Sample records for executive functioning motor

  1. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  2. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables.

    PubMed

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2017-04-01

    The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Disentangling the relationship between children’s motor ability, executive function and academic achievement

    PubMed Central

    Egger, Fabienne; Benzing, Valentin; Jäger, Katja; Conzelmann, Achim; Roebers, Claudia M.; Pesce, Caterina

    2017-01-01

    Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning. PMID:28817625

  4. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    PubMed

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.

  5. Executive Functions and Motor Ability Contribute to Children's Participation in Daily Activities

    ERIC Educational Resources Information Center

    Rosenberg, Limor; Jacobi, Shani; Bart, Orit

    2017-01-01

    Executive functions are crucial for efficient daily functioning. However, the contribution of executive functions to the participation in daily life activities of children, have been inadequately studied. The study aimed to examine the unique contribution of executive functions, beyond motor ability, to the diversity and independence of children's…

  6. Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.

    PubMed

    Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F

    2017-04-01

    Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).

  7. Motor and Executive Control in Repetitive Timing of Brief Intervals

    ERIC Educational Resources Information Center

    Holm, Linus; Ullen, Fredrik; Madison, Guy

    2013-01-01

    We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…

  8. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    ERIC Educational Resources Information Center

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  9. Differential Contribution of Bilateral Supplementary Motor Area to the Effective Connectivity Networks Induced by Task Conditions Using Dynamic Causal Modeling

    PubMed Central

    Tao, Zhongping; Zhang, Mu

    2014-01-01

    Abstract Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery. PMID:24606178

  10. Relationship between Motor Skill Competency and Executive Function in Children with Down's Syndrome

    ERIC Educational Resources Information Center

    Schott, N.; Holfelder, B.

    2015-01-01

    Background: Previous studies suggest that children with Down's syndrome (DS), a genetically based neurodevelopmental disorder, demonstrate motor problems and cognitive deficits. The first aim of this study was to examine motor skills and executive functions (EFs) in school-age children with DS. The second aim was to investigate the relationship…

  11. The relation between cognitive and motor performance and their relevance for children's transition to school: a latent variable approach.

    PubMed

    Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja

    2014-02-01

    Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.

    PubMed

    Bajaj, Sahil; Butler, Andrew J; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability.

  13. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement

    ERIC Educational Resources Information Center

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…

  14. Relationships between Motor and Executive Functions and the Effect of an Acute Coordinative Intervention on Executive Functions in Kindergartners

    PubMed Central

    Stein, Marion; Auerswald, Max; Ebersbach, Mirjam

    2017-01-01

    There is growing evidence indicating positive, causal effects of acute physical activity on cognitive performance of school children, adolescents, and adults. However, only a few studies examined these effects in kindergartners, even though correlational studies suggest moderate relationships between motor and cognitive functions in this age group. One aim of the present study was to examine the correlational relationships between motor and executive functions among 5- to 6-year-olds. Another aim was to test whether an acute coordinative intervention, which was adapted to the individual motor functions of the children, causally affected different executive functions (i.e., motor inhibition, cognitive inhibition, and shifting). Kindergartners (N = 102) were randomly assigned either to a coordinative intervention (20 min) or to a control condition (20 min). The coordination group performed five bimanual exercises (e.g., throwing/kicking balls onto targets with the right and left hand/foot), whereas the control group took part in five simple activities that hardly involved coordination skills (e.g., stamping). Children’s motor functions were assessed with the Movement Assessment Battery for Children 2 (Petermann, 2009) in a pre-test (T1), 1 week before the intervention took place. Motor inhibition was assessed with the Simon says task (Carlson and Wang, 2007), inhibition and shifting were assessed with the Hearts and Flowers task (Davidson et al., 2006) in the pre-test and again in a post-test (T2) immediately after the interventions. Results revealed significant correlations between motor functions and executive functions (especially shifting) at T1. There was no overall effect of the intervention. However, explorative analyses indicated a three-way interaction, with the intervention leading to accuracy gains only in the motor inhibition task and only if it was tested directly after the intervention. As an unexpected effect, this result needs to be treated with caution but may indicate that the effect of acute coordinative exercise is temporally limited and emerges only for motor inhibition, but not for cognitive inhibition or shifting. More generally, in contrast to other studies including older participants and endurance exercises, no general effect of an acute coordinative intervention on executive functions was revealed for kindergartners. PMID:28611709

  15. On the Relationship between Motor Performance and Executive Functioning in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance…

  16. Executive and Visuo-Motor Function in Adolescents and Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Sachse, Michael; Schlitt, Sabine; Hainz, Daniela; Ciaramidaro, Angela; Schirman, Shella; Walter, Henrik; Poustka, Fritz; Bolte, Sven; Freitag, Christine M.

    2013-01-01

    This study broadly examines executive (EF) and visuo-motor function in 30 adolescent and adult individuals with high-functioning autism spectrum disorder (ASD) in comparison to 28 controls matched for age, gender, and IQ. ASD individuals showed impaired spatial working memory, whereas planning, cognitive flexibility, and inhibition were spared.…

  17. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability. PMID:26236627

  18. Relations of Preschoolers’ Visual Motor and Object Manipulation Skills with Executive Function and Social Behavior

    PubMed Central

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2017-01-01

    Purpose The purpose was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom over the preschool year. Method 92 children between the ages of 3–5 years old (mean age 4.31 years) were recruited to participate. Comprehensive measures of visual motor integration skills, object manipulation skills, executive function and social behaviors were administered in the fall and spring of the preschool year. Results Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores, (B = .47 [.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head-Start status, and site location, but not after controlling for children’s baseline levels of executive function. In addition, children who demonstrated better object-manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control, (B −.03 [.00], p < .05, β = .40), more cooperation, (B = .02 [.01], p < .05, β = .28), and less externalizing/hyperactivity, (B = −.02 [.01], p < .05, β = −.28) after controlling for social behavior in the fall and other covariates. Conclusion Children’s visual motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness. PMID:27732149

  19. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    PubMed Central

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308

  20. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    PubMed

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p < .05, β = .40), more cooperation (B = 0.02 [0.01], p < .05, β = .28), and less externalizing/hyperactivity (B = - 0.02 [0.01], p < .05, β = - .28) after controlling for social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  1. Hands On, Minds On: How Executive Function, Motor, and Spatial Skills Foster School Readiness

    ERIC Educational Resources Information Center

    Cameron, Claire E.

    2018-01-01

    A growing body of research indicates that three foundational cognitive skills--executive function, motor skills, and spatial skills--form the basis for children to make a strong academic, behavioral, and social transition to formal school. Given inequitable early learning environments or "opportunity gaps" in the United States, these…

  2. Relationship between Executive Functions and Motor Stereotypies in Children with Autistic Disorder

    ERIC Educational Resources Information Center

    LeMonda, Brittany C.; Holtzer, Roee; Goldman, Sylvie

    2012-01-01

    This study reports on the relationship between motor stereotypies and impairments in executive functions (EF) in children with Autistic Disorder (AD) and in children with Developmental Language Disorders (DLD). We hypothesized that low EF performance would predict higher frequency and longer durations of stereotypies in the AD group only.…

  3. On the relationship between motor performance and executive functioning in children with intellectual disabilities.

    PubMed

    Hartman, E; Houwen, S; Scherder, E; Visscher, C

    2010-05-01

    It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance domains. Sixty-one children aged between 7 and 12 years diagnosed with borderline ID (33 boys and 28 girls; 71 < IQ < 79) and 36 age peers with mild ID (24 boys and 12 girls; 54 < IQ < 70) were assessed. Their abilities were compared with those of 97 age- and gender-matched typically developing children. Qualitative motor skills, i.e. locomotor ability and object control, were evaluated with the Test of Gross Motor Development (TGMD-2). Executive functioning (EF), in terms of planning ability, strategic decision-making and problem solving, was gauged with the Tower of London (TOL) task. Compared with the reference group, the full ID cohort scored significantly lower on all assessments. For the locomotor skills, the children with mild ID scored significantly lower than the children with borderline ID, but for the object control skills and the TOL score, no significant differences between the two groups were found. Motor performance and EF correlated positively. At the most complex level, the TOL showed decision time to be a mediator between motor performance and EF: the children with the lower motor scores had significantly shorter decision times and lower EF scores. Analogously, the children with the lower object control scores had longer execution times and lower EF scores. The current results support the notion that besides being impaired in qualitative motor skills intellectually challenged children are also impaired in higher-order executive functions. The deficits in the two domains are interrelated, so early interventions boosting their motor and cognitive development are recommended.

  4. Self-Reported Executive Functioning in Everyday Life in Parkinson's Disease after Three Months of Subthalamic Deep Brain Stimulation.

    PubMed

    Pham, Uyen Ha Gia; Andersson, Stein; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Dietrichs, Espen; Malt, Ulrik Fredrik; Skogseid, Inger Marie; Haraldsen, Ira Ronit Hebolt; Solbakk, Anne-Kristin

    2015-01-01

    Objective. Studies on the effect of subthalamic deep brain stimulation (STN-DBS) on executive functioning in Parkinson's disease (PD) are still controversial. In this study we compared self-reported daily executive functioning in PD patients before and after three months of STN-DBS. We also examined whether executive functioning in everyday life was associated with motor symptoms, apathy, and psychiatric symptoms. Method. 40 PD patients were examined with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), the Symptom Checklist 90-Revised (SCL-90-R), and the Apathy Evaluation Scale (AES-S). Results. PD patients reported significant improvement in daily life executive functioning after 3 months of STN-DBS. Anxiety scores significantly declined, while other psychiatric symptoms remained unchanged. The improvement of self-reported executive functioning did not correlate with motor improvement after STN-DBS. Apathy scores remained unchanged after surgery. Only preoperative depressed mood had predictive value to the improvement of executive function and appears to prevent potentially favorable outcomes from STN-DBS on some aspects of executive function. Conclusion. PD patients being screened for STN-DBS surgery should be evaluated with regard to self-reported executive functioning. Depressive symptoms in presurgical PD patients should be treated. Complementary information about daily life executive functioning in PD patients might enhance further treatment planning of STN-DBS.

  5. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  6. Relationship between Motor and Executive Functioning in School-Age Children with Pervasive Developmental Disorder Not Otherwise Specified

    ERIC Educational Resources Information Center

    Schurink, J.; Hartman, E.; Scherder, E. J. A.; Houwen, S.; Visscher, C.

    2012-01-01

    This study examines the motor skills and executive functioning (EF) of 28 children diagnosed with pervasive developmental disorder-not otherwise specified (PDD-NOS; mean age: 10 years 6 months, range: 7-12 years; 19 boys, 9 girls) in comparison with age- and gender-matched typically developing children. The potential relationship between motor…

  7. Dynamic Modulation of Human Motor Activity When Observing Actions

    PubMed Central

    Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James

    2012-01-01

    Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901

  8. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Motor and Executive Function Profiles in Adult Residents Environmentally Exposed to Manganese

    EPA Science Inventory

    Objective: Exposure to elevated levels of manganese (Mn) may be associated with tremor, motor and executive dysfunction (EF), clinically resembling Parkinson’s disease (PD). PD research has identified tremor-dominant (TD) and non-tremor dominant (NTD) profiles. NTD PD pres...

  10. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    ERIC Educational Resources Information Center

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  11. Motor Function in Former Professional Football Players with History of Multiple Concussions.

    PubMed

    Tarazi, Apameh; Tator, Charles H; Wennberg, Richard; Ebraheem, Ahmed; Green, Robin E A; Collela, Brenda; Saverino, Christina; Khodadadi, Mozghan; Misquitta, Karen; Tartaglia, Maria Carmela

    2018-04-15

    The objective of this study was to assess the incidence of motor impairment in former professional Canadian Football League (ex-CFL) players with multiple concussions. We investigated motor symptoms and signs in 45 ex-CFL players with multiple concussions and 25 age- and education-matched healthy controls with no history of concussion. Neurological assessment included items from the SCAT3 (Sport Concussion Assessment Tool 3) and the Unified Parkinson's Disease Rating Scale part III (UPDRS-Part III). A performance-based measurement of manual motor function was undertaken using the Grooved Pegboard test. Cognition was measured with patient-reported outcomes for memory, executive and behavioral symptoms as well as performance-based measures of memory and executive function. Symptoms of anxiety and depression were measured using the Personality Assessment Inventory. There was no significant difference between the ex-CFL players and controls on the UPDRS-Part III scores, and neither group reported clinically significant motor complaints. Ex-CFL players did not perform differently from control subjects on the Grooved Pegboard test. In contrast, with regard to cognitive and mood testing, players were more symptomatic: The ex-CFL players reported significantly more memory (77.8% vs. 16%, respectively, p < 0.001), executive (53.3% vs. 8%, respectively, p < 0.001), and behavioral symptoms (66.7% vs. 20%, respectively, p < 0.001). No significant differences were found when comparing ex-CFL players and controls in performance on memory and executive tests. In summary, in a group of retired CFL players who self-reported declines in memory, executive and behavioral symptoms, no motor symptoms were reported and no motor signs were detected.

  12. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder.

    PubMed

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Lo, Shen-Yu; Cheng, Yun-Wen; Liu, Yu-Jen

    2016-10-01

    The present study assessed the effects of a 12-week table tennis exercise on motor skills, social behaviors, and executive functions in children with attention deficit hyperactivity disorder (ADHD). In the first 12-week phase, 16 children (group I) received the intervention, whereas 16 children (group II) did not. A second 12-week phase immediately followed with the treatments reversed. Improvements were observed in executive functions in both groups after the intervention. After the first 12-week phase, some motor and behavioral functions improved in group I. After the second 12-week phase, similar improvements were noted for group II, and the intervention effects achieved in the first phase were persisted in group I. The racket-sport intervention is valuable in promoting motor skills, social behaviors, and executive functions and should be included within the standard-of-care treatment for children with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hyperactivity in boys with attention-deficit/hyperactivity disorder (ADHD): The role of executive and non-executive functions.

    PubMed

    Hudec, Kristen L; Alderson, R Matt; Patros, Connor H G; Lea, Sarah E; Tarle, Stephanie J; Kasper, Lisa J

    2015-01-01

    Motor activity of boys (age 8-12 years) with (n=19) and without (n=18) ADHD was objectively measured with actigraphy across experimental conditions that varied with regard to demands on executive functions. Activity exhibited during two n-back (1-back, 2-back) working memory tasks was compared to activity during a choice-reaction time (CRT) task that placed relatively fewer demands on executive processes and during a simple reaction time (SRT) task that required mostly automatic processing with minimal executive demands. Results indicated that children in the ADHD group exhibited greater activity compared to children in the non-ADHD group. Further, both groups exhibited the greatest activity during conditions with high working memory demands, followed by the reaction time and control task conditions, respectively. The findings indicate that large-magnitude increases in motor activity are predominantly associated with increased demands on working memory, though demands on non-executive processes are sufficient to elicit small to moderate increases in motor activity as well. Published by Elsevier Ltd.

  14. Effects of blueberries on inflammation, motor performance and cognitive function

    USDA-ARS?s Scientific Manuscript database

    Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...

  15. Ocular Motor Indicators of Executive Dysfunction in Fragile X and Turner Syndromes

    ERIC Educational Resources Information Center

    Lasker, Adrian G.; Mazzocco, Michele M. M.; Zee, David S.

    2007-01-01

    Fragile X and Turner syndromes are two X-chromosome-related disorders associated with executive function and visual spatial deficits. In the present study, we used ocular motor paradigms to examine evidence that disruption to different neurological pathways underlies these deficits. We tested 17 females with fragile X, 19 females with Turner…

  16. Executive Functions Do Not Mediate Prospective Relations between Indices of Physical Activity and Academic Performance: The Active Smarter Kids (ASK) Study.

    PubMed

    Aadland, Katrine N; Ommundsen, Yngvar; Aadland, Eivind; Brønnick, Kolbjørn S; Lervåg, Arne; Resaland, Geir K; Moe, Vegard F

    2017-01-01

    Changes in cognitive function induced by physical activity have been proposed as a mechanism for the link between physical activity and academic performance. The aim of this study was to investigate if executive function mediated the prospective relations between indices of physical activity and academic performance in a sample of 10-year-old Norwegian children. The study included 1,129 children participating in the Active Smarter Kids (ASK) trial, followed over 7 months. Structural equation modeling (SEM) with a latent variable of executive function (measuring inhibition, working memory, and cognitive flexibility) was used in the analyses. Predictors were objectively measured physical activity, time spent sedentary, aerobic fitness, and motor skills. Outcomes were performance on national tests of numeracy, reading, and English (as a second language). Generally, indices of physical activity did not predict executive function and academic performance. A modest mediation effect of executive function was observed for the relation between motor skills and academic performance. Trial registration: Clinicaltrials.gov registry, trial registration number: NCT02132494.

  17. Executive Functions Do Not Mediate Prospective Relations between Indices of Physical Activity and Academic Performance: The Active Smarter Kids (ASK) Study

    PubMed Central

    Aadland, Katrine N.; Ommundsen, Yngvar; Aadland, Eivind; Brønnick, Kolbjørn S.; Lervåg, Arne; Resaland, Geir K.; Moe, Vegard F.

    2017-01-01

    Changes in cognitive function induced by physical activity have been proposed as a mechanism for the link between physical activity and academic performance. The aim of this study was to investigate if executive function mediated the prospective relations between indices of physical activity and academic performance in a sample of 10-year-old Norwegian children. The study included 1,129 children participating in the Active Smarter Kids (ASK) trial, followed over 7 months. Structural equation modeling (SEM) with a latent variable of executive function (measuring inhibition, working memory, and cognitive flexibility) was used in the analyses. Predictors were objectively measured physical activity, time spent sedentary, aerobic fitness, and motor skills. Outcomes were performance on national tests of numeracy, reading, and English (as a second language). Generally, indices of physical activity did not predict executive function and academic performance. A modest mediation effect of executive function was observed for the relation between motor skills and academic performance. Trial registration: Clinicaltrials.gov registry, trial registration number: NCT02132494. PMID:28706500

  18. Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis.

    PubMed

    Watermeyer, Tamlyn J; Brown, Richard G; Sidle, Katie C L; Oliver, David J; Allen, Christopher; Karlsson, Joanna; Ellis, Catherine M; Shaw, Christopher E; Al-Chalabi, Ammar; Goldstein, Laura H

    2015-07-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the motor system with recognised extra-motor and cognitive involvement. This cross-sectional study examined ALS patients' performance on measures requiring social inference, and determined the relationship between such changes and variations in mood, behaviour, personality, empathy and executive function. Fifty-five ALS patients and 49 healthy controls were compared on tasks measuring social cognition and executive function. ALS patients also completed measures examining mood, behaviour and personality. Regression analyses explored the contribution of executive function, mood, behaviour and personality to social cognition scores within the ALS sample. A between-group MANOVA revealed that, the ALS group was impaired relative to controls on two composite scores for social cognition and executive function. Patients also performed worse on individual tests of executive function measuring cognitive flexibility, response inhibition and concept formation, and on individual aspects of social cognition assessing the attribution of emotional and mental states. Regression analyses indicated that ALS-related executive dysfunction was the main predictor of social cognition performance, above and beyond demographic variables, behaviour, mood and personality. On at least some aspects of social cognition, impaired performance in ALS appears to be secondary to executive dysfunction. The profile of cognitive impairment in ALS supports a cognitive continuum between ALS and frontotemporal dementia.

  19. The Relationship of Motor Coordination, Visual Perception, and Executive Function to the Development of 4–6-Year-Old Chinese Preschoolers' Visual Motor Integration Skills

    PubMed Central

    Fang, Ying; Zhang, Ying

    2017-01-01

    Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030

  20. The contributions of cerebro-cerebellar circuitry to executive verbal working memory.

    PubMed

    Marvel, Cherie L; Desmond, John E

    2010-01-01

    Contributions of cerebro-cerebellar function to executive verbal working memory were examined using event-related functional magnetic resonance imaging (fMRI) while 16 subjects completed two versions of the Sternberg task. In both versions subjects were presented with two or six target letters during the encoding phase, which were held in memory during the maintenance phase. A single probe letter was presented during the retrieval phase. In the "match condition", subjects decided whether the probe matched the target letters. In the "executive condition", subjects created a new probe by counting two alphabetical letters forward (e.g., f-->h) and decided whether the new probe matched the target letters. Neural activity during the match and executive conditions was compared during each phase of the task. There were four main findings. First, cerebro-cerebellar activity increased as a function of executive load. Second, the dorsal cerebellar dentate co-activated with the supplementary motor area (SMA) during encoding. This likely represented the formation of an articulatory (motor) trajectory. Third, the ventral cerebellar dentate co-activated with anterior prefrontal regions Brodmann Area (BA) 9/46 and the pre-SMA during retrieval. This likely represented the manipulation of information and formation of a response. A functional dissociation between the dorsal "motor" dentate and "cognitive" ventral dentate agrees with neuroanatomical tract tracing studies that have demonstrated separate neural pathways involving each region of the dentate: the dorsal dentate projects to frontal motor areas (including the SMA), and the ventral dentate projects to frontal cognitive areas (including BA 9/46 and the pre-SMA). Finally, activity during the maintenance phase in BA 9, anterior insula, pre-SMA and ventral dentate predicted subsequent accuracy of response to the probe during the retrieval phase. This finding underscored the significant contribution of the pre-SMA/ventral dentate pathway--observed several seconds prior to any motor response to the probe--to executive verbal working memory. Copyright (c) 2009 Elsevier Srl. All rights reserved.

  1. Fine motor skills and executive function both contribute to kindergarten achievement

    PubMed Central

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276

  2. Executive Functioning in Highly Talented Soccer Players

    PubMed Central

    Verburgh, Lot; Scherder, Erik J. A.; van Lange, Paul A.M.; Oosterlaan, Jaap

    2014-01-01

    Executive functions might be important for successful performance in sports, particularly in team sports requiring quick anticipation and adaptation to continuously changing situations in the field. The executive functions motor inhibition, attention and visuospatial working memory were examined in highly talented soccer players. Eighty-four highly talented youth soccer players (mean age 11.9), and forty-two age-matched amateur soccer players (mean age 11.8) in the age range 8 to 16 years performed a Stop Signal task (motor inhibition), the Attention Network Test (alerting, orienting, and executive attention) and a visuospatial working memory task. The highly talented soccer players followed the talent development program of the youth academy of a professional soccer club and played at the highest national soccer competition for their age. The amateur soccer players played at a regular soccer club in the same geographical region as the highly talented soccer players and play in a regular regional soccer competition. Group differences were tested using analyses of variance. The highly talented group showed superior motor inhibition as measured by stop signal reaction time (SSRT) on the Stop Signal task and a larger alerting effect on the Attention Network Test, indicating an enhanced ability to attain and maintain an alert state. No group differences were found for orienting and executive attention and visuospatial working memory. A logistic regression model with group (highly talented or amateur) as dependent variable and executive function measures that significantly distinguished between groups as predictors showed that these measures differentiated highly talented soccer players from amateur soccer players with 89% accuracy. Highly talented youth soccer players outperform youth amateur players on suppressing ongoing motor responses and on the ability to attain and maintain an alert state; both may be essential for success in soccer. PMID:24632735

  3. Cognitively and physically demanding exergaming to improve executive functions of children with attention deficit hyperactivity disorder: a randomised clinical trial.

    PubMed

    Benzing, Valentin; Schmidt, Mirko

    2017-01-10

    Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders observed in childhood and adolescence. Its key symptoms - reduced attention, poor control of impulses as well as increased motor activity - are associated with decreased executive functions performance, finally affecting academic achievement. Although drug treatments usually show some effect, alternative treatments are continually being sought, due to lack of commitment and possible side effects. Cognitive trainings are frequently used with the objectives of increasing executive function performance. However, since transfer effects are limited and novelty and diversity are frequently ignored, interventions combining physical and cognitive demands targeting a broader range of cognitive processes are demanded. The aim of the study is to examine the effects of a cognitively and physically demanding exergame on executive functions of children with ADHD. In a randomised clinical trial, 66 girls and boys diagnosed with ADHD (age 8-12) will be assigned either to an 8-week exergame intervention group (three training sessions per week à 30 min) or a waiting-list control group. Before and afterwards, the executive function performance (computer-based tests), the sport motor performance and ADHD symptoms will be assessed. The current study will offer insights into the effectiveness of a combination of cognitive and physical training using exergaming. Positive effects on the executive functions, sport motor performance and ADHD symptoms are hypothesized. Beneficial effects would mean a large degree of scalability (simple and cost-effective) and high utility for patients with ADHD. KEK BE 393/15 (March 8, 2016); DRKS00010171 (March 14, 2016).

  4. Motor planning and execution in left- and right-handed individuals during a bimanual grasping and placing task.

    PubMed

    Hughes, Charmayne M L; Reissig, Paola; Seegelke, Christian

    2011-09-01

    The issue of handedness has been the topic of great interest for researchers in a number of scientific domains. It is typically observed that the dominant hand yields numerous behavioral advantages over the non-dominant hand during unimanual tasks, which provides evidence of hemispheric specialization. In contrast to advantages for the dominant hand during motor execution, recent research has demonstrated that the right hand has advantages during motor planning (regardless of handedness), indicating that motor planning is a specialized function of the left hemisphere. In the present study we explored hemispheric advantages in motor planning and execution in left- and right-handed individuals during a bimanual grasping and placing task. Replicating previous findings, both motor planning and execution was influenced by object end-orientation congruency. In addition, although motor planning (i.e., end-state comfort) was not influenced by hand or handedness, motor execution differed between left and right hand, with shorter object transport times observed for the left hand, regardless of handedness. These results demonstrate that the hemispheric advantages often observed in unimanual tasks do not extend to discrete bimanual tasks. We propose that the differences in object transport time between the two hands arise from overt shifting visual fixation between the two hands/objects. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Rasagiline for dysexecutive symptoms during wearing-off in Parkinson's disease: a pilot study.

    PubMed

    Rinaldi, Domiziana; Assogna, Francesca; Sforza, Michela; Tagliente, Stefania; Pontieri, Francesco E

    2018-01-01

    Wearing-off refers to the predictable worsening of motor and sometimes non-motor symptoms of Parkinson's disease occurring at the end of levodopa dose that improves with the next drug dose. Here, we investigated the efficacy of rasagiline on executive functions at the end of levodopa dose in patients displaying symptoms of wearing-off. Rasagiline was well-tolerated and produced a significant improvement at the Frontal Assessment Battery, together with improvement of motor symptoms at the end of levodopa dose. These results suggest that treatment of motor symptoms of wearing-off with rasagiline may be accompanied by improvement of executive functions, and further support the need for optimizing dopamine replacement therapy in fluctuating Parkinson's disease patients.

  6. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269

  7. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs

    PubMed Central

    Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.

    2014-01-01

    Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505

  8. Fine motor skills and executive function both contribute to kindergarten achievement.

    PubMed

    Cameron, Claire E; Brock, Laura L; Murrah, William M; Bell, Lindsay H; Worzalla, Samantha L; Grissmer, David; Morrison, Frederick J

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n=213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall of kindergarten, and Woodcock-Johnson III Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  9. Motor and executive function at 6 years of age after extremely preterm birth.

    PubMed

    Marlow, Neil; Hennessy, Enid M; Bracewell, Melanie A; Wolke, Dieter

    2007-10-01

    Studies of very preterm infants have demonstrated impairments in multiple neurocognitive domains. We hypothesized that neuromotor and executive-function deficits may independently contribute to school failure. We studied children who were born at < or = 25 completed weeks' gestation in the United Kingdom and Ireland in 1995 at early school age. Children underwent standardized cognitive and neuromotor assessments, including the Kaufman Assessment Battery for Children and NEPSY, and a teacher-based assessment of academic achievement. Of 308 surviving children, 241 (78%) were assessed at a median age of 6 years 4 months. Compared with 160 term classmates, 180 extremely preterm children without cerebral palsy and attending mainstream school performed less well on 3 simple motor tasks: posting coins, heel walking, and 1-leg standing. They more frequently had non-right-hand preferences (28% vs 10%) and more associated/overflow movements during motor tasks. Standardized scores for visuospatial and sensorimotor function performance differed from classmates by 1.6 and 1.1 SDs of the classmates' scores, respectively. These differences attenuated but remained significant after controlling for overall cognitive scores. Cognitive, visuospatial scores, and motor scores explained 54% of the variance in teachers' ratings of performance in the whole set; in the extremely preterm group, additional variance was explained by attention-executive tasks and gender. Impairment of motor, visuospatial, and sensorimotor function, including planning, self-regulation, inhibition, and motor persistence, contributes excess morbidity over cognitive impairment in extremely preterm children and contributes independently to poor classroom performance at 6 years of age.

