the module. The bank has a high overall crystal packing fraction of 88%, which results in a very high sensitivity. Mechanical design and electronics have been developed for low-cost, compactness, and stability purposes. Each module has four Anger-HYPER decoding electronics that can handle a count-rate of 3 Mcps for single events. A simple two-module coincidence board with a hardware delay window for random coincidences has been developed with an adjustable window of 6 to 15 ns. Some of the performance parameters have been studied by preliminary tests and Monte Carlo simulations, including the crystal decoding map and the 17% energy resolution of the detectors, the point source sensitivity of 11.5% with 50 mm bank-to-bank distance, the 1.2 mm-spatial resolutions, 42 kcps peak Noise Equivalent Count Rate at 7.0-mCi total activity in human body, and the resolution phantom images. Those results show that the design goal of building a lower-cost, high-sensitivity, high-resolution PEM detector is achieved.
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
....920 PEMS calibrations and verifications. (a) Subsystem calibrations and verifications. Use all the... verifications and analysis. It may also be necessary to limit the range of conditions under which the PEMS can... additional information or analysis to support your conclusions. (b) Overall verification. This paragraph (b...
The Environmental Technology Verification report discusses the technology and performance of the Parametric Emissions Monitoring System (PEMS) manufactured by ANR Pipeline Company, a subsidiary of Coastal Corporation, now El Paso Corporation. The PEMS predicts carbon doixide (CO2...
PEM Electrolysis H2A Production Case Study Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian; Colella, Whitney; Moton, Jennie
2013-12-31
This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).
Development of PEM fuel cell technology at international fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.J.
1996-04-01
The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-01-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671
Detection of enteropathogens in diarrhoeal diseases among malnourished Egyptian infant and children.
Hassan, E M; el-Meneza, S A; el-Rashidy, Z; Rashad, R; Rabie, S; Fahmy, S A
1989-01-01
The influence of the Pre-existing malnutrition (PEM) on the severity of diarrhoea as well as the causative organisms was studied on 60 cases. The duration of diarrhoea was prolonged in cases with PEM. The stool purgative rate ranged from 4-15 times/day in PEM infant while it was 3-6 times in well nourished cases (WNC) (P less than 0.05). Also vomiting and dehydration was more marked among PEM cases (52.9% and 32.4% of cases than in WNC cases (31.3% and 12.5% of cases) (P less than 0.05). Rota virus and Candida albicans were the Commonest identified organisms in the stools of the PEM cases, they were detected in 52% and 38.2% of cases respectively while 25% of WNC had rota virus in their stool and non of them had Candida (P less than 0.02). Giardia lamblia was detected in 23.5% and 18.8% of PEM and WNC while 10% of healthy controls had Giardia. Other bacterial enteropathogen were also found less frequently including Salmonella, Shigella, E. coli, Pseudomonas and Campylobacter. There was no statistical difference in the incidence between both groups. Multiple infections were detected in 47% and 18.7% of PEM cases and WNC (P less than 0.05) and correlated with the severity of illness.
Cerium migration during PEM fuel cell accelerated stress testing
Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; ...
2016-01-01
Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less
NASA Astrophysics Data System (ADS)
Kidambi, Srivatsan
Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured surfaces have potential applications in microelectronic devices and electro-optical and biochemical sensors. The PEG patterns developed are tunable at certain salt conditions and be removed from the PEM surface without affecting the PEM layers underneath the patterns. These removable surfaces provide an alternative method to form patterns of multiple particles, proteins and cells. This new approach provides an environmentally friendly and biocompatible route to designing versatile salt tunable surfaces. Finally, we illustrate the use of PEM films to engineer aptamer and siRNA based drug delivery systems.
Applicability of the PEMS technique for simplified NO X monitoring on board ships
NASA Astrophysics Data System (ADS)
Cooper, D. A.; Ekström, M.
The performance of a predictive emission monitoring system (PEMS) as a technique for NO x monitoring on medium speed marine diesel engines has been evaluated for 16 similar engines on four different ships. The PEMS function tested measured O 2 concentration in the exhaust gas, engine load, combustion air temperature and humidity, and barometric pressure to calculate the NO x concentration. Emission measurements were carried out by means of a conventional continuous emission monitoring system (CEMS) and the measured NO x concentrations were compared with those calculated by the PEMS function. For 11 of the 16 engines, the average error between measured and calculated NO x concentration was <10% of the calibration range (1725 ppm). In addition, 10 of the engines displayed correlation coefficients between measured and calculated NO x as 0.90 or higher. For two of the ships, the predicted NO x concentrations from all engines on board gave good agreement with those measured (2.6-4.7% and 2.6-8.0% average error). In other cases however, the performance of the PEMS function was poor e.g. the four engines of ship D showed average errors of 10.3-17.7%. Although similar engine models, fuel and load characteristics were compared in the tests, the specific NO x emissions at steady-state loads used varied from 12.6 up to 15.8 g k -1Wh corr. Although a single PEMS function may prove universal and adequate for calculating NO x emissions from similar engines on board the same ship, an engine specific PEMS function is recommended. The form of the PEMS function, i.e. using exhaust O 2 and engine load as inputs, is however likely to be applicable to most propeller-law diesel engines. Bearing in mind the performance criteria for using PEMS at land-based installations, the results from this study are promising. Viewed as a single data set of 56 h with 16 separate engine comparisons between CEMS and PEMS, the data set shows a relative accuracy of 14.5% i.e. within the 20% requirement of the US Environmental Protection Agency. In light of the increased interest and international guidelines for continuous NO x monitoring on board ships, the PEMS technique can offer a simple but cost-effective option.
The electronics system for the LBNL positron emission mammography (PEM) camera
NASA Astrophysics Data System (ADS)
Moses, W. W.; Young, J. W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M. H.; Weng, M.
2001-06-01
Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.
Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.
Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L
2016-10-03
We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga 3+ (antibiofilm agent)- and Ag + (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga 3+ and Ag + from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga 3+ and Ag + can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.
Kobayashi, Shingo; Mizuike, Aya; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori
2014-09-01
In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3×HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pem1Δpem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pem1Δpem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk
2015-10-10
This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Mueller matrix polarimetry imaging for breast cancer analysis (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gribble, Adam; Vitkin, Alex
2017-02-01
Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its biological composition, both structural and functional. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. However, determination of the Mueller matrix requires tissue analysis under many different states of polarized light; a time consuming and measurement intensive process. Here we address this limitation with a new rapid polarimetry system, and use this polarimetry platform to investigate a variety of tissue changes associated with breast cancer. We have recently developed a rapid polarimetry imaging platform based on four photoelastic modulators (PEMs). The PEMs generate fast polarization modulations that allow the complete sample Mueller matrix to be imaged over a large field of view, with no moving parts. This polarimetry system is then demonstrated to be sensitive to a variety of tissue changes that are relevant to breast cancer. Specifically, we show that changes in depolarization can reveal tumor margins, and can differentiate between viable and necrotic breast cancer metastasized to the lymph nodes. Furthermore, the polarimetric property of linear retardance (related to birefringence) is dependent on collagen organization in the extracellular matrix. These findings indicate that our polarimetry platform may have future applications in fields such as breast cancer diagnosis, improving the speed and efficacy of intraoperative pathology, and providing prognostic information that may be beneficial for guiding treatment.
Cell surface engineering with polyelectrolyte multilayer thin films.
Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L
2011-05-11
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.
2016-01-01
A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.
The Pacific Exploratory Mission-West Phase B: February-March, 1994
NASA Astrophysics Data System (ADS)
Hoell, J. M.; Davis, D. D.; Liu, S. C.; Newell, R. E.; Akimoto, H.; McNeal, R. J.; Bendura, R. J.
1997-12-01
The NASA Pacific Exploratory Mission in the Western Pacific Ocean (PEM-West) is a major component of the East Asia/North Pacific Regional Study (APARE), a project within the International Global Atmospheric Chemistry (IGAC) Program. The broad objectives of the PEM-West/APARE initiative are to study chemical processes and long-range transport of atmospheric trace species over the north-west Pacific Ocean and to estimate the magnitude of the human impact on these species over this region. The first phase of PEM-West (PEM-West A) was conducted in September-October 1991, a period characterized by minimum outflow from the Asian continent. The second phase of this mission, PEM-West B, was conducted during February-March 1994, a period characterized by enhanced outflow from the Asian continent. Both field campaigns of PEM-West included intensive airborne measurements of trace gases and aerosols from the NASA DC-8 aircraft coordinated with measurements at surface sites. This paper reports the experimental design for PEM-West B and provides a brief summary of the salient results of the PEM-West B campaign with particular emphases on the difference/similarities between phases A and B. Results from the two campaigns clearly quantify, from a trace gas perspective, the seasonal differences in the continental outflow that were qualitatively anticipated based upon meteorological considerations, and show the impact of major meteorological features within the region on the quality of tropospheric air over the North Pacific Ocean regions. The PEM-West database provides a "baseline" tool by which future assessments of a continuing impact of Asian emissions on remote Pacific regions can be judged. [These data are currently available through the Global Troposhperic Experiment Data Archive at NASA's Langley Research Center (http://www-gte.larc.nasa.gov) and the Langley Distributed Archive Center (http://eosdis.larc.nasa.gov)].
Lim, Chun Yi; Law, Mary; Khetani, Mary; Pollock, Nancy; Rosenbaum, Peter
2016-01-01
Aims Establishing the cultural equivalence of clinical assessments is critical to ensuring culturally competent care. Developed in North America, the Young Children’s Participation and Environment Measure (YC-PEM) is a caregiver questionnaire of participation in home, preschool, and community activities and perceptions of environmental impact on participation. The purpose of this study is to establish the cultural equivalence of YC-PEM content for use in Singapore. Methods We conducted semi-structured interviews with 10 early childhood and healthcare providers and cognitive interviews with 10 parents in Singapore to examine the relevance of original YC-PEM content (activities, environmental factors, item wording). Interviews were transcribed, summarized and categorized according to item, semantic, conceptual, and operational dimensions of the Applied Cultural Framework that served as a decision-making guide to keep, modify or delete the items. Results Providers and parents agreed on conceptual, item and semantic changes but less on operational changes. Significant changes were made to improve comprehension of the YC-PEM. Conclusions Despite using the same language, the majority of the YC-PEM items needed modification to be relevant to the Singapore culture. Cultural adaptation of the YC-PEM is important because there are cultural differences in children’s participation, their environments as well as the way people understand words. PMID:26642891
The JPL Direct Methanol Liquid-feed PEM Fuel Cell
NASA Technical Reports Server (NTRS)
Halpert, G.; Surampudi, S.
1994-01-01
Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...
Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru
2003-03-21
High performance (open circuit voltage = 920 mV, maximum power density = 14-15 mW cm(-2)) of the PEM fuel cell was achieved by using cyclohexane as a fuel with zero-CO2 emission and lower-crossover through PEM than with a methanol-based fuel cell.
NASA Astrophysics Data System (ADS)
He, Ruixuan
In pursuit of safer and more flexible solid-state lithium ion batteries, solid polymer electrolytes have emerged as a promising candidate. The present dissertation entails exploration of solid plasticized, photopolymerized (i.e. ultraviolent-cured) polymer electrolyte membranes (PEM) for fulfilling the critical requirements of electrolytes, such as high ionic conductivity and good thermal and electrochemical stability, among others. Electrochemical performance of PEMs containing lithium ion half-cells was also investigated at different two temperatures. Phase diagram approach was adopted to guide the fabrication of two types of plasticized PEMs. Prepolymer poly (ethylene glycol) diacrylate (PEGDA) was used as a matrix for building an ionic conductive and mechanically sturdy network. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated as a source of lithium ions, while a solid plasticizer succinonitrile (SCN) and a liquid plasticizer tetraethylene glycol dimethyl ether (TEGDME) were incorporated in the respective systems. The important role of plasticizer on the enhancement of ionic conductivity (sigma) to the superionic conductive level (10-3 S/cm) was revealed in both systems. It is worth noting that photopolymerization induced crystallization (PIC) occurred during UV-curing in the SCN-rich region of the ternary PEGDA/LiTFSI/SCN ternary mixtures. The PEM thus formed contained a plastic crystal phase, which showed lower σ relative to their amorphous PEGDA/LiTFSI/TEGDME counterpart. Comparisons on other thermal and electrochemical properties of the two types of PEMs are presented in Chapter IV. For the PEGDA/LiTFSI/SCN PEMs, fundamental study was carried out to clarify the relationship between σ and glass transition temperature (T g). In lithium salt/polymer binary PEMs, increase in Tg and reduction in σ were observed; these may be attributed to ion-dipole complexation between dissociated lithium cations and ether oxygen upon salt addition. Notably, above the threshold salt concentration of 7 mol %, dual loss tangent peaks were observed in dynamic mechanical studies. These might be ascribed to segmental relaxations of ion-dipole complexed networks and that of polymer chains surrounding the undissociated lithium salt acting like "fillers". Upon SCN incorporation, these two peaks merged into one that was further suppressed below the Tg of the pure network, whereas σ improved to the superionic conductor level. The role of SCN on the σ enhancement as both plasticizer for the polymer network and ionizer for the salt is discussed in Chapter V. In order to improve the mechanical toughness of the highly conductive PEGDA/LiTFSI/SCN PEM, effects of prepolymer molecular weight on mechanical and electrochemical properties of PEMs were further investigated. By increasing molecular weight of PEGDA from 700 to 6000 g/mol, toughness and elongation at break were enhanced as expected. Interestingly, improved ionic conductivity was achieved simultaneously. The dual improvement may be attributed to the less chemical crosslinked points and the more flexible chain motion in the looser network of PEGDA6000-PEM relative to its PEGDA700 counterpart. Subsequently, high thermal stability and electrochemical stability of both types of PEMs, as well as the satisfactory room temperature charge/discharge cycling performance of PEM containing lithium ion half-cells were observed. The pertinent information is documented in Chapter VI. Finally, the investigation of the charge/discharge cycling performance of solid-state LiFePO4 half-cells at an elevated temperature of 60°C is discussed in Chapter VII. In the half-cells, particularly, SCN plasticized PEMs with and without electrolyte modifier lithium bis(oxalato)borate (LiBOB) were respectively employed. Rapid decline of capacity and increase of cell resistance were found in the unmodified PEM containing cell; however, these deteriorations were greatly suppressed upon LiBOB modification. Electrochemical and thermal compatibility of PEMs towards different electrodes were examined in several symmetric cells and half-cells. Detailed characterization on LiFePO 4 electrodes and PEMs retrieved from these cells implied that the observed battery failure might be triggered by an amide-forming side reaction that took place at the interface of a SCN plasticized PEM and a lithium electrode at high temperature. Of particular importance is the fact that this detrimental side reaction was effectively suppressed upon LiBOB electrolyte modifier addition. Plausible mechanisms are discussed.
Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir
2017-01-01
Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580
A Novel Marking Reader for Progressive Addition Lenses Based on Gabor Holography.
Perucho, Beatriz; Picazo-Bueno, José Angel; Micó, Vicente
2016-05-01
Progressive addition lenses (PALs) are marked with permanent engraved marks (PEMs) at standardized locations. Permanent engraved marks are very useful through the manufacturing and mounting processes, act as locator marks to re-ink the removable marks, and contain useful information about the PAL. However, PEMs are often faint and weak, obscured by scratches, partially occluded, and difficult to recognize on tinted lenses or with antireflection or scratch-resistant coatings. The aim of this article is to present a new generation of portable marking reader based on an extremely simplified concept for visualization and identification of PEMs in PALs. Permanent engraved marks on different PALs are visualized using classical Gabor holography as underlying principle. Gabor holography allows phase sample visualization with adjustable magnification and can be implemented in either classical or digital versions. Here, visual Gabor holography is used to provide a magnified defocused image of the PEMs onto a translucent visualization screen where the PEM is clearly identified. Different types of PALs (conventional, personalized, old and scratched, sunglasses, etc.) have been tested to visualize PEMs with the proposed marking reader. The PEMs are visible in every case, and variable magnification factor can be achieved simply moving up and down the PAL in the instrument. In addition, a second illumination wavelength is also tested, showing the applicability of this novel marking reader for different illuminations. A new concept of marking reader ophthalmic instrument has been presented and validated in the laboratory. The configuration involves only a commercial-grade laser diode and a visualization screen for PEM identification. The instrument is portable, economic, and easy to use, and it can be used for identifying patient's current PAL model and for marking removable PALs again or finding test points regardless of the age of the PAL, its scratches, tints, or coatings.
Predictive NO x emission monitoring on board a passenger ferry
NASA Astrophysics Data System (ADS)
Cooper, D. A.; Andreasson, K.
NO x emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NO x measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O 2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1-6.9% of the calibration domain (0-1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NO x±38 t and the average NO x emission corrected for ambient conditions 14.3 g kWh corr-1. The exhaust profile of the engine in terms of NO x, CO and CO 2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NO x emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NO x measurements on board ships.
Kim, Taeyoung; Kang, Sukwon; Sung, Je Hoon; Kang, Youn Koo; Kim, Young Hwa; Jang, Jae Kyung
2016-12-28
Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer ( e.g ., for O₂/H⁺/ions) than the Nafion PEM; in the case of oxygen mass transfer coefficient (k o ), a rate of 50.0 × 10⁻⁵ cm·s⁻¹ was observed compared with a rate of 20.8 × 10⁻⁵ cm/s in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen (D O ) for PC (2.0-3.3 × 10⁻⁶ cm²/s) was lower than that of the Nafion PEM (3.8 × 10⁻⁶ cm²/s). The PC was found to have a low ohmic resistance (0.29-0.38 Ω) in the MFC, which was similar to that of Nafion PEM (0.31 Ω); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC (104.3 ± 15.3 A/m³) compared with MFCs with Nafion PEM (100.4 ± 17.7 A/m³), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.
Cherla, Deepa V; Sanghvi, Saurin; Choudhry, Osamah J; Liu, James K; Eloy, Jean Anderson
2012-08-01
Numerous professional societies, clinical practices, and hospitals provide Internet-based patient education materials (PEMs) to the general public, but not all of this information is written at a reading level appropriate for the average patient. The National Institutes of Health and the US Department of Health and Human Services recommend that PEMs be written at or below the sixth-grade level. Our purpose was to assess the readability of endoscopic sinus surgery (ESS)-related PEMs available on the Internet and compare readability levels of PEMs provided by three sources: professional societies, clinical practices, and hospitals. A descriptive and correlational design was used for this study. The readability of 31 ESS-related PEMs was assessed with four different readability indices: Flesch-Kincaid Grade Level (FKGL), Flesch Reading Ease Score (FRES), Simple Measure of Gobbledygook (SMOG), and Gunning Frequency of Gobbledygook (Gunning FOG). Averages were evaluated against national recommendations and between each source using analysis of variance and t tests. The majority of PEMs (96.8%) were written above the recommended sixth-grade reading level, based on FKGL (P < .001). Only one article (3.2%) had an FKGL at or below the sixth-grade level. The mean readability values were: FRES 47.1 ± 13.4, FKGL 10.7 ± 2.4, SMOG 13.7 ± 1.6, and Gunning FOG 12.4 ± 2.7. Current Internet-based PEMs related to ESS, regardless of source type, were written well above the recommended sixth-grade level. Materials from the hospitals/university-affiliated websites had lower readability scores, but were still above recommended levels. Web-based PEMs pertaining to ESS should be written with the average patient in mind. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Differences in ME and CFS Symptomology in Patients with Normal and Abnormal Exercise Test Results.
McManimen, Stephanie L; Jason, Leonard A
2017-01-01
Post-exertional malaise (PEM) is a cardinal symptom of myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS), which often distinguishes patients with this illness from healthy controls or individuals with exclusionary illnesses such as depression. However, occurrence rates for PEM fluctuate from subject to how the symptom is operationalized. One commonly utilized method is exercise testing, maximal or submaximal. Many patients with ME and CFS experience PEM after participating in these tests, and often show abnormal results. However, some patients still exhibit normal results after participating in the exercise testing. This study examined the differences between two patient groups with ME and CFS, those with normal results and those with abnormal results, on several PEM-related symptoms and illness characteristics. The results suggest those that displayed abnormal results following testing have more frequent and severe PEM, worse overall functioning, and are more likely to be bedbound than those that displayed normal results.
New membranes based on ionic liquids for PEM fuel cells at elevated temperatures
NASA Astrophysics Data System (ADS)
Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.
Application of Thermo-Mechanical Measurements of Plastic Packages for Reliability Evaluation of PEMS
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovsky, Alexander
2004-01-01
Thermo-mechanical analysis (TMA) is typically employed for measurements of the glass transition temperature (Tg) and coefficients of thermal expansion (CTE) in molding compounds used in plastic encapsulated microcircuits (PEMs). Application of TMA measurements directly to PEMs allows anomalies to be revealed in deformation of packages with temperature, and thus indicates possible reliability concerns related to thermo-mechanical integrity and stability of the devices. In this work, temperature dependencies of package deformation were measured in several types of PEMs that failed environmental stress testing including temperature cycling, highly accelerated stress testing (HAST) in humid environments, and bum-in (BI) testing. Comparison of thermo-mechanical characteristics of packages and molding compounds in the failed parts allowed for explanation of the observed failures. The results indicate that TMA of plastic packages might be used for quality evaluation of PEMs intended for high-reliability applications.
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.
1999-01-01
We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
Interferometer for the measurement of plasma density
Jacobson, Abram R.
1980-01-01
An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.
Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2012-05-01
This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.
Apollo 16 lunar module "Orion" photographed from distance during EVA
1972-04-22
AS16-115-18549 (22 April 1972) --- The Apollo 16 Lunar Module (LM) "Orion" is photographed from a distance by astronaut Charles M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle (LRV). Astronauts Duke and John W. Young, commander, were returning from their excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site. While astronauts Young and Duke descended in the "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
Dyachok, Julia V.; Wiweger, Malgorzata; Kenne, Lennart; von Arnold, Sara
2002-01-01
Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce. PMID:11842156
Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique
2016-09-01
Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
Instructions for Plastic Encapsulated Microcircuit(PEM) Selection, Screening and Qualification.
NASA Technical Reports Server (NTRS)
King, Terry; Teverovsky, Alexander; Leidecker, Henning
2002-01-01
The use of Plastic Encapsulated Microcircuits (PEMs) is permitted on NASA Goddard Space Flight Center (GSFC) spaceflight applications, provided each use is thoroughly evaluated for thermal, mechanical, and radiation implications of the specific application and found to meet mission requirements. PEMs shall be selected for their functional advantage and availability, not for cost saving; the steps necessary to ensure reliability usually negate any initial apparent cost advantage. A PEM shall not be substituted for a form, fit and functional equivalent, high reliability, hermetic device in spaceflight applications. Due to the rapid change in wafer-level designs typical of commercial parts and the unknown traceability between packaging lots and wafer lots, lot specific testing is required for PEMs, unless specifically excepted by the Mission Assurance Requirements (MAR) for the project. Lot specific qualification, screening, radiation hardness assurance analysis and/or testing, shall be consistent with the required reliability level as defined in the MAR. Developers proposing to use PEMs shall address the following items in their Performance Assurance Implementation Plan: source selection (manufacturers and distributors), storage conditions for all stages of use, packing, shipping and handling, electrostatic discharge (ESD), screening and qualification testing, derating, radiation hardness assurance, test house selection and control, data collection and retention.
Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment
NASA Astrophysics Data System (ADS)
Sanyal, Oishi
Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other wastewater samples, the EC treated solution also contained a fair amount of organic foulants. These PEM membranes, however, indicated better anti-fouling properties than commercial NF/RO membranes under normal flow conditions. The last part of our work was focused on improving the anti-fouling properties of these membranes by the incorporation of clay nanoplatelets within polyelectrolyte multilayers. In this project, a commercial polyethersulfone (PES) membrane was modified by clay-polyelectrolyte composite thin films and tested against the EC effluent under tangential flow conditions. In comparison to the PEM membranes, these clay-PEM (c-PEM) hybrid membranes offered superior anti-fouling properties with higher fluxes and also required lesser number of layers. On crosslinking the polyelectrolytes, the c-PEM membranes yielded improved anti-fouling properties and high COD removal. Introduction of these inorganic nanoplatelets, however, led to a significant decline in the initial flux of the modified membranes as compared to bare PES membranes, which therefore necessitates further optimization. Some strategies which can potentially help in optimizing the performance of these c-PEM membranes have been discussed in this thesis.
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.
Improved Round Trip Efficiency for Regenerative Fuel Cell Systems
2012-05-11
advanced components that enable closed-loop, zero emission, low signature energy storage. The system utilizes proton exchange membrane ( PEM ) fuel cell ...regenerative fuel cell (RFC) systems based on proton exchange membrane ( PEM ) technology. An RFC consists of a fuel cell powerplant, an electrolysis...based on an air independent, hydrogen-oxygen, PEM RFC is feasible within the near term if development efforts proceed forward. Fuel Cell
Evaluation of Ventricle Size Measurements in Infants by Pediatric Emergency Medicine Physicians.
