MPI_XSTAR: MPI-based Parallelization of the XSTAR Photoionization Program
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Smith, Randall K.
2018-02-01
We describe a program for the parallel implementation of multiple runs of XSTAR, a photoionization code that is used to predict the physical properties of an ionized gas from its emission and/or absorption lines. The parallelization program, called MPI_XSTAR, has been developed and implemented in the C++ language by using the Message Passing Interface (MPI) protocol, a conventional standard of parallel computing. We have benchmarked parallel multiprocessing executions of XSTAR, using MPI_XSTAR, against a serial execution of XSTAR, in terms of the parallelization speedup and the computing resource efficiency. Our experience indicates that the parallel execution runs significantly faster than the serial execution, however, the efficiency in terms of the computing resource usage decreases with increasing the number of processors used in the parallel computing.
A Tutorial on Parallel and Concurrent Programming in Haskell
NASA Astrophysics Data System (ADS)
Peyton Jones, Simon; Singh, Satnam
This practical tutorial introduces the features available in Haskell for writing parallel and concurrent programs. We first describe how to write semi-explicit parallel programs by using annotations to express opportunities for parallelism and to help control the granularity of parallelism for effective execution on modern operating systems and processors. We then describe the mechanisms provided by Haskell for writing explicitly parallel programs with a focus on the use of software transactional memory to help share information between threads. Finally, we show how nested data parallelism can be used to write deterministically parallel programs which allows programmers to use rich data types in data parallel programs which are automatically transformed into flat data parallel versions for efficient execution on multi-core processors.
A mechanism for efficient debugging of parallel programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.P.; Choi, J.D.
1988-01-01
This paper addresses the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors (SMMP). The authors describe the use of flowback analysis to provide information on causal relationships between events in a program's execution without re-executing the program for debugging. The authors introduce a mechanism called incremental tracing that, by using semantic analyses of the debugged program, makes the flowback analysis practical with only a small amount of trace generated during execution. The extend flowback analysis to apply to parallel programs and describe a method to detect race conditions in the interactions ofmore » the co-operating processes.« less
Execution models for mapping programs onto distributed memory parallel computers
NASA Technical Reports Server (NTRS)
Sussman, Alan
1992-01-01
The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.
Support for Debugging Automatically Parallelized Programs
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Hood, Robert; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe a system that simplifies the process of debugging programs produced by computer-aided parallelization tools. The system uses relative debugging techniques to compare serial and parallel executions in order to show where the computations begin to differ. If the original serial code is correct, errors due to parallelization will be isolated by the comparison. One of the primary goals of the system is to minimize the effort required of the user. To that end, the debugging system uses information produced by the parallelization tool to drive the comparison process. In particular the debugging system relies on the parallelization tool to provide information about where variables may have been modified and how arrays are distributed across multiple processes. User effort is also reduced through the use of dynamic instrumentation. This allows us to modify the program execution without changing the way the user builds the executable. The use of dynamic instrumentation also permits us to compare the executions in a fine-grained fashion and only involve the debugger when a difference has been detected. This reduces the overhead of executing instrumentation.
Relative Debugging of Automatically Parallelized Programs
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Hood, Robert; Biegel, Bryan (Technical Monitor)
2002-01-01
We describe a system that simplifies the process of debugging programs produced by computer-aided parallelization tools. The system uses relative debugging techniques to compare serial and parallel executions in order to show where the computations begin to differ. If the original serial code is correct, errors due to parallelization will be isolated by the comparison. One of the primary goals of the system is to minimize the effort required of the user. To that end, the debugging system uses information produced by the parallelization tool to drive the comparison process. In particular, the debugging system relies on the parallelization tool to provide information about where variables may have been modified and how arrays are distributed across multiple processes. User effort is also reduced through the use of dynamic instrumentation. This allows us to modify, the program execution with out changing the way the user builds the executable. The use of dynamic instrumentation also permits us to compare the executions in a fine-grained fashion and only involve the debugger when a difference has been detected. This reduces the overhead of executing instrumentation.
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Owen, Jeffrey E.
1988-01-01
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.
Parallelized direct execution simulation of message-passing parallel programs
NASA Technical Reports Server (NTRS)
Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.
1994-01-01
As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.
Method for resource control in parallel environments using program organization and run-time support
NASA Technical Reports Server (NTRS)
Ekanadham, Kattamuri (Inventor); Moreira, Jose Eduardo (Inventor); Naik, Vijay Krishnarao (Inventor)
2001-01-01
A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently.
Method for resource control in parallel environments using program organization and run-time support
NASA Technical Reports Server (NTRS)
Ekanadham, Kattamuri (Inventor); Moreira, Jose Eduardo (Inventor); Naik, Vijay Krishnarao (Inventor)
1999-01-01
A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently.
Exploiting Vector and Multicore Parallelsim for Recursive, Data- and Task-Parallel Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Bin; Krishnamoorthy, Sriram; Agrawal, Kunal
Modern hardware contains parallel execution resources that are well-suited for data-parallelism-vector units-and task parallelism-multicores. However, most work on parallel scheduling focuses on one type of hardware or the other. In this work, we present a scheduling framework that allows for a unified treatment of task- and data-parallelism. Our key insight is an abstraction, task blocks, that uniformly handles data-parallel iterations and task-parallel tasks, allowing them to be scheduled on vector units or executed independently as multicores. Our framework allows us to define schedulers that can dynamically select between executing task- blocks on vector units or multicores. We show that thesemore » schedulers are asymptotically optimal, and deliver the maximum amount of parallelism available in computation trees. To evaluate our schedulers, we develop program transformations that can convert mixed data- and task-parallel pro- grams into task block-based programs. Using a prototype instantiation of our scheduling framework, we show that, on an 8-core system, we can simultaneously exploit vector and multicore parallelism to achieve 14×-108× speedup over sequential baselines.« less
Backtracking and Re-execution in the Automatic Debugging of Parallelized Programs
NASA Technical Reports Server (NTRS)
Matthews, Gregory; Hood, Robert; Johnson, Stephen; Leggett, Peter; Biegel, Bryan (Technical Monitor)
2002-01-01
In this work we describe a new approach using relative debugging to find differences in computation between a serial program and a parallel version of th it program. We use a combination of re-execution and backtracking in order to find the first difference in computation that may ultimately lead to an incorrect value that the user has indicated. In our prototype implementation we use static analysis information from a parallelization tool in order to perform the backtracking as well as the mapping required between serial and parallel computations.
Performance enhancement of various real-time image processing techniques via speculative execution
NASA Astrophysics Data System (ADS)
Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.
1996-03-01
In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.
The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)
1997-01-01
Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.
Performance Metrics for Monitoring Parallel Program Executions
NASA Technical Reports Server (NTRS)
Sarukkai, Sekkar R.; Gotwais, Jacob K.; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Existing tools for debugging performance of parallel programs either provide graphical representations of program execution or profiles of program executions. However, for performance debugging tools to be useful, such information has to be augmented with information that highlights the cause of poor program performance. Identifying the cause of poor performance necessitates the need for not only determining the significance of various performance problems on the execution time of the program, but also needs to consider the effect of interprocessor communications of individual source level data structures. In this paper, we present a suite of normalized indices which provide a convenient mechanism for focusing on a region of code with poor performance and highlights the cause of the problem in terms of processors, procedures and data structure interactions. All the indices are generated from trace files augmented with data structure information.. Further, we show with the help of examples from the NAS benchmark suite that the indices help in detecting potential cause of poor performance, based on augmented execution traces obtained by monitoring the program.
Parallel program debugging with flowback analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongdeok.
1989-01-01
This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less
Instrumentation, performance visualization, and debugging tools for multiprocessors
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.
1991-01-01
The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.
The Automated Instrumentation and Monitoring System (AIMS) reference manual
NASA Technical Reports Server (NTRS)
Yan, Jerry; Hontalas, Philip; Listgarten, Sherry
1993-01-01
Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).
Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
We present views and analysis of the execution of several PVM (Parallel Virtual Machine) codes for Computational Fluid Dynamics on a networks of Sparcstations, including: (1) NAS Parallel Benchmarks CG and MG; (2) a multi-partitioning algorithm for NAS Parallel Benchmark SP; and (3) an overset grid flowsolver. These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains: (1) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (2) Monitor, a library of runtime trace-collection routines; (3) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (4) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran 77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses XIIR5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (1) the impact of long message latencies; (2) the impact of multiprogramming overheads and associated load imbalance; (3) cache and virtual-memory effects; and (4) significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (1) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets: and (2) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.
Cache Locality Optimization for Recursive Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Krishnamoorthy, Sriram
We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less
Work stealing for GPU-accelerated parallel programs in a global address space framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less
Visual analysis of inter-process communication for large-scale parallel computing.
Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu
2009-01-01
In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.
Tolerant (parallel) Programming
NASA Technical Reports Server (NTRS)
DiNucci, David C.; Bailey, David H. (Technical Monitor)
1997-01-01
In order to be truly portable, a program must be tolerant of a wide range of development and execution environments, and a parallel program is just one which must be tolerant of a very wide range. This paper first defines the term "tolerant programming", then describes many layers of tools to accomplish it. The primary focus is on F-Nets, a formal model for expressing computation as a folded partial-ordering of operations, thereby providing an architecture-independent expression of tolerant parallel algorithms. For implementing F-Nets, Cooperative Data Sharing (CDS) is a subroutine package for implementing communication efficiently in a large number of environments (e.g. shared memory and message passing). Software Cabling (SC), a very-high-level graphical programming language for building large F-Nets, possesses many of the features normally expected from today's computer languages (e.g. data abstraction, array operations). Finally, L2(sup 3) is a CASE tool which facilitates the construction, compilation, execution, and debugging of SC programs.
The paradigm compiler: Mapping a functional language for the connection machine
NASA Technical Reports Server (NTRS)
Dennis, Jack B.
1989-01-01
The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.
Concurrent simulation of a parallel jaw end effector
NASA Technical Reports Server (NTRS)
Bynum, Bill
1985-01-01
A system of programs developed to aid in the design and development of the command/response protocol between a parallel jaw end effector and the strategic planner program controlling it are presented. The system executes concurrently with the LISP controlling program to generate a graphical image of the end effector that moves in approximately real time in response to commands sent from the controlling program. Concurrent execution of the simulation program is useful for revealing flaws in the communication command structure arising from the asynchronous nature of the message traffic between the end effector and the strategic planner. Software simulation helps to minimize the number of hardware changes necessary to the microprocessor driving the end effector because of changes in the communication protocol. The simulation of other actuator devices can be easily incorporated into the system of programs by using the underlying support that was developed for the concurrent execution of the simulation process and the communication between it and the controlling program.
NASA Technical Reports Server (NTRS)
Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)
1983-01-01
A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.
Parallelization of elliptic solver for solving 1D Boussinesq model
NASA Astrophysics Data System (ADS)
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
The FORCE - A highly portable parallel programming language
NASA Technical Reports Server (NTRS)
Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger
1989-01-01
This paper explains why the FORCE parallel programming language is easily portable among six different shared-memory multiprocessors, and how a two-level macro preprocessor makes it possible to hide low-level machine dependencies and to build machine-independent high-level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared-memory multiprocessor executing them.
The FORCE: A highly portable parallel programming language
NASA Technical Reports Server (NTRS)
Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger
1989-01-01
Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them.
Concepts of Concurrent Programming
1990-04-01
to the material presented. Carriero89 Carriero, N., and Gelernter, D. " How to Write Parallel Programs : A Guide to the Perplexed." ACM...between the architectures on which programs can be executed and the application domains from which problems are drawn. Our goal is to show how programs ...Sept. 1989), 251-510. Abstract: There are four papers: 1. Programming Languages for Distributed Computing Systems (52); 2. How to Write Parallel
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
A distributed version of the NASA Engine Performance Program
NASA Technical Reports Server (NTRS)
Cours, Jeffrey T.; Curlett, Brian P.
1993-01-01
Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in a distributed computer environment. Multiple workstations connected by a network increase the program's speed and, more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing many different architectures. It includes the capability to link with other computers, allowing them to process NEPP jobs in parallel. This paper discusses the design issues and granularity considerations that entered into programming Distributed NEPP and presents the results of timing runs.
On program restructuring, scheduling, and communication for parallel processor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polychronopoulos, Constantine D.
1986-08-01
This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less
Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Tucker, Deanne (Technical Monitor)
1994-01-01
We present views and analysis of the execution of several PVM codes for Computational Fluid Dynamics on a network of Sparcstations, including (a) NAS Parallel benchmarks CG and MG (White, Alund and Sunderam 1993); (b) a multi-partitioning algorithm for NAS Parallel Benchmark SP (Wijngaart 1993); and (c) an overset grid flowsolver (Smith 1993). These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains (a) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (b) Monitor, a library of run-time trace-collection routines; (c) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (d) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses X11R5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (a) the impact of long message latencies; (b) the impact of multiprogramming overheads and associated load imbalance; (c) cache and virtual-memory effects; and (4significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (a) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets; and (b) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.
Analysis and selection of optimal function implementations in massively parallel computer
Archer, Charles Jens [Rochester, MN; Peters, Amanda [Rochester, MN; Ratterman, Joseph D [Rochester, MN
2011-05-31
An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.
Block-Parallel Data Analysis with DIY2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Peterka, Tom
DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less
Parallel Performance of a Combustion Chemistry Simulation
Skinner, Gregg; Eigenmann, Rudolf
1995-01-01
We used a description of a combustion simulation's mathematical and computational methods to develop a version for parallel execution. The result was a reasonable performance improvement on small numbers of processors. We applied several important programming techniques, which we describe, in optimizing the application. This work has implications for programming languages, compiler design, and software engineering.
Experiences with hypercube operating system instrumentation
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Rudolph, David C.
1989-01-01
The difficulties in conceptualizing the interactions among a large number of processors make it difficult both to identify the sources of inefficiencies and to determine how a parallel program could be made more efficient. This paper describes an instrumentation system that can trace the execution of distributed memory parallel programs by recording the occurrence of parallel program events. The resulting event traces can be used to compile summary statistics that provide a global view of program performance. In addition, visualization tools permit the graphic display of event traces. Visual presentation of performance data is particularly useful, indeed, necessary for large-scale parallel computers; the enormous volume of performance data mandates visual display.
Communications oriented programming of parallel iterative solutions of sparse linear systems
NASA Technical Reports Server (NTRS)
Patrick, M. L.; Pratt, T. W.
1986-01-01
Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.
Artemis: Integrating Scientific Data on the Grid (Preprint)
2004-07-01
Theseus execution engine [Barish and Knoblock 03] to efficiently execute the generated datalog program. The Theseus execution engine has a wide...variety of operations to query databases, web sources, and web services. Theseus also contains a wide variety of relational operations, such as...selection, union, or projection. Furthermore, Theseus optimizes the execution of an integration plan by querying several data sources in parallel and
An interactive parallel programming environment applied in atmospheric science
NASA Technical Reports Server (NTRS)
vonLaszewski, G.
1996-01-01
This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.
The BLAZE language: A parallel language for scientific programming
NASA Technical Reports Server (NTRS)
Mehrotra, P.; Vanrosendale, J.
1985-01-01
A Pascal-like scientific programming language, Blaze, is described. Blaze contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus Blaze should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with onceptually sequential control flow. A central goal in the design of Blaze is portability across a broad range of parallel architectures. The multiple levels of parallelism present in Blaze code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of Blaze are described and shows how this language would be used in typical scientific programming.
Automated Performance Prediction of Message-Passing Parallel Programs
NASA Technical Reports Server (NTRS)
Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.
Parallelized reliability estimation of reconfigurable computer networks
NASA Technical Reports Server (NTRS)
Nicol, David M.; Das, Subhendu; Palumbo, Dan
1990-01-01
A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.
A Survey of New Trends in Symbolic Execution for Software Testing and Analysis
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Visser, Willem
2009-01-01
Symbolic execution is a well-known program analysis technique which represents values of program inputs with symbolic values instead of concrete (initialized) data and executes the program by manipulating program expressions involving the symbolic values. Symbolic execution has been proposed over three decades ago but recently it has found renewed interest in the research community, due in part to the progress in decision procedures, availability of powerful computers and new algorithmic developments. We provide a survey of some of the new research trends in symbolic execution, with particular emphasis on applications to test generation and program analysis. We first describe an approach that handles complex programming constructs such as input data structures, arrays, as well as multi-threading. We follow with a discussion of abstraction techniques that can be used to limit the (possibly infinite) number of symbolic configurations that need to be analyzed for the symbolic execution of looping programs. Furthermore, we describe recent hybrid techniques that combine concrete and symbolic execution to overcome some of the inherent limitations of symbolic execution, such as handling native code or availability of decision procedures for the application domain. Finally, we give a short survey of interesting new applications, such as predictive testing, invariant inference, program repair, analysis of parallel numerical programs and differential symbolic execution.
Myria: Scalable Analytics as a Service
NASA Astrophysics Data System (ADS)
Howe, B.; Halperin, D.; Whitaker, A.
2014-12-01
At the UW eScience Institute, we're working to empower non-experts, especially in the sciences, to write and use data-parallel algorithms. To this end, we are building Myria, a web-based platform for scalable analytics and data-parallel programming. Myria's internal model of computation is the relational algebra extended with iteration, such that every program is inherently data-parallel, just as every query in a database is inherently data-parallel. But unlike databases, iteration is a first class concept, allowing us to express machine learning tasks, graph traversal tasks, and more. Programs can be expressed in a number of languages and can be executed on a number of execution environments, but we emphasize a particular language called MyriaL that supports both imperative and declarative styles and a particular execution engine called MyriaX that uses an in-memory column-oriented representation and asynchronous iteration. We deliver Myria over the web as a service, providing an editor, performance analysis tools, and catalog browsing features in a single environment. We find that this web-based "delivery vector" is critical in reaching non-experts: they are insulated from irrelevant effort technical work associated with installation, configuration, and resource management. The MyriaX backend, one of several execution runtimes we support, is a main-memory, column-oriented, RDBMS-on-the-worker system that supports cyclic data flows as a first-class citizen and has been shown to outperform competitive systems on 100-machine cluster sizes. I will describe the Myria system, give a demo, and present some new results in large-scale oceanographic microbiology.
Trace-Driven Debugging of Message Passing Programs
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Lopez, Louis; Bailey, David (Technical Monitor)
1998-01-01
In this paper we report on features added to a parallel debugger to simplify the debugging of parallel message passing programs. These features include replay, setting consistent breakpoints based on interprocess event causality, a parallel undo operation, and communication supervision. These features all use trace information collected during the execution of the program being debugged. We used a number of different instrumentation techniques to collect traces. We also implemented trace displays using two different trace visualization systems. The implementation was tested on an SGI Power Challenge cluster and a network of SGI workstations.
cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.
Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro
2016-01-01
Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.
The BLAZE language - A parallel language for scientific programming
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1987-01-01
A Pascal-like scientific programming language, BLAZE, is described. BLAZE contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus BLAZE should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with conceptually sequential control flow. A central goal in the design of BLAZE is portability across a broad range of parallel architectures. The multiple levels of parallelism present in BLAZE code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of BLAZE are described and it is shown how this language would be used in typical scientific programming.
Fenix, A Fault Tolerant Programming Framework for MPI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamel, Marc; Teranihi, Keita; Valenzuela, Eric
2016-10-05
Fenix provides APIs to allow the users to add fault tolerance capability to MPI-based parallel programs in a transparent manner. Fenix-enabled programs can run through process failures during program execution using a pool of spare processes accommodated by Fenix.
: A Scalable and Transparent System for Simulating MPI Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2010-01-01
is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less
Parallel computation with the force
NASA Technical Reports Server (NTRS)
Jordan, H. F.
1985-01-01
A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.
NASA Astrophysics Data System (ADS)
Handhika, T.; Bustamam, A.; Ernastuti, Kerami, D.
2017-07-01
Multi-thread programming using OpenMP on the shared-memory architecture with hyperthreading technology allows the resource to be accessed by multiple processors simultaneously. Each processor can execute more than one thread for a certain period of time. However, its speedup depends on the ability of the processor to execute threads in limited quantities, especially the sequential algorithm which contains a nested loop. The number of the outer loop iterations is greater than the maximum number of threads that can be executed by a processor. The thread distribution technique that had been found previously only be applied by the high-level programmer. This paper generates a parallelization procedure for low-level programmer in dealing with 2-level nested loop problems with the maximum number of threads that can be executed by a processor is smaller than the number of the outer loop iterations. Data preprocessing which is related to the number of the outer loop and the inner loop iterations, the computational time required to execute each iteration and the maximum number of threads that can be executed by a processor are used as a strategy to determine which parallel region that will produce optimal speedup.
FX-87 performance measurements: data-flow implementation. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, R.T.; Gifford, D.K.
1988-11-01
This report documents a series of experiments performed to explore the thesis that the FX-87 effect system permits a compiler to schedule imperative programs (i.e., programs that may contain side-effects) for execution on a parallel computer. The authors analyze how much the FX-87 static effect system can improve the execution times of five benchmark programs on a parallel graph interpreter. Three of their benchmark programs do not use side-effects (factorial, fibonacci, and polynomial division) and thus did not have any effect-induced constraints. Their FX-87 performance was comparable to their performance in a purely functional language. Two of the benchmark programsmore » use side effects (DNA sequence matching and Scheme interpretation) and the compiler was able to use effect information to reduce their execution times by factors of 1.7 to 5.4 when compared with sequential execution times. These results support the thesis that a static effect system is a powerful tool for compilation to multiprocessor computers. However, the graph interpreter we used was based on unrealistic assumptions, and thus our results may not accurately reflect the performance of a practical FX-87 implementation. The results also suggest that conventional loop analysis would complement the FX-87 effect system« less
Putting time into proof outlines
NASA Technical Reports Server (NTRS)
Schneider, Fred B.; Bloom, Bard; Marzullo, Keith
1991-01-01
A logic for reasoning about timing of concurrent programs is presented. The logic is based on proof outlines and can handle maximal parallelism as well as resource-constrained execution environments. The correctness proof for a mutual exclusion protocol that uses execution timings in a subtle way illustrates the logic in action.
IOPA: I/O-aware parallelism adaption for parallel programs
Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei
2017-01-01
With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads. PMID:28278236
IOPA: I/O-aware parallelism adaption for parallel programs.
Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei
2017-01-01
With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads.
Multilevel Parallelization of AutoDock 4.2.
Norgan, Andrew P; Coffman, Paul K; Kocher, Jean-Pierre A; Katzmann, David J; Sosa, Carlos P
2011-04-28
Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4). Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers. Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Design of object-oriented distributed simulation classes
NASA Technical Reports Server (NTRS)
Schoeffler, James D. (Principal Investigator)
1995-01-01
Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.
Design of Object-Oriented Distributed Simulation Classes
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1995-01-01
Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.
Automatic recognition of vector and parallel operations in a higher level language
NASA Technical Reports Server (NTRS)
Schneck, P. B.
1971-01-01
A compiler for recognizing statements of a FORTRAN program which are suited for fast execution on a parallel or pipeline machine such as Illiac-4, Star or ASC is described. The technique employs interval analysis to provide flow information to the vector/parallel recognizer. Where profitable the compiler changes scalar variables to subscripted variables. The output of the compiler is an extension to FORTRAN which shows parallel and vector operations explicitly.
NASA Technical Reports Server (NTRS)
Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.
1987-01-01
A methodology for writing parallel programs for shared memory multiprocessors has been formalized as an extension to the Fortran language and implemented as a macro preprocessor. The extended language is known as the Force, and this manual describes how to write Force programs and execute them on the Flexible Computer Corporation Flex/32, the Encore Multimax and the Sequent Balance computers. The parallel extension macros are described in detail, but knowledge of Fortran is assumed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littlefield, R.J.
1990-02-01
To implement an efficient data-parallel program on a non-shared memory MIMD multicomputer, data and computations must be properly partitioned to achieve good load balance and locality of reference. Programs with irregular data reference patterns often require irregular partitions. Although good partitions may be easy to determine, they can be difficult or impossible to implement in programming languages that provide only regular data distributions, such as blocked or cyclic arrays. We are developing Onyx, a programming system that provides a shared memory model of distributed data structures and extends the concept of data distribution to include irregular and dynamic distributions. Thismore » provides a powerful means to specify irregular partitions. Perhaps surprisingly, programs using it can also execute efficiently. In this paper, we describe and evaluate the Onyx implementation of a model problem that repeatedly executes an irregular but fixed data reference pattern. On an NCUBE hypercube, the speed of the Onyx implementation is comparable to that of carefully handwritten message-passing code.« less
Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Ma, X; Singh, K
2008-10-09
With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Program Correctness, Verification and Testing for Exascale (Corvette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Koushik; Iancu, Costin; Demmel, James W
The goal of this project is to provide tools to assess the correctness of parallel programs written using hybrid parallelism. There is a dire lack of both theoretical and engineering know-how in the area of finding bugs in hybrid or large scale parallel programs, which our research aims to change. In the project we have demonstrated novel approaches in several areas: 1. Low overhead automated and precise detection of concurrency bugs at scale. 2. Using low overhead bug detection tools to guide speculative program transformations for performance. 3. Techniques to reduce the concurrency required to reproduce a bug using partialmore » program restart/replay. 4. Techniques to provide reproducible execution of floating point programs. 5. Techniques for tuning the floating point precision used in codes.« less
NASA Astrophysics Data System (ADS)
Sanna, N.; Morelli, G.