  10. How Equivalent Are the Action Execution, Imagery, and Observation of Intransitive Movements? Revisiting the Concept of Somatotopy during Action Simulation

    ERIC Educational Resources Information Center

    Lorey, Britta; Naumann, Tim; Pilgramm, Sebastian; Petermann, Carmen; Bischoff, Matthias; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter; Munzert, Jorn

    2013-01-01

    Jeannerod (2001) hypothesized that action execution, imagery, and observation are functionally equivalent. This led to the major prediction that these motor states are based on the same action-specific and even effector-specific motor representations. The present study examined whether hand and foot movements are represented in a somatotopic…

  11. From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling.

    PubMed

    Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim

    2017-02-15

    Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  13. Relationship of executive function and educational status with functional balance in older adults.

    PubMed

    Voos, Mariana Callil; Custódio, Elaine Bazilio; Malaquias, Joel

    2011-01-01

    The Berg Balance Scale (BBS) is frequently used to assess functional balance in older adults. The relationship of executive function and level of education with the BBS performance has not been described. The aim of this study was to determine whether (1) the performance on a task requiring executive function (part B of the Trail Making Test, TMT-B) influences results of motor and cognitive tests and (2) the number of years of formal education could be related to performance on BBS in older adults. We also explored whether there would be differences, based on performance on TMT-B (high vs low) in motor function (BBS, the timed up and go [TUG]) or cognitive function (TMT-A and TMTDELTA), the Mini Mental State Examination (MMSE), as well as years of education. Participants included 101 older adults (age range, 60-80 years) residing in São Paulo, Brazil. Functional balance was assessed using BBS and TUG. Executive function was assessed using the TMT and MMSE. Educational status was determined by self-report of participant's total number of years of formal education. The BBS scores were inversely related to TMT-A time (r = -0.63, r = 0.40, P < .001) and TMT-B time (r = -0.56, r = 0.31, P < .001). There was a similar relationship with TMTDELTA (r = -0.47, r = 0.22, P < .001). The BBS scores were positively correlated to years of formal education (r = 0.48, r = 0.23, P < .001). There was a ceiling effect on the TMT-B, with many individuals reaching maximum score of 300 seconds. Participants with high levels of executive function had higher BBS and MMSE scores, more education, and lower TMT-A, TMTDELTA and TUG scores (P < .001) than the lower functioning group. Individuals with higher capacity on tasks requiring visuospatial abilities, psychomotor speed, and executive function, such as the TMT, had better performance on BBS. Individuals with a high executive function, measured by TMT-B, also performed better on other motor and cognitive tests.

  14. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment.

    PubMed

    Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo

    2016-06-01

    The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical development. Statistical analysis showed that the kinematics of the grasp component was spared in autism, whereas early kinematics of the reach component was atypical. We discussed this evidence as suggesting impairment in the feedforward processes involved in action execution, whereas impairment in feedback-based control processes remained unclear. We proposed that certain motor abilities are available in autism, and children may use them differently as a function of motor context complexity.

  15. Paired Studies Comparing Clinical Profiles of Lewy Body Dementia with Alzheimer's and Parkinson's Diseases.

    PubMed

    Scharre, Douglas W; Chang, Shu-Ing; Nagaraja, Haikady N; Park, Ariane; Adeli, Anahita; Agrawal, Punit; Kloos, Anne; Kegelmeyer, Deb; Linder, Shannon; Fritz, Nora; Kostyk, Sandra K; Kataki, Maria

    2016-10-04

    Limited data compares clinical profiles of Lewy Body Dementia (LBD) with Alzheimer's disease (AD) and Parkinson's disease (PD). Twenty-one mildly demented ambulatory LBD subjects were individually matched by MMSE score with 21 AD subjects and by UPDRS motor score with 21 PD subjects. Matched by age, gender, education, and race, pairs were compared using cognitive, functional, behavioral, and motor measures. LBD group performed worse than PD on axial motor, gait, and balance measures. AD had more amnesia and orientation impairments, but less executive and visuospatial deficits than LBD subjects. LBD group had more sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea than AD or PD. Axial motor, gait, and balance disturbances correlated with executive, visuospatial, and global cognition deficits. LBD is differentiated from AD and PD by retrieval memory, visuospatial, and executive deficits; axial motor, gait and balance impairments; sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea.

  16. The processing of actions and action-words in amyotrophic lateral sclerosis patients.

    PubMed

    Papeo, Liuba; Cecchetto, Cinzia; Mazzon, Giulia; Granello, Giulia; Cattaruzza, Tatiana; Verriello, Lorenzo; Eleopra, Roberto; Rumiati, Raffaella I

    2015-03-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with prime consequences on the motor function and concomitant cognitive changes, most frequently in the domain of executive functions. Moreover, poorer performance with action-verbs versus object-nouns has been reported in ALS patients, raising the hypothesis that the motor dysfunction deteriorates the semantic representation of actions. Using action-verbs and manipulable-object nouns sharing semantic relationship with the same motor representations, the verb-noun difference was assessed in a group of 21 ALS-patients with severely impaired motor behavior, and compared with a normal sample's performance. ALS-group performed better on nouns than verbs, both in production (action and object naming) and comprehension (word-picture matching). This observation implies that the interpretation of the verb-noun difference in ALS cannot be accounted by the relatedness of verbs to motor representations, but has to consider the role of other semantic and/or morpho-phonological dimensions that distinctively define the two grammatical classes. Moreover, this difference in the ALS-group was not greater than the noun-verb difference in the normal sample. The mental representation of actions also involves an executive-control component to organize, in logical/temporal order, the individual motor events (or sub-goals) that form a purposeful action. We assessed this ability with action sequencing tasks, requiring participants to re-construct a purposeful action from the scrambled presentation of its constitutive motor events, shown in the form of photographs or short sentences. In those tasks, ALS-group's performance was significantly poorer than controls'. Thus, the executive dysfunction manifested in the sequencing deficit -but not the selective verb deficit- appears as a consistent feature of the cognitive profile associated with ALS. We suggest that ALS can offer a valuable model to study the relationship between (frontal) motor centers and the executive-control machinery housed in the frontal brain, and the implications of executive dysfunctions in tasks such as action processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Getting the right grasp on executive function

    PubMed Central

    Gonzalez, Claudia L. R.; Mills, Kelly J.; Genee, Inge; Li, Fangfang; Piquette, Noella; Rosen, Nicole; Gibb, Robbin

    2014-01-01

    Executive Function (EF) refers to important socio-emotional and cognitive skills that are known to be highly correlated with both academic and life success. EF is a blanket term that is considered to include self-regulation, working memory, and planning. Recent studies have shown a relationship between EF and motor control. The emergence of motor control coincides with that of EF, hence understanding the relationship between these two domains could have significant implications for early detection and remediation of later EF deficits. The purpose of the current study was to investigate this relationship in young children. This study incorporated the Behavioral Rating Inventory of Executive Function (BRIEF) and two motor assessments with a focus on precision grasping to test this hypothesis. The BRIEF is comprised of two indices of EF: (1) the Behavioral Regulation Index (BRI) containing three subscales: Inhibit, Shift, and Emotional Control; (2) the Metacognition Index (MI) containing five subscales: Initiate, Working Memory, Plan/Organize, Organization of Materials, and Monitor. A global executive composite (GEC) is derived from the two indices. In this study, right-handed children aged 5–6 and 9–10 were asked to: grasp-to-construct (Lego® models); and grasp-to-place (wooden blocks), while their parents completed the BRIEF questionnaire. Analysis of results indicated significant correlations between the strength of right hand preference for grasping and numerous elements of the BRIEF including the BRI, MI, and GEC. Specifically, the more the right hand was used for grasping the better the EF ratings. In addition, patterns of space-use correlated with the GEC in several subscales of the BRIEF. Finally and remarkably, the results also showed a reciprocal relationship between hand and space use for grasping and EF. These findings are discussed with respect to: (1) the developmental overlap of motor and executive functions; (2) detection of EF deficits through tasks that measure lateralization of hand and space use; and (3) the possibility of using motor interventions to remediate EF deficits. PMID:24778624

  18. Motor Imagery Ability in Children with Congenital Hemiplegia: Effect of Lesion Side and Functional Level

    ERIC Educational Resources Information Center

    Williams, Jacqueline; Reid, Susan M.; Reddihough, Dinah S.; Anderson, Vicki

    2011-01-01

    In addition to motor execution problems, children with hemiplegia have motor planning deficits, which may stem from poor motor imagery ability. This study aimed to provide a greater understanding of motor imagery ability in children with hemiplegia using the hand rotation task. Three groups of children, aged 8-12 years, participated: right…

  19. Cognitive and Motor Aspects of Parkinson's Disease Associated with Dysphagia.

    PubMed

    Kim, Ji Sun; Youn, Jinyoung; Suh, Mee Kyung; Kim, Tae-Eun; Chin, Juhee; Park, Suyeon; Cho, Jin Whan

    2015-11-01

    Dysphagia is a common symptom and an important prognostic factor in Parkinson's disease (PD). Although cognitive and motor dysfunctions may contribute to dysphagia in patients with PD, any specific association between such problems and swallowing functions is unclear. Here, we examined the potential relationship between cognitive/motor components and swallowing functions in PD. We evaluated the contributions of cognition and motor function to the components of swallowing via video fluoroscopic swallowing (VFS) experiments. We prospectively enrolled 56 patients without dementia having PD. Parkinson's disease severity was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). All participants received neuropsychological tests covering general mental status, visuospatial function, attention, language, learning and memory, and frontal executive function. The well-validated "modified barium swallow impairment profile" scoring system was applied during VFS studies to quantify swallowing impairments. Finally, correlations between neuropsychological or motor functions and impairment in swallowing components were calculated. The most significant correlations were found between the frontal/executive or learning/memory domains and the oral phase of swallowing, though a minor component of the pharyngeal phase correlated with frontal function as well. Bradykinesia and the UPDRS total score were associated with both the pharyngeal and oral phases. Our findings suggest that cognitive dysfunctions are associated with the oral phase of swallowing in patients with early stage PD while the severity of motor symptoms may be associated with overall swallowing function.

  20. Action observation and mirror neuron network: a tool for motor stroke rehabilitation.

    PubMed

    Sale, P; Franceschini, M

    2012-06-01

    Mirror neurons are a specific class of neurons that are activated and discharge both during observation of the same or similar motor act performed by another individual and during the execution of a motor act. Different studies based on non invasive neuroelectrophysiological assessment or functional brain imaging techniques have demonstrated the presence of the mirror neuron and their mechanism in humans. Various authors have demonstrated that in the human these networks are activated when individuals learn motor actions via execution (as in traditional motor learning), imitation, observation (as in observational learning) and motor imagery. Activation of these brain areas (inferior parietal lobe and the ventral premotor cortex, as well as the caudal part of the inferior frontal gyrus [IFG]) following observation or motor imagery may thereby facilitate subsequent movement execution by directly matching the observed or imagined action to the internal simulation of that action. It is therefore believed that this multi-sensory action-observation system enables individuals to (re) learn impaired motor functions through the activation of these internal action-related representations. In humans, the mirror mechanism is also located in various brain segment: in Broca's area, which is involved in language processing and speech production and not only in centres that mediate voluntary movement, but also in cortical areas that mediate visceromotor emotion-related behaviours. On basis of this finding, during the last 10 years various studies were carry out regarding the clinical use of action observation for motor rehabilitation of sub-acute and chronic stroke patients.

  1. Threat interferes with response inhibition.

    PubMed

    Hartikainen, Kaisa M; Siiskonen, Anna R; Ogawa, Keith H

    2012-05-09

    A potential threat, such as a spider, captures attention and engages executive functions to adjust ongoing behavior and avoid danger. We and many others have reported slowed responses to neutral targets in the context of emotional distractors. This behavioral slowing has been explained in the framework of attentional competition for limited resources with emotional stimuli prioritized. Alternatively, slowed performance could reflect the activation of avoidance/freezing-type motor behaviors associated with threat. Although the interaction of attention and emotion has been widely studied, little is known on the interaction between emotion and executive functions. We studied how threat-related stimuli (spiders) interact with executive performance and whether the interaction profile fits with a resource competition model or avoidance/freezing-type motor behaviors. Twenty-one young healthy individuals performed a Go-NoGo visual discrimination reaction time (RT) task engaging several executive functions with threat-related and emotionally neutral distractors. The threat-related distractors had no effect on the RT or the error rate in the Go trials. The NoGo error rate, reflecting failure in response inhibition, increased significantly because of threat-related distractors in contrast to neutral distractors, P less than 0.05. Thus, threat-related distractors temporarily impaired response inhibition. Threat-related distractors associated with increased commission errors and no effect on RT does not suggest engagement of avoidance/freezing-type motor behaviors. The results fit in the framework of the resource competition model. A potential threat calls for evaluation of affective significance as well as inhibition of undue emotional reactivity. We suggest that these functions tax executive resources and may render other executive functions, such as response inhibition, temporarily compromised when the demands for resources exceed availability.

  2. Interaction without intent: the shape of the social world in Huntington’s disease

    PubMed Central

    Rickards, Hugh E.

    2015-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative condition. Patients with this movement disorder can exhibit deficits on tasks involving Theory of Mind (ToM): the ability to understand mental states such as beliefs and emotions. We investigated mental state inference in HD in response to ambiguous animations involving geometric shapes, while exploring the impact of symptoms within cognitive, emotional and motor domains. Forty patients with HD and twenty healthy controls described the events in videos showing random movements of two triangles (i.e. floating), simple interactions (e.g. following) and more complex interactions prompting the inference of mental states (e.g. one triangle encouraging the other). Relationships were explored between animation interpretation and measures of executive functioning, alexithymia and motor symptoms. Individuals with HD exhibited alexithymia and a reduced tendency to spontaneously attribute intentions to interacting triangles on the animations task. Attribution of intentions on the animations task correlated with motor symptoms and burden of pathology. Importantly, patients without motor symptoms showed similar ToM deficits despite intact executive functions. Subtle changes in ToM that are unrelated to executive dysfunction could therefore feature in basal ganglia disorders prior to motor onset. PMID:25680992

  3. The Contributions of Cerebro-Cerebellar Circuitry to Executive Verbal Working Memory

    PubMed Central

    Marvel, Cherie L.; Desmond, John E.

    2009-01-01

    Contributions of cerebro-cerebellar function to executive verbal working memory were examined using event-related functional magnetic resonance imaging (fMRI) while 16 subjects completed two versions of the Sternberg task. In both versions subjects were presented with two or six target letters during the encoding phase, which were held in memory during the maintenance phase. A single probe letter was presented during the retrieval phase. In the “match condition”, subjects decided whether the probe matched the target letters. In the “executive condition”, subjects created a new probe by counting two alphabetical letters forward (e.g., f → h) and decided whether the new probe matched the target letters. Neural activity during the match and executive conditions was compared during each phase of the task. There were four main findings. First, cerebro-cerebellar activity increased as a function of executive load. Second, the dorsal cerebellar dentate co-activated with the supplementary motor area (SMA) during encoding. This likely represented the formation of an articulatory (motor) trajectory. Third, the ventral cerebellar dentate co-activated with anterior prefrontal regions BA 9/46 and the pre-SMA during retrieval. This likely represented the manipulation of information and formation of a response. A functional dissociation between the dorsal “motor” dentate and “cognitive” ventral dentate agrees with neuroanatomical tract tracing studies that have demonstrated separate neural pathways involving each region of the dentate: the dorsal dentate projects to frontal motor areas (including the SMA), and the ventral dentate projects to frontal cognitive areas (including BA 9/46 and the pre-SMA). Finally, activity during the maintenance phase in BA 9, anterior insula, pre-SMA and ventral dentate predicted subsequent accuracy of response to the probe during the retrieval phase. This finding underscored the significant contribution of the pre-SMA/ventral dentate pathway – observed several seconds prior to any motor response to the probe -- to executive verbal working memory. PMID:19811779

  4. Perceptual Aspects of Motor Performance.

    ERIC Educational Resources Information Center

    Gallahue, David L.

    Perceptual-motor functioning is a cyclic process involving: (1) organizing incoming sensory stimuli with past or stored perceptual information; (2) making motor (internal) decisions based on the combination of sensory (present) and perceptual (past) information; (3) executing the actual movement (observable act) itself; and (4) evaluating the act…

  5. Plasticity and response to action observation: a longitudinal FMRI study of potential mirror neurons in patients with subacute stroke.

    PubMed

    Brunner, Iris C; Skouen, Jan Sture; Ersland, Lars; Grüner, Renate

    2014-01-01

    Action observation has been suggested as a possible gateway to retraining arm motor function post stroke. However, it is unclear if the neuronal response to action observation is affected by stroke and if it changes during the course of recovery. To examine longitudinal changes in neuronal activity in a group of patients with subacute stroke when observing and executing a bimanual movement task. Eighteen patients were examined twice using 3-T functional magnetic resonance imaging; 1 to 2 weeks and 3 months post stroke symptom onset. Eighteen control participants were examined once. Image time series were analyzed (SPM8) and correlated with clinical motor function scores. During action observation and execution, an overlap of neuronal activation was observed in the superior and inferior parietal lobe, precentral gyrus, insula, and inferior temporal gyrus in both control participants and patients (P < .05; false discovery rate corrected). The neuronal response in the observation task increased from 1 to 2 weeks to 3 months after stroke. Most activated clusters were observed in the inferior temporal gyrus, the thalamus and movement-related areas, such as the premotor, supplementary and motor cortex (BA4, BA6). Increased activation of cerebellum and premotor area correlated with improved arm motor function. Most patients had regained full movement ability. Plastic changes in neurons responding to action observation and action execution occurred in accordance with clinical recovery. The involvement of motor areas when observing actions early and later after stroke may constitute a possible access to the motor system. © The Author(s) 2014.

  6. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  7. Neuropsychological function in children with primary complex motor stereotypies.

    PubMed

    Mahone, E Mark; Ryan, Matthew; Ferenc, Lisa; Morris-Berry, Christina; Singer, Harvey S

    2014-10-01

    Complex motor stereotypies (CMS) are patterned, repetitive, rhythmic, and involuntary movements that persist over time. They are divided into two subgroups dependent on the presence of other developmental problems: 'primary' (development is otherwise typical) or 'secondary' (associated with autism, intellectual disability, or sensory deficits). There are no currently published studies that examine neuropsychological function in children with primary CMS. This case-control study examines whether children with primary CMS manifest neurobehavioral deficits. Fifty-seven children with primary CMS (32 males, 25 females; mean age 6y 8mo, SD 2y 4mo, range 4-12y) with negative screens for autism and 57 comparison participants (32 males, 25 females; mean age 6y 6mo, SD 2y 1mo) completed neuropsychological assessments of IQ, reading ability, attention, language, and motor and executive functions. Parents completed ratings of their child's repetitive movement severity. The CMS group performed significantly less well than comparison participants on motor skills and IQ tests (both p<0.01), although IQ was consistently in the average range. One-third of the CMS group showed signs of developmental motor coordination difficulties. Parent report of stereotypy severity was significantly associated with parent report of inattention and executive dysfunction. Children with primary CMS were found to have largely intact neuropsychological profiles. Stereotypy severity appears to be associated with executive dysfunction. Although motor difficulties were observed in children with CMS, these were not correlated with parent report of symptom severity. © 2014 Mac Keith Press.

  8. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

    PubMed

    Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R

    2017-10-01

    We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    PubMed

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  10. Functional Magnetic Resonance Imaging of Working Memory and Executive Dysfunction in Systemic Lupus Erythematosus and Antiphospholipid Antibody-Positive Patients.

    PubMed

    Kozora, E; Uluğ, A M; Erkan, D; Vo, A; Filley, C M; Ramon, G; Burleson, A; Zimmerman, R; Lockshin, M D

    2016-11-01

    Standardized cognitive tests and functional magnetic resonance imaging (fMRI) studies of systemic lupus erythematosus (SLE) patients demonstrate deficits in working memory and executive function. These neurobehavioral abnormalities are not well studied in antiphospholipid syndrome, which may occur independently of or together with SLE. This study compares an fMRI paradigm involving motor skills, working memory, and executive function in SLE patients without antiphospholipid antibody (aPL) (the SLE group), aPL-positive non-SLE patients (the aPL-positive group), and controls. Brain MRI, fMRI, and standardized cognitive assessment results were obtained from 20 SLE, 20 aPL-positive, and 10 healthy female subjects with no history of neuropsychiatric abnormality. Analysis of fMRI data showed no differences in performance across groups on bilateral motor tasks. When analysis of variance was used, significant group differences were found in 2 executive function tasks (word generation and word rhyming) and in a working memory task (N-Back). Patients positive for aPL demonstrated higher activation in bilateral frontal, temporal, and parietal cortices compared to controls during working memory and executive function tasks. SLE patients also demonstrated bilateral frontal and temporal activation during working memory and executive function tasks. Compared to controls, both aPL-positive and SLE patients had elevated cortical activation, primarily in the frontal lobes, during tasks involving working memory and executive function. These findings are consistent with cortical overactivation as a compensatory mechanism for early white matter neuropathology in these disorders. © 2016, American College of Rheumatology.

  11. Identifying patterns of motor performance, executive functioning, and verbal ability in preschool children: A latent profile analysis.

    PubMed

    Houwen, Suzanne; Kamphorst, Erica; van der Veer, Gerda; Cantell, Marja

    2018-04-30

    A relationship between motor performance and cognitive functioning is increasingly being recognized. Yet, little is known about the precise nature of the relationship between both domains, especially in early childhood. To identify distinct constellations of motor performance, executive functioning (EF), and verbal ability in preschool aged children; and to explore how individual and contextual variables are related to profile membership. The sample consisted of 119 3- to 4-year old children (62 boys; 52%). The home based assessments consisted of a standardized motor test (Movement Assessment Battery for Children - 2), five performance-based EF tasks measuring inhibition and working memory, and the Receptive Vocabulary subtest from the Wechsler Preschool and Primary Scale of Intelligence Third Edition. Parents filled out the Behavior Rating Inventory of Executive Function - Preschool version. Latent profile analysis (LPA) was used to delineate profiles of motor performance, EF, and verbal ability. Chi-square statistics and multinomial logistic regression analysis were used to examine whether profile membership was predicted by age, gender, risk of motor coordination difficulties, ADHD symptomatology, language problems, and socioeconomic status (SES). LPA yielded three profiles with qualitatively distinct response patterns of motor performance, EF, and verbal ability. Quantitatively, the profiles showed most pronounced differences with regard to parent ratings and performance-based tests of EF, as well as verbal ability. Risk of motor coordination difficulties and ADHD symptomatology were associated with profile membership, whereas age, gender, language problems, and SES were not. Our results indicate that there are distinct subpopulations of children who show differential relations with regard to motor performance, EF, and verbal ability. The fact that we found both quantitative as well as qualitative differences between the three patterns of profiles underscores the need for a person-centered approach with a focus on patterns of individual characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Motor Coordination and Executive Functions

    ERIC Educational Resources Information Center

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  13. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    PubMed

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  14. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    PubMed Central

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  15. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  16. A 12-Week Cycling Training Regimen Improves Gait and Executive Functions Concomitantly in People with Parkinson’s Disease

    PubMed Central

    Nadeau, Alexandra; Lungu, Ovidiu; Duchesne, Catherine; Robillard, Marie-Ève; Bore, Arnaud; Bobeuf, Florian; Plamondon, Réjean; Lafontaine, Anne-Louise; Gheysen, Freja; Bherer, Louis; Doyon, Julien

    2017-01-01

    Background: There is increasing evidence that executive functions and attention are associated with gait and balance, and that this link is especially prominent in older individuals or those who are afflicted by neurodegenerative diseases that affect cognition and/or motor functions. People with Parkinson’s disease (PD) often present gait disturbances, which can be reduced when PD patients engage in different types of physical exercise (PE), such as walking on a treadmill. Similarly, PE has also been found to improve executive functions in this population. Yet, no exercise intervention investigated simultaneously gait and non-motor symptoms (executive functions, motor learning) in PD patients. Objective: To assess the impact of aerobic exercise training (AET) using a stationary bicycle on a set of gait parameters (walking speed, cadence, step length, step width, single and double support time, as well as variability of step length, step width and double support time) and executive functions (cognitive inhibition and flexibility) in sedentary PD patients and healthy controls. Methods: Two groups, 19 PD patients (Hoehn and Yahr ≤2) and 20 healthy adults, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. Results: Aerobic capacity, as well as performance of motor learning and on cognitive inhibition, increased significantly in both groups after the training regimen, but only PD patients improved their walking speed and cadence (all p < 0.05; with no change in the step length). Moreover, in PD patients, training-related improvements in aerobic capacity correlated positively with improvements in walking speed (r = 0.461, p < 0.05). Conclusion: AET using stationary bicycle can independently improve gait and cognitive inhibition in sedentary PD patients. Given that increases in walking speed were obtained through increases in cadence, with no change in step length, our findings suggest that gait improvements are specific to the type of motor activity practiced during exercise (i.e., pedaling). In contrast, the improvements seen in cognitive inhibition were, most likely, not specific to the type of training and they could be due to indirect action mechanisms (i.e., improvement of cardiovascular capacity). These results are also relevant for the development of targeted AET interventions to improve functional autonomy in PD patients. PMID:28127282

  17. Decreased functional connectivity of insula-based network in young adults with internet gaming disorder.

    PubMed

    Zhang, Yanzhen; Mei, Wei; Zhang, John X; Wu, Qiulin; Zhang, Wei

    2016-09-01

    The insula is a region that integrates interoception and drug urges, but little is known about its role in behavioral addiction such as internet addiction. We investigated insula-based functional connectivity in participants with internet gaming disorder (IGD) and healthy controls (HC) using resting-state functional MRI. The right and left insula subregions (posterior, ventroanterior, and dorsoanterior) were used as seed regions in a connectivity analysis. Compared with the HC group, the IGD group showed decreased functional connectivity between left posterior insula and bilateral supplementary motor area and middle cingulated cortex, between right posterior insula and right superior frontal gyrus, and decreased functional integration between insular subregions. The finding of reduced functional connectivity between the interoception and the motor/executive control regions is interpreted to reflect reduced ability to inhibit motor responses to internet gaming or diminished executive control over craving for internet gaming in IGD. The results support the hypothesis that IGD is associated with altered insula-based network, similar to substance addiction such as smoking.

  18. Executive function predicts risk of falls in older adults without balance impairment

    PubMed Central

    2011-01-01

    Background Executive dysfunction has previously been found to be a risk factor for falls. The aim of this study is to investigate the association between executive dysfunction and risk of falling and to determine if this association is independent of balance. Methods Participants were 188 community-dwelling individuals aged 65 and older. All participants underwent baseline and annual evaluations with review of health history, standardized neurologic examination, neuropsychological testing, and qualitative and quantitative assessment of motor function. Falls were recorded prospectively using weekly online health forms. Results During 13 months of follow-up, there were 65 of 188 participants (34.6%) who reported at least one fall. Univariate analysis showed that fallers were more likely to have lower baseline scores in executive function than non-fallers (p = 0.03). Among participants without balance impairment we found that higher executive function z-scores were associated with lower fall counts (p = 0.03) after adjustment for age, sex, health status and prior history of falls using negative binomial regression models. This relationship was not present among participants with poor balance. Conclusions Lower scores on executive function tests are a risk factor for falls in participants with minimal balance impairment. However, this effect is attenuated in individuals with poor balance where physical or more direct motor systems factors may play a greater role in fall risk. PMID:22070602

  19. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    PubMed Central

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  20. The influence of playing a non-reward game on motor ability and executive function in Parkinson's disease.

    PubMed

    Araújo Lima, Alisson Menezes; Cordeiro Hirata, Fabiana de Campos; Sales de Bruin, Gabriela; Salani Mota, Rosa Maria; Bruin, Veralice Meireles Sales de

    2012-01-01

    The aim of this study is to evaluate the acute effect of playing games on executive function and motor ability in Parkinson's disease (PD). Consecutive cases with PD were studied with the Unified Parkinson Disease Rating Scale (UPDRS), Mini-Mental State examination (MMSE), Beck Depression Inventory (BDI), Stroop test, finger tapping and 14-meter walk test. After randomization, patients performed a game of dominoes and were tested before and after experiment being further categorized as control, winners or non-winners. Forty patients, 27 male (67.5%), aged 48 to 84 years (63.2 ± 8.5), Hoehn & Yahr I to III were included. Twenty-eight (70%) presented depressive symptoms (BDI > 10). Groups (Control N = 13; Winners = 14 and Non-winners = 13) were not different regarding age, disease duration, age at onset, BMI, MMSE scores, depressive symptoms, levodopa dose, and previous practice of games. Winners presented significantly better results on executive function (Stroop test, p = 0.002) and on motor activity (Finger tapping, p = 0.01). Non-winners showed a trend of better performance in the 14-meter-walk test. This study shows that the practice of a non-reward game acutely improved memory and motor skills in PD. Our results suggest a role for the reward system in the modulation of the dopaminergic function of the basal ganglia in these patients.