Halm, Brunhild M; Leone, Tina A; Chaudoin, Lindsey T; McKinley, Kenneth W; Ruzal-Shapiro, Carrie; Franke, Adrian A; Tsze, Daniel S
2018-06-05
The identification of hydrocephalus in infants by pediatric emergency medicine (PEM) physicians using cranial point-of-care ultrasound (POCUS) has not been evaluated. We aimed to conduct a pilot/proof-of-concept study to evaluate whether PEM physicians can identify hydrocephalus (anterior horn width >5 mm) in 15 infants (mean 69 ± 42 days old) from the neonatal intensive care unit using POCUS. Our exploratory aims were to determine the test characteristics of cranial POCUS performed by PEM physicians for diagnosing hydrocephalus and the interrater reliability between measurements made by the PEM physicians and the radiologist. Depending on the availability, 1 or 2 PEM physicians performed a cranial POCUS through the open anterior fontanel for each infant after a 30-minute didactic lecture to determine the size of the left and right ventricles by measuring the anterior horn width at the foramen of Monroe in coronal view. Within 1 week, an ultrasound (US) technologist performed a cranial US and a radiologist determined the ventricle sizes from the US images; these measurements were the criterion standard. A radiologist determined 12 of the 30 ventricles as hydrocephalic. The sensitivity and specificity of the PEM physicians performed cranial POCUS was 66.7% (95% confidence interval [CI], 34.9%-90.1%) and 94.4% (95% CI, 72.7%-99.9%), whereas the positive and negative predictive values were 88.9% (95% CI, 53.3%-98.2%) and 81.0% (95% CI, 65.5%-90.5%), respectively. The interrater reliability between the PEM physician's and radiologist's measurements was r = 0.91. The entire POCUS examinations performed by the PEM physicians took an average of 1.5 minutes. The time between the cranial POCUS and the radiology US was, on average, 4 days. While the PEM physicians in our study were able to determine the absence of hydrocephalus in infants with high specificity using cranial POCUS, there was insufficient evidence to support the use of this modality for identifying hydrocephalus. Future studies with more participants are warranted to accurately determine test characteristics.
Narayanan, Deepa; Kalinyak, Judith E.; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine
2010-01-01
Purpose The objective of this study was to compare the performance characteristics of 18F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Methods Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Results Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget’s disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar’s test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] Conclusion PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density. PMID:20871992
Schilling, Kathy; Narayanan, Deepa; Kalinyak, Judith E; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine
2011-01-01
The objective of this study was to compare the performance characteristics of (18)F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar's test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density.
Fuel cell and membrane therefore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aindow, Tai-Tsui
A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less
An activity index for geomagnetic paleosecular variation, excursions, and reversals
NASA Astrophysics Data System (ADS)
Panovska, S.; Constable, C. G.
2017-04-01
Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
NASA Astrophysics Data System (ADS)
Ozsahin, I.; Unlu, M. Z.
2014-03-01
Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for imaging primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these detectors have significant limitations like poor energy resolution resulting with false-negative result (missed cancer), and false-positive result which leads to suspecting cancer and suggests an unnecessary biopsy. In this work, a PEM scanner based on CdTe strip detectors is simulated via the Monte Carlo method and evaluated in terms of its spatial resolution, sensitivity, and image quality. The spatial resolution is found to be ~ 1 mm in all three directions. The results also show that CdTe strip detectors based PEM scanner can produce high resolution images for early diagnosis of breast cancer.
NASA Astrophysics Data System (ADS)
Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao
2014-03-01
Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.
Lim, Chun Yi; Law, Mary; Khetani, Mary; Rosenbaum, Peter; Pollock, Nancy
2018-08-01
To estimate the psychometric properties of a culturally adapted version of the Young Children's Participation and Environment Measure (YC-PEM) for use among Singaporean families. This is a prospective cohort study. Caregivers of 151 Singaporean children with (n = 83) and without (n = 68) developmental disabilities, between 0 and 7 years, completed the YC-PEM (Singapore) questionnaire with 3 participation scales (frequency, involvement, and change desired) and 1 environment scale for three settings: home, childcare/preschool, and community. Setting-specific estimates of internal consistency, test-retest reliability, and construct validity were obtained. Internal consistency estimates varied from .59 to .92 for the participation scales and .73 to .79 for the environment scale. Test-retest reliability estimates from the YC-PEM conducted on two occasions, 2-3 weeks apart, varied from .39 to .89 for the participation scales and from .65 to .80 for the environment scale. Moderate to large differences were found in participation and perceived environmental support between children with and without a disability. YC-PEM (Singapore) scales have adequate psychometric properties except for low internal consistency for the childcare/preschool participation frequency scale and low test-retest reliability for home participation frequency scale. The YC-PEM (Singapore) may be used for population-level studies involving young children with and without developmental disabilities.
Reforming options for hydrogen production from fossil fuels for PEM fuel cells
NASA Astrophysics Data System (ADS)
Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel
PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.
The procedure execution manager and its application to Advanced Photon Source operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.
1997-06-01
The Procedure Execution Manager (PEM) combines a complete scripting environment for coding accelerator operation procedures with a manager application for executing and monitoring the procedures. PEM is based on Tcl/Tk, a supporting widget library, and the dp-tcl extension for distributed processing. The scripting environment provides support for distributed, parallel execution of procedures along with join and abort operations. Nesting of procedures is supported, permitting the same code to run as a top-level procedure under operator control or as a subroutine under control of another procedure. The manager application allows an operator to execute one or more procedures in automatic, semi-automatic,more » or manual modes. It also provides a standard way for operators to interact with procedures. A number of successful applications of PEM to accelerator operations have been made to date. These include start-up, shutdown, and other control of the positron accumulator ring (PAR), low-energy transport (LET) lines, and the booster rf systems. The PAR/LET procedures make nested use of PEM`s ability to run parallel procedures. There are also a number of procedures to guide and assist tune-up operations, to make accelerator physics measurements, and to diagnose equipment. Because of the success of the existing procedures, expanded use of PEM is planned.« less
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-03-15
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-01-01
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life. PMID:29543734
Neil Armstrong at Lunar Landing Research Facility
1969-02-12
Neil Armstrong with the Lunar Excursion Module (LEM). Caption: "Not long after this photo was taken in front of the Lunar Landing Research Facility, astronaut Neil Armstrong became the first human to step upon the surface of the Moon." Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz, page 91. Also published in " A Century at Langley" by Joseph Chambers, pg. 95
Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.
Pandey, Ravi P; Shukla, Geetanjali; Manohar, Murli; Shahi, Vinod K
2017-02-01
In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Proton Exchange Membrane (PEM) Fuel Cells for Space Applications
NASA Technical Reports Server (NTRS)
Bradley, Karla
2004-01-01
This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.
Saccadic Eye Movement Improves Plantar Sensation and Postural Balance in Elderly Women.
Bae, Youngsook
2016-06-01
Vision, proprioception and plantar sensation contribute to the control of postural balance (PB). Reduced plantar sensation alters postural response and is at an increased risk of fall, and eye movements reduce the postural sway. Therefore, the aim of this study was to study the improvement of plantar sensation and PB after saccadic eye movement (SEM) and pursuit eye movement (PEM) in community-dwelling elderly women. Participants (104 females; 75.11 ± 6.25 years) were randomly allocated into the SEM group (n = 52) and PEM groups (n = 52). The SEM group performed eye fixation and SEM for 5 minutes, and the PEM group performed eye fixation and PEM for 5 minutes. The plantar sensation was measured according to the plantar surface area of the feet in contact with the floor surface before and after the intervention. Before and after SEM and PEM with the eyes open and closed, PB was measured as the area (mm(2)), length (cm), and velocity (cm/s) of the fluctuation of the center of pressure (COP). The plantar sensation of both feet improved in both groups (p < 0.01). Significant decreases in the area, length, and velocity of the COP were observed in the eye open and close in both groups (p < 0.01). The length and velocity of the COP significantly decreased in the SEM group compared to the PEM group (p < 0.05). In conclusion, SEM and PEM are effective interventions for improving plantar sensation and PB in elderly women, with greater PB improvement after SEM.
Geomagnetic excursions in the Brunhes and Matuyama Chrons: Do they come in bunches?
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2012-04-01
Geomagnetic excursions, defined here as brief directional aberrations of the main dipole field outside the range of expected secular variation, remain controversial. Poorly-correlated records of apparent excursions from lavas and sediments can often be assigned to sampling artifacts, sedimentological phenomena, volcanic terrane effects, or local secular variation, rather than behavior of the main dipole field. Although records of magnetic excursions date from the 1960s, the number of Brunhes excursions in recent reviews of the subject have reached the 12-17 range, of which only about ~7 are adequately and/or consistently recorded. For the Matuyama Chron, the current inventory of excursions stands at about 10. The better quality excursion records, with reasonable age control, imply millennial-scale or even sub-millennial-scale durations. When "adequately" recorded, excursions are manifest as paired polarity reversals flanking virtual geomagnetic poles (VGPs) that reach high latitudes in the opposite hemisphere. At the young end of the excursion record, the Mono Lake (~33 ka) and Laschamp (~41 ka) excursions are well documented, although records of the former are not widely distributed. Several excursions younger than the Mono Lake excursion (at 17 ka and 25 ka) have recently been recorded in lavas and sediments, respectively. Is the 17-41 ka interval characterized by multiple excursions? Similarly, multiple excursions have been recorded in the 188-238 ka interval that encompasses records of the Iceland Basin excursion (~188 ka) and the Pringle Falls (PF) excursion. The PF excursion has been assigned ages in the 211-238 ka range. Does this mean that this interval is also characterized by several discrete excursions? The 500-600 ka interval incorporates not only the Big Lost excursion at ~565 ka, but also anomalous magnetization directions from lava flows, particularly in the West Eifel volcanics that yield mid-latitude northern-hemisphere VGPs with a range of Ar/Ar ages. The key question is whether such intervals of mid-latitude VGPs denote high-amplitude secular variation or inadequately recorded magnetic excursions. We propose that excursions characterized by high VGP latitudes in the opposite hemisphere should be termed Category 1 excursions, and those manifest by low/mid-latitude VGPs should be termed Category 2 excursions. In the future, improved records may "elevate" Category 2 excursions to Category 1. We do not view this subdivision of Category 1 and Category 2 excursions as necessarily a geomagnetic distinction, but possibly a distinction based on recording fidelity.
Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C
2010-12-01
Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.
NASA Technical Reports Server (NTRS)
Talbot, Robert W.; Dibb, Jack E.
1993-01-01
The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall scientific findings and benefits of the PEM-WEST A field mission.
Boggiano, Mary M.; Wenger, Lowell E.; Turan, Bulent; Tatum, Mindy M.; Sylvester, Maria D.; Morgan, Phillip R.; Morse, Kathryn E.; Burgess, Emilee E.
2015-01-01
Highly palatable foods play a salient role in obesity and binge-eating, and if habitually eaten to deal with intrinsic and extrinsic factors unrelated to metabolic need, may compromise adaptive coping and interpersonal skills. This study used event sampling methodology (ESM) to examine whether individuals who report eating palatable foods primarily to cope, to enhance reward, to be social, or to conform, as measured by the Palatable Eating Motives Scale (PEMS), actually eat these foods primarily for the motive(s) they report on the PEMS. Secondly this study examined if the previously reported ability of the PEMS Coping motive to predict BMI would replicate if the real-time (ESM-reported) coping motive was used to predict BMI. A total of 1691 palatable eating events were collected from 169 college students over 4 days. Each event included the day, time, and types of tasty foods or drinks consumed followed by a survey that included an abbreviated version of the PEMS, hunger as an additional possible motive, and a question assessing general perceived stress during the eating event. Two-levels mixed modeling confirmed that ESM-reported motives correlated most strongly with their respective PEMS motives and that all were negatively associated with eating for hunger. While stress surrounding the eating event was strongly associated with the ESM-coping motive, its inclusion in the model as a predictor of this motive did not abolish the significant association between ESM and PEMS Coping scores. Regression models confirmed that scores on the ESM-coping motive predicted BMI. These findings provide ecological validity for the PEMS to identify true-to-life motives for consuming palatable foods. This further adds to the utility of the PEMS in individualizing, and hence improving, treatment strategies for obesity, binge-eating, dietary nutrition, coping, reward acquisition, and psychosocial skills. PMID:26082744
Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996
NASA Astrophysics Data System (ADS)
Hoell, J. M.; Davis, D. D.; Jacob, D. J.; Rodgers, M. O.; Newell, R. E.; Fuelberg, H. E.; McNeal, R. J.; Raper, J. L.; Bendura, R. J.
1999-03-01
The NASA Pacific Exploratory Mission to the Pacific tropics (PEM-Tropics) is the third major field campaign of NASA's Global Tropospheric Experiment (GTE) to study the impact of human and natural processes on the chemistry of the troposphere over the Pacific basin. The first two campaigns, PEM-West A and B were conducted over the northwestern regions of the Pacific and focused on the impact of emissions from the Asian continent. The broad objectives of PEM-Tropics included improving our understanding of the oxidizing power of the tropical atmosphere as well as investigating oceanic sulfur compounds and their conversion to aerosols. Phase A of the PEM-Tropics program, conducted between August-September 1996, involved the NASA DC-8 and P-3B aircraft. Phase B of this program is scheduled for March/April 1999. During PEM-Tropics A, the flight tracks of the two aircraft extended zonally across the entire Pacific Basin and meridionally from Hawaii to south of New Zealand. Both aircraft were instrumented for airborne measurements of trace gases and aerosols and meteorological parameters. The DC-8, given its long-range and high-altitude capabilities coupled with the lidar instrument in its payload, focused on transport issues and ozone photochemistry, while the P-3B, with its sulfur-oriented instrument payload and more limited range, focused on detailed sulfur process studies. Among its accomplishments, the PEM-Tropics A field campaign has provided a unique set of atmospheric measurements in a heretofore data sparse region; demonstrated the capability of several new or improved instruments for measuring OH, H2SO4, NO, NO2, and actinic fluxes; and conducted experiments which tested our understanding of HOx and NOx photochemistry, as well as sulfur oxidation and aerosol formation processes. In addition, PEM-Tropics A documented for the first time the considerable and widespread influence of biomass burning pollution over the South Pacific, and identified the South Pacific Convergence Zone as a major barrier for atmospheric transport in the southern hemisphere.
Quaternary magnetic excursions recorded in marine sediments.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-12-01
This year is the golden (50th) anniversary of the first documentation of a magnetic excursion, the Laschamp excursion in volcanics from the Chaine des Puys (Bonhommet and Babkine, 1967). The first recording of an excursion in sediments was from the Blake Outer Ridge (Smith and Foster, 1969). Magnetic excursions are directional aberrations of the geomagnetic field apparently involving short-lived reversal of the main dipole field. They have durations of a few kyrs, and are therefore rarely recorded in sediments with mean sedimentation rates <10 cm/kyr. Certain Brunhes-aged excursions are now well documented having been recorded in both marine sediments and in lavas (Laschamp excursion, 41 ka). Other excursions have not been adequately recorded in lavas, but have been widely recorded in marine and lake sediments (Iceland Basin excursion, 190 ka). The recording of excursions is fortuitous both in lava sequences and in marine sediments due to their millennial/centennial-scale duration, however, the global recording of the Laschamp and Iceland Basin excursions imply that excursions involve the main dipole field, are recorded synchronously over the globe, and are therefore important in stratigraphic correlation. The marine sediment record includes magnetic excursions at 26 ka (Rockall), 32 ka (Mono Lake), 41 ka (Laschamp), 115 ka (Blake), 190 ka (Iceland Basin), 238 ka (Pringle Falls?), 286 ka (Portuguese Orphan), 495 ka (Bermuda), 540 ka (Big Lost), 590 ka (La Palma), and 670 ka (Osaka Bay), implying at least 11 excursions in the Brunhes Chron. For the Matuyama Chron, excursions have been recorded in marine sediments at 868 ka (Kamikatsura?), 932 ka (Santa Rosa), 1051 ka (Intra-Jaramillo), 1115 ka (Punaruu), 1255 ka (Bjorn), 1476 ka (Gardar), 1580 ka (Gilsa), and 2737 ka (Porcupine). Excursions coincide with minima in relative paleointensity (RPI) records. Ages are from correlation of excursion records to oxygen isotope records in the same cores, and ice-volume calibration of the oxygen isotope template. The marine sediment record of excursions, combined with independent documentation of excursions in lavas with Ar/Ar age control, is progressively strengthening our knowledge of the excursion inventory in the Quaternary, and enhancing the importance of excursions and RPI in Quaternary stratigraphy.
Planar Solid-Oxide Fuel Cell Research and Development
2013-03-28
electrolyte membrane ( PEM ) fuel cells ", Applied Surface Sei., 227 (2004) 56-72. [10] Grujicic, M., and Chittajallu, K. M., "Optimization of the...cathode geometry in polymer electrolyte membrane ( PEM ) fuel cells ", Chem. Eng. Sei., 59 (2004) 5883-5895. 36 [11] Anderson, W.K., Newman, J.C., Whitfield...M., Djilali, N, Suleman, A., "Optimization of a planar self-breathing PEM fuel cell cathode", AIAA 2006-6917, 11th AIAA/ISSMO Multidisciplinary
Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class
2012-02-01
with each defined by its fundamental electrolyte: i. Alkali Fuel Cells (AFC) ii. Polymer Exchange Membrane ( PEM ) iii. Phosphoric Acid Fuel Cells ...of the PEM family (High Temperature – HTPEM and Direct Methanol Fuel Cells – DMFC) were assessed against a range of basic ship requirements...of Stationary PEM Fuel Cell Systems”, DOE hydrogen program 2010 annual report. [11] US Energy Information Administration, “EIA - Weekly Retail
Shaw, K N; Schunk, J; Ledwith, C; Lockhart, G
1997-02-01
This committee of fellowship directors has proposed guidelines for an academic curriculum for training fellows in PEM. The curriculum should be modified to each unique program, but is based on current expectation of the American Board of Pediatrics and the ACGME for graduate education. This is the first PEM academic curriculum document in publication. Ongoing refinement and adaptation based on feedback from fellows and directors is essential to provide the best fellowship experience to our trainees. The proposed curriculum is also subject to further change as more details are given for ACGME approval of the fellowship programs.
A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon
NASA Astrophysics Data System (ADS)
Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.
2016-11-01
In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.
Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Philip, Koshy; Thurairajah, Nalina
2016-01-01
Plant extracts mixture (PEM) and its individual constituent plant extracts( Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers ( Streptococcus sanguinis and Streptococcus mutans ) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini's Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans . The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms.
Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Thurairajah, Nalina
2016-01-01
Background Plant extracts mixture (PEM) and its individual constituent plant extracts(Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers (Streptococcus sanguinis and Streptococcus mutans) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Methods Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini’s Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. Results The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans. The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. Discussion The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms. PMID:27761322
Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout
2016-07-01
For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Development and validity of a method for the evaluation of printed education material
Castro, Mauro Silveira; Pilger, Diogo; Fuchs, Flávio Danni; Ferreira, Maria Beatriz Cardoso
Objectives To develop and study the validity of an instrument for evaluation of Printed Education Materials (PEM); to evaluate the use of acceptability indices; to identify possible influences of professional aspects. Methods An instrument for PEM evaluation was developed which included tree steps: domain identification, item generation and instrument design. A reading to easy PEM was developed for education of patient with systemic hypertension and its treatment with hydrochlorothiazide. Construct validity was measured based on previously established errors purposively introduced into the PEM, which served as extreme groups. An acceptability index was applied taking into account the rate of professionals who should approve each item. Participants were 10 physicians (9 men) and 5 nurses (all women). Results Many professionals identified intentional errors of crude character. Few participants identified errors that needed more careful evaluation, and no one detected the intentional error that required literature analysis. Physicians considered as acceptable 95.8% of the items of the PEM, and nurses 29.2%. The differences between the scoring were statistically significant in 27% of the items. In the overall evaluation, 66.6% were considered as acceptable. The analysis of each item revealed a behavioral pattern for each professional group. Conclusions The use of instruments for evaluation of printed education materials is required and may improve the quality of the PEM available for the patients. Not always are the acceptability indices totally correct or represent high quality of information. The professional experience, the practice pattern, and perhaps the gendre of the reviewers may influence their evaluation. An analysis of the PEM by professionals in communication, in drug information, and patients should be carried out to improve the quality of the proposed material. PMID:25214924
Quality measurement in physician-staffed emergency medical services: a systematic literature review.
Haugland, Helge; Uleberg, Oddvar; Klepstad, Pål; Krüger, Andreas; Rehn, Marius
2018-05-15
Quality measurement of physician-staffed emergency medical services (P-EMS) is necessary to improve service quality. Knowledge and consensus on this topic are scarce, making quality measurement of P-EMS a high-priority research area. The aim of this review was to identify, describe and evaluate studies of quality measurement in P-EMS. The databases of MEDLINE and Embase were searched initially, followed by a search for included article citations in Scopus. The study eligibility criteria were: (1) articles describing the use of one quality indicator (QI) or more in P-EMS, (2) original manuscripts, (3) articles published from 1 January 1968 until 5 October 2016. The literature search identified 4699 records. 4543 were excluded after reviewing title and abstract. An additional 129 were excluded based on a full-text review. The remaining 27 papers were included in the analysis. Methodological quality was assessed using an adapted critical appraisal tool. The description of used QIs and methods of quality measurement was extracted. Variables describing the involved P-EMSs were extracted as well. In the included papers, a common understanding of which QIs to use in P-EMS did not exist. Fifteen papers used only a single QI. The most widely used QIs were 'Adherence to medical protocols', 'Provision of advanced interventions', 'Response time' and 'Adverse events'. The review demonstrated a lack of shared understanding of which QIs to use in P-EMS. Moreover, papers using only one QI dominated the literature, thus increasing the risk of a narrow perspective in quality measurement. Future quality measurement in P-EMS should rely on a set of consensus-based QIs, ensuring a comprehensive approach to quality measurement.
Integrated Chemical Fuel Microprocessor for Power Generation in MEMS Applications
2005-07-01
unreacted fuels (ammonia and hydrocarbon) and carbon monoxide that could otherwise adversely affect hydrogen Proton Exchange Membrane ( PEM ) fuel cell ...High hydrogen purity is required in a variety of processes, from the microelectronics industry to PEM fuel cells . For portable-power applications, it...Geff Ffuel Heat Load Complexity Li-Ion Batteries 330 140 1.2 W Low Carnot Engines *7,878 13,750 10% 50% 395 690 10 W Low Fuel Cells : PEM /Hydride #2,382
Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class
2012-02-01
with each defined by its fundamental electrolyte: i. Alkali Fuel Cells (AFC) ii. Polymer Exchange Membrane ( PEM ) iii. Phosphoric Acid Fuel Cells ...of the PEM family (High Temperature – HTPEM and Direct Methanol Fuel Cells – DMFC) were assessed against a range of basic ship requirements...of fuel cell stacks in 100+kW power range for realistic marine applications, two technologies can be quickly discounted, namely – AFC, DMFC. PEM
Prescription-event monitoring in Japan (J-PEM).
Kubota, Kiyoshi
2002-01-01
In prescription-event monitoring in Japan (J-PEM), patients are identified by prescriptions in individual pharmacies where drugs are dispensed. The methodology is somewhat different to that used by the Drug Safety Research Unit in the UK, in that two questionnaires, one to the pharmacist and the other to the doctor are sent for each patient and the method of concurrent control is employed in J-PEM. In the data analysis, the list of events reported as a suspected reaction or a reason for stopping the drug is made to generate a signal. In addition, a signal may be generated for some events with the statistically significant difference of crude rates followed by the regression analysis or a follow-up study. In J-PEM, Medical Dictionary for Regulatory Activities (MedDRA) terminology is used for data entry and data analysis. Lowest level terms (LLTs) in MedDRA are used in data entry while a signal is generated using preferred terms (PTs). However, to generate a signal effectively, some PTs may be grouped as one term. In addition, if two terms are so similar, it may be instructed that one of those two terms is normally selected in data entry to avoid confusion. Many more PEM studies could be undertaken to determine if MedDRA can be used for effective signal generation, but the usefulness of MedDRA in J-PEM is still to be determined.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Burbank, Lindsey P; Stenger, Drake C
2016-08-01
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Performance Evaluation of a PEM Scanner Using the NEMA NU 4—2008 Small Animal PET Standards
NASA Astrophysics Data System (ADS)
Luo, Weidong; Anashkin, Edward; Matthews, Christopher G.
2010-02-01
The recently published NEMA NU 4-2008 Standards has been specially designed for evaluating the performance of small animal PET scanners used in preclinical applications. In this paper, we report on the NU 4 performance of a clinical positron emission mammography (PEM) system. Since there are no PEM specific performance test protocols available, and the NU 2 protocol (intended for whole-body PET scanners) cannot be applied without modification due to the compact design of the PEM scanner, we decided to evaluate the NU 4 Standards as an alternative. We obtained the following results: Trans-axial spatial resolution 1.8 mm FWHM for high resolution reconstruction mode and 2.4 mm FWHM for standard resolution reconstruction mode with no significant variation within the field of view. The total system sensitivity was 0.16 cps/Bq. In image quality testing, the uniformity was found to be 3.9% STD at the standard resolution mode and 5.6% at the high resolution mode when measured with a 34 mm paddle separation. The NEMA NU 4-2008 Standards were found to be a practicable tool to evaluate the performance of the PEM scanner after some modifications to address the specifics of its detector configuration. Furthermore, the PEM scanner's in-plane spatial resolution was comparable to other small animal PET scanners with good image quality.