2004-09-01
In this paper we present the new version of the SCELib program (CPC Catalogue identifier ADMG) a full numerical implementation of the Single Center Expansion (SCE) method. The physics involved is that of producing the SCE description of molecular electronic densities, of molecular electrostatic potentials and of molecular perturbed potentials due to a point negative or positive charge. This new revision of the program has been optimized to run in serial as well as in parallel execution mode, to support a larger set of molecular symmetries and to permit the restart of long-lasting calculations. To measure the performance of this new release, a comparative study has been carried out on the most powerful computing architectures in serial and parallel runs. The results of the calculations reported in this paper refer to real cases medium to large molecular systems and they are reported in full details to benchmark at best the parallel architectures the new SCELib code will run on. Program summaryTitle of program: SCELib2 Catalogue identifier: ADGU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADGU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference to previous versions: Comput. Phys. Commun. 128 (2) (2000) 139 (CPC catalogue identifier: ADMG) Does the new version supersede the original program?: Yes Computer for which the program is designed and others on which it has been tested: HP ES45 and rx2600, SUN ES4500, IBM SP and any single CPU workstation based on Alpha, SPARC, POWER, Itanium2 and X86 processors Installations: CASPUR, local Operating systems under which the program has been tested: HP Tru64 V5.X, SUNOS V5.8, IBM AIX V5.X, Linux RedHat V8.0 Programming language used: C Memory required to execute with typical data: 10 Mwords. Up to 2000 Mwords depending on the molecular system and runtime parameters No. of bits in a word: 64 No. of processors used: 1 to 32 Has the code been vectorized or parallelized?: Yes No. of bytes in distributed program, including test data, etc.: 3 798 507 No. of lines in distributed program, including test data, etc.: 187 226 Distribution format: tar.gz Nature of physical problem: In this set of codes an efficient procedure is implemented to describe the wavefunction and related molecular properties of a polyatomic molecular system within the Single Center of Expansion (SCE) approximation. The resulting SCE wavefunction, electron density, electrostatic and exchange/correlation potentials can then be used via a proper Application Programming Interface (API) to describe the target molecular system which can be employed in electron-molecule scattering calculations. The molecular properties expanded over a single center turn out to also be of more general application and some possible uses in quantum chemistry, biomodelling and drug design are also outlined. Method of solution: The polycentre Hartee-Fock solution for a molecule of arbitrary geometry, based on linear combination of Gaussian-Type Orbital (GTO), is expanded over a single center, typically the Center Of Mass (C.O.M.), by means of a Gauss-Legendre/Chebyschev quadrature over the θ, φ angular coordinates. The resulting SCE numerical wavefunction is then used to calculate the one-particle electron density, the electrostatic potential and two different models for the correlation/polarization potentials induced by the impinging electron, which have the correct asymptotic behaviour for the leading dipole molecular polarizabilities. Restrictions on the complexity of the problem: Depending on the molecular system under study and on the operating conditions the program may or may not fit into available RAM memory. In this case a feature of the program is to memory map a disk file in order to efficiently access the memory data through a disk device. Typical running time: The execution time strongly depends on the molecular target description and on the hardware/OS chosen, it is directly proportional to the ( r, θ, φ) grid size and to the number of angular basis functions used. Thus, from the program printout of the main arrays memory occupancy, the user can approximately derive the expected computer time needed for a given calculation executed in serial mode. For parallel executions the overall efficiency must be further taken into account, and this depends on the no. of processors used as well as on the parallel architecture chosen, so a simple general law is at present not determinable. Unusual features of the program: The code has been engineered to use dynamical, runtime determined, global parameters with the aim to have all the data fitted in the RAM memory. Some unusual circumstances, e.g., when using large values of those parameters, may cause the program to run with unexpected performance reductions due to runtime bottlenecks like those caused by memory swap operations which strongly depend on the hardware used. In such cases, a parallel execution of the code is generally sufficient to fix the problem since the data size is partitioned over the available processors. When a suitable parallel system is not available for execution, a mechanism of memory mapped file can be used; with this option on, all the available memory will be used as a buffer for a disk file which contains the whole data set, thus having a better throughput with respect to the traditional swapping/paging of the Unix OS.
System, methods and apparatus for program optimization for multi-threaded processor architectures
Bastoul, Cedric; Lethin, Richard A; Leung, Allen K; Meister, Benoit J; Szilagyi, Peter; Vasilache, Nicolas T; Wohlford, David E
2015-01-06
Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least two multi-stage execution units that allow for parallel execution of tasks. The first custom computing apparatus optimizes the code for parallelism, locality of operations and contiguity of memory accesses on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Power-Aware Compiler Controllable Chip Multiprocessor
NASA Astrophysics Data System (ADS)
Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori
A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.
Japanese project aims at supercomputer that executes 10 gflops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burskey, D.
1984-05-03
Dubbed supercom by its multicompany design team, the decade-long project's goal is an engineering supercomputer that can execute 10 billion floating-point operations/s-about 20 times faster than today's supercomputers. The project, guided by Japan's Ministry of International Trade and Industry (MITI) and the Agency of Industrial Science and Technology encompasses three parallel research programs, all aimed at some angle of the superconductor. One program should lead to superfast logic and memory circuits, another to a system architecture that will afford the best performance, and the last to the software that will ultimately control the computer. The work on logic and memorymore » chips is based on: GAAS circuit; Josephson junction devices; and high electron mobility transistor structures. The architecture will involve parallel processing.« less
On Dark Times, Parallel Universes, and Deja Vu.
ERIC Educational Resources Information Center
Starnes, Bobby Ann
2000-01-01
Effectiveness cannot be found in the mediocrity arising from programs that require lessons, teaching strategies, and precisely executed materials to ensure integrity. Expensive, scripted programs like Success for All are designed not to improve teaching, but to render the art of teaching unnecessary. (MLH)
Parallel Logic Programming Architecture
1990-04-01
Section 3.1. 3.1. A STATIC ALLOCATION SCHEME (SAS) Methods that have been used for decomposing distributed problems in artificial intelligence...multiple agents, knowledge organization and allocation, and cooperative parallel execution. These difficulties are common to distributed artificial ...for the following reasons. First, intellegent backtracking requires much more bookkeeping and is therefore more costly during consult-time and during
GASPRNG: GPU accelerated scalable parallel random number generator library
NASA Astrophysics Data System (ADS)
Gao, Shuang; Peterson, Gregory D.
2013-04-01
Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.
Effective Vectorization with OpenMP 4.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Joseph N.; Hernandez, Oscar R.; Lopez, Matthew Graham
This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in OpenMP work, and how these are implemented in different compilers. Modern processors are highly parallel computational machines which often include multiple processors capable of executing several instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to achieve higher performance without increasing the power required to run it. SIMD instructions can significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD model is so integral to the processor s potential performance that, if SIMDmore » is not utilized, less than half of the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level languages because most programming languages do not have a way to describe them. Most compilers are capable of vectorizing code by using the SIMD instructions, but there are many code features important for SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by extending the C++/C and Fortran programming languages with compiler directives that express SIMD parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a key resource for making optimized code, but it does not change whether or not the code can use SIMD operations. However, in many cases critical functions are limited by a poor understanding of how SIMD instructions are actually implemented, as SIMD can be implemented through vector instructions or simultaneous multi-threading (SMT). We have found that it is often the case that code cannot be vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how SIMD instructions work.« less
Automated Vectorization of Decision-Based Algorithms
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.
Processing Device for High-Speed Execution of an Xrisc Computer Program
NASA Technical Reports Server (NTRS)
Ng, Tak-Kwong (Inventor); Mills, Carl S. (Inventor)
2016-01-01
A processing device for high-speed execution of a computer program is provided. A memory module may store one or more computer programs. A sequencer may select one of the computer programs and controls execution of the selected program. A register module may store intermediate values associated with a current calculation set, a set of output values associated with a previous calculation set, and a set of input values associated with a subsequent calculation set. An external interface may receive the set of input values from a computing device and provides the set of output values to the computing device. A computation interface may provide a set of operands for computation during processing of the current calculation set. The set of input values are loaded into the register and the set of output values are unloaded from the register in parallel with processing of the current calculation set.
Mechanism to support generic collective communication across a variety of programming models
Almasi, Gheorghe [Ardsley, NY; Dozsa, Gabor [Ardsley, NY; Kumar, Sameer [White Plains, NY
2011-07-19
A system and method for supporting collective communications on a plurality of processors that use different parallel programming paradigms, in one aspect, may comprise a schedule defining one or more tasks in a collective operation, an executor that executes the task, a multisend module to perform one or more data transfer functions associated with the tasks, and a connection manager that controls one or more connections and identifies an available connection. The multisend module uses the available connection in performing the one or more data transfer functions. A plurality of processors that use different parallel programming paradigms can use a common implementation of the schedule module, the executor module, the connection manager and the multisend module via a language adaptor specific to a parallel programming paradigm implemented on a processor.
NASA Technical Reports Server (NTRS)
Metcalfe, A. G.; Bodenheimer, R. E.
1976-01-01
A parallel algorithm for counting the number of logic-l elements in a binary array or image developed during preliminary investigation of the Tse concept is described. The counting algorithm is implemented using a basic combinational structure. Modifications which improve the efficiency of the basic structure are also presented. A programmable Tse computer structure is proposed, along with a hardware control unit, Tse instruction set, and software program for execution of the counting algorithm. Finally, a comparison is made between the different structures in terms of their more important characteristics.
Multiprogramming performance degradation - Case study on a shared memory multiprocessor
NASA Technical Reports Server (NTRS)
Dimpsey, R. T.; Iyer, R. K.
1989-01-01
The performance degradation due to multiprogramming overhead is quantified for a parallel-processing machine. Measurements of real workloads were taken, and it was found that there is a moderate correlation between the completion time of a program and the amount of system overhead measured during program execution. Experiments in controlled environments were then conducted to calculate a lower bound on the performance degradation of parallel jobs caused by multiprogramming overhead. The results show that the multiprogramming overhead of parallel jobs consumes at least 4 percent of the processor time. When two or more serial jobs are introduced into the system, this amount increases to 5.3 percent
The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit
NASA Technical Reports Server (NTRS)
Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete;
1998-01-01
Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.
On the utility of threads for data parallel programming
NASA Technical Reports Server (NTRS)
Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush
1995-01-01
Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.
Putting time into proof outlines
NASA Technical Reports Server (NTRS)
Schneider, Fred B.; Bloom, Bard; Marzullo, Keith
1993-01-01
A logic for reasoning about timing properties of concurrent programs is presented. The logic is based on Hoare-style proof outlines and can handle maximal parallelism as well as certain resource-constrained execution environments. The correctness proof for a mutual exclusion protocol that uses execution timings in a subtle way illustrates the logic in action. A soundness proof using structural operational semantics is outlined in the appendix.
Parallel Computing Strategies for Irregular Algorithms
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application, including: identifying a subset of compute nodes in the parallel computer to execute the parallel application; selecting one compute node in the subset of compute nodes in the parallel computer as a job leader compute node; initiating execution of the parallel application on the subset of compute nodes; receiving an exit status from each compute node in the subset of compute nodes, where the exit status for each compute node includes information describing execution of some portion of the parallel application by the compute node; aggregatingmore » each exit status from each compute node in the subset of compute nodes; and sending an aggregated exit status for the subset of compute nodes in the parallel computer.« less
GPU COMPUTING FOR PARTICLE TRACKING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiroshi; Song, Kai; Muriki, Krishna
2011-03-25
This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculationmore » of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.« less
NASA Technical Reports Server (NTRS)
Fouts, Douglas J.; Butner, Steven E.
1991-01-01
The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.
Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik
2015-06-09
Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.
Efficient partitioning and assignment on programs for multiprocessor execution
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1993-01-01
The general problem studied is that of segmenting or partitioning programs for distribution across a multiprocessor system. Efficient partitioning and the assignment of program elements are of great importance since the time consumed in this overhead activity may easily dominate the computation, effectively eliminating any gains made by the use of the parallelism. In this study, the partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics, developed for similar applications are examined. Finally, a model for queueing networks with finite queues is developed which may be used to analyze multiprocessor system architectures with a shared memory approach to the problem of partitioning. The properties of sequentially written programs form obstacles to large scale (at the procedure or subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the sequential development of the program, severely limit parallelism. The design of heuristic algorithms is tied to the experience gained in the parallel splitting. Parallelism obtained through the physical separation of data has seen some success, especially at the data element level. Data parallelism on a grander scale requires models that accurately reflect the effects of blocking caused by finite queues. A model for the approximation of the performance of finite queueing networks is developed. This model makes use of the decomposition approach combined with the efficiency of product form solutions.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1990-01-01
Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-11-12
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.
ATDM LANL FleCSI: Topology and Execution Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergen, Benjamin Karl
FleCSI is a compile-time configurable C++ framework designed to support multi-physics application development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns that can be specialized and extended to suit the needs of a broad variety of solver and data requirements. This means that FleCSI is potentially useful to many different ECP projects. Current support includes multidimensional mesh topology, mesh geometry, and mesh adjacency information, n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures (to identify data dependencies between distributed-memory address spaces). FleCSI introduces a functional programming model with control, execution, and data abstractionsmore » that are consistent with state-of-the-art task-based runtimes such as Legion and Charm++. The model also provides support for fine-grained, data-parallel execution with backend support for runtimes such as OpenMP and C++17. The FleCSI abstraction layer provides the developer with insulation from the underlying runtimes, while allowing support for multiple runtime systems, including conventional models like asynchronous MPI. The intent is to give developers a concrete set of user-friendly programming tools that can be used now, while allowing flexibility in choosing runtime implementations and optimizations that can be applied to architectures and runtimes that arise in the future. This project is essential to the ECP Ristra Next-Generation Code project, part of ASC ATDM, because it provides a hierarchically parallel programming model that is consistent with the design of modern system architectures, but which allows for the straightforward expression of algorithmic parallelism in a portably performant manner.« less
Expressing Parallelism with ROOT
NASA Astrophysics Data System (ADS)
Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.
2017-10-01
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.
Expressing Parallelism with ROOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piparo, D.; Tejedor, E.; Guiraud, E.
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module inmore » Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.« less
Reverse time migration: A seismic processing application on the connection machine
NASA Technical Reports Server (NTRS)
Fiebrich, Rolf-Dieter
1987-01-01
The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.
Collectively loading an application in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers
NASA Technical Reports Server (NTRS)
Skiles, J. W.; Schulbach, C. H.
1994-01-01
Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.
ERIC Educational Resources Information Center
Amenyo, John-Thones
2012-01-01
Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…
Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case Study
Radhakrishnan, Hari; Rouson, Damian W. I.; Morris, Karla; ...
2015-01-01
This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the program and study the resulting performance. Our initial studies were donemore » using the Intel Fortran compiler on a 32-core shared memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve nearly linear speedup by replacing the sequential summation with a parallel, binary tree algorithm. We also tested the Cray compiler, which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the new collective procedures proposed for Fortran 2015.« less
Bayer image parallel decoding based on GPU
NASA Astrophysics Data System (ADS)
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
MPI_XSTAR: MPI-based parallelization of XSTAR program
NASA Astrophysics Data System (ADS)
Danehkar, A.
2017-12-01
MPI_XSTAR parallelizes execution of multiple XSTAR runs using Message Passing Interface (MPI). XSTAR (ascl:9910.008), part of the HEASARC's HEAsoft (ascl:1408.004) package, calculates the physical conditions and emission spectra of ionized gases. MPI_XSTAR invokes XSTINITABLE from HEASoft to generate a job list of XSTAR commands for given physical parameters. The job list is used to make directories in ascending order, where each individual XSTAR is spawned on each processor and outputs are saved. HEASoft's XSTAR2TABLE program is invoked upon the contents of each directory in order to produce table model FITS files for spectroscopy analysis tools.
Clinical image processing engine
NASA Astrophysics Data System (ADS)
Han, Wei; Yao, Jianhua; Chen, Jeremy; Summers, Ronald
2009-02-01
Our group provides clinical image processing services to various institutes at NIH. We develop or adapt image processing programs for a variety of applications. However, each program requires a human operator to select a specific set of images and execute the program, as well as store the results appropriately for later use. To improve efficiency, we design a parallelized clinical image processing engine (CIPE) to streamline and parallelize our service. The engine takes DICOM images from a PACS server, sorts and distributes the images to different applications, multithreads the execution of applications, and collects results from the applications. The engine consists of four modules: a listener, a router, a job manager and a data manager. A template filter in XML format is defined to specify the image specification for each application. A MySQL database is created to store and manage the incoming DICOM images and application results. The engine achieves two important goals: reduce the amount of time and manpower required to process medical images, and reduce the turnaround time for responding. We tested our engine on three different applications with 12 datasets and demonstrated that the engine improved the efficiency dramatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R
Methods, apparatuses, and computer program products for endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface (`PAMI`) of a parallel computer are provided. Embodiments include establishing by a parallel application a data communications geometry, the geometry specifying a set of endpoints that are used in collective operations of the PAMI, including associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry. Embodiments also include registering in each endpoint in the geometry a dispatch callback function for a collective operation and executing without blocking, through a single onemore » of the endpoints in the geometry, an instruction for the collective operation.« less
COMP Superscalar, an interoperable programming framework
NASA Astrophysics Data System (ADS)
Badia, Rosa M.; Conejero, Javier; Diaz, Carlos; Ejarque, Jorge; Lezzi, Daniele; Lordan, Francesc; Ramon-Cortes, Cristian; Sirvent, Raul
2015-12-01
COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for (i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators. A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.
Mining on Big Data Using Hadoop MapReduce Model
NASA Astrophysics Data System (ADS)
Salman Ahmed, G.; Bhattacharya, Sweta
2017-11-01
Customary parallel calculations for mining nonstop item create opportunity to adjust stack of similar data among hubs. The paper aims to review this process by analyzing the critical execution downside of the common parallel recurrent item-set mining calculations. Given a larger than average dataset, data apportioning strategies inside the current arrangements endure high correspondence and mining overhead evoked by repetitive exchanges transmitted among registering hubs. We tend to address this downside by building up a learning apportioning approach referred as Hadoop abuse using the map-reduce programming model. All objectives of Hadoop are to zest up the execution of parallel recurrent item-set mining on Hadoop bunches. Fusing the comparability metric and furthermore the locality-sensitive hashing procedure, Hadoop puts to a great degree comparative exchanges into an information segment to lift neighborhood while not making AN exorbitant assortment of excess exchanges. We tend to execute Hadoop on a 34-hub Hadoop bunch, driven by a decent change of datasets made by IBM quest market-basket manufactured data generator. Trial uncovers the fact that Hadoop contributes towards lessening system and processing masses by the uprightness of dispensing with excess exchanges on Hadoop hubs. Hadoop impressively outperforms and enhances the other models considerably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipman, Galen M.
These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematicmore » approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.« less
PISCES: An environment for parallel scientific computation
NASA Technical Reports Server (NTRS)
Pratt, T. W.
1985-01-01
The parallel implementation of scientific computing environment (PISCES) is a project to provide high-level programming environments for parallel MIMD computers. Pisces 1, the first of these environments, is a FORTRAN 77 based environment which runs under the UNIX operating system. The Pisces 1 user programs in Pisces FORTRAN, an extension of FORTRAN 77 for parallel processing. The major emphasis in the Pisces 1 design is in providing a carefully specified virtual machine that defines the run-time environment within which Pisces FORTRAN programs are executed. Each implementation then provides the same virtual machine, regardless of differences in the underlying architecture. The design is intended to be portable to a variety of architectures. Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32 is under construction. An introduction to the Pisces 1 virtual computer and the FORTRAN 77 extensions is presented. An example of an algorithm for the iterative solution of a system of equations is given. The most notable features of the design are the provision for several granularities of parallelism in programs and the provision of a window mechanism for distributed access to large arrays of data.
Konstantinidis, Evdokimos I; Frantzidis, Christos A; Pappas, Costas; Bamidis, Panagiotis D
2012-07-01
In this paper the feasibility of adopting Graphic Processor Units towards real-time emotion aware computing is investigated for boosting the time consuming computations employed in such applications. The proposed methodology was employed in analysis of encephalographic and electrodermal data gathered when participants passively viewed emotional evocative stimuli. The GPU effectiveness when processing electroencephalographic and electrodermal recordings is demonstrated by comparing the execution time of chaos/complexity analysis through nonlinear dynamics (multi-channel correlation dimension/D2) and signal processing algorithms (computation of skin conductance level/SCL) into various popular programming environments. Apart from the beneficial role of parallel programming, the adoption of special design techniques regarding memory management may further enhance the time minimization which approximates a factor of 30 in comparison with ANSI C language (single-core sequential execution). Therefore, the use of GPU parallel capabilities offers a reliable and robust solution for real-time sensing the user's affective state. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2015-04-01
PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental and geophysical models. The language is intended to enable implementers to concentrate on the science behind the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer in control - all parallelisation is explicit and the parallel structure of any given program may be deduced directly from the code. This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisation and increased communication overhead. In order to maximise portability, the implementation stays within the MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover, it does not assume a thread-safe implementation of MPI. PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capable of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms such as work stealing. While tasks may move between hardware elements within a PM processor, they may not move between processors without specific programmer intervention. Tasks are assigned to processors using a nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available processors. When the program enters a parallel statement then either processors are divided out among the newly generated tasks (number of new tasks < number of processors) or tasks are divided out among the available processors (number of tasks > number of processors). Nested parallel statements may further subdivide the processor set owned by a given task. Tasks or processors are distributed evenly by default, but uneven distributions are possible under programmer control. It is also possible to explicitly enable child tasks to migrate within the processor set owned by their parent task, reducing load unbalancing at the potential cost of increased inter-processor message traffic. PM incorporates some programming structures from the earlier MIST language presented at a previous EGU General Assembly, while adopting a significantly different underlying parallelisation model and type system. PM code is available at www.pm-lang.org under an unrestrictive MIT license. Reference Ruymán Reyes, Antonio J. Dorta, Francisco Almeida, Francisco de Sande, 2009. Automatic Hybrid MPI+OpenMP Code Generation with llc, Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science Volume 5759, 185-195
Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers
NASA Technical Reports Server (NTRS)
Palermo, Daniel J.; Banerjee, Prithviraj
1995-01-01
For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.
NASA Astrophysics Data System (ADS)
Vnukov, A. A.; Shershnev, M. B.
2018-01-01
The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.
Problems in characterizing barrier performance
NASA Technical Reports Server (NTRS)
Jordan, Harry F.
1988-01-01
The barrier is a synchronization construct which is useful in separating a parallel program into parallel sections which are executed in sequence. The completion of a barrier requires cooperation among all executing processes. This requirement not only introduces the wait for the slowest process delay which is inherent in the definition of the synchronization, but also has implications for the efficient implementation and measurement of barrier performance in different systems. Types of barrier implementation and their relationship to different multiprocessor environments are described. Then the problem of measuring the performance of barrier implementations on specific machine architecture is discussed. The fact that the barrier synchronization requires the cooperation of all processes makes the problem of performance measurement similarly global. Making non-intrusive measurements of sufficient accuracy can be tricky on systems offering only rudimentary measurement tools.
A Fault Oblivious Extreme-Scale Execution Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKie, Jim
The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massivemore » data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations employing work stealing for load balancing that scaled to the largest existing supercomputers. Finally, we implemented the Elastic Building Blocks runtime, a library to manage object-oriented distributed software components. To support the research, we won two INCITE awards for time on Intrepid (BG/P) and Mira (BG/Q). Much of our work has had impact in the OS and runtime community through the ASCR Exascale OS/R workshop and report, leading to the research agenda of the Exascale OS/R program. Our project was, however, also affected by attrition of multiple PIs. While the PIs continued to participate and offer guidance as time permitted, losing these key individuals was unfortunate both for the project and for the DOE HPC community.« less
NASA Technical Reports Server (NTRS)
Lawson, Gary; Poteat, Michael; Sosonkina, Masha; Baurle, Robert; Hammond, Dana
2016-01-01
In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23X was measured for MPI+SMPI, but only 10X was measured for MPI+OpenMP.