  1. Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey

    PubMed Central

    Rozzi, Stefano; Coudé, Gino

    2015-01-01

    The study of the neural mechanisms underlying grasping actions showed that cognitive functions are deeply embedded in motor organization. In the first part of this review, we describe the anatomical structure of the motor cortex in the monkey and the cortical and sub-cortical connections of the different motor areas. In the second part, we review the neurophysiological literature showing that motor neurons are not only involved in movement execution, but also in the transformation of object physical features into motor programs appropriate to grasp them (through visuo-motor transformations). We also discuss evidence indicating that motor neurons can encode the goal of motor acts and the intention behind action execution. Then, we describe one of the mechanisms—the mirror mechanism—considered to be at the basis of action understanding and intention reading, and describe the anatomo-functional pathways through which information about the social context can reach the areas containing mirror neurons. Finally, we briefly show that a clear similarity exists between monkey and human in the organization of the motor and mirror systems. Based on monkey and human literature, we conclude that the mirror mechanism relies on a more extended network than previously thought, and possibly subserves basic social functions. We propose that this mechanism is also involved in preparing appropriate complementary response to observed actions, allowing two individuals to become attuned and cooperate in joint actions. PMID:26236258

  2. Cognitive and fine motor deficits in a pediatric sickle cell disease cohort of mixed ethnic origin.

    PubMed

    Burkhardt, Luise; Lobitz, Stephan; Koustenis, Elisabeth; Rueckriegel, Stefan Mark; Hernáiz Driever, Pablo

    2017-02-01

    Cerebrovascular disease is an important feature of pediatric sickle cell disease (SCD) and may lead to cognitive and motor impairment. Our cross-sectional study examined the incidence and severity of these impairments in a pediatric cohort without clinical cerebrovascular events from Berlin of mixed ethnic origin. Thirty-two SCD patients (mean age 11.14 years, range 7.0-17.25 years; males 14) were evaluated for full-scale intelligence (IQ) (German version WISC-III), fine motor function (digital writing tablet), and executive function (planning, attention, working memory, and visual-spatial abilities) with the Amsterdam Neuropsychological Tasks (ANT) program and the Tower of London (ToL). Data on clinical risk factors were retrieved from medical records. Full-scale IQ of patients was preserved, whereas performance IQ was significantly reduced (91.19 (SD 12.17) d = 0.7, p = 0.007). SCD patients scored significantly lower than healthy peers when tested for executive and fine motor functions, e.g., planning time in the ToL (6.73 s (SD 3.21) vs. 5.9 s in healthy peers (SD 2.33), d = 0.5, p = <0.001) and frequency on the writing tablet (mean z score -0.79, d = 0.7, p < 0.001). No clinical risk factors were significantly associated with incidence and severity of cognitive and motor deficits. Despite the preservation of full-scale IQ, our SCD cohort of mixed origin exhibited inferior executive abilities and reduced fine motor skills. Our study is limited by the small size of our cohort as well as the lack for control of sociodemographic and socioeconomic factors modulating higher functions but highlights the need for early screening, prevention, and specific interventions for these deficits.

  3. Investigating executive functions in children with severe speech and movement disorders using structured tasks.

    PubMed

    Stadskleiv, Kristine; von Tetzchner, Stephen; Batorowicz, Beata; van Balkom, Hans; Dahlgren-Sandberg, Annika; Renner, Gregor

    2014-01-01

    Executive functions are the basis for goal-directed activity and include planning, monitoring, and inhibition, and language seems to play a role in the development of these functions. There is a tradition of studying executive function in both typical and atypical populations, and the present study investigates executive functions in children with severe speech and motor impairments who are communicating using communication aids with graphic symbols, letters, and/or words. There are few neuropsychological studies of children in this group and little is known about their cognitive functioning, including executive functions. It was hypothesized that aided communication would tax executive functions more than speech. Twenty-nine children using communication aids and 27 naturally speaking children participated. Structured tasks resembling everyday activities, where the action goals had to be reached through communication with a partner, were used to get information about executive functions. The children (a) directed the partner to perform actions like building a Lego tower from a model the partner could not see and (b) gave information about an object without naming it to a person who had to guess what object it was. The executive functions of planning, monitoring, and impulse control were coded from the children's on-task behavior. Both groups solved most of the tasks correctly, indicating that aided communicators are able to use language to direct another person to do a complex set of actions. Planning and lack of impulsivity was positively related to task success in both groups. The aided group completed significantly fewer tasks, spent longer time and showed more variation in performance than the comparison group. The aided communicators scored lower on planning and showed more impulsivity than the comparison group, while both groups showed an equal degree of monitoring of the work progress. The results are consistent with the hypothesis that aided language tax executive functions more than speech. The results may also indicate that aided communicators have less experience with these kinds of play activities. The findings broaden the perspective on executive functions and have implications for interventions for motor-impaired children developing aided communication.

  4. Investigating executive functions in children with severe speech and movement disorders using structured tasks

    PubMed Central

    Stadskleiv, Kristine; von Tetzchner, Stephen; Batorowicz, Beata; van Balkom, Hans; Dahlgren-Sandberg, Annika; Renner, Gregor

    2014-01-01

    Executive functions are the basis for goal-directed activity and include planning, monitoring, and inhibition, and language seems to play a role in the development of these functions. There is a tradition of studying executive function in both typical and atypical populations, and the present study investigates executive functions in children with severe speech and motor impairments who are communicating using communication aids with graphic symbols, letters, and/or words. There are few neuropsychological studies of children in this group and little is known about their cognitive functioning, including executive functions. It was hypothesized that aided communication would tax executive functions more than speech. Twenty-nine children using communication aids and 27 naturally speaking children participated. Structured tasks resembling everyday activities, where the action goals had to be reached through communication with a partner, were used to get information about executive functions. The children (a) directed the partner to perform actions like building a Lego tower from a model the partner could not see and (b) gave information about an object without naming it to a person who had to guess what object it was. The executive functions of planning, monitoring, and impulse control were coded from the children's on-task behavior. Both groups solved most of the tasks correctly, indicating that aided communicators are able to use language to direct another person to do a complex set of actions. Planning and lack of impulsivity was positively related to task success in both groups. The aided group completed significantly fewer tasks, spent longer time and showed more variation in performance than the comparison group. The aided communicators scored lower on planning and showed more impulsivity than the comparison group, while both groups showed an equal degree of monitoring of the work progress. The results are consistent with the hypothesis that aided language tax executive functions more than speech. The results may also indicate that aided communicators have less experience with these kinds of play activities. The findings broaden the perspective on executive functions and have implications for interventions for motor-impaired children developing aided communication. PMID:25249999

  5. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings.

    PubMed

    Halje, Pär; Seeck, Margitta; Blanke, Olaf; Ionta, Silvio

    2015-12-01

    The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Behavioral Self-Regulation and Executive Function Both Predict Visuomotor Skills and Early Academic Achievement

    ERIC Educational Resources Information Center

    Becker, Derek R.; Miao, Alicia; Duncan, Robert; McClelland, Megan M.

    2014-01-01

    The present study explored direct and interactive effects between behavioral self-regulation (SR) and two measures of executive function (EF, inhibitory control and working memory), with a fine motor measure tapping visuomotor skills (VMS) in a sample of 127 prekindergarten and kindergarten children. It also examined the relative contribution of…

  7. Cognitive dysfunction in lower motor neuron disease: executive and memory deficits in progressive muscular atrophy.

    PubMed

    Raaphorst, Joost; de Visser, Marianne; van Tol, Marie-José; Linssen, Wim H J P; van der Kooi, Anneke J; de Haan, Rob J; van den Berg, Leonard H; Schmand, Ben

    2011-02-01

    In contrast with findings in amyotrophic lateral sclerosis (ALS), cognitive impairments have as yet not been shown in the lower motor neuron variant of motor neuron disease, progressive spinal muscular atrophy (PMA). The objective of this study was to investigate cognitive function in PMA and to compare the cognitive profile with that of ALS. In addition, visuospatial functions were assessed comprehensively; these tests are underrepresented in earlier neuropsychological investigations in ALS. 23 PMA and 30 ALS patients (vital capacity >70% of predicted value) underwent a neuropsychological assessment adapted to motor impairments: global cognitive and executive functioning, psychomotor speed, memory, language, attention and visuospatial skills. The results were compared with age, education and sex matched controls and with normative data. Compared with controls, PMA patients performed worse on attention/working memory (digit span backward), category fluency and the Mini-Mental State Examination. Compared with normative data, PMA patients most frequently showed impairment on three measures: letter-number sequencing, and immediate and delayed story recall. 17% of PMA patients showed cognitive impairment, defined as performance below 2 SDs from the mean of normative data on at least three neuropsychological tests. In ALS, similar but more extensive cognitive deficits were found. Visuospatial dysfunction was not found in PMA and ALS. 17% of PMA patients have executive and memory impairments. PMA with cognitive impairment adds a formerly unknown phenotype to the existing classification of motor neuron diseases.

  8. Influence of working memory and executive function on stair ascent and descent in young and older adults.

    PubMed

    Gaillardin, Florence; Baudry, Stéphane

    2018-06-01

    This study assessed the influence of attention division, working memory and executive function on stair ascent and descent in young and older adults. Twenty young (25.5 ± 2.1 yrs) and 20 older adults (68.4 ± 5.4 yrs) ascended and descended a 3-step staircase with no simultaneous cognitive task (single-motor task) or while performing a cognitive task (dual-task condition). The cognitive task involved either 1) recalling a word list of the subject's word-span minus 2 words (SPAN-2) to assess the attention division effect, 2) a word list of subject's word-span (SPAN-O) to assess the working memory effect, or 3) recalling in alphabetical order, a word list of the subject's word-span (SPAN-A) to assess the executive function effect. Word-span corresponds to the longest string of words that can be recalled correctly. The duration of ascent and descent of stairs was used to assess the cognitive-motor interaction. Stair ascent and descent duration did not differ between age groups for the single-motor task, and was similar between single-motor task and SPAN-2 in both groups (p > 0.05). In contrast, stair ascent and descent duration increased with SPAN-O compared with SPAN-2 for both groups (p < 0.01). Stair ascent (p = 0.017) and descent (p = 0.008) were longer in SPAN-A than SPAN-O only in older adults. Healthy aging was not associated with a decrease in the capacity to perform motor-cognitive dual tasks that involved ascending and descending of stairs when the cognitive task only required working memory. However, the decrease in dual-task performance involving executive functioning may reflect a subclinical cognitive decline in healthy older adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. An Evidence Based Review of Acute and Long-Term Effects of Cannabis Use on Executive Cognitive Functions

    PubMed Central

    Crean, Rebecca D.; Crane, Natania A.; Mason, Barbara J.

    2011-01-01

    Cannabis use has been shown to impair cognitive functions on a number of levels—from basic motor coordination to more complex executive function tasks, such as the ability to plan, organize, solve problems, make decisions, remember, and control emotions and behavior. These deficits differ in severity depending on the quantity, recency, age of onset and duration of marijuana use. Understanding how cannabis use impairs executive function is important. Individuals with cannabis-related impairment in executive functions have been found to have trouble learning and applying the skills required for successful recovery, putting them at increased risk for relapse to cannabis use. Here we review the research on the acute, residual, and long-term effects of cannabis use on executive functions, and discuss the implications for treatment. PMID:21321675

  10. Swallowing Preparation and Execution: Insights from a Delayed-Response Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Toogood, Jillian A; Smith, Rebecca C; Stevens, Todd K; Gati, Joe S; Menon, Ravi S; Theurer, Julie; Weisz, Sarah; Affoo, Rebecca H; Martin, Ruth E

    2017-08-01

    The present study sought to elucidate the functional contributions of sub-regions of the swallowing neural network in swallowing preparation and swallowing motor execution. Seven healthy volunteers participated in a delayed-response, go, no-go functional magnetic resonance imaging study involving four semi-randomly ordered activation tasks: (i) "prepare to swallow," (ii) "voluntary saliva swallow," (iii) "do not prepare to swallow," and (iv) "do not swallow." Results indicated that brain activation was significantly greater during swallowing preparation, than during swallowing execution, within the rostral and intermediate anterior cingulate cortex bilaterally, premotor cortex (left > right hemisphere), pericentral cortex (left > right hemisphere), and within several subcortical nuclei including the bilateral thalamus, caudate, and putamen. In contrast, activation within the bilateral insula and the left dorsolateral pericentral cortex was significantly greater in relation to swallowing execution, compared with swallowing preparation. Still other regions, including a more inferior ventrolateral pericentral area, and adjoining Brodmann area 43 bilaterally, and the supplementary motor area, were activated in relation to both swallowing preparation and execution. These findings support the view that the preparation, and subsequent execution, of swallowing are mediated by a cascading pattern of activity within the sub-regions of the bilateral swallowing neural network.

  11. Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke.

    PubMed

    Rozental-Iluz, Clara; Zeilig, Gabi; Weingarden, Harold; Rand, Debbie

    2016-08-01

    Executive function deficits negatively impact independence and participation in everyday life of individuals with chronic stroke. Therefore, it is important to explore therapeutic interventions to improve executive functions. The aim of this study was to determine the effectiveness of a 3-month interactive video-game group intervention compared to a traditional motor group intervention for improving executive functions in individuals with chronic stroke. This study is a secondary analysis of a single-blind randomized controlled trial for improving factors related to physical activity of individuals with chronic stroke. Assessments were administered pre and post the intervention and at 3-month follow-up by assessors blind to treatment allocation. Thirty-nine individuals with chronic stroke with executive function deficits participated in an interactive video-game group intervention (N.=20) or a traditional group intervention (N.=19). The intervention included two 1-hour group sessions per week for three months, either playing video-games or performing traditional exercises/activities. Executive function deficits were assessed using The Trail Making Test (Parts A and B) and by two performance-based assessments; the Bill Paying Task from the Executive Function Performance Test (EFPT) and the Executive Function Route-Finding Task (EFRT). Following intervention, scores for the Bill Paying Task (EFPT) decreased by 27.5% and 36.6% for the participants in the video-game and traditional intervention, respectively (F=17.3, P<0.000) and continued to decrease in the video-game group with small effect sizes. Effect size was small to medium for the TMT-B (F=0.003, P=0.954) and EFRT (F=1.2, P=0.28), without any statistical significance difference. Interactive video-games provide combined cognitive-motor stimulation and therefore have potential to improve executive functioning of individuals with chronic stroke. Further research is needed. These findings highlight the potential of utilizing interactive video-games in a small group for keeping these individuals active, while maintaining and improving executive functioning especially for individuals with chronic stroke, who have completed their formal rehabilitation.

  12. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls

    PubMed Central

    Raichlen, David A.; Bharadwaj, Pradyumna K.; Fitzhugh, Megan C.; Haws, Kari A.; Torre, Gabrielle-Ann; Trouard, Theodore P.; Alexander, Gene E.

    2016-01-01

    Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between-group differences, there were significant associations between connectivity, self-reported physical activity, and estimates of maximum aerobic capacity, suggesting a dose-response relationship between engagement in endurance running and connectivity strength. Together these results suggest that differences in experience with endurance running are associated with differences in functional brain connectivity. High intensity aerobic activity that requires sustained, repetitive locomotor and navigational skills may stress cognitive domains in ways that lead to altered brain connectivity, which in turn has implications for understanding the beneficial role of exercise for brain and cognitive function over the lifespan. PMID:28018192

  13. Detection of reduced interhemispheric cortical communication during task execution in multiple sclerosis patients using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jimenez, Jon J.; Yang, Runze; Nathoo, Nabeela; Varshney, Vishal P.; Golestani, Ali-Mohammad; Goodyear, Bradley G.; Metz, Luanne M.; Dunn, Jeff F.

    2014-07-01

    Multiple sclerosis (MS) impairs brain activity through demyelination and loss of axons. Increased brain activity is accompanied by increases in microvascular hemoglobin oxygen saturation (oxygenation) and total hemoglobin, which can be measured using functional near-infrared spectroscopy (fNIRS). Due to the potentially reduced size and integrity of the white matter tracts within the corpus callosum, it may be expected that MS patients have reduced functional communication between the left and right sides of the brain; this could potentially be an indicator of disease progression. To assess interhemispheric communication in MS, we used fNIRS during a unilateral motor task and the resting state. The magnitude of the change in hemoglobin parameters in the motor cortex was significantly reduced in MS patients during the motor task relative to healthy control subjects. There was also a significant decrease in interhemispheric communication between the motor cortices (expressed as coherence) in MS patients compared to controls during the motor task, but not during the resting state. fNIRS assessment of interhemispheric coherence during task execution may be a useful marker in disorders with white matter damage or axonal loss, including MS.

  14. [Neuropsychological evaluation of a case of organic personality disorder due to penetrating brain injury].

    PubMed

    Sanz de la Torre, J C; Pérez-Ríos, M

    1996-06-01

    In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.

  15. A Rationale for Music Training to Enhance Executive Functions in Parkinson's Disease: An Overview of the Problem.

    PubMed

    Lesiuk, Teresa; Bugos, Jennifer A; Murakami, Brea

    2018-04-22

    Music listening interventions such as Rhythmic Auditory Stimulation can improve mobility, balance, and gait in Parkinson’s Disease (PD). Yet, the impact of music training on executive functions is not yet known. Deficits in executive functions (e.g., attention, processing speed) in patients with PD result in gait interference, deficits in emotional processing, loss of functional capacity (e.g., intellectual activity, social participation), and reduced quality of life. The model of temporal prediction and timing suggests two networks collectively contribute to movement generation and execution: the basal ganglia-thalamocortical network (BGTC) and the cerebellar-thalamocortical network (CTC). Due to decreases in dopamine responsible for the disruption of the BGTC network in adults with PD, it is hypothesized that rhythmic auditory cues assist patients through recruiting an alternate network, the CTC, which extends to the supplementary motor areas (SMA) and the frontal cortices. In piano training, fine motor finger movements activate the cerebellum and SMA, thereby exercising the CTC network. We hypothesize that exercising the CTC network through music training will contribute to enhanced executive functions. Previous research suggested that music training enhances cognitive performance (i.e., working memory and processing speed) in healthy adults and adults with cognitive impairments. This review and rationale provides support for the use of music training to enhance cognitive outcomes in patients with Parkinson’s Disease (PD).

  16. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    PubMed

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Driving Simulator Performance in Novice Drivers with Autism Spectrum Disorder: The Role of Executive Functions and Basic Motor Skills

    ERIC Educational Resources Information Center

    Cox, Stephany M.; Cox, Daniel J.; Kofler, Michael J.; Moncrief, Matthew A.; Johnson, Ronald J.; Lambert, Ann E.; Cain, Sarah A.; Reeve, Ronald E.

    2016-01-01

    Previous studies have shown that individuals with autism spectrum disorder (ASD) demonstrate poorer driving performance than their peers and are less likely to obtain a driver's license. This study aims to examine the relationship between driving performance and executive functioning for novice drivers, with and without ASD, using a driving…

  18. Competitive versus Cooperative Exergame Play for African American Adolescents' Executive Function Skills: Short-Term Effects in a Long-Term Training Intervention

    ERIC Educational Resources Information Center

    Staiano, Amanda E.; Abraham, Anisha A.; Calvert, Sandra L.

    2012-01-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American…

  19. Cognition and bimanual performance in children with unilateral cerebral palsy: protocol for a multicentre, cross-sectional study.

    PubMed

    Hoare, Brian; Ditchfield, Michael; Thorley, Megan; Wallen, Margaret; Bracken, Jenny; Harvey, Adrienne; Elliott, Catherine; Novak, Iona; Crichton, Ali

    2018-05-08

    Motor outcomes of children with unilateral cerebral palsy are clearly documented and well understood, yet few studies describe the cognitive functioning in this population, and the associations between the two is poorly understood. Using two hands together in daily life involves complex motor and cognitive processes. Impairment in either domain may contribute to difficulties with bimanual performance. Research is yet to derive whether, and how, cognition affects a child's ability to use their two hands to perform bimanual tasks. This study will use a prospective, cross-sectional multi-centre observational design. Children (aged 6-12 years) with unilateral cerebral palsy will be recruited from one of five Australian treatment centres. We will examine associations between cognition, bimanual performance and brain neuropathology (lesion type and severity) in a sample of 131 children. The primary outcomes are: Motor - the Assisting Hand Assessment; Cognitive - Executive Function; and Brain - lesion location on structural MRI. Secondary data collected will include: Motor - Box and Blocks, ABILHAND- Kids, Sword Test; Cognitive - standard neuropsychological measures of intelligence. We will use generalized linear modelling and structural equation modelling techniques to investigate relationships between bimanual performance, executive function and brain lesion location. This large multi-centre study will examine how cognition affects bimanual performance in children with unilateral cerebral palsy. First, it is anticipated that distinct relationships between bimanual performance and cognition (executive function) will be identified. Second, it is anticipated that interrelationships between bimanual performance and cognition will be associated with common underlying neuropathology. Findings have the potential to improve the specificity of existing upper limb interventions by providing more targeted treatments and influence the development of novel methods to improve both cognitive and motor outcomes in children with unilateral cerebral palsy. ACTRN12614000631606 ; Date of retrospective registration 29/05/2014.

  20. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  1. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  2. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit.

    PubMed

    Liepert, Joachim; Büsching, Imke; Sehle, Aida; Schoenfeld, Mircea Ariel

    2016-11-22

    Motor imagery is used for treatment of motor deficits after stroke. Clinical observations suggested that motor imagery abilities might be reduced in patients with severe sensory deficits. This study investigated the influence of somatosensory deficits on temporal (mental chronometry, MC) and spatial aspects of motor imagery abilities. Stroke patients (n = 70; <6 months after stroke) were subdivided into 3 groups according to their somatosensory functions. Group 1 (n = 31) had no sensory deficits, group 2 (n = 27) had a mild to moderate sensory impairment and group 3 (n = 12) had severe sensory deficits. Patients and a healthy age-matched control group (n = 23) participated in a mental chronometry task (Box and Block Test, BBT) and a mental rotation task (Hand Identification Test, HIT). MC abilities were expressed as a ratio (motor execution time-motor imagery time/motor execution time). MC for the affected hand was significantly impaired in group 3 in comparison to stroke patients of group 1 (p = 0.006), group 2 (p = 0.005) and healthy controls (p < 0.001). For the non-affected hand MC was similar across all groups. Stroke patients had a slower BBT motor execution than healthy controls (p < 0.001), and group 1 executed the task faster than group 3 (p = 0.002). The percentage of correct responses in the HIT was similar for all groups. Severe sensory deficits impair mental chronometry abilities but have no impact on mental rotation abilities. Future studies should explore whether the presence of severe sensory deficits in stroke patients reduces the benefit from motor imagery therapy.

  3. Motor functions of the basal ganglia.

    PubMed

    Phillips, J G; Bradshaw, J L; Iansek, R; Chiu, E

    1993-01-01

    A study of movement disorders such as Parkinson's disease and Huntington's disease can provide an indication of the motor functions of the basal ganglia. Basal-ganglia diseases affect voluntary movement and can cause involuntary movement. Deficits are often manifested during the coordination of fine multi-joint movements (e.g., handwriting). The disturbances of motor control (e.g. akinesia, bradykinesia) caused by basal-ganglia disorders are illustrated. Data suggest that the basal ganglia play an important role in the automatic execution of serially ordered complex movements.

  4. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (<0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06–0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors. PMID:25870557

  5. Neuropsychological function and suicidal behavior: attention control, memory and executive dysfunction in suicide attempt.

    PubMed

    Keilp, J G; Gorlyn, M; Russell, M; Oquendo, M A; Burke, A K; Harkavy-Friedman, J; Mann, J J

    2013-03-01

    Executive dysfunction, distinct from other cognitive deficits in depression, has been associated with suicidal behavior. However, this dysfunction is not found consistently across samples. Medication-free subjects with DSM-IV major depressive episode (major depressive disorder and bipolar type I disorder) and a past history of suicidal behavior (n = 72) were compared to medication-free depressed subjects with no history of suicidal behavior (n = 80) and healthy volunteers (n = 56) on a battery of tests assessing neuropsychological functions typically affected by depression (motor and psychomotor speed, attention, memory) and executive functions reportedly impaired in suicide attempters (abstract/contingent learning, working memory, language fluency, impulse control). All of the depressed subjects performed worse than healthy volunteers on motor, psychomotor and language fluency tasks. Past suicide attempters, in turn, performed worse than depressed non-attempters on attention and memory/working memory tasks [a computerized Stroop task, the Buschke Selective Reminding Task (SRT), the Benton Visual Retention Test (VRT) and an N-back task] but not on other executive function measures, including a task associated with ventral prefrontal function (Object Alternation). Deficits were not accounted for by current suicidal ideation or the lethality of past attempts. A small subsample of those using a violent method in their most lethal attempt showed a pattern of poor executive performance. Deficits in specific components of attention control, memory and working memory were associated with suicidal behavior in a sample where non-violent attempt predominated. Broader executive dysfunction in depression may be associated with specific forms of suicidal behavior, rather than suicidal behavior per se.

  6. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents.

    PubMed

    Liang, J; Matheson, B E; Kaye, W H; Boutelle, K N

    2014-04-01

    Childhood obesity rates have risen dramatically over the past few decades. Although obesity has been linked to poorer neurocognitive functioning in adults, much less is known about this relationship in children and adolescents. Therefore, we conducted a systematic review to examine the relationship between obesity and obesity-related behaviors with neurocognitive functioning in youth. We reviewed articles from 1976 to 2013 using PsycInfo, PubMed, Medline and Google Scholar. Search terms included cognitive function, neurocognitive function/performance, executive function, impulsivity, self-regulation, effortful control, cognitive control, inhibition, delayed gratification, memory, attention, language, motor, visuo-spatial, academic achievement, obesity, overweight, body mass index, waist-hip ratio, adiposity and body fat. Articles were excluded if participants had health problems known to affect cognitive functioning, the study used imaging as the only outcome measure, they were non-peer-reviewed dissertations, theses, review papers, commentaries, or they were non-English articles. Sixty-seven studies met inclusion criteria for this review. Overall, we found data that support a negative relationship between obesity and various aspects of neurocognitive functioning, such as executive functioning, attention, visuo-spatial performance, and motor skill. The existing literature is mixed on the effects among obesity, general cognitive functioning, language, learning, memory, and academic achievement. Executive dysfunction is associated with obesity-related behaviors, such as increased intake, disinhibited eating, and less physical activity. Physical activity is positively linked with motor skill. More longitudinal research is needed to determine the directionality of such relationships, to point towards crucial intervention time periods in the development of children, and to inform effective treatment programs.

  7. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents

    PubMed Central

    Liang, J.; Matheson, BE.; Kaye, WH.; Boutelle, KN.

    2015-01-01

    Childhood obesity rates have risen dramatically over the past few decades. Although obesity has been linked to poorer neurocognitive functioning in adults, much less is known about this relationship in children and adolescents. Therefore, we conducted a systematic review to examine the relationship between obesity and obesity-related behaviors with neurocognitive functioning in youth. We reviewed articles from 1976 to 2013 using PsycInfo, PubMed, Medline and Google Scholar. Search terms included cognitive function, neurocognitive function/performance, executive function, impulsivity, self-regulation, effortful control, cognitive control, inhibition, delayed gratification, memory, attention, language, motor, visuo-spatial, academic achievement, obesity, overweight, body mass index, waist-hip ratio, adiposity and body fat. Articles were excluded if participants had health problems known to affect cognitive functioning, the study used imaging as the only outcome measure, they were non-peer-reviewed dissertations, theses, review papers, commentaries, or they were non-English articles. Sixty-seven studies met inclusion criteria for this review. Overall, we found data that support a negative relationship between obesity and various aspects of neurocognitive functioning, such as executive functioning, attention, visuo-spatial performance, and motor skill. The existing literature is mixed on the effects among obesity, general cognitive functioning, language, learning, memory, and academic achievement. Executive dysfunction is associated with obesity-related behaviors, such as increased intake, disinhibited eating, and less physical activity. Physical activity is positively linked with motor skill. More longitudinal research is needed to determine the directionality of such relationships, to point towards crucial intervention time periods in the development of children, and to inform effective treatment programs. PMID:23913029

  8. Executive Function Capacities, Negative Driving Behavior and Crashes in Young Drivers

    PubMed Central

    Winston, Flaura K.

    2017-01-01

    Motor vehicle crashes remain a leading cause of injury and death in adolescents, with teen drivers three times more likely to be in a fatal crash when compared to adults. One potential contributing risk factor is the ongoing development of executive functioning with maturation of the frontal lobe through adolescence and into early adulthood. Atypical development resulting in poor or impaired executive functioning (as in Attention-Deficit/Hyperactivity Disorder) has been associated with risky driving and crash outcomes. However, executive function broadly encompasses a number of capacities and domains (e.g., working memory, inhibition, set-shifting). In this review, we examine the role of various executive function sub-processes in adolescent driver behavior and crash rates. We summarize the state of methods for measuring executive control and driving outcomes and highlight the great heterogeneity in tools with seemingly contradictory findings. Lastly, we offer some suggestions for improved methods and practical ways to compensate for the effects of poor executive function (such as in-vehicle assisted driving devices). Given the key role that executive function plays in safe driving, this review points to an urgent need for systematic research to inform development of more effective training and interventions for safe driving among adolescents. PMID:29143762

  9. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    PubMed

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control

    PubMed Central

    Tewari, Alia; Jog, Rachna; Jog, Mandar S.