Hydrogen Fuel Cell Engines and Related Technologies
NASA Astrophysics Data System (ADS)
2001-12-01
The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Low-Cost Proton Conducting Membranes for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hongxing
Proton exchange membrane (PEM) is the key component in PEM fuel cells that critically determines the system performance and its economic viability. Presently, the state-of-the-art PEMs, such as Nafion membranes, are based on perfluorosulfonic acid (PFSA) ionomers. But these ionomer materials are expensive, particularly at the low volumes that will be needed for initial commercialization. Besides, they are not suitable for fuel cells operated beyond 100°C, because of the limitations connected to the humidification requirement of such membrane materials, limiting the maximum operating temperature to about 90°C. Fuel cells for transportation applications are required to operate in a wide temperaturemore » range from –20°C to 120°C. Low-cost PEMs with capabilities in a range of temperature and humidity conditions are urgently needed to meet the DOE fuel cell targets for transportation applications. Amsen Technologies LLC chooses to address the DOE call with a novel reinforced PEM approach based on new, non-PFSA proton conducting ionomers developed from our previous DOE SBIR projects. Along with this approach is the use of very cheap, ultra thin and highly porous microporous polymer meshes as the support for the membrane. The new PEM is expected to have significant cost advantages over traditional PEMs. The microporous polyolefin support costs $2-3/m 2; and the new ionomers that Amsen has developed are estimated at ~$250/kg at the higher end including material costs and labor costs (which may go down in the future as the processing is optimized and production scaled up). These have led to an estimate of total material cost for the membrane at $11 to $12/m 2, offering high potential of meeting the DOE cost targets (≤$20/m 2) after adding processing cost and profit margin. The Phase I results have successfully demonstrated that it is very promising to develop the intended low-cost, high-performance PEM membrane. Suitable material system has been identified, and suitable process for forming the new PEM has been developed. Uniform membranes have been reproducibly fabricated. These membranes have been extensively characterized and evaluated in terms of microstructural features, and relevant physical and chemical properties including proton conductivity and area specific proton resistance in a range of temperature and humidity conditions, resistance to electronic conduction, water uptake/swelling, dimensional stability, chemical stability, and mechanical durability. Membrane electrode assemblies (MEA) with the new membrane have been successfully prepared and tested for fuel cell operation. The new PEM showed higher proton conductivity than Nafion membranes for all measurement conditions used in Phase I. With high proton conductivity and ultra-thin thickness (~20 /m), the new membrane showed high promise to met DOE targets for the low ASR. The ASR targets have been met for relatively high RH but not yet for RH ≤ 70%. Further optimization in ionomer chemistry and membrane processing is needed in order to meet the ASR targets for a wide range of temperature and humidity conditions. The new membrane showed fairly high electronic resistance at 1373 ohm cm 2, meeting the DOE target for electronic resistance (> 1000 ohm cm 2). The new membrane also has demonstrated promisingly high chemical stability, high mechanical durability, and high dimensional stability. Fuel cell operation using MEAs with the new membrane have shown the same level of fuel cell performance as MEAs with Nafion membranes. Overall, the new membrane has been demonstrated to have high potential of meeting all DOE performance targets for fuel cell applications as well as the cost targets. The manufacturers of PEM fuel cells, PEM electrolyzers, redox flow batteries, and MEA are the end-users and customers of PEMs. For commercialization purpose and potential partnering relations, we have been talking with many such manufacturers. They have responded with extremely high interest in the new PEM being developed in the present technology. Accomplishments so far have laid down a strong base for Amsen to further the development efforts on this new PEM and to pursue commercialization. The near-term future work will be mainly focused on further development and systematical optimization of the material system, processing, and performance of the new membrane; systematical evaluation of the new membrane in terms of all relevant properties including long-term mechanical, chemical, and combined chemical/mechanical durabilities using DOE specified testing protocols; development of production scale-up scheme; and preparation for commercialization.« less
NASA Technical Reports Server (NTRS)
Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.
2000-01-01
This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.
NASA Technical Reports Server (NTRS)
Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.
2000-01-01
This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.
Defining Geodetic Reference Frame using Matlab®: PlatEMotion 2.0
NASA Astrophysics Data System (ADS)
Cannavò, Flavio; Palano, Mimmo
2016-03-01
We describe the main features of the developed software tool, namely PlatE-Motion 2.0 (PEM2), which allows inferring the Euler pole parameters by inverting the observed velocities at a set of sites located on a rigid block (inverse problem). PEM2 allows also calculating the expected velocity value for any point located on the Earth providing an Euler pole (direct problem). PEM2 is the updated version of a previous software tool initially developed for easy-to-use file exchange with the GAMIT/GLOBK software package. The software tool is developed in Matlab® framework and, as the previous version, includes a set of MATLAB functions (m-files), GUIs (fig-files), map data files (mat-files) and user's manual as well as some example input files. New changes in PEM2 include (1) some bugs fixed, (2) improvements in the code, (3) improvements in statistical analysis, (4) new input/output file formats. In addition, PEM2 can be now run under the majority of operating systems. The tool is open source and freely available for the scientific community.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells
NASA Astrophysics Data System (ADS)
Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.
High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.
Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin
2018-04-01
The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.
Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay
2013-11-21
The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).
Wang, Liming; Wei, Jingjing; Su, Zhaohui
2011-12-20
High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society
Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.
Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani
2017-12-01
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Grot, Stephen Andreas
1998-01-01
A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.
Alkaline polymer electrolyte membranes for fuel cell applications.
Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun
2013-07-07
In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.
2014-05-27
TiN(100) surface (Pt/TiN) could be a promising catalyst for proton exchange membrane fuel cells ( PEM FCs). The adsorption properties of molecules on Pt...under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells , density functional theory, density functional...poisoning on functionalized Pt/TiN surfaces under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells
High-resolution record of the Laschamp geomagnetic excursion at the Blake-Bahama Outer Ridge
NASA Astrophysics Data System (ADS)
Bourne, Mark D.; Mac Niocaill, Conall; Thomas, Alex L.; Henderson, Gideon M.
2013-12-01
Geomagnetic excursions are brief deviations of the geomagnetic field from behaviour expected during `normal secular' variation. The Laschamp excursion at ˜41 ka was one such deviation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity associated with this excursion. Accurate dating of excursions, and determination of their durations from multiple locations, is vital to our understanding of global field behaviour during these deviations. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites, 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172). High sedimentation rates (˜30-40 cm kyr-1) at these locations allow determination of transitional field behaviour during the excursion. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. We determine the age and duration of the Laschamp excursion using a stratigraphy linked to the δ18O record from the Greenland ice cores. This chronology dates the Laschamp excursion at the Blake Ridge to 41.3 ka. The excursion is characterized by rapid transitions (less than 200 yr) between stable normal polarity and a partially reversed polarity state. The palaeointensity record is in good agreement between the two sites, revealing two prominent minima. The first minimum is associated with the Laschamp excursion at 41 ka and the second corresponds to the Mono Lake excursion at ˜35.5 ka. We determine that the directional excursion during the Laschamp at this location was no longer than ˜400 yr, occurring within a palaeointensity minimum that lasted 2000 yr. The Laschamp excursion at this location is much shorter in duration than the Blake and Iceland Basin excursions.
Grot, S.A.
1998-01-13
A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
Prabhakaran, Venkateshkumar; Arges, Christopher G.; Ramani, Vijay
2012-01-01
A fluorescent molecular probe, 6-carboxy fluorescein, was used in conjunction with in situ fluorescence spectroscopy to facilitate real-time monitoring of degradation inducing reactive oxygen species within the polymer electrolyte membrane (PEM) of an operating PEM fuel cell. The key requirements of suitable molecular probes for in situ monitoring of ROS are presented. The utility of using free radical scavengers such as CeO2 nanoparticles to mitigate reactive oxygen species induced PEM degradation was demonstrated. The addition of CeO2 to uncatalyzed membranes resulted in close to 100% capture of ROS generated in situ within the PEM for a period of about 7 h and the incorporation of CeO2 into the catalyzed membrane provided an eightfold reduction in ROS generation rate. PMID:22219367
Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P.; Christensen, Jan P.
2015-01-01
Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse of Mycobacterium tuberculosis, as well as increased pathology, in both Mycobacterium bovis BCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ+ TNF-α+ and IFN-γ+ cells). PEM during M. tuberculosis infection completely blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all cytokine-producing CD4 T cell subsets, with the exception of CD4 T cells positive for TNF-α only. Importantly, this impairment was reversible and resupplementation of protein during infection rescued both the vaccine-promoted T cell response and the protective effect of the vaccine against M. tuberculosis infection. PMID:25754202
McDonald, Kirsty A.; Stearne, Sarah M.; Alderson, Jacqueline A.; North, Ian; Pires, Neville J.; Rubenson, Jonas
2016-01-01
Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running. PMID:27054319
Mass breakdown model of solar-photon sail shuttle: The case for Mars
NASA Astrophysics Data System (ADS)
Vulpetti, Giovanni; Circi, Christian
2016-02-01
The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.
McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas
2016-01-01
Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.
Multiple Ejection Effects Analysis
1981-08-01
in future designs . Accession For * I N’IS CRA&I PTIV TAB\\ U:,zmnounced Ja St if ic ft IonL- 1) i tributIon/ Availability Codes Avail and/or )Ibt...between aircraft separation and drogue line stretch. In the case I of the crew module, design changes were eventually adopted to provide a stable...system, and the attitude excursions are very mild. The ejection seat system underwent an important design change because of high-speed aerodynamic
NASA Technical Reports Server (NTRS)
Carroll, Mary Anne
2000-01-01
Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we submitted. NO data was obtained for all flights except the mission out of Christmas Island and the subsequent return to Hawaii, during which time the NO channels were contaminated with back-flushing pure NO from the O3 channel. The NO channels were found to suffer from a varying artifact (7 - 22 pptv) which made the instrument's results unreliable for the marine boundary layer portions of the missions (where conditions were extremely clean with NO typically < 2 pptv and O3 only 8 ppbv). Nonetheless, the NO values were an upper limit and were quite useful in identifying pollution layers and outflow from the Latin American Continent. NO data was submitted to the archive for all flights during which data was obtained. Ozone data from the P3B was among the results presented in several peer-reviewed publications. Notably, the ozone data supported the first published finding of evidence for the occurrence of aerosol nucleation in the marine boundary layer. As well, the ozone data was utilized in a treatment of the wavenumber spectra of winds, temperature and trace gases and to demonstrate the occurrence of layering as observed by the P3B during PEM-Tropics A . O3 and NO data were used in an assessment of the impact of southern hemispheric biomass burning, and in the role of NOx and O3 in HOx photochemistry during the PEM Tropics A mission. These data, along with other species measured during PEM-Tropics A, have also been employed in the generation of climatologies for tropospheric ozone and its precursors by the PI's research group.
Proton exchange membrane fuel cell technology for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swathirajan, S.
1996-04-01
Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less
Securing electronic mail: The risks and future of electronic mail
NASA Astrophysics Data System (ADS)
Weeber, S. A.
1993-03-01
The network explosion of the past decade has significantly affected how many of us conduct our day to day work. We increasingly rely on network services such as electronic mail, file transfer, and network newsgroups to collect and distribute information. Unfortunately, few of the network services in use today were designed with the security issues of large heterogeneous networks in mind. In particular, electronic mail, although heavily relied upon, is notoriously insecure. Messages can be forged, snooped, and even altered by users with only a moderate level of system proficiency. The level of trust that can be assigned at present to these services needs to be carefully considered. In the past few years, standards and tools have begun to appear addressing the security concerns of electronic mail. Principal among these are RFC's 1421, 1422, 1423, and 1424, which propose Internet standards in the areas of message encipherment, key management, and algorithms for privacy enhanced mail (PEM). Additionally, three PEM systems, offering varying levels of compliance with the PEM RFC's, have also recently emerged: PGP, RIPEM, and TIS/PEM. This paper addresses the motivations and requirements for more secure electronic mail, and evaluates the suitability of the currently available PEM systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Jin Aun; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales; Booth, Jeremy T.
2012-12-01
Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiringmore » kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.« less
Essentials of Pediatric Emergency Medicine Fellowship: Part 6: Program Administration.
Kim, In K; Zuckerbraun, Noel; Kou, Maybelle; Vu, Tien; Levasseur, Kelly; Yen, Kenneth; Chapman, Jennifer; Doughty, Cara; McAneney, Constance; Zaveri, Pavan; Hsu, Deborah
2016-10-01
This article is the sixth in a 7-part series that aims to comprehensively describe the current state and future directions of pediatric emergency medicine (PEM) fellowship training from the essential requirements to considerations for successfully administering and managing a program to the careers that may be anticipated upon program completion. This article provides a broad overview of administering and supervising a PEM fellowship program. It explores 3 topics: the principles of program administration, committee management, and recommendations for minimum time allocated for PEM fellowship program directors to administer their programs.
NASA Technical Reports Server (NTRS)
Virmani, Nick; Shaw, Jack
1997-01-01
Some of the concerns and risk mitigation procedures for using plastic encapsulated microcircuits (PEMs) for space applications are discussed. Despite their advantages, PEMs cannot be implemented in all space applications by replacing military parts numbers with their commercial counterparts in product designs and part lists. The technical and procurement concerns are summarized, and suggestions for high reliability procurements are given. The ability to withstand deleterious environmental effects and to meet mission critical reliability is the key to the successful use of PEMs for space applications.
NASA Technical Reports Server (NTRS)
Davis, Douglas D.
2001-01-01
Over the time period of this NASA grant the PI has helped plan and execute the PEM-Tropics B field program. He has also helped organize and co-chair two data workshops which have focused on the detailed analysis of PEM-Tropics B data. His direct participation in these analyses has led to his involvement in 13 manuscripts, nine of which are in print, two in press, and two submitted. A complete list of papers is given.
Mahajan, Prashant; Batra, Prerna; Shah, Binita R; Saha, Abhijeet; Galwankar, Sagar; Aggrawal, Praveen; Hassoun, Ameer; Batra, Bipin; Bhoi, Sanjeev; Kalra, Om Prakash; Shah, Dheeraj
2015-01-01
The concept of pediatric emergency medicine (PEM) is virtually nonexistent in India. Suboptimally, organized prehospital services substantially hinder the evaluation, management, and subsequent transport of the acutely ill and/or injured child to an appropriate facility. Furthermore, the management of the ill child at the hospital level is often provided by overburdened providers who, by virtue of their training, lack experience in the skills required to effectively manage pediatric emergencies. Finally, the care of the traumatized child often requires the involvement of providers trained in different specialities, which further impedes timely access to appropriate care. The recent recognition of Doctor of Medicine (MD) in Emergency Medicine (EM) as an approved discipline of study as per the Indian Medical Council Act provides an unprecedented opportunity to introduce PEM as a formal academic program in India. PEM has to be developed as a 3-year superspeciality course (in PEM) after completion of MD/Diplomate of National Board (DNB) Pediatrics or MD/DNB in EM. The National Board of Examinations (NBE) that accredits and administers postgraduate and postdoctoral programs in India also needs to develop an academic program – DNB in PEM. The goals of such a program would be to impart theoretical knowledge, training in the appropriate skills and procedures, development of communication and counseling techniques, and research. In this paper, the Joint Working Group of the Academic College of Emergency Experts in India (JWG-ACEE-India) gives its recommendations for starting 3-year DM/DNB in PEM, including the curriculum, infrastructure, staffing, and training in India. This is an attempt to provide an uniform framework and a set of guiding principles to start PEM as a structured superspeciality to enhance emergency care for Indian children. PMID:26807394
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
Scott, S. D.; Mumgaard, R. T.
2016-07-20
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S. D.; Mumgaard, R. T.
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Safety factor profiles from spectral motional Stark effect for ITER applications
NASA Astrophysics Data System (ADS)
Ko, Jinseok; Chung, Jinil; Wi, Han Min
2017-10-01
Depositions on the first mirror and multiple reflections on the other mirrors in the labyrinth of the optical system in the motional Stark effect (MSE) diagnostic for ITER are regarded as one of the main obstacles to overcome. One of the alternatives to the present-day conventional photoelastic-modulation-based MSE principles is the spectroscopic analyses on the motional Stark emissions where either the ratios among individual Stark multiplets or the amount of the Stark split are measured based on precise and accurate atomic data and models to ultimately provide the critical internal constraints in the magnetic equilibrium reconstruction. Equipped with the PEM-based conventional MSE hardware since 2015, the KSTAR MSE diagnostic system is capable of investigating the feasibility of the spectroscopic MSE approach particularly via comparative studies with the PEM approach. Available atomic data and models are used to analyze the beam emission spectra with a high-spectral-resolution spectrometer with a patent-pending dispersion calibration technology. Experimental validation on the atomic data and models is discussed in association with the effect of the existence of mirrors, the Faraday rotation in the relay optics media, and the background polarized light on the measured spectra. Work supported by the Ministry of Science, ICT and Future Planning, Korea.
Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon
2012-10-01
Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.
Prescription-event monitoring: methodology and recent progress.
Rawson, N S; Pearce, G L; Inman, W H
1990-01-01
Event monitoring was first suggested 25 years ago as a way of detecting adverse reactions to drugs. Prescription-event monitoring (PEM), which has been developed by the Drug Safety Research Unit, is the first large-scale systematic post-marketing surveillance method to use event monitoring in the U.K. PEM identifies patients, who have been prescribed a particular drug, and their doctors from photocopies of National Health Service prescriptions which are processed centrally in England. A personalized follow-up questionnaire ("green form") is mailed to each patient's general practitioner, usually on the first anniversary of the initial prescription, asking for information about the patient, especially any "events" that he or she may have experienced since beginning treatment with the drug. The methodology of PEM is presented, together with examples of analyses that can be performed using results from recent studies. The problems and benefits of PEM are discussed.
NASA Astrophysics Data System (ADS)
Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.
Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.
Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.
Zawko, Scott A; Schmidt, Christine E
2011-08-01
An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.
Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications
NASA Astrophysics Data System (ADS)
Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang
2017-02-01
Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided
Yang, Jiacheng; Durbin, Thomas D; Jiang, Yu; Tange, Takeshi; Karavalakis, Georgios; Cocker, David R; Johnson, Kent C
2018-05-31
The primary goal of this study was to compare emissions measurements between a 1065 compliant PEMS, and the NTK Compact Emissions Meter (NCEM) capable of measuring NOx, PM, and solid PN. Both units were equipped on a light-duty diesel truck and tested over local, highway, and downtown driving routes. The results indicate that the NOx measurements for the NCEM were within approximately ±10% of those the 1065 compliant PEMS, which suggests that the NCEM could be used as a screening tool for NOx emissions. The NCEM showed larger differences for PM emissions on an absolute level, but this was at PM levels well below the 1 mg/mi level. The NCEM differences ranged from -2% to +26% if the comparisons are based on a percentage of the 1.0 mg/mi standard. Larger differences were also seen for PN emissions, with the NCEM measuring higher PN emissions, which can primarily be attributed to a zero current offset that we observed for the NCEM, which has been subsequently improved in the latest generation of the NCEM system. The comparisons between the 1065 compliant PEMS and the NCEM suggest that there could be applications for the NCEM or other mini-PEMS for applications such as identification of potential issues by regulatory agencies, manufacturer evaluation and validation of emissions under in-use conditions, and potential use in inspection and maintenance (I/M) programs, especially for heavy-duty vehicles. Copyright © 2017. Published by Elsevier B.V.
Validation of environmental content in the Young Children's Participation and Environment Measure.
Khetani, Mary A
2015-02-01
To evaluate the concurrent validity of the environment content in the newly developed Young Children's Participation and Environment Measure (YC-PEM). Cross-sectional study. Data were collected online. Convenience and snowball sampling methods were used to survey caregivers of children (N=381; 85 children with developmental disabilities and delays and 296 children without developmental disabilities and delays) aged 0 and 5 years (mean age, 36.49±20.18 mo). Not applicable. The YC-PEM includes an assessment of the effect of environment on children's participation for 3 settings: home, daycare/preschool, and community. Pearson and Spearman correlational analyses were used to examine the concurrent validity of the YC-PEM environmental content according to a criterion measure, the Craig Hospital Inventory of Environmental Factors-Child and Parent Version (CHIEF-CP). The YC-PEM and the CHIEF-CP items were first mapped to the International Classification of Functioning, Disability, and Health-Children and Youth Version to identify items for pairwise comparison. We found small to moderate negative associations for 51 of 66 pairwise comparisons involving CHIEF-CP and YC-PEM environment items (r=-.13 to -.39; P<.01). Significant associations were found for items in all 5 International Classification of Functioning, Disability and Health-Children and Youth Version environmental domains. Results lend further support for the use of the YC-PEM for valid caregiver assessment of the physical, social, attitudinal, and institutional features of environments in terms of their effect on young children's participation within the home, daycare/preschool, and community settings. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bank, Ilana; Cheng, Adam; McLeod, Peter; Bhanji, Farhan
2015-11-01
By the end of residency training, pediatric emergency medicine (PEM) residents are expected to have developed the confidence and abilities required to manage acutely ill children. Acquisition of competence requires exposure and/or supplemental formal education for critical and noncritical medical clinical presentations. Simulation can provide experiential learning and can improve trainees' knowledge, skills, and attitudes. The primary objective of this project was to identify the content for a simulation-based national curriculum for PEM training. We recruited participants for the Delphi study by contacting current PEM program directors and immediate past program directors as well as simulation experts at all of the Canadian PEM fellowship sites. We determined the appropriate core content for the Delphi study by combining the PEM core content requirements of the Royal College of Physicians and Surgeons of Canada (RCPSC) and the American Board of Pediatrics (ABP). Using the Delphi method, we achieved consensus amongst the national group of PEM and simulation experts. The participants completed a three-round Delphi (using a four-point Likert scale). Response rates for the Delphi were 85% for the first round and 77% for second and third rounds. From the initial 224 topics, 53 were eliminated (scored <2). Eighty-five topics scored between 2 and 3, and 87 scored between 3 and 4. The 48 topics, which were scored between 3.5 and 4.0, were labeled as "key curriculum topics." We have iteratively identified a consensus for the content of a national simulation-based curriculum.
Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles
NASA Technical Reports Server (NTRS)
Walker, James F.; Civinskas, Kestutis C.
2004-01-01
Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
NASA Astrophysics Data System (ADS)
Ceran, Bartosz
2017-11-01
The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
NASA Astrophysics Data System (ADS)
Staff, Richard; Hardiman, Mark; Bronk Ramsey, Christopher; Hare, Vincent; Koutsodendris, Andreas; Pross, Jörg
2017-04-01
Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, with their formation in the Earth's upper atmosphere modulated by changes to the geomagnetic field, as well as variations in the intensity of the solar wind. Here, we present 54 14C measurements from a terrestrial fen peat core extracted from the site of Tenaghi Philippon, NE Greece, contiguously spanning the time period between 48,000 and 39,000 cal. BP. Utilising the most pronounced cosmogenic production peak of the last 100,000 years - that associated with the Laschamp geomagnetic excursion circa 41,000 years ago - we exploit this common production signal, comparing Greenland 10Be with our Tenaghi Philippon 14C record, thereby providing a means to assess the concordance between the radiocarbon (IntCal) and Greenland ice-core (GICC05) timescales themselves for this, the oldest portion of the radiocarbon technique.
Low-Cost High-Pressure Hydrogen Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cropley, Cecelia C.; Norman, Timothy J.
Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES)more » developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.« less
The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...
Advanced catalyst supports for PEM fuel cell cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Shao, Yuyan; Sun, Junming
2016-11-01
Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.
Preventing CO poisoning in fuel cells
Gottesfeld, Shimshon
1990-01-01
Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.
Helmersson, Andreas; von Arnold, Sara; Burg, Kornel; Bozhkov, Peter V
2004-10-01
Somatic embryos of Norway spruce (Picea abies (L.) Karst.) differentiate from proembryogenic masses (PEMs), which are subject to autodestruction through programmed cell death. In PEMs, somatic embryo formation and activation of programmed cell death are interrelated processes. We sought to determine if activation of programmed cell death in PEMs is caused by genetic aberrations during somatic embryogenesis. Based on the finding that withdrawal of auxin and cytokinin induces programmed cell death in PEMs, 1-week-old cell suspensions were cultured in medium either with or without auxin and cytokinin and then transferred to maturation medium containing abscisic acid. We analyzed the stability of three nuclear simple sequence repeat (SSR) microsatellite markers at successive stages of somatic embryogenesis in two cell lines. There were no mutations at the SSR loci at any of the successive developmental stages from PEMs to cotyledonary embryos, irrespective of whether or not the proliferation medium in which cell suspensions had been cultured contained auxin or cytokinin. The morphologies of plants regenerated from the cultures were similar, although withdrawal of auxin and cytokinin significantly stimulated the yield of both embryos and plants. We conclude, therefore, that the high genetic stability of somatic embryos in Norway spruce is unaffected by the induction of programmed cell death caused by withdrawal of auxin and cytokinin.
A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1996-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.
A novel unitized regenerative proton exchange membrane fuel cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1995-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
Tarasen, Ashley; Carlson, J Andrew; Leonard, M Kathryn; Merlino, Glenn; Kaetzel, David; Slominski, Andrzej T
2017-08-15
Pigmented epithelioid melanocytoma (PEM) is a tumor encompassing epithelioid blue nevus of Carney complex (EBN of CNC) and was previously termed animal-type melanoma. Histologically PEMs are heavily pigmented spindled and epithelioid dermal melanocytic tumors with infiltrative borders, however, their origin remains unclear. Stem cells for the epidermis and hair follicle are located in the bulge area of the hair follicle with the potential to differentiate into multiple lineages. Multiple cutaneous carcinomas, including follicular cutaneous squamous cell carcinoma (FSCC), are thought to arise from stem cells in the follicular bulge. We present two cases of PEM/ATM in a 63 year-old male on the scalp with follicular origin and a 72 year-old female on the upper back arising in an intradermal nevus. Biopsy of both cases revealed a proliferation of heavily pigmented dermal nests of melanocytes with atypia. The Case 1 tumor was in continuation with the outer root sheath of the hair follicle in the bulge region. Case 2 arose in an intradermal melanocytic nevus. Rare mitotic figures, including atypical mitotic figures, were identified in both cases. We present two cases of PEM, with histologic evidence suggesting two origins: one from the follicular bulb and one from an intradermal nevus.
Induction of bovine polioencephalomalacia with a feeding system based on molasses and urea.