Monitoring Data-Structure Evolution in Distributed Message-Passing Programs
NASA Technical Reports Server (NTRS)
Sarukkai, Sekhar R.; Beers, Andrew; Woodrow, Thomas S. (Technical Monitor)
1996-01-01
Monitoring the evolution of data structures in parallel and distributed programs, is critical for debugging its semantics and performance. However, the current state-of-art in tracking and presenting data-structure information on parallel and distributed environments is cumbersome and does not scale. In this paper we present a methodology that automatically tracks memory bindings (not the actual contents) of static and dynamic data-structures of message-passing C programs, using PVM. With the help of a number of examples we show that in addition to determining the impact of memory allocation overheads on program performance, graphical views can help in debugging the semantics of program execution. Scalable animations of virtual address bindings of source-level data-structures are used for debugging the semantics of parallel programs across all processors. In conjunction with light-weight core-files, this technique can be used to complement traditional debuggers on single processors. Detailed information (such as data-structure contents), on specific nodes, can be determined using traditional debuggers after the data structure evolution leading to the semantic error is observed graphically.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.
Thread concept for automatic task parallelization in image analysis
NASA Astrophysics Data System (ADS)
Lueckenhaus, Maximilian; Eckstein, Wolfgang
1998-09-01
Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.
Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C
2009-01-01
Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth; Geveci, Berk
2014-11-01
The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipelinemore » model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.« less
NASA Technical Reports Server (NTRS)
Sargent, Jeff Scott
1988-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.
Accelerating sino-atrium computer simulations with graphic processing units.
Zhang, Hong; Xiao, Zheng; Lin, Shien-fong
2015-01-01
Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.
PC-CUBE: A Personal Computer Based Hypercube
NASA Technical Reports Server (NTRS)
Ho, Alex; Fox, Geoffrey; Walker, David; Snyder, Scott; Chang, Douglas; Chen, Stanley; Breaden, Matt; Cole, Terry
1988-01-01
PC-CUBE is an ensemble of IBM PCs or close compatibles connected in the hypercube topology with ordinary computer cables. Communication occurs at the rate of 115.2 K-band via the RS-232 serial links. Available for PC-CUBE is the Crystalline Operating System III (CrOS III), Mercury Operating System, CUBIX and PLOTIX which are parallel I/O and graphics libraries. A CrOS performance monitor was developed to facilitate the measurement of communication and computation time of a program and their effects on performance. Also available are CXLISP, a parallel version of the XLISP interpreter; GRAFIX, some graphics routines for the EGA and CGA; and a general execution profiler for determining execution time spent by program subroutines. PC-CUBE provides a programming environment similar to all hypercube systems running CrOS III, Mercury and CUBIX. In addition, every node (personal computer) has its own graphics display monitor and storage devices. These allow data to be displayed or stored at every processor, which has much instructional value and enables easier debugging of applications. Some application programs which are taken from the book Solving Problems on Concurrent Processors (Fox 88) were implemented with graphics enhancement on PC-CUBE. The applications range from solving the Mandelbrot set, Laplace equation, wave equation, long range force interaction, to WaTor, an ecological simulation.
A package of Linux scripts for the parallelization of Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Badal, Andreu; Sempau, Josep
2006-09-01
Despite the fact that fast computers are nowadays available at low cost, there are many situations where obtaining a reasonably low statistical uncertainty in a Monte Carlo (MC) simulation involves a prohibitively large amount of time. This limitation can be overcome by having recourse to parallel computing. Most tools designed to facilitate this approach require modification of the source code and the installation of additional software, which may be inconvenient for some users. We present a set of tools, named clonEasy, that implement a parallelization scheme of a MC simulation that is free from these drawbacks. In clonEasy, which is designed to run under Linux, a set of "clone" CPUs is governed by a "master" computer by taking advantage of the capabilities of the Secure Shell (ssh) protocol. Any Linux computer on the Internet that can be ssh-accessed by the user can be used as a clone. A key ingredient for the parallel calculation to be reliable is the availability of an independent string of random numbers for each CPU. Many generators—such as RANLUX, RANECU or the Mersenne Twister—can readily produce these strings by initializing them appropriately and, hence, they are suitable to be used with clonEasy. This work was primarily motivated by the need to find a straightforward way to parallelize PENELOPE, a code for MC simulation of radiation transport that (in its current 2005 version) employs the generator RANECU, which uses a combination of two multiplicative linear congruential generators (MLCGs). Thus, this paper is focused on this class of generators and, in particular, we briefly present an extension of RANECU that increases its period up to ˜5×10 and we introduce seedsMLCG, a tool that provides the information necessary to initialize disjoint sequences of an MLCG to feed different CPUs. This program, in combination with clonEasy, allows to run PENELOPE in parallel easily, without requiring specific libraries or significant alterations of the sequential code. Program summary 1Title of program:clonEasy Catalogue identifier:ADYD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYD_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, Northern Ireland Computer for which the program is designed and others in which it is operable:Any computer with a Unix style shell (bash), support for the Secure Shell protocol and a FORTRAN compiler Operating systems under which the program has been tested:Linux (RedHat 8.0, SuSe 8.1, Debian Woody 3.1) Compilers:GNU FORTRAN g77 (Linux); g95 (Linux); Intel Fortran Compiler 7.1 (Linux) Programming language used:Linux shell (bash) script, FORTRAN 77 No. of bits in a word:32 No. of lines in distributed program, including test data, etc.:1916 No. of bytes in distributed program, including test data, etc.:18 202 Distribution format:tar.gz Nature of the physical problem:There are many situations where a Monte Carlo simulation involves a huge amount of CPU time. The parallelization of such calculations is a simple way of obtaining a relatively low statistical uncertainty using a reasonable amount of time. Method of solution:The presented collection of Linux scripts and auxiliary FORTRAN programs implement Secure Shell-based communication between a "master" computer and a set of "clones". The aim of this communication is to execute a code that performs a Monte Carlo simulation on all the clones simultaneously. The code is unique, but each clone is fed with a different set of random seeds. Hence, clonEasy effectively permits the parallelization of the calculation. Restrictions on the complexity of the program:clonEasy can only be used with programs that produce statistically independent results using the same code, but with a different sequence of random numbers. Users must choose the initialization values for the random number generator on each computer and combine the output from the different executions. A FORTRAN program to combine the final results is also provided. Typical running time:The execution time of each script largely depends on the number of computers that are used, the actions that are to be performed and, to a lesser extent, on the network connexion bandwidth. Unusual features of the program:Any computer on the Internet with a Secure Shell client/server program installed can be used as a node of a virtual computer cluster for parallel calculations with the sequential source code. The simplicity of the parallelization scheme makes the use of this package a straightforward task, which does not require installing any additional libraries. Program summary 2Title of program:seedsMLCG Catalogue identifier:ADYE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYE_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, Northern Ireland Computer for which the program is designed and others in which it is operable:Any computer with a FORTRAN compiler Operating systems under which the program has been tested:Linux (RedHat 8.0, SuSe 8.1, Debian Woody 3.1), MS Windows (2000, XP) Compilers:GNU FORTRAN g77 (Linux and Windows); g95 (Linux); Intel Fortran Compiler 7.1 (Linux); Compaq Visual Fortran 6.1 (Windows) Programming language used:FORTRAN 77 No. of bits in a word:32 Memory required to execute with typical data:500 kilobytes No. of lines in distributed program, including test data, etc.:492 No. of bytes in distributed program, including test data, etc.:5582 Distribution format:tar.gz Nature of the physical problem:Statistically independent results from different runs of a Monte Carlo code can be obtained using uncorrelated sequences of random numbers on each execution. Multiplicative linear congruential generators (MLCG), or other generators that are based on them such as RANECU, can be adapted to produce these sequences. Method of solution:For a given MLCG, the presented program calculates initialization values that produce disjoint, consecutive sequences of pseudo-random numbers. The calculated values initiate the generator in distant positions of the random number cycle and can be used, for instance, on a parallel simulation. The values are found using the formula S=(aS)MODm, which gives the random value that will be generated after J iterations of the MLCG. Restrictions on the complexity of the program:The 32-bit length restriction for the integer variables in standard FORTRAN 77 limits the produced seeds to be separated a distance smaller than 2 31, when the distance J is expressed as an integer value. The program allows the user to input the distance as a power of 10 for the purpose of efficiently splitting the sequence of generators with a very long period. Typical running time:The execution time depends on the parameters of the used MLCG and the distance between the generated seeds. The generation of 10 6 seeds separated 10 12 units in the sequential cycle, for one of the MLCGs found in the RANECU generator, takes 3 s on a 2.4 GHz Intel Pentium 4 using the g77 compiler.
Rubus: A compiler for seamless and extensible parallelism.
Adnan, Muhammad; Aslam, Faisal; Nawaz, Zubair; Sarwar, Syed Mansoor
2017-01-01
Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer's expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program.
Rubus: A compiler for seamless and extensible parallelism
Adnan, Muhammad; Aslam, Faisal; Sarwar, Syed Mansoor
2017-01-01
Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer’s expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program. PMID:29211758
SCaLeM: A Framework for Characterizing and Analyzing Execution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Manzano Franco, Joseph B.; Krishnamoorthy, Sriram
2014-10-13
As scalable parallel systems evolve towards more complex nodes with many-core architectures and larger trans-petascale & upcoming exascale deployments, there is a need to understand, characterize and quantify the underlying execution models being used on such systems. Execution models are a conceptual layer between applications & algorithms and the underlying parallel hardware and systems software on which those applications run. This paper presents the SCaLeM (Synchronization, Concurrency, Locality, Memory) framework for characterizing and execution models. SCaLeM consists of three basic elements: attributes, compositions and mapping of these compositions to abstract parallel systems. The fundamental Synchronization, Concurrency, Locality and Memory attributesmore » are used to characterize each execution model, while the combinations of those attributes in the form of compositions are used to describe the primitive operations of the execution model. The mapping of the execution model’s primitive operations described by compositions, to an underlying abstract parallel system can be evaluated quantitatively to determine its effectiveness. Finally, SCaLeM also enables the representation and analysis of applications in terms of execution models, for the purpose of evaluating the effectiveness of such mapping.« less
Execution time support for scientific programs on distributed memory machines
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
Life and dynamic capacity modeling for aircraft transmissions
NASA Technical Reports Server (NTRS)
Savage, Michael
1991-01-01
A computer program to simulate the dynamic capacity and life of parallel shaft aircraft transmissions is presented. Five basic configurations can be analyzed: single mesh, compound, parallel, reverted, and single plane reductions. In execution, the program prompts the user for the data file prefix name, takes input from a ASCII file, and writes its output to a second ASCII file with the same prefix name. The input data file includes the transmission configuration, the input shaft torque and speed, and descriptions of the transmission geometry and the component gears and bearings. The program output file describes the transmission, its components, their capabilities, locations, and loads. It also lists the dynamic capability, ninety percent reliability, and mean life of each component and the transmission as a system. Here, the program, its input and output files, and the theory behind the operation of the program are described.
Dockres: a computer program that analyzes the output of virtual screening of small molecules
2010-01-01
Background This paper describes a computer program named Dockres that is designed to analyze and summarize results of virtual screening of small molecules. The program is supplemented with utilities that support the screening process. Foremost among these utilities are scripts that run the virtual screening of a chemical library on a large number of processors in parallel. Methods Dockres and some of its supporting utilities are written Fortran-77; other utilities are written as C-shell scripts. They support the parallel execution of the screening. The current implementation of the program handles virtual screening with Autodock-3 and Autodock-4, but can be extended to work with the output of other programs. Results Analysis of virtual screening by Dockres led to both active and selective lead compounds. Conclusions Analysis of virtual screening was facilitated and enhanced by Dockres in both the authors' laboratories as well as laboratories elsewhere. PMID:20205801
Fencing data transfers in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Mamidala, Amith R.
2015-06-02
Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.
Fencing data transfers in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Mamidala, Amith R.
2015-06-09
Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.
Fencing data transfers in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Mamidala, Amith R.
2015-08-11
Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint comprising a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI and through data communications resources including a deterministic data communications network, including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.
Fencing data transfers in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Mamidala, Amith R.
2015-06-30
Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint comprising a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI and through data communications resources including a deterministic data communications network, including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.
Performance of a parallel code for the Euler equations on hypercube computers
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.
1990-01-01
The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.
Constant time worker thread allocation via configuration caching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; O'Brien, John K. P.
Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.
MLP: A Parallel Programming Alternative to MPI for New Shared Memory Parallel Systems
NASA Technical Reports Server (NTRS)
Taft, James R.
1999-01-01
Recent developments at the NASA AMES Research Center's NAS Division have demonstrated that the new generation of NUMA based Symmetric Multi-Processing systems (SMPs), such as the Silicon Graphics Origin 2000, can successfully execute legacy vector oriented CFD production codes at sustained rates far exceeding processing rates possible on dedicated 16 CPU Cray C90 systems. This high level of performance is achieved via shared memory based Multi-Level Parallelism (MLP). This programming approach, developed at NAS and outlined below, is distinct from the message passing paradigm of MPI. It offers parallelism at both the fine and coarse grained level, with communication latencies that are approximately 50-100 times lower than typical MPI implementations on the same platform. Such latency reductions offer the promise of performance scaling to very large CPU counts. The method draws on, but is also distinct from, the newly defined OpenMP specification, which uses compiler directives to support a limited subset of multi-level parallel operations. The NAS MLP method is general, and applicable to a large class of NASA CFD codes.
Routing performance analysis and optimization within a massively parallel computer
Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen
2013-04-16
An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.
Parallel Processing with Digital Signal Processing Hardware and Software
NASA Technical Reports Server (NTRS)
Swenson, Cory V.
1995-01-01
The assembling and testing of a parallel processing system is described which will allow a user to move a Digital Signal Processing (DSP) application from the design stage to the execution/analysis stage through the use of several software tools and hardware devices. The system will be used to demonstrate the feasibility of the Algorithm To Architecture Mapping Model (ATAMM) dataflow paradigm for static multiprocessor solutions of DSP applications. The individual components comprising the system are described followed by the installation procedure, research topics, and initial program development.
PolyCheck: Dynamic Verification of Iteration Space Transformations on Affine Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Wenlei; Krishnamoorthy, Sriram; Pouchet, Louis-noel
2016-01-11
High-level compiler transformations, especially loop transformations, are widely recognized as critical optimizations to restructure programs to improve data locality and expose parallelism. Guaranteeing the correctness of program transformations is essential, and to date three main approaches have been developed: proof of equivalence of affine programs, matching the execution traces of programs, and checking bit-by-bit equivalence of the outputs of the programs. Each technique suffers from limitations in either the kind of transformations supported, space complexity, or the sensitivity to the testing dataset. In this paper, we take a novel approach addressing all three limitations to provide an automatic bug checkermore » to verify any iteration reordering transformations on affine programs, including non-affine transformations, with space consumption proportional to the original program data, and robust to arbitrary datasets of a given size. We achieve this by exploiting the structure of affine program control- and data-flow to generate at compile-time lightweight checker code to be executed within the transformed program. Experimental results assess the correctness and effectiveness of our method, and its increased coverage over previous approaches.« less
ng: What next-generation languages can teach us about HENP frameworks in the manycore era
NASA Astrophysics Data System (ADS)
Binet, Sébastien
2011-12-01
Current High Energy and Nuclear Physics (HENP) frameworks were written before multicore systems became widely deployed. A 'single-thread' execution model naturally emerged from that environment, however, this no longer fits into the processing model on the dawn of the manycore era. Although previous work focused on minimizing the changes to be applied to the LHC frameworks (because of the data taking phase) while still trying to reap the benefits of the parallel-enhanced CPU architectures, this paper explores what new languages could bring to the design of the next-generation frameworks. Parallel programming is still in an intensive phase of R&D and no silver bullet exists despite the 30+ years of literature on the subject. Yet, several parallel programming styles have emerged: actors, message passing, communicating sequential processes, task-based programming, data flow programming, ... to name a few. We present the work of the prototyping of a next-generation framework in new and expressive languages (python and Go) to investigate how code clarity and robustness are affected and what are the downsides of using languages younger than FORTRAN/C/C++.
NDL-v2.0: A new version of the numerical differentiation library for parallel architectures
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Voglis, C.; Papageorgiou, D. G.; Lagaris, I. E.
2014-07-01
We present a new version of the numerical differentiation library (NDL) used for the numerical estimation of first and second order partial derivatives of a function by finite differencing. In this version we have restructured the serial implementation of the code so as to achieve optimal task-based parallelization. The pure shared-memory parallelization of the library has been based on the lightweight OpenMP tasking model allowing for the full extraction of the available parallelism and efficient scheduling of multiple concurrent library calls. On multicore clusters, parallelism is exploited by means of TORC, an MPI-based multi-threaded tasking library. The new MPI implementation of NDL provides optimal performance in terms of function calls and, furthermore, supports asynchronous execution of multiple library calls within legacy MPI programs. In addition, a Python interface has been implemented for all cases, exporting the functionality of our library to sequential Python codes. Catalog identifier: AEDG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 63036 No. of bytes in distributed program, including test data, etc.: 801872 Distribution format: tar.gz Programming language: ANSI Fortran-77, ANSI C, Python. Computer: Distributed systems (clusters), shared memory systems. Operating system: Linux, Unix. Has the code been vectorized or parallelized?: Yes. RAM: The library uses O(N) internal storage, N being the dimension of the problem. It can use up to O(N2) internal storage for Hessian calculations, if a task throttling factor has not been set by the user. Classification: 4.9, 4.14, 6.5. Catalog identifier of previous version: AEDG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1404 Does the new version supersede the previous version?: Yes Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, and sensitivity analysis. For a large number of scientific and engineering applications, the underlying functions correspond to simulation codes for which analytical estimation of derivatives is difficult or almost impossible. A parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with a carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Reasons for new version: The updated version was motivated by our endeavors to extend a parallel Bayesian uncertainty quantification framework [1], by incorporating higher order derivative information as in most state-of-the-art stochastic simulation methods such as Stochastic Newton MCMC [2] and Riemannian Manifold Hamiltonian MC [3]. The function evaluations are simulations with significant time-to-solution, which also varies with the input parameters such as in [1, 4]. The runtime of the N-body-type of problem changes considerably with the introduction of a longer cut-off between the bodies. In the first version of the library, the OpenMP-parallel subroutines spawn a new team of threads and distribute the function evaluations with a PARALLEL DO directive. This limits the functionality of the library as multiple concurrent calls require nested parallelism support from the OpenMP environment. Therefore, either their function evaluations will be serialized or processor oversubscription is likely to occur due to the increased number of OpenMP threads. In addition, the Hessian calculations include two explicit parallel regions that compute first the diagonal and then the off-diagonal elements of the array. Due to the barrier between the two regions, the parallelism of the calculations is not fully exploited. These issues have been addressed in the new version by first restructuring the serial code and then running the function evaluations in parallel using OpenMP tasks. Although the MPI-parallel implementation of the first version is capable of fully exploiting the task parallelism of the PNDL routines, it does not utilize the caching mechanism of the serial code and, therefore, performs some redundant function evaluations in the Hessian and Jacobian calculations. This can lead to: (a) higher execution times if the number of available processors is lower than the total number of tasks, and (b) significant energy consumption due to wasted processor cycles. Overcoming these drawbacks, which become critical as the time of a single function evaluation increases, was the primary goal of this new version. Due to the code restructure, the MPI-parallel implementation (and the OpenMP-parallel in accordance) avoids redundant calls, providing optimal performance in terms of the number of function evaluations. Another limitation of the library was that the library subroutines were collective and synchronous calls. In the new version, each MPI process can issue any number of subroutines for asynchronous execution. We introduce two library calls that provide global and local task synchronizations, similarly to the BARRIER and TASKWAIT directives of OpenMP. The new MPI-implementation is based on TORC, a new tasking library for multicore clusters [5-7]. TORC improves the portability of the software, as it relies exclusively on the POSIX-Threads and MPI programming interfaces. It allows MPI processes to utilize multiple worker threads, offering a hybrid programming and execution environment similar to MPI+OpenMP, in a completely transparent way. Finally, to further improve the usability of our software, a Python interface has been implemented on top of both the OpenMP and MPI versions of the library. This allows sequential Python codes to exploit shared and distributed memory systems. Summary of revisions: The revised code improves the performance of both parallel (OpenMP and MPI) implementations. The functionality and the user-interface of the MPI-parallel version have been extended to support the asynchronous execution of multiple PNDL calls, issued by one or multiple MPI processes. A new underlying tasking library increases portability and allows MPI processes to have multiple worker threads. For both implementations, an interface to the Python programming language has been added. Restrictions: The library uses only double precision arithmetic. The MPI implementation assumes the homogeneity of the execution environment provided by the operating system. Specifically, the processes of a single MPI application must have identical address space and a user function resides at the same virtual address. In addition, address space layout randomization should not be used for the application. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 23 ms for the serial distribution, 25 ms for the OpenMP with 2 threads, 53 ms and 1.01 s for the MPI parallel distribution using 2 threads and 2 processes respectively and yield-time for idle workers equal to 10 ms. References: [1] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys 137 (14). [2] H.P. Flath, L.C. Wilcox, V. Akcelik, J. Hill, B. van Bloemen Waanders, O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput. 33 (1) (2011) 407-432. [3] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73 (2) (2011) 123-214. [4] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B 117 (47) (2013) 14808-14816. [5] P.E. Hadjidoukas, E. Lappas, V.V. Dimakopoulos, A runtime library for platform-independent task parallelism, in: PDP, IEEE, 2012, pp. 229-236. [6] C. Voglis, P.E. Hadjidoukas, D.G. Papageorgiou, I. Lagaris, A parallel hybrid optimization algorithm for fitting interatomic potentials, Appl. Soft Comput. 13 (12) (2013) 4481-4492. [7] P.E. Hadjidoukas, C. Voglis, V.V. Dimakopoulos, I. Lagaris, D.G. Papageorgiou, Supporting adaptive and irregular parallelism for non-linear numerical optimization, Appl. Math. Comput. 231 (2014) 544-559.
Archer, Charles J; Blocksome, Michael E; Ratterman, Joseph D; Smith, Brian E
2014-02-11
Endpoint-based parallel data processing in a parallel active messaging interface ('PAMI') of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective opeartion through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-08-12
Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Parallel Processing of Images in Mobile Devices using BOINC
NASA Astrophysics Data System (ADS)
Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo
2018-04-01
Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.
The force on the flex: Global parallelism and portability
NASA Technical Reports Server (NTRS)
Jordan, H. F.
1986-01-01
A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment.
Efficient Thread Labeling for Monitoring Programs with Nested Parallelism
NASA Astrophysics Data System (ADS)
Ha, Ok-Kyoon; Kim, Sun-Sook; Jun, Yong-Kee
It is difficult and cumbersome to detect data races occurred in an execution of parallel programs. Any on-the-fly race detection techniques using Lamport's happened-before relation needs a thread labeling scheme for generating unique identifiers which maintain logical concurrency information for the parallel threads. NR labeling is an efficient thread labeling scheme for the fork-join program model with nested parallelism, because its efficiency depends only on the nesting depth for every fork and join operation. This paper presents an improved NR labeling, called e-NR labeling, in which every thread generates its label by inheriting the pointer to its ancestor list from the parent threads or by updating the pointer in a constant amount of time and space. This labeling is more efficient than the NR labeling, because its efficiency does not depend on the nesting depth for every fork and join operation. Some experiments were performed with OpenMP programs having nesting depths of three or four and maximum parallelisms varying from 10,000 to 1,000,000. The results show that e-NR is 5 times faster than NR labeling and 4.3 times faster than OS labeling in the average time for creating and maintaining the thread labels. In average space required for labeling, it is 3.5 times smaller than NR labeling and 3 times smaller than OS labeling.
Research on computer systems benchmarking
NASA Technical Reports Server (NTRS)
Smith, Alan Jay (Principal Investigator)
1996-01-01
This grant addresses the topic of research on computer systems benchmarking and is more generally concerned with performance issues in computer systems. This report reviews work in those areas during the period of NASA support under this grant. The bulk of the work performed concerned benchmarking and analysis of CPUs, compilers, caches, and benchmark programs. The first part of this work concerned the issue of benchmark performance prediction. A new approach to benchmarking and machine characterization was reported, using a machine characterizer that measures the performance of a given system in terms of a Fortran abstract machine. Another report focused on analyzing compiler performance. The performance impact of optimization in the context of our methodology for CPU performance characterization was based on the abstract machine model. Benchmark programs are analyzed in another paper. A machine-independent model of program execution was developed to characterize both machine performance and program execution. By merging these machine and program characterizations, execution time can be estimated for arbitrary machine/program combinations. The work was continued into the domain of parallel and vector machines, including the issue of caches in vector processors and multiprocessors. All of the afore-mentioned accomplishments are more specifically summarized in this report, as well as those smaller in magnitude supported by this grant.