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474

  11. The relationship between motor performance and parent-rated executive functioning in 3- to 5-year-old children: What is the role of confounding variables?

    PubMed

    Houwen, Suzanne; van der Veer, Gerda; Visser, Jan; Cantell, Marja

    2017-06-01

    It is generally agreed that motor performance and executive functioning (EF) are intertwined. As the literature on this issue concerning preschool children is scarce, we examined the relationship between motor performance and parent-rated EF in a sample of 3- to 5-year-old children with different levels of motor skill proficiency, while controlling for age, gender, socio-economic status (SES), and attention-deficit-hyperactivity disorder (ADHD) symptomatology. EF was reported by parents of 153 children (mean age 4years 1months, SD 8months; 75 male) by means of the Behaviour Rating Inventory of Executive Function-Preschool version (BRIEF-P). Parent-reported ADHD symptoms were assessed using the Hyperactivity-Inattention subscale of the Strengths and Difficulties Questionnaire3-4. In addition, the children performed the Movement Assessment Battery for Children-2 (MABC-2). Several weak to moderate relationships were found between the MABC-2 Total Score and the EF subscales. Once other variables such as age, gender, SES, and ADHD symptomatology were taken into account, the only BRIEF-P subscale that was associated with the MABC-2 Total Score was the Working Memory subscale. Compared to their typically developing peers, children who are at risk for motor coordination difficulties (⩽the 16th percentile on the MABC-2) performed poorly on the Working Memory subscale, which confirms the results of the regression analyses. The at risk group also performed significantly worse on the Planning/Organize subscale, however. This is one of the first studies investigating the relationship between motor performance and parent-rated EF in such a young age group. It shows that the relationship between motor performance and EF in young children is complex and may be influenced by the presence of confounding variables such as ADHD symptomatology. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparison of Neurocognitive Outcomes after Carotid Endarterectomy and Carotid Artery Stenting.

    PubMed

    Kim, Jerry J; Schwartz, Samuel; Wen, Johnny; deVirgilio, Christian; Lobue, Abeline; Walot, Irwin; Koopmann, Matthew; Donayre, Carlos; White, Rodney A

    2015-10-01

    Cognitive and emotional outcomes after carotid endarterectomy (CEA) and carotid artery stenting with embolic protection device (CAS + EPD) are not clear. Patients were entered prospectively into a United States Food and Drug Administration-approved single-center physician-sponsored investigational device exemption between 2004 and 2010 and received either CEA or CAS + EPD. Patients underwent cognitive testing preprocedure and at 6, 12, and 60 months postprocedure. Cognitive domains assessed included attention, memory, executive, motor function, visual spatial functioning, language, and processing speed. Beck Depression and anxiety scales were also compared. There were a total of 38 patients that met conventional indications for carotid surgery (symptomatic with ≥50% stenosis or asymptomatic with ≥70% stenosis)-12 patients underwent CEA, whereas 26 patients underwent CAS + EPD. Both CEA and CAS + EPD patients showed postprocedure improvement in memory and executive function. No differences were seen at follow-up in regards to emotional dysfunction (depression and anxiety), attention, visual spatial functioning, language, motor function, and processing speed. Only two patients underwent neuropsychiatric testing at 60 months-these CAS + EPD patients showed sustained improvement in memory, visual spatial, and executive functions. In conclusion, cognitive and emotional outcomes were similar between CEA and CAS + EPD patients.

  13. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.

    PubMed

    Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi

    2016-08-09

    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user's profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.

  15. Infant motor and cognitive abilities and subsequent executive function.

    PubMed

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.

    PubMed

    Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J

    2014-02-01

    Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.

  17. Maternal Thyroid Function in Early Pregnancy and Neuropsychological Performance of the Child at 5 Years of Age.

    PubMed

    Andersen, Stine Linding; Andersen, Stig; Liew, Zeyan; Vestergaard, Peter; Olsen, Jørn

    2018-02-01

    Abnormal maternal thyroid function in pregnancy may impair fetal brain development, but more evidence is needed to refine and corroborate the hypothesis. To estimate the association between maternal thyroid function in early pregnancy and neuropsychological performance of the child at 5 years of age. Follow-up study. A cohort of 1153 women and their children sampled from the Danish National Birth Cohort. Maternal thyroid-stimulating hormone (TSH) and free thyroxine (fT4) were measured in stored biobank sera from early pregnancy. Child neuropsychological test results (Wechsler Intelligence Scale/Test of Everyday Attention), test of motor function (Movement Assessment Battery), and results of parent and teacher reports (Behavior Rating Inventory of Executive Function/Strengths and Difficulties Questionnaire). Altogether 145 children (12.6%) were born to mothers with abnormal thyroid function in the early pregnancy. High maternal TSH and low fT4 were associated with lower child verbal intelligence quotient (adjusted mean difference TSH ≥ 10 mIU/L vs 0.1 to 2.49 mIU/L, -8.9 [95% confidence interval (CI), -15 to -2.4]; fT4 < 10 pmol/l vs 12.0 to 18.99 pmol/l, -13 [95% CI, -19 to -7.3]). Abnormal maternal thyroid function was also associated with adverse motor function and teacher-reported problems of executive function and behavior, and these associations were dominated by exposure to maternal hypothyroxinemia. Maternal thyroid hormone abnormalities were associated with adverse neuropsychological function of the child at 5 years of age. For intelligence, marked hypothyroidism was important, whereas for motor function and executive and behavior problems, maternal hypothyroxinemia was predominant. Copyright © 2017 Endocrine Society

  18. Motor and cognitive development: the role of karate.

    PubMed

    Alesi, Marianha; Bianco, Antonino; Padulo, Johnny; Vella, Francesco Paolo; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2014-04-01

    regular physical activity has an effect on biological responses in both muscles and organs that, in turn, alter the structure and functions of the brain. Therefore, this study aims at comparing motor (sprint, coordination ability and explosive legs strength skills) and cognitive abilities (working memory, attention, executive functioning) in children. 39 children with average chronological age of 9 years were divided in: Karatekas (n=19) and Sedentary (n=20) groups. Their abilities were measured by motor and cognitive tests. Motor skills were assessed through a battery composed by the 20 mt Sprint test, the Agility test and the Standing board jump Test. Cognitive profile was assessed by a battery of tests derived from BVN 5-11, "Batteria di Valutazione Neuropsicologica per l'Et à Evolutiva": Visual discrimination test, Reaction time test, Forwards and Backwards Digit Span Tests, Corsi Block-Tapping test and Tower of London. our results reveal significant differences between two groups (p < 0.05). Karate children show better speed times, explosive legs strength and coordination skills. They scored better on working memory, visual selective attention and executive functions. karate exercise training shows global benefits resulting in physiological and psychological gains in children.

  19. Motor and cognitive development: the role of karate

    PubMed Central

    Alesi, Marianha; Bianco, Antonino; Padulo, Johnny; Vella, Francesco Paolo; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2014-01-01

    Summary Background: regular physical activity has an effect on biological responses in both muscles and organs that, in turn, alter the structure and functions of the brain. Therefore, this study aims at comparing motor (sprint, coordination ability and explosive legs strength skills) and cognitive abilities (working memory, attention, executive functioning) in children. Methods: 39 children with average chronological age of 9 years were divided in: Karatekas (n=19) and Sedentary (n=20) groups. Their abilities were measured by motor and cognitive tests. Motor skills were assessed through a battery composed by the 20 mt Sprint test, the Agility test and the Standing board jump Test. Cognitive profile was assessed by a battery of tests derived from BVN 5–11, “Batteria di Valutazione Neuropsicologica per l’Et à Evolutiva”: Visual discrimination test, Reaction time test, Forwards and Backwards Digit Span Tests, Corsi Block-Tapping test and Tower of London. Results: our results reveal significant differences between two groups (p < 0.05). Karate children show better speed times, explosive legs strength and coordination skills. They scored better on working memory, visual selective attention and executive functions. Conclusion: karate exercise training shows global benefits resulting in physiological and psychological gains in children. PMID:25332920

  20. Motor resonance facilitates movement execution: an ERP and kinematic study

    PubMed Central

    Ménoret, Mathilde; Curie, Aurore; des Portes, Vincent; Nazir, Tatjana A.; Paulignan, Yves

    2013-01-01

    Action observation, simulation and execution share neural mechanisms that allow for a common motor representation. It is known that when these overlapping mechanisms are simultaneously activated by action observation and execution, motor performance is influenced by observation and vice versa. To understand the neural dynamics underlying this influence and to measure how variations in brain activity impact the precise kinematics of motor behavior, we coupled kinematics and electrophysiological recordings of participants while they performed and observed congruent or non-congruent actions or during action execution alone. We found that movement velocities and the trajectory deviations of the executed actions increased during the observation of congruent actions compared to the observation of non-congruent actions or action execution alone. This facilitation was also discernible in the motor-related potentials of the participants; the motor-related potentials were transiently more negative in the congruent condition around the onset of the executed movement, which occurred 300 ms after the onset of the observed movement. This facilitation seemed to depend not only on spatial congruency but also on the optimal temporal relationship of the observation and execution events. PMID:24133437

  1. Drawing a dog: The role of working memory and executive function.

    PubMed

    Panesi, Sabrina; Morra, Sergio

    2016-12-01

    Previous research suggests that young children draw animals by adapting their scheme for the human figure. This can be considered an early form of drawing flexibility. This study investigated preschoolers' ability to draw a dog that is different from the human figure. The role of working memory capacity and executive function was examined. The participants were 123 children (36-73 months old) who were required to draw both a person and a dog. The dog figure was scored on a list of features that could render it different from the human figure. Regression analyses showed that both working memory capacity and executive function predicted development in the dog drawing; the dog drawing score correlated with working memory capacity and executive function, even partialling out age, motor coordination, and drawing ability (measured with Goodenough's Draw-a-Man test). These results suggest that both working memory capacity and executive function play an important role in the early development of drawing flexibility. The implications regarding executive functions and working memory are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of a 10-week multimodal exercise program on physical and cognitive function of nursing home residents: a psychomotor intervention pilot study.

    PubMed

    Pereira, Catarina; Rosado, Hugo; Cruz-Ferreira, Ana; Marmeleira, José

    2018-05-01

    Nursing home institutionalization tends to exacerbate loss of functioning. Examine the feasibility and the effect of a psychomotor intervention-a multimodal exercise program promoting simultaneous cognitive and motor stimulation-on the executive (planning ability and selective attention) and physical function of nursing home residents. Seventeen participants engaged in a 10-week multimodal exercise program and 17 maintained usual activities. Exercise group improved planning ability (25-32%), selective attention (19-67%), and physical function [aerobic endurance, lower body strength, agility, balance, gait, and mobility (19-41%)], corresponding to an effect size ranging from 0.29 (small) to 1.11 (high), p < 0.05. The multimodal exercise program was feasible and well tolerated. The program improved executive and physical functions of the nursing home residents, reverting the usual loss of both cognitive and motor functioning in older adult institutionalized. Multimodal exercise programs may help to maintain or improve nursing home residents' functioning.

  3. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  4. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dissociable contributions of motor-execution and action-observation to intramanual transfer.

    PubMed

    Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J

    2012-09-01

    We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA).

  6. The effects of lifelong cognitive lifestyle on executive function in older people with Parkinson's disease.

    PubMed

    Hindle, John V; Martin-Forbes, Pamela A; Martyr, Anthony; Bastable, Alexandra J M; Pye, Kirstie L; Mueller Gathercole, Virginia C; Thomas, Enlli M; Clare, Linda

    2017-12-01

    Active lifelong cognitive lifestyles increase cognitive reserve and have beneficial effects on global cognition, cognitive decline and dementia risk in Parkinson's disease (PD). Executive function is particularly impaired even in early PD, and this impacts on quality of life. The effects of lifelong cognitive lifestyle on executive function in PD have not been studied previously. This study examined the association between lifelong cognitive lifestyle, as a proxy measure of cognitive reserve, and executive function in people with PD. Sixty-nine people diagnosed with early PD without dementia were recruited as part of the Bilingualism as a protective factor in Age-related Neurodegenerative Conditions study. Participants completed a battery of tests of executive function. The Lifetime of Experiences Questionnaire was completed as a comprehensive assessment of lifelong cognitive lifestyle. Non-parametric correlations compared clinical measures with executive function scores. Cross-sectional analyses of covariance were performed comparing the performance of low and high cognitive reserve groups on executive function tests. Correlational analyses showed that better executive function scores were associated with younger age, higher levodopa dose and higher Lifetime of Experiences Questionnaire scores. Higher cognitive reserve was associated with better motor function, but high and low cognitive reserve groups did not differ in executive function. Cognitive reserve, although associated with global cognition, does not appear to be associated with executive function. This differential effect may reflect the specific cognitive profile of PD. The long-term effects of cognitive reserve on executive function in PD require further exploration. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  8. Wisconsin Card Sorting Test performance in children with developmental coordination disorder.

    PubMed

    Wuang, Yee-Pay; Su, Chwen-Yng; Su, Jui-Hsing

    2011-01-01

    The primary purpose of this study was to investigate and compare the executive functions measured by the Wisconsin Card Sorting Test (WCST) between children with developmental coordination disorder (DCD) and age-matched normal controls. A second purpose was to examine the relations between executive functions and school functions in DCD children. Seventy-one children with DCD and 70 children without motor problems were recruited from 14 public schools. Executive functions and school functions were assessed using the WCST, and the School Function Assessment--Chinese Version (SFA-C) respectively. Univariate analyses demonstrated significant between-group differences in five WCST measures. The logistic regression analysis showed differences between two groups on eight SFA-C subscales, and significant correlation between items measured on WCST and SFA-C was also found. The result of the study provides further evidence of impaired sub-domains of executive functions (i.e., mental shifting, flexibility) in children with DCD. The finding also adds to recent investigations into the relationship between executive functions and school functions in DCD. Implications for rehabilitation professionals and recommendations for further research are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Differential diagnosis of adults with ADHD: the role of executive function and self-regulation.

    PubMed

    Barkley, Russell A

    2010-07-01

    Adult ADHD is conceptualized as a disorder of age-inappropriate behavior that occurs because of maldevelopment of 2 related neuropsychological domains. The neuropsychological symptoms seen in adults with ADHD may be explained by deficits in executive function, which can be broadly defined as a set of neurocognitive processes that allow for the organization of behavior across time so as to attain future goals. Executive function is comprised of 2 broad domains: inhibition and metacognition. Inhibition encompasses the ability to inhibit motor, verbal, cognitive, and emotional activities. In turn, deficits in inhibition contribute to deficits in the development of 4 aspects of executive function in the domain of metacognition, which include nonverbal working memory, verbal working memory, planning and problem-solving, and emotional self-regulation. Understanding the ways in which deficits in executive function contribute to the symptoms of ADHD can help in differentiating ADHD from disorders that share similar characteristics. (c) Copyright 2010 Physicians Postgraduate Press, Inc.

  10. Neural foundations of overt and covert actions.

    PubMed

    Simos, Panagiotis G; Kavroulakis, Eleftherios; Maris, Thomas; Papadaki, Efrosini; Boursianis, Themistoklis; Kalaitzakis, Giorgos; Savaki, Helen E

    2017-05-15

    We used fMRI to assess the human brain areas activated for execution, observation and 1st person motor imagery of a visually guided tracing task with the index finger. Voxel-level conjunction analysis revealed several cortical areas activated in common across all three motor conditions, namely, the upper limb representation of the primary motor and somatosensory cortices, the dorsal and ventral premotor, the superior and inferior parietal cortices as well as the posterior part of the superior and middle temporal gyrus including the temporo-parietal junction (TPj) and the extrastriate body area (EBA). Functional connectivity analyses corroborated the notion that a common sensory-motor fronto-parieto-temporal cortical network is engaged for execution, observation, and imagination of the very same action. Taken together these findings are consistent with the more parsimonious account of motor cognition provided by the mental simulation theory rather than the recently revised mirror neuron view Action imagination and observation were each associated with several additional functional connections, which may serve the distinction between overt action and its covert counterparts, and the attribution of action to the correct agent. For example, the central position of the right middle and inferior frontal gyrus in functional connectivity during motor imagery may reflect the suppression of movements during mere imagination of action, and may contribute to the distinction between 'imagined' and 'real' action. Also, the central role of the right EBA in observation, assessed by functional connectivity analysis, may be related to the attribution of action to the 'external agent' as opposed to the 'self'. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Changes in executive function after acute bouts of passive cycling in Parkinson's disease.

    PubMed

    Ridgel, Angela L; Kim, Chul-Ho; Fickes, Emily J; Muller, Matthew D; Alberts, Jay L

    2011-04-01

    Individuals with Parkinson's disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

  12. Age differences in the motor control of speech: An fMRI study of healthy aging.

    PubMed

    Tremblay, Pascale; Sato, Marc; Deschamps, Isabelle

    2017-05-01

    Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Effects of information processing speed on learning, memory, and executive functioning in people living with HIV/AIDS.

    PubMed

    Fellows, Robert P; Byrd, Desiree A; Morgello, Susan

    2014-01-01

    It is unclear whether or to what degree literacy, aging, and other neurologic abnormalities relate to cognitive deficits among people living with HIV/AIDS in the combined antiretroviral therapy (CART) era. The primary aim of this study was to simultaneously examine the association of age, HIV-associated motor abnormalities, major depressive disorder, and reading level with information processing speed, learning, memory, and executive functions, and to determine whether processing speed mediated any of the relationships between cognitive and noncognitive variables. Participants were 186 racially and ethnically diverse men and women living with HIV/AIDS who underwent comprehensive neurological, neuropsychological, and medical evaluations. Structural equation modeling was utilized to assess the extent to which information processing speed mediated the relationship between age, motor abnormalities, major depressive disorder, and reading level with other cognitive abilities. Age, motor dysfunction, reading level, and current major depressive disorder were all significantly associated with information processing speed. Information processing speed fully mediated the effects of age on learning, memory, and executive functioning and partially mediated the effect of major depressive disorder on learning and memory. The effect of motor dysfunction on learning and memory was fully mediated by processing speed. These findings provide support for information processing speed as a primary deficit, which may account, at least in part, for many of the other cognitive abnormalities recognized in complex HIV/AIDS populations. The association of age and information processing speed may account for HIV/aging synergies in the generation of CART-era cognitive abnormalities.

  14. Cognitive performance in mid-stage Parkinson's disease: functional connectivity under chronic antiparkinson treatment.

    PubMed

    Vancea, Roxana; Simonyan, Kristina; Petracca, Maria; Brys, Miroslaw; Di Rocco, Alessandro; Ghilardi, Maria Felice; Inglese, Matilde

    2017-09-23

    Cognitive impairment in Parkinson's disease (PD) is related to the reorganization of brain topology. Although drug challenge studies have proven how levodopa treatment can modulate functional connectivity in brain circuits, the role of chronic dopaminergic therapy on cognitive status and functional connectivity has never been investigated. We sought to characterize brain functional topology in mid-stage PD patients under chronic antiparkinson treatment and explore the presence of correlation between reorganization of brain architecture and specific cognitive deficits. We explored networks topology and functional connectivity in 16 patients with PD and 16 matched controls through a graph theoretical analysis of resting state-functional MRI data, and evaluated the relationships between network metrics and cognitive performance. PD patients showed a preserved small-world network topology but a lower clustering coefficient in comparison with healthy controls. Locally, PD patients showed lower degree of connectivity and local efficiency in many hubs corresponding to functionally relevant areas. Four disconnected subnetworks were also identified in regions responsible for executive control, sensory-motor control and planning, motor coordination and visual elaboration. Executive functions and information processing speed were directly correlated with degree of connectivity and local efficiency in frontal, parietal and occipital areas. While functional reorganization appears in both motor and cognitive areas, the clinical expression of network imbalance seems to be partially compensated by the chronic levodopa treatment with regards to the motor but not to the cognitive performance. In a context of reduced network segregation, the presence of higher local efficiency in hubs regions correlates with a better cognitive performance.

  15. Feasibility of a 6-month exercise and recreation program to improve executive functioning and memory of individuals with chronic stroke

    PubMed Central

    Rand, Debbie; Eng, Janice J.; Liu-Ambrose, Teresa; Tawashy, Amira E.

    2011-01-01

    Background Physical activity has been shown to be beneficial for improving cognitive function in healthy older adults. However there is limited research on the benefits of physical activity on cognitive performance after stroke. Objective To determine if a combined exercise and recreation program can improve the executive functioning and memory in individuals with chronic stroke. Methods 11 ambulatory subjects with chronic stroke (mean age 67±10.8 years) participated in a 6 month program of exercise for 2 hours and recreation for 1 hour weekly. Executive functions and memory were assessed at baseline, 3, and 6 months by a battery of standard neuropsychological tests including response inhibition, cognitive flexibility, dual task (motor plus cognitive) and memory. Motor ability was also assessed. Non-parametric statistics were used to assess the differences between the three assessments. Results At baseline, substantial deficits in all aspects of executive functioning were revealed. From baseline to 3 mo, the mean improvement was 10±14% (χ2=9.3, p=0.0025) for the dual task (Walking while Talking), −3±22% (χ2=2.4, p>0.05) for response inhibition (Stroop test) and 61±69% (χ2=8.0, p=0.04) for memory (Rey Auditory Verbal Learning Test - long delay). From baseline to 6 months, the mean improvement was 7±7.5% (χ2=12.0, p=0.007) for response inhibition (Stroop Test). In addition, knee strength and walking speed improved significantly at 3 months. Conclusions This pilot study suggests that exercise and recreation may improve memory and executive functions of community dwelling individuals with stroke. Further studies require a larger sample size and a control group. PMID:20460494

  16. Cool and hot executive function impairments in violent offenders with antisocial personality disorder with and without psychopathy.

    PubMed

    De Brito, Stephane A; Viding, Essi; Kumari, Veena; Blackwood, Nigel; Hodgins, Sheilagh

    2013-01-01

    Impairments in executive function characterize offenders with antisocial personality disorder (ASPD) and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown. The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P), 28 violent offenders with ASPD without psychopathy (ASPD-P), and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations) and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making) executive function. In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD-P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits. These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours.

  17. The inferior parietal lobule: where action becomes perception.

    PubMed

    Rizzolatti, Giacomo; Ferrari, Pier Francesco; Rozzi, Stefano; Fogassi, Leonardo

    2006-01-01

    The view defended in this article is that action and perception share the same neural substrate. To substantiate this view, the anatomical and functional organization of the inferior parietal lobule (IPL) is reviewed. In particular, it will be shown that many IPL neurons discharge selectively when the monkey executes a given motor act (e.g. grasping). Most interestingly, most of them fire only if the coded motor act is followed by a subsequent specific motor act (e.g. placing). Some of these action-constrained motor neurons have mirror properties and selectively discharge during the observation of motor acts when these are embedded in a given action (e.g. grasping for eating, but not grasping for placing). Thus, the activation of these IPL neurons allows the observer not only to recognize the observed motor act, but also to predict what will be the next motor act of the action, that is to understand the intentions of the action's agent. The finding that the same neurons that are active during the execution of specific motor acts also mediate the understanding of the 'what' and the 'why' of others' actions provides strong evidence for a common neural substrate for action and perception.

  18. Understanding Writing Problems in Young Children: Contributions of Cognitive Skills to the Development of Written Expression

    ERIC Educational Resources Information Center

    Childress, Amy

    2011-01-01

    While several models of adult writing have been proposed and studied, the development of writing skills in young children has only recently garnered attention. Using measures of fine-motor, language, working memory, and attention/executive functions, the current study explored motor and cognitive skills that may contribute to writing skill in…

  19. Grasping Motor Impairments in Autism: Not Action Planning but Movement Execution Is Deficient

    ERIC Educational Resources Information Center

    Stoit, Astrid M. B.; van Schie, Hein T.; Slaats-Willemse, Dorine I. E.; Buitelaar, Jan K.

    2013-01-01

    Different views on the origin of deficits in action chaining in autism spectrum disorders (ASD) have been posited, ranging from functional impairments in action planning to internal models supporting motor control. Thirty-one children and adolescents with ASD and twenty-nine matched controls participated in a two-choice reach-to-grasp paradigm…

  20. The Function and Organization of the Motor System Controlling Flight Maneuvers in Flies.

    PubMed

    Lindsay, Theodore; Sustar, Anne; Dickinson, Michael

    2017-02-06

    Animals face the daunting task of controlling their limbs using a small set of highly constrained actuators. This problem is particularly demanding for insects such as Drosophila, which must adjust wing motion for both quick voluntary maneuvers and slow compensatory reflexes using only a dozen pairs of muscles. To identify strategies by which animals execute precise actions using sparse motor networks, we imaged the activity of a complete ensemble of wing control muscles in intact, flying flies. Our experiments uncovered a remarkably efficient logic in which each of the four skeletal elements at the base of the wing are equipped with both large phasically active muscles capable of executing large changes and smaller tonically active muscles specialized for continuous fine-scaled adjustments. Based on the responses to a broad panel of visual motion stimuli, we have developed a model by which the motor array regulates aerodynamically functional features of wing motion. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Representation of Motor (Inter)action, States of Action, and Learning: Three Perspectives on Motor Learning by Way of Imagery and Execution

    PubMed Central

    Frank, Cornelia; Schack, Thomas

    2017-01-01

    Learning in intelligent systems is a result of direct and indirect interaction with the environment. While humans can learn by way of different states of (inter)action such as the execution or the imagery of an action, their unique potential to induce brain- and mind-related changes in the motor action system is still being debated. The systematic repetition of different states of action (e.g., physical and/or mental practice) and their contribution to the learning of complex motor actions has traditionally been approached by way of performance improvements. More recently, approaches highlighting the role of action representation in the learning of complex motor actions have evolved and may provide additional insight into the learning process. In the present perspective paper, we build on brain-related findings and sketch recent research on learning by way of imagery and execution from a hierarchical, perceptual-cognitive approach to motor control and learning. These findings provide insights into the learning of intelligent systems from a perceptual-cognitive, representation-based perspective and as such add to our current understanding of action representation in memory and its changes with practice. Future research should build bridges between approaches in order to more thoroughly understand functional changes throughout the learning process and to facilitate motor learning, which may have particular importance for cognitive systems research in robotics, rehabilitation, and sports. PMID:28588510

  2. CE Neuropsychological and neurobehavioral outcome following childhood arterial ischemic stroke: Attention deficits, emotional dysregulation, and executive dysfunction

    PubMed Central

    Liégeois, Frédérique; Eve, Megan; Ganesan, Vijeya; King, John; Murphy, Tara

    2013-01-01

    Objectives To investigate neuropsychological and neurobehavioral outcome in children with arterial ischemic stroke (AIS). Background Childhood stroke can have consequences on motor, cognitive, and behavioral development. We present a cross-sectional study of neuropsychological and neurobehavioral outcome at least one year poststroke in a uniquely homogeneous sample of children who had experienced AIS. Method Forty-nine children with AIS aged 6 to 18 years were recruited from a specialist clinic. Neuropsychological measures of intelligence, reading comprehension, attention, and executive function were administered. A triangulation of data collection included questionnaires completed by the children, their parents, and teachers, rating behavior, executive functions, and emotions. Key Findings Focal neuropsychological vulnerabilities in attention (response inhibition and dual attention) and executive function were found, beyond general intellectual functioning, irrespective of hemispheric side of stroke. Difficulties with emotional and behavioral regulation were also found. Consistent with an “early plasticity” hypothesis, earlier age of stroke was associated with better performance on measures of executive function. Conclusions A significant proportion of children poststroke are at long-term risk of difficulties with emotional regulation, executive function, and attention. Data also suggest that executive functions are represented in widespread networks in the developing brain and are vulnerable to unilateral injury. PMID:24028185

  3. Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.

    PubMed

    Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji

    2012-01-01

    Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.

  4. The mirror neuron system: a neural substrate for methods in stroke rehabilitation.

    PubMed

    Garrison, Kathleen A; Winstein, Carolee J; Aziz-Zadeh, Lisa

    2010-06-01

    Mirror neurons found in the premotor and parietal cortex respond not only during action execution, but also during observation of actions being performed by others. Thus, the motor system may be activated without overt movement. Rehabilitation of motor function after stroke is often challenging due to severity of impairment and poor to absent voluntary movement ability. Methods in stroke rehabilitation based on the mirror neuron system--action observation, motor imagery, and imitation--take advantage of this opportunity to rebuild motor function despite impairments, as an alternative or complement to physical therapy. Here the authors review research into each condition of practice, and discuss the relevance of the mirror neuron system to stroke recovery.