Mella, C M; Perez-Oliva, O; Loew, F M
1976-01-01
Polioencephalomalacia (PEM), a disease first described in the United States and related to intensive beef production, appeared in Cuba coincident with the use of a new, molasses-urea-based diet to fatten bulls. Because the only experimental means so far of reproducing PEM has been with amprolium, a structural analog of thiamin, the present study attempted to induce the disease using the molasses-urea-based diet. Six Holstein bulls (200-300 kg) were studied during consumption of three successive diets: 1) commercial molasses-urea-restricted forage diet of Cuban feedlots, 2) a period in which forage was gradually withdrawn and 3) a forage-free diet composed only of molasses, urea and fish meal. PEM was reproduced in this way. At ten-day intervals, blood concentrations of glucose, lactate, pyruvate and urea were measured, as well as when clinical signs of PEM appeared. The signs, clinical course and lesions of the experimentally induced disease were comparable to those of field cases. The biochemical results suggested a block in pyruvate oxidation as in PEM elsewhere in the world. No evidence existed of urea intoxication. In addition, brain and liver concentration of total thiamin from field cases and normal animals were found to be similar. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1000370
Capobianco, Joseph A.; Shih, Wan Y.; Adams, Gregory P.; Shih, Wei-Heng
2011-01-01
We have investigated real-time, label-free, in-situ detection of human epidermal growth factor receptor 2 (Her2) in diluted serum using the first longitudinal extension mode of a lead zirconate-lead titanate (PZT)/glass piezoelectric microcantilever sensor (PEMS) with H3 single-chain variable fragment (scFv) immobilized on the 3-mercaptopropyltrimethoxysilane (MPS) insulation layer of the PEMS surface. We showed that with the longitudinal extension mode, the PZT/glass PEMS consisting of a 1 mm long and 127 μm thick PZT layer bonded with a 75 μm thick glass layer with a 1.8 mm long glass tip could detect Her2 at a concentration of 6-60 ng/ml (or 0.06-0.6 nM) in diluted human serum, about 100 times lower than the concentration limit obtained using the lower-frequency flexural mode of a similar PZT/glass PEMS. We further showed that with the longitudinal mode, the PZT/glass PEMS determined the equilibrium H3-Her2 dissociation constant Kd to be 3.3±0.3 × 10-8 M consistent with the value, 3.2±0.28 ×10-8 M deduced by the surface plasmon resonance method (BIAcore). PMID:22888196
NASA Astrophysics Data System (ADS)
Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.
2016-03-01
Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.
On-road particle number measurements using a portable emission measurement system (PEMS)
NASA Astrophysics Data System (ADS)
Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten
2016-01-01
In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.
Third-space fluid distribution of pemetrexed in non-small cell lung cancer patients.
Honoré, Per Hartvig; Joensen, Sigrid Jóhansdóttir; Olsen, Michelle; Hansen, Steen Honoré; Mellemgaard, Anders
2014-08-01
Hydrophilic drugs particularly those with low plasma protein binding may accumulate in third-space fluid in the body. Cytotoxic drugs like methotrexate (MTX) cause damage in the tissue, and evacuation of the third-space fluid in pleura is strongly recommended before new dosing. Pemetrexed (PEM) is a multi-targeted antifolate similar to MTX approved for the treatment for malignant pleural mesothelioma and non-small cell lung cancer. Current recommendations for patients receiving treatment with PEM prescribe draining of the pleural fluid. This is based upon the recommendations for MTX and not directly to any specific findings relating to PEM. The recommendations are the same because PEM is an analogue of MTX; the molecular structures and pharmacokinetic parameters are similar. However, since draining the pleural fluid is painful and cancer patient are particularly susceptible to infection subsequently, it is relevant to examine the recommendations for PEM explicitly. Eight patients treated with a 500 mg/m(2) PEM combined with platinum salt were examined. Plasma samples were first collected in relation to the start of PEM infusion. Thereafter, plasma and pleura samples were taken at various times after drug infusion from each patient; in two patients, sampling was done twice but on different occasions. The quantitative determination of PEM was performed with reversed-phase high-performance liquid chromatography, and sample preparation was performed using protein precipitation with perchloric acid. Pharmacokinetic analysis was performed using a non-compartment method as well a two-compartment model. The results were calculated from 10 samples taken from eight patients, where data from one patient point were excluded as the patient had impaired renal function, and three samples were reported as below limit of quantification. The plasma PEM pharmacokinetics calculated showed an elimination half-life (t ½ elimination) of 3.2 h and distribution half-life (t ½-distribution) of 6 min. Clearance (CL) was 5.1 L/h, central volume of distribution (V(central)) 23.2 L and peripheral volume distribution (V(peripheral)) 10.6 L, and the area under the curve was 186 μg h/mL. Using non-compartment methods, an elimination half-life of 3.1 h and an apparent CL of 3.2 L/h were measured, whereas an apparent steady-state volume became 14.2 L. The pleura concentrations were only half of simultaneous plasma concentrations, and elimination half-life was 3.15 h. Pemetrexed is not likely to accumulate in the pleural fluid, and evacuation of fluid might not be necessary. Further investigation is needed to recommend no drainage of the fluid, i.e., in patients with renal impairment.
ERIC Educational Resources Information Center
Portnova, Tatiana V.
2016-01-01
The paper deals with various practices and methods for actualization of the scientific information in art excursions. The modern society is characterized by commitment to information richness. The range of cultural and historical materials used as the basis for art excursions is really immense. However if to consider the number of excursions with…
40 CFR 1065.925 - PEMS preparation for field testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 1065.925 Section 1065.925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... purge any gaseous sampling PEMS instruments with ambient air until sampling begins to prevent system contamination from excessive cold-start emissions. (e) Conduct calibrations and verifications. (f) Operate any...
Plastic Encapsulated Microcircuits (PEMs) Reliability Guide
NASA Technical Reports Server (NTRS)
Sandor, M.
2000-01-01
It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.
Positron Emission Mammography with Multiple Angle Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark F. Smith; Stan Majewski; Raymond R. Raylman
2002-11-01
Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less
Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E
2017-11-01
The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary; ...
2017-06-06
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Müller, F H H; Farahati, J; Müller, A G; Gillman, E; Hentschel, M
2016-01-01
To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.
Design of metallic bipolar plates for PEM fuel cells.
DOT National Transportation Integrated Search
2012-01-01
This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...
PEM fuel cell stack heat and mass management
NASA Technical Reports Server (NTRS)
Vanderborgh, Nicholas E.; Kimble, Michael C.; Huff, James R.; Hedstrom, James C.
1992-01-01
PEM stacks are under evaluation as candidates for future space power technology. Results of long-term operation on a set of contemporary stacks fitted with different proton exchange membrane materials are given. Data on water balances show effects of membrane materials on stack performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy
NASA Astrophysics Data System (ADS)
Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.
2016-01-01
Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.
NASA Technical Reports Server (NTRS)
Hoebel, Louis J.
1993-01-01
The problem of plan generation (PG) and the problem of plan execution monitoring (PEM), including updating, queries, and resource-bounded replanning, have different reasoning and representation requirements. PEM requires the integration of qualitative and quantitative information. PEM is the receiving of data about the world in which a plan or agent is executing. The problem is to quickly determine the relevance of the data, the consistency of the data with respect to the expected effects, and if execution should continue. Only spatial and temporal aspects of the plan are addressed for relevance in this work. Current temporal reasoning systems are deficient in computational aspects or expressiveness. This work presents a hybrid qualitative and quantitative system that is fully expressive in its assertion language while offering certain computational efficiencies. In order to proceed, methods incorporating approximate reasoning using hierarchies, notions of locality, constraint expansion, and absolute parameters need be used and are shown to be useful for the anytime nature of PEM.
Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.
Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used tomore » better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.« less
Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan
2008-05-01
An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
Scalar excursions in large-eddy simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Dimotakis, Paul E.
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
Scalar excursions in large-eddy simulations
Matheou, Georgios; Dimotakis, Paul E.
2016-08-31
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
Grudniewicz, Agnes; Bhattacharyya, Onil; McKibbon, K Ann; Straus, Sharon E
2015-11-04
Printed educational materials (PEMs) are a frequently used tool to disseminate clinical information and attempt to change behavior within primary care. However, their effect on clinician behavior is limited. In this study, we explored how PEMs can be redesigned to better meet the needs of primary care physicians (PCPs) and whether usability and selection can be increased when design principles and user preferences are used. We redesigned a publicly available PEM using physician preferences, design principles, and graphic designer support. We invited PCPs to select their preferred document between the redesigned and original versions in a discrete choice experiment, followed by an assessment of usability with the System Usability Scale and a think aloud process. We conducted this study in both a controlled and opportunistic setting to determine whether usability testing results vary by study location. Think aloud data was thematically analyzed, and results were interpreted using the Technology Acceptance Model. One hundred and eighty four PCPs participated in the discrete choice experiment at the 2014 Family Medicine Forum, a large Canadian conference for family physicians. Of these, 87.7 % preferred the redesigned version. Follow-up interviews were held with a randomly selected group of seven participants. We repeated this in a controlled setting in Toronto, Canada, with a set of 14 participants. Using the System Usability Scale, we found that usability scores were significantly increased with the redesign (p < 0.001). We also found that when PCPs were given the choice between the two versions, they selected the redesigned version as their preferred PEM more often than the original (p < 0.001). Results did not appear to differ between the opportunistic and controlled setting. We used the results of the think aloud process to add to a list of end user preferences developed in a previous study. We found that redesigning a PEM with user preferences and design principles can improve its usability and result in the PEM being selected more often than the original. We feel this finding supports the involvement of the user, application of design principles, and the assistance of a graphic designer in the development of PEMs.
Exp.55_US_EVA_49_03_2018_088_1430_633697
2018-03-30
SPACE STATION CREW WALKS IN SPACE TO UPGRADE SYSTEMS Veteran NASA astronauts Drew Feustel and Ricky Arnold ventured outside the International Space Station March 29 clad in U.S. spacesuits to install wireless communications antennas on the Tranquility module, replace a camera system on the port truss and remove suspect hoses from a cooling system. The excursion was the 209th in space station history for assembly, maintenance and upgrades, the seventh in Feustel’s career and the third for Arnold.
Exp.55_US_EVA_49_02_2018_088_1230_633620
2018-03-30
SPACE STATION CREW WALKS IN SPACE TO UPGRADE SYSTEMS----------------------Veteran NASA astronauts Drew Feustel and Ricky Arnold ventured outside the International Space Station March 29 clad in U.S. spacesuits to install wireless communications antennas on the Tranquility module, replace a camera system on the port truss and remove suspect hoses from a cooling system. The excursion was the 209th in space station history for assembly, maintenance and upgrades, the seventh in Feustel’s career and the third for Arnold.
EXP.55_US_EVA_49_04_2018_088_1630_633783
2018-04-02
SPACE STATION CREW WALKS IN SPACE TO UPGRADE SYSTEMS-----------------------Veteran NASA astronauts Drew Feustel and Ricky Arnold ventured outside the International Space Station March 29 clad in U.S. spacesuits to install wireless communications antennas on the Tranquility module, replace a camera system on the port truss and remove suspect hoses from a cooling system. The excursion was the 209th in space station history for assembly, maintenance and upgrades, the seventh in Feustel’s career and the third for Arnold.
Exp.55_US_EVA_49_01_2018_088_1029_633551
2018-03-30
SPACE STATION CREW WALKS IN SPACE TO UPGRADE SYSTEMS----------------Veteran NASA astronauts Drew Feustel and Ricky Arnold ventured outside the International Space Station March 29 clad in U.S. spacesuits to install wireless communications antennas on the Tranquility module, replace a camera system on the port truss and remove suspect hoses from a cooling system. The excursion was the 209th in space station history for assembly, maintenance and upgrades, the seventh in Feustel’s career and the third for Arnold.
Corrosion resistant PEM fuel cell
Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.
2011-06-07
A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.
DOT National Transportation Integrated Search
2014-08-01
The practice of placing an open-graded friction course (OGFC) or a porous European mix (PEM) : directly on top of a conventional milled surface has rarely been done in Georgia due to concerns that this : rehabilitation method could potentially cause ...
Corrosion resistant PEM fuel cell
Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.
2002-01-01
A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.
Brazed bipolar plates for PEM fuel cells
Neutzler, Jay Kevin
1998-01-01
A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-02-01
Integrated Ocean Drilling Program (IODP) Site U1302/3 (Orphan Knoll, off Newfoundland) recorded magnetic excursions in marine isotope stages (MIS) 9a (at 286 ka) and 13a (at 495 ka). Sites U1306 and U1305 (Eirik Drift, off SE Greenland) record excursions in MIS 14a/b (at 540 ka) and 15b/c (at 590 ka). In the excursion intervals, magnetic measurements of continuous "u-channel" samples from multiple holes within site are augmented by measurements of cubic (8 cm3) discrete samples. The excursions lie in relative paleointensity (RPI) minima at each site and in RPI reference stacks, and correspond to dated intervals of 10Be overproduction in other deep-sea sediment records. Although observed at multiple holes at each site, and from u-channel and discrete samples, the excursions are not observed at all three sites, and often at only one of the three sites. Sporadic recording of these magnetic excursions, and excursions in general, is attributed to a combination of filtering by the process of acquisition of detrital remanent magnetization (DRM), postdepositional overprint of weak excursion magnetizations, the millennial or even centennial duration of directional excursions, and nonuniform sedimentation rates at these timescales in North Atlantic sediment drifts.
High-resolution palaeomagnetic records of the Laschamp geomagnetic excursion from the Blake Ridge
NASA Astrophysics Data System (ADS)
Mac Niocaill, C.; Bourne, M. D.; Thomas, A. L.; Henderson, G. M.
2013-05-01
Geomagnetic excursions are brief (1000s of years) deviations in geomagnetic field behaviour from that expected during 'normal secular' variation. The Laschamp excursion (~41 ka) was a global deviation in geomagnetic field behaviour. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. Accurate dating of excursions and determinations of their durations from multiple locations is vital to our understanding to global field behaviour during these deviations. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) Relatively high sedimentation rates (~30-40 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Despite their advantages, sedimentary records can be limited by the potential for unrecognized variations in sedimentation rates between widely spaced age-constrained boundaries. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of the concentration of 230Thxs in the sediment. 230Thxs is a constant flux proxy and may be used to assess variations in the sedimentation rates through the core sections of interest. Following this approach, we present a new age model for Site 1061 that allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 200 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two prominent minima, the first associated with the Laschamp excursion at 41 ka and the second at ~34 ka, possibly associated with the elusive 'Mono-Lake' excursion. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years. Using the 230Thxs derived sedimentation rate, we determine that the directional excursion at this location was no longer than ~400 years, occurring within a palaeointensity low lasting 2000 years. We compare this record with previously published records of the Blake and Iceland Basin Excursions from nearby locations. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions.
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.
Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota
2018-06-13
European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Tarasen, Ashley; Carlson, J. Andrew; Leonard, M. Kathryn; Merlino, Glenn; Kaetzel, David
2017-01-01
Pigmented epithelioid melanocytoma (PEM) is a tumor encompassing epithelioid blue nevus of Carney complex (EBN of CNC) and was previously termed animal-type melanoma. Histologically PEMs are heavily pigmented spindled and epithelioid dermal melanocytic tumors with infiltrative borders, however, their origin remains unclear. Stem cells for the epidermis and hair follicle are located in the bulge area of the hair follicle with the potential to differentiate into multiple lineages. Multiple cutaneous carcinomas, including follicular cutaneous squamous cell carcinoma (FSCC), are thought to arise from stem cells in the follicular bulge. We present two cases of PEM/ATM in a 63 year-old male on the scalp with follicular origin and a 72 year-old female on the upper back arising in an intradermal nevus. Biopsy of both cases revealed a proliferation of heavily pigmented dermal nests of melanocytes with atypia. The Case 1 tumor was in continuation with the outer root sheath of the hair follicle in the bulge region. Case 2 arose in an intradermal melanocytic nevus. Rare mitotic figures, including atypical mitotic figures, were identified in both cases. We present two cases of PEM, with histologic evidence suggesting two origins: one from the follicular bulb and one from an intradermal nevus. PMID:28809777
Readability Assessment of Internet-Based Patient Education Materials Related to Parathyroid Surgery.
Patel, Chirag R; Sanghvi, Saurin; Cherla, Deepa V; Baredes, Soly; Eloy, Jean Anderson
2015-07-01
Patient education is critical in obtaining informed consent and reducing preoperative anxiety. Written patient education material (PEM) can supplement verbal communication to improve understanding and satisfaction. Published guidelines recommend that health information be presented at or below a sixth-grade reading level to facilitate comprehension. We investigate the grade level of online PEMs regarding parathyroid surgery. A popular internet search engine was used to identify PEM discussing parathyroid surgery. Four formulas were used to calculate readability scores: Flesch Reading Ease (FRE), Flesch-Kincaid Grade Level (FKGL), Gunning Frequency of Gobbledygook (GFOG), and Simple Measure of Gobbledygook (SMOG). Thirty web-based articles discussing parathyroid surgery were identified. The average FRE score was 42.8 (±1 standard deviation [SD] 16.3; 95% confidence interval [CI], 36.6-48.8; range, 6.1-71.3). The average FKGL score was 11.7 (±1 SD 3.3; 95% CI, 10.5-12.9; range, 6.1-19.0). The SMOG scores averaged 14.2 (±1 SD 2.6; 95% CI, 13.2-15.2; range, 10.7-21.9), and the GFOG scores averaged 15.0 (±1 SD 3.5; 95% CI, 13.7-16.3; range, 10.6-24.8). Online PEM on parathyroid surgery is written above the recommended sixth-grade reading level. Improving readability of PEM may promote better health education and compliance. © The Author(s) 2015.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
Brazed bipolar plates for PEM fuel cells
Neutzler, J.K.
1998-07-07
A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.
2. Credit PEM. View of Martinsburg Power Company steam generating ...
2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
Proton-conducting membranes for PEM fuel cells
NASA Astrophysics Data System (ADS)
Di Vona, M. L.; Knauth, P.; Alberti, G.
This special volume of the «Journal of Power Sources» contains some of the most relevant papers submitted at the occasion of the symposium «Materials for PEM Fuel Cells», organized by us at the European Materials Research Society Spring Meeting from June 8 to 12, 2009 in Strasbourg, France.
Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads
DOT National Transportation Integrated Search
2001-01-01
Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...
NASA Astrophysics Data System (ADS)
Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping
2015-04-01
The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.
NASA Astrophysics Data System (ADS)
Leclerc, Melanie R.; Côté, Patrice; Duchesne, François; Bastien, Pierre; Hernandez, Olivier; Colonna d'Istria, Pierre; Demers, Mathieu; Girard, Marc; Savard, Maxime; Lemieux, Dany; Thibault, Simon; Brousseau, Denis
2014-08-01
A polarimeter, to observe exoplanets in the visible and infrared, was built for the "Observatoire du Mont Mégantic" (OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics was developed to measure the AC and DC amplitudes, and characterization results are presented.
NASA Astrophysics Data System (ADS)
Bourne, Mark; Mac Niocaill, Conall; Thomas, Alex L.; Knudsen, Mads Faurschou; Henderson, Gideon M.
2012-06-01
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (∼125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (∼10 cm ka-1) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.
NASA Astrophysics Data System (ADS)
Bourne, M. D.; Henderson, G. M.; Thomas, A. L.; Mac Niocaill, C.
2012-12-01
The Laschamp geomagnetic excursion (~41 ka) was a brief global deviation in geomagnetic field behaviour from that expected during normal secular variation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) and compare this record with previously published records of the Blake and Iceland Basin Excursions. Relatively high sedimentation rates (>10 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentration in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 500 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two minima, where the second dip in intensity is associated with a more limited directional deviation. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years.
Towards developing a backing layer for proton exchange membrane electrolyzers
NASA Astrophysics Data System (ADS)
Lettenmeier, P.; Kolb, S.; Burggraf, F.; Gago, A. S.; Friedrich, K. A.
2016-04-01
Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm2, increasing significantly the efficiency of the device when operating at high current densities.
Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walczyk, Daniel F.
2015-08-26
The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurementmore » techniques for use by industry.« less
Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2013-03-30
Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less
Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav
2016-01-01
To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).
A Whale of an Interest in Sea Creatures: The Learning Potential of Excursions
ERIC Educational Resources Information Center
Hedges, Helen
2004-01-01
Excursions, or field trips, are a common component of early childhood programs, seen as a means of enriching the curriculum by providing experiences with people, places, and things in the community. Although excursions have been used as a framework for research on children's memory development, research on the efficacy of excursions in terms of…
Baudry, Stéphane; Gaillard, Vinciane
2014-02-01
This study was designed to investigate the influence of a cognitive task on the responsiveness of the homonymous Ia afferents pathway during upright standing in young and elderly adults. Twelve young and twelve elderly adults stood upright on a foam surface positioned over a force platform, and performed a colour-naming test (cognitive task) with two cognitive loads: congruent and incongruent colour conditions. The rate of correct response in naming colour (accuracy) and associated reaction time (RT) were recorded for the cognitive task. The excursion of the centre of pressure and surface electromyogramme (EMG) of leg muscles were measured. Modulation in the efficacy of homonymous Ia afferents to discharge spinal motor neurones was assessed by means of the Hoffmann (H) reflex method. The accuracy and RT were similar in the congruent condition between young and elderly adults (p > 0.05), and increased for both age groups in the incongruent condition, but more so for elderly adults (p = 0.014). In contrast, the H reflex amplitude did not change with the cognitive load. The excursions of the centre of pressure in the sagittal plane and muscle EMG did not vary with colour conditions in both groups (p > 0.05). This study indicates a lack of modulation in the efficacy of group Ia afferent to activate soleus motor neurones with the cognitive demand of a concurrent task during upright standing in young and elderly adults.
Clinician Resources to Improve Evidence-Based Sexual Healthcare: Does Content and Design Matter?
ERIC Educational Resources Information Center
Hosseinzadeh, Hassan; Dadich, Ann; Bourne, Chris; Murray, Carolyn
2014-01-01
This study examines how the design and content of printed educational materials (PEMs) influence clinician capacity to deliver evidence-based sexual healthcare. General practitioners in New South Wales, Australia (n = 214), completed a survey about their use and perceptions of PEMs - a clinical aide, sexual health articles, and an educational…
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; ...
2016-08-22
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
Nutritional status of pavement dweller children of Calcutta City.
Ray, S K; Mishra, R; Biswas, R; Kumar, S; Halder, A; Chatterjee, T
1999-01-01
Pavement dwelling is likely to aggravate malnutrition among its residents due to extreme poverty, lack of dwelling and access to food and their exposure to polluted environment. Paucity of information about nutritional status of street children compared to that among urban slum dwellers, squatters or rural/tribal population is quite evident. The present study revealed the magnitude of Protein Energy Malnutrition (PEM) and few associated factors among a sample of 435 underfives belonging to pavement dweller families and selected randomly from clusters of such families, from each of the five geographical sectors of Calcutta city. Overall prevalence of PEM was found almost similar (about 70%) to that among other 'urban poor' children viz. slum dwellers etc., but about 16% of them were found severely undernourished (Grade III & V of IAP classification of PEM). About 35% and 70% of street dweller children had wasting and stunting respectively. Severe PEM (Grade III & IV) was more prevalent among 12-23 months old, girl child, those belonged to illiterate parents and housewife mothers rather than wage earners. It also did increase with increase of birth rate of decrease of birth interval.
Study of sporadical properties of crosslinked polyelectrolyte multilayers
NASA Astrophysics Data System (ADS)
Balu, Deebika
Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
NASA Astrophysics Data System (ADS)
Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung
2016-09-01
Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.
HO(x) Measurements in PEM Tropics B with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)
NASA Technical Reports Server (NTRS)
Brune, William H.
2001-01-01
The primary objective of PEM Tropics B was to study the processes responsible for the production and loss of tropospheric ozone over the tropical Pacific. This region of the globe contains very clean air as well as aged, polluted air that was advected from both the Asian and American continents. Understanding ozone requires understanding of HO(x) (HO(x) = OH + HO2) chemistry, since the reaction between H02 and NO leads to ozone production and the production of OH often requires ozone loss. In addition, OH is the atmosphere's primary oxidant. Since most atmospheric oxidation is thought to occur in the tropical lower troposphere, measurements during PEM Tropics B should provide an important test of the OH abundances and distributions. Thus, understanding and thoroughly testing HO(x) processes was an important objective of PEM Tropics B. Several issues need to be tested, One is HO, production rates and sources, since HO,, production directly affects ozone production and loss. Another is HO(x) behavior in and around clouds, since HO(x) is lost to cloud particles, but convection may bring HO(x) precursors from near the surface to the upper troposphere. A third is the rise and fall of HO(x) at sunrise and sunset, since these variations give strong indications of the important sources and sinks of HO(x). Making and interpreting high-quality OH and H02 measurements from the NASA DC-8 during PEM Tropics B is the objective of this research effort.
Readability and Understandability of Online Vocal Cord Paralysis Materials.
Balakrishnan, Vini; Chandy, Zachariah; Hseih, Amy; Bui, Thanh-Lan; Verma, Sunil P
2016-03-01
Patients use several online resources to learn about vocal cord paralysis (VCP). The objective of this study was to assess the readability and understandability of online VCP patient education materials (PEMs), with readability assessments and the Patient Education Materials Evaluation Tool (PEMAT), respectively. The relationship between readability and understandability was then analyzed. Descriptive and correlational design. Online PEMs were identified by performing a Google search with the term "vocal cord paralysis." After scientific webpages, news articles, and information for medical professionals were excluded, 29 articles from the first 50 search results were considered. Readability analysis was performed with 6 formulas. Four individuals with different educational backgrounds conducted understandability analysis with the PEMAT. Fleiss's Kappa interrater reliability analysis determined consistency among raters. Correlation between readability and understandability was determined with Pearson's correlation test. The reading level of the reviewed articles ranged from grades 9 to 17. Understandability ranged from 29% to 82%. Correlation analysis demonstrated a strong negative correlation between materials' readability and understandability (r = -0.462, P < .05). Online PEMs pertaining to VCP are written above the recommended reading levels. Overall, materials written at lower grade levels are more understandable. However, articles of identical grade levels had varying levels of understandability. The PEMAT may provide a more critical evaluation of the quality of a PEM when compared with readability formulas. Both readability and understandability should be used to evaluate PEMs. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Luces, Candace A.; Warner, Isiah M.