Parallel grid generation algorithm for distributed memory computers
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Moitra, Anutosh
1994-01-01
A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl, Christopher; Might, Matthew; Bagusetty, Abhishek
This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.
Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...
2016-01-26
This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.
GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing
NASA Astrophysics Data System (ADS)
Johl, John T.; Baker, Nick C.
1988-10-01
The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.
Komarov, Ivan; D'Souza, Roshan M
2012-01-01
The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, So
2003-11-20
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less
The science of computing - The evolution of parallel processing
NASA Technical Reports Server (NTRS)
Denning, P. J.
1985-01-01
The present paper is concerned with the approaches to be employed to overcome the set of limitations in software technology which impedes currently an effective use of parallel hardware technology. The process required to solve the arising problems is found to involve four different stages. At the present time, Stage One is nearly finished, while Stage Two is under way. Tentative explorations are beginning on Stage Three, and Stage Four is more distant. In Stage One, parallelism is introduced into the hardware of a single computer, which consists of one or more processors, a main storage system, a secondary storage system, and various peripheral devices. In Stage Two, parallel execution of cooperating programs on different machines becomes explicit, while in Stage Three, new languages will make parallelism implicit. In Stage Four, there will be very high level user interfaces capable of interacting with scientists at the same level of abstraction as scientists do with each other.
High Performance Computing Based Parallel HIearchical Modal Association Clustering (HPAR HMAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patlolla, Dilip R; Surendran Nair, Sujithkumar; Graves, Daniel A.
For many applications, clustering is a crucial step in order to gain insight into the makeup of a dataset. The best approach to a given problem often depends on a variety of factors, such as the size of the dataset, time restrictions, and soft clustering requirements. The HMAC algorithm seeks to combine the strengths of 2 particular clustering approaches: model-based and linkage-based clustering. One particular weakness of HMAC is its computational complexity. HMAC is not practical for mega-scale data clustering. For high-definition imagery, a user would have to wait months or years for a result; for a 16-megapixel image, themore » estimated runtime skyrockets to over a decade! To improve the execution time of HMAC, it is reasonable to consider an multi-core implementation that utilizes available system resources. An existing imple-mentation (Ray and Cheng 2014) divides the dataset into N partitions - one for each thread prior to executing the HMAC algorithm. This implementation benefits from 2 types of optimization: parallelization and divide-and-conquer. By running each partition in parallel, the program is able to accelerate computation by utilizing more system resources. Although the parallel implementation provides considerable improvement over the serial HMAC, it still suffers from poor computational complexity, O(N2). Once the maximum number of cores on a system is exhausted, the program exhibits slower behavior. We now consider a modification to HMAC that involves a recursive partitioning scheme. Our modification aims to exploit divide-and-conquer benefits seen by the parallel HMAC implementation. At each level in the recursion tree, partitions are divided into 2 sub-partitions until a threshold size is reached. When the partition can no longer be divided without falling below threshold size, the base HMAC algorithm is applied. This results in a significant speedup over the parallel HMAC.« less
Application of parallelized software architecture to an autonomous ground vehicle
NASA Astrophysics Data System (ADS)
Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam
2011-01-01
This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.
Methodologies and Tools for Tuning Parallel Programs: 80% Art, 20% Science, and 10% Luck
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Bailey, David (Technical Monitor)
1996-01-01
The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessors. However, without effective means to monitor (and analyze) program execution, tuning the performance of parallel programs becomes exponentially difficult as program complexity and machine size increase. In the past few years, the ubiquitous introduction of performance tuning tools from various supercomputer vendors (Intel's ParAide, TMC's PRISM, CRI's Apprentice, and Convex's CXtrace) seems to indicate the maturity of performance instrumentation/monitor/tuning technologies and vendors'/customers' recognition of their importance. However, a few important questions remain: What kind of performance bottlenecks can these tools detect (or correct)? How time consuming is the performance tuning process? What are some important technical issues that remain to be tackled in this area? This workshop reviews the fundamental concepts involved in analyzing and improving the performance of parallel and heterogeneous message-passing programs. Several alternative strategies will be contrasted, and for each we will describe how currently available tuning tools (e.g. AIMS, ParAide, PRISM, Apprentice, CXtrace, ATExpert, Pablo, IPS-2) can be used to facilitate the process. We will characterize the effectiveness of the tools and methodologies based on actual user experiences at NASA Ames Research Center. Finally, we will discuss their limitations and outline recent approaches taken by vendors and the research community to address them.
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A; Mamidala, Amith R
2014-02-11
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-07
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-14
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Strategies for Energy Efficient Resource Management of Hybrid Programming Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong; Supinski, Bronis de; Schulz, Martin
2013-01-01
Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoptionmore » of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.« less
Development of a Dynamic Time Sharing Scheduled Environment Final Report CRADA No. TC-824-94E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M.; Caliga, D.
Massively parallel computers, such as the Cray T3D, have historically supported resource sharing solely with space sharing. In that method, multiple problems are solved by executing them on distinct processors. This project developed a dynamic time- and space-sharing scheduler to achieve greater interactivity and throughput than could be achieved with space-sharing alone. CRI and LLNL worked together on the design, testing, and review aspects of this project. There were separate software deliverables. CFU implemented a general purpose scheduling system as per the design specifications. LLNL ported the local gang scheduler software to the LLNL Cray T3D. In this approach, processorsmore » are allocated simultaneously to aU components of a parallel program (in a “gang”). Program execution is preempted as needed to provide for interactivity. Programs are also reIocated to different processors as needed to efficiently pack the computer’s torus of processors. In phase one, CRI developed an interface specification after discussions with LLNL for systemlevel software supporting a time- and space-sharing environment on the LLNL T3D. The two parties also discussed interface specifications for external control tools (such as scheduling policy tools, system administration tools) and applications programs. CRI assumed responsibility for the writing and implementation of all the necessary system software in this phase. In phase two, CRI implemented job-rolling on the Cray T3D, a mechanism for preempting a program, saving its state to disk, and later restoring its state to memory for continued execution. LLNL ported its gang scheduler to the LLNL T3D utilizing the CRI interface implemented in phases one and two. During phase three, the functionality and effectiveness of the LLNL gang scheduler was assessed to provide input to CRI time- and space-sharing, efforts. CRI will utilize this information in the development of general schedulers suitable for other sites and future architectures.« less
Exploiting variability for energy optimization of parallel programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrijsen, Wim; Iancu, Costin; de Jong, Wibe
2016-04-18
Here in this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes withmore » highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost.« less
Highlights of X-Stack ExM Deliverable Swift/T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wozniak, Justin M.
Swift/T is a key success from the ExM: System support for extreme-scale, many-task applications1 X-Stack project, which proposed to use concurrent dataflow as an innovative programming model to exploit extreme parallelism in exascale computers. The Swift/T component of the project reimplemented the Swift language from scratch to allow applications that compose scientific modules together to be build and run on available petascale computers (Blue Gene, Cray). Swift/T does this via a new compiler and runtime that generates and executes the application as an MPI program. We assume that mission-critical emerging exascale applications will be composed as scalable applications using existingmore » software components, connected by data dependencies. Developers wrap native code fragments using a higherlevel language, then build composite applications to form a computational experiment. This exemplifies hierarchical concurrency: lower-level messaging libraries are used for fine-grained parallelism; highlevel control is used for inter-task coordination. These patterns are best expressed with dataflow, but static DAGs (i.e., other workflow languages) limit the applications that can be built; they do not provide the expressiveness of Swift, such as conditional execution, iteration, and recursive functions.« less
SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws
NASA Technical Reports Server (NTRS)
Cooke, Daniel; Rushton, Nelson
2013-01-01
With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.
SKIRT: Hybrid parallelization of radiative transfer simulations
NASA Astrophysics Data System (ADS)
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi
Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less
Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...
2016-06-01
Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.
1988-01-01
Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.
Validating the simulation of large-scale parallel applications using statistical characteristics
Zhang, Deli; Wilke, Jeremiah; Hendry, Gilbert; ...
2016-03-01
Simulation is a widely adopted method to analyze and predict the performance of large-scale parallel applications. Validating the hardware model is highly important for complex simulations with a large number of parameters. Common practice involves calculating the percent error between the projected and the real execution time of a benchmark program. However, in a high-dimensional parameter space, this coarse-grained approach often suffers from parameter insensitivity, which may not be known a priori. Moreover, the traditional approach cannot be applied to the validation of software models, such as application skeletons used in online simulations. In this work, we present a methodologymore » and a toolset for validating both hardware and software models by quantitatively comparing fine-grained statistical characteristics obtained from execution traces. Although statistical information has been used in tasks like performance optimization, this is the first attempt to apply it to simulation validation. Lastly, our experimental results show that the proposed evaluation approach offers significant improvement in fidelity when compared to evaluation using total execution time, and the proposed metrics serve as reliable criteria that progress toward automating the simulation tuning process.« less
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1999-01-01
The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.
UPC++ Programmer’s Guide (v1.0 2017.9)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, D.
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
UPC++ Programmer’s Guide, v1.0-2018.3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, Dan
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
NIRcam-NIRSpec GTO Observations of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Rieke, Marcia J.; Ferruit, Pierre; Alberts, Stacey; Bunker, Andrew; Charlot, Stephane; Chevallard, Jacopo; Dressler, Alan; Egami, Eiichi; Eisenstein, Daniel; Endsley, Ryan; Franx, Marijn; Frye, Brenda L.; Hainline, Kevin; Jakobsen, Peter; Lake, Emma Curtis; Maiolino, Roberto; Rix, Hans-Walter; Robertson, Brant; Stark, Daniel; Williams, Christina; Willmer, Christopher; Willott, Chris J.
2017-06-01
The NIRSpec and and NIRCam GTO Teams are planning a joint imaging and spectroscopic study of the high redshift universe. By virtue of planning a joint program which includes medium and deep near- and mid-infrared imaging surveys and multi-object spectroscopy (MOS) of sources in the same fields, we have learned much about planning observing programs for each of the instruments and using them in parallel mode to maximize photon collection time. The design and rationale for our joint program will be explored in this talk with an emphasis on why we have chosen particular suites of filters and spectroscopic resolutions, why we have chosen particular exposure patterns, and how we have designed the parallel observations. The actual observations that we intend on executing will serve as examples of how to layout mosaics and MOS observations to maximize observing efficiency for surveys with JWST.
Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python.
Yesylevskyy, Semen O
2015-07-15
Pteros is the high-performance open-source library for molecular modeling and analysis of molecular dynamics trajectories. Starting from version 2.0 Pteros is available for C++ and Python programming languages with very similar interfaces. This makes it suitable for writing complex reusable programs in C++ and simple interactive scripts in Python alike. New version improves the facilities for asynchronous trajectory reading and parallel execution of analysis tasks by introducing analysis plugins which could be written in either C++ or Python in completely uniform way. The high level of abstraction provided by analysis plugins greatly simplifies prototyping and implementation of complex analysis algorithms. Pteros is available for free under Artistic License from http://sourceforge.net/projects/pteros/. © 2015 Wiley Periodicals, Inc.
Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Meneses, Esteban; Menon, Harshita
2014-09-22
Deterministic replay of a parallel application is commonly used for discovering bugs or to recover from a hard fault with message-logging fault tolerance. For message passing programs, a major source of overhead during forward execution is recording the order in which messages are sent and received. During replay, this ordering must be used to deterministically reproduce the execution. Previous work in replay algorithms often makes minimal assumptions about the programming model and application in order to maintain generality. However, in many cases, only a partial order must be recorded due to determinism intrinsic in the code, ordering constraints imposed bymore » the execution model, and events that are commutative (their relative execution order during replay does not need to be reproduced exactly). In this paper, we present a novel algebraic framework for reasoning about the minimum dependencies required to represent the partial order for different concurrent orderings and interleavings. By exploiting this theory, we improve on an existing scalable message-logging fault tolerance scheme. The improved scheme scales to 131,072 cores on an IBM BlueGene/P with up to 2x lower overhead than one that records a total order.« less
Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Rodila, D.; Bacu, V.; Gorgan, D.
2012-04-01
The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
Automatic data partitioning on distributed memory multicomputers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gupta, Manish
1992-01-01
Distributed-memory parallel computers are increasingly being used to provide high levels of performance for scientific applications. Unfortunately, such machines are not very easy to program. A number of research efforts seek to alleviate this problem by developing compilers that take over the task of generating communication. The communication overheads and the extent of parallelism exploited in the resulting target program are determined largely by the manner in which data is partitioned across different processors of the machine. Most of the compilers provide no assistance to the programmer in the crucial task of determining a good data partitioning scheme. A novel approach is presented, the constraints-based approach, to the problem of automatic data partitioning for numeric programs. In this approach, the compiler identifies some desirable requirements on the distribution of various arrays being referenced in each statement, based on performance considerations. These desirable requirements are referred to as constraints. For each constraint, the compiler determines a quality measure that captures its importance with respect to the performance of the program. The quality measure is obtained through static performance estimation, without actually generating the target data-parallel program with explicit communication. Each data distribution decision is taken by combining all the relevant constraints. The compiler attempts to resolve any conflicts between constraints such that the overall execution time of the parallel program is minimized. This approach has been implemented as part of a compiler called Paradigm, that accepts Fortran 77 programs, and specifies the partitioning scheme to be used for each array in the program. We have obtained results on some programs taken from the Linpack and Eispack libraries, and the Perfect Benchmarks. These results are quite promising, and demonstrate the feasibility of automatic data partitioning for a significant class of scientific application programs with regular computations.
Shrimankar, D D; Sathe, S R
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today's supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures.
Shrimankar, D. D.; Sathe, S. R.
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today’s supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures. PMID:27932868
Distributing an executable job load file to compute nodes in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M.
Distributing an executable job load file to compute nodes in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: determining, by a compute node in the parallel computer, whether the compute node is participating in a job; determining, by the compute node in the parallel computer, whether a descendant compute node is participating in the job; responsive to determining that the compute node is participating in the job or that the descendant compute node is participating in the job, communicating, by the compute node to a parent compute node, an identification of a data communications linkmore » over which the compute node receives data from the parent compute node; constructing a class route for the job, wherein the class route identifies all compute nodes participating in the job; and broadcasting the executable load file for the job along the class route for the job.« less
NASA Technical Reports Server (NTRS)
Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana
2017-01-01
In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.
Parallel community climate model: Description and user`s guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, J.B.; Flanery, R.E.; Semeraro, B.D.
This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less
MARBLE: A system for executing expert systems in parallel
NASA Technical Reports Server (NTRS)
Myers, Leonard; Johnson, Coe; Johnson, Dean
1990-01-01
This paper details the MARBLE 2.0 system which provides a parallel environment for cooperating expert systems. The work has been done in conjunction with the development of an intelligent computer-aided design system, ICADS, by the CAD Research Unit of the Design Institute at California Polytechnic State University. MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is a system of C Language Production Systems (CLIPS) expert system tool. A copied blackboard is used for communication between the shells to establish an architecture which supports cooperating expert systems that execute in parallel. The design of MARBLE is simple, but it provides support for a rich variety of configurations, while making it relatively easy to demonstrate the correctness of its parallel execution features. In its most elementary configuration, individual CLIPS expert systems execute on their own processors and communicate with each other through a modified blackboard. Control of the system as a whole, and specifically of writing to the blackboard is provided by one of the CLIPS expert systems, an expert control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segmentmore » of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.« less
Runtime optimization of an application executing on a parallel computer
None
2014-11-25
Identifying a collective operation within an application executing on a parallel computer; identifying a call site of the collective operation; determining whether the collective operation is root-based; if the collective operation is not root-based: establishing a tuning session and executing the collective operation in the tuning session; if the collective operation is root-based, determining whether all compute nodes executing the application identified the collective operation at the same call site; if all compute nodes identified the collective operation at the same call site, establishing a tuning session and executing the collective operation in the tuning session; and if all compute nodes executing the application did not identify the collective operation at the same call site, executing the collective operation without establishing a tuning session.
Runtime optimization of an application executing on a parallel computer
Faraj, Daniel A; Smith, Brian E
2014-11-18
Identifying a collective operation within an application executing on a parallel computer; identifying a call site of the collective operation; determining whether the collective operation is root-based; if the collective operation is not root-based: establishing a tuning session and executing the collective operation in the tuning session; if the collective operation is root-based, determining whether all compute nodes executing the application identified the collective operation at the same call site; if all compute nodes identified the collective operation at the same call site, establishing a tuning session and executing the collective operation in the tuning session; and if all compute nodes executing the application did not identify the collective operation at the same call site, executing the collective operation without establishing a tuning session.
Runtime optimization of an application executing on a parallel computer
Faraj, Daniel A.; Smith, Brian E.
2013-01-29
Identifying a collective operation within an application executing on a parallel computer; identifying a call site of the collective operation; determining whether the collective operation is root-based; if the collective operation is not root-based: establishing a tuning session and executing the collective operation in the tuning session; if the collective operation is root-based, determining whether all compute nodes executing the application identified the collective operation at the same call site; if all compute nodes identified the collective operation at the same call site, establishing a tuning session and executing the collective operation in the tuning session; and if all compute nodes executing the application did not identify the collective operation at the same call site, executing the collective operation without establishing a tuning session.
The neural basis of parallel saccade programming: an fMRI study.
Hu, Yanbo; Walker, Robin
2011-11-01
The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.
NASA Astrophysics Data System (ADS)
Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel
2018-01-01
This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.
Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E
2012-10-16
Methods, apparatus, and products are disclosed for scheduling applications for execution on a plurality of compute nodes of a parallel computer to manage temperature of the plurality of compute nodes during execution that include: identifying one or more applications for execution on the plurality of compute nodes; creating a plurality of physically discontiguous node partitions in dependence upon temperature characteristics for the compute nodes and a physical topology for the compute nodes, each discontiguous node partition specifying a collection of physically adjacent compute nodes; and assigning, for each application, that application to one or more of the discontiguous node partitions for execution on the compute nodes specified by the assigned discontiguous node partitions.
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2014-02-11
Data communications in a parallel active messaging interface ('PAMI') or a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution of a compute node, including specification of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications instruction, the instruction characterized by instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance witht the instruction type, the transfer data from the origin endpoin to the target endpoint.
Python based high-level synthesis compiler
NASA Astrophysics Data System (ADS)
Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard
2014-11-01
This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1984-01-01
Several short summaries of the work performed during this reporting period are presented. Topics discussed in this document include: (1) resilient seeded errors via simple techniques; (2) knowledge representation for engineering design; (3) analysis of faults in a multiversion software experiment; (4) implementation of parallel programming environment; (5) symbolic execution of concurrent programs; (6) two computer graphics systems for visualization of pressure distribution and convective density particles; (7) design of a source code management system; (8) vectorizing incomplete conjugate gradient on the Cyber 203/205; (9) extensions of domain testing theory and; (10) performance analyzer for the pisces system.
PUP: An Architecture to Exploit Parallel Unification in Prolog
1988-03-01
environment stacking mo del similar to the Warren Abstract Machine [23] since it has been shown to be super ior to other known models (see [21]). The storage...execute in groups of independent operations. Unifications belonging to different group s may not overlap. Also unification operations belonging to the...since all parallel operations on the unification units must complete before any of the units can star t executing the next group of parallel
Algorithmic synthesis using Python compiler
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw; Romaniuk, Ryszard; Pozniak, Krzysztof; Linczuk, Maciej
2015-09-01
This paper presents a python to VHDL compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and translate it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the programmed circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. This can be achieved by using many computational resources at the same time. Creating parallel programs implemented in FPGAs in pure HDL is difficult and time consuming. Using higher level of abstraction and High-Level Synthesis compiler implementation time can be reduced. The compiler has been implemented using the Python language. This article describes design, implementation and results of created tools.
Approaches in highly parameterized inversion - GENIE, a general model-independent TCP/IP run manager
Muffels, Christopher T.; Schreuder, Willem A.; Doherty, John E.; Karanovic, Marinko; Tonkin, Matthew J.; Hunt, Randall J.; Welter, David E.
2012-01-01
GENIE is a model-independent suite of programs that can be used to generally distribute, manage, and execute multiple model runs via the TCP/IP infrastructure. The suite consists of a file distribution interface, a run manage, a run executer, and a routine that can be compiled as part of a program and used to exchange model runs with the run manager. Because communication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST parameter estimation program. This report describes (1) the problem addressed; (2) the approach used by GENIE to queue, distribute, and retrieve model runs; and (3) user instructions, classes, and functions developed. It also includes (4) an example to illustrate the linking of GENIE with Parallel PEST using the interface routine.
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
Paszyńska, A.; Paszyński, M.; Jopek, K.; ...
2015-01-01
We consmore » truct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O N e log N e , where N e is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paszyńska, A.; Paszyński, M.; Jopek, K.
We consmore » truct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O N e log N e , where N e is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less
Piehler, Timothy F; Bloomquist, Michael L; August, Gerald J; Gewirtz, Abigail H; Lee, Susanne S; Lee, Wendy S C
2014-01-01
A culturally diverse sample of formerly homeless youth (ages 6-12) and their families (n = 223) participated in a cluster randomized controlled trial of the Early Risers conduct problems prevention program in a supportive housing setting. Parents provided 4 annual behaviorally-based ratings of executive functioning (EF) and conduct problems, including at baseline, over 2 years of intervention programming, and at a 1-year follow-up assessment. Using intent-to-treat analyses, a multilevel latent growth model revealed that the intervention group demonstrated reduced growth in conduct problems over the 4 assessment points. In order to examine mediation, a multilevel parallel process latent growth model was used to simultaneously model growth in EF and growth in conduct problems along with intervention status as a covariate. A significant mediational process emerged, with participation in the intervention promoting growth in EF, which predicted negative growth in conduct problems. The model was consistent with changes in EF fully mediating intervention-related changes in youth conduct problems over the course of the study. These findings highlight the critical role that EF plays in behavioral change and lends further support to its importance as a target in preventive interventions with populations at risk for conduct problems.
Resource allocation and supervisory control architecture for intelligent behavior generation
NASA Astrophysics Data System (ADS)
Shah, Hitesh K.; Bahl, Vikas; Moore, Kevin L.; Flann, Nicholas S.; Martin, Jason
2003-09-01
In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) was funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). As part of our research, we presented the use of a grammar-based approach to enabling intelligent behaviors in autonomous robotic vehicles. With the growth of the number of available resources on the robot, the variety of the generated behaviors and the need for parallel execution of multiple behaviors to achieve reaction also grew. As continuation of our past efforts, in this paper, we discuss the parallel execution of behaviors and the management of utilized resources. In our approach, available resources are wrapped with a layer (termed services) that synchronizes and serializes access to the underlying resources. The controlling agents (called behavior generating agents) generate behaviors to be executed via these services. The agents are prioritized and then, based on their priority and the availability of requested services, the Control Supervisor decides on a winner for the grant of access to services. Though the architecture is applicable to a variety of autonomous vehicles, we discuss its application on T4, a mid-sized autonomous vehicle developed for security applications.
The specificity of learned parallelism in dual-memory retrieval.
Strobach, Tilo; Schubert, Torsten; Pashler, Harold; Rickard, Timothy
2014-05-01
Retrieval of two responses from one visually presented cue occurs sequentially at the outset of dual-retrieval practice. Exclusively for subjects who adopt a mode of grouping (i.e., synchronizing) their response execution, however, reaction times after dual-retrieval practice indicate a shift to learned retrieval parallelism (e.g., Nino & Rickard, in Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 373-388, 2003). In the present study, we investigated how this learned parallelism is achieved and why it appears to occur only for subjects who group their responses. Two main accounts were considered: a task-level versus a cue-level account. The task-level account assumes that learned retrieval parallelism occurs at the level of the task as a whole and is not limited to practiced cues. Grouping response execution may thus promote a general shift to parallel retrieval following practice. The cue-level account states that learned retrieval parallelism is specific to practiced cues. This type of parallelism may result from cue-specific response chunking that occurs uniquely as a consequence of grouped response execution. The results of two experiments favored the second account and were best interpreted in terms of a structural bottleneck model.
Parallel evolutionary computation in bioinformatics applications.
Pinho, Jorge; Sobral, João Luis; Rocha, Miguel
2013-05-01
A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Run-time parallelization and scheduling of loops
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay
1990-01-01
Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.
Parallel discrete-event simulation of FCFS stochastic queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.
NASA Astrophysics Data System (ADS)
Olson, Richard F.
2013-05-01
Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.
Dual compile strategy for parallel heterogeneous execution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler Barratt; Perry, James Thomas
2012-06-01
The purpose of the Dual Compile Strategy is to increase our trust in the Compute Engine during its execution of instructions. This is accomplished by introducing a heterogeneous Monitor Engine that checks the execution of the Compute Engine. This leads to the production of a second and custom set of instructions designed for monitoring the execution of the Compute Engine at runtime. This use of multiple engines differs from redundancy in that one engine is working on the application while the other engine is monitoring and checking in parallel instead of both applications (and engines) performing the same work atmore » the same time.« less
Component Framework for Loosely Coupled High Performance Integrated Plasma Simulations
NASA Astrophysics Data System (ADS)
Elwasif, W. R.; Bernholdt, D. E.; Shet, A. G.; Batchelor, D. B.; Foley, S.