  5. Neurophysiological correlates of visuo-motor learning through mental and physical practice.

    PubMed

    Allami, Nadia; Brovelli, Andrea; Hamzaoui, El Mehdi; Regragui, Fakhita; Paulignan, Yves; Boussaoud, Driss

    2014-03-01

    We have previously shown that mental rehearsal can replace up to 75% of physical practice for learning a visuomotor task (Allami, Paulignan, Brovelli, & Boussaoud, (2008). Experimental Brain Research, 184, 105-113). Presumably, mental rehearsal must induce brain changes that facilitate motor learning. We tested this hypothesis by recording scalp electroencephalographic activity (EEG) in two groups of subjects. In one group, subjects executed a reach to grasp task for 240 trials. In the second group, subjects learned the task through a combination of mental rehearsal for the initial 180 trials followed by the execution of 60 trials. Thus, one group physically executed the task for 240 trials, the other only for 60 trials. Amplitudes and latencies of event-related potentials (ERPs) were compared across groups at different stages during learning. We found that ERP activity increases dramatically with training and reaches the same amplitude over the premotor regions in the two groups, despite large differences in physically executed trials. These findings suggest that during mental rehearsal, neuronal changes occur in the motor networks that make physical practice after mental rehearsal more effective in configuring functional networks for skilful behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Generation of novel motor sequences: the neural correlates of musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  7. Cognitive Neural Prosthetics

    PubMed Central

    Andersen, Richard A.; Hwang, Eun Jung; Mulliken, Grant H.

    2010-01-01

    The cognitive neural prosthetic (CNP) is a very versatile method for assisting paralyzed patients and patients with amputations. The CNP records the cognitive state of the subject, rather than signals strictly related to motor execution or sensation. We review a number of high-level cortical signals and their application for CNPs, including intention, motor imagery, decision making, forward estimation, executive function, attention, learning, and multi-effector movement planning. CNPs are defined by the cognitive function they extract, not the cortical region from which the signals are recorded. However, some cortical areas may be better than others for particular applications. Signals can also be extracted in parallel from multiple cortical areas using multiple implants, which in many circumstances can increase the range of applications of CNPs. The CNP approach relies on scientific understanding of the neural processes involved in cognition, and many of the decoding algorithms it uses also have parallels to underlying neural circuit functions. PMID:19575625

  8. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation.

    PubMed

    Richard, Aliénor; Van Hamme, Angèle; Drevelle, Xavier; Golmard, Jean-Louis; Meunier, Sabine; Welter, Marie-Laure

    2017-09-01

    Several brain structures including the brainstem, the cerebellum and the frontal cortico-basal ganglia network, with the primary and premotor areas have been shown to participate in the functional organization of gait initiation and postural control in humans, but their respective roles remain poorly understood. The aim of this study was to better understand the role of the supplementary motor area (SMA) and posterior cerebellum in the gait initiation process. Gait initiation parameters were recorded in 22 controls both before and after continuous theta burst transcranial stimulation (cTBS) of the SMA and cerebellum, and were compared to sham stimulation, using a randomized double-blind design study. The two phases of gait initiation process were analyzed: anticipatory postural adjustments (APAs) and execution, with recordings of soleus and tibialis anterior muscles. Functional inhibition of the SMA led to a shortened APA phase duration with advanced and increased muscle activity; during execution, it also advanced muscle co-activation and decreased the duration of stance soleus activity. Cerebellar functional inhibition did not influence the APA phase duration and amplitude but increased muscle co-activation, it decreased execution duration and showed a trend to increase velocity, with increased swing soleus muscle duration and activity. The results suggest that the SMA contributes to both the timing and amplitude of the APAs with no influence on step execution and the posterior cerebellum in the coupling between the APAs and execution phases and leg muscle activity pattern during gait initiation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Organizational strategy use in children aged 5-7: standardization and validity of the Rey Complex Figure Organizational Strategy Score (RCF-OSS).

    PubMed

    Martens, R; Hurks, P P M; Jolles, J

    2014-01-01

    This study investigated psychometric properties (standardization and validity) of the Rey Complex Figure Organizational Strategy Score (RCF-OSS) in a sample of 217 healthy children aged 5-7 years. Our results showed that RCF-OSS performance changes significantly between 5 and 7 years of age. While most 5-year-olds used a local approach when copying the Rey-Osterrieth Complex Figure (ROCF), 7-year-olds increasingly adopted a global approach. RCF-OSS performance correlated significantly, but moderately with measures of ROCF accuracy, executive functioning (fluency, working memory, reasoning), and non-executive functioning (visual-motor integration, visual attention, processing speed, numeracy). These findings seem to indicate that RCF-OSS performance reflects a range of cognitive skills at 5 to 7 years of age, including aspects of executive and non-executive functioning.

  10. Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.

    PubMed

    Bree, Kathleen D; Beljan, Paul

    2016-01-01

    Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.

  11. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  12. Structural and functional abnormalities of the motor system in developmental stuttering

    PubMed Central

    Watkins, Kate E.; Smith, Stephen M.; Davis, Steve; Howell, Peter

    2007-01-01

    Summary Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl’s gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production. PMID:17928317

  13. Structural and functional abnormalities of the motor system in developmental stuttering.

    PubMed

    Watkins, Kate E; Smith, Stephen M; Davis, Steve; Howell, Peter

    2008-01-01

    Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl's gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production.

  14. Mechanisms behind distracted driving behavior: The role of age and executive function in the engagement of distracted driving

    PubMed Central

    Pope, Caitlin Northcutt; Bell, Tyler Reed; Stavrinos, Despina

    2016-01-01

    Performing secondary tasks, such as texting while driving, is associated with an increased risk of motor vehicle collisions (MVCs). While cognitive processes, such as executive function, are involved in driving, little is known about the relationship between executive control and willingness to engage in distracted driving. This study investigated the relationship between age, behavioral manifestations of executive function, and self-reported distracted driving behaviors. Executive difficulty (assessed with the BRIEF-A) as well as demographics (age and gender) was considered as possible predictors of engagement in distracted driving behaviors. Fifty-nine young, middle, and older adults self-reported executive difficulty and weekly engagement in distracted driving behaviors. Results revealed that while partially accounted for by age, global executive difficulty was uniquely related to engagement in distracted driving behaviors. Older age was associated with fewer weekly self-reported distracted driving behaviors while higher self-reported executive difficulty was associated with more frequent weekly engagement in distracted behavior. No significant differences were found between young and middle-aged adults on distracted driving behaviors. Findings conclude that distracted driving is a ubiquitous phenomenon evident in drivers of all ages. Possible mechanisms underlying distracted driving behavior could potentially be related to deficits in executive function. PMID:27716494

  15. Mechanisms behind distracted driving behavior: The role of age and executive function in the engagement of distracted driving.

    PubMed

    Pope, Caitlin Northcutt; Bell, Tyler Reed; Stavrinos, Despina

    2017-01-01

    Performing secondary tasks, such as texting while driving, is associated with an increased risk of motor vehicle collisions (MVCs). While cognitive processes, such as executive function, are involved in driving, little is known about the relationship between executive control and willingness to engage in distracted driving. This study investigated the relationship between age, behavioral manifestations of executive function, and self-reported distracted driving behaviors. Executive difficulty (assessed with the BRIEF-A) as well as demographics (age and gender) was considered as possible predictors of engagement in distracted driving behaviors. Fifty-nine young, middle, and older adults self-reported executive difficulty and weekly engagement in distracted driving behaviors. Results revealed that while partially accounted for by age, global executive difficulty was uniquely related to engagement in distracted driving behaviors. Older age was associated with fewer weekly self-reported distracted driving behaviors while higher self-reported executive difficulty was associated with more frequent weekly engagement in distracted behavior. No significant differences were found between young and middle-aged adults on distracted driving behaviors. Findings conclude that distracted driving is a ubiquitous phenomenon evident in drivers of all ages. Possible mechanisms underlying distracted driving behavior could potentially be related to deficits in executive function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An Update Overview on Brain Imaging Studies of Internet Gaming Disorder

    PubMed Central

    Weinstein, Aviv M.

    2017-01-01

    There are a growing number of studies on structural and functional brain mechanisms underlying Internet gaming disorder (IGD). Recent functional magnetic resonance imaging studies showed that IGD adolescents and adults had reduced gray matter volume in regions associated with attention motor coordination executive function and perception. Adolescents with IGD showed lower white matter (WM) integrity measures in several brain regions that are involved in decision-making, behavioral inhibition, and emotional regulation. IGD adolescents had also disruption in the functional connectivity in areas responsible for learning memory and executive function, processing of auditory, visual, and somatosensory stimuli and relay of sensory and motor signals. IGD adolescents also had decreased functional connectivity of PFC-striatal circuits, increased risk-taking choices, and impaired ability to control their impulses similar to other impulse control disorders. Recent studies indicated that altered executive control mechanisms in attention deficit hyperactivity disorder (ADHD) would be a predisposition for developing IGD. Finally, patients with IGD have also shown an increased functional connectivity of several executive control brain regions that may related to comorbidity with ADHD and depression. The behavioral addiction model argues that IGD shows the features of excessive use despite adverse consequences, withdrawal phenomena, and tolerance that characterize substance use disorders. The evidence supports the behavioral addiction model of IGD by showing structural and functional changes in the mechanisms of reward and craving (but not withdrawal) in IGD. Future studies need to investigate WM density and functional connectivity in IGD in order to validate these findings. Furthermore, more research is required about the similarity in neurochemical and neurocognitive brain circuits in IGD and comorbid conditions such as ADHD and depression. PMID:29033857

  17. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    PubMed

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  18. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    PubMed

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  19. fMRI assessment of neuroplasticity in youths with neurodevelopmental-associated motor disorders after piano training.

    PubMed

    Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Thienel, Anna; Wohlschläger, Afra; Lampe, Renée

    2015-01-01

    Damage to the developing brain may lead to lifelong motor impairments namely of the hand function. Playing an instrument combines the execution of gross and fine motor movements with direct auditory feedback of performance and with emotional value. This motor-associated sensory information may work as a self-control of motor performance in therapeutic settings. The current study examined the occurrence of neuronal changes associated to piano training in youths with neurodevelopmental-associated hand motor deficits. Functional magnetic resonance imaging responses evoked during a finger tapping task in a group of ten youths with neuromotor impairments that received individualized piano lessons for eighteen months were analyzed. Functional imaging data obtained before and after the piano training was compared to that obtained from a similar group of six youths who received no training during the same period of time. Dynamic causal modeling of functional data indicated an increase in positive connectivity from the left primary motor cortical area to the right cerebellum from before to after the piano training. A wide variability across patients was observed and further studies remain necessary to clarify the neurophysiological basis of the effects of piano training in hand motor function of patients with neurodevelopmental motor disorders. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  20. Executive function impairment in early-treated PKU subjects with normal mental development.

    PubMed

    Leuzzi, V; Pansini, M; Sechi, E; Chiarotti, F; Carducci, Cl; Levi, G; Antonozzi, I

    2004-01-01

    Executive functions were studied in 14 early and continuously treated PKU subjects (age 10.8 years, range 8-13) in comparison with controls matched for IQ, sex, age and socioeconomic status. Brain MRI examination was normal in all PKU patients. Neuropsychological evaluation included Wisconsin Card Sorting Test, Rey-Osterreith Complex Figure Test, Elithorn's Perceptual Maze Test, Weigl's Sorting Test, Tower of London, Visual Search and Motor Motor Learning Test. Whatever the IQ, PKU subjects performed worse than controls in tests exploring executive functions. Subgrouping the PKU subjects according to the quality of dietary control for the entire follow-up period (using 400 micromol/L as cut-off value for blood phenylalanine (Phe) concentration) showed that patients with worse dietary control performed more poorly than both the PKU group with the best dietary control and the control group. However, a mild impairment of executive functions was still found in PKU patients with a good dietary control (Phe <400 micromol/L) compared to controls. Concerning the PKU group as a whole, no linear correlation was found between neuropsychological performance and historical and concurrent biochemical parameters. We conclude that (a) PKU patients, even when treated early, rigorously and continuously, show an impairment of frontal lobe functions; (b) a protracted exposure to moderately high levels of Phe can affect frontal lobe functions independently of the possible effect of the same exposure on IQ; (c) in order to reduce the risk of frontal lobe dysfunction, the target of dietary therapy should be to maintain blood Phe concentration below 400 micromol/L.

  1. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  2. The sensory side of post-stroke motor rehabilitation.

    PubMed

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  3. The sensory side of post-stroke motor rehabilitation

    PubMed Central

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J.

    2017-01-01

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation. PMID:27080070

  4. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  5. Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users.

    PubMed

    McCann, Una D; Kuwabara, Hiroto; Kumar, Anil; Palermo, Michael; Abbey, Rubyna; Brasic, James; Ye, Weiguo; Alexander, Mohab; Dannals, Robert F; Wong, Dean F; Ricaurte, George A

    2008-02-01

    Studies in abstinent methamphetamine (METH) users have demonstrated reductions in brain dopamine transporter (DAT) binding potential (BP), as well as cognitive and motor deficits, but it is not yet clear whether cognitive deficits and brain DAT reductions fully reverse with sustained abstinence, or whether behavioral deficits in METH users are related to dopamine (DA) deficits. This study was conducted to further investigate potential persistent psychomotor deficits secondary to METH abuse, and their relationship to brain DAT availability, as measured using quantitative PET methods with [(11)C]WIN 35428. Twenty-two abstinent METH users and 17 healthy non-METH using controls underwent psychometric testing to test the hypothesis that METH users would demonstrate selective deficits in neuropsychiatric domains known to involve DA neurons (e.g., working memory, executive function, motor function). A subset of subjects also underwent PET scanning with [(11)C]WIN 35428. METH users were found to have modest deficits in short-term memory, executive function, and manual dexterity. Exploratory correlational analyses revealed that deficits in memory, but not those in executive or motor function, were associated with decreases in striatal DAT BP. These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users. (c) 2007 Wiley-Liss, Inc.

  6. A cognitive dual task affects gait variability in patients suffering from chronic low back pain.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz

    2014-11-01

    Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.

  7. Cool and Hot Executive Function Impairments in Violent Offenders with Antisocial Personality Disorder with and without Psychopathy

    PubMed Central

    De Brito, Stephane A.; Viding, Essi; Kumari, Veena; Blackwood, Nigel; Hodgins, Sheilagh

    2013-01-01

    Background Impairments in executive function characterize offenders with antisocial personality disorder (ASPD) and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown. Methods The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P), 28 violent offenders with ASPD without psychopathy (ASPD−P), and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations) and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making) executive function. Results In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD−P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits. Conclusions These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours. PMID:23840340

  8. Developmental coordination disorders: state of art.

    PubMed

    Vaivre-Douret, L

    2014-01-01

    In the literature, descriptions of children with motor coordination difficulties and clumsy movements have been discussed since the early 1900s. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), it is a marked impairment in the development of fine or global motor coordination, affecting 6% of school-age children. All these children are characterized for developmental coordination disorder (DCD) in motor learning and new motor skill acquisition, in contrast to adult apraxia which is a disorder in the execution of already learned movements. No consensus has been established about etiology of DCD. Intragroup approach through factor and cluster analysis highlights that motor impairment in DCD children varies both in severity and nature. Indeed, most studies have used screening measures of performance on some developmental milestones derived from global motor tests. A few studies have investigated different functions together with standardized assessments, such as neuromuscular tone and soft signs, qualitative and quantitative measures related to gross and fine motor coordination and the specific difficulties -academic, language, gnosic, visual motor/visual-perceptual, and attentional/executive- n order to allow a better identification of DCD subtypes with diagnostic criteria and to provide an understanding of the mechanisms and of the cerebral involvement. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Cognitive Flexibility in Children with and without Speech Disorder

    ERIC Educational Resources Information Center

    Crosbie, Sharon; Holm, Alison; Dodd, Barbara

    2009-01-01

    Most children's speech difficulties are "functional" (i.e. no known sensory, motor or intellectual deficits). Speech disorder may, however, be associated with cognitive deficits considered core abilities in executive function: rule abstraction and cognitive flexibility. The study compares the rule abstraction and cognitive flexibility of…

  10. Benefits of physical exercise on the aging brain: the role of the prefrontal cortex.

    PubMed

    Berchicci, Marika; Lucci, Giuliana; Di Russo, Francesco

    2013-11-01

    Motor planning in older adults likely relies on the overengagement of the prefrontal cortex (PFC) and is associated with slowness of movement and responses. Does a physically active lifestyle counteract the overrecruitment of the PFC during action preparation? This study used high-resolution electroencephalography to measure the effect of physical exercise on the executive functions of the PFC preceding a visuomotor discriminative task. A total of 130 participants aged 15-86 were divided into two groups based on physical exercise participation. The response times and accuracy and the premotor activity of the PFC were separately correlated with age for the two groups. The data were first fit with a linear function and then a higher order polynomial function. We observed that after 35-40 years of age, physically active individuals have faster response times than their less active peers and showed no signs of PFC hyperactivity during motor planning. The present findings show that physical exercise could speed up the response of older people and reveal that also in middle-aged people, moderate-to-high levels of physical exercise benefits the planning/execution of a response and the executive functions mediated by the PFC, counteracting the neural overactivity often observed in the elderly adults.

  11. Reaching and Grasping in Autism Spectrum Disorder: A Review of Recent Literature

    PubMed Central

    Sacrey, Lori-Ann R.; Germani, Tamara; Bryson, Susan E.; Zwaigenbaum, Lonnie

    2013-01-01

    Impairments in motor functioning, which, until recently, have rarely been a primary focus in autism spectrum disorder (ASD) research, may play a key role in the early expression of biological vulnerability and be associated with key social-communication deficits. This review summarizes current knowledge of motor behavior in ASD, focusing specifically on reaching and grasping. Convergent data across the lifespan indicate that impairments to reaching and grasping emerge early in life, affect the planning and execution of motor programs, and may be impacted by additional impairments to sensory control of motor behavior. The relationship between motor impairments and diagnostic outcomes will be discussed. PMID:24478753

  12. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  13. Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements.

    PubMed

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1998-06-01

    Between-electrode cross-covariances of delta (0-3 Hz)- and theta (4-7 Hz)-filtered high resolution EEG potentials related to preparation, initiation. and execution of human unilateral internally triggered one-digit movements were computed to investigate statistical dynamic coupling between these potentials. Significant (P < 0.05, Bonferroni-corrected) cross-covariances were calculated between electrodes of lateral and median scalp regions. For both delta- and theta-bandpassed potentials, covariance modeling indicated a shifting functional coupling between contralateral and ipsilateral frontal-central-parietal scalp regions and between these two regions and the median frontal-central scalp region from the preparation to the execution of the movement (P < 0.05). A maximum inward functional coupling of the contralateral with the ipsilateral frontal-central-parietal scalp region was modeled during the preparation and initiation of the movement, and a maximum outward functional coupling during the movement execution. Furthermore, for theta-bandpassed potentials, rapidly oscillating inward and outward relationships were modeled between the contralateral frontal-central-parietal scalp region and the median frontal-central scalp region across the preparation, initiation, and execution of the movement. We speculate that these cross-covariance relationships might reflect an oscillating dynamic functional coupling of primary sensorimotor and supplementary motor areas during the planning, starting, and performance of unilateral movement. The involvement of these cortical areas is supported by the observation that averaged spatially enhanced delta- and theta-bandpassed potentials were computed from the scalp regions where task-related electrical activation of primary sensorimotor areas and supplementary motor area was roughly represented.

  14. Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence

    PubMed Central

    Foran, William; Velanova, Katerina; Luna, Beatriz

    2013-01-01

    Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721

  15. Motor system evolution and the emergence of high cognitive functions.

    PubMed

    Mendoza, Germán; Merchant, Hugo

    2014-11-01

    In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    PubMed Central

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  17. Behavioral and neural effects of congruency of visual feedback during short-term motor learning.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2018-05-15

    Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    PubMed

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  19. Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.

    PubMed

    Tosoni, Annalisa; Guidotti, Roberto; Del Gratta, Cosimo; Committeri, Giorgia; Sestieri, Carlo

    2016-12-01

    The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations. Copyright © 2016. Published by Elsevier Ltd.

  20. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    PubMed

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  1. Classification of Movement and Inhibition Using a Hybrid BCI.

    PubMed

    Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J

    2017-01-01

    Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)-when a person imagines a motion without executing it-is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic.

  2. Classification of Movement and Inhibition Using a Hybrid BCI

    PubMed Central

    Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J.

    2017-01-01

    Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)—when a person imagines a motion without executing it—is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic. PMID:28860986

  3. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Functional Semi-Blind Source Separation Identifies Primary Motor Area Without Active Motor Execution.

    PubMed

    Porcaro, Camillo; Cottone, Carlo; Cancelli, Andrea; Salustri, Carlo; Tecchio, Franca

    2018-04-01

    High time resolution techniques are crucial for investigating the brain in action. Here, we propose a method to identify a section of the upper-limb motor area representation (FS_M1) by means of electroencephalographic (EEG) signals recorded during a completely passive condition (FS_M1bySS). We delivered a galvanic stimulation to the median nerve and we applied to EEG the semi-Blind Source Separation (s-BSS) algorithm named Functional Source Separation (FSS). In order to prove that FS_M1bySS is part of FS_M1, we also collected EEG in a motor condition, i.e. during a voluntary movement task (isometric handgrip) and in a rest condition, i.e. at rest with eyes open and closed. In motor condition, we show that the cortico-muscular coherence (CMC) of FS_M1bySS does not differ from FS_ M1 CMC (0.04 for both sources). Moreover, we show that the FS_M1bySS's ongoing whole band activity during Motor and both rest conditions displays high mutual information and time correlation with FS_M1 (above 0.900 and 0.800, respectively) whereas much smaller ones with the primary somatosensory cortex [Formula: see text] (about 0.300 and 0.500, [Formula: see text]). FS_M1bySS as a marker of the upper-limb FS_M1 representation obtainable without the execution of an active motor task is a great achievement of the FSS algorithm, relevant in most experimental, neurological and psychiatric protocols.

  5. Evidence for multisensory spatial-to-motor transformations in aiming movements of children.

    PubMed

    King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E

    2009-01-01

    The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.

  6. Behavioral, Cognitive, and Motor Preparation Deficits in a Visual Cued Spatial Attention Task in Autism Spectrum Disorder

    PubMed Central

    Sokhadze, Estate M.; Tasman, Allan; Sokhadze, Guela E.; El-Baz, Ayman S.; Casanova, Manuel F.

    2015-01-01

    Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80% of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N=30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism. PMID:26377686

  7. Grasping synergies: A motor-control approach to the mirror neuron mechanism

    NASA Astrophysics Data System (ADS)

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    The discovery of mirror neurons revived interest in motor theories of perception, fostering a number of new studies as well as controversies. In particular, the degree of motor specificity with which others' actions are simulated is highly debated. Human corticospinal excitability studies support the conjecture that a mirror mechanism encodes object-directed goals or low-level kinematic features of others' reaching and grasping actions. These interpretations lead to different experimental predictions and implications for the functional role of the simulation of others' actions. We propose that the representational granularity of the mirror mechanism cannot be any different from that of the motor system during action execution. Hence, drawing from motor control models, we propose that the building blocks of the mirror mechanism are the relatively few motor synergies explaining the variety of hand functions. The recognition of these synergies, from action observation, can be potentially very robust to visual noise and thus demonstrate a clear advantage of using motor knowledge for classifying others' action.

  8. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  9. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder.

    PubMed

    St John, Tanya; Estes, Annette M; Dager, Stephen R; Kostopoulos, Penelope; Wolff, Jason J; Pandey, Juhi; Elison, Jed T; Paterson, Sarah J; Schultz, Robert T; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process.

  10. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder

    PubMed Central

    St. John, Tanya; Estes, Annette M.; Dager, Stephen R.; Kostopoulos, Penelope; Wolff, Jason J.; Pandey, Juhi; Elison, Jed T.; Paterson, Sarah J.; Schultz, Robert T.; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process. PMID:27458411

  11. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  12. An intact action-perception coupling depends on the integrity of the cerebellum.

    PubMed

    Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar

    2014-05-07

    It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.

  13. Association between Executive Function and Problematic Adolescent Driving

    PubMed Central

    Pope, Caitlin N.; Ross, Lesley A.; Stavrinos, Despina

    2016-01-01

    Objective Motor vehicle collisions (MVCs) are one of the leading causes of injury and death for adolescents. Driving is a complex activity that is highly reliant on executive function to safely navigate through the environment. Little research has examined the efficacy of using self-reported executive function measures for assessing adolescent driving risk. This study examined the Behavior Rating Inventory of Executive Function (BRIEF) questionnaire and performance based-executive function tasks as potential predictors of problematic driving outcomes in adolescents. Methods Forty-six adolescent drivers completed the (1) BRIEF, (2) Trail Making Test (TMT), (3) Backwards Digit Span, and (4) self-report on three problematic driving outcomes: the number of times of having been pulled over by a police officer, the number of tickets issued, and the number of MVCs. Results Greater self-reported difficulty with planning and organization was associated with greater odds of having a MVC, while inhibition difficulties were associated with greater odds of receiving a ticket. Greater self-reported difficulty across multiple BRIEF subscales was associated with greater odds of being pulled over. Conclusion Overall findings indicated that the BRIEF, an ecological measure of executive function, showed significant association with self-reported problematic driving outcomes in adolescents. No relationship was found between performance-based executive function measures and self-reported driving outcomes. The BRIEF could offer unique and quick insight into problematic driving behavior and potentially be an indicator of driving risk in adolescent drivers during clinical evaluations. PMID:27661394

  14. [The relationship between executive functions, physical and functional capability in people over 60 years old].

    PubMed

    Rajtar-Zembaty, Anna; Sałakowski, Andrzej; Rajtar-Zembaty, Jakub

    Nowadays it is believed that cognitive decline may contribute to the formation of gait disturbance and increased risk of falls. Currently the importance of executive functions to maintain proper control of gait is emphasized. The aim of the study was to assess the relationship between the level of executive function, functional and physical capability in patients over 60 years of age. The study included 300 patients (199 women and 101 men) aged 60-88 years. In order to screening for cognitive function Mini-Mental State Examination (MMSE) was used. The following researchers tools were used to conduct functional assessment: a) Short Physical Performance Battery (SPPB), b) Timed “Up and Go” (TUG) and c) Fast Walking Test. To assess executive fucntion Trail Making Test (TMT) was selected. The relationship between the speed of information processing (part A, TMT), executive functions (Part B, TMT), level of functional and physical capability was observed. The strongest positive correlation was noted between the time of TUG test and TMT part B (r=0.32; p<0.01), and also between Fast Gait Test and TMT part A (r=0.27; p<0.01). It has been proven that the level of executive function is related to the level of functional capability (β=0.18; p=0.001). It was found that 15% of variation in the level of the TUG test was explained by age, TMT- B, GDS and BMI. There is a relationship between level of executive functions, functional and physical capability in patients over 60 years of age. Cognitive processes play an important role in the control of motor functions therefore it is important to incorporate examination of cognitive functions in the early geriatric diagnosis.

  15. Response inhibition in motor conversion disorder.

    PubMed

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P < .001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  16. Functional neuroanatomy of the basal ganglia.

    PubMed

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  17. Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.

    PubMed

    Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li

    2017-01-01

    Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel < 100; 19 patients with preserved function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.

  18. Follow-up of extreme neonatal hyperbilirubinaemia in 5- to 10-year-old children: a Danish population-based study.

    PubMed

    Vandborg, Pernille Kure; Hansen, Bo Moelholm; Greisen, Gorm; Mathiasen, Rene; Kasper, Frederikke; Ebbesen, Finn

    2015-04-01

    To investigate whether infants with neonatal hyperbilirubinaemia but without intermediate or advanced bilirubin encephalopathy develop long-term sequelae, with impairment of motor development, executive function, or hearing. This nested double-cohort study included 167 exposed children (107 males, 60 females) born in Denmark 2000 to 2005 at gestational age ≥35 weeks with a total serum bilirubin ≥450 μmol/L (26.3mg/dL) and 163 age-, sex-, and gestational age-matched unexposed children (103 males, 60 females). The children were examined at a mean age of 7.7 years (SD 1.7y) using the Movement Assessment Battery for Children-Second Edition (MABC-2), pure tone audiometry, and the Behavioural Regulation Inventory of Executive Function (BRIEF) questionnaire. The follow-up rate was 70% of the eligible infants in the exposed group and 45% in the unexposed group. Mean difference was -0.2 (95% confidence interval [CI] -1.1 to 0.8) in adjusted standard score for MABC-2 and 0.3 (95% CI -2.9 to 3.5) in adjusted BRIEF executive composite standard score. No children had significant hearing impairment or a diagnosis of cerebral palsy, attention-deficit-hyperactive disorder, or autism spectrum disorder recorded in national registries. No evidence was found of an increased risk of deficits in motor development, executive function, or hearing in children with extreme hyperbilirubinaemia who did not have intermediate or advanced bilirubin encephalopathy. © 2014 Mac Keith Press.