2014-01-01
Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738
Goldman, Ran D; Cheng, Adam; Jarvis, Anna; Keogh, Kelly; Lu, Guo-ping; Wang, Jian-she; Kissoon, Niranjan; Larson, Charles
2011-12-01
The health care system reform in the People's Republic of China has brought plans for establishment of a universal coverage for basic health services, including services for children. This effort demands significant change in health care planning. Pediatric emergency medicine (PEM) is not currently identified as a specialty in China, and emergency medicine systems suffer from lack of appropriate training.In 2006, the Centre for International Child Health and the Department of Pediatrics, British Columbia Children's Hospital, Vancouver, Canada, initiated a fellowship training program in PEM for pediatricians working in emergency departments or critical care settings with the Children's Hospital of Fudan University, China. The main objective was to upgrade the professional and clinical experience of emergency physicians practicing PEM and build PEM capacity throughout China by training the future trainers. After selecting trainees, the program included a structured curriculum over 2 years of training in China by Canadian and Australian PEM faculty and then practical exposure to PEM in Canada. All trainees underwent a structured evaluation after their final rotation in Canada. A total of 12 trainees completed the first 2 program cycles. The trainees considered the "overall rating of the training experience" as "excellent" (10/12) or "good" (2/12). All trainees considered the program as a relevant training to their practice and felt it will change their practice. They reported the program to be effective, with excellent complexity of content. Despite its current success, the program faces challenges in the development of the new subspecialty and ensuring its acceptance among other health care providers and decision makers. Identification and preparation of a capable training force to lead educational activities in China are daunting tasks. Time constraints, funding, and language barriers are other challenges. Future effort should be focused on improving and sustaining resuscitation capacity and enhancing triage systems.
Protein energy malnutrition in India: the plight of our under five children.
Bhutia, Dechenla Tshering
2014-01-01
Protein energy malnutrition (PEM) is a major public health problem in India. This affects the child at the most crucial period of time of development, which can lead to permanent impairment in later life. PEM is measured in terms of underweight (low weight for age), stunting (low height for age) and wasting (low weight for height). The prevalence of stunting among under five is 48% and wasting is 19.8% and with an underweight prevalence of 42.5%, it is the highest in the world. Undernutrition predisposes the child to infection and complements its effect in contributing to child mortality. Lalonde model (1974) is used to look into the various determinants of PEM in under five children and its interrelation in causation of PEM. The determinants of PEM are broadly classified under four distinct categories: Environmental factors including the physical and social environment, behavioral factors, health-care service related and biological factors. The socio-cultural factors play an important role wherein, it affects the attitude of the care giver in feeding and care practices. Faulty feeding practice in addition to poor nutritional status of the mother further worsens the situation. The vicious cycle of poor nutritional status of the mother leading to low birth weight child further exposes the child to susceptibility to infections which aggravates the situation. However, it is seen that percapita income of the family did not have much bearing on the poor nutritional status of the child rather lack of proper health-care services adversely contributed to poor nutritional status of the child. PEM is a critical problem with many determinants playing a role in causing this vicious cycle of undernutrition. With almost half of under five children undernourished in India, the Millennium Development Goal (MDG) of halving the prevalence of underweight by 2015 seems a distant dream.
Direct optical imaging of nanoscale internal organization of polymer films
NASA Astrophysics Data System (ADS)
Suran, Swathi; Varma, Manoj
2018-02-01
Owing to its sensitivity and precise control at the nanoscale, polyelectrolytes have been immensely used to modify surfaces. Polyelectrolyte multilayers are generally water made and are easy to fabricate on any surface by the layer-by-layer (LbL) self-assembly process due to electrostatic interactions. Polyelectrolyte multilayers or PEMs can be assembled to form ultrathin membranes which can have potential applications in water filtration and desalination [1-3]. Hydration in PEMs is a consequence of both the bulk and surface phenomenon [4-7]. Bulk behavior of polymer membranes are well understood. Several techniques including reflectivity and contact angle measurements were used to measure the hydration in the bulk of polymer membranes [4, 8]. On the other hand their internal organization at the molecular level which can have a profound contribution in the transport mechanism, are not understood well. Previously, we engineered a technique, which we refer to as Bright-field Nanoscopy, which allows nanoscale optical imaging using local heterogeneities in a water-soluble germanium (Ge) thin film ( 25 nm thick) deposited on gold [8]. We use this technique to study the water transport in PEMs. It is understood that the surface charge and outer layers of the PEMs play a significant role in water transport through polymers [9-11]. This well-known `odd-even' effect arising on having different surface termination of the PEMs was optically observed with a spatial resolution unlike any other reported previously [12]. In this communication, we report that on increasing the etchant's concentration, one can control the lateral etching of the Ge film. This allowed the visualization of the nanoscale internal organization in the PEMs. Knowledge of the internal structure would allow one to engineer polymer membranes specific to applications such as drug delivering capsules, ion transport membranes and barriers etc. We also demonstrate a mathematical model involving a surface permeability term which captures the experimentally observed odd-even effect.
Eltorai, Adam E M; Cheatham, Morgan; Naqvi, Syed S; Marthi, Siddharth; Dang, Victor; Palumbo, Mark A; Daniels, Alan H
2016-06-01
Analysis of spine-related patient education materials (PEMs) from subspecialty websites. The aim of this study was to assess the readability of spine-related PEMs and compare to readability data from 2008. Many spine patients use the Internet for health information. Several agencies recommend that the readability of online PEMs should be no greater than a sixth-grade reading level, as health literacy predicts health-related quality of life outcomes. This study evaluated whether the North American Spine Society (NASS), American Association of Neurological Surgeons (AANS), and American Academy of Orthopaedic Surgeons (AAOS) online PEMs meet recommended readability guidelines for medical information. All publicly accessible spine-related entries within the patient education section of the NASS, AANS, and AAOS websites were analyzed for grade level readability using the Flesch-Kincaid formula. Readability scores were also compared with a similar 2008 analysis. Comparative statistics were performed. A total of 125 entries from the subspecialty websites were analyzed. The average (SD) readability of the online articles was grade level 10.7 (2.3). Of the articles, 117 (93.6%) had a readability score above the sixth-grade level. The readability of the articles exceeded the maximum recommended level by an average of 4.7 grade levels (95% CI, 4.292-5.103; P < 0.001). Compared with 2008, the three societies published more spine-related patient education articles (61 vs. 125, P = 0.045) and the average readability level improved from 11.5 to 10.7 (P = 0.018). Of three examined societies, only one showed significant improvement over time. Our findings suggest that the spine-related PEMs on the NASS, AAOS, and AANS websites have readability levels that may make comprehension difficult for a substantial portion of the patient population. Although some progress has been made in the readability of PEMs over the past 7 years, additional improvement is necessary. 2.
Jeon, Suk Ha; Chung, Moon Sang; Baek, Goo Hyun; Lee, Young Ho; Gong, Hyun Sik
2011-01-01
We attempted to determine whether muscle excursion observed during operation can be a prognostic indicator of muscle recovery after delayed tendon repair in a rabbit soleus model. Eighteen rabbits underwent tenotomy of the soleus muscles bilaterally and were divided into three groups according to the period from tenotomy to repair. The tendons of each group were repaired 2, 4, and 6 weeks after tenotomy. The excursion of each soleus muscle was measured at the time of tenotomy (baseline), at 2, 4, 6 weeks after tenotomy, and 8 weeks after tendon repair. The amount of muscle recovery after tendon repair in terms of muscle excursion independently depended on the timing of repair and on the muscle excursion observed during repair. The regression model predicted that the muscle excursion recovered on average by 0.6% as the muscle excursion at the time of repair increased by 1% after adjusting for the timing of repair. This study suggests that measuring the muscle excursion during tendon repair may help physicians estimate the potential of muscle recovery in cases of delayed tendon repair. Copyright © 2010 Orthopaedic Research Society.
Design of CO2 dispersion interferometer based on the ratio of modulation amplitudes on EAST
NASA Astrophysics Data System (ADS)
Li, W. M.; Liu, H. Q.; Yang, Y.; Zeng, L.; Yao, Y.; Zou, Z. Y.; Wei, X. C.; Jie, Y. X.
2018-02-01
A dispersion interferometer (DI) system is one of the more promising density measurement methods for large, high density fusion devices as they have considerable immunity to mechanical vibration and a shorter wavelength which helps to prevent fringe jump errors. In this paper, a DI system with a photoelastic modulator (PEM) has been designed for high density measurements on the EAST tokamak with vertical double pass optical layout. The bench test of all system components was done, especially for the specific nonlinear crystal for DI system. The second hamonic power with the AgGaSe2 nonlinear crystal can reach to 22.85 μW at 20 W fundamental power of CO2 laser. The second-harmonic power based on the AgGaSe2 show a good linear relationship with the various power of the CO2 laser. Based on the bench test results, the new DI system design will be realized and utilized on EAST.
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
NASA Astrophysics Data System (ADS)
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set theory (with a constant barrier height) makes a simple and general prediction for the relation between halo accretion histories and the large-scale environments of halos: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of the importance of this prediction relative to recent numerical studies of the environmental dependence of halo properties.
NASA Astrophysics Data System (ADS)
Bourne, M.; Mac Niocaill, C.; Knudsen, M. F.; Thomas, A. L.; Henderson, G. M.
2012-04-01
A full picture of geomagnetic field behaviour during the Blake excursion is currently limited by a paucity of robust, high-resolution records of this ambiguous event. Some records seem to point towards a 'double-excursion' character whilst others fail to record the Blake excursion at all. We present here a high-resolution record of the Blake excursion obtained from Ocean Drilling Program (ODP) Site 1062 on the Blake Outer Ridge (ODP Leg 172). Palaeomagnetic measurements in three cores reveal a single excursional feature associated with a broad palaeointensity low, characterised by rapid transitions (less than 500 years) between a stable normal polarity and a fully-reversed, pseudo-stable polarity. A relatively high sedimentation rate (~10 cm kyr-1) allows the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentrations in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to determine an age and duration for the two excursions with greater accuracy and known uncertainty. Our new age model gives an age of 127 ka for the midpoint of the Blake event at Site 1062. The age model also gives a duration for the directional excursion of 7.1±1.6 kyr. This duration is similar to that previously reported for the Iceland Basin Excursion (~185 ka) from the nearby Bermuda Rise (ODP Site 1063), which recorded a ~7-8 kyr event. Similarly, a high sedimentation rate (10-15 cm kyr-1) at this site allows a high-resolution reconstruction of the geomagnetic field behaviour during the Iceland Basin Excursion. The Site 1063 palaeomagnetic record suggests more complicated behaviour than that of the Blake excursion at Site 1062. Instead, transitional VGP paths are characterised by stop-and-go behaviour between VGP clusters that may be related to long-standing thermo-dynamic features of the core-mantle system. The long duration of fully reversed directions at the two sites is somewhat longer than that typically assumed for excursions and appears to suggest that there may be a degree of stability associated with the two excursional events. We will present a comparison of the geomagnetic field behaviour of the two excursions as recorded at these two sites.
Use of Breast-Specific PET Scanners and Comparison with MR Imaging.
Narayanan, Deepa; Berg, Wendie A
2018-05-01
The goals of this article are to discuss the role of breast-specific PET imaging of women with breast cancer, compare the clinical performance of positron emission mammography (PEM) and MR imaging for current indications, and provide recommendations for when women should undergo PEM instead of breast MR imaging. Published by Elsevier Inc.
Comparison of the Relative Effectiveness of Different Kinds of Reinforcers: A PEM Approach
ERIC Educational Resources Information Center
Ma, Hsen-Hsing
2009-01-01
The purpose of the present study was to apply the percentage of data points exceeding the median of baseline phase (PEM) approach for a meta-analysis of single-case experiments to compare the relative effectiveness of different kinds of reinforcers used in behavior modification. Altogether 153 studies were located, which produced 1091 effect…
Simulation results of a veto counter for the ClearPEM
NASA Astrophysics Data System (ADS)
Trummer, J.; Auffray, E.; Lecoq, P.
2009-04-01
The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.
Ellis, Richard; Osborne, Samantha; Whitfield, Janessa; Parmar, Priya; Hing, Wayne
2017-01-01
Objectives Research has established that the amount of inherent tension a peripheral nerve tract is exposed to influences nerve excursion and joint range of movement (ROM). The effect that spinal posture has on sciatic nerve excursion during neural mobilisation exercises has yet to be determined. The purpose of this research was to examine the influence of different sitting positions (slump-sitting versus upright-sitting) on the amount of longitudinal sciatic nerve movement during different neural mobilisation exercises commonly used in clinical practice. Methods High-resolution ultrasound imaging followed by frame-by-frame cross-correlation analysis was used to assess sciatic nerve excursion. Thirty-four healthy participants each performed three different neural mobilisation exercises in slump-sitting and upright-sitting. Means comparisons were used to examine the influence of sitting position on sciatic nerve excursion for the three mobilisation exercises. Linear regression analysis was used to determine whether any of the demographic data represented predictive variables for longitudinal sciatic nerve excursion. Results There was no significant difference in sciatic nerve excursion (across all neural mobilisation exercises) observed between upright-sitting and slump-sitting positions (P = 0.26). Although greater body mass index, greater knee ROM and younger age were associated with higher levels of sciatic nerve excursion, this model of variables offered weak predictability (R2 = 0.22). Discussion Following this study, there is no evidence that, in healthy people, longitudinal sciatic nerve excursion differs significantly with regards to the spinal posture (slump-sitting and upright-sitting). Furthermore, although some demographic variables are weak predictors, the high variance suggests that there are other unknown variables that may predict sciatic nerve excursion. It can be inferred from this research that clinicians can individualise the design of seated neural mobilisation exercises, using different seated positions, based upon patient comfort and minimisation of neural mechanosensitivity with the knowledge that sciatic nerve excursion will not be significantly influenced. PMID:28559669
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-04-17
Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.
Enabling Technologies for High-accuracy Multiangle Spectropolarimetric Imaging from Space
NASA Technical Reports Server (NTRS)
Diner, David J.; Macenka, Steven A.; Seshndri, Suresh; Bruce, Carl E; Jau, Bruno; Chipman, Russell A.; Cairns, Brian; Christoph, Keller; Foo, Leslie D.
2004-01-01
Satellite remote sensing plays a major role in measuring the optical and radiative properties, environmental impact, and spatial and temporal distribution of tropospheric aerosols. In this paper, we envision a new generation of spaceborne imager that integrates the unique strengths of multispectral, multiangle, and polarimetric approaches, thereby achieving better accuracies in aerosol optical depth and particle properties than can be achieved using any one method by itself. Design goals include spectral coverage from the near-UV to the shortwave infrared; global coverage within a few days; intensity and polarimetric imaging simultaneously at multiple view angles; kilometer to sub-kilometer spatial resolution; and measurement of the degree of linear polarization for a subset of the spectral complement with an uncertainty of 0.5% or less. The latter requirement is technically the most challenging. In particular, an approach for dealing with inter-detector gain variations is essential to avoid false polarization signals. We propose using rapid modulation of the input polarization state to overcome this problem, using a high-speed variable retarder in the camera design. Technologies for rapid retardance modulation include mechanically rotating retarders, liquid crystals, and photoelastic modulators (PEMs). We conclude that the latter are the most suitable.
Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito
2018-05-29
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes
2008-07-03
factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower
PEM fuel cell monitoring system
Meltser, Mark Alexander; Grot, Stephen Andreas
1998-01-01
Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.
2005-09-01
history . The fuel cell was sited between the student cafeteria and the Campbell Hall Com- bined Services ROTC Building. The fuel cell installation...produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites
Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.
Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng
2011-09-07
Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Khazaee, I.
2015-05-01
In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.
We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less
Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S
2014-11-01
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.
NASA Technical Reports Server (NTRS)
Chin, Mian; Thornton, Donald; Bandy, Alan; Huebert, Barry; Einaudi, Franco (Technical Monitor)
2000-01-01
The impact of anthropogenic activities on the SO2 and sulfate aerosol levels over the Pacific region is examined in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. We focus on the analysis of the data from the NASA Pacific Exploratory Missions (PEM) over the western North Pacific and the tropical Pacific. These missions include PEM-West A in September-October 1991, when the Asian outflow was at the minimum but the upper atmosphere was heavily influenced by the Pinatubo volcanic eruption, and PEM-West B in March-April 1994 when the Asian outflow was at the maximum, and PEM-Tropics A in August-September at a region relatively free of direct anthropogenic influences. Specifically, we will examine the relative importance of anthropogenic, volcanic and biogenic sources to the SO2 and sulfate concentrations over the Pacific, and quantify the processes controlling the distributions of SO2 and sulfate in both the boundary layer and the free troposphere. We will also assess the global impact of SO2 emission in Asia on the sulfate aerosol loading.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...
2016-07-06
We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.
2016-01-01
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719
NASA Astrophysics Data System (ADS)
Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman
2017-01-01
Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
NASA Astrophysics Data System (ADS)
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.
2016-07-01
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N
2016-07-06
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.
2015-02-01
HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.
Rostami, Hossein; Hamedi, Hassan; Yolmeh, Mahmoud
2016-12-01
The importance of replacing synthetic pigments with natural types is increasing day by day in the food industry due to the harmful effects of some synthetic pigments. Microorganisms are a major source of natural pigments, which nowadays have attracted the attention of researchers. In this study, carotenoid pigments were produced by Micrococcus roseus and Rhodotorula glutinis, and some of their biological properties such as antimicrobial, antioxidant, anticancer, and anti-inflammatory activities were evaluated. Given the results, bacteria, especially gram-positive bacteria, had higher sensitivity to the pigments extracted from M. roseus (PEM) and R. glutinis (PER) compared to molds so that Bacillus cereus and Alternaria citri had the highest and the lowest sensitivity, respectively. PER showed a higher antioxidant activity compared with PEM in the various methods of measuring antioxidant activity. In vitro and in vivo anti-tumor-promoting activities of PER were measured significantly more than PEM (P <0.05). Both pigment extracts remarkably inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, so that ID 50 (50% inhibitory dose) of PEM and PER were 0.22 and 0.09 mg/ear, respectively. © The Author(s) 2016.
Rostami, Hossein; Hamedi, Hassan; Yolmeh, Mahmoud
2016-01-01
The importance of replacing synthetic pigments with natural types is increasing day by day in the food industry due to the harmful effects of some synthetic pigments. Microorganisms are a major source of natural pigments, which nowadays have attracted the attention of researchers. In this study, carotenoid pigments were produced by Micrococcus roseus and Rhodotorula glutinis, and some of their biological properties such as antimicrobial, antioxidant, anticancer, and anti-inflammatory activities were evaluated. Given the results, bacteria, especially gram-positive bacteria, had higher sensitivity to the pigments extracted from M. roseus (PEM) and R. glutinis (PER) compared to molds so that Bacillus cereus and Alternaria citri had the highest and the lowest sensitivity, respectively. PER showed a higher antioxidant activity compared with PEM in the various methods of measuring antioxidant activity. In vitro and in vivo anti-tumor-promoting activities of PER were measured significantly more than PEM (P <0.05). Both pigment extracts remarkably inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, so that ID50 (50% inhibitory dose) of PEM and PER were 0.22 and 0.09 mg/ear, respectively. PMID:27895288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; Duleep, Dr. K. G.
2008-10-01
The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supplymore » is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.« less
Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Hill, James J.; Goodliff, Kandyce
2016-01-01
NASA is studying conceptual architectures for a "Proving Ground" near the Moon or in high lunar orbit to conduct human space exploration missions that bridge the gap between today's operations with the International Space Station (ISS) and future human exploration of Mars beginning in the 2030s. This paper describes the framework of a concept of operations ("Conops") for candidate activities in the Proving Ground. The Conops discusses broad goals that the Proving Ground might address, such as participation from commercial entities, support for human landings on the Moon, use of mature technologies, and growth of capability through a steady cadence of increasingly ambitious piloted missions. Additional Proving Ground objectives are outlined in a companion paper. Key elements in the Conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System (SLS) heavy-lift rocket. Potential additions include a new space suit, commercial launch vehicles and logistics carriers, Solar Electric Propulsion (SEP) stages to move elements between different orbits and eventually take them on excursions to deep space, a core module with multiple docking ports, a habitation block, and robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. A module providing advanced regenerative life support functions could launch to the ISS, and later move to the Proving Ground. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The Conops describes notional missions chosen to guide the design of the architecture and its elements. One such mission might be the delivery of a approximately 10-t Transit Habitat element, comanifested with Orion on a Block 1B SLS launcher, to the Proving Ground. In another mission, the architecture might participate in direct human exploration of an asteroidal boulder brought to high lunar orbit by the Asteroid Redirect Mission. The Proving Ground stack could serve as a staging point and tele-operation center for robotic and piloted Moon landings. With the addition of a SEP stage, the architecture could support months-long excursions within and beyond the Earth's sphere of influence, possibly culminating in a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to quantify the risk of landing deconditioned crews on Mars. In a conceptual mission particularly stressing to system design, Proving Ground elements could transit to Mars orbit. Other possible design-driving operations include relocation of the stack with no crew on board, the unpiloted journey of the advanced life support module from ISS to the lunar vicinity, excursions to other destinations in near-Earth space, and additional support for Mars exploration in conjunction with the Evolvable Mars Campaign. The Proving Ground Conops concludes with a discussion of aborts and contingency operations
The effects of texting on driving performance in a driving simulator: the influence of driver age.
Rumschlag, Gordon; Palumbo, Theresa; Martin, Amber; Head, Doreen; George, Rajiv; Commissaris, Randall L
2015-01-01
Distracted driving is a significant contributor to motor vehicle accidents and fatalities, and texting is a particularly significant form of driver distraction that continues to be on the rise. The present study examined the influence of driver age (18-59 years old) and other factors on the disruptive effects of texting on simulated driving behavior. While 'driving' the simulator, subjects were engaged in a series of brief text conversations with a member of the research team. The primary dependent variable was the occurrence of Lane Excursions (defined as any time the center of the vehicle moved outside the directed driving lane, e.g., into the lane for oncoming traffic or onto the shoulder of the road), measured as (1) the percent of subjects that exhibited Lane Excursions, (2) the number of Lane Excursions occurring and (3) the percent of the texting time in Lane Excursions. Multiple Regression analyses were used to assess the influence of several factors on driving performance while texting, including text task duration, texting skill level (subject-reported), texting history (#texts/week), driver gender and driver age. Lane Excursions were not observed in the absence of texting, but 66% of subjects overall exhibited Lane Excursions while texting. Multiple Regression analysis for all subjects (N=50) revealed that text task duration was significantly correlated with the number of Lane Excursions, and texting skill level and driver age were significantly correlated with the percent of subjects exhibiting Lane Excursions. Driver gender was not significantly correlated with Lane Excursions during texting. Multiple Regression analysis of only highly skilled texters (N=27) revealed that driver age was significantly correlated with the number of Lane Excursions, the percent of subjects exhibiting Lane Excursions and the percent of texting time in Lane Excursions. In contrast, Multiple Regression analysis of those drivers who self-identified as not highly skilled texters (N=23) revealed that text task duration was significantly correlated with the number of Lane Excursions. The present studies confirm past reports that texting impairs driving simulator performance. Moreover, the present study demonstrates that for highly skilled texters, the effects of texting on driving are actually worse for older drivers. Given the increasing frequency of texting while driving within virtually all age groups, these data suggest that 'no texting while driving' education and public service messages need to be continued, and they should be expanded to target older drivers as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz
2018-03-01
The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.
Ma, Hsen-Hsing
2009-05-01
The aim of the present study is to demonstrate the percentage of data points exceeding the median of baseline phase (PEM) approach using data on autism treatment for illustrative purposes to compare the effectiveness of different interventions on the problem behaviors of individuals with autism. Electronic databases such as The ProQuest and Google were searched. A total of 163 articles were located, producing 1,502 effect sizes. The results demonstrate that five highly effective intervention strategies were priming, self-control, training, positive reinforcement and punishment, and presenting preferential activities. The least effective strategy was to teach perspective-taking skills. The PEM approach is recommended for use in meta-analysis for single-case experimental designs.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
PEM fuel cell monitoring system
Meltser, M.A.; Grot, S.A.
1998-06-09
Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.
Autonomous excursions using tablets and smartphones
NASA Astrophysics Data System (ADS)
Marra, Wouter; Groothengel, Marin; van de Grint, Liesbeth; Karssenberg, Derek; Stouthamer, Esther
2017-04-01
Excursions and fieldworks are valuable components for geosciences education. However, field activities can be time consuming for teachers and pose a logistical challenge to fit in regular courses. Furthermore, the participation of students diminishes with group size in case of instructor-led outings. We are developing excursions that students can follow autonomously without a teacher present, using instructions, assignments and background information on tablets and smartphones. The goal of this approach is to increase the level of active participation, and to reduce logistical and time table issues. We developed a bike-excursion about the landscape and geology in the vicinity of our University. Such excursion was on the wish-list for several years, but posed a logistical challenge for the group of about 80 students in the available timeslot. In our approach, students had a time-window of two weeks in which they could finish the excursion in groups of 2. 8-Inch tablets with water- and shock-proof cases were available for this excursion. For the excursion we used three apps: 1) IZI-Travel for providing the route, spoken navigation instructions, spoken explanations at stops, location-related images, assignments as text, and multiple-choose questions. 2) PDF-Maps for providing geo-referenced maps. 3) ESRI Collector which the students used to digitize polygons on a map, and to collect geo-referenced photos with explanation. These data were answers to assignments and were later used in a tutorial on campus. The assignments where students had to collect data, and the small group size (pairs) increased the level of active participation. The use of a final tutorial on campus was important for the autonomous excursion, as it gave students the opportunity to discuss their observations and questions with their teacher. The developed teaching materials are available online to use and adapt for others. Parts could be useful for other universities and schools in the vicinity of the excursion location.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
Williams, Jessica R; Caceda-Castro, Lizbeth E; Dusablon, Tracy; Stipa, Melissa
2016-06-01
Printed educational materials (PEMs) are one of the most common dissemination strategies for communicating information about evidence-based practices (EBPs) to healthcare professionals and organizations; however, evidence is conflicting regarding the conditions and circumstances in which PEMs are effective in achieving desired outcomes. The effectiveness of PEMs is largely dependent on the manner in which they are developed. This article reports on the findings from a comprehensive review of the literature regarding best practices for creating PEMs for health professionals and illustrates how these practices were used to design, develop, and evaluate an informational packet to disseminate information about motivational interviewing. The informational packet was disseminated to 92 community health organizations not currently implementing motivational interviewing. Evaluation surveys were completed by 212 healthcare directors and providers to examine quality and perceived helpfulness of the packets, intention to use information from the packet, and sharing of the packet with others. Associations between these and individual and organizational characteristics were also assessed. Overall, the packet was perceived as appropriate and helpful in making a decision to implement motivational interviewing. For example, 84.9% of participants stated that the content was 'about right'. Three-quarters (75.9%) of participants reported plans to use the information in the packet and almost half (46.7%) reported talking about the packet with others in the organizations. Higher levels of baseline interest in motivational interviewing adoption were significantly related to packet use and wanting to utilize additional resources presented in the packet. Positive attitudes toward EBPs were also significantly related to the desire to obtain resources in the packet. Perceptions of the packet did not differ by type of community health organization (i.e., community health center, community behavioral health organization) or whether the individual was a director or provider. Results indicated that PEMs can be a useful tool to disseminate EBP information to healthcare professionals particularly if they have a prior interest in the EBP and have general attitudes supportive of EBPs. Recommendations for the improvement of future PEMs are discussed.