2010-11-01
We present the design and implementation of a component-based simulation framework for the execution of coupled time-dependent plasma modeling codes. The Integrated Plasma Simulator (IPS) provides a flexible lightweight component model that streamlines the integration of stand alone codes into coupled simulations. Standalone codes are adapted to the IPS component interface specification using a thin wrapping layer implemented in the Python programming language. The framework provides services for inter-component method invocation, configuration, task, and data management, asynchronous event management, simulation monitoring, and checkpoint/restart capabilities. Services are invoked, as needed, by the computational components to coordinate the execution of different aspects of coupled simulations on Massive parallel Processing (MPP) machines. A common plasma state layer serves as the foundation for inter-component, file-based data exchange. The IPS design principles, implementation details, and execution model will be presented, along with an overview of several use cases.
A Programming Language Supporting First-Class Parallel Environments
1989-01-01
Symmetric Lisp later in the thesis. 1.5.1.2 Procedures as Data - Comparison with Lisp Classical Lisp[48, 54] has been altered and extended in many ways... manangement problems. A resource manager controls access to one or more resources shared by concurrently executing processes. Database transaction systems...symmetric languages are related to languages based on more classical models? 3. What are the kinds of uniformity that the symmetric model supports and what
Hybrid Memory Management for Parallel Execution of Prolog on Shared Memory Multiprocessors
1990-06-01
organizing data to increase locality. The stack structure exhibits greater locality than the heap structure. Tradeoff decisions can also be made on...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...University of California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
A design methodology for portable software on parallel computers
NASA Technical Reports Server (NTRS)
Nicol, David M.; Miller, Keith W.; Chrisman, Dan A.
1993-01-01
This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven.
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.
Mentat: An object-oriented macro data flow system
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; Liu, Jane W. S.
1988-01-01
Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations.
A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks
Geng, Tao; Gan, John Q.; Dyson, Matthew; Tsui, Chun SL; Sepulveda, Francisco
2008-01-01
A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms. PMID:18584040
Highly parallel sparse Cholesky factorization
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Schreiber, Robert
1990-01-01
Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.
Parallel Robot for Lower Limb Rehabilitation Exercises.
Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.
Parallel Robot for Lower Limb Rehabilitation Exercises
Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727
Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2011-01-01
In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-10-29
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.
Run-time parallelization and scheduling of loops
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay
1991-01-01
Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi; ...
2016-07-21
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
Efficient Parallel Video Processing Techniques on GPU: From Framework to Implementation
Su, Huayou; Wen, Mei; Wu, Nan; Ren, Ju; Zhang, Chunyuan
2014-01-01
Through reorganizing the execution order and optimizing the data structure, we proposed an efficient parallel framework for H.264/AVC encoder based on massively parallel architecture. We implemented the proposed framework by CUDA on NVIDIA's GPU. Not only the compute intensive components of the H.264 encoder are parallelized but also the control intensive components are realized effectively, such as CAVLC and deblocking filter. In addition, we proposed serial optimization methods, including the multiresolution multiwindow for motion estimation, multilevel parallel strategy to enhance the parallelism of intracoding as much as possible, component-based parallel CAVLC, and direction-priority deblocking filter. More than 96% of workload of H.264 encoder is offloaded to GPU. Experimental results show that the parallel implementation outperforms the serial program by 20 times of speedup ratio and satisfies the requirement of the real-time HD encoding of 30 fps. The loss of PSNR is from 0.14 dB to 0.77 dB, when keeping the same bitrate. Through the analysis to the kernels, we found that speedup ratios of the compute intensive algorithms are proportional with the computation power of the GPU. However, the performance of the control intensive parts (CAVLC) is much related to the memory bandwidth, which gives an insight for new architecture design. PMID:24757432
Parallel machine architecture for production rule systems
Allen, Jr., John D.; Butler, Philip L.
1989-01-01
A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Communication overhead on the Intel Paragon, IBM SP2 and Meiko CS-2
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1995-01-01
Interprocessor communication overhead is a crucial measure of the power of parallel computing systems-its impact can severely limit the performance of parallel programs. This report presents measurements of communication overhead on three contemporary commercial multicomputer systems: the Intel Paragon, the IBM SP2 and the Meiko CS-2. In each case the time to communicate between processors is presented as a function of message length. The time for global synchronization and memory access is discussed. The performance of these machines in emulating hypercubes and executing random pairwise exchanges is also investigated. It is shown that the interprocessor communication time depends heavily on the specific communication pattern required. These observations contradict the commonly held belief that communication overhead on contemporary machines is independent of the placement of tasks on processors. The information presented in this report permits the evaluation of the efficiency of parallel algorithm implementations against standard baselines.
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y
2017-09-22
A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
Yim, Won Cheol; Cushman, John C.
2017-07-22
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornung, Richard D.; Hones, Holger E.
The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. Theremore » are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.« less
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Won Cheol; Cushman, John C.
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Runtime Detection of C-Style Errors in UPC Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirkelbauer, P; Liao, C; Panas, T
2011-09-29
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R
Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with themore » endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.« less
Verification and Planning Based on Coinductive Logic Programming
NASA Technical Reports Server (NTRS)
Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal
2008-01-01
Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations of the planning and verification applications have been developed [4]. Co-LP and Model Checking: The vast majority of properties that are to be verified can be classified into safety properties and liveness properties. It is well known within model checking that safety properties can be verified by reachability analysis, i.e, if a counter-example to the property exists, it can be finitely determined by enumerating all the reachable states of the Kripke structure.
Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica
2017-06-29
The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store operations. For this reason, the island model is more suitable for PGAs than the global and grid model, also in terms of costs when executed on a commercial cloud provider.
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.
NASA Astrophysics Data System (ADS)
Lourderaj, Upakarasamy; Sun, Rui; Kohale, Swapnil C.; Barnes, George L.; de Jong, Wibe A.; Windus, Theresa L.; Hase, William L.
2014-03-01
The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface that accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized.
Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers
NASA Technical Reports Server (NTRS)
Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.
Research in Parallel Computing: 1987-1990
1994-08-05
emulation, we layered UNIX BSD 4.3 functionality above the kernel primitives, but packaged both as a monolithic unit running in privileged state. This...further, so that only a "pure kernel " or " microkernel " runs in privileged mode, while the other components of the environment execute as one or more client... kernel DTIC TAB 24 2.2.2 Nectar’s communication software Unannounced 0 25 2.2.3 A Nectar programming interface Justification 25 2.3 System evaluation 26
Small computer interface to a stepper motor
NASA Technical Reports Server (NTRS)
Berry, Fred A., Jr.
1986-01-01
A Commodore VIC-20 computer has been interfaced with a stepper motor to provide an inexpensive stepper motor controller. Only eight transistors and two integrated circuits compose the interface. The software controls the parallel interface of the computer and provides the four phase drive signals for the motor. Optical sensors control the zeroing of the 12-inch turntable positioned by the controller. The computer calculates the position information and movement of the table and may be programmed in BASIC to execute automatic sequences.
Macro-actor execution on multilevel data-driven architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Najjar, W.
1988-12-31
The data-flow model of computation brings to multiprocessors high programmability at the expense of increased overhead. Applying the model at a higher level leads to better performance but also introduces loss of parallelism. We demonstrate here syntax directed program decomposition methods for the creation of large macro-actors in numerical algorithms. In order to alleviate some of the problems introduced by the lower resolution interpretation, we describe a multi-level of resolution and analyze the requirements for its actual hardware and software integration.
Intel NX to PVM 3.2 message passing conversion library
NASA Technical Reports Server (NTRS)
Arthur, Trey; Nelson, Michael L.
1993-01-01
NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.
Decision-making under risk conditions is susceptible to interference by a secondary executive task.
Starcke, Katrin; Pawlikowski, Mirko; Wolf, Oliver T; Altstötter-Gleich, Christine; Brand, Matthias
2011-05-01
Recent research suggests two ways of making decisions: an intuitive and an analytical one. The current study examines whether a secondary executive task interferes with advantageous decision-making in the Game of Dice Task (GDT), a decision-making task with explicit and stable rules that taps executive functioning. One group of participants performed the original GDT solely, two groups performed either the GDT and a 1-back or a 2-back working memory task as a secondary task simultaneously. Results show that the group which performed the GDT and the secondary task with high executive load (2-back) decided less advantageously than the group which did not perform a secondary executive task. These findings give further evidence for the view that decision-making under risky conditions taps into the rational-analytical system which acts in a serial and not parallel way as performance on the GDT is disturbed by a parallel task that also requires executive resources.
NASA Technical Reports Server (NTRS)
Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen
1987-01-01
NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.
schwimmbad: A uniform interface to parallel processing pools in Python
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Foreman-Mackey, Daniel
2017-09-01
Many scientific and computing problems require doing some calculation on all elements of some data set. If the calculations can be executed in parallel (i.e. without any communication between calculations), these problems are said to be perfectly parallel. On computers with multiple processing cores, these tasks can be distributed and executed in parallel to greatly improve performance. A common paradigm for handling these distributed computing problems is to use a processing "pool": the "tasks" (the data) are passed in bulk to the pool, and the pool handles distributing the tasks to a number of worker processes when available. schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.
Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for themore » context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.« less
A performance comparison of the IBM RS/6000 and the Astronautics ZS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.M.; Abraham, S.G.; Davidson, E.S.
1991-01-01
Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less
NASA Astrophysics Data System (ADS)
Laban, Shaban; El-Desouky, Aly
2014-05-01
To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Also, it is possible to extend the use of the framework in monitoring the IDC pipeline. The detailed design, implementation,conclusion and future work of the proposed framework will be presented.
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
Sun, Wen; Patil, Sachin; Alterovitz, Ron
2015-01-01
As sampling-based motion planners become faster, they can be re-executed more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency replanning (HFR), where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles. PMID:26279645
Accelerating Wright–Fisher Forward Simulations on the Graphics Processing Unit
Lawrie, David S.
2017-01-01
Forward Wright–Fisher simulations are powerful in their ability to model complex demography and selection scenarios, but suffer from slow execution on the Central Processor Unit (CPU), thus limiting their usefulness. However, the single-locus Wright–Fisher forward algorithm is exceedingly parallelizable, with many steps that are so-called “embarrassingly parallel,” consisting of a vast number of individual computations that are all independent of each other and thus capable of being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and programming languages designed to leverage the inherent parallel nature of these processors have allowed researchers to dramatically speed up many programs that have such high arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright–Fisher simulation, or “GO Fish” for short, can be used to simulate arbitrary selection and demographic scenarios while running over 250-fold faster than its serial counterpart on the CPU. Even modest GPU hardware can achieve an impressive speedup of over two orders of magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping of previously estimated parameters, but also use simulated results to calculate the likelihoods and summary statistics of demographic and selection models against real polymorphism data, all without restricting the demographic and selection scenarios that can be modeled or requiring approximations to the single-locus forward algorithm for efficiency. Further, as many of the parallel programming techniques used in this simulation can be applied to other computationally intensive algorithms important in population genetics, GO Fish serves as an exciting template for future research into accelerating computation in evolution. GO Fish is part of the Parallel PopGen Package available at: http://dl42.github.io/ParallelPopGen/. PMID:28768689
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926
Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.
2000-01-01
Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining, gather/scatter, and redistribution. At the end of the conversion process most intermediate Charon function calls will have been removed, the non-distributed arrays will have been deleted, and virtually the only remaining Charon functions calls are the high-level, highly optimized communications. Distribution of the data is under complete control of the programmer, although a wide range of useful distributions is easily available through predefined functions. A crucial aspect of the library is that it does not allocate space for distributed arrays, but accepts programmer-specified memory. This has two major consequences. First, codes parallelized using Charon do not suffer from encapsulation; user data is always directly accessible. This provides high efficiency, and also retains the possibility of using message passing directly for highly irregular communications. Second, non-distributed arrays can be interpreted as (trivial) distributions in the Charon sense, which allows them to be mapped to truly distributed arrays, and vice versa. This is the mechanism that enables incremental parallelization. In this paper we provide a brief introduction of the library and then focus on the actual steps in the parallelization process, using some representative examples from, among others, the NAS Parallel Benchmarks. We show how a complicated two-dimensional pipeline-the prototypical non-data-parallel algorithm- can be constructed with ease. To demonstrate the flexibility of the library, we give examples of the stepwise, efficient parallel implementation of nonlocal boundary conditions common in aircraft simulations, as well as the construction of the sequence of grids required for multigrid.
Distributed computing for membrane-based modeling of action potential propagation.
Porras, D; Rogers, J M; Smith, W M; Pollard, A E
2000-08-01
Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S; Rotman, D; Schwegler, E
The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less
Parallelization and automatic data distribution for nuclear reactor simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebrock, L.M.
1997-07-01
Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less
A parallel strategy for implementing real-time expert systems using CLIPS
NASA Technical Reports Server (NTRS)
Ilyes, Laszlo A.; Villaseca, F. Eugenio; Delaat, John
1994-01-01
As evidenced by current literature, there appears to be a continued interest in the study of real-time expert systems. It is generally recognized that speed of execution is only one consideration when designing an effective real-time expert system. Some other features one must consider are the expert system's ability to perform temporal reasoning, handle interrupts, prioritize data, contend with data uncertainty, and perform context focusing as dictated by the incoming data to the expert system. This paper presents a strategy for implementing a real time expert system on the iPSC/860 hypercube parallel computer using CLIPS. The strategy takes into consideration not only the execution time of the software, but also those features which define a true real-time expert system. The methodology is then demonstrated using a practical implementation of an expert system which performs diagnostics on the Space Shuttle Main Engine (SSME). This particular implementation uses an eight node hypercube to process ten sensor measurements in order to simultaneously diagnose five different failure modes within the SSME. The main program is written in ANSI C and embeds CLIPS to better facilitate and debug the rule based expert system.
Silberstein, M.; Tzemach, A.; Dovgolevsky, N.; Fishelson, M.; Schuster, A.; Geiger, D.
2006-01-01
Computation of LOD scores is a valuable tool for mapping disease-susceptibility genes in the study of Mendelian and complex diseases. However, computation of exact multipoint likelihoods of large inbred pedigrees with extensive missing data is often beyond the capabilities of a single computer. We present a distributed system called “SUPERLINK-ONLINE,” for the computation of multipoint LOD scores of large inbred pedigrees. It achieves high performance via the efficient parallelization of the algorithms in SUPERLINK, a state-of-the-art serial program for these tasks, and through the use of the idle cycles of thousands of personal computers. The main algorithmic challenge has been to efficiently split a large task for distributed execution in a highly dynamic, nondedicated running environment. Notably, the system is available online, which allows computationally intensive analyses to be performed with no need for either the installation of software or the maintenance of a complicated distributed environment. As the system was being developed, it was extensively tested by collaborating medical centers worldwide on a variety of real data sets, some of which are presented in this article. PMID:16685644
Executing a gather operation on a parallel computer
Archer, Charles J [Rochester, MN; Ratterman, Joseph D [Rochester, MN
2012-03-20
Methods, apparatus, and computer program products are disclosed for executing a gather operation on a parallel computer according to embodiments of the present invention. Embodiments include configuring, by the logical root, a result buffer or the logical root, the result buffer having positions, each position corresponding to a ranked node in the operational group and for storing contribution data gathered from that ranked node. Embodiments also include repeatedly for each position in the result buffer: determining, by each compute node of an operational group, whether the current position in the result buffer corresponds with the rank of the compute node, if the current position in the result buffer corresponds with the rank of the compute node, contributing, by that compute node, the compute node's contribution data, if the current position in the result buffer does not correspond with the rank of the compute node, contributing, by that compute node, a value of zero for the contribution data, and storing, by the logical root in the current position in the result buffer, results of a bitwise OR operation of all the contribution data by all compute nodes of the operational group for the current position, the results received through the global combining network.
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw; Linczuk, Maciej
2016-09-01
The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.
Gathmann, Bettina; Schulte, Frank P; Maderwald, Stefan; Pawlikowski, Mirko; Starcke, Katrin; Schäfer, Lena C; Schöler, Tobias; Wolf, Oliver T; Brand, Matthias
2014-03-01
Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.
2014-01-01
Background The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n3) and of O(n5) order, respectively, and so, the algorithm is unaffordable for huge data sets. Results We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance, we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm determines the necessity of a communication protocol design among the processors involved. Efficient synchronization design is also discussed. Conclusions In the context of a collaboration between public and private institutions, the parallel model of U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput computing resources across Europe using grid computing techniques. The implementation is able to minimize both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice- junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90 processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results obtained show that the parallel version is up to 30 times faster than the serial one. PMID:25077818
D'Angelo, Gianni; Rampone, Salvatore
2014-01-01
The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n(3)) and of O(n(5)) order, respectively, and so, the algorithm is unaffordable for huge data sets. We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance, we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm determines the necessity of a communication protocol design among the processors involved. Efficient synchronization design is also discussed. In the context of a collaboration between public and private institutions, the parallel model of U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput computing resources across Europe using grid computing techniques. The implementation is able to minimize both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice- junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90 processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results obtained show that the parallel version is up to 30 times faster than the serial one.
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Youngblood, John N.; Saha, Aindam
1987-01-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, C.C.; Youngblood, J.N.; Saha, A.
1987-12-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units
NASA Astrophysics Data System (ADS)
Corral, Roque; Gisbert, Fernando; Pueblas, Jesus
2017-02-01
The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
FLY MPI-2: a parallel tree code for LSS
NASA Astrophysics Data System (ADS)
Becciani, U.; Comparato, M.; Antonuccio-Delogu, V.
2006-04-01
New version program summaryProgram title: FLY 3.1 Catalogue identifier: ADSC_v2_0 Licensing provisions: yes Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSC_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland No. of lines in distributed program, including test data, etc.: 158 172 No. of bytes in distributed program, including test data, etc.: 4 719 953 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Beowulf cluster, PC, MPP systems Operating system: Linux, Aix RAM: 100M words Catalogue identifier of previous version: ADSC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 155 (2003) 159 Does the new version supersede the previous version?: yes Nature of problem: FLY is a parallel collisionless N-body code for the calculation of the gravitational force Solution method: FLY is based on the hierarchical oct-tree domain decomposition introduced by Barnes and Hut (1986) Reasons for the new version: The new version of FLY is implemented by using the MPI-2 standard: the distributed version 3.1 was developed by using the MPICH2 library on a PC Linux cluster. Today the FLY performance allows us to consider the FLY code among the most powerful parallel codes for tree N-body simulations. Another important new feature regards the availability of an interface with hydrodynamical Paramesh based codes. Simulations must follow a box large enough to accurately represent the power spectrum of fluctuations on very large scales so that we may hope to compare them meaningfully with real data. The number of particles then sets the mass resolution of the simulation, which we would like to make as fine as possible. The idea to build an interface between two codes, that have different and complementary cosmological tasks, allows us to execute complex cosmological simulations with FLY, specialized for DM evolution, and a code specialized for hydrodynamical components that uses a Paramesh block structure. Summary of revisions: The parallel communication schema was totally changed. The new version adopts the MPICH2 library. Now FLY can be executed on all Unix systems having an MPI-2 standard library. The main data structure, is declared in a module procedure of FLY (fly_h.F90 routine). FLY creates the MPI Window object for one-sided communication for all the shared arrays, with a call like the following: CALL MPI_WIN_CREATE(POS, SIZE, REAL8, MPI_INFO_NULL, MPI_COMM_WORLD, WIN_POS, IERR) the following main window objects are created: win_pos, win_vel, win_acc: particles positions velocities and accelerations, win_pos_cell, win_mass_cell, win_quad, win_subp, win_grouping: cells positions, masses, quadrupole momenta, tree structure and grouping cells. Other windows are created for dynamic load balance and global counters. Restrictions: The program uses the leapfrog integrator schema, but could be changed by the user. Unusual features: FLY uses the MPI-2 standard: the MPICH2 library on Linux systems was adopted. To run this version of FLY the working directory must be shared among all the processors that execute FLY. Additional comments: Full documentation for the program is included in the distribution in the form of a README file, a User Guide and a Reference manuscript. Running time: IBM Linux Cluster 1350, 512 nodes with 2 processors for each node and 2 GB RAM for each processor, at Cineca, was adopted to make performance tests. Processor type: Intel Xeon Pentium IV 3.0 GHz and 512 KB cache (128 nodes have Nocona processors). Internal Network: Myricom LAN Card "C" Version and "D" Version. Operating System: Linux SuSE SLES 8. The code was compiled using the mpif90 compiler version 8.1 and with basic optimization options in order to have performances that could be useful compared with other generic clusters Processors
Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture
NASA Technical Reports Server (NTRS)
Jones, W. H.
1983-01-01
The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-10-22
Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.
Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2010-01-01
The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Jilin; Sha, Chaoqun; Wu, Yusen; Wan, Jian; Zhou, Li; Ren, Yongjian; Si, Huayou; Yin, Yuyu; Jing, Ya
2017-02-01
GPU not only is used in the field of graphic technology but also has been widely used in areas needing a large number of numerical calculations. In the energy industry, because of low carbon, high energy density, high duration and other characteristics, the development of nuclear energy cannot easily be replaced by other energy sources. Management of core fuel is one of the major areas of concern in a nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion equation is crucial in the core fuel management process. In this paper, we use CUDA programming technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put forward that defines the virtual boundary of the grid exchange information and data transmission by non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves the efficiency of program execution and verifies that GPU is playing a much more important role in the field of numerical calculations.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
NASA Technical Reports Server (NTRS)
Saini, Subash; Bailey, David; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
High Performance Fortran (HPF), the high-level language for parallel Fortran programming, is based on Fortran 90. HALF was defined by an informal standards committee known as the High Performance Fortran Forum (HPFF) in 1993, and modeled on TMC's CM Fortran language. Several HPF features have since been incorporated into the draft ANSI/ISO Fortran 95, the next formal revision of the Fortran standard. HPF allows users to write a single parallel program that can execute on a serial machine, a shared-memory parallel machine, or a distributed-memory parallel machine. HPF eliminates the complex, error-prone task of explicitly specifying how, where, and when to pass messages between processors on distributed-memory machines, or when to synchronize processors on shared-memory machines. HPF is designed in a way that allows the programmer to code an application at a high level, and then selectively optimize portions of the code by dropping into message-passing or calling tuned library routines as 'extrinsics'. Compilers supporting High Performance Fortran features first appeared in late 1994 and early 1995 from Applied Parallel Research (APR) Digital Equipment Corporation, and The Portland Group (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP/2 in April of 1996. Over the past two years, these implementations have shown steady improvement in terms of both features and performance. The performance of various hardware/ programming model (HPF and MPI (message passing interface)) combinations will be compared, based on latest NAS (NASA Advanced Supercomputing) Parallel Benchmark (NPB) results, thus providing a cross-machine and cross-model comparison. Specifically, HPF based NPB results will be compared with MPI based NPB results to provide perspective on performance currently obtainable using HPF versus MPI or versus hand-tuned implementations such as those supplied by the hardware vendors. In addition we would also present NPB (Version 1.0) performance results for the following systems: DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, and VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz) NEC SX-4/32, SGI/CRAY T3E, SGI Origin2000.
Parallel optimization algorithms and their implementation in VLSI design
NASA Technical Reports Server (NTRS)
Lee, G.; Feeley, J. J.
1991-01-01
Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.
A Data Type for Efficient Representation of Other Data Types
NASA Technical Reports Server (NTRS)
James, Mark
2008-01-01
A self-organizing, monomorphic data type denoted a sequence has been conceived to address certain concerns that arise in programming parallel computers. A sequence in the present sense can be regarded abstractly as a vector, set, bag, queue, or other construct. Heretofore, in programming a parallel computer, it has been necessary for the programmer to state explicitly, at the outset, what parts of the program and the underlying data structures must be represented in parallel form. Not only is this requirement not optimal from the perspective of implementation; it entails an additional requirement that the programmer have intimate understanding of the underlying parallel structure. The present sequence data type overcomes both the implementation and parallel structure obstacles. In so doing, the sequence data type provides unified means by which the programmer can represent a data structure for natural and automatic decomposition to a parallel computing architecture. Sequences exhibit the behavioral and structural characteristics of vectors, but the underlying representations are automatically synthesized from combinations of programmers advice and execution use metrics. Sequences can vary bidirectionally between sparseness and density, making them excellent choices for many kinds of algorithms. The novelty and benefit of this behavior lies in the fact that it can relieve programmers of the details of implementations. The creation of a sequence enables decoupling of a conceptual representation from an implementation. The underlying representation of a sequence is a hybrid of representations composed of vectors, linked lists, connected blocks, and hash tables. The internal structure of a sequence can automatically change from time to time on the basis of how it is being used. Those portions of a sequence where elements have not been added or removed can be as efficient as vectors. As elements are inserted and removed in a given portion, then different methods are utilized to provide both an access and memory strategy that is optimized for that portion and the use to which it is put.