  19. Focused and Sustained Attention Is Modified by a Goal-Based Rehabilitation in Parkinsonian Patients.

    PubMed

    Ferrazzoli, Davide; Ortelli, Paola; Maestri, Roberto; Bera, Rossana; Gargantini, Roberto; Palamara, Grazia; Zarucchi, Marianna; Giladi, Nir; Frazzitta, Giuseppe

    2017-01-01

    Rehabilitation for patients with Parkinson's disease (PD) is based on cognitive strategies that exploit attention. Parkinsonians exhibit impairments in divided attention and interference control. Nevertheless, the effectiveness of specific rehabilitation treatments based on attention suggests that other attentional functions are preserved. Data about attention are conflicting in PD, and it is not clear whether rehabilitative treatments that entail attentional strategies affect attention itself. Reaction times (RTs) represent an instrument to explore attention and investigate whether changes in attentional performances parallel rehabilitation induced-gains. RTs of 103 parkinsonian patients in "on" state, without cognitive deficits, were compared with those of a population of 34 healthy controls. We studied those attentional networks that subtend the use of cognitive strategies in motor rehabilitation: alertness and focused and sustained attention, which is a component of the executive system. We used visual and auditory RTs to evaluate alertness and multiple choices RTs (MC RTs) to explore focused and sustained attention. Parkinsonian patients underwent these tasks before and after a 4-week multidisciplinary, intensive and goal-based rehabilitation treatment (MIRT). Unified Parkinson's Disease Rating Scale (UPDRS) III and Timed Up and Go test (TUG) were assessed at the enrollment and at the end of MIRT to evaluate the motor-functional effectiveness of treatment. We did not find differences in RTs between parkinsonian patients and controls. Further, we found that improvements in motor-functional outcome measures after MIRT ( p < 0.0001) paralleled a reduction in MC RTs ( p = 0.014). No changes were found for visual and auditory RTs. Correlation analysis revealed no association between changes in MC RTs and improvements in UPDRS-III and TUG. These findings indicate that alertness, as well as focused and sustained attention, are preserved in "on" state. This explains why Parkinsonians benefit from a goal-based rehabilitation that entails the use of attention. The reduction in MC RTs suggests a positive effect of MIRT on the executive component of attention and indicates that this type of rehabilitation provides benefits by exploiting executive functions. This ensues from different training approaches aimed at bypassing the dysfunctional basal ganglia circuit, allowing the voluntary execution of the defective movements. These data suggest that the effectiveness of a motor rehabilitation tailored for PD lies on cognitive engagement.

  20. Age-related differences in the motor planning of a lower leg target matching task.

    PubMed

    Davies, Brenda L; Gehringer, James E; Kurz, Max J

    2015-12-01

    While the development and execution of upper extremity motor plans have been well explored, little is known about how individuals plan and execute rapid, goal-directed motor tasks with the lower extremities. Furthermore, the amount of time needed to integrate the proper amount of visual and proprioceptive feedback before being able to accurately execute a goal-directed movement is not well understood; especially in children. Therefore, the purpose of this study was to initially interrogate how the amount of motor planning time provided to a child before movement execution may influence the preparation and execution of a lower leg goal-directed movement. The results displayed that the amount of pre-movement motor planning time provided may influence the reaction time and accuracy of a goal directed leg movement. All subjects in the study had longer reaction times and less accurate movements when no pre-movement motor planning time was provided. In addition, the children had slower reaction times, slower movements, and less accurate movements than the adults for all the presented targets and motor planning times. These results highlight that children may require more time to successfully plan a goal directed movement with the lower extremity. This suggests that children may potentially have less robust internal models than adults for these types of motor skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inhibition in motor imagery: a novel action mode switching paradigm.

    PubMed

    Rieger, Martina; Dahm, Stephan F; Koch, Iring

    2017-04-01

    Motor imagery requires that actual movements are prevented (i.e., inhibited) from execution. To investigate at what level inhibition takes place in motor imagery, we developed a novel action mode switching paradigm. Participants imagined (indicating only start and end) and executed movements from start buttons to target buttons, and we analyzed trial sequence effects. Trial sequences depended on current action mode (imagination or execution), previous action mode (pure blocks/same mode, mixed blocks/same mode, or mixed blocks/other mode), and movement sequence (action repetition, hand repetition, or hand alternation). Results provided evidence for global inhibition (indicated by switch benefits in execution-imagination (E-I)-sequences in comparison to I-I-sequences), effector-specific inhibition (indicated by hand repetition costs after an imagination trial), and target inhibition (indicated by target repetition benefits in I-I-sequences). No evidence for subthreshold motor activation or action-specific inhibition (inhibition of the movement of an effector to a specific target) was obtained. Two (global inhibition and effector-specific inhibition) of the three observed mechanisms are active inhibition mechanisms. In conclusion, motor imagery is not simply a weaker form of execution, which often is implied in views focusing on similarities between imagination and execution.

  2. Balance, executive functions and falls in elderly with Alzheimer's disease (AD): a longitudinal study.

    PubMed

    Pedroso, Renata Valle; Coelho, Flávia Gomes de Melo; Santos-Galduróz, Ruth Ferreira; Costa, José Luiz Riani; Gobbi, Sebastião; Stella, Florindo

    2012-01-01

    Elderly individuals with AD are more susceptible to falls, which might be associated with decrements in their executive functions and balance, among other things. We aimed to analyze the effects of a program of dual task physical activity on falls, executive functions and balance of elderly individuals with AD. We studied 21 elderly with probable AD, allocated to two groups: the training group (TG), with 10 elderly who participated in a program of dual task physical activity; and the control group (CG), with 11 elderly who were not engaged in regular practice of physical activity. The Clock Drawing Test (CDT) and the Frontal Assessment Battery (FAB) were used in the assessment of the executive functions, while the Berg Balance Scale (BBS) and the Timed Up-and-Go (TUG)-test evaluated balance. The number of falls was obtained by means of a questionnaire. We observed a better performance of the TG as regards balance and executive functions. Moreover, the lower the number of steps in the TUG scale, the higher the scores in the CDT, and in the FAB. The practice of regular physical activity with dual task seems to have contributed to the maintenance and improvement of the motor and cognitive functions of the elderly with AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Cerebellum and apraxia.

    PubMed

    Mariën, Peter; van Dun, Kim; Verhoeven, Jo

    2015-02-01

    As early as the beginning of the nineteenth century, a variety of nonmotor cognitive and affective impairments associated with cerebellar pathology were occasionally documented. A causal link between cerebellar disease and nonmotor cognitive and affective disorders has, however, been dismissed for almost two centuries. During the past decades, the prevailing view of the cerebellum as a mere coordinator of autonomic and somatic motor function has changed fundamentally. Substantial progress has been made in elucidating the neuroanatomical connections of the cerebellum with the supratentorial association cortices that subserve nonmotor cognition and affect. Furthermore, functional neuroimaging studies and neurophysiological and neuropsychological research have shown that the cerebellum is crucially involved in modulating cognitive and affective processes. This paper presents an overview of the clinical and neuroradiological evidence supporting the view that the cerebellum plays an intrinsic part in purposeful, skilled motor actions. Despite the increasing number of studies devoted to a further refinement of the typology and anatomoclinical configurations of apraxia related to cerebellar pathology, the exact underlying pathophysiological mechanisms of cerebellar involvement remain to be elucidated. As genuine planning, organization, and execution disorders of skilled motor actions not due to motor, sensory, or general intellectual failure, the apraxias following disruption of the cerebrocerebellar network may be hypothetically considered to form part of the executive cluster of the cerebellar cognitive affective syndrome (CCAS), a highly influential concept defined by Schmahmann and Sherman (Brain 121:561-579, 1998) on the basis of four symptom clusters grouping related neurocognitive and affective deficits (executive, visuospatial, affective, and linguistic impairments). However, since only a handful of studies have explored the possible role of the cerebellum in apraxic disorders, the pathophysiological mechanisms subserving cerebellar-induced apraxia remain to be elucidated.

  4. Motor experience with a sport-specific implement affects motor imagery

    PubMed Central

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  5. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study.

    PubMed

    Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J

    2011-06-01

    Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.

  6. Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring.

    PubMed

    Mohammadi, Bahram; Kollewe, Katja; Cole, David M; Fellbrich, Anja; Heldmann, Marcus; Samii, Amir; Dengler, Reinhard; Petri, Susanne; Münte, Thomas F; Krämer, Ulrike M

    2015-08-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS. © 2015 Wiley Periodicals, Inc.

  7. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    PubMed

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-06-01

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  8. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review

    PubMed Central

    Zhang, Jack J. Q.; Welage, Nandana

    2018-01-01

    Objective To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed. Results A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex. Conclusions MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex. PMID:29853839

  9. Motor and Executive Function Profiles in Adult Residents ...

    EPA Pesticide Factsheets

    Objective: Exposure to elevated levels of manganese (Mn) may be associated with tremor, motor and executive dysfunction (EF), clinically resembling Parkinson’s disease (PD). PD research has identified tremor-dominant (TD) and non-tremor dominant (NTD) profiles. NTD PD presents with bradykinesia, rigidity, and postural sway, and is associated with EF impairment with lower quality of life (QoL). Presence and impact of tremor, motor, and executive dysfunction profiles on health-related QoL and life satisfaction were examined in air-Mn exposed residents of two Ohio, USA towns. Participants and Methods: From two Ohio towns exposed to air-Mn, 186 residents (76 males) aged 30-75 years were administered measures of EF (Animal Naming, ACT, Rey-O Copy, Stroop Color-Word, and Trails B), motor and tremor symptoms (UPDRS), QoL (BRFSS), life satisfaction (SWLS), and positive symptom distress (SCL-90-R). Air-Mn exposure in the two towns was modeled with 10 years of air-monitoring data. Cluster analyses detected the presence of symptom profiles by grouping together residents with similar scores on these measures. Results: Overall, mean air-Mn concentration for the two towns was 0.53 µg/m3 (SD=.92). Two-step cluster analyses identified TD and NTD symptom profiles. Residents in the NTD group lacked EF impairment; EF impairment represented a separate profile. An unimpaired group also emerged. The NTD and EF impairment groups were qualitatively similar, with relatively lo

  10. Components of Motor Deficiencies in ADHD and Possible Interventions.

    PubMed

    Dahan, Anat; Ryder, Chen Hanna; Reiner, Miriam

    2018-05-15

    There is a growing body of evidence pointing at several types of motor abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In this article we review findings stemming from different paradigms, and suggest an interweaving approach to the different stages involved in the motor regulation process. We start by reviewing various aspects of motor abnormalities found in ADHD and related brain mechanisms. Then, we classify reported motor impairments associated with ADHD, into four classes of motor stages: Attention to the task, motion preparation, motion execution and motion monitoring. Motor abnormalities and corresponding neural activations are analyzed in the context of each of the four identified motor patterns, along with the interactions among them and with other systems. Given the specifications and models of the role of the four motor impairments in ADHD, we ask what treatments correspond to the identified motor impairments. We analyze therapeutic interventions targeting motor difficulties most commonly experienced among individuals with ADHD; first, Neurofeedback training and EMG-biofeedback. As some of the identified components of attention, planning and monitoring have been shown to be linked to abnormal oscillation patterns in the brain, we examine neurofeedback interventions aimed to address these types of oscillations: Theta/beta frequency training and SCP neurofeedback targeted at elevating the CNV component. Additionally we discuss EMG-Biofeedback interventions targeted at feedback on motor activity. Further we review physical activity and motor interventions aimed at improving motor difficulties, associated with ADHD. These kinds of interventions are shown to be helpful not only in aspects of physical ability, but also in enhancing cognition and executive functioning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Physical Activity Is Associated with Reduced Implicit Learning but Enhanced Relational Memory and Executive Functioning in Young Adults

    PubMed Central

    Watt, Jennifer C.; Grove, George A.; Wollam, Mariegold E.; Uyar, Fatma; Mataro, Maria; Cohen, Neal J.; Howard, Darlene V.; Howard, James H.; Erickson, Kirk I.

    2016-01-01

    Accumulating evidence suggests that physical activity improves explicit memory and executive cognitive functioning at the extreme ends of the lifespan (i.e., in older adults and children). However, it is unknown whether these associations hold for younger adults who are considered to be in their cognitive prime, or for implicit cognitive functions that do not depend on motor sequencing. Here we report the results of a study in which we examine the relationship between objectively measured physical activity and (1) explicit relational memory, (2) executive control, and (3) implicit probabilistic sequence learning in a sample of healthy, college-aged adults. The main finding was that physical activity was positively associated with explicit relational memory and executive control (replicating previous research), but negatively associated with implicit learning, particularly in females. These results raise the intriguing possibility that physical activity upregulates some cognitive processes, but downregulates others. Possible implications of this pattern of results for physical health and health habits are discussed. PMID:27584059

  12. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  13. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  14. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study

    PubMed Central

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Conclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation. PMID:24570660

  15. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder.

    PubMed

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Sung, Ming-Chih; Huang, Chu-Yang; Ma, Wei-Ya

    2017-02-01

    This study examined the effects of a 12-week physical activity intervention on the motor skill proficiency and executive function of 22 boys (aged 9.08 ± 1.75 years) with autism spectrum disorder. In Phase I of the 12 weeks, 11 boys with autism spectrum disorder (Group A) received the intervention, whereas the other 11 boys with autism spectrum disorder (Group B) did not (true control, no intervention). The arrangement was reversed in Phase II, which lasted an additional 12 weeks. The Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, and the Wisconsin Card Sorting Test were conducted three times for each participant (Group A, primary grouping: baseline (T1), post-assessment (T2), and follow-up assessment (T3); Group B, control grouping: T1-T2; intervention condition, T2-T3). The main findings were that both groups of children with autism spectrum disorder significantly exhibited improvements in motor skill proficiency (the total motor composite and two motor-area composites) and executive function (three indices of the Wisconsin Card Sorting Test) after 12 weeks of physical activity intervention. In addition, the effectiveness appeared to have been sustained for at least 12 weeks in Group A. The findings provide supporting evidence that physical activity interventions involving table tennis training may be a viable therapeutic option for treating children with autism spectrum disorder.

  16. [Neuroanatomy of Frontal Association Cortex].

    PubMed

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  17. Infant Motor Development Is Associated with Adult Cognitive Categorisation in a Longitudinal Birth Cohort Study

    ERIC Educational Resources Information Center

    Murray, G. K.; Veijola, J.; Moilanen, K.; Miettunen, J.; Glahn, D. C.; Cannon, T. D.; Jones, P. B.; Isohanni, M.

    2006-01-01

    Background: The relationship between the age of reaching infant developmental milestones and later intellectual function within the normal population remains unresolved. We hypothesised that the age of learning to stand in infancy would be associated with adult executive function and that the association would be apparent throughout the range of…

  18. Strengths and challenges faced by school-aged children with unilateral CP described by the Five To Fifteen parental questionnaire.

    PubMed

    Forsman, Lea; Eliasson, Ann-Christin

    2016-12-01

    The purpose of this study was to describe motor and non-motor (e.g. cognitive, social, and behavioral) challenges faced in daily life by children with unilateral cerebral palsy (UCP). In this cross-sectional study, parents completed the Five to Fifteen questionnaire and provided demographic information for 46 children aged 6-15 years (mean 11.01 ± 2.89 SD). Most children were reported to have problems in both motor and non-motor domains, ranging from 20 to 92% depending on the domain. Perception and learning were the non-motor functions most commonly reported as challenging (63 and 65%, respectively). The total number of problems was significantly higher in age groups above 9 years. The correlation between all domains was high, but was consistently higher with the fine motor sub-domain, which could be used to predict executive function, perception, memory, and learning outcomes (R 2 =0.502, 0.642, 0.192, 0.192). Most children with CP have everyday challenges beyond their primary motor deficiencies.

  19. Executive Functions Predict the Success of Top-Soccer Players

    PubMed Central

    Vestberg, Torbjörn; Gustafson, Roland; Maurex, Liselotte; Ingvar, Martin; Petrovic, Predrag

    2012-01-01

    While the importance of physical abilities and motor coordination is non-contested in sport, more focus has recently been turned toward cognitive processes important for different sports. However, this line of studies has often investigated sport-specific cognitive traits, while few studies have focused on general cognitive traits. We explored if measures of general executive functions can predict the success of a soccer player. The present study used standardized neuropsychological assessment tools assessing players' general executive functions including on-line multi-processing such as creativity, response inhibition, and cognitive flexibility. In a first cross-sectional part of the study we compared the results between High Division players (HD), Lower Division players (LD) and a standardized norm group. The result shows that both HD and LD players had significantly better measures of executive functions in comparison to the norm group for both men and women. Moreover, the HD players outperformed the LD players in these tests. In the second prospective part of the study, a partial correlation test showed a significant correlation between the result from the executive test and the numbers of goals and assists the players had scored two seasons later. The results from this study strongly suggest that results in cognitive function tests predict the success of ball sport players. PMID:22496850

  20. The influence of action observation on action execution: Dissociating the contribution of action on perception, perception on action, and resolving conflict.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2017-04-01

    For more than 15 years, motor interference paradigms have been used to investigate the influence of action observation on action execution. Most research on so-called automatic imitation has focused on variables that play a modulating role or investigated potential confounding factors. Interestingly, furthermore, a number of functional magnetic resonance imaging (fMRI) studies have tried to shed light on the functional mechanisms and neural correlates involved in imitation inhibition. However, these fMRI studies, presumably due to poor temporal resolution, have primarily focused on high-level processes and have neglected the potential role of low-level motor and perceptual processes. In the current EEG study, we therefore aimed to disentangle the influence of low-level perceptual and motoric mechanisms from high-level cognitive mechanisms. We focused on potential congruency differences in the visual N190 - a component related to the processing of biological motion, the Readiness Potential - a component related to motor preparation, and the high-level P3 component. Interestingly, we detected congruency effects in each of these components, suggesting that the interference effect in an automatic imitation paradigm is not only related to high-level processes such as self-other distinction but also to more low-level influences of perception on action and action on perception. Moreover, we documented relationships of the neural effects with (autistic) behavior.

  1. Brain Activation in Primary Motor and Somatosensory Cortices during Motor Imagery Correlates with Motor Imagery Ability in Stroke Patients

    PubMed Central

    Confalonieri, Linda; Pagnoni, Giuseppe; Barsalou, Lawrence W.; Rajendra, Justin; Eickhoff, Simon B.; Butler, Andrew J.

    2012-01-01

    Aims. While studies on healthy subjects have shown a partial overlap between the motor execution and motor imagery neural circuits, few have investigated brain activity during motor imagery in stroke patients with hemiparesis. This work is aimed at examining similarities between motor imagery and execution in a group of stroke patients. Materials and Methods. Eleven patients were asked to perform a visuomotor tracking task by either physically or mentally tracking a sine wave force target using their thumb and index finger during fMRI scanning. MIQ-RS questionnaire has been administered. Results and Conclusion. Whole-brain analyses confirmed shared neural substrates between motor imagery and motor execution in bilateral premotor cortex, SMA, and in the contralesional inferior parietal lobule. Additional region of interest-based analyses revealed a negative correlation between kinaesthetic imagery ability and percentage BOLD change in areas 4p and 3a; higher imagery ability was associated with negative and lower percentage BOLD change in primary sensorimotor areas during motor imagery. PMID:23378930

  2. Self-Regulation and Executive Functioning as Related to Survival in Motor Neuron Disease: Preliminary Findings.

    PubMed

    Garcia-Willingham, Natasha E; Roach, Abbey R; Kasarskis, Edward J; Segerstrom, Suzanne C

    2018-05-16

    Disease progression varies widely among patients with motor neuron disease (MND). Patients with MND and coexisting dementia have shorter survival. However, implications of mild cognitive and behavioral difficulties are unclear. The present study examined the relative contribution of executive functioning and self-regulation difficulties on survival over a 6-year period among patients with MND, who scored largely within normal limits on cognitive and behavioral indices. Patients with MND (N=37, age=59.97±11.57, 46% female) completed the Wisconsin Card Sorting Task (WCST) as an executive functioning perseveration index. The Behavior Rating Inventory of Executive Functions (BRIEF-A) was used as a behavioral measure of self-regulation in two subdomains self-regulatory behavior (Behavioral Regulation) and self-regulatory problem-solving (Metacognition). Cox proportional hazard regression analyses were used. In total, 23 patients died during follow-up. In Cox proportional hazard regressions adjusted for a priori covariates, each 10-point T-score increment in patient-reported BRIEF-A self-regulatory behavior and problem-solving difficulties increased mortality risk by 94% and103%, respectively (adjusted HR=1.94, 95% CI [1.07, 3.52]; adjusted HR=2.03, 95% CI [1.19, 3.48]). In sensitivity analyses, patient-reported self-regulatory problem-solving remained significant independent of disease severity and a priori covariates (adjusted HR=1.68, 95% CI [1.01, 2.78], though the predictive value of self-regulatory behavior was attenuated in adjusted models (HR=1.67, 95% CI [0.85, 3.27). Caregiver-reported BRIEF-A ratings of patients and WCST perseverative errors did not significantly predict survival. Preliminary evidence suggests patient-reported self-regulatory problem-solving difficulties indicate poorer prognosis in MND. Further research is needed to uncover mechanisms that negatively affect patient survival.

  3. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis.

    PubMed

    Grabherr, Luzia; Jola, Corinne; Berra, Gilberto; Theiler, Robert; Mast, Fred W

    2015-01-01

    In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits. To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution. Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training. The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice.

  4. The Source of Execution-Related Dual-Task Interference: Motor Bottleneck or Response Monitoring?

    ERIC Educational Resources Information Center

    Bratzke, Daniel; Rolke, Bettina; Ulrich, Rolf

    2009-01-01

    The present study assessed the underlying mechanism of execution-related dual-task interference in the psychological refractory period (PRP) paradigm. The motor bottleneck hypothesis attributes this interference to a processing limitation at the motor level. By contrast, the response monitoring hypothesis attributes it to a bottleneck process that…

  5. A Test of Motor (Not Executive) Planning in Developmental Coordination Disorder and Autism

    ERIC Educational Resources Information Center

    van Swieten, Lisa M.; van Bergen, Elsje; Williams, Justin H. G.; Wilson, Andrew D.; Plumb, Mandy S.; Kent, Samuel W.; Mon-Williams, Mark A.

    2010-01-01

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between "motor" and "executive" planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or anticlockwise.…

  6. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  7. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  8. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke.

    PubMed

    Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie

    2018-04-24

    Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.

  9. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.

    PubMed

    Bai, Ou; Lin, Peter; Huang, Dandan; Fei, Ding-Yu; Floeter, Mary Kay

    2010-08-01

    Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  10. Handwriting Fluency and Visuospatial Generativity at Primary School

    ERIC Educational Resources Information Center

    Stievano, Paolo; Michetti, Silvia; McClintock, Shawn M.; Levi, Gabriel; Scalisi, Teresa Gloria

    2016-01-01

    Handwriting is a complex activity that involves continuous interaction between lowerlevel perceptual-motor and higher-level cognitive processes. All handwriting models describe involvement of executive functions (EF) in handwriting development. Particular EF domains associated with handwriting include maintenance of information in working memory,…

  11. Effects of Real-Time Cochlear Implant Simulation on Speech Perception and Production

    ERIC Educational Resources Information Center

    Casserly, Elizabeth D.

    2013-01-01

    Real-time use of spoken language is a fundamentally interactive process involving speech perception, speech production, linguistic competence, motor control, neurocognitive abilities such as working memory, attention, and executive function, environmental noise, conversational context, and--critically--the communicative interaction between…

  12. Exploring Neuropsychology: Seeking Evidence of Added Worth to School Psychology Practice

    ERIC Educational Resources Information Center

    Sassu, Kari A.; Gelbar, Nicholas W.; Bray, Melissa A.; Kehle, Thomas J.; Patwa, Shamim

    2015-01-01

    Historically, school psychological assessment has included the core elements of cognitive, academic, and behavioral indices. Neuropsychological assessment has included these and the additional elements of attention, memory, language, visual-spatial, motor, sensory, and executive functioning (American Psychological Association, 2006). With the…

  13. The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals.

    PubMed

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general intellectual ability and profile. One hundred consecutively referred individuals aged 1-35 years with 22q11DS were given in-depth neuropsychological assessments. Mean full scale IQ was 71 with a normal distribution around this mean. Higher IQ for females than males, and a negative trend for IQ with higher age were found. Intellectual impairment, as well as visuo-motor dysfunction, was found to be related to 22q11DS per se and not to ASD/ADHD. In the area of executive function, the presence of ASD/ADHD predicted poor planning ability in the children in the study.

  14. Effect of ageing on neurocognitive function by stage of HIV infection: evidence from the Multicenter AIDS Cohort Study.

    PubMed

    Goodkin, Karl; Miller, Eric N; Cox, Christopher; Reynolds, Sandra; Becker, James T; Martin, Eileen; Selnes, Ola A; Ostrow, David G; Sacktor, Ned C

    2017-09-01

    The demographics of the HIV epidemic in the USA have shifted towards older age. We aimed to establish the relationship between the processes of ageing and HIV infection in neurocognitive impairment. With longitudinal data from the Multicenter AIDS Cohort Study, a long-term prospective cohort study of the natural and treated history of HIV infection among men who have sex with men in the USA, we examined the effect of ageing, HIV infection (by disease stage), and their interaction on five neurocognitive domains: information processing speed, executive function, episodic memory, working memory, and motor function. We controlled for duration of serostatus in a subanalysis, as well as comorbidities and other factors that affect cognition. Analyses were by linear mixed models for longitudinal data. 5086 participants (47 886 visits) were included in the analytic sample (2278 HIV-seropositive participants contributed 20 477 visits and 2808 HIV-seronegative control participants contributed 27 409 visits). In an a-priori multivariate analysis with control variables including comorbidities and time since seroconversion, significant, direct negative effects of ageing were noted on all neurocognitive domains (p<0·0001 for all). Similar effects were noted for late-stage HIV disease progression on information processing speed (p=0·002), executive function (p<0·0001), motor function (p<0·0001), and working memory (p=0·001). Deleterious interaction effects were also noted in the domains of episodic memory (p=0·03) and motor function (p=0·02). A greater than expected effect of ageing on episodic memory and motor function with advanced stages of HIV infection suggests that these two domains are most susceptible to the progression of neurocognitive impairment caused by ageing in individuals with HIV. This deficit pattern suggests differential damage to the hippocampus and basal ganglia (specifically nigrostriatal pathways). Older individuals with HIV infection should be targeted for regular screening for HIV-associate neurocognitive disorder, particularly with tests referable to the episodic memory and motor domains. National Institute of Mental Health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  16. Gray matter volume covariance patterns associated with gait speed in older adults: a multi-cohort MRI study.

    PubMed

    Blumen, Helena M; Brown, Lucy L; Habeck, Christian; Allali, Gilles; Ayers, Emmeline; Beauchet, Olivier; Callisaya, Michele; Lipton, Richard B; Mathuranath, P S; Phan, Thanh G; Pradeep Kumar, V G; Srikanth, Velandai; Verghese, Joe

    2018-04-09

    Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.

  17. Using virtual reality simulation to study navigation in a complex environment as a functional-cognitive task; A pilot study.

    PubMed

    Kizony, R; Zeilig, G; Krasovsky, T; Bondi, M; Weiss, P L; Kodesh, E; Kafri, M

    2017-01-01

    Navigation skills are required for performance of functional complex tasks and may decline due to aging. Investigation of navigation skills should include measurement of cognitive-executive and motor aspects, which are part of complex tasks. to compare young and older healthy adults in navigation within a simulated environment with and without a functional-cognitive task. Ten young adults (25.6±4.3 years) and seven community dwelling older men (69.9±3.8 years) were tested during a single session. After training on a self-paced treadmill to navigate in a non-functional simulation, they performed the Virtual Multiple Errands Test (VMET) in a mall simulation. Outcome measures included cognitive-executive aspects of performance and gait parameters. Younger adults' performance of the VMET was more efficient (1.8±1.0) than older adults (5.3±2.7; p < 0.05) and faster (younger 478.1±141.5 s, older 867.6±393.5 s; p < 0.05). There were no differences between groups in gait parameters. Both groups walked slower in the mall simulation. The shopping simulation provided a paradigm to assess the interplay between motor and cognitive aspects involved in the efficient performance of a complex task. The study emphasized the role of the cognitive-executive aspect of task performance in healthy older adults.