Effect of compressive force on PEM fuel cell performance
NASA Astrophysics Data System (ADS)
MacDonald, Colin Stephen
Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.
Airborne Measurements of NO, NO2, and NO(y) as Related to NASA's Pacific Exploratory Mission
NASA Technical Reports Server (NTRS)
Sandholm, Scott
1997-01-01
The Tropospheric Trace Gas and Airborne Measurements Group's (TTGAMG) efforts on NASA GTE (Global Tropospheric Experiment) PEM (Pacific Exploratory Mission) West A & B field campaign primarily involved the acquisition of NO, NO2 and NO(y) measurements, as well as the subsequent analysis and interpretation of the data base obtained during the PEM West field campaign. These investigations focused on the distribution of trace gases, sources and sinks of ozone, ozone producing precursors with a heavy emphasize on ozone's photochemical state, and the partitioning of the molecules within the NO(y) family over the north western Pacific Ocean. The two components of PEM West were focused on observing air masses as they reached the Asian Continent (PEM West A) or as the air mass departed the Asian Continent (PEM West B). NO(x) concentrations play a pivotal role in controlling the photochemical lifetime of ozone in these environments, and understanding the NO(x) species partitioning is paramount. The transport of NO(x) into the regions, in the form of longer lived NO(y) family members, was examined in relation to the comparison of natural occurring sources of NO(x) (i.e., lightning and stratosphere/troposphere exchange) to those produced as a result of anthropogenic activity (i.e., biomass burning and aircraft emissions). The TTGAMG's measurements of NOx and NO(y), in conjunction with other investigators' measurements of PAN (H. B. Singh's group) and HNO3 (R. W. Talbot's group), have been used to assess the total reactive odd nitrogen levels over the study regions, the partitioning of the reactive odd nitrogen species in their various forms, and the usefulness of the NO, measurement and its measurement technique. The TTGAMG's primary PEM West objectives were the characterization of the factors controlling the distribution and fate of reactive odd nitrogen compounds over the western Pacific Ocean and an analysis of the concentration of various trace gases in the troposphere as the air mass aged by both dynamical mixing and photochemical processes in the troposphere.
Bottje, Walter G.; Khatri, Bhuwan; Shouse, Stephanie A.; Seo, Dongwon; Mallmann, Barbara; Orlowski, Sara K.; Pan, Jeonghoon; Kong, Seongbae; Owens, Casey M.; Anthony, Nicholas B.; Kim, Jae K.; Kong, Byungwhi C.
2017-01-01
Background: Although small non-coding RNAs are mostly encoded by the nuclear genome, thousands of small non-coding RNAs encoded by the mitochondrial genome, termed as mitosRNAs were recently reported in human, mouse and trout. In this study, we first identified chicken mitosRNAs in breast muscle using small RNA sequencing method and the differential abundance was analyzed between modern pedigree male (PeM) broilers (characterized by rapid growth and large muscle mass) and the foundational Barred Plymouth Rock (BPR) chickens (characterized by slow growth and small muscle mass). Methods: Small RNA sequencing was performed with total RNAs extracted from breast muscles of PeM and BPR (n = 6 per group) using the 1 × 50 bp single end read method of Illumina sequencing. Raw reads were processed by quality assessment, adapter trimming, and alignment to the chicken mitochondrial genome (GenBank Accession: X52392.1) using the NGen program. Further statistical analyses were performed using the JMP Genomics 8. Differentially expressed (DE) mitosRNAs between PeM and BPR were confirmed by quantitative PCR. Results: Totals of 183,416 unique small RNA sequences were identified as potential chicken mitosRNAs. After stringent filtering processes, 117 mitosRNAs showing >100 raw read counts were abundantly produced from all 37 mitochondrial genes (except D-loop region) and the length of mitosRNAs ranged from 22 to 46 nucleotides. Of those, abundance of 44 mitosRNAs were significantly altered in breast muscles of PeM compared to those of BPR: all mitosRNAs were higher in PeM breast except those produced from 16S-rRNA gene. Possibly, the higher mitosRNAs abundance in PeM breast may be due to a higher mitochondrial content compared to BPR. Our data demonstrate that in addition to 37 known mitochondrial genes, the mitochondrial genome also encodes abundant mitosRNAs, that may play an important regulatory role in muscle growth via mitochondrial gene expression control. PMID:29104541
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support. PMID:26053055
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H
2017-08-01
Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.
NASA Astrophysics Data System (ADS)
Laj, Carlo; Guillou, Hervé; Kissel, Catherine
2014-02-01
We report here on a new paleomagnetic (directions and intensities) and coupled K/Ar and 40Ar/39Ar analysis of 35 different flows, emplaced in the Chaîne des Puys during the 75 to 10 kyr interval, which contains the Mono Lake and Laschamp excursions. There is a remarkable agreement between the new set of absolute volcanic intensities and published sedimentary (GLOPIS-75) and cosmogenic (10Be and 36Cl) records. The Laschamp and Mono Lake excursions are clearly revealed by a very significant intensity drop at 41.2±1.6 ka and 34.2±1.2 ka respectively. The duration of the Laschamp excursion is ˜1500 yr and about 640 yr when the drop of paleointensity or the directional change are considered respectively. The intensity drop at the Mono Lake is twice as short. In the ˜7 ka interval separating the two excursions, the field intensity recovers to almost non-transitional values. The rate of decrease of the field intensity during these excursions attains 18 nT/yr for the Laschamp and even greater value (33 nT/yr) for the Mono Lake. This figure is, for the Laschamp excursion, similar to the present field intensity decrease in the last two centuries so that one may wonder whether such a high rate of change may be characteristic of an impending geomagnetic event (reversal or excursion). We suggest that the name Auckland excursion should be used for the present-day called Mono Lake.
Effect of early childhood malnutrition on tooth eruption in Haitian adolescents.
Psoter, W; Gebrian, B; Prophete, S; Reid, B; Katz, R
2008-04-01
The objective of this retrospective cohort study was to determine the effects of early childhood protein-energy malnutrition (EC-PEM) and current nutritional status as defined by anthropomorphic measures on the exfoliation and eruption patterns of teeth among adolescents. Oral clinical examinations were conducted in 2005 using World Health Organization (WHO) diagnostic criteria on 498 11- to 13-year-old Haitians for whom early childhood malnutrition data were available. Anthropomorphic records (weight-for-age) from the Haitian Health Foundation computerized database on children from birth through 5-years old were utilized. Current heights and weights were ascertained. Both sets of data were converted to z-scores based on the National Center for Health Statistics (NCHS) referent database. Based upon these z-scores, EC-PEM and current malnutrition categories were developed for this study. The analyses separately regressed the number of primary and permanent teeth on age, gender, EC-PEM status and current nutritional status. Both a delayed exfoliation of primary teeth and a delayed eruption of permanent teeth were associated with EC-PEM and current stunting in adolescence. The observed associations were either direct and statistically significant or indirectly demonstrated by presenting evidence of confounding. The overall interpretation of the models is that malnutrition beginning in the earliest years and extending throughout childhood influences the exfoliation and eruption of teeth. These findings present evidence of an association between tooth exfoliation/eruption patterns and both EC-PEM and nutritional insufficiency (stunting) throughout childhood. This observed delay in the exfoliation of the primary dentition and in the eruption of the permanent dentition has practical significance in interpreting age-specific dental caries data from populations with different malnutrition experiences.
Infections associated with severe malnutrition among hospitalised children in East Africa.
Sunguya, B F P; Koola, J I; Atkinson, S
2006-09-01
Severe protein-energy malnutrition (PEM) predisposes affected children to various infections, which either worsens their nutritional status or causes malnutrition, hence complicating their management and outcome. This study was carried out to determine the infections associated with severe malnutrition among children admitted at Kilifi District Hospital (KDH) in Kenya and Muhimbili National Hospital (MNH) in Dar es Salaam, Tanzania. Data was collected from hospital register books and online system database. A total of 1121 children with severe malnutrition were admitted during a period of one year (2004-2005) (MNH = 781; KDH = 340). The proportion of male children with malnutrition was higher than that of female children. Non-oedematous malnutrition was more prevalent at MNH (N = 504; 64%) than KDH (N = 130; 38%). Conversely, oedematous was more prevalence than non-oedematous malnutrition among children admitted at KDH (N = 2 10; 61.7%). More than 75% of all patients with severe PEM were children < 2 years old. Thirty-six per cent of all severe PEM cases had malaria in both hospitals. Forty-five per cent of all admitted patients with severe PEM at KDH had diarrhoea. Two hundred twenty two (28%) and 64 (19%) of the children with severe malnutrition died at MNH and KDH, respectively. Oedematous PEM was associated with a higher case fatality rate than non-oedematous one (P < 0.05). At MNH, 86% of the patients who died with severe malnutrition had other co-morbidities. More (46%) oedematous malnourished patients with co-infections died at MNH than non-oedematous malnourished patients (19%). At KDH, septicaemia was the leading cause of death (55%) among severely malnourished patients. In conclusion, coinfections complicate the management of severe malnutrition and are associated with higher death rate. Management of such infections is of paramount importance to reduce case fatality rates.
Schuette, Wolfgang; Schneider, Claus-Peter; Engel-Riedel, Walburga; Schumann, Christian; Kohlhaeufl, Martin; Serke, Monika Heidi Ursel; Hoeffken, Gert; Kortsik, Cornelius; Reck, Martin
2017-01-01
The aim of the study was to investigate in terms of noninferiority the efficacy and safety of a monochemotherapy regimen of pemetrexed plus bevacizumab (BevPem) versus carboplatin/pemetrexed plus bevacizumab (BevCPem) in elderly patients as first-line treatment for advanced metastatic or recurrent nonsquamous non-small-cell lung cancer (NSCLC). 65Plus was a Phase III, randomized, open-label study. In total, 253 patients received BevPem (n=119) or BevCPem (n=134). The primary outcome measure was progression-free survival. Secondary end points were overall survival, tumor response, and safety outcomes. Evaluations were performed for the whole study population and stratified according to Eastern Cooperative Oncology Group (ECOG) performance status (PS). Noninferiority of BevPem in comparison to BevCPem could not be demonstrated for the overall population ( P =0.7864). Significant superiority of the combined treatment BevCPem was seen in patients of ECOG PS 0-1 (median PFS 5.1 vs 6.9 months, HR 1.353, 95% CI 1.03-1.777), while the opposite tendency was observed in patients with ECOG PS 2 (median PFS 2.9 vs 1.5 months, HR 0.628, 95% CI 0.195-2.025). Overall, better tolerability was found for the BevPem group, irrespective of ECOG PS. Results from the 65plus study give evidence that BevPem and BevCPem treatments may exert differential effects on PFS, depending on the patients ECOG PS. It appears that patients with better ECOG PS (0-1) benefited more from the combined treatment with carboplatin, while the group comprising more severely impaired patients (ECOG PS 2) benefited more from the monochemotherapy.
Job Involvement and Organizational Commitment of Employees of Prehospital Emergency Medical System.
Rahati, Alireza; Sotudeh-Arani, Hossein; Adib-Hajbaghery, Mohsen; Rostami, Majid
2015-12-01
Several studies are available on organizational commitment of employees in different organizations. However, the organizational commitment and job involvement of the employees in the prehospital emergency medical system (PEMS) of Iran have largely been ignored. This study aimed to investigate the organizational commitment and job involvement of the employees of PEMS and the relationship between these two issues. This cross-sectional study was conducted on 160 employees of Kashan PEMS who were selected through a census method in 2014. A 3-part instrument was used in this study, including a demographic questionnaire, the Allen and Miller's organizational commitment inventory, and the Lodahl and Kejner's job involvement inventory. We used descriptive statistics, Spearman correlation coefficient, Kruskal-Wallis, Friedman, analysis of variance, and Tukey post hoc tests to analyze the data. The mean job involvement and organizational commitment scores were 61.78 ± 10.69 and 73.89 ± 13.58, respectively. The mean scores of job involvement and organizational commitment were significantly different in subjects with different work experiences (P = 0.043 and P = 0.012, respectively). However, no significant differences were observed between the mean scores of organizational commitment and job involvement in subjects with different fields of study, different levels of interest in the profession, and various educational levels. A direct significant correlation was found between the total scores of organizational commitment and job involvement of workers in Kashan PEMS (r = 0.910, P < 0.001). This study showed that the employees in the Kashan PEMS obtained half of the score of organizational commitment and about two-thirds of the job involvement score. Therefore, the higher level managers of the emergency medical system are advised to implement some strategies to increase the employees' job involvement and organizational commitment.
Condylar motion in children with primary dentition during lateral excursion.
Yamasaki, Youichi; Hayasaki, Haruaki; Nishi, Megumi; Nakata, Shiho; Nakata, Minoru
2002-07-01
Normal development of primary and mixed dentition is indispensable for establishing a healthy mandibular function of the permanent dentition. Because condylar movements are crucial for mandibular function, extensive studies have been reported. However, most of these studies have dealt with mandibular functions in adults, and there is less known about children with primary dentition. The purpose of this study was to clarify the condylar movements during lateral excursions in children with primary dentition and compare these movements with those of adults from the viewpoint of functional development. With use of an optoelectronic recording system with six degrees of freedom, the lateral excursions of 24 children and 20 young women, with sound dentition, were recorded at 100 Hz. The results show that the balancing side condyle of the children had a significantly smaller vertical excursion and a significantly larger anteroposterior excursion than that of adults, indicating the shallower and more anteriorly directed movements of the entire mandible during lateral excursions in children with primary dentition.
NASA Astrophysics Data System (ADS)
Du Nguyen, Huy; Thuy Luyen Nguyen, T.; Nguyen, Khac Manh; Ha, Thuc Huy; Hien Nguyen, Quoc
2015-01-01
Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation-reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation-reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm-2 when applying a voltage of 2.0 V at 25 °C.
Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun
2014-09-01
Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.
Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M
2017-01-01
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time. PMID:28773156
Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M; Pethaiah, Sethu Sundar
2017-07-14
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time.
Verster, Joris C; Roth, Thomas
2014-07-01
The traditional outcome measure of the Dutch on-the-road driving test is the standard deviation of lateral position (SDLP), the weaving of the car. This paper explores whether excursions out-of-lane are a suitable additional outcome measure to index driving impairment. A literature search was conducted to search for driving tests that used both SDLP and excursions out-of-lane as outcome measures. The analyses were limited to studies examining hypnotic drugs because several of these drugs have been shown to produce next-morning sedation. Standard deviation of lateral position was more sensitive in demonstrating driving impairment. In fact, solely relying on excursions out-of-lane as outcome measure incorrectly classifies approximately half of impaired drives as unimpaired. The frequency of excursions out-of-lane is determined by the mean lateral position within the right traffic lane. Defining driving impairment as having a ΔSDLP > 2.4 cm, half of the impaired driving tests (51.2%, 43/84) failed to produce excursions out-of-lane. Alternatively, 20.9% of driving tests with ΔSDLP < 2.4 cm (27/129) had at least one excursion out-of-lane. Excursions out-of-lane are neither a suitable measure to demonstrate driving impairment nor is this measure sufficiently sensitive to differentiate adequately between differences in magnitude of driving impairment. Copyright © 2014 John Wiley & Sons, Ltd.
46 CFR 2.01-45 - Excursion permit.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., on Coast Guard Form CG-950, Application for Excursion Permit. If, after inspection, permission is... the application process for excursion permits for inspected passenger vessels are contained in §§ 71.10, 115.204, or 176.204 of this chapter. Details concerning the application process for special...
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn
2001-07-17
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
NMR Studies of Mass Transport in New Conducting Media for Fuel Cells
2009-01-01
PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the short range by spin-lattice...structural environments of muticomponent PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the...correlation between water diffusivity and proton conductivity in the nanocomposites Transport properties of several ionic liquids (IL’s) and membranes
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn
2002-01-01
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.
1997-01-01
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
NASA Astrophysics Data System (ADS)
Gindt, Brandon
This dissertation outlines a novel path towards improved understanding and function of proton exchange membranes (PEMs) for redox flow batteries, a large-scale battery storage device. This research uses synthetic methods and nanotechnology through two different approaches to prepare tailored polymer membranes: 1) Ion exchange membranes with enhanced chemical structures to promote membrane morphology on the nano-scale were prepared. Specifically, functional polysulfones (PSUs) were synthesized from different pre-sulfonated monomers. These PSUs have controlled placement and content of unique sulfonic acid moieties. PEMs were fabricated and characterized. The new PEMs showed desirable physical properties and performance in a vanadium redox flow battery (VRFB) cell. 2) Nanoporous PSU membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The controlled morphology and pore size of the resulting nanoporous membranes were evaluated by different microscopy and scattering techniques to understand structure-property relationships. Further, the resulting nanopore surface was chemically modified with sulfonic acid moieties. Membranes were analyzed and evaluated as separators for a VRFB. The chemically modified nanoporous PEMs exhibited unique behavior with respect to their ion conductivity when exposed to solutions of increasing acid concentration. In addition, the hierarchical micro-nanoporous membranes developed further showed promising structure and properties.
Spedding, Ruth; Jenner, Rachel; Potier, Katherine; Mackway-Jones, Kevin; Carley, Simon
2013-04-01
Paediatric emergency medicine (PEM) currently faces many competing educational challenges. Recent changes to the working patterns have made the delivery of effective teaching to trainees extremely difficult. We developed a virtual learning environment, on the basis of socioconstructivist principles, which allows learning to take place regardless of time or location. The aim was to evaluate the effectiveness of a blended e-learning approach for PEM training. We evaluated the experiences of ST3 trainees in PEM using a multimodal approach. We classified and analysed message board discussions over a 6-month period to look for evidence of practice change and learning. We conducted semistructured qualitative interviews with trainees approximately 5 months after they completed the course. Trainees embraced the virtual learning environment and had positive experiences of the blended approach to learning. Socioconstructivist learning did take place through the use of message boards on the virtual learning environment. Despite their initial unfamiliarity with the online learning system, the participants found it easy to access and use. The participants found the learning relevant and there was an overlap between shop floor learning and the online content. Clinical discussion was often led by trainees on the forums and these were described as enjoyable and informative. A blended approach to e-learning in basic PEM is effective and enjoyable to trainees.
Yokotsuka, M; Aoyama, M; Kubota, K
2000-07-01
The Medical Dictionary for Regulatory Activities Terminology (MedDRA) version 2.1 (V2.1) was released in March 1999 accompanied by the MedDRA/J V2.1J specifically for Japanese users. In prescription-event monitoring in Japan (J-PEM), we have employed the MedDRA/J for data entry, signal generation and event listing. In J-PEM, the lowest level terms (LLTs) in the MedDRA/J are used in data entry because the richness of LLTs is judged to be advantageous. A signal is generated normally at the preferred term (PT) level, but it has been found that various reporters describe the same event using descriptions that are potentially encoded by LLTs under different PTs. In addition, some PTs are considered too specific to generate the proper signal. In the system used in J-PEM, when an LLT is selected as a candidate to encode an event, another LLT under a different PT, if any, is displayed on the computer screen so that it may be coded instead of, or in addition to, the candidate LLT. The five-level structure of the MedDRA is used when listing events but some modification is required to generate a functional event list.
Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R
2017-05-01
Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties. Interrogation of the physicochemical, thermal, and mechanical properties of the cross-linked CS-GO PEMs demonstrated that ionic cross-linking based on the incorporation of PO 4 3- groups in the CS-GO mixed-matrix composites, when compared with sulfuric acid cross-linking commonly used in proton exchange membrane fuel cell (PEMFC) studies, generated additional density of ionic cluster domains, rendered enhanced sorption properties, and augmented the thermal and mechanical stability of the composite structure. Consequently, bioelectricity performance analysis in MFC application showed that CS-GO-P(24) membrane produced 135% higher power density than the CS-GO-S(24) MFC system. Simultaneously, 89.52% COD removal of primary clarifier municipal wastewater was achieved in the MFC operated with the CS-GO-P(24) membrane.
NASA Astrophysics Data System (ADS)
Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan
2015-10-01
The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.
Lucas Lledó, José Ignacio; Cáceres, Mario
2013-01-01
One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL, and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects. PMID:23637806
NASA Astrophysics Data System (ADS)
Bharti, Abha; Cheruvally, Gouri
2017-08-01
In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell.
Characterization of Two Novel Propachlor Degradation Pathways in Two Species of Soil Bacteria
Martin, Margarita; Mengs, Gerardo; Allende, Jose Luis; Fernandez, Javier; Alonso, Ramon; Ferrer, Estrella
1999-01-01
Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2. PMID:9925619
Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I
2013-01-01
Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2010 CFR
2010-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2012 CFR
2012-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2011 CFR
2011-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
Hadlock, Tessa A; Malo, Juan S; Cheney, Mack L; Henstrom, Douglas K
2011-01-01
Free muscle transfer for facial reanimation has become the standard of care in recent decades and is now the cornerstone intervention for dynamic smile reanimation. We sought to quantify smile excursion and quality-of-life (QOL) changes in our pediatric free gracilis recipients following reanimation. We quantified gracilis muscle excursion in 17 pediatric patients undergoing 19 consecutive pediatric free gracilis transplantation operations, using our validated SMILE program, as an objective measure of functional outcome. These were compared against excursion measured the same way in a cohort of 17 adults with 19 free gracilis operations. In addition, we prospectively evaluated QOL outcomes in these children using the Facial Clinimetric Evaluation (FaCE) instrument. The mean gracilis excursion in our pediatric free gracilis recipients was 8.8 mm ± 5.0 mm, which matched adult results, but with fewer complete failures of less than 2-mm excursion, with 2 (11%) and 4 (21%), respectively. Quality-of-life measures indicated statistically significant improvements following dynamic smile reanimation (P = .01). Dynamic facial reanimation using free gracilis transfer in children has an acceptable success rate, yields improved commissure excursion, and improves QOL in the pediatric population. It should be considered first-line therapy for children with lack of a meaningful smile secondary to facial paralysis.
The Blake geomagnetic excursion recorded in a radiometrically dated speleothem
NASA Astrophysics Data System (ADS)
Osete, María-Luisa; Martín-Chivelet, Javier; Rossi, Carlos; Edwards, R. Lawrence; Egli, Ramon; Muñoz-García, M. Belén; Wang, Xianfeng; Pavón-Carrasco, F. Javier; Heller, Friedrich
2012-11-01
One of the most important developments in geomagnetism has been the recognition of polarity excursions of the Earth's magnetic field. Accurate timing of the excursions is a key point for understanding the geodynamo process and for magnetostratigraphic correlation. One of the best-known excursions is the Blake geomagnetic episode, which occurred during marine isotope stage MIS 5, but its morphology and age remain controversial. Here we show, for the first time, the Blake excursion recorded in a stalagmite which was dated using the uranium-series disequilibrium techniques. The characteristic remanent magnetisation is carried by fine-grained magnetite. The event is documented by two reversed intervals (B1 and B2). The age of the event is estimated to be between 116.5±0.7 kyr BP and 112.0±1.9 kyr BP, slightly younger (∼3-4 kyr) than recent estimations from sedimentary records dated by astronomical tuning. Low values of relative palaeointensity during the Blake episode are estimated, but a relative maximum in the palaeofield intensity coeval with the complete reversal during the B2 interval was observed. Duration of the Blake geomagnetic excursion is 4.5 kyr, two times lower than single excursions and slightly higher than the estimated diffusion time for the inner core (∼3 kyr).
McLean, Kathleen E.; Yao, Jiayun; Henderson, Sarah B.
2015-01-01
The British Columbia Asthma Monitoring System (BCAMS) tracks forest fire smoke exposure and asthma-related health outcomes, identifying excursions beyond expected daily counts. Weekly reports during the wildfire season support public health and emergency management decision-making. We evaluated BCAMS by identifying excursions for asthma-related physician visits and dispensations of the reliever medication salbutamol sulfate and examining their corresponding smoke exposures. A disease outbreak detection algorithm identified excursions from 1 July to 31 August 2014. Measured, modeled, and forecasted concentrations of fine particulate matter (PM2.5) were used to assess exposure. We assigned PM2.5 levels to excursions by choosing the highest value within a seven day window centred on the excursion day. Smoky days were defined as those with PM2.5 levels ≥ 25 µg/m3. Most excursions (57%–71%) were assigned measured or modeled PM2.5 concentrations of 10 µg/m3 or higher. Of the smoky days, 55.8% and 69.8% were associated with at least one excursion for physician visits and salbutamol dispensations, respectively. BCAMS alerted most often when measures of smoke exposure were relatively high. Better performance might be realized by combining asthma-related outcome metrics in a bivariate model. PMID:26075727
NASA Astrophysics Data System (ADS)
Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.
2013-12-01
Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13Ccharcoal and follows recognized patterns, while SI shows partial divergence from δ13Cbulk. These data, while preliminary, highlight the importance of considering isotope substrate when investigating carbon cycle perturbations.