Development of a flight software testing methodology
NASA Technical Reports Server (NTRS)
Mccluskey, E. J.; Andrews, D. M.
1985-01-01
The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.
Pteros: fast and easy to use open-source C++ library for molecular analysis.
Yesylevskyy, Semen O
2012-07-15
An open-source Pteros library for molecular modeling and analysis of molecular dynamics trajectories for C++ programming language is introduced. Pteros provides a number of routine analysis operations ranging from reading and writing trajectory files and geometry transformations to structural alignment and computation of nonbonded interaction energies. The library features asynchronous trajectory reading and parallel execution of several analysis routines, which greatly simplifies development of computationally intensive trajectory analysis algorithms. Pteros programming interface is very simple and intuitive while the source code is well documented and easily extendible. Pteros is available for free under open-source Artistic License from http://sourceforge.net/projects/pteros/. Copyright © 2012 Wiley Periodicals, Inc.
High performance computing and communications: Advancing the frontiers of information technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less
OSCAR API for Real-Time Low-Power Multicores and Its Performance on Multicores and SMP Servers
NASA Astrophysics Data System (ADS)
Kimura, Keiji; Mase, Masayoshi; Mikami, Hiroki; Miyamoto, Takamichi; Shirako, Jun; Kasahara, Hironori
OSCAR (Optimally Scheduled Advanced Multiprocessor) API has been designed for real-time embedded low-power multicores to generate parallel programs for various multicores from different vendors by using the OSCAR parallelizing compiler. The OSCAR API has been developed by Waseda University in collaboration with Fujitsu Laboratory, Hitachi, NEC, Panasonic, Renesas Technology, and Toshiba in an METI/NEDO project entitled "Multicore Technology for Realtime Consumer Electronics." By using the OSCAR API as an interface between the OSCAR compiler and backend compilers, the OSCAR compiler enables hierarchical multigrain parallel processing with memory optimization under capacity restriction for cache memory, local memory, distributed shared memory, and on-chip/off-chip shared memory; data transfer using a DMA controller; and power reduction control using DVFS (Dynamic Voltage and Frequency Scaling), clock gating, and power gating for various embedded multicores. In addition, a parallelized program automatically generated by the OSCAR compiler with OSCAR API can be compiled by the ordinary OpenMP compilers since the OSCAR API is designed on a subset of the OpenMP. This paper describes the OSCAR API and its compatibility with the OSCAR compiler by showing code examples. Performance evaluations of the OSCAR compiler and the OSCAR API are carried out using an IBM Power5+ workstation, an IBM Power6 high-end SMP server, and a newly developed consumer electronics multicore chip RP2 by Renesas, Hitachi and Waseda. From the results of scalability evaluation, it is found that on an average, the OSCAR compiler with the OSCAR API can exploit 5.8 times speedup over the sequential execution on the Power5+ workstation with eight cores and 2.9 times speedup on RP2 with four cores, respectively. In addition, the OSCAR compiler can accelerate an IBM XL Fortran compiler up to 3.3 times on the Power6 SMP server. Due to low-power optimization on RP2, the OSCAR compiler with the OSCAR API achieves a maximum power reduction of 84% in the real-time execution mode.
A parallel solver for huge dense linear systems
NASA Astrophysics Data System (ADS)
Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.
2011-11-01
HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.
Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2011-07-20
This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. Themore » UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines - Data parallelism, Task parallelism, Visualization parallelism; (2) Optimized parallel input/output (I/O); (3) Remote interactive execution; (4) Advanced intercomparison visualization; (5) Data provenance processing and capture; and (6) Interfaces for scientists - Workflow data analysis and visualization construction tools, and Visualization interfaces.« less
Transferring ecosystem simulation codes to supercomputers
NASA Technical Reports Server (NTRS)
Skiles, J. W.; Schulbach, C. H.
1995-01-01
Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster.
NASA Technical Reports Server (NTRS)
Long, Junsheng
1994-01-01
This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.
Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2013-01-01
With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less
Unobtrusive Software and System Health Management with R2U2 on a Parallel MIMD Coprocessor
NASA Technical Reports Server (NTRS)
Schumann, Johann; Moosbrugger, Patrick
2017-01-01
Dynamic monitoring of software and system health of a complex cyber-physical system requires observers that continuously monitor variables of the embedded software in order to detect anomalies and reason about root causes. There exists a variety of techniques for code instrumentation, but instrumentation might change runtime behavior and could require costly software re-certification. In this paper, we present R2U2E, a novel realization of our real-time, Realizable, Responsive, and Unobtrusive Unit (R2U2). The R2U2E observers are executed in parallel on a dedicated 16-core EPIPHANY co-processor, thereby avoiding additional computational overhead to the system under observation. A DMA-based shared memory access architecture allows R2U2E to operate without any code instrumentation or program interference.
NASA Astrophysics Data System (ADS)
Hayashi, Akihiro; Wada, Yasutaka; Watanabe, Takeshi; Sekiguchi, Takeshi; Mase, Masayoshi; Shirako, Jun; Kimura, Keiji; Kasahara, Hironori
Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.
A path-level exact parallelization strategy for sequential simulation
NASA Astrophysics Data System (ADS)
Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.
2018-01-01
Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... Mississippi Department of Environmental Quality (MDEQ), on July 13, 2012, for parallel processing. This... of Contents I. What is parallel processing? II. Background III. What elements are required under... Executive Order Reviews I. What is parallel processing? Consistent with EPA regulations found at 40 CFR Part...
Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Michalik, Kazimierz
2016-10-01
Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-05-28
Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-01-01
Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045
Decaf: Decoupled Dataflows for In Situ High-Performance Workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreher, M.; Peterka, T.
Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steeringmore » based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M.
Distributing an executable job load file to compute nodes in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: determining, by a compute node in the parallel computer, whether the compute node is participating in a job; determining, by the compute node in the parallel computer, whether a descendant compute node is participating in the job; responsive to determining that the compute node is participating in the job or that the descendant compute node is participating in the job, communicating, by the compute node to a parent compute node, an identification of a data communications linkmore » over which the compute node receives data from the parent compute node; constructing a class route for the job, wherein the class route identifies all compute nodes participating in the job; and broadcasting the executable load file for the job along the class route for the job.« less
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-01-10
Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda E [Cambridge, MA; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.
On extending parallelism to serial simulators
NASA Technical Reports Server (NTRS)
Nicol, David; Heidelberger, Philip
1994-01-01
This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.
Parallelization of a blind deconvolution algorithm
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
NASA Technical Reports Server (NTRS)
Shapiro, Linda G.; Tanimoto, Steven L.; Ahrens, James P.
1996-01-01
The goal of this task was to create a design and prototype implementation of a database environment that is particular suited for handling the image, vision and scientific data associated with the NASA's EOC Amazon project. The focus was on a data model and query facilities that are designed to execute efficiently on parallel computers. A key feature of the environment is an interface which allows a scientist to specify high-level directives about how query execution should occur.
Declarative language design for interactive visualization.
Heer, Jeffrey; Bostock, Michael
2010-01-01
We investigate the design of declarative, domain-specific languages for constructing interactive visualizations. By separating specification from execution, declarative languages can simplify development, enable unobtrusive optimization, and support retargeting across platforms. We describe the design of the Protovis specification language and its implementation within an object-oriented, statically-typed programming language (Java). We demonstrate how to support rich visualizations without requiring a toolkit-specific data model and extend Protovis to enable declarative specification of animated transitions. To support cross-platform deployment, we introduce rendering and event-handling infrastructures decoupled from the runtime platform, letting designers retarget visualization specifications (e.g., from desktop to mobile phone) with reduced effort. We also explore optimizations such as runtime compilation of visualization specifications, parallelized execution, and hardware-accelerated rendering. We present benchmark studies measuring the performance gains provided by these optimizations and compare performance to existing Java-based visualization tools, demonstrating scalability improvements exceeding an order of magnitude.
A genetic algorithm-based job scheduling model for big data analytics.
Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei
Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.
Real-time stereo matching using orthogonal reliability-based dynamic programming.
Gong, Minglun; Yang, Yee-Hong
2007-03-01
A novel algorithm is presented in this paper for estimating reliable stereo matches in real time. Based on the dynamic programming-based technique we previously proposed, the new algorithm can generate semi-dense disparity maps using as few as two dynamic programming passes. The iterative best path tracing process used in traditional dynamic programming is replaced by a local minimum searching process, making the algorithm suitable for parallel execution. Most computations are implemented on programmable graphics hardware, which improves the processing speed and makes real-time estimation possible. The experiments on the four new Middlebury stereo datasets show that, on an ATI Radeon X800 card, the presented algorithm can produce reliable matches for 60% approximately 80% of pixels at the rate of 10 approximately 20 frames per second. If needed, the algorithm can be configured for generating full density disparity maps.
Parallel processing and expert systems
NASA Technical Reports Server (NTRS)
Lau, Sonie; Yan, Jerry C.
1991-01-01
Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited.
Bonsai: an event-based framework for processing and controlling data streams
Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.
2015-01-01
The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861
Efficient implementation of real-time programs under the VAX/VMS operating system
NASA Technical Reports Server (NTRS)
Johnson, S. C.
1985-01-01
Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.
Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K
2010-01-01
An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG Executive System has been developed for the Univac 1100 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. The unique feature of the DIALOG Executive System is the manner in which computer programs are linked. Each program maintains its individual identity and as such is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG Executive System. The installation and use of the DIALOG Executive System are described at Johnson Space Center.
Prefetching in file systems for MIMD multiprocessors
NASA Technical Reports Server (NTRS)
Kotz, David F.; Ellis, Carla Schlatter
1990-01-01
The question of whether prefetching blocks on the file into the block cache can effectively reduce overall execution time of a parallel computation, even under favorable assumptions, is considered. Experiments have been conducted with an interleaved file system testbed on the Butterfly Plus multiprocessor. Results of these experiments suggest that (1) the hit ratio, the accepted measure in traditional caching studies, may not be an adequate measure of performance when the workload consists of parallel computations and parallel file access patterns, (2) caching with prefetching can significantly improve the hit ratio and the average time to perform an I/O (input/output) operation, and (3) an improvement in overall execution time has been observed in most cases. In spite of these gains, prefetching sometimes results in increased execution times (a negative result, given the optimistic nature of the study). The authors explore why it is not trivial to translate savings on individual I/O requests into consistently better overall performance and identify the key problems that need to be addressed in order to improve the potential of prefetching techniques in the environment.
Satellite power systems (SPS) concept definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
System definition studies resulted in a further definition of the reference system using gallium arsenide solar arrays, analysis of alternative subsystem options for the reference concept, preliminary solid state microwave concept studies, and an environmental analysis of laser transmission systems. The special emphasis studies concentrated on satellite construction, satellite construction base definition, satellite construction base construction, and rectenna construction. Major emphasis in the transportation studies was put on definition of a two stage parallel burn, vertical takeoff/horizontal landing concept. The electric orbit transfer vehicle was defined in greater detail. Program definition included cost analyses and schedule definition.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG executive system was developed for the CDC 6000 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. Each computer program maintains its individual identity and is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG executive system. The installation and uses of the DIALOG executive system are described.
A cost-effective methodology for the design of massively-parallel VLSI functional units
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Sriram, G.; Desouza, J.
1993-01-01
In this paper we propose a generalized methodology for the design of cost-effective massively-parallel VLSI Functional Units. This methodology is based on a technique of generating and reducing a massive bit-array on the mask-programmable PAcube VLSI array. This methodology unifies (maintains identical data flow and control) the execution of complex arithmetic functions on PAcube arrays. It is highly regular, expandable and uniform with respect to problem-size and wordlength, thereby reducing the communication complexity. The memory-functional unit interface is regular and expandable. Using this technique functional units of dedicated processors can be mask-programmed on the naked PAcube arrays, reducing the turn-around time. The production cost of such dedicated processors can be drastically reduced since the naked PAcube arrays can be mass-produced. Analysis of the the performance of functional units designed by our method yields promising results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J
We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs andmore » coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.« less
Empirical study of parallel LRU simulation algorithms
NASA Technical Reports Server (NTRS)
Carr, Eric; Nicol, David M.
1994-01-01
This paper reports on the performance of five parallel algorithms for simulating a fully associative cache operating under the LRU (Least-Recently-Used) replacement policy. Three of the algorithms are SIMD, and are implemented on the MasPar MP-2 architecture. Two other algorithms are parallelizations of an efficient serial algorithm on the Intel Paragon. One SIMD algorithm is quite simple, but its cost is linear in the cache size. The two other SIMD algorithm are more complex, but have costs that are independent on the cache size. Both the second and third SIMD algorithms compute all stack distances; the second SIMD algorithm is completely general, whereas the third SIMD algorithm presumes and takes advantage of bounds on the range of reference tags. Both MIMD algorithm implemented on the Paragon are general and compute all stack distances; they differ in one step that may affect their respective scalability. We assess the strengths and weaknesses of these algorithms as a function of problem size and characteristics, and compare their performance on traces derived from execution of three SPEC benchmark programs.
PROTO-PLASM: parallel language for adaptive and scalable modelling of biosystems.
Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto
2008-09-13
This paper discusses the design goals and the first developments of PROTO-PLASM, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the PROTO-PLASM platform is still in its infancy. Its computational framework--language, model library, integrated development environment and parallel engine--intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. PROTO-PLASM may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a PROTO-PLASM program. Here we exemplify the basic functionalities of PROTO-PLASM, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions.
Proto-Plasm: parallel language for adaptive and scalable modelling of biosystems
Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto
2008-01-01
This paper discusses the design goals and the first developments of Proto-Plasm, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the Proto-Plasm platform is still in its infancy. Its computational framework—language, model library, integrated development environment and parallel engine—intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. Proto-Plasm may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a Proto-Plasm program. Here we exemplify the basic functionalities of Proto-Plasm, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions. PMID:18559320
Run-time parallelization and scheduling of loops
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug
1988-01-01
The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.
Scalable and portable visualization of large atomistic datasets
NASA Astrophysics Data System (ADS)
Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2004-10-01
A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data minimization, and levels-of-detail for minimal rendering Restrictions on the complexity of the problem: None Typical running time: The program is interactive in its execution Unusual features of the program: None References: The conceptual foundation and subsequent implementation of the algorithms are found in [A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Presence—Teleoperators and Virtual Environments 12 (1) (2003)].
Performing a global barrier operation in a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2014-12-09
Executing computing tasks on a parallel computer that includes compute nodes coupled for data communications, where each compute node executes tasks, with one task on each compute node designated as a master task, including: for each task on each compute node until all master tasks have joined a global barrier: determining whether the task is a master task; if the task is not a master task, joining a single local barrier; if the task is a master task, joining the global barrier and the single local barrier only after all other tasks on the compute node have joined the single local barrier.
NASA Astrophysics Data System (ADS)
Roche-Lima, Abiel; Thulasiram, Ruppa K.
2012-02-01
Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, John C.
1987-01-01
Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed.
NASA Technical Reports Server (NTRS)
Saltsman, James F.
1992-01-01
This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila
Seeds, Andrew M; Ravbar, Primoz; Chung, Phuong; Hampel, Stefanie; Midgley, Frank M; Mensh, Brett D; Simpson, Julie H
2014-01-01
Motor sequences are formed through the serial execution of different movements, but how nervous systems implement this process remains largely unknown. We determined the organizational principles governing how dirty fruit flies groom their bodies with sequential movements. Using genetically targeted activation of neural subsets, we drove distinct motor programs that clean individual body parts. This enabled competition experiments revealing that the motor programs are organized into a suppression hierarchy; motor programs that occur first suppress those that occur later. Cleaning one body part reduces the sensory drive to its motor program, which relieves suppression of the next movement, allowing the grooming sequence to progress down the hierarchy. A model featuring independently evoked cleaning movements activated in parallel, but selected serially through hierarchical suppression, was successful in reproducing the grooming sequence. This provides the first example of an innate motor sequence implemented by the prevailing model for generating human action sequences. DOI: http://dx.doi.org/10.7554/eLife.02951.001 PMID:25139955
Task-Based Neurofeedback Training: A Novel Approach Toward Training Executive Functions
Hosseini, SM Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R.
2016-01-01
Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100 minutes total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. PMID:27015711
NASA Astrophysics Data System (ADS)
Xue, Xinwei; Cheryauka, Arvi; Tubbs, David
2006-03-01
CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.
Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi
2014-07-01
Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
A Systems Approach to Scalable Transportation Network Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2006-01-01
Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less
Graphical Representation of Parallel Algorithmic Processes
1990-12-01
interface with the AAARF main process . The source code for the AAARF class-common library is in the common subdi- rectory and consists of the following files... for public release; distribution unlimited AFIT/GCE/ENG/90D-07 Graphical Representation of Parallel Algorithmic Processes THESIS Presented to the...goal of this study is to develop an algorithm animation facility for parallel processes executing on different architectures, from multiprocessor
Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo
2014-01-01
Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957
SIERRA - A 3-D device simulator for reliability modeling
NASA Astrophysics Data System (ADS)
Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.
1989-05-01
SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
Augmenting The HST Pure Parallel Observations
NASA Astrophysics Data System (ADS)
Patterson, Alan; Soutchkova, G.; Workman, W.
2012-05-01
Pure Parallel (PP) programs, designated GO/PAR, are a subgroup of General Observer (GO) programs. PP execute simultaneously with prime GO observations to which they are "attached". The PP observations can be performed with ACS/WFC, WFC3/UVIS or WFC3/IR and can be attached only to GO visits in which the instruments are either COS or STIS. The current HST Parallel Observation Processing System (POPS) was introduced after the Servicing Mission 4. It increased the HST productivity by 10% in terms of the utilization of HST prime orbits and was highly appreciated by the HST observers, allowing them to design efficient, multi-orbit survey projects for collecting large amounts of data on identifiable targets. The results of the WFC3 Infrared Spectroscopic Parallel Survey (WISP), Hubble Infrared Pure Parallel Imaging Extragalactic Survey (HIPPIES), and The Brightest-of-Reionizing Galaxies Pure Parallel Survey (BoRG) exemplify this benefit. In Cycle 19, however, the full advantage of GO/PARs came under risk. Whereas each of the previous cycles provided over one million seconds of exposure time for PP, in Cycle 19 that number reduced to 680,000 seconds. This dramatic decline occurred because of fundamental changes in the construction of COS prime observations. To preserve the science output of PP, the PP Working Group was tasked to find a way to recover the lost time and maximize the total time available for PP observing. The solution was to expand the definition of a PP opportunity to allow PP exposures to span one or more primary exposure readouts. So starting in HST Cycle 20, PP opportunities will no longer be limited to GO visits with a single uninterrupted exposure in an orbit. The resulting enhancements in HST Cycle 20 to the PP opportunity identification and matching process are expected to restore the PP time to previously achieved and possibly even greater levels.
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.
Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J
2012-01-01
MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com
PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules
NASA Astrophysics Data System (ADS)
Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.
2018-03-01
The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadayappan, Ponnuswamy
Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less
2017-03-30
and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) Chad P. Stocker March 30, 2017 Submitted to...to Defense Acquisition University in partial fulfillment of the requirement of the Senior Service College Fellowship CREDIBLE LEADERSHIP AT PEO...of Credible Leadership at Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appavoo, Jonathan
Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focusedmore » on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.« less
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek
2017-04-01
There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.
GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.
Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim
2016-08-01
In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.
Parallel Execution of Functional Mock-up Units in Buildings Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J.; New, Joshua Ryan
2016-06-30
A Functional Mock-up Interface (FMI) defines a standardized interface to be used in computer simulations to develop complex cyber-physical systems. FMI implementation by a software modeling tool enables the creation of a simulation model that can be interconnected, or the creation of a software library called a Functional Mock-up Unit (FMU). This report describes an FMU wrapper implementation that imports FMUs into a C++ environment and uses an Euler solver that executes FMUs in parallel using Open Multi-Processing (OpenMP). The purpose of this report is to elucidate the runtime performance of the solver when a multi-component system is imported asmore » a single FMU (for the whole system) or as multiple FMUs (for different groups of components as sub-systems). This performance comparison is conducted using two test cases: (1) a simple, multi-tank problem; and (2) a more realistic use case based on the Modelica Buildings Library. In both test cases, the performance gains are promising when each FMU consists of a large number of states and state events that are wrapped in a single FMU. Load balancing is demonstrated to be a critical factor in speeding up parallel execution of multiple FMUs.« less
ERIC Educational Resources Information Center
Lundquist, Carol; Frieder, Ophir; Holmes, David O.; Grossman, David
1999-01-01
Describes a scalable, parallel, relational database-drive information retrieval engine. To support portability across a wide range of execution environments, all algorithms adhere to the SQL-92 standard. By incorporating relevance feedback algorithms, accuracy is enhanced over prior database-driven information retrieval efforts. Presents…
The Tera Multithreaded Architecture and Unstructured Meshes
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Mavriplis, Dimitri J.
1998-01-01
The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.
Accessing sparse arrays in parallel memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, U.; Gajski, D.; Kuck, D.
The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less
Fast quantum Monte Carlo on a GPU
NASA Astrophysics Data System (ADS)
Lutsyshyn, Y.
2015-02-01
We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.
Application of an onboard processor to the OAO C spacecraft
NASA Technical Reports Server (NTRS)
Stewart, W. N.; Hartenstein, R. G.; Trevathan, C.
1972-01-01
The design of a stored program computer for spacecraft use and its application on the fourth Orbiting Astronomical Observatory (OAO) is reported. The computer is a medium scale, parallel machine with a memory capacity of 16384 words of 18 bits each. It possesses a comprehensive instruction repertoire and operates on 45 W of power (including the dc-to-dc converter). The machine operates at a 500-kHz rate and executes an add instruction in 10 microseconds. Its primary functions on OAO C will be auxiliary command storage, spacecraft monitoring and malfunction reporting, data compression and status summary, and possible performance of emergency corrective action for certain anomalous situations.
Software environment for implementing engineering applications on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K. A.; Schiff, S.
1990-01-01
In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.
Scaling Optimization of the SIESTA MHD Code
NASA Astrophysics Data System (ADS)
Seal, Sudip; Hirshman, Steven; Perumalla, Kalyan
2013-10-01
SIESTA is a parallel three-dimensional plasma equilibrium code capable of resolving magnetic islands at high spatial resolutions for toroidal plasmas. Originally designed to exploit small-scale parallelism, SIESTA has now been scaled to execute efficiently over several thousands of processors P. This scaling improvement was accomplished with minimal intrusion to the execution flow of the original version. First, the efficiency of the iterative solutions was improved by integrating the parallel tridiagonal block solver code BCYCLIC. Krylov-space generation in GMRES was then accelerated using a customized parallel matrix-vector multiplication algorithm. Novel parallel Hessian generation algorithms were integrated and memory access latencies were dramatically reduced through loop nest optimizations and data layout rearrangement. These optimizations sped up equilibria calculations by factors of 30-50. It is possible to compute solutions with granularity N/P near unity on extremely fine radial meshes (N > 1024 points). Grid separation in SIESTA, which manifests itself primarily in the resonant components of the pressure far from rational surfaces, is strongly suppressed by finer meshes. Large problem sizes of up to 300 K simultaneous non-linear coupled equations have been solved on the NERSC supercomputers. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Reducing False Positives in Runtime Analysis of Deadlocks
NASA Technical Reports Server (NTRS)
Bensalem, Saddek; Havelund, Klaus; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents an improvement of a standard algorithm for detecting dead-lock potentials in multi-threaded programs, in that it reduces the number of false positives. The standard algorithm works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The typical standard example is the group of dining philosophers sharing forks. The algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast t o more formal approaches to deadlock detection. The algorithm, however, can yield false positives (as well as false negatives). The extension of the algorithm described in this paper reduces the amount of false positives for three particular cases: when a gate lock protects a cycle, when a single thread introduces a cycle, and when the code segments in different threads that cause the cycle can actually not execute in parallel. The paper formalizes a theory for dynamic deadlock detection and compares it to model checking and static analysis techniques. It furthermore describes an implementation for analyzing Java programs and its application to two case studies: a planetary rover and a space craft altitude control system.
A sweep algorithm for massively parallel simulation of circuit-switched networks
NASA Technical Reports Server (NTRS)
Gaujal, Bruno; Greenberg, Albert G.; Nicol, David M.