  18. Relation of Infant Motor Development with Nonverbal Intelligence, Language Comprehension and Neuropsychological Functioning in Childhood: A Population-Based Study

    ERIC Educational Resources Information Center

    Serdarevic, Fadila; van Batenburg-Eddes, Tamara; Mous, Sabine E.; White, Tonya; Hofman, Albert; Jaddoe, Vincent W. V.; Verhulst, Frank C.; Ghassabian, Akhgar; Tiemeier, Henning

    2016-01-01

    Within a population-based study of 3356 children, we investigated whether infant neuromotor development was associated with cognition in early childhood. Neuromotor development was examined with an adapted version of Touwen's Neurodevelopmental Examination between 9 and 20 weeks. Parents rated their children's executive functioning at 4 years. At…

  19. Linear Growth and Child Development in Burkina Faso, Ghana, and Malawi.

    PubMed

    Prado, Elizabeth L; Abbeddou, Souheila; Adu-Afarwuah, Seth; Arimond, Mary; Ashorn, Per; Ashorn, Ulla; Brown, Kenneth H; Hess, Sonja Y; Lartey, Anna; Maleta, Kenneth; Ocansey, Eugenia; Ouédraogo, Jean-Bosco; Phuka, John; Somé, Jérôme W; Vosti, Steve A; Yakes Jimenez, Elizabeth; Dewey, Kathryn G

    2016-08-01

    We aimed to produce quantitative estimates of the associations between 4 domains of child development and linear growth during 3 periods: before birth, early infancy, and later infancy. We also aimed to determine whether several factors attenuated these associations. In 3700 children in Burkina Faso, Ghana, and Malawi, growth was measured several times from birth to age 18 months. At 18 months, language, motor, socioemotional, and executive function development were assessed. In Burkina Faso (n = 1111), personal-social development was assessed rather than the latter 2 domains. Linear growth was significantly associated with language, motor, and personal-social development but not socioemotional development or executive function. For language, the pooled adjusted estimate of the association with length-for-age z score (LAZ) at 6 months was 0.13 ± 0.02 SD, and with ΔLAZ from 6 to 18 months it was 0.11 ± 0.03 SD. For motor, these estimates were 0.16 ± 0.02 SD and 0.22 ± 0.03 SD, respectively. In 1412 children measured at birth, estimates of the association with LAZ at birth were similar (0.07-0.16 SD for language and 0.09-0.18 SD for motor development). These associations were weaker or absent in certain subsets of children with high levels of developmental stimulation or mothers who received nutritional supplementation. Growth faltering during any period from before birth to 18 months is associated with poor development of language and motor skills. Interventions to provide developmental stimulation or maternal supplementation may protect children who are faltering in growth from poor language and motor development. Copyright © 2016 by the American Academy of Pediatrics.

  20. Driving and off-road impairments underlying failure on road testing in Parkinson's disease.

    PubMed

    Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y

    2013-12-01

    Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.

  1. A novel approach to sports concussion assessment: Computerized multilimb reaction times and balance control testing.

    PubMed

    Vartiainen, Matti V; Holm, Anu; Lukander, Jani; Lukander, Kristian; Koskinen, Sanna; Bornstein, Robert; Hokkanen, Laura

    2016-01-01

    Mild traumatic brain injuries (MTBI) or concussions often result in problems with attention, executive functions, and motor control. For better identification of these diverse problems, novel approaches integrating tests of cognitive and motor functioning are needed. The aim was to characterize minor changes in motor and cognitive performance after sports-related concussions with a novel test battery, including balance tests and a computerized multilimb reaction time test. The cognitive demands of the battery gradually increase from a simple stimulus response to a complex task requiring executive attention. A total of 113 male ice hockey players (mean age = 24.6 years, SD = 5.7) were assessed before a season. During the season, nine concussed players were retested within 36 hours, four to six days after the concussion, and after the season. A control group of seven nonconcussed players from the same pool of players with comparable demographics were retested after the season. Performance was measured using a balance test and the Motor Cognitive Test battery (MotCoTe) with multilimb responses in simple reaction, choice reaction, inhibition, and conflict resolution conditions. The performance of the concussed group declined at the postconcussion assessment compared to both the baseline measurement and the nonconcussed controls. Significant changes were observed in the concussed group for the multilimb choice reaction and inhibition tests. Tapping and balance showed a similar trend, but no statistically significant difference in performance. In sports-related concussions, complex motor tests can be valuable additions in assessing the outcome and recovery. In the current study, using subtasks with varying cognitive demands, it was shown that while simple motor performance was largely unaffected, the more complex tasks induced impaired reaction times for the concussed subjects. The increased reaction times may reflect the disruption of complex and integrative cognitive function in concussions.

  2. Neuropsychological function and memory suppression in conversion disorder.

    PubMed

    Brown, Laura B; Nicholson, Timothy R; Aybek, Selma; Kanaan, Richard A; David, Anthony S

    2014-09-01

    Conversion disorder (CD) is a condition where neurological symptoms, such as weakness or sensory disturbance, are unexplained by neurological disease and are presumed to be of psychological origin. Contemporary theories of the disorder generally propose dysfunctional frontal control of the motor or sensory systems. Classical (Freudian) psychodynamic theory holds that the memory of stressful life events is repressed. Little is known about the frontal (executive) function of these patients, or indeed their general neuropsychological profile, and psychodynamic theories have been largely untested. This study aimed to investigate neuropsychological functioning in patients with CD, focusing on executive and memory function. A directed forgetting task (DFT) using words with variable emotional valence was also used to investigate memory suppression. 21 patients and 36 healthy controls completed a battery of neuropsychological tests and patients had deficits in executive function and auditory-verbal (but not autobiographical) memory. The executive deficits were largely driven by differences in IQ, anxiety and mood between the groups. A subgroup of 11 patients and 28 controls completed the DFT and whilst patients recalled fewer words overall than controls, there were no significant effects of directed forgetting or valence. This study provides some limited support for deficits in executive, and to a lesser degree, memory function in patients with CD, but did not find evidence of altered memory suppression to support the psychodynamic theory of repression. © 2013 The British Psychological Society.

  3. Neural mechanisms and models underlying joint action.

    PubMed

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  4. Cognitive, sensory and physical factors enabling driving safety in older adults.

    PubMed

    Anstey, Kaarin J; Wood, Joanne; Lord, Stephen; Walker, Janine G

    2005-01-01

    We reviewed literature on cognitive, sensory, motor and physical factors associated with safe driving and crash risk in older adults with the goal of developing a model of factors enabling safe driving behaviour. Thirteen empirical studies reporting associations between cognitive, sensory, motor and physical factors and either self-reported crashes, state crash records or on-road driving measures were identified. Measures of attention, reaction time, memory, executive function, mental status, visual function, and physical function variables were associated with driving outcome measures. Self-monitoring was also identified as a factor that may moderate observed effects by influencing driving behavior. We propose that three enabling factors (cognition, sensory function and physical function/medical conditions) predict driving ability, but that accurate self-monitoring of these enabling factors is required for safe driving behaviour.

  5. Cognitive function in early HIV infection.

    PubMed

    Prakash, Aanchal; Hou, Jue; Liu, Lei; Gao, Yi; Kettering, Casey; Ragin, Ann B

    2017-04-01

    This study aimed to examine cognitive function in acute/early HIV infection over the subsequent 2 years. Fifty-six HIV+ subjects and 21 seronegative participants of the Chicago Early HIV Infection Study were evaluated using a comprehensive neuropsychological assessment at study enrollment and at 2-year follow-up. Cognitive performance measures were compared in the groups using t tests and mixed-effect models. Patterns of relationship with clinical measures were determined between cognitive function and clinical status markers using Spearman's correlations. At the initial timepoint, the HIV group demonstrated significantly weaker performance on measures of verbal memory, visual memory, psychomotor speed, motor speed, and executive function. A similar pattern was found when cognitive function was examined at follow-up and across both timepoints. The HIV subjects had generally weaker performance on psychomotor speed, executive function, motor speed, visual memory, and verbal memory. The rate of decline in cognitive function across the 2-year follow-up period did not differ between groups. Correlations between clinical status markers and cognitive function at both timepoints showed weaker performance associated with increased disease burden. Neurocognitive difficulty in chronic HIV infection may have very early onset and reflect consequences of initial brain viral invasion and neuroinflammation during the intense, uncontrolled viremia of acute HIV infection. Further characterization of the changes occurring in initial stages of infection and the risk and protective factors for cognitive function could inform new strategies for neuroprotection.

  6. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson's disease.

    PubMed

    Wild, Lucia Bartmann; de Lima, Daiane Borba; Balardin, Joana Bisol; Rizzi, Luana; Giacobbo, Bruno Lima; Oliveira, Henrique Bianchi; de Lima Argimon, Irani Iracema; Peyré-Tartaruga, Leonardo Alexandre; Rieder, Carlos R M; Bromberg, Elke

    2013-02-01

    The primary purpose of this study was to investigate the effect of dual-tasking on cognitive performance and gait parameters in patients with idiopathic Parkinson's disease (PD) without dementia. The impact of cognitive task complexity on cognition and walking was also examined. Eighteen patients with PD (ages 53-88, 10 women; Hoehn and Yahr stage I-II) and 18 older adults (ages 61-84; 10 women) completed two neuropsychological measures of executive function/attention (the Stroop Test and Wisconsin Card Sorting Test). Cognitive performance and gait parameters related to functional mobility of stride were measured under single (cognitive task only) and dual-task (cognitive task during walking) conditions with different levels of difficulty and different types of stimuli. In addition, dual-task cognitive costs were calculated. Although cognitive performance showed no significant difference between controls and PD patients during single or dual-tasking conditions, only the patients had a decrease in cognitive performance during walking. Gait parameters of patients differed significantly from controls at single and dual-task conditions, indicating that patients gave priority to gait while cognitive performance suffered. Dual-task cognitive costs of patients increased with task complexity, reaching significantly higher values then controls in the arithmetic task, which was correlated with scores on executive function/attention (Stroop Color-Word Page). Baseline motor functioning and task executive/attentional load affect the performance of cognitive tasks of PD patients while walking. These findings provide insight into the functional strategies used by PD patients in the initial phases of the disease to manage dual-task interference.

  7. Unique and shared areas of cognitive function in children with intractable frontal or temporal lobe epilepsy.

    PubMed

    Law, Nicole; Widjaja, Elysa; Smith, Mary Lou

    2018-03-01

    Previous findings have been mixed in terms of identifying a distinct pattern of neuropsychological deficits in children with frontal lobe epilepsy (FLE) and in those with temporal lobe epilepsy (TLE). The current study investigated the neuropsychological similarities and differences across these two pediatric medically intractable localization-related epilepsies. Thirty-eight children with FLE, 20 children with TLE, and 40 healthy children (HC) participated in this study. A comprehensive battery of standardized tests assessed five neuropsychological domains including intelligence, language, memory, executive function, and motor function. A principal component analysis (PCA) was used to distill our neuropsychological measures into latent components to compare between groups. Principal component analysis extracted 5 latent components: executive function (F1), verbal semantics (F2), motor (F3), nonverbal cognition/impulsivity (F4), and verbal cognition/attention (F5). The group with FLE differed from the HC group on F1, F2, F4, and F5, and had worse performance than the group with TLE on F1; the group with TLE had lower performance relative to the HC group on F2. Our findings suggest that, in comparison with neurotypically developing children, children with medically intractable FLE have more widespread neuropsychological impairments than do children with TLE. The differences between the two patient groups were greatest for the factor score most clearly related to executive function. The results provide mixed support for the concept of specificity in neuropsychological dysfunction among different subtypes of localization-related medically intractable childhood epilepsies. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement.

    PubMed

    Mayr, Winfried; Krenn, Matthias; Dimitrijevic, Milan R

    2016-01-01

    Motor control after spinal cord injury is strongly depending on residual ascending and descending pathways across the lesion. The individually altered neurophysiology is in general based on still intact sublesional control loops with afferent sensory inputs linked via interneuron networks to efferent motor outputs. Partial or total loss of translesional control inputs reduces and alters the ability to perform voluntary movements and results in motor incomplete (residual voluntary control of movement functions) or motor complete (no residual voluntary control) spinal cord injury classification. Of particular importance are intact functionally silent neural structures with residual brain influence but reduced state of excitability that inhibits execution of voluntary movements. The condition is described by the term discomplete spinal cord injury. There are strong evidences that artificial afferent input, e.g., by epidural or noninvasive electrical stimulation of the lumbar posterior roots, can elevate the state of excitability and thus re-enable or augment voluntary movement functions. This modality can serve as a powerful assessment technique for monitoring details of the residual function profile after spinal cord injury, as a therapeutic tool for support of restoration of movement programs and as a neuroprosthesis component augmenting and restoring movement functions, per se or in synergy with classical neuromuscular or muscular electrical stimulation.

  9. Learning fast accurate movements requires intact frontostriatal circuits

    PubMed Central

    Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro

    2013-01-01

    The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037

  10. Motor demand-dependent activation of ipsilateral motor cortex.

    PubMed

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  11. Execution and pauses in writing narratives: processing time, cognitive effort and typing skill.

    PubMed

    Alves, Rui Alexandre; Castro, São Luís; Olive, Thierry

    2008-12-01

    At the behavioural level, the activity of a writer can be described as periods of typing separated by pauses. Although some studies have been concerned with the functions of pauses, few have investigated motor execution periods. Precise estimates of the distribution of writing processes, and their cognitive demands, across periods of typing and pauses are lacking. Furthermore, it is uncertain how typing skill affects these aspects of writing. We addressed these issues, selecting writers of low and high typing skill who performed dictation and composition tasks. The occurrences of writing processes were assessed through directed verbalization, and their cognitive demands were measured through interference in reaction times (IRT). Before writing a narrative, 34 undergraduates learned to categorize examples of introspective thoughts as different types of activities related to writing (planning, translating, or revising). Then, while writing, they responded to random auditory probes, and reported their ongoing activity according to the learned categories. Convergent with previous findings, translating was most often reported, and revising and planning had fewer occurrences. Translating was mostly activated during motor execution, whereas revising and planning were mainly activated during pauses. However, none of the writing processes can be characterized as being typical of pauses, since translating was activated to a similar extent as the other two processes. Regarding cognitive demands, revising is likely to be the most demanding process in narrative writing. Typing skill had an impact on IRTs of motor execution. The demands of execution were greater in the low than in the high typing skill group, but these greater demands did not affect the strategy of writing processes activation. Nevertheless, low typing skill had a detrimental impact on text quality.

  12. [The consequences of closed traumatic brain injury and piracetam efficacy in their treatment in adolescents].

    PubMed

    Zavadenko, N N; Guzilova, L S

    2008-01-01

    The efficacy of piracetam in the treatment of the consequences of moderate and severe closed traumatic brain injury was assessed in 42 patients, aged 12-18 years, who suffered traumatic disorders 1,5-5 years before this study. Adolescents from the main group (20 patients) received piracetam in dosage of 40-50 mg/kg (or 1600-2400 mg daily) during one month. 22 patients of the second group were examined as controls. The positive therapeutic effects of piracetam on cognitive (memory, attention, executive functions) and motor (coordination) functions as well as the speed of cognitive and motor performance were demonstrated in this study.

  13. Brain correlates to facial motor imagery and its somatotopy in the primary motor cortex.

    PubMed

    Soliman, Ramy S; Lee, Sanghoon; Eun, Seulgi; Mohamed, Abdalla Z; Lee, Jeungchan; Lee, Eunyoung; Makary, Meena M; Kathy Lee, Seung Min; Lee, Hwa-Jin; Choi, Woo Suk; Park, Kyungmo

    2017-03-22

    Motor imagery (MI) has attracted increased interest for motor rehabilitation as many studies have shown that MI shares the same neural networks as motor execution (ME). Nevertheless, MI in terms of facial movement has not been studied extensively; thus, in the present study, we investigated shared neural networks between facial motor imagery (FMI) and facial motor execution (FME). In addition, FMI somatotopy within-face was investigated between the forehead and the mouth. Functional MRI was used to examine 34 healthy individuals with ME and MI paradigms for the forehead and the mouth. The general linear model and a paired t-test were performed to define the facial area in the primary motor cortex (M1) and this area has been used to investigate somatotopy between the forehead and mouth FMI. FMI recruited similar brain motor areas as FME, but showed less neural activity in all activated regions. The facial areas in M1 were distinguishable from other body movements such as finger movement. Further investigation of this area showed that forehead and mouth imagery tended to lack a somatotopic representation for position on M1, and yet had distinct characteristics in terms of neural activity level. FMI showed different characteristics from general MI as the former exclusively activated facial processing areas. In addition, FME and FMI showed different characteristics in terms of BOLD signal level, while sharing the same neural areas. The results imply a potential usefulness of MI training for rehabilitation of facial motor disease considering that forehead and mouth somatotopy showed no clear position difference, and yet showed a significant BOLD signal intensity variation.

  14. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects.

    PubMed

    Osborne, Natalie R; Owen, Adrian M; Fernández-Espejo, Davinia

    2015-01-01

    Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients.

  15. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects

    PubMed Central

    Osborne, Natalie R.; Owen, Adrian M.; Fernández-Espejo, Davinia

    2015-01-01

    Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients. PMID:26441593

  16. Working Memory: Its Role in Dyslexia and Other Specific Learning Difficulties

    ERIC Educational Resources Information Center

    Jeffries, Sharman; Everatt, John

    2004-01-01

    This paper reports a study contrasting dyslexic children against a control group of children without special educational needs (SEN) and a group with varied SENs. Children's abilities were compared on tasks assessing phonological processing, visuo-spatial/motor coordination and executive/inhibitory functioning; being targeted for assessment based…

  17. The Interplay between Executive Control and Motor Functioning in Williams Syndrome

    ERIC Educational Resources Information Center

    Hocking, Darren R.; Thomas, Daniel; Menant, Jasmine C.; Porter, Melanie A.; Smith, Stuart; Lord, Stephen R.; Cornish, Kim M.

    2013-01-01

    Previous studies suggest that individuals with Williams syndrome (WS), a rare genetically based neurodevelopmental disorder, show specific weaknesses in visual attention and response inhibition within the visuospatial domain. Here we examine the extent to which impairments in attentional control extend to the visuomotor domain using a…

  18. Classification of EEG signals to identify variations in attention during motor task execution.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. On the role of the SMA in the discrete sequence production task: a TMS study. Transcranial Magnetic Stimulation.

    PubMed

    Verwey, Willem B; Lammens, Robin; van Honk, Jack

    2002-01-01

    Participants practiced two discrete six-key sequences for a total of 420 trials. The 1 x 6 sequence had a unique order of key presses while the 2 x 3 sequence involved repetition of a three-key segment. Both sequences showed a long interkey interval halfway the sequence indicating hierarchical sequence control in that not only the 2 x 3 but also the 1 x 6 sequence was executed as two successive motor chunks. Besides, the second part of both sequences was executed faster than the first part. This supports the earlier notion of a motor processor executing the elements of familiar motor chunks and a cognitive processor triggering either these motor chunks or individual sequence elements. Low-frequency, off-line transcranial magnetic stimulation (TMS) of the supplementary motor area (SMA) counteracted normal improvement with practice of key presses at all sequence positions. Together, these results are in line with the notion that with moderate practice, the SMA executes short sequence fragments that are concatenated by other brain structures.

  20. Prenatal exposure to maternal very severe obesity is associated with impaired neurodevelopment and executive functioning in children.

    PubMed

    Mina, Theresia H; Lahti, Marius; Drake, Amanda J; Denison, Fiona C; Räikkönen, Katri; Norman, Jane E; Reynolds, Rebecca M

    2017-07-01

    BackgroundPrenatal maternal obesity has been associated with an increased risk of neurocognitive problems in childhood, but there are fewer studies on executive functioning.MethodsTests and questionnaires to assess neurodevelopment, executive functioning, and the ability to delay gratification were conducted in 113 children (mean (SD)=4.24 (0.63) years of age) born to mothers with very severe obesity (SO, body mass index (BMI)⩾40 kg/m 2 , n=51) or to lean mothers (BMI⩽25 kg/m 2 , n=62).ResultsPrenatal maternal SO predicted poorer neurodevelopment (unstandardized regression coefficient (B)=-0.42, 95% confidence interval (CI) (-0.82; -0.02)), worse problem-solving (odd ratio (OR)=0.60, 95% CI (1.13; 0.07)), and fine motor skills (OR=4.91, 95% CI (1.27; 19.04)), poorer executive functioning in areas of attention, inhibitory control, and working memory (standardized B=3.75, 95% CI (1.01; 13.93)) but not in self-gratification delay. The effects were independent of maternal concurrent psychological well-being and child's BMI, but not independent of maternal education.ConclusionFuture studies should investigate whether perinatal management of maternal obesity could prevent adverse outcomes in child neurodevelopment.

  1. [Impairment of executive function in elderly patients with major unipolar depression: influence of psychomotor retardation].

    PubMed

    Baudic, Sophie; Benisty, Sarah; Dalla Barba, Gianfrano; Traykov, Latchezar

    2007-03-01

    The results from several studies assessing the executive function in depressed patients compared to control subjects varied from significant impairment to normal performance. To assess the executive impairment in elderly patients with major unipolar depression and to evaluate the influence of psychomotor retardation and severity of depression in the executive deficits, the performance of 15 elderly patients with unipolar depression was compared to that of 15 elderly control subjects on executive tasks. The severity of depression was evaluated by the Montgomery and Asberg depressive scale and that of psychomotor retardation by the Widlöcher's scale. In depressed patients, deficits were found on tasks assessing cognitive flexibility (Modified card sorting test (MCST) and Trail making test B), planification and elaboration of strategies (cognitive estimates), motor initiation (graphic sequences), categorisation and hypothesis making (MCST) and interference resistance (Stroop test). However, depressed patients performed normally on the Hayling test assessing the inhibition processes. Intensity of psychomotor retardation was not correlated to the performance of executive tasks. Conversely, severity of depression was related to the scores of MCST (number of errors and perseverations), Stroop and Hayling tests (time taken to complete the end of the sentence). Unipolar depressed patients showed deficits in most tasks assessing executive function. However, inhibition processes appeared to be intact in depressed patients although their implementation was difficult. The severity of depression but not that of psychomotor retardation was associated with executive deficits.

  2. A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms.

    PubMed

    Mak, Anselm; Ren, Tao; Fu, Erin Hui-yun; Cheak, Alicia Ai-cia; Ho, Roger Chun-man

    2012-06-01

    To study the functional brain activation signals before and after sufficient disease control in patients with systemic lupus erythematosus (SLE) without clinical neuropsychiatric symptoms. Blood-oxygen-level-dependent signals during event-related functional magnetic resonance imaging brain were recorded, while 14 new-onset SLE patients and 14 demographically and intelligence quotient matched healthy controls performed the computer-based Wisconsin card sorting test for assessing executive function, which probes strategic planning and goal-directed task performance during feedback evaluation (FE) and response selection (RS), respectively. Composite beta maps were constructed by a general linear model to identify regions of cortical activation. Blood-oxygen-level-dependent functional magnetic resonance imaging signals were compared between (1) new-onset SLE patients and healthy controls and (2) SLE patients before and after sufficient control of their disease activity. During RS, SLE patients demonstrated significantly higher activation than healthy controls in both caudate bodies and Brodmann area (BA) 9 to enhance event anticipation, attention, and working memory, respectively, to compensate for the reduced activation during FE in BA6, 13, 24, and 32, which serve complex motor planning and decision-making, sensory integration, error detection, and conflict processing, respectively. Despite significant reduction of SLE activity, BA32 was activated during RS to compensate for reduced activation during FE in BA6, 9, 37, and 23/32, which serve motor planning, response inhibition and attention, color processing and word recognition, error detection, and conflict evaluation, respectively. Even without clinically overt neuropsychiatric symptoms, SLE patients recruited additional pathways to execute goal-directed tasks to compensate for their reduced strategic planning skill despite clinically sufficient disease control. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Diffusion Tensor Imaging of Frontal White Matter and Executive Functioning in Cocaine-Exposed Children

    PubMed Central

    Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M.; Blackband, Stephen J.

    2011-01-01

    BACKGROUND Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. METHODS Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). RESULTS Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. CONCLUSIONS Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research. PMID:17079574

  4. Diffusion tensor imaging of frontal white matter and executive functioning in cocaine-exposed children.

    PubMed

    Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M; Blackband, Stephen J

    2006-11-01

    Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research.

  5. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  6. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions

    PubMed Central

    Stoppel, Christian Michael; Vielhaber, Stefan; Eckart, Cindy; Machts, Judith; Kaufmann, Jörn; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2014-01-01

    Previous studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS. PMID:25161894

  7. A Six-Month Cognitive-Motor and Aerobic Exercise Program Improves Executive Function in Persons with an Objective Cognitive Impairment: A Pilot Investigation Using the Antisaccade Task.

    PubMed

    Heath, Matthew; Weiler, Jeffrey; Gregory, Michael A; Gill, Dawn P; Petrella, Robert J

    2016-10-04

    Persons with an objective cognitive impairment (OCI) are at increased risk for progression to Alzheimer's disease and related dementias. The present pilot project sought to examine whether participation in a long-term exercise program involving cognitive-motor (CM) dual-task gait training and aerobic exercise training improves executive function in persons with an OCI. To accomplish our objective, individuals with an OCI (n = 12) as determined by a Montreal Cognitive Assessment (MoCA) score of less than 26 and older adults (n = 11) deemed to be cognitively healthy (i.e., control group: MoCA score ≥26) completed a six-month moderate-to-high intensity (65-85% maximum heart rate) treadmill-based CM and aerobic exercise training program wherein pre- and post-intervention executive control was examined via the antisaccade task. Notably, antisaccades require a goal-directed eye-movement mirror-symmetrical to a target and represent an ideal tool for the study of executive deficits because of its hands- and language-free nature. As well, the cortical networks mediating antisaccades represent regions associated with neuropathology in cognitive decline and dementia (e.g., dorsolateral prefrontal cortex). Results showed that antisaccade reaction times for the OCI group reliably decreased by 30 ms from pre- to post-intervention, whereas the control group did not produce a reliable pre- to post-intervention change in reaction time (i.e., 6 ms). Thus, we propose that in persons with OCI long-term CM and aerobic training improves the efficiency and effectiveness of the executive mechanisms mediating high-level oculomotor control.

  8. Differences in performance and learning proficiency on the Wisconsin Card Sorting Test in schizophrenia: do they reflect distinct neurocognitive subtypes with distinct functional profiles?

    PubMed

    Kurtz, Matthew M; Wexler, Bruce E

    2006-01-31

    The aim of this study was two-fold: 1) to determine whether a priori subtyping of patients with schizophrenia based on both overall performance on a measure of executive-function, the Wisconsin Card Sorting Test (WCST), and ability to learn the task with expanded instruction, could be confirmed with other, independent measures of executive-function and learning, and, if so, 2) to determine whether these groups have different neurocognitive profiles and show differences in functional capacity. Fifty-four outpatients with schizophrenia were divided by WCST performance into three groups: intact executive-function (n=28), "good learner" (n=13), and "poor learner" (n=13) groups. These groups were then assessed with a comprehensive neurocognitive test battery and a performance-based measure of functional status, the UCSD Performance-based Skills Assessment (UPSA). The WCST-intact subgroup performed significantly better than other groups on a second measure of executive-function and in working memory, and speeded motor sequencing. Impaired WCST patients who benefited from expanded WCST instruction ("good learners") also showed better performance than patients who did not benefit from instruction ("poor-learners") on a second measure of learning, as well as on a measure of auditory divided attention. The intact WCST subgroup had greater functional capacity than either "strong" or "poor" learners. These subtypes may have implications for response to behavioral treatment interventions.

  9. Dance therapy improves motor and cognitive functions in patients with Parkinson's disease.

    PubMed

    de Natale, Edoardo Rosario; Paulus, Kai Stephan; Aiello, Elena; Sanna, Battistina; Manca, Andrea; Sotgiu, Giovanni; Leali, Paolo Tranquilli; Deriu, Franca

    2017-01-01

    To explore the effects of Dance Therapy (DT) and Traditional Rehabilitation (TR) on both motor and cognitive domains in Parkinson's Disease patients (PD) with postural instability. Sixteen PD patients with recent history of falls were divided in two groups (Dance Therapy, DT and Traditional Rehabilitation, TR); nine patients received 1-hour DT classes twice per week, completing 20 lessons within 10 weeks; seven patients received a similar cycle of 20 group sessions of 60 minutes TR. Motor (Berg Balance Scale - BBS, Gait Dynamic Index - GDI, Timed Up and Go Test - TUG, 4 Square-Step Test - 4SST, 6-Minute Walking Test - 6MWT) and cognitive measures (Frontal Assessment Battery - FAB, Trail Making Test A & B - TMT A&B, Stroop Test) were tested at baseline, after the treatment completion and after 8-week follow-up. In the DT group, but not in the TR group, motor and cognitive outcomes significantly improved after treatment and retained after follow-up. Significant changes were found for 6MWT (p = 0.028), TUG (p = 0.007), TMT-A (p = 0.014) and TMT-B (p = 0.036). DT is an unconventional physical therapy for PD patients which effectively impacts on motor (endurance and risk of falls) and non-motor functions (executive functions).