MSE commissioning and other major diagnostic updates on KSTAR
NASA Astrophysics Data System (ADS)
Ko, Jinseok; Kstar Team
2015-11-01
The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR). The 25-channel MSE system with the polarization-preserving front optics and precise tilt-tuning narrow bandpass filters provides the spatial resolution less than 1 cm in most of the plasma cross section and about 10 millisecond of time resolution. The polarization response curves with the daily Faraday rotation correction provides reliable pitch angle profiles for the KSTAR discharges with the MSE-optimized energy combination in the three-ion-source neutral beam injection. Some major diagnostic advances such as the poloidal charge exchange spectroscopy, the improved Thomson-scatting system, and the divertor infrared TV are reported as well. Work supported by the Ministry of Science, ICT and Future Planning, Korea.
3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch ...
3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch Seymore steam engines and one Taylor steam engine belt driving (from let to right) a sperry 30 light, 220 Volt generator, a Westinghouse 900 light, 2200 Volt generator, a Ball 80 light are generator, and two Edison, 900 light, 220 Volt generators. Note switchboard to left. Photo c. 1896. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
2008-12-01
manufacturing variability and thermal effects can be easi- ly compensated for electronically during operation by adjusting PZT amplitudes and phases... thermal and optical processes in the PEM bar and PZT array. An interface between COMSOL and the Trilinos solvers running in parallel on the cluster was...contaminants of low vapor pressure and/or low intrinsic fluorescence. Thermal luminescence (TL) is a technology aimed at solving the standoff
Cooling System Design for PEM Fuel Cell Powered Air Vehicles
2010-06-18
Research Laboratory (NRL) has developed a proton exchange membrane fuel cell ( PEMFC ) powered unmanned air vehicle (UAV) called the Ion Tiger. The Ion Tiger...to design a cooling system for the Ion Tiger and investigate cooling approaches that may be suitable for future PEMFC powered air vehicles. The...modifications) to other PEMFC systems utilizing a CHE for cooling. 18-06-2010 Memorandum Report Unmanned Air Vehicle UAV Fuel cell PEM Cooling Radiator January
Feasibility of Fuel Cell APUs for Automotive Applications
2005-12-05
CELL DELPHI SOFC APU w/ REFORMER FREIGHTLINER TRACTOR WITH BALLARD PEM APU AND METHANOL REFORMER SUNLINE TRACTOR WITH HYDROGEN- FuELLED HYDROGENICS...the biggest hurdles to having a successful JP-8- fuelled fuel cell was preventing the sulfur-laden JP-8 from poisoning the catalyst.[9] Specifically...the missions. The result of the study determined that a 5-l 0 kW Proton Exchange Membrane ( PEM ) Fuel Cell system would address the all-inclusive needs
Corrosion resistant PEM fuel cell
Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.
1997-04-29
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.
New Materials for Biological Fuel Cells
2012-04-01
polymer electrolyte membrane ( PEM ), to the membrane-less biological fuel cell (center figure) where the two electrodes are submerged in the same... PEM . MT15_4p166_173.indd 171 4/10/2012 3:46:31 PM REVIEW New materials for biological fuel cells APRIL 2012 | VOLUME 15 | NUMBER 4172 These...ISSN:1369 7021 © Elsevier Ltd 2012APRIL 2012 | VOLUME 15 | NUMBER 4166 New materials for biological fuel cells Over the last decade, there has
Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes
2012-06-01
This method has been used previously with both PEM and AEM fuel cells and demonstrated its ability to accurately predict ionic conductivity [2,9,24...water. In an AMFC, the mobile species is a hydroxide ion (OH - ) and in a PEM fuel cell , the proton is solvated with a water molecule forming...membrane synthesis techniques have produced polymer electrolyte membranes that are capable of transporting anions in alkaline membrane fuel cells
Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.
2005-01-01
An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Douglas; Ulsh, Michael
The results of two Manufacturing Readiness Assessments of PEM fuel cell stacks and material handling equipment (MHE) and backup power (BUP) PEM fuel cell systems are given. Design modifications of fuel cell systems were made because the initial, 2008 designs did not fully meet the operational requirements of the markets. This situation indicates the 2008 risk elements were overstated.For 2010 BUP and MHE fuel cell systems, manufacturers had not reached the Low Rate Initial Production (LRIP) defined in the 2008 MRA Report at 1,000 units per year per manufacturer.For fuel cell stacks, LRIP was demonstrated by more than one manufacturer.Themore » federal tax incentive program has compensated for the initial high cost of fuel cell systems.The Balance-of-Plant (BOP) has not evolved as rapidly as the PEM fuel cell stack manufacturing readiness.The BOP in 2014 is as costly as the fuel cell stack for MHE applications.« less
Language skills and intelligence quotient of protein energy malnutrition survivors.
Nassar, May F; Shaaban, Sanaa Y; Nassar, Jilan F; Younis, Neveen T; Abdel-Mobdy, Ahmad E
2012-06-01
The study was conducted on 33 children aged 3-6 years who suffered from protein energy malnutrition (PEM) during infancy in comparison to 30 matching children to assess the long-term deficits in cognition and language skills. The patients' files were revised to record their admission and follow-up data and history, clinical examination, intelligence quotient and language assessment were done. The study revealed that 2-5 years from the acute attack the PEM patients were still shorter than the controls and their cognitive abilities were poorer. Their mental ages and language skills were mostly determined by their height and the duration of follow-up during their acute illness. Additionally their diet after the 3-5 years is still defective and does not meet their recommended daily allowance. These observations urge us to continue following these patients for longer durations to make sure no permanent damage occurs due to the PEM insult to the growing brain.
DNA hydrogel-based supercapacitors operating in physiological fluids
Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam
2013-01-01
DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432
NASA Astrophysics Data System (ADS)
Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein
2017-08-01
In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.
Suthar, Pokhraj Prakashchandra; Doshi, Rajkumar Prakashbhai; Mehta, Chetan; Vadera, Khyati P
2015-03-12
A 10-year-old child presented with dull aching periumbilical abdominal pain for 15 days. The child was not gaining weight despite a good appetite. Physical examination of the child revealed grade-I protein energy malnourishment (PEM) according to IAP (Indian Academic of Paediatrics) classification. The rest of the systemic examination was normal. Routine blood investigation revealed anaemia with eosinophilia. Abdominal ultrasonography did not show any abnormality with curvilinear transducer (3.5-5 MHz), however, linear ultrasound transducer (7.5-12 MHz) with harmonic tissue imaging showed worms in the lumen of the small intestine with curling movement on real time scanning. Stool examination for the eggs of ascariasis was positive. The patient was treated with antihelminthic drugs. Dietary modification for the PEM was advised. After 3 months of treatment, the patient improved and stool examination for Ascaris was negative on follow-up. 2015 BMJ Publishing Group Ltd.
Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares
Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai
2013-01-01
Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923
Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas
2012-08-07
The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.
Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa
2016-10-01
In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.
NASA Astrophysics Data System (ADS)
Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu
2005-07-01
Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
36 CFR § 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Ferries, excursion boats and other vessels. [Reserved] § 1192.177 Section § 1192.177 Parks, Forests, and Public Property... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
Cruising through Research: Library Skills for Young Adults.
ERIC Educational Resources Information Center
Volkman, John D.
This book presents an approach for school librarians to use to introduce basic research tools to students in grades 7-12. Twelve "Excursions" (i.e., library research projects) are described. Excursions 1 and 2 provide an introduction to reference books, and Excursions 3 and 4 explore note-taking and basic organization of research papers. The…
NASA Astrophysics Data System (ADS)
Ingham, E. M.; Roberts, A. P.; Turner, G. M.; Heslop, D.; Ronge, T.; Conway, C.; Leonard, G.; Townsend, D.; Tiedemann, R.; Lamy, F.; Calvert, A. T.
2014-12-01
Geomagnetic excursions are short-lived deviations of the geomagnetic field from the normal range of secular variation. Despite significant advances in geomagnetic excursion research over the past 20 years, fundamental questions remain concerning the typical duration and global morphology of excursional geomagnetic fields. To answer such questions, more high-resolution, chronologically well-constrained excursion records are required, particularly from the Southern Hemisphere. We present preliminary paleomagnetic records of the Laschamp (~41 ka) and Mono Lake (~35 ka) excursions from three marine sediment cores from the Bounty Trough, New Zealand margin, and complementary volcanic records of the Laschamp excursion from lavas of Mt Ruapehu, New Zealand. Relatively high sedimentation rates of 12 - 26 cm/kyr in the Bounty Trough during glacial periods allow identification of excursional field behavior at each of the studied core locations. Each core displays one or two excursional events, with rapid directional swings between stable normal polarity and reversed excursional directions, each associated with coincident relative paleointensity minima. These anomalous paleomagnetic directions are interpreted to represent the Laschamp and Mono Lake excursions, based on a combination of tephrochronology, radiocarbon dating, and cyclostratigraphy (defined from core-scanning X-ray fluorescence and magnetic susceptibility records). Beside these records, we present results from fourteen lava flows, on Mt Ruapehu, for which 40Ar-39Ar dating indicates ages of between 39 and 45 ka. The step heating 40Ar-39Ar experiments produced particularly flat age plateaus, with corresponding 2 s.d. errors mostly approaching 1 kyr. The youngest and oldest flows carry normal polarity magnetization, however six flows, dated between 41 and 43 ka, display transitional field characteristics. Three of these flows display a declination swing of around 180o, which coincides with a previously published result from the Auckland Basalt Field. Together, these data provide rare excursion records from the southern hemisphere, which will provide an improved view of geomagnetic field morphology during these excursions.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.; Curtis, J. H.
2012-02-01
An age model for the Brunhes Chron of Ocean Drilling Program (ODP) Site 1063 (Bermuda Rise) is constructed by tandem correlation of oxygen isotope and relative paleointensity data to calibrated reference templates. Four intervals in the Brunhes Chron where paleomagnetic inclinations are negative for both u-channel samples and discrete samples are correlated to the following magnetic excursions with Site 1063 ages in brackets: Laschamp (41 ka), Blake (116 ka), Iceland Basin (190 ka), Pringle Falls (239 ka). These ages are consistent with current age estimates for three of these excursions, but not for "Pringle Falls" which has an apparent age older than a recently published estimate by ˜28 kyr. For each of these excursions (termed Category 1 excursions), virtual geomagnetic poles (VGPs) reach high southerly latitudes implying paired polarity reversals of the Earth's main dipole field, that apparently occurred in a brief time span (<2 kyr in each case), several times shorter than the apparent duration of regular polarity transitions. In addition, several intervals of low paleomagnetic inclination (low and negative in one case) are observed both in u-channel and discrete samples at ˜318 ka (MIS 9), ˜412 ka (MIS 11) and in the 500-600 ka interval (MIS 14-15). These "Category 2" excursions may constitute inadequately recorded (Category 1) excursions, or high amplitude secular variation.
NASA Technical Reports Server (NTRS)
Talbot, Robert W.; Dibb, Jack E.
1999-01-01
We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly high concentrations of Pb-210 in the combustion plumes to estimate their ages and mixing along the transport route to the South Pacific basin. The final paper in the group (Tropospheric reactive-odd nitrogen over the South Pacific in austral springtime). This paper provides a summary of reactive nitrogen during PEM-Tropics A, with HNO3 and PAM showing the most impact from combustion emission.
Development of an approach to correcting MicroPEM baseline drift.
Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan
2018-07-01
Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed has the potential for use with data generated from other types of PM sensors that contain a filter for weighing as well. In addition, this approach can be applied in many other regions, given widely available ambient PM data from monitoring networks, especially in urban areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Piezoelectric microcantilever serum protein detector
NASA Astrophysics Data System (ADS)
Capobianco, Joseph A.
The development of a serum protein detector will provide opportunities for better screening of at-risk cancer patients, tighter surveillance of disease recurrence and better monitoring of treatment. An integrated system that can process clinical samples for a number of different types of biomarkers would be a useful tool in the early detection of cancer. Also, screening biomarkers such as antibodies in serum would provide clinicians with information regarding the patient's response to treatment. Therefore, the goal of this study is to develop a sensor which can be used for rapid, all-electrical, real-time, label-fee, in-situ, specific quantification of cancer markers, e.g., human epidermal receptor 2 (Her2) or antibodies, in serum. To achieve this end, piezoelectric microcantilever sensors (PEMS) were constructed using an 8 mum thick lead magnesium niobate-lead titanate (PMN-PT) freestanding film as the piezoelectric layer. The desired limit of detection is on the order of pg/mL. In order to achieve this goal the higher frequency lateral extension modes were used. Also, as the driving and sensing of the PEMS is electrical, the PEMS must be insulated in a manner that allows it to function in aqueous solutions. The insulation layer must also be compatible with standardized bioconjugation techniques. Finally, detection of both cancer antigens and antibodies in serum was carried out, and the results were compared to a standard commercialized protocol. PEMS have demonstrated the capability of detecting Her2 at a concentration of 5 pg/mL in diluted human serum (1:40) in less than 1 hour. The approach can be easily translated into the clinical setting because the sensitivity is more than sufficient for monitoring prognosis of breast cancer patients. In addition to Her2 detection, antibodies in serum were assayed in order to demonstrate the feasibility of monitoring the immune response for antibody-dependent cellular cytotoxicity (ADCC) in patients on antibody therapies such as Herceptin and Cetuximab. The PEMS displayed a limit of detection of 100 fg/mL, which was 100 times lower than the current methods of protein detection in serum, such as ELISA. Furthermore, the sensitivity of the PEMS device allows it to be capable of determining the dissociation constant, K d, of selective receptors such as antibodies. Using the dose response trials of Her2, Kd has been deduced for H3 scFv, and Herceptin, a commercial antibody specific for Her2.
Multipathway modulation of exercise and glucose stress effects upon GH secretion in healthy men.
Veldhuis, Johannes D; Olson, Thomas P; Takahashi, Paul Y; Miles, John M; Joyner, Michael J; Yang, Rebecca J; Wigham, Jean
2015-09-01
Exercise evokes pulsatile GH release followed by autonegative feedback, whereas glucose suppresses GH release followed by rebound-like GH release (feedforward escape). Here we test the hypothesis that age, sex steroids, insulin, body composition and physical power jointly determine these dynamic GH responses. This was a prospectively randomized glucose-blinded study conducted in the Mayo Center for Advancing Translational Sciences in healthy men ages 19-77 years (N=23). Three conditions, fasting/rest/saline, fasting/exercise/saline and fasting/rest/iv glucose infusions, were used to drive GH dynamics during 10-min blood sampling for 6h. Linear correlation analysis was applied to relate peak/nadir GH dynamics to age, sex steroids, insulin, CT-estimated abdominal fat and physical power (work per unit time). Compared with the fasting/rest/saline (control) day, fasting/exercise/saline infusion evoked peak GH within 1h, followed by negative feedback 3-5h later. The dynamic GH excursion was strongly (R(2)=0.634) influenced by (i) insulin negatively (P=0.011), (ii) power positively (P=0.0008), and (iii) E2 positively (P=0.001). Dynamic glucose-modulated GH release was determined by insulin negatively (P=0.0039) and power positively (P=0.0034) (R(2)=0.454). Under rest/saline, power (P=0.031) and total abdominal fat (P=0.012) (R(2)=0.267) were the dominant correlates of GH excursions. In healthy men, dynamic GH perturbations induced by exercise and glucose are strongly related to physical power, insulin, estradiol, and body composition, thus suggesting a network of regulatory pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Towards co-packaging of photonics and microelectronics in existing manufacturing facilities
NASA Astrophysics Data System (ADS)
Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon
2018-02-01
The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
2013-01-01
exchange resins and as membranes for water purification [1], Li–air batteries, and in polymer exchange membrane ( PEM ) fuel cells [2]. PEM Fuel cells show...SUBJECT TERMS Anion exchange membrane, Fuel Cell , Poly(ethyleneimine), Quaternary ammonium caton, Hydroxide Ashley M. Maes, Tara P. Pandey, Melissa...membrane Fuel cell Poly(ethyleneimine) Quaternary ammonium cation Hydroxide a b s t r a c t A new randomly crosslinked polymer is investigated
Advanced space power PEM fuel cell systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.
1989-01-01
A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.
Diamanti, Eleftheria; Gregurec, Danijela; Rodríguez-Presa, María José; Gervasi, Claudio A; Azzaroni, Omar; Moya, Sergio E
2016-06-28
Supported membranes on top of polymer cushions are interesting models of biomembranes as cell membranes are supported on a polymer network of proteins and sugars. In this work lipid vesicles formed by a mixture of 30% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 70% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) are assembled on top of a polyelectrolyte multilayer (PEM) cushion of poly(allylamine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS). The assembly results in the formation of a bilayer on top of the PEM as proven by means of the quartz crystal microbalance with dissipation technique (QCM-D) and by cryo-transmission electron microscopy (cryo-TEM). The electrical properties of the bilayer are studied by electrochemical impedance spectroscopy (EIS). The bilayer supported on the PEMs shows a high resistance, on the order of 10(7) Ω cm(2), which is indicative of a continuous, dense bilayer. Such resistance is comparable with the resistance of black lipid membranes. This is the first time that such values are obtained for lipid bilayers supported on PEMs. The assembly of polyelectrolytes on top of a lipid bilayer decreases the resistance of the bilayer up to 2 orders of magnitude. The assembly of the polyelectrolytes on the lipids induces defects or pores in the bilayer which in turn prompts a decrease in the measured resistance.
Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang
2012-02-01
Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt
2017-10-18
The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.
2016-01-01
A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1–250 S cm–1). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering. PMID:29503506
NASA Astrophysics Data System (ADS)
Macouin, Mélina; Ader, Magali; Moreau, Marie-Gabrielle; Poitou, Charles; Yang, Zhenyu; Sun, Zhimming
2012-10-01
Rock magnetism is used here to investigate the genesis of one of the puzzling negative carbon isotopic excursions of the Neoproterozoic in the Yangtze platform (South China). A detailed characterization of the magnetic mineralogy, which includes low-temperature and high-field magnetometry and classical magnetic measurement (ARM, IRM, susceptibility), was therefore performed along upper Doushantuo and lower Dengying Formations outcropping in the Yangjiaping section. The derived magnetic parameters show variations that can be interpreted as variations in magnetic grains size and in oxide contents. They show that the magnetic content is significantly reduced in samples presenting negative δ13Ccalcite values. We interpret this as a result of magnetite dissolution and secondary carbonate precipitation during early diagenesis bacterial sulfate reduction. Combined with C and O isotopic data, paleomagnetic techniques thus show that the upper Doushantuo-lower Dengying negative excursion of the Yangjiaping section is largely due to diagenesis, although the preservation of a genuine δ13C excursion of lower magnitude from +7‰ down to 0‰, instead of down to -9‰ as usually considered, cannot be ruled out. A corrected δ13Ccarbonate chemostratigraphic curve is therefore proposed. The unambiguous identification of a strong diagenetic component for this excursion casts doubts on the primary nature of other potentially time equivalent negative excursions of the Yangtze platform and thus to its correlation to negative excursions in other cratons (i.e. Shuram excursion). More generally, this study illustrates the potential of magnetic mineralogy characterization, a low cost, time efficient and non-destructive technique, as screening tool for diagenetic overprints of δ13C and δ18O.
ERIC Educational Resources Information Center
Molfenter, Sonja M.; Steele, Catriona M.
2014-01-01
Purpose: Traditional methods for measuring hyoid excursion from dynamic videofluoroscopy recordings involve calculating changes in position in absolute units (mm). This method shows a high degree of variability across studies but agreement that greater hyoid excursion occurs inmen than in women. Given that men are typically taller than women, the…
Stanley, Steven M.
2010-01-01
Conspicuous global stable carbon isotope excursions that are recorded in marine sedimentary rocks of Phanerozoic age and were associated with major extinctions have generally paralleled global stable oxygen isotope excursions. All of these phenomena are therefore likely to share a common origin through global climate change. Exceptional patterns for carbon isotope excursions resulted from massive carbon burial during warm intervals of widespread marine anoxic conditions. The many carbon isotope excursions that parallel those for oxygen isotopes can to a large degree be accounted for by the Q10 pattern of respiration for bacteria: As temperature changed along continental margins, where ∼90% of marine carbon burial occurs today, rates of remineralization of isotopically light carbon must have changed exponentially. This would have reduced organic carbon burial during global warming and increased it during global cooling. Also contributing to the δ13C excursions have been release and uptake of methane by clathrates, the positive correlation between temperature and degree of fractionation of carbon isotopes by phytoplankton at temperatures below ∼15°, and increased phytoplankton productivity during “icehouse” conditions. The Q10 pattern for bacteria and climate-related changes in clathrate volume represent positive feedbacks for climate change. PMID:21041682
Verster, Joris C; Mooren, Loes; Bervoets, Adriana C; Roth, Thomas
2017-10-24
The primary outcome measure of the on-road driving test is the Standard Deviation of Lateral Position. However, other outcome measures, such as lapses and excursions out-of-lane, also need to be considered as they may be related to crash risk. The aim of this study was to determine the direction of lapses and excursions out-of-lane (i.e. towards/into the adjacent traffic lane or towards/into the road shoulder). In total, data from 240 driving tests were re-analysed, and 628 lapses and 401 excursions out-of-lane were identified. The analyses revealed that lapses were made equally frequently over left (49.4%) and over right (43.3%). In contrast, excursions out-of-lane were almost exclusively directed over right into the (safer) road shoulder (97.3%). These findings suggest that drivers are unaware of having lapses, whereas excursions out-of-lane are events where the driver is aware of loss of vehicle control. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Cho, Jaedu
The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.
Laser Ablation Increases PEM/Catalyst Interfacial Area
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Yalisove, Steve
2009-01-01
An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken as indications that laser-roughened PEMs should function well in fuel cells and, in particular, should exhibit current and power densities greater than those attainable by use of smooth membranes.
Cost-Effectiveness of Immune Checkpoint Inhibition in BRAF Wild-Type Advanced Melanoma
Zeichner, Simon B.; Chen, Qiushi; Montero, Alberto J.; Goldstein, Daniel A.; Flowers, Christopher R.
2017-01-01
Purpose Patients who are diagnosed with stage IV metastatic melanoma have an estimated 5-year relative survival rate of only 17%. Randomized controlled trials of recent US Food and Drug Administration–approved immune checkpoint inhibitors—pembrolizumab (PEM), nivolumab (NIVO), and ipilumumab (IPI)—demonstrate improved patient outcomes, but the optimal treatment sequence in patients with BRAF wild-type metastatic melanoma remains unclear. To inform policy makers about the value of these treatments, we developed a Markov model to compare the cost-effectiveness of different strategies for sequencing novel agents for the treatment of advanced melanoma. Materials and Methods We developed Markov models by using a US-payer perspective and lifetime horizon to estimate costs (2016 US$) and quality-adjusted life years (QALYs) for treatment sequences with first-line NIVO, IPI, NIVO + IPI, PEM every 2 weeks, and PEM every 3 weeks. Health states were defined for initial treatment, first and second progression, and death. Rates for drug discontinuation, frequency of adverse events, disease progression, and death obtained from randomized phase III trials were used to determine the likelihood of transition between states. Deterministic and probabilistic sensitivity analyses were conducted to evaluate model uncertainty. Results PEM every 3 weeks followed by second-line IPI was both more effective and less costly than dacarbazine followed by IPI then NIVO, or IPI followed by NIVO. Compared with the first-line dacarbazine treatment strategy, NIVO followed by IPI produced an incremental cost effectiveness ratio of $90,871/QALY, and first-line NIVO + IPI followed by carboplatin plus paclitaxel chemotherapy produced an incremental cost effectiveness ratio of $198,867/QALY. Conclusion For patients with treatment-naive BRAF wild-type advanced melanoma, first-line PEM every 3 weeks followed by second-line IPI or first-line NIVO followed by second-line IPI are the most cost-effective, immune-based treatment strategies for metastatic melanoma. PMID:28221865
Toward personal eHealth in cardiology. Results from the EPI-MEDICS telemedicine project.
Rubel, Paul; Fayn, Jocelyne; Nollo, Giandomenico; Assanelli, Deodato; Li, Bo; Restier, Lioara; Adami, Stefano; Arod, Sébastien; Atoui, Hussein; Ohlsson, Mattias; Simon-Chautemps, Lucas; Télisson, David; Malossi, Cesare; Ziliani, Gian-Luca; Galassi, Alfredo; Edenbrandt, Lars; Chevalier, Philippe
2005-10-01
Despite many attempts to improve the management of acute myocardial infarction, only small trends to shorter time intervals before treatment have been reported. The self-care solution developed by the European EPI-MEDICS project (2001-2004) is a novel, very affordable, easy-to-use, portable, and intelligent Personal ECG Monitor (PEM) for the early detection of cardiac ischemia and arrhythmia that is able to record a professional-quality, 3-lead electrocardiogram (ECG) based on leads I, II, and V2; derive the missing leads of the standard 12-lead ECG (thanks to either a generic or a patient-specific transform), compare each ECG with a reference ECG by means of advanced neural network-based decision-making methods taking into account the serial ECG measurements and the patient risk factors and clinical data; and generate different levels of alarms and forward the alarm messages with the recorded ECGs and the patient's Personal electronic Health Record (PHR) to the relevant health care providers by means of a standard Bluetooth-enabled, GSM/GPRS-compatible mobile phone. The ECG records are SCP-ECG encoded and stored with the PHR on a secure personal SD Card embedded in the PEM device. The alarm messages and the PHR are XML encoded. Major alarm messages are automatically transmitted to the nearest emergency call center. Medium or minor alarms are sent on demand to a central PEM Alarm Web Server. Health professionals are informed by a Short Message Service. The PEM embeds itself a Web server to facilitate the reviewing and/or update of the PHR during a routine visit at the office of the general physician or cardiologist. Eighty PEM prototypes have been finalized and tested for several weeks on 697 citizens/patients in different clinical and self-care situations involving end users (188 patients), general physicians (10), and cardiologists (9). The clinical evaluation indicates that the EPI-MEDICS concept may save lives and is very valuable for prehospitalization triage.
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...