1992-01-01
A new massively parallel algorithm is presented for simulating large asymmetric circuit-switched networks, controlled by a randomized-routing policy that includes trunk-reservation. A single instruction multiple data (SIMD) implementation is described, and corresponding experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruction multiple data (MIMD) implementation is also described, and corresponding experiments on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting parallelism, our algorithm increases the possible execution rate of such complex simulations by as much as an order of magnitude.
Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds
NASA Astrophysics Data System (ADS)
Li, Rui; Chen, Lei; Li, Wen-Syan
Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro
2012-10-15
There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.
Dependability analysis of parallel systems using a simulation-based approach. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sawyer, Darren Charles
1994-01-01
The analysis of dependability in large, complex, parallel systems executing real applications or workloads is examined in this thesis. To effectively demonstrate the wide range of dependability problems that can be analyzed through simulation, the analysis of three case studies is presented. For each case, the organization of the simulation model used is outlined, and the results from simulated fault injection experiments are explained, showing the usefulness of this method in dependability modeling of large parallel systems. The simulation models are constructed using DEPEND and C++. Where possible, methods to increase dependability are derived from the experimental results. Another interesting facet of all three cases is the presence of some kind of workload of application executing in the simulation while faults are injected. This provides a completely new dimension to this type of study, not possible to model accurately with analytical approaches.
Potential Application of a Graphical Processing Unit to Parallel Computations in the NUBEAM Code
NASA Astrophysics Data System (ADS)
Payne, J.; McCune, D.; Prater, R.
2010-11-01
NUBEAM is a comprehensive computational Monte Carlo based model for neutral beam injection (NBI) in tokamaks. NUBEAM computes NBI-relevant profiles in tokamak plasmas by tracking the deposition and the slowing of fast ions. At the core of NUBEAM are vector calculations used to track fast ions. These calculations have recently been parallelized to run on MPI clusters. However, cost and interlink bandwidth limit the ability to fully parallelize NUBEAM on an MPI cluster. Recent implementation of double precision capabilities for Graphical Processing Units (GPUs) presents a cost effective and high performance alternative or complement to MPI computation. Commercially available graphics cards can achieve up to 672 GFLOPS double precision and can handle hundreds of thousands of threads. The ability to execute at least one thread per particle simultaneously could significantly reduce the execution time and the statistical noise of NUBEAM. Progress on implementation on a GPU will be presented.
Parallel file system with metadata distributed across partitioned key-value store c
Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron
2017-09-19
Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).
The procedure execution manager and its application to Advanced Photon Source operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.
1997-06-01
The Procedure Execution Manager (PEM) combines a complete scripting environment for coding accelerator operation procedures with a manager application for executing and monitoring the procedures. PEM is based on Tcl/Tk, a supporting widget library, and the dp-tcl extension for distributed processing. The scripting environment provides support for distributed, parallel execution of procedures along with join and abort operations. Nesting of procedures is supported, permitting the same code to run as a top-level procedure under operator control or as a subroutine under control of another procedure. The manager application allows an operator to execute one or more procedures in automatic, semi-automatic,more » or manual modes. It also provides a standard way for operators to interact with procedures. A number of successful applications of PEM to accelerator operations have been made to date. These include start-up, shutdown, and other control of the positron accumulator ring (PAR), low-energy transport (LET) lines, and the booster rf systems. The PAR/LET procedures make nested use of PEM`s ability to run parallel procedures. There are also a number of procedures to guide and assist tune-up operations, to make accelerator physics measurements, and to diagnose equipment. Because of the success of the existing procedures, expanded use of PEM is planned.« less
Accelerating next generation sequencing data analysis with system level optimizations.
Kathiresan, Nagarajan; Temanni, Ramzi; Almabrazi, Hakeem; Syed, Najeeb; Jithesh, Puthen V; Al-Ali, Rashid
2017-08-22
Next generation sequencing (NGS) data analysis is highly compute intensive. In-memory computing, vectorization, bulk data transfer, CPU frequency scaling are some of the hardware features in the modern computing architectures. To get the best execution time and utilize these hardware features, it is necessary to tune the system level parameters before running the application. We studied the GATK-HaplotypeCaller which is part of common NGS workflows, that consume more than 43% of the total execution time. Multiple GATK 3.x versions were benchmarked and the execution time of HaplotypeCaller was optimized by various system level parameters which included: (i) tuning the parallel garbage collection and kernel shared memory to simulate in-memory computing, (ii) architecture-specific tuning in the PairHMM library for vectorization, (iii) including Java 1.8 features through GATK source code compilation and building a runtime environment for parallel sorting and bulk data transfer (iv) the default 'on-demand' mode of CPU frequency is over-clocked by using 'performance-mode' to accelerate the Java multi-threads. As a result, the HaplotypeCaller execution time was reduced by 82.66% in GATK 3.3 and 42.61% in GATK 3.7. Overall, the execution time of NGS pipeline was reduced to 70.60% and 34.14% for GATK 3.3 and GATK 3.7 respectively.
Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms
NASA Astrophysics Data System (ADS)
Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel
2016-04-01
Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and Diamantaras, K.: 'Programming and architecture of parallel processing systems', 1st Edition, Eds. Kleidarithmos, 2011 [4] NVIDIA.: 'NVidia CUDA C Programming Guide', version 5.0, NVidia (reference book) [5] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6 (4), pp. 1857-1863, 2013 [6] Konstantaras, A. Varley, M.R.,. Valianatos, F., Collins, G. and Holifield, P.: 'Recognition of electric earthquake precursors using neuro-fuzzy models: methodology and simulation results', Proc. IASTED International Conference on Signal Processing Pattern Recognition and Applications (SPPRA 2002), Crete, Greece, 2002, pp 303-308, 2002 [7] Konstantaras, A., Katsifarakis, E., Maravelakis, E., Skounakis, E., Kokkinos, E. and Karapidakis, E.: 'Intelligent Spatial-Clustering of Seismicity in the Vicinity of the Hellenic Seismic Arc', Earth Science Research, vol. 1 (2), pp. 1-10, 2012 [8] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C.D., Maravelakis, E. and Vachtsevanos, G.: '"Seismic-Mass" Density-based Algorithm for Spatio-Temporal Clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [9] Konstantaras, A. J.: 'Expert knowledge-based algorithm for the dynamic discrimination of interactive natural clusters', Earth Science Informatics, 2015 (In Press, see: www.scopus.com) [10] Drakatos, G. and Latoussakis, J.: 'A catalog of aftershock sequences in Greece (1971-1997): Their spatial and temporal characteristics', Journal of Seismology, vol. 5, pp. 137-145, 2001
Parallelization and checkpointing of GPU applications through program transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano-Quinde, Lizandro Damian
2012-01-01
GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solvemore » the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. To achieve our goal, this work designs and implements a framework for enhancing a single-GPU OpenCL application through application transformation.« less
Task-based neurofeedback training: A novel approach toward training executive functions.
Hosseini, S M Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R
2016-07-01
Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100min total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. Copyright © 2016 Elsevier Inc. All rights reserved.
Resource-Aware Mobile-Based Health Monitoring.
Masud, Mohammad M; Adel Serhani, Mohamed; Navaz, Alramzana Nujum
2017-03-01
Monitoring heart diseases often requires frequent measurements of electrocardiogram (ECG) signals at different periods of the day, and at different situations (e.g., traveling, and exercising). This can only be implemented using mobile devices in order to cope with mobility of patients under monitoring, thus supporting continuous monitoring practices. However, these devices are energy-aware, have limited computing resources (e.g., CPU speed and memory), and might lose network connectivity, which makes it very challenging to maintain a continuity of the monitoring episode. In this paper, we propose a mobile monitoring solution to cope with these challenges by compromising on the fly resources availability, battery level, and network intermittence. In order to solve this problem, first we divide the whole process into several subtasks such that each subtask can be executed sequentially either in the server or in the mobile or in parallel in both devices. Then, we developed a mathematical model that considers all the constraints and finds a dynamic programing solution to obtain the best execution path (i.e., which substep should be done where). The solution guarantees an optimum execution time, while considering device battery availability, execution and transmission time, and network availability. We conducted a series of experiments to evaluate our proposed approach using some key monitoring tasks starting from preprocessing to classification and prediction. The results we have obtained proved that our approach gives the best (lowest) running time for any combination of factors including processing speed, input size, and network bandwidth. Compared to several greedy but nonoptimal solutions, the execution time of our approach was at least 10 times faster and consumed 90% less energy.
NASA Technical Reports Server (NTRS)
1988-01-01
Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.
A Parallel Vector Machine for the PM Programming Language
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2016-04-01
PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.
Towards Energy-Performance Trade-off Analysis of Parallel Applications
ERIC Educational Resources Information Center
Korthikanti, Vijay Anand Reddy
2011-01-01
Energy consumption by computer systems has emerged as an important concern, both at the level of individual devices (limited battery capacity in mobile systems) and at the societal level (the production of Green House Gases). In parallel architectures, applications may be executed on a variable number of cores and these cores may operate at…
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
Multitasking scheduler works without OS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, D.M.
1982-09-15
Z80 control applications requiring parallel execution of multiple software tasks can use the executive routine described and listed in this article when multitasking is not available via an operating system (OS). Although the routine is not as capable or as transparent to software as the multitasking in a full-scale OS, it is simple to understand and use.
Data Acquisition with GPUs: The DAQ for the Muon $g$-$2$ Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohn, W.
Graphical Processing Units (GPUs) have recently become a valuable computing tool for the acquisition of data at high rates and for a relatively low cost. The devices work by parallelizing the code into thousands of threads, each executing a simple process, such as identifying pulses from a waveform digitizer. The CUDA programming library can be used to effectively write code to parallelize such tasks on Nvidia GPUs, providing a significant upgrade in performance over CPU based acquisition systems. The muonmore » $g$-$2$ experiment at Fermilab is heavily relying on GPUs to process its data. The data acquisition system for this experiment must have the ability to create deadtime-free records from 700 $$\\mu$$s muon spills at a raw data rate 18 GB per second. Data will be collected using 1296 channels of $$\\mu$$TCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording of the muon decays during the spill. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less
The mathematical statement for the solving of the problem of N-version software system design
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.
2015-10-01
The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors
NASA Astrophysics Data System (ADS)
Yi, Hongsuk
2014-03-01
Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992
The Demand and Supply of University-Based Executive Education. GMAC Occasional Papers.
ERIC Educational Resources Information Center
Johnson, Terry R.; And Others
The results of a study of the market for university-based education programs for executives and managers is presented. Study objectives were to profile corporate use of various executive and management education programs, profile characteristics of university-based executive education programs currently offered, and identify trends and unmet needs…
NASA Technical Reports Server (NTRS)
Hu, Chaumin
2007-01-01
IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.
Model-Based Systems Engineering in the Execution of Search and Rescue Operations
2015-09-01
OSC can fulfill the duties of an ACO but it may make sense to split the duties if there are no communication links between the OSC and participating...parallel mode. This mode is the most powerful option because it 35 creates sequence diagrams that generate parallel “ swim lanes” for each asset...greater flexibility is desired, sequence mode generates diagrams based purely on sequential action and activity diagrams without the parallel “ swim lanes
Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations
NASA Astrophysics Data System (ADS)
Husa, Sascha; Hinder, Ian; Lechner, Christiane
2006-06-01
We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus
Lalloo, Umesh G.; Bobat, Raziya A.; Pillay, Sandy; Wassenaar, Douglas
2014-01-01
A key challenge in addressing the shortage of health care workers in resource-constrained environments is ensuring that there is optimal academic capacity for their training. South Africa’s University of KwaZulu-Natal has placed academic and research capacity building at the heart of its program with the Medical Education Partnership Initiative (MEPI) in a program called ENhancing Training, REsearch Capacity, and Expertise (ENTREE). The program is premised on the basis that research capacity development will lead to an increase in teachers who will be essential to improving the quality and quantity of health care workers needed to meet South Africa’s health challenges. This is being achieved through four components of the program: (1) infusion of the undergraduate program with research modules; (2) attraction of academically talented students in the middle of their undergraduate program into a parallel track that has research capacity as its major thrust; (3) attraction of qualified health care personnel into a supported PhD program; and (4) providing strong research ethics training and mentorship. A significant proportion of the program is being executed in rural training sites, to increase the probability that trainees will return to the sites as mentors. PMID:25072580
Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.
The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup duemore » to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. Lastly, when the execution times for events are allowed to vary, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration.« less
Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport
Romano, Paul K.; Siegel, Andrew R.
2017-07-01
The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup duemore » to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. Lastly, when the execution times for events are allowed to vary, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration.« less
NASA Astrophysics Data System (ADS)
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-01
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0…tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.
Evolution of CMS workload management towards multicore job support
NASA Astrophysics Data System (ADS)
Pérez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.; Letts, J.; Majewski, K.; Rodrigues, A. M.; McCrea, A.; Vaandering, E.
2015-12-01
The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single and multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services
Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.
2012-01-01
Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385
Evolution of CMS Workload Management Towards Multicore Job Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.
The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single andmore » multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.« less
Mental object rotation and the planning of hand movements.
Wohlschläger, A
2001-05-01
Recently, we showed that the simultaneous execution of rotational hand movements interferes with mental object rotation, provided that the axes of rotation coincide in space. We hypothesized that mental object rotation and the programming of rotational hand movements share a common process presumably involved in action planning. Two experiments are reported here that show that the mere planning of a rotational hand movement is sufficient to cause interference with mental object rotation. Subjects had to plan different spatially directed hand movements that they were asked to execute only after they had solved a mental object rotation task. Experiment 1 showed that mental object rotation was slower if hand movements were planned in a direction opposite to the presumed mental rotation direction, but only if the axes of hand rotation and mental object rotation were parallel in space. Experiment 2 showed that this interference occurred independent of the preparatory hand movements observed in Experiment 1. Thus, it is the planning of hand movements and not their preparation or execution that interferes with mental object rotation. This finding underlines the idea that mental object rotation is an imagined (covert) action, rather than a pure visual-spatial imagery task, and that the interference between mental object rotation and rotational hand movements is an interference between goals of actions.
Belval, Richard; Alamir, Ab; Corte, Christopher; DiValentino, Justin; Fernandes, James; Frerking, Stuart; Jenkins, Derek; Rogers, George; Sanville-Ross, Mary; Sledziona, Cindy; Taylor, Paul
2012-12-01
Boehringer Ingelheim's Automated Liquids Processing System (ALPS) in Ridgefield, Connecticut, was built to accommodate all compound solution-based operations following dissolution in neat DMSO. Process analysis resulted in the design of two nearly identical conveyor-based subsystems, each capable of executing 1400 × 384-well plate or punch tube replicates per batch. Two parallel-positioned subsystems are capable of independent execution or alternatively executed as a unified system for more complex or higher throughput processes. Primary ALPS functions include creation of high-throughput screening plates, concentration-response plates, and reformatted master stock plates (e.g., 384-well plates from 96-well plates). Integrated operations included centrifugation, unsealing/piercing, broadcast diluent addition, barcode print/application, compound transfer/mix via disposable pipette tips, and plate sealing. ALPS key features included instrument pooling for increased capacity or fail-over situations, programming constructs to associate one source plate to an array of replicate plates, and stacked collation of completed plates. Due to the hygroscopic nature of DMSO, ALPS was designed to operate within a 10% relativity humidity environment. The activities described are the collaborative efforts that contributed to the specification, build, delivery, and acceptance testing between Boehringer Ingelheim Pharmaceuticals, Inc. and the automation integration vendor, Thermo Scientific Laboratory Automation (Burlington, ON, Canada).
5 CFR 412.302 - Criteria for a Senior Executive Service candidate development program (SESCDP).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Criteria for a Senior Executive Service... MANAGEMENT CIVIL SERVICE REGULATIONS SUPERVISORY, MANAGEMENT, AND EXECUTIVE DEVELOPMENT Senior Executive Service Candidate Development Programs § 412.302 Criteria for a Senior Executive Service candidate...
Delivering Savings with Open Architecture and Product Lines
2011-04-30
p.m. Chair: Christopher Deegan , Executive Director, Program Executive Office for Integrated Warfare Systems Delivering Savings with Open...Architectures Walt Scacchi and Thomas Alspaugh, Institute for Software Research Christopher Deegan —Executive Director, Program Executive Officer...Integrated Warfare Systems (PEO IWS). Mr. Deegan directs the development, acquisition, and fleet support of 150 combat weapon system programs managed by 350
A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.
Atomicity violation detection using access interleaving invariants
Zhou, Yuanyuan; Lu, Shan; Tucek, Joseph Andrew
2013-09-10
During execution of a program, the situation where the atomicity of a pair of instructions that are to be executed atomically is violated is identified, and a bug is detected as occurring in the program at the pair of instructions. The pairs of instructions that are to be executed atomically can be identified in different manners, such as by executing a program multiple times and using the results of those executions to automatically identify the pairs of instructions.
Effectiveness of Therapeutic Programs for Students with ADHD with Executive Function Deficits
ERIC Educational Resources Information Center
Chaimaha, Napalai; Sriphetcharawut, Sarinya; Lersilp, Suchitporn; Chinchai, Supaporn
2017-01-01
The purpose of this study was to investigate the effectiveness of therapeutic programs, an executive function training program and a collaborative program, for students with attention-deficit/hyperactivity disorder (ADHD) with executive function deficits (EFDs), especially regarding working memory, planning, and monitoring. The participants were…
GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF
NASA Astrophysics Data System (ADS)
Mielikainen, J.; Huang, B.; Huang, A.
2011-12-01
The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has multiple levels, which correspond to various vertical heights in the atmosphere. The size of the CONUS 12 km domain is 433 x 308 horizontal grid points with 35 vertical levels. First, the entire SBU-YLIN Fortran code was rewritten in C in preparation of GPU accelerated version. After that, C code was verified against Fortran code for identical outputs. Default compiler options from WRF were used for gfortran and gcc compilers. The processing time for the original Fortran code is 12274 ms and 12893 ms for C version. The processing times for GPU implementation of SBU-YLIN microphysics scheme with I/O are 57.7 ms and 37.2 ms for 1 and 2 GPUs, respectively. The corresponding speedups are 213x and 330x compared to a Fortran implementation. Without I/O the speedup is 896x on 1 GPU. Obviously, ignoring I/O time speedup scales linearly with GPUs. Thus, 2 GPUs have a speedup of 1788x without I/O. Microphysics computation is just a small part of the whole WRF model. After having completely implemented WRF on GPU, the inputs for SBU-YLIN do not have to be transferred from CPU. Instead they are results of previous WRF modules. Therefore, the role of I/O is greatly diminished once all of WRF have been converted to run on GPUs. In the near future, we expect to have a WRF running completely on GPUs for a superior performance.
Knowledge representation into Ada parallel processing
NASA Technical Reports Server (NTRS)
Masotto, Tom; Babikyan, Carol; Harper, Richard
1990-01-01
The Knowledge Representation into Ada Parallel Processing project is a joint NASA and Air Force funded project to demonstrate the execution of intelligent systems in Ada on the Charles Stark Draper Laboratory fault-tolerant parallel processor (FTPP). Two applications were demonstrated - a portion of the adaptive tactical navigator and a real time controller. Both systems are implemented as Activation Framework Objects on the Activation Framework intelligent scheduling mechanism developed by Worcester Polytechnic Institute. The implementations, results of performance analyses showing speedup due to parallelism and initial efficiency improvements are detailed and further areas for performance improvements are suggested.
A conservative approach to parallelizing the Sharks World simulation
NASA Technical Reports Server (NTRS)
Nicol, David M.; Riffe, Scott E.
1990-01-01
Parallelizing a benchmark problem for parallel simulation, the Sharks World, is described. The described solution is conservative, in the sense that no state information is saved, and no 'rollbacks' occur. The used approach illustrates both the principal advantage and principal disadvantage of conservative parallel simulation. The advantage is that by exploiting lookahead an approach was found that dramatically improves the serial execution time, and also achieves excellent speedups. The disadvantage is that if the model rules are changed in such a way that the lookahead is destroyed, it is difficult to modify the solution to accommodate the changes.
High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tafti, D.
1995-12-01
The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, D.; Carter, S.
In 1987, ISI's parallel distributed computing research group implemented a prototype sequential simulation system, designed for high-level simulation of candidate (Strategic Defense Initiative) architectures. A main design goal was to produce a simulation system that could incorporate non-trivial, executable representations of battle-management computations on each platform that were capable of controlling the actions of that platform throughout the simulation. The term BMA (battle manager abstraction) was used to refer to these simulated battle-management computations. In the authors first version of the simulator, the BMAs were C++ programs that we wrote and manually inserted into the system. Since then, they havemore » designed and implemented KMAC, a high-level language for writing BMA's. The KMAC preprocessor, built using the Unix tools lex 2 and YACC 3, translates KMAC source programs into C++ programs and passes them on to the C++ compiler. The KMAC preprocessor was incorporated into and operates under the control of the simulator's interactive user interface. After the KMAC preprocessor has translated a program into C++, the user interface system invokes the C++ compiler, and incorporates the resulting object code into the simulator load module for execution as part of a simulation run. This report describes the KMAC language and its preprocessor. Section 2 provides background material on the design of the simulation system that is necessary for understanding some of the parts of KMAC and some of the reasons it is structured the way it is. Section 3 describes the syntax and semantics of the language, and Section 4 discusses design of the preprocessor.« less
Parallel-vector out-of-core equation solver for computational mechanics
NASA Technical Reports Server (NTRS)
Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.
1993-01-01
A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.
A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation
2005-03-01
Metrics. 2.3.5.1 Amdahl’s, Gustafson-Barsis’s, and Sun-Ni’s Laws . At the heart of parallel computing is the ratio of communication time to...parallel execution. Three ‘ laws ’ in particular are of interest with regard to this ratio: Amdahl’s Law , the Gustafson-Barsis’s Law , and Sun-Ni’s Law ...Amdahl’s Law makes the case for fixed size speedup. This conjecture states that speedup saturates and efficiency drops as a consequence of holding the
Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit.
Frommholz, Ingo; Roelleke, Thomas
2016-01-01
Probabilistic Datalog (PDatalog, proposed in 1995) is a probabilistic variant of Datalog and a nice conceptual idea to model Information Retrieval in a logical, rule-based programming paradigm. Making PDatalog work in real-world applications requires more than probabilistic facts and rules, and the semantics associated with the evaluation of the programs. We report in this paper some of the key features of the HySpirit system required to scale the execution of PDatalog programs. Firstly, there is the requirement to express probability estimation in PDatalog. Secondly, fuzzy-like predicates are required to model vague predicates (e.g. vague match of attributes such as age or price). Thirdly, to handle large data sets there are scalability issues to be addressed, and therefore, HySpirit provides probabilistic relational indexes and parallel and distributed processing . The main contribution of this paper is a consolidated view on the methods of the HySpirit system to make PDatalog applicable in real-scale applications that involve a wide range of requirements typical for data (information) management and analysis.
Proceedings of the second SISAL users` conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, J T; Frerking, C; Miller, P J
1992-12-01
This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less
FEASIBILITY STUDY ON EXECUTIVE PROGRAM DEVELOPMENT FOR BASIN ECOSYSTEMS MODELING
The project was undertaken in order to provide a feasibility study in developing and implementing a complete executive program to interface automatically various basin-wide water quality models for use by relatively inexperienced modelers. This executive program should ultimately...
Generating performance portable geoscientific simulation code with Firedrake (Invited)
NASA Astrophysics Data System (ADS)
Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.
2013-12-01
This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations, can be written as short C kernels operating locally on the underlying mesh, with no explicit parallelism. The executable code is then generated in C, CUDA or OpenCL and executed in parallel on the target architecture. The system also offers features of special relevance to the geosciences. In particular, the large scale separation between the vertical and horizontal directions in many geoscientific processes can be exploited to offer the flexibility of unstructured meshes in the horizontal direction, without the performance penalty usually associated with those methods.
Applying graph partitioning methods in measurement-based dynamic load balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha
Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less
A software bus for thread objects
NASA Technical Reports Server (NTRS)
Callahan, John R.; Li, Dehuai
1995-01-01
The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.
Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Lauer, Frank
This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less
Performance Analysis of an Actor-Based Distributed Simulation
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1998-01-01
Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.
A molecular dynamics implementation of the 3D Mercedes-Benz water model
NASA Astrophysics Data System (ADS)
Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.
2012-02-01
The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for water molecules, velocity-Verlet integration, representation of molecules as rigid particles with rotations described using quaternion algebra. Restrictions: Memory and cpu time limit the size of simulations. Additional comments: Software web site: https://gitorious.org/cashew/. Running time: Depends on the size of system. The sample tests provided only take a few seconds.
Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems
NASA Technical Reports Server (NTRS)
Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.
2000-01-01
The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.
Cloud-based large-scale air traffic flow optimization
NASA Astrophysics Data System (ADS)
Cao, Yi
The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.
A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers
NASA Technical Reports Server (NTRS)
Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)
1997-01-01
The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.