  10. Role of working memory in transformation of visual and motor representations for use in mental simulation.

    PubMed

    Gabbard, Carl; Lee, Jihye; Caçola, Priscila

    2013-01-01

    This study examined the role of visual working memory when transforming visual representations to motor representations in the context of motor imagery. Participants viewed randomized number sequences of three, four, and five digits, and then reproduced the sequence by finger tapping using motor imagery or actually executing the movements; movement duration was recorded. One group viewed the stimulus for three seconds and responded immediately, while the second group had a three-second view followed by a three-second blank screen delay before responding. As expected, delay group times were longer with each condition and digit load. Whereas correlations between imagined and executed actions (temporal congruency) were significant in a positive direction for both groups, interestingly, the delay group's values were significantly stronger. That outcome prompts speculation that delay influenced the congruency between motor representation and actual execution.

  11. Emotion regulation through execution, observation, and imagery of emotional movements

    PubMed Central

    Shafir, Tal; Taylor, Stephan F.; Atkinson, Anthony P.; Langenecker, Scott A.; Zubieta, Jon-Kar

    2014-01-01

    According to Damasio’s somatic marker hypothesis, emotions are generated by conveying the current state of the body to the brain through interoceptive and proprioceptive afferent input. The resulting brain activation patterns represent unconscious emotions and correlate with subjective feelings. This proposition implies a corollary that the deliberate control of motor behavior could regulate feelings. We tested this possibility, hypothesizing that engaging in movements associated with a certain emotion would enhance that emotion and/or the corresponding valence. Furthermore, because motor imagery and observation are thought to activate the same mirror-neuron network engaged during motor execution, they might also activate the same emotional processing circuits, leading to similar emotional effects. Therefore, we measured the effects of motor execution, motor imagery and observation of whole-body dynamic expressions of emotions (happiness, sadness, fear) on affective state. All three tasks enhanced the corresponding affective state, indicating their potential to regulate emotions. PMID:23561915

  12. Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.

    PubMed

    Simon, Shiri; Mukamel, Roy

    2017-05-01

    Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.

  13. Monocyte Activation Is Associated With Worse Cognitive Performance in HIV-Infected Women With Virologic Suppression

    PubMed Central

    Imp, Brandon M.; Rubin, Leah H.; Tien, Phyllis C.; Plankey, Michael W.; Golub, Elizabeth T.; French, Audrey L.; Valcour, Victor G.

    2017-01-01

    Background. Cognitive impairment persists despite suppression of plasma human immunodeficiency virus (HIV) RNA. Monocyte-related immune activation is a likely mechanism. We examined immune activation and cognition in a cohort of HIV-infected and uninfected women from the Women's Interagency HIV Study (WIHS). Methods. Blood levels of activation markers, soluble CD163 (sCD163), soluble CD14 (sCD14), CRP, IL-6, and a gut microbial translocation marker (intestinal fatty acid binding protein (I-FABP)) were measured in 253 women (73% HIV-infected). Markers were compared to concurrent (within ± one semiannual visit) neuropsychological testing performance. Results. Higher sCD163 levels were associated with worse overall performance and worse verbal learning, verbal memory, executive function, psychomotor speed, and fine motor skills (P < .05 for all comparisons). Higher sCD14 levels were associated with worse verbal learning, verbal memory, executive function, and psychomotor speed (P < .05 for all comparisons). Among women with virological suppression, sCD163 remained associated with overall performance, verbal memory, psychomotor speed, and fine motor skills, and sCD164 remained associated with executive function (P < .05 for all comparisons). CRP, IL-6, and I-FABP were not associated with worse cognitive performance. Conclusions. Monocyte activation was associated with worse cognitive performance, and associations persisted despite viral suppression. Persistent inflammatory mechanisms related to monocytes correlate to clinically pertinent brain outcomes. PMID:27789726

  14. Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson's Disease: Results of a Controlled Study.

    PubMed

    Altmann, Lori J P; Stegemöller, Elizabeth; Hazamy, Audrey A; Wilson, Jonathan P; Bowers, Dawn; Okun, Michael S; Hass, Chris J

    2016-10-01

    Parkinson's disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878-889).

  15. Neurocognitive Function and Health-Related Quality of Life in Pediatric Korean Survivors of Medulloblastoma.

    PubMed

    Yoo, Hee Jung; Kim, Hyery; Park, Hyeon Jin; Kim, Dong Seok; Ra, Young Shin; Shin, Hee Young

    2016-11-01

    The neurocognitive function and quality of life of 58 Korean survivors of childhood medulloblastoma were assessed after surgery, cranial radiation and chemotherapy. All patients were evaluated with a battery of neurocognitive function tests and the Pediatric Functional Assessment of Cancer Therapy-Brain Tumor Survivors, which consists of self-report questionnaires on quality of life. The mean full-scale intelligence quotient (IQ), verbal IQ, and performance IQ scores were 90.2, 97.1, and 84.16, respectively. The mean memory quotient (MQ) score was 86.78, which was within 1 standard deviation of the average score of 100. Processing speed, attention, and executive function showed mild to moderate deficits. Intelligence, memory, executive function, visuospatial function, and simple motor function were significantly lower in the patients diagnosed before 8 years of age compared with those diagnosed after 8. The cognitive deficits in the patients diagnosed at younger ages might be related to earlier exposure to craniospinal irradiation and chemotherapy. The patient and parent proxy evaluations of attention, fine motor function, and quality of life did not differ. We found significant neurocognitive changes in a wide range of neurocognitive functional domains in Korean survivors of childhood medulloblastoma. Long-term follow-up studies of survivors of childhood medulloblastoma beginning at the time of their first diagnosis are required to better understand the deficits exhibited by survivors of childhood medulloblastoma, so that intervention strategies and treatment refinements that reduce the long-term neurocognitive decline can be developed.

  16. Neural substrates of lower extremity motor, balance, and gait function after supratentorial stroke using voxel-based lesion symptom mapping.

    PubMed

    Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu

    2016-07-01

    Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.

  17. Arduino-based automation of a DNA extraction system.

    PubMed

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  18. Bilateral transfer phenomenon: A functional magnetic resonance imaging pilot study of healthy subjects.

    PubMed

    Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio

    2016-08-01

    The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.

  19. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    PubMed

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  20. Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy: A Systematic Review and Meta-analysis

    PubMed Central

    Zhang, Yingshi; Cai, Jiayi; Zhang, Yaqiong; Ren, Tianshu; Zhao, Mingyi; Zhao, Qingchun

    2016-01-01

    To conduct a meta-analysis of clinical trials that examined the effect of music-supported therapy on stroke-induced motor dysfunction, comprehensive literature searches of PubMed, Embase and the Cochrane Library from their inception to April 2016 were performed. A total of 10 studies (13 analyses, 358 subjects) were included; all had acceptable quality according to PEDro scale score. The baseline differences between the two groups were confirmed to be comparable. Compared with the control group, the standardized mean difference of 9-Hole Peg Test was 0.28 (−0.01, 0.57), 0.64 (0.31, 0.97) in Box and Block Test, 0.47 (0.08, 0.87) in Arm Paresis Score and 0.35 (−0.04, 0.75) in Action Research Arm Test for upper-limb motor function, 0.11 (−0.24, 0.46) in Berg Balance Scale score, 0.09 (−0.36, 0.54) in Fugl-Meyer Assessment score, 0.30 (−0.15, 0.74) in Wolf Motor Function Test, 0.30 (−0.15, 0.74) in Wolf Motor Function time, 0.65 (0.14, 1.16) in Stride length and 0.62 (0.01, 1.24) in Gait Velocity for total motor function, and 1.75 (0.94, 2.56) in Frontal Assessment Battery score for executive function. There was evidence of a positive effect of music-supported therapy, supporting its use for the treatment of stroke-induced motor dysfunction. This study was registered at PRESPERO (CRD42016037106). PMID:27917945

  1. Movement-related phase locking in the delta-theta frequency band.

    PubMed

    Popovych, S; Rosjat, N; Toth, T I; Wang, B A; Liu, L; Abdollahi, R O; Viswanathan, S; Grefkes, C; Fink, G R; Daun, S

    2016-10-01

    Movements result from a complex interplay of multiple brain regions. These regions are assembled into distinct functional networks depending on the specific properties of the action. However, the nature and details of the dynamics of this complex assembly process are unknown. In this study, we sought to identify key markers of the neural processes underlying the preparation and execution of motor actions that always occur irrespective of differences in movement initiation, hence the specific neural processes and functional networks involved. To this end, EEG activity was continuously recorded from 18 right-handed healthy participants while they performed a simple motor task consisting of button presses with the left or right index finger. The movement was performed either in response to a visual cue or at a self-chosen, i.e., non-cued point in time. Despite these substantial differences in movement initiation, dynamic properties of the EEG signals common to both conditions could be identified using time-frequency and phase locking analysis of the EEG data. In both conditions, a significant phase locking effect was observed that started prior to the movement onset in the δ-θ frequency band (2-7Hz), and that was strongest at the electrodes nearest to the contralateral motor region (M1). This phase locking effect did not have a counterpart in the corresponding power spectra (i.e., amplitudes), or in the event-related potentials. Our finding suggests that phase locking in the δ-θ frequency band is a ubiquitous movement-related signal independent of how the actual movement has been initiated. We therefore suggest that phase-locked neural oscillations in the motor cortex are a prerequisite for the preparation and execution of motor actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    PubMed

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P < 0.05 FWE) relative to a matched control sequence, with both the left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE < 0.001) reductions in functional MRI activation for execution of the trained sequence, relative to the control sequence. These changes were observed as clusters in the premotor and supplementary motor cortices (right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Similar profile of cognitive impairment and recovery for Aboriginal Australians in treatment for episodic or chronic alcohol use.

    PubMed

    Dingwall, Kylie M; Maruff, Paul; Cairney, Sheree

    2011-08-01

    The cognitive impairment and recovery associated with chronic alcohol abuse and subsequent abstinence is well understood. However, the recovery profile following heavy episodic or 'binge' use, which is common among some Australian Aboriginal users, has not been investigated thoroughly and no empirical studies have examined chronic use in this population. The aim of this study was to identify and compare cognitive impairment and recovery associated with chronic and episodic alcohol use among Aboriginal Australians. Longitudinal case-control design. Residential alcohol treatment programmes in northern Australia. Forty chronic alcohol users, 24 episodic users and 41 healthy controls [mean age = 34.24; standard deviation (SD) = 9.73]. Cognitive assessments of visual motor, attention, memory, learning and executive functions at baseline (start of treatment), then 4 weeks and 8 weeks later. Reassessment of 31% of participants an average of 11 months later (SD = 4.4) comparing those who remained abstinent (n = 5), those who relapsed (n = 11) and healthy controls (n = 19). At baseline, chronic and episodic alcohol users showed impaired visual motor, learning, memory and executive functions. With the exception of visual motor impairment, all deficits had improved to normal levels within 4 weeks. Visual motor deficits had normalized within 11 months. Performances did not differ at any time between chronic and episodic alcohol groups. In Aboriginal Australians, episodic drinking is associated with similar patterns of impairment and recovery as chronic alcohol use. Most cognitive deficits appear to recover within the first month of abstinence, while persisting visual motor problems recover within 1 year. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  4. Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke

    PubMed Central

    Ertelt, Denis; Binkofski, Ferdinand

    2012-01-01

    The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observation alone. This unique capacity of the mirror neuron system to match action perception and action execution stimulated the idea that mirror neuron system plays a crucial role in the understanding of the content of observed actions and may participate in procedural learning. These features bear a high potential for neurorehabilitation of motor deficits and of aphasia following stroke. Since the first articles exploring this principle were published, a growing number of follow-up studies have been conducted in the last decade. Though, the combination of action observation with practice of the observed actions seems to constitute the most powerful approach. In the present review, we present the existing studies analyzing the effects of this neurorehabilitative approach in clinical settings especially in the rehabilitation of stroke associated motor deficits and give a perspective on the ongoing trials by our research group. The data obtained up to date showed significant positive effect of action observation on recovery of motor functions of the upper limbs even in the chronic state after stroke, indicating that our approach might become a new standardized add-on feature of modern neurorehabilitative treatment schemes. PMID:25624838

  5. Mapping the involvement of BA 4a and 4p during Motor Imagery.

    PubMed

    Sharma, Nikhil; Jones, P S; Carpenter, T A; Baron, Jean-Claude

    2008-05-15

    Motor Imagery (MI) is an attractive but intriguing means to access the motor network. There are marked inconsistencies in the functional imaging literature regarding the degree, extent and distribution of the primary motor cortex (BA 4) involvement during MI as compared to Executed Movement (EM), which may in part be related to the diverse role of BA 4 and its two subdivisions (i.e., 4a and 4p) in motor processes as well as to methodological issues. Here we used fMRI with monitoring of compliance to show that in healthy volunteers optimally screened for their ability to perform MI the contralateral BA 4 is involved during MI of a finger opposition sequence (2, 3, 4, 5; paced at 1 Hz), albeit less than during EM of the same sequence, and in a location sparing the hand area. Furthermore, both 4a and 4p subdivisions were found to be involved in MI, but the relative involvement of BA 4p appeared more robust and closer to that seen with EM. We suggest that during MI the role of BA 4 and its subdivisions may be non-executive, perhaps related to spatial encoding, though clearly further studies are needed. Finally, we report a similar hemispheric activation balance within BA 4 with both tasks, which extends the commonalities between EM and MI.

  6. Reliability and validity of neurobehavioral function on the Psychology Experimental Building Language test battery in young adults

    PubMed Central

    Mueller, Shane T.; Geerken, Alexander R.; Dixon, Kyle L.; Kroliczak, Gregory; Olsen, Reid H.J.; Miller, Jeremy K.

    2015-01-01

    Background. The Psychology Experiment Building Language (PEBL) software consists of over one-hundred computerized tests based on classic and novel cognitive neuropsychology and behavioral neurology measures. Although the PEBL tests are becoming more widely utilized, there is currently very limited information about the psychometric properties of these measures. Methods. Study I examined inter-relationships among nine PEBL tests including indices of motor-function (Pursuit Rotor and Dexterity), attention (Test of Attentional Vigilance and Time-Wall), working memory (Digit Span Forward), and executive-function (PEBL Trail Making Test, Berg/Wisconsin Card Sorting Test, Iowa Gambling Test, and Mental Rotation) in a normative sample (N = 189, ages 18–22). Study II evaluated test–retest reliability with a two-week interest interval between administrations in a separate sample (N = 79, ages 18–22). Results. Moderate intra-test, but low inter-test, correlations were observed and ceiling/floor effects were uncommon. Sex differences were identified on the Pursuit Rotor (Cohen’s d = 0.89) and Mental Rotation (d = 0.31) tests. The correlation between the test and retest was high for tests of motor learning (Pursuit Rotor time on target r = .86) and attention (Test of Attentional Vigilance response time r = .79), intermediate for memory (digit span r = .63) but lower for the executive function indices (Wisconsin/Berg Card Sorting Test perseverative errors = .45, Tower of London moves = .15). Significant practice effects were identified on several indices of executive function. Conclusions. These results are broadly supportive of the reliability and validity of individual PEBL tests in this sample. These findings indicate that the freely downloadable, open-source PEBL battery (http://pebl.sourceforge.net) is a versatile research tool to study individual differences in neurocognitive performance. PMID:26713233

  7. Reliability and validity of neurobehavioral function on the Psychology Experimental Building Language test battery in young adults.

    PubMed

    Piper, Brian J; Mueller, Shane T; Geerken, Alexander R; Dixon, Kyle L; Kroliczak, Gregory; Olsen, Reid H J; Miller, Jeremy K

    2015-01-01

    Background. The Psychology Experiment Building Language (PEBL) software consists of over one-hundred computerized tests based on classic and novel cognitive neuropsychology and behavioral neurology measures. Although the PEBL tests are becoming more widely utilized, there is currently very limited information about the psychometric properties of these measures. Methods. Study I examined inter-relationships among nine PEBL tests including indices of motor-function (Pursuit Rotor and Dexterity), attention (Test of Attentional Vigilance and Time-Wall), working memory (Digit Span Forward), and executive-function (PEBL Trail Making Test, Berg/Wisconsin Card Sorting Test, Iowa Gambling Test, and Mental Rotation) in a normative sample (N = 189, ages 18-22). Study II evaluated test-retest reliability with a two-week interest interval between administrations in a separate sample (N = 79, ages 18-22). Results. Moderate intra-test, but low inter-test, correlations were observed and ceiling/floor effects were uncommon. Sex differences were identified on the Pursuit Rotor (Cohen's d = 0.89) and Mental Rotation (d = 0.31) tests. The correlation between the test and retest was high for tests of motor learning (Pursuit Rotor time on target r = .86) and attention (Test of Attentional Vigilance response time r = .79), intermediate for memory (digit span r = .63) but lower for the executive function indices (Wisconsin/Berg Card Sorting Test perseverative errors = .45, Tower of London moves = .15). Significant practice effects were identified on several indices of executive function. Conclusions. These results are broadly supportive of the reliability and validity of individual PEBL tests in this sample. These findings indicate that the freely downloadable, open-source PEBL battery (http://pebl.sourceforge.net) is a versatile research tool to study individual differences in neurocognitive performance.

  8. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children.

    PubMed

    Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit

    2010-05-01

    The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.

  9. Could schizoaffective disorder, schizophrenia and bipolar I disorder be distinguishable using cognitive profiles?

    PubMed

    Chen, Chih-Ken; Lee, Chun-Yi; Lee, Yu; Hung, Chi-Fa; Huang, Yu-Chi; Lee, Sheng-Yu; Huang, Ming-Chyi; Chong, Mian-Yoon; Chen, Yi-Chih; Wang, Liang-Jen

    2018-05-24

    This study seeks to determine whether the cognition profiles of patients with schizoaffective disorder (SAD), schizophrenia and bipolar I disorder (BD) are distinguishable. A total of 227 participants, comprising 88 healthy control subjects, 50 patients with SAD, 48 patients with schizophrenia and 41 patients with BD, were recruited. The participants' cognitive functions were evaluated using the Brief Assessment of Cognition in Schizophrenia (BACS). A discriminant functions analysis (DFA) was conducted to determine whether using cognitive performance can be used to distinguish these participant groups. Relative to healthy control subjects, patients with SAD, schizophrenia and BD exhibited significant deficits in all cognitive domains (verbal memory, working memory, motor speed, verbal fluency, attention and processing speed, executive function and a composite BACS score). Among the three patient groups, the schizophrenia group exhibited particularly impaired motor speed, and the BD group performed best in attention, processing speed, executive function and the composite BACS score. The classification accuracy rates of patients with SAD, schizophrenia and BD in the DFA model were 38%, 47.9% and 46.3%, respectively. These findings suggest that the impairments of some cognitive domains were less severe in patients with BD than in patients with schizophrenia or SAD. Copyright © 2018. Published by Elsevier B.V.

  10. Developmental and Behavioral Performance of Internationally Adopted Preschoolers: A Pilot Study

    ERIC Educational Resources Information Center

    Jacobs, Emma; Miller, Laurie C.; Tirella, Linda G.

    2010-01-01

    Most international adoptees (IA) have rapid catch-up of the delays common at arrival. However, it is not known whether development at arrival predicts later abilities or school readiness. Therefore, we comprehensively evaluated language, fine motor, visual reception (VR), executive function (EF), attention (ATT), and sensory skills (SS) in IA…

  11. Swimming and Children with Attention-Deficit Hyperactive Disorder: A Winning Combination

    ERIC Educational Resources Information Center

    Dail, Teresa; Smith, Caroline

    2016-01-01

    The benefits of swimming for children with disabilities include improved motor skills, physical fitness, executive brain function and improved social skills. Swimming can also be an activity that provides a positive environment for children suffering from attention-deficit hyperactive disorder (ADHD). This article provides an overview of ADHD and…

  12. Cognitive Control of Movement in Down Syndrome

    ERIC Educational Resources Information Center

    Brunamonti, Emiliano; Pani, Pierpaolo; Papazachariadis, Odysseas; Onorati, Paolo; Albertini, Giorgio; Ferraina, Stefano

    2011-01-01

    Inhibition of inappropriate responses allows to shape the motor behavior accordingly to the context in which a subject acts and is an essential executive function. Inhibition has been poorly investigated in Down Syndrome (DS) patients. We tested, using a countermanding task, the inhibitory control in a group of DS patients and in a group of…

  13. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    PubMed

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Neural Correlates of Visual–Spatial Attention in Electrocorticographic Signals in Humans

    PubMed Central

    Gunduz, Aysegul; Brunner, Peter; Daitch, Amy; Leuthardt, Eric C.; Ritaccio, Anthony L.; Pesaran, Bijan; Schalk, Gerwin

    2011-01-01

    Attention is a cognitive selection mechanism that allocates the limited processing resources of the brain to the sensory streams most relevant to our immediate goals, thereby enhancing responsiveness and behavioral performance. The underlying neural mechanisms of orienting attention are distributed across a widespread cortical network. While aspects of this network have been extensively studied, details about the electrophysiological dynamics of this network are scarce. In this study, we investigated attentional networks using electrocorticographic (ECoG) recordings from the surface of the brain, which combine broad spatial coverage with high temporal resolution, in five human subjects. ECoG was recorded when subjects covertly attended to a spatial location and responded to contrast changes in the presence of distractors in a modified Posner cueing task. ECoG amplitudes in the alpha, beta, and gamma bands identified neural changes associated with covert attention and motor preparation/execution in the different stages of the task. The results show that attentional engagement was primarily associated with ECoG activity in the visual, prefrontal, premotor, and parietal cortices. Motor preparation/execution was associated with ECoG activity in premotor/sensorimotor cortices. In summary, our results illustrate rich and distributed cortical dynamics that are associated with orienting attention and the subsequent motor preparation and execution. These findings are largely consistent with and expand on primate studies using intracortical recordings and human functional neuroimaging studies. PMID:22046153

  15. Cognitive reserve is not associated with improved performance in all cognitive domains.

    PubMed

    Lavrencic, Louise M; Churches, Owen F; Keage, Hannah A D

    2017-06-08

    Cognitive reserve beneficially affects cognitive performance, even into advanced age. However, the benefits afforded by high cognitive reserve may not extend to all cognitive domains. This study investigated whether cognitive reserve differentially affects performance on cognitive tasks, in 521 cognitively healthy individuals aged 60 to 98 years (Mage = 68, SD = 6.22, 287 female); years of education was used to index cognitive reserve. Cognitive performance variables assessed attention, executive functions, verbal memory, motor performance, orientation, perception of emotion, processing speed, and working memory. Bootstrapped regression analyses revealed that cognitive reserve was associated with attention, executive functions, verbal and working memory, and orientation; and not significantly related to emotion perception, processing speed, or motor performance. Cognitive reserve appears to differentially affect individual cognitive domains, which extends current theory that purports benefits for all domains. This finding highlights the possibility of using tests not (or minimally) associated with cognitive reserve, to screen for cognitive impairment and dementia in late life; these tests will likely best track brain health, free of compensatory neural mechanisms.

  16. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  17. Evaluating executive function in patients with temporal lobe epilepsy using the frontal assessment battery.

    PubMed

    Agah, Elmira; Asgari-Rad, Nasima; Ahmadi, Mona; Tafakhori, Abbas; Aghamollaii, Vajiheh

    2017-07-01

    Previous studies have demonstrated executive dysfunction in patients with temporal lobe epilepsy (TLE). Frontal assessment battery (FAB) is a short neuropsychological tool that was developed for assessment of frontal lobe function in a clinical setting. The aim of the present study is to evaluate the clinical utility of FAB for detection of executive dysfunction in TLE patients. Forty-eight TLE patients and 48 sex and age-matched healthy controls participated in this study. Compared to healthy participants, the total FAB score was significantly lower among the TLE patients. TLE patients performed significantly worse at the mental flexibility, motor programming, sensitivity to interference and inhibitory control tasks. The duration of time has been passed since the last seizure was the only significant predictor of FAB score and patients who had a seizure less than a week before the evaluation time, had significantly lower FAB scores. The number of antiepileptic drugs (AEDs) did not influence the executive function in this study; however, sodium valproate was found to affect the mental flexibility. In conclusion, impaired executive function is common in TLE patients, and we suggest that FAB is a clinically applicable tool to monitor it. Moreover, we found that the time of the last seizure is a significant predictor of executive functioning and patients' performance may become worse up to seven days after a seizure. We also recommend that clinicians evaluate the cognitive adverse effects of AEDs especially sodium valproate, which was found to affect the mental flexibility in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effectiveness of a Standardized Equine-Assisted Therapy Program for Children with Autism Spectrum Disorder.

    PubMed

    Borgi, Marta; Loliva, Dafne; Cerino, Stefania; Chiarotti, Flavia; Venerosi, Aldina; Bramini, Maria; Nonnis, Enrico; Marcelli, Marco; Vinti, Claudia; De Santis, Chiara; Bisacco, Francesca; Fagerlie, Monica; Frascarelli, Massimo; Cirulli, Francesca

    2016-01-01

    In this study the effectiveness of an equine-assisted therapy (EAT) in improving adaptive and executive functioning in children with autism spectrum disorder (ASD) was examined (children attending EAT, n = 15, control group n = 13; inclusion criteria: IQ > 70). Therapeutic sessions consisted in structured activities involving horses and included both work on the ground and riding. Results indicate an improvement in social functioning in the group attending EAT (compared to the control group) and a milder effect on motor abilities. Improved executive functioning was also observed (i.e. reduced planning time in a problem-solving task) at the end of the EAT program. Our findings provide further support for the use of animal-assisted intervention programs as complementary intervention strategies for children with ASD.

  19. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    PubMed

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system.

  20. Hemispheric differences of motor execution: a near-infrared spectroscopy study.

    PubMed

    Helmich, Ingo; Rein, Robert; Niermann, Nico; Lausberg, Hedda

    2013-01-01

    Distal movements of the limbs are predominantly controlled by the contralateral hemisphere. However, functional neuroimaging studies do not unequivocally demonstrate a lateralization of the cerebral activation during hand movements. While some studies show a predominant activation of the contralateral hemisphere, other studies provide evidence for a symmetrically distributed bihemispheric activation. However, the divergent results may also be due to methodological shortcomings. Therefore, the present study using functional near-infrared spectroscopy examines cerebral activation in both hemispheres during motor actions of the right and left hands. Twenty participants performed a flexion/extension task with the right- or left-hand thumb. Cerebral oxygenation changes were recorded from 48 channels over the primary motor, pre-motor, supplementary motor, primary somatosensory cortex, subcentral area, and the supramarginal gyrus of each hemisphere. A consistent increase of cerebral oxygenation was found for oxygenated and for total hemoglobin in the hemisphere contralateral to the moving hand, regardless of the laterality. These findings are in line with previous data from localization [1-3] and brain imaging studies [4-6]. The present data support the proposition that there is no hemispheric specialization for simple distal motor tasks. Both hemispheres are equally activated during movement of the contralateral upper limb.

  1. Measures of fine motor skills in people with tremor disorders: appraisal and interpretation.

    PubMed

    Norman, Kathleen E; Héroux, Martin E

    2013-01-01

    People with Parkinson's disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features - e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools' content - i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a person's disease state or a person's function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts.

  2. Changes in gait while backward counting in demented older adults with frontal lobe dysfunction.

    PubMed

    Allali, Gilles; Kressig, Reto W; Assal, Frédéric; Herrmann, François R; Dubost, Véronique; Beauchet, Olivier

    2007-10-01

    Gait disorders caused by dementia have been associated with frontal lobe dysfunction. Dual-tasking is used to explore the involvement of cortical level in gait control. It has been shown that dual-task induced gait changes that could be related to (1) the efficiency of executive function, (2) the level of difficulty involved in the walking-associated task, or (3) the articulo-motor components comprised in the walking-associated task. A better understanding of dual-task related changes in demented subjects with frontal lobe dysfunction could help us to clarify the role of the frontal lobe in motor gait control. To assess and compare the effects of two mental arithmetic tasks involving similar articulo-motor components but different level of difficulty on the mean values and coefficient of variation (CV) of stride time among demented older adults with impaired executive function. The mean values and coefficients of variation of stride time were measured using a GAITRite-System among 16 demented older adults with impaired executive function while walking with and without forward counting (FC) and backward counting (BC). The mean values and CV of stride time were significantly higher under both dual-task conditions than during a simple walking task (p<0.05). The change in CV of stride time during BC was significantly higher when compared with the change during FC (p=0.015), whereas the change in mean value was not significant (p=0.056). There was no difference between the dual-task and single task condition as far the number of enumerated figures were concerned (p=0.678 for FC and p=0.069 for BC), but significantly fewer figures were enumerated while BC compared with FC (p<0.001). BC provoked more changes in gait parameters than FC with major modification in gait variability related to an inappropriate focusing of attention. These findings suggest that the CV may be a suitable criterion for the assessment of gait control.

  3. An Examination of Executive Dysfunction Associated with Frontostriatal Circuitry in Parkinson’s Disease

    PubMed Central

    ZGALJARDIC, DENNIS J.; BOROD, JOAN