2017-03-20
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
Job Involvement and Organizational Commitment of Employees of Prehospital Emergency Medical System
Rahati, Alireza; Sotudeh-Arani, Hossein; Adib-Hajbaghery, Mohsen; Rostami, Majid
2015-01-01
Background: Several studies are available on organizational commitment of employees in different organizations. However, the organizational commitment and job involvement of the employees in the prehospital emergency medical system (PEMS) of Iran have largely been ignored. Objectives: This study aimed to investigate the organizational commitment and job involvement of the employees of PEMS and the relationship between these two issues. Materials and Methods: This cross-sectional study was conducted on 160 employees of Kashan PEMS who were selected through a census method in 2014. A 3-part instrument was used in this study, including a demographic questionnaire, the Allen and Miller’s organizational commitment inventory, and the Lodahl and Kejner’s job involvement inventory. We used descriptive statistics, Spearman correlation coefficient, Kruskal-Wallis, Friedman, analysis of variance, and Tukey post hoc tests to analyze the data. Results: The mean job involvement and organizational commitment scores were 61.78 ± 10.69 and 73.89 ± 13.58, respectively. The mean scores of job involvement and organizational commitment were significantly different in subjects with different work experiences (P = 0.043 and P = 0.012, respectively). However, no significant differences were observed between the mean scores of organizational commitment and job involvement in subjects with different fields of study, different levels of interest in the profession, and various educational levels. A direct significant correlation was found between the total scores of organizational commitment and job involvement of workers in Kashan PEMS (r = 0.910, P < 0.001). Conclusions: This study showed that the employees in the Kashan PEMS obtained half of the score of organizational commitment and about two-thirds of the job involvement score. Therefore, the higher level managers of the emergency medical system are advised to implement some strategies to increase the employees’ job involvement and organizational commitment. PMID:26835470
Apollo Rendezvous Docking Simulator
1964-11-02
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.
4. Credit PEM. Interior of Martinsburg Plant; on right showing ...
4. Credit PEM. Interior of Martinsburg Plant; on right showing Taylor 150 hp steam engine belt-connected to a Warren 150 KW, 2200 Volt a.c. generator. On left, a Fisher 400 hp steam engine belt-connected to a Warren 200 KW, 2200 Volt a.c. generator. In center, also belt-connected to Fisher 400 hp engine is a Bail 120 light, arc-light generator. Photo c. 1905. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility
NASA Technical Reports Server (NTRS)
Moore, S. H.; Voecks, G. E.
1997-01-01
Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.
Nuclear magnetic resonance of polymer electrolyte membrane fuel cells.
Suarez, Sophia; Greenbaum, Steve
2010-12-01
In this review, the contribution of NMR spectroscopy to the development of the proton exchange membrane fuel cell (PEMFC) is discussed, with particular emphasis on its use in the characterization of structure and transport in proton exchange membranes (PEMs). Owing to copious amount of information available, results of the past decade will be the main focal point. In addition, its use as a screening tool for the PEM materials will be discussed. Copyright © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E
2017-01-03
Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
Process for recycling components of a PEM fuel cell membrane electrode assembly
Shore, Lawrence [Edison, NJ
2012-02-28
The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.
The Delta launch vehicle Model 2914 series
NASA Technical Reports Server (NTRS)
Gunn, C. R.
1973-01-01
Description of a new, medium-class Delta launch-vehicle configuration, the three-stage Model 2914. The first stage of this vehicle is composed of a liquid-propellant core which is thrust-augmented with up to nine strap-on solid-propellant motors. The second stage, recently uprated with a strap-down inertial guidance system, is now being modified to adapt the liquid-propellant descent engine from the Apollo Lunar Excursion Module. The third stage is a spin-stabilized solid-propellant motor. The Model 2914 is capable of injecting 2040 kg into low earth orbit, 705 kg into geosynchronous transfer orbit, or 455 kg into an escape trajectory.
Manned Mars mission environmental control and life support subsystem
NASA Technical Reports Server (NTRS)
Hueter, Uwe
1986-01-01
A specific design is not presented, but the general philosophy regarding potential Environmental Control/Life Support System (ECLSS) requirements, concepts, issues, and technology needs are discussed. The focus is on a manned Mars mission occurring in the late 1990's. Discussions on the Trans-Mars Vehicle, the Mars Excursion Module (MEM), and a Martian base facility are covered. The functions, performance requirements, and design loads of a typical ECLSS are listed, and the issues and technology briefly discussed. Several ECLSS concepts and options are identified, and comparative weights and volumes are provided for these. Several aspects of the space station ECLSS are contrasted with the Mars element ECLSS.
Kong, Byung-Whi; Hudson, Nicholas; Seo, Dongwon; Lee, Seok; Khatri, Bhuwan; Lassiter, Kentu; Cook, Devin; Piekarski, Alissa; Dridi, Sami; Anthony, Nicholas; Bottje, Walter
2017-01-13
Modern broiler chickens exhibit very rapid growth and high feed efficiency compared to unselected chicken breeds. The improved production efficiency in modern broiler chickens was achieved by the intensive genetic selection for meat production. This study was designed to investigate the genetic alterations accumulated in modern broiler breeder lines during selective breeding conducted over several decades. To identify genes important in determining muscle growth and feed efficiency in broilers, RNA sequencing (RNAseq) was conducted with breast muscle in modern pedigree male (PeM) broilers (n = 6 per group), and with an unselected foundation broiler line (Barred Plymouth Rock; BPR). The RNAseq analysis was carried out using Ilumina Hiseq (2 x 100 bp paired end read) and raw reads were assembled with the galgal4 reference chicken genome. With normalized RPM values, genes showing >10 average read counts were chosen and genes showing <0.05 p-value and >1.3 fold change were considered as differentially expressed (DE) between PeM and BPR. DE genes were subjected to Ingenuity Pathway Analysis (IPA) for bioinformatic functional interpretation. The results indicate that 2,464 DE genes were identified in the comparison between PeM and BPR. Interestingly, the expression of genes encoding mitochondrial proteins in chicken are significantly biased towards the BPR group, suggesting a lowered mitochondrial content in PeM chicken muscles compared to BPR chicken. This result is inconsistent with more slow muscle fibers bearing a lower mitochondrial content in the PeM. The molecular, cellular and physiological functions of DE genes in the comparison between PeM and BPR include organismal injury, carbohydrate metabolism, cell growth/proliferation, and skeletal muscle system development, indicating that cellular mechanisms in modern broiler lines are tightly associated with rapid growth and differential muscle fiber contents compared to the unselected BPR line. Particularly, PDGF (platelet derived growth factor) signaling and NFE2L2 (nuclear factor, erythroid 2-like 2; also known as NRF2) mediated oxidative stress response pathways appear to be activated in modern broiler compared to the foundational BPR line. Upstream and network analyses revealed that the MSTN (myostatin) -FST (follistatin) interactions and inhibition of AR (androgen receptor) were predicted to be effective regulatory factors for DE genes in modern broiler line. PRKAG3 (protein kinase, AMP-activated, gamma 3 non-catalytic subunit) and LIPE (lipase E) are predicted as core regulatory factors for myogenic development, nutrient and lipid metabolism. The highly upregulated genes in PeM may represent phenotypes of subclinical myopathy commonly observed in the commercial broiler breast tissue, that can lead to muscle hardening, named as woody breast. By investigating global gene expression in a highly selected pedigree broiler line and a foundational breed (Barred Plymouth Rock), the results provide insight into cellular mechanisms that regulate muscle growth, fiber composition and feed efficiency.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell
NASA Astrophysics Data System (ADS)
Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.
2015-08-01
Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.
Microalgae dewatering based on forward osmosis employing proton exchange membrane.
Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In
2017-11-01
In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Separators used in microbial electrochemical technologies: Current status and future prospects.
Daud, Siti Mariam; Kim, Byung Hong; Ghasemi, Mostafa; Daud, Wan Ramli Wan
2015-11-01
Microbial electrochemical technologies (METs) are emerging green processes producing useful products from renewable sources without causing environmental pollution and treating wastes. The separator, an important part of METs that greatly affects the latter's performance, is commonly made of Nafion proton exchange membrane (PEM). However, many problems have been identified associated with the Nafion PEM such as high cost of membrane, significant oxygen and substrate crossovers, and transport of cations other than protons protons and biofouling. A variety of materials have been offered as alternative separators such as ion-exchange membranes, salt bridges, glass fibers, composite membranes and porous materials. It has been claimed that low cost porous materials perform better than PEM. These include J-cloth, nylon filter, glass fiber mat, non-woven cloth, earthen pot and ceramics that enable non-ion selective charge transfer. This paper provides an up-to-date review on porous separators and plots directions for future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.
2017-08-01
The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.
Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory
NASA Astrophysics Data System (ADS)
Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu
2017-08-01
The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
NASA Astrophysics Data System (ADS)
kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh
2017-10-01
The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.
Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; ...
2015-09-02
The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less
Song, Jinsuk; Han, Oc Hee; Han, Songi
2015-03-16
Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioresorbable polyelectrolytes for smuggling drugs into cells.
Jaganathan, Sripriya
2016-06-01
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.
The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less
Watson, J T; Ritzmann, R E
1998-01-01
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Pratt, L. M.
2004-12-01
Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by the ocean, vegetation, and soil reservoirs. Ten to twenty five-year cycles of drought and fire are not recorded as individual excursions in the soil reservoir as the rate of transfer between the vegetation and soil reservoirs homogenizes the signal. A wildfire-modeled excursion does not propagate a geologically significant excursion through time. Combustion of a peat reservoir is necessary to drive and validate a geologically and isotopically significant excursion. Assuming 0.5% of the standing early Cretaceous peat reservoir is consumed by fire for each year for ten years coupled with the earlier scenario, the atmospheric CO2 increases from 2.0 to 3.1x P.A.L., atmosphere, vegetation, and the surface ocean record a negative carbon isotope excursion of -5.1 ‰ , -3.8 ‰ and -1.8 ‰ respectively, with a duration of 741 years. Increasing the size of the vegetation reservoir translates the excursions from the centennial to millennial scale. For example, doubling the vegetation reservoir (from 1.4 to 2.8E+16 gC) for a 25 year global peat conflagration (0.5% combusted each year) results in a CO2 increase from 2.0 to 4.0x P.A.L., and the atmosphere, vegetation, and the surface ocean reservoirs with a negative carbon isotope excursion of -5.7 ‰ , -8.7 ‰ and -2.3 ‰ respectively. Addition of carbonaceous aerosols (black carbon and polycyclic aromatic hydrocarbons) to pelagic marine sediments could potentially serve as a high-resolution record of ancient fires and firmly tie isotopic shifts to paleofires.
Assessment of vertical excursions and open-sea psychological performance at depths to 250 fsw.
Miller, J W; Bachrach, A J; Walsh, J M
1976-12-01
A series of 10 two-man descending vertical excursion dives was carried out in the open sea from an ocean-floor habitat off the coast of Puerto Rico by four aquanauts saturated on a normoxic-nitrogen breathing mixture at a depth of 106 fsw. The purpose of these dives was two-fold: to validate laboratory findings with respect to decompression schedules and to determine whether such excursions would produce evidence of adaptation to nitrogen narcosis. For the latter, tests designed to measure time estimation, short-term memory, and auditory vigilance were used. The validation of experimental excursion tables was carried out without incidence of decompression sickness. Although no signs of nitrogen narcosis were noted during testing, all subjects made significantly longer time estimates in the habitat and during the excursions than on the surface. Variability and incomplete data prevented a statistical analysis of the short-term memory results, and the auditory vigilance proved unusable in the water.
Human risk factors associated with pilots in runway excursions.
Chang, Yu-Hern; Yang, Hui-Hua; Hsiao, Yu-Jung
2016-09-01
A breakdown analysis of civil aviation accidents worldwide indicates that the occurrence of runway excursions represents the largest portion among all aviation occurrence categories. This study examines the human risk factors associated with pilots in runway excursions, by applying a SHELLO model to categorize the human risk factors and to evaluate the importance based on the opinions of 145 airline pilots. This study integrates aviation management level expert opinions on relative weighting and improvement-achievability in order to develop four kinds of priority risk management strategies for airline pilots to reduce runway excursions. The empirical study based on experts' evaluation suggests that the most important dimension is the liveware/pilot's core ability. From the perspective of front-line pilots, the most important risk factors are the environment, wet/containment runways, and weather issues like rain/thunderstorms. Finally, this study develops practical strategies for helping management authorities to improve major operational and managerial weaknesses so as to reduce the human risks related to runway excursions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The metatarsosesamoid joint: an in vitro 3D quantitative assessment.
Jamal, Bilal; Pillai, Anand; Fogg, Quentin; Kumar, Senthil
2015-03-01
The anatomy of the first metatarsophalangeal (MTP) joint, particularly the metatarsosesamoid articulation, remains poorly understood. Our goal was to quantitatively define the excursion of the sesamoids. Seven cadavers were dissected to assess the articulating surfaces throughout a normal range of motion. The dissections were digitally reconstructed in various positions using a MicroScribe. For first MTP joint, excursion averaged 14.7mm for the tibial sesamoid in the sagittal plane and 7.5mm for the fibular sesamoid. The sesamoids also moved medially to laterally when the joint was dorsiflexed. For the maximally dorsiflexed joint, excursion averaged 2.8mm for the tibial sesamoid and 3.5mm for the fibular sesamoid. Hallucal sesamoids appear to have differential tracking: the tibial sesamoid has greater longitudinal excursion; the fibular sesamoid has greater lateral excursion. The anatomical data will interest those involved with the design of an effective hallux arthroplasty. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singer, Brad S.; Jicha, Brian R.; He, Huaiyu; Zhu, Rixiang
2014-04-01
New 40Ar/39Ar dating of a comenditic lava atop Tianchi Volcano, China, indicates eruption at 17.1 ± 0.9 ka. The flow interior records a pair of transitional virtual geomagnetic poles and a low paleointensity of ~25 μT. Thus, it records a geomagnetic field excursion that is younger than the 41 ka Laschamp or 32 ka Auckland excursions. Implications are: (1) following a repose of several tens of kyr, Tianchi Volcano became highly active immediately following termination of the last glaciation maximum. The flare-up of silicic eruptions may reflect rapid deglaciation of the edifice. (2) A 17 ka age for the Tianchi excursion provides the first direct radioisotopic evidence that excursional behavior, which is imprecisely dated and less well documented magnetically at several other sites, is a global feature of geodynamo behavior. (3) During the Brunhes chron, 13 well-dated excursions cluster into two periods, including seven between 17 and 212 ka, and six between about 530 and 730 ka.
Hydroxide Solvation and Transport in Anion Exchange Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less
Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis
Surti, Suleman
2013-01-01
Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989
Selective growth of MoS2 for proton exchange membranes with extremely high selectivity.
Feng, Kai; Tang, Beibei; Wu, Peiyi
2013-12-26
Proton conductivity and methanol permeability are the most important transport properties of proton exchange membranes (PEMs). The ratio of proton conductivity to methanol permeability is usually called selectivity. Herein, a novel strategy of in situ growth of MoS2 is employed to prepare MoS2/Nafion composite membranes for highly selective PEM. The strong interactions between the Mo precursor ((NH4)2MoS4) and Nafion's sulfonic groups in a suitable solvent environment (DMF) probably lead to a selective growth of MoS2 flakes mainly around the ionic clusters of the resultant MoS2/Nafion composite membrane. Therefore, it would significantly promote the aggregation and hence lead to a better connectivity of these ionic clusters, which favors the increase in proton conductivity. Meanwhile, the existence of MoS2 in the ionic channels effectively prevents methanol transporting through the PEM, contributing to the dramatic decrease in the methanol permeability. Consequently, the MoS2/Nafion composite membranes exhibit greatly increased selectivity. Under some severe conditions, such as 50 °C with 80 v/v% of methanol concentration, an increase in the membrane selectivity by nearly 2 orders of magnitude compared with that of the recast Nafion membrane could be achieved here, proving our method as a very promising way to prepare high-performance PEMs. All these conclusions are confirmed by various characterizations, such as (FE-) SEM, TEM, AFM, IR, Raman, TGA, XRD, etc.
NASA Technical Reports Server (NTRS)
Singh, H. B.; Viezee, W.; Chen, Y.; Bradshaw, J.; Sandholm, S.; Blake, D.; Blake, N.; Heikes, B.; Snow, J.; Talbot, R.;
1999-01-01
Airborne, in-situ measurements from PEM-Tropics-A (September/October 1996) are analyzed to show the presence of distinct pollution plumes in the middle-tropical troposphere of the remote South Pacific (10-30degS). These elevated plumes cause a relative maximum at about 5-7km attitude in the vertical distribution of primary and secondary species characteristic of fuel combustion and biomass burning (CO, C2H2, C2H6, CH3Cl, PAN, O3). Similar plumes were also observed at mid-latitudes in the middle troposphere during three flights east of New Zealand (40-45degS). In all, pollution plumes with CO larger than 100 ppb were observed 24 times on 7 separate flight days south of the equator. The observed plumes were generally embedded in very dry air. Ten-day back trajectory analysis supports the view that these originated from the biomass burning regions of South Africa (and South America) and were transported to the South Pacific along long-distance subsiding trajectories. The chemical composition of the southern Pacific troposphere analyzed from the PEM-Tropics-A data is compared with data from the tropical regions of the northern Pacific (PEM-West-A) and southern Atlantic (TRACE-A) during the same Sept/Oct time period. Sizable perturbations in the abundance of ozone and its key precursors, resulting from the transport of pollution originating from biomass burning sources, are observed in much of the Southern Hemispheric troposphere.
Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells
NASA Astrophysics Data System (ADS)
Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata
2016-06-01
Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.
Sambandam, Satheesh; Parrondo, Javier; Ramani, Vijay
2013-09-28
The oxygen permeability of perfluorinated and hydrocarbon polymer electrolyte membranes (PEMs; Nafion®, SPEEK and SPSU), which are used as electrolytes and electrode ionomers in polymer electrolyte fuel cells (PEFCs), was estimated using chronoamperometry using a modified fuel cell set-up. A thin, cylindrical microelectrode was embedded into the PEM and used as the working electrode. The PEM was sandwiched between 2 gas diffusion electrodes, one of which was catalyzed and served as the counter and pseudo-reference electrode. Independently, from fuel cell experiments, the oxygen transport resistance arising due to transport through the ionomer film covering the catalyst active sites was estimated at the limiting current and decoupled from the overall mass transport resistance. The in situ oxygen permeability measured at 80 °C and 75% RH of perfluorinated ionomers such as Nafion® (3.85 × 10(12) mol cm(-1) s(-1)) was observed to be an order of magnitude higher than that of hydrocarbon-based PEMs such as SPEEK (0.27 × 10(12) mol cm(-1) s(-1)) and SPSU (0.15 × 10(12) mol cm(-1) s(-1)). The obtained oxygen transport (through ionomer film) resistance values (Nafion® - 1.6 s cm(-1), SPEEK - 2.2 s cm(-1) and SPSU - 3.0 s cm(-1); at 80 °C and 75% RH) correlated well with the measured oxygen permeabilities in these ion-containing polymers.
Jana, Partha S; Behera, Manaswini; Ghangrekar, M M
2012-01-01
The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Hydroxide Solvation and Transport in Anion Exchange Membranes.
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A
2016-01-27
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.
Head Excursion of Restrained Human Volunteers and Hybrid III Dummies in Steady State Rollover Tests
Moffatt, Edward; Hare, Barry; Hughes, Raymond; Lewis, Lance; Iiyama, Hiroshi; Curzon, Anne; Cooper, Eddie
2003-01-01
Seatbelts provide substantial benefits in rollover crashes, yet occupants still receive head and neck injuries from contacting the vehicle roof interior when the roof exterior strikes the ground. Prior research has evaluated rollover restraint performance utilizing anthropomorphic test devices (dummies), but little dynamic testing has been done with human volunteers to learn how they move during rollovers. In this study, the vertical excursion of the head of restrained dummies and human subjects was measured in a vehicle being rotated about its longitudinal roll axis at roll rates from 180-to-360 deg/sec and under static inversion conditions. The vehicle’s restraint design was the commonly used 3-point seatbelt with continuous loop webbing and a sliding latch plate. This paper presents an analysis of the observed occupant motion and provides a comparison of dummy and human motion under similar test conditions. Thirty-five tests (eighteen static and seventeen dynamic) were completed using two different sizes of dummies and human subjects in both near and far-side roll directions. The research indicates that far-side rollovers cause the restrained test subjects to have greater head excursion than near-side rollovers, and that static inversion testing underestimates head excursion for far-side occupants. Human vertical head excursion of up to 200 mm was found at a roll rate of 220 deg/sec. Humans exhibit greater variability in head excursion in comparison to dummies. Transfer of seatbelt webbing through the latch plate did not correlate directly with differences in head excursion. PMID:12941241
Cramer, Bradley D.; Saltzman, Matthew R.; Day, J.E.; Witzke, B.J.
2008-01-01
Latest Famennian marine carbonates from the mid-continent of North America were examined to investigate the Late Devonian (very late Famennian) Hangenberg positive carbon-isotope (??13 Ccarb) excursion. This global shift in the ?? 13C of marine waters began during the late Famennian Hangenberg Extinction Event that occurred during the Middle Siphonodella praesulcata conodont zone. The post-extinction recovery interval spans the Upper S. praesulcata Zone immediately below the Devonian-Carboniferous boundary. Positive excursions in ?? 13 Ccarb are often attributed to the widespread deposition of organic-rich black shales in epeiric sea settings. The Hangenberg ??13 Ccarb excursion documented in the Louisiana Limestone in this study shows the opposite trend, with peak ??13 Ccarb values corresponding to carbonate production in the U.S. mid-continent during the highstand phase of the very late Famennian post-glacial sea level rise. Our data indicate that the interval of widespread black shale deposition (Hangenberg Black Shale) predates the peak isotope values of the Hangenberg ??13 Ccarb excursion and that peak values of the Hangenberg excursion in Missouri are not coincident with and cannot be accounted for by high Corg burial in epeiric seas. We suggest instead that sequestration and burial of Corg in the deep oceans drove the peak interval of the ??13Ccarb excursion, as a result of a change in the site of deep water formation to low-latitude epeiric seas as the global climate shifted between cold and warm states.
A paleomagnetic record in loess-paleosol sequences since late Pleistocene in the arid Central Asia
NASA Astrophysics Data System (ADS)
Li, Guanhua; Xia, Dunsheng; Appel, Erwin; Wang, Youjun; Jia, Jia; Yang, Xiaoqiang
2018-03-01
Geomagnetic excursions during Brunhes epoch have been brought to the forefront topic in paleomagnetic study, as they provide key information about Earth's interior dynamics and could serve as another tool for stratigraphic correlation among different lithology. Loess-paleosol sequences provide good archives for decoding geomagnetic excursions. However, the detailed pattern of these excursions was not sufficiently clarified due to pedogenic influence. In this study, paleomagnetic analysis was performed in loess-paleosol sequences on the northern piedmont of the Tianshan Mountains (northwestern China). By radiocarbon and luminance dating, the loess section was chronologically constrained to mainly the last c.130 ka, a period when several distinct geomagnetic excursions were involved. The rock magnetic properties in this loess section are dominated by magnetite and maghemite in a pseudo-single-domain state. The rock magnetic properties and magnetic anisotropy indicate weakly pedogenic influence for magnetic record. The stable component of remanent magnetization derived from thermal demagnetization revealed the presence of two intervals of directional anomalies with corresponding intensity lows in the Brunhes epoch. The age control in the key layers indicates these anomalies are likely associated with the Laschamp and Blake excursions, respectively. In addition, relative paleointensity in the loess section is basically compatible with other regional and global relative paleointensity records and indicates two low-paleointensity zones, possibly corresponding to the Blake and Laschamp excursions, respectively. As a result, this study suggests that the loess section may have the potential to record short-lived excursions, which largely reflect the variation of dipole components in the global archives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian; Wright, Ian
Boiler tubes in steam power plants experience tube blockages due to exfoliation of oxide grown on the inner side of the tubes. In extreme cases, significant tube blockages can lead to forced power plant outages. It is thus desired to predict through modeling the amount of tube blockage in order to inform power plant operators of possible forced outages. SpalLoop solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages for the entire boiler tube length. At each operational outage, i.e., temperature excursions down to room temperature, the amount of exfoliated areamore » for the entire tube loop is estimated the amount of tube blockage is predicted based assumed blockage geometry and site. The SpaLLoop code contains modules developed for oxide growth, stress analysis, tube loop geometry, blockage area by taking into account the following phenomena and features, (a) Plant operation schedule with periodic alternate full-load and partial-load regimes and shut-downs, i.e., temperature excursions from high-load to room temperature, (b) axisymmetric formulation for cylindrical tubes, (c) oxide growth in a temperature gradient with multiple oxide layers, (d) geometry of a boiler tube with a single tube loop or two tube loops, (e) temperature variation along the tube length based on hot gas temperature distribution outside the tube and inlet steam temperature, (f) non-uniform oxide growth along the tube length according to the local steam tube temperature, (g) exfoliated area module: at each operational outage considered, the amount of exfoliated area and exfoliated volume along the tube is estimated, (h) blockage module: at each operational outage considered, the exfoliated volume/mass for each tube loop is estimated from which the amount of tube blockage is predicted based on given blockage geometry (length, location, and geometry). The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less
Engaging students in research learning experiences through hydrology field excursions and projects
NASA Astrophysics Data System (ADS)
Ewen, T.; Seibert, J.
2014-12-01
One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. In the field projects, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. In one of the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, which also allows students to retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. With in-house film expertise, these field excursions were also filmed and short virtual excursions were produced, which we plan to use in a large introductory course, exposing students to field research at an early stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant
2014-10-03
Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less
Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.
2016-01-01
ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery. PMID:27287319
System level modeling and component level control of fuel cells
NASA Astrophysics Data System (ADS)
Xue, Xingjian
This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.
Apollo-Lunar Orbital Rendezvous Technique
NASA Technical Reports Server (NTRS)
1963-01-01
The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown.
Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K
2011-06-14
We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.