NASA Astrophysics Data System (ADS)
Lohn, Stefan B.; Dong, Xin; Carminati, Federico
2012-12-01
Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
Software Assurance Challenges for the Commercial Crew Program
NASA Technical Reports Server (NTRS)
Cuyno, Patrick; Malnick, Kathy D.; Schaeffer, Chad E.
2015-01-01
This paper will provide a description of some of the challenges NASA is facing in providing software assurance within the new commercial space services paradigm, namely with the Commercial Crew Program (CCP). The CCP will establish safe, reliable, and affordable access to the International Space Station (ISS) by purchasing a ride from commercial companies. The CCP providers have varying experience with software development in safety-critical space systems. NASA's role in providing effective software assurance support to the CCP providers is critical to the success of CCP. These challenges include funding multiple vehicles that execute in parallel and have different rules of engagement, multiple providers with unique proprietary concerns, providing equivalent guidance to all providers, permitting alternates to NASA standards, and a large number of diverse stakeholders. It is expected that these challenges will exist in future programs, especially if the CCP paradigm proves successful. The proposed CCP approach to address these challenges includes a risk-based assessment with varying degrees of engagement and a distributed assurance model. This presentation will describe NASA IV&V Program's software assurance support and responses to these challenges.
On the Information Content of Program Traces
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Program traces are used for analysis of program performance, memory utilization, and communications as well as for program debugging. The trace contains records of execution events generated by monitoring units inserted into the program. The trace size limits the resolution of execution events and restricts the user's ability to analyze the program execution. We present a study of the information content of program traces and develop a coding scheme which reduces the trace size to the limit given by the trace entropy. We apply the coding to the traces of AIMS instrumented programs executed on the IBM SPA and the SCSI Power Challenge and compare it with other coding methods. Our technique shows size of the trace can be reduced by more than a factor of 5.
Application driven interface generation for EASIE. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kao, Ya-Chen
1992-01-01
The Environment for Application Software Integration and Execution (EASIE) provides a user interface and a set of utility programs which support the rapid integration and execution of analysis programs about a central relational database. EASIE provides users with two basic modes of execution. One of them is a menu-driven execution mode, called Application-Driven Execution (ADE), which provides sufficient guidance to review data, select a menu action item, and execute an application program. The other mode of execution, called Complete Control Execution (CCE), provides an extended executive interface which allows in-depth control of the design process. Currently, the EASIE system is based on alphanumeric techniques only. It is the purpose of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer in the generation of an ADE application.
NASA Astrophysics Data System (ADS)
Zerr, Robert Joseph
2011-12-01
The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of thousands of processors. The PGS method does outperform SI DSA for the periodic heterogeneous layers (PHL) configuration problems. Although this demonstrates a relative strength/weakness between the two methods, the practicality of these problems is much less, further limiting instances where it would be beneficial to select ITMM over SI DSA. The results strongly indicate a need for a robust, stable, and efficient acceleration method (or preconditioner for PGMRES). The spatial multigrid (SMG) method is currently incomplete in that it does not work for all cases considered and does not effectively improve the convergence rate for all values of scattering ratio c or cell dimension h. Nevertheless, it does display the desired trend for highly scattering, optically thin problems. That is, it tends to lower the rate of growth of number of iterations with increasing number of processes, P, while not increasing the number of additional operations per iteration to the extent that the total execution time of the rapidly converging accelerated iterations exceeds that of the slower unaccelerated iterations. A predictive parallel performance model has been developed for the PBJ method. Timing tests were performed such that trend lines could be fitted to the data for the different components and used to estimate the execution times. Applied to the weak scaling results, the model notably underestimates construction time, but combined with a slight overestimation in iterative solution time, the model predicts total execution time very well for large P. It also does a decent job with the strong scaling results, closely predicting the construction time and time per iteration, especially as P increases. Although not shown to be competitive up to 1,024 processing elements with the current state of the art, the parallelized ITMM exhibits promising scaling trends. Ultimately, compared to the KBA method, the parallelized ITMM may be found to be a very attractive option for transport calculations spatially decomposed over several tens of thousands of processes. Acceleration/preconditioning of the parallelized ITMM once developed will improve the convergence rate and improve its competitiveness. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
7 CFR 1944.409 - Executive Order 12372.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) PROGRAM REGULATIONS (CONTINUED) HOUSING Self-Help Technical Assistance Grants § 1944.409 Executive Order 12372. The self-help program is subject to the provision of Executive Order 12372 which requires... (available in any Agency office), new applicants for the self-help program must submit their Statement of...
Long Read Alignment with Parallel MapReduce Cloud Platform
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887
Long Read Alignment with Parallel MapReduce Cloud Platform.
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.
Detecting opportunities for parallel observations on the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Lucks, Michael
1992-01-01
The presence of multiple scientific instruments aboard the Hubble Space Telescope provides opportunities for parallel science, i.e., the simultaneous use of different instruments for different observations. Determining whether candidate observations are suitable for parallel execution depends on numerous criteria (some involving quantitative tradeoffs) that may change frequently. A knowledge based approach is presented for constructing a scoring function to rank candidate pairs of observations for parallel science. In the Parallel Observation Matching System (POMS), spacecraft knowledge and schedulers' preferences are represented using a uniform set of mappings, or knowledge functions. Assessment of parallel science opportunities is achieved via composition of the knowledge functions in a prescribed manner. The knowledge acquisition, and explanation facilities of the system are presented. The methodology is applicable to many other multiple criteria assessment problems.
Heterogeneous scalable framework for multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Karla Vanessa
2013-09-01
Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less
Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.
2013-01-01
With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616
Higher-Performance Executives: Bringing Executive Development Programs Into Balance
ERIC Educational Resources Information Center
Gilad, Benjamin; Chussil, Mark
2013-01-01
Executive development programs teach various skills deemed important in future leaders and help shape future leadership and its performance. However, they are often excessively focused on competencies required for dealing with internal issues and relationships. They do a much less admirable job preparing future executives for the unique skills…
Carnegie Mellon University's MMM program: management education for 21st-century physicians.
Korevaar, W C; Pearson, R W
2001-01-01
The number and types of executive and graduate-level management programs for physicians have exploded in recent years. These programs take on a variety of formats, ranging from executive seminars to master's-level degree programs. Options for physicians obtaining the master's degree tend to be either regionally based programs in traditional evening classes or nationally based programs that combine executive education formats with distance education. This paper examines a nationally based program - the Master of Medical Management (MMM) - from the perspectives of an administrator and a graduate of the program. It offers reasons for the growth of similar programs and data from students enrolled in the Carnegie Mellon University MMM program. The paper also examines educational outcomes in the form of behavioral competencies that the physicians acquired in the program. It concludes with reflections on the future of the MMM and related programs for physician executives in the 21st century.
Evaluating Market Orientation of an Executive MBA Program.
ERIC Educational Resources Information Center
Dubas, Khalid M.; Ghani, Waqar I.; Davis, Stanley; Strong, James T.
1998-01-01
A study assessed the market orientation of the executive Master's in Business Administration (MBA) program at Saint Joseph's University (Pennsylvania) in terms of 12 skills and knowledge areas that reflect effective managerial performance and the student-executives' perceptions of program strengths and weaknesses in delivering these skills.…
NASA Astrophysics Data System (ADS)
Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.
2011-12-01
With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio
Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less
MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE
NASA Technical Reports Server (NTRS)
Hull, R. A.
1994-01-01
The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.
Joint Exercise Program: DOD Needs to Take Steps to Improve the Quality of Funding Data
2017-02-01
technology systems—the Joint Training Information Management System (JTIMS) and the Execution Management System—to manage the execution of the Joint...Exercise Program, but does not have assurance that funding execution data in the Execution Management System are reliable. JTIMS is the system of record...for the Joint Exercise Program that combatant commanders use to plan and manage their joint training exercises. GAO observed significant variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-01-17
This library is an implementation of the Sparse Approximate Matrix Multiplication (SpAMM) algorithm introduced. It provides a matrix data type, and an approximate matrix product, which exhibits linear scaling computational complexity for matrices with decay. The product error and the performance of the multiply can be tuned by choosing an appropriate tolerance. The library can be compiled for serial execution or parallel execution on shared memory systems with an OpenMP capable compiler
Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.
Automatic Adaptation of Tunable Distributed Applications
2001-01-01
size, weight, and battery life, with a single CPU, less memory, smaller hard disk, and lower bandwidth network connectivity. The power of PDAs is...wireless, and bluetooth [32] facilities; thus achieving different rates of data transmission. 1 With the trend of “write once, run everywhere...applications, a single component can execute on multiple processors (or machines) in parallel. These parallel applications, written in a specialized language
Parallel processing and expert systems
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Lau, Sonie
1991-01-01
Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.
Collective communications apparatus and method for parallel systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knies, Allan D.; Keppel, David Pardo; Woo, Dong Hyuk
A collective communication apparatus and method for parallel computing systems. For example, one embodiment of an apparatus comprises a plurality of processor elements (PEs); collective interconnect logic to dynamically form a virtual collective interconnect (VCI) between the PEs at runtime without global communication among all of the PEs, the VCI defining a logical topology between the PEs in which each PE is directly communicatively coupled to a only a subset of the remaining PEs; and execution logic to execute collective operations across the PEs, wherein one or more of the PEs receive first results from a first portion of themore » subset of the remaining PEs, perform a portion of the collective operations, and provide second results to a second portion of the subset of the remaining PEs.« less
Chip architecture - A revolution brewing
NASA Astrophysics Data System (ADS)
Guterl, F.
1983-07-01
Techniques being explored by microchip designers and manufacturers to both speed up memory access and instruction execution while protecting memory are discussed. Attention is given to hardwiring control logic, pipelining for parallel processing, devising orthogonal instruction sets for interchangeable instruction fields, and the development of hardware for implementation of virtual memory and multiuser systems to provide memory management and protection. The inclusion of microcode in mainframes eliminated logic circuits that control timing and gating of the CPU. However, improvements in memory architecture have reduced access time to below that needed for instruction execution. Hardwiring the functions as a virtual memory enhances memory protection. Parallelism involves a redundant architecture, which allows identical operations to be performed simultaneously, and can be directed with microcode to avoid abortion of intermediate instructions once on set of instructions has been completed.
PRAIS: Distributed, real-time knowledge-based systems made easy
NASA Technical Reports Server (NTRS)
Goldstein, David G.
1990-01-01
This paper discusses an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS). PRAIS strives for transparently parallelizing production (rule-based) systems, even when under real-time constraints. PRAIS accomplishes these goals by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors.
Execution of parallel algorithms on a heterogeneous multicomputer
NASA Astrophysics Data System (ADS)
Isenstein, Barry S.; Greene, Jonathon
1995-04-01
Many aerospace/defense sensing and dual-use applications require high-performance computing, extensive high-bandwidth interconnect and realtime deterministic operation. This paper will describe the architecture of a scalable multicomputer that includes DSP and RISC processors. A single chassis implementation is capable of delivering in excess of 10 GFLOPS of DSP processing power with 2 Gbytes/s of realtime sensor I/O. A software approach to implementing parallel algorithms called the Parallel Application System (PAS) is also presented. An example of applying PAS to a DSP application is shown.
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov; Weare, Jonathan Q., E-mail: weare@uchicago.edu; Weare, John H., E-mail: jweare@ucsd.edu
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for themore » trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.« less
Lalloo, Umesh G; Bobat, Raziya A; Pillay, Sandy; Wassenaar, Douglas
2014-08-01
A key challenge in addressing the shortage of health care workers in resource-constrained environments is ensuring that there is optimal academic capacity for their training. South Africa's University of KwaZulu-Natal has placed academic and research capacity building at the heart of its program with the Medical Education Partnership Initiative in a program called ENhancing Training and REsearch capacity and Expertise (ENTREE). The program aims to increase the quantity, quality, and retention of health care graduates. It is premised on the basis that research capacity development will lead to an increase in teachers who will be essential to improving the quality and quantity of health care workers needed to meet South Africa's health challenges. This is being achieved through four components of the program: (1) infusion of the undergraduate program with research modules; (2) attraction of academically talented students in the middle of their undergraduate program into a parallel track that has research capacity as its major thrust; (3) attraction of qualified health care personnel into a supported PhD program; and (4) providing strong research ethics training and mentorship. A significant proportion of the program is being executed in rural training sites, to increase the probability that trainees will return to the sites as mentors.
NASA Technical Reports Server (NTRS)
Yang, Guowei; Pasareanu, Corina S.; Khurshid, Sarfraz
2012-01-01
This paper introduces memoized symbolic execution (Memoise), a novel approach for more efficient application of forward symbolic execution, which is a well-studied technique for systematic exploration of program behaviors based on bounded execution paths. Our key insight is that application of symbolic execution often requires several successive runs of the technique on largely similar underlying problems, e.g., running it once to check a program to find a bug, fixing the bug, and running it again to check the modified program. Memoise introduces a trie-based data structure that stores the key elements of a run of symbolic execution. Maintenance of the trie during successive runs allows re-use of previously computed results of symbolic execution without the need for re-computing them as is traditionally done. Experiments using our prototype embodiment of Memoise show the benefits it holds in various standard scenarios of using symbolic execution, e.g., with iterative deepening of exploration depth, to perform regression analysis, or to enhance coverage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Obtaining approval to conduct a Senior... DEVELOPMENT Senior Executive Service Candidate Development Programs § 412.301 Obtaining approval to conduct a Senior Executive Service candidate development program (SESCDP). (a) An SESCDP is an OPM-approved...
29 CFR 1608.5 - Affirmative action compliance programs under Executive Order No. 11246, as amended.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 4 2011-07-01 2011-07-01 false Affirmative action compliance programs under Executive... EMPLOYMENT OPPORTUNITY COMMISSION AFFIRMATIVE ACTION APPROPRIATE UNDER TITLE VII OF THE CIVIL RIGHTS ACT OF 1964, AS AMENDED § 1608.5 Affirmative action compliance programs under Executive Order No. 11246, as...
29 CFR 1608.5 - Affirmative action compliance programs under Executive Order No. 11246, as amended.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 4 2010-07-01 2010-07-01 false Affirmative action compliance programs under Executive... EMPLOYMENT OPPORTUNITY COMMISSION AFFIRMATIVE ACTION APPROPRIATE UNDER TITLE VII OF THE CIVIL RIGHTS ACT OF 1964, AS AMENDED § 1608.5 Affirmative action compliance programs under Executive Order No. 11246, as...
Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S
2008-09-24
Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
Exact diagonalization of quantum lattice models on coprocessors
NASA Astrophysics Data System (ADS)
Siro, T.; Harju, A.
2016-10-01
We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.
QoS support for end users of I/O-intensive applications using shared storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Marion Kei; Zhang, Xuechen; Jiang, Song
2011-01-19
I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time,more » a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.« less
A High Order, Locally-Adaptive Method for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Chan, Daniel
1998-11-01
I have extended the FOSLS method of Cai, Manteuffel and McCormick (1997) and implemented it within the framework of a spectral element formulation using the Legendre polynomial basis function. The FOSLS method solves the Navier-Stokes equations as a system of coupled first-order equations and provides the ellipticity that is needed for fast iterative matrix solvers like multigrid to operate efficiently. Each element is treated as an object and its properties are self-contained. Only C^0 continuity is imposed across element interfaces; this design allows local grid refinement and coarsening without the burden of having an elaborate data structure, since only information along element boundaries is needed. With the FORTRAN 90 programming environment, I can maintain a high computational efficiency by employing a hybrid parallel processing model. The OpenMP directives provides parallelism in the loop level which is executed in a shared-memory SMP and the MPI protocol allows the distribution of elements to a cluster of SMP's connected via a commodity network. This talk will provide timing results and a comparison with a second order finite difference method.
NASA Technical Reports Server (NTRS)
Katz, Daniel
2004-01-01
PVM Wrapper is a software library that makes it possible for code that utilizes the Parallel Virtual Machine (PVM) software library to run using the message-passing interface (MPI) software library, without needing to rewrite the entire code. PVM and MPI are the two most common software libraries used for applications that involve passing of messages among parallel computers. Since about 1996, MPI has been the de facto standard. Codes written when PVM was popular often feature patterns of {"initsend," "pack," "send"} and {"receive," "unpack"} calls. In many cases, these calls are not contiguous and one set of calls may even exist over multiple subroutines. These characteristics make it difficult to obtain equivalent functionality via a single MPI "send" call. Because PVM Wrapper is written to run with MPI- 1.2, some PVM functions are not permitted and must be replaced - a task that requires some programming expertise. The "pvm_spawn" and "pvm_parent" function calls are not replaced, but a programmer can use "mpirun" and knowledge of the ranks of parent and child tasks with supplied macroinstructions to enable execution of codes that use "pvm_spawn" and "pvm_parent."
NASA Astrophysics Data System (ADS)
Fellman, Ronald D.; Kaneshiro, Ronald T.; Konstantinides, Konstantinos
1990-03-01
The authors present the design and evaluation of an architecture for a monolithic, programmable, floating-point digital signal processor (DSP) for instrumentation applications. An investigation of the most commonly used algorithms in instrumentation led to a design that satisfies the requirements for high computational and I/O (input/output) throughput. In the arithmetic unit, a 16- x 16-bit multiplier and a 32-bit accumulator provide the capability for single-cycle multiply/accumulate operations, and three format adjusters automatically adjust the data format for increased accuracy and dynamic range. An on-chip I/O unit is capable of handling data block transfers through a direct memory access port and real-time data streams through a pair of parallel I/O ports. I/O operations and program execution are performed in parallel. In addition, the processor includes two data memories with independent addressing units, a microsequencer with instruction RAM, and multiplexers for internal data redirection. The authors also present the structure and implementation of a design environment suitable for the algorithmic, behavioral, and timing simulation of a complete DSP system. Various benchmarking results are reported.
Multiple channel data acquisition system
Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.
Multiple channel data acquisition system
Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... training program designed to develop the executive qualifications of employees with strong executive... career appointment without further competition to any SES position for which he or she meets the...
A Generalized-Compliant-Motion Primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1993-01-01
Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.
The Modeling, Simulation and Comparison of Interconnection Networks for Parallel Processing.
1987-12-01
performs better at a lower hardware cost than do the single stage cube and mesh networks. As a result, the designer of a paralll pro- cessing system is...attempted, and in most cases succeeded, in designing and implementing faster. more powerful systems. Due to design innovations and technological advances...largely to the computational complexity of the algorithms executed. In the von Neumann machine, instructions must be executed in a sequential manner. Design
Developing the strategic voice of senior nurse executives.
Shea, Gregory
2005-01-01
The Wharton School has been offering a senior nurse executive fellowship, sponsored by Johnson & Johnson, for 22 years. As the executive role has changed, the program has evolved. As more chief executive officers and chief operating officers come from the ranks of nursing, the program will continue to change to meet the needs of the future.
Soto-Quiros, Pablo
2015-01-01
This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.
performance on a low cost, low size, weight, and power (SWAP) computer : a Raspberry Pi Model B. For a comparison of performance, a baseline implementation...improvement factor of 2-3 compared to filtered backprojection. Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized...backprojection is easily parallelized, and we include a discussion of parallel implementation across multiple Pis .
Parallel task processing of very large datasets
NASA Astrophysics Data System (ADS)
Romig, Phillip Richardson, III
This research concerns the use of distributed computer technologies for the analysis and management of very large datasets. Improvements in sensor technology, an emphasis on global change research, and greater access to data warehouses all are increase the number of non-traditional users of remotely sensed data. We present a framework for distributed solutions to the challenges of datasets which exceed the online storage capacity of individual workstations. This framework, called parallel task processing (PTP), incorporates both the task- and data-level parallelism exemplified by many image processing operations. An implementation based on the principles of PTP, called Tricky, is also presented. Additionally, we describe the challenges and practical issues in modeling the performance of parallel task processing with large datasets. We present a mechanism for estimating the running time of each unit of work within a system and an algorithm that uses these estimates to simulate the execution environment and produce estimated runtimes. Finally, we describe and discuss experimental results which validate the design. Specifically, the system (a) is able to perform computation on datasets which exceed the capacity of any one disk, (b) provides reduction of overall computation time as a result of the task distribution even with the additional cost of data transfer and management, and (c) in the simulation mode accurately predicts the performance of the real execution environment.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R. (Technical Monitor)
2003-01-01
This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.
Nadkarni, P M; Miller, P L
1991-01-01
A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations.
Varsos, Constantinos; Patkos, Theodore; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos
2016-01-01
Abstract Background Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. New information In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on optimized vegan functions. A beta version of the RvLab is available after registration at: https://portal.lifewatchgreece.eu/ PMID:27932907
Varsos, Constantinos; Patkos, Theodore; Oulas, Anastasis; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos
2016-01-01
Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data - Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on optimized vegan functions. A beta version of the RvLab is available after registration at: https://portal.lifewatchgreece.eu/.
Performance of GeantV EM Physics Models
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2017-10-01
The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.
Parallel programming with Easy Java Simulations
NASA Astrophysics Data System (ADS)
Esquembre, F.; Christian, W.; Belloni, M.
2018-01-01
Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.
User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earth Sciences Division; Zhang, Keni; Zhang, Keni
TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less
Implementing and analyzing the multi-threaded LP-inference
NASA Astrophysics Data System (ADS)
Bolotova, S. Yu; Trofimenko, E. V.; Leschinskaya, M. V.
2018-03-01
The logical production equations provide new possibilities for the backward inference optimization in intelligent production-type systems. The strategy of a relevant backward inference is aimed at minimization of a number of queries to external information source (either to a database or an interactive user). The idea of the method is based on the computing of initial preimages set and searching for the true preimage. The execution of each stage can be organized independently and in parallel and the actual work at a given stage can also be distributed between parallel computers. This paper is devoted to the parallel algorithms of the relevant inference based on the advanced scheme of the parallel computations “pipeline” which allows to increase the degree of parallelism. The author also provides some details of the LP-structures implementation.
41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?
Code of Federal Regulations, 2011 CFR
2011-01-01
... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and Property... must an executive agency do to implement the eFAS program? (a) An executive agency must review the... value added services) of the eFAS SCs. Agencies should give full consideration to sales solutions...
41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and Property... must an executive agency do to implement the eFAS program? (a) An executive agency must review the... value added services) of the eFAS SCs. Agencies should give full consideration to sales solutions...
41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?
Code of Federal Regulations, 2014 CFR
2014-01-01
... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and Property... must an executive agency do to implement the eFAS program? (a) An executive agency must review the... value added services) of the eFAS SCs. Agencies should give full consideration to sales solutions...
41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and Property... must an executive agency do to implement the eFAS program? (a) An executive agency must review the... value added services) of the eFAS SCs. Agencies should give full consideration to sales solutions...
41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?
Code of Federal Regulations, 2012 CFR
2012-01-01
... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and Property... must an executive agency do to implement the eFAS program? (a) An executive agency must review the... value added services) of the eFAS SCs. Agencies should give full consideration to sales solutions...
Parallelization of a hydrological model using the message passing interface
Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji
2013-01-01
With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
The authors introduce two criteria for the evaluation and selection of assembly plans. The first criterion is to maximize the number of different sequences in which the assembly tasks can be executed. The second criterion is to minimize the total assembly time through simultaneous execution of assembly tasks. An algorithm that performs a heuristic search for the best assembly plan over the AND/OR graph representation of assembly plans is discussed. Admissible heuristics for each of the two criteria introduced are presented. Some implementation issues that affect the computational efficiency are addressed.
Genetic Parallel Programming: design and implementation.
Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong
2006-01-01
This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.
NASA Astrophysics Data System (ADS)
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
Design of high-performance parallelized gene predictors in MATLAB.
Rivard, Sylvain Robert; Mailloux, Jean-Gabriel; Beguenane, Rachid; Bui, Hung Tien
2012-04-10
This paper proposes a method of implementing parallel gene prediction algorithms in MATLAB. The proposed designs are based on either Goertzel's algorithm or on FFTs and have been implemented using varying amounts of parallelism on a central processing unit (CPU) and on a graphics processing unit (GPU). Results show that an implementation using a straightforward approach can require over 4.5 h to process 15 million base pairs (bps) whereas a properly designed one could perform the same task in less than five minutes. In the best case, a GPU implementation can yield these results in 57 s. The present work shows how parallelism can be used in MATLAB for gene prediction in very large DNA sequences to produce results that are over 270 times faster than a conventional approach. This is significant as MATLAB is typically overlooked due to its apparent slow processing time even though it offers a convenient environment for bioinformatics. From a practical standpoint, this work proposes two strategies for accelerating genome data processing which rely on different parallelization mechanisms. Using a CPU, the work shows that direct access to the MEX function increases execution speed and that the PARFOR construct should be used in order to take full advantage of the parallelizable Goertzel implementation. When the target is a GPU, the work shows that data needs to be segmented into manageable sizes within the GFOR construct before processing in order to minimize execution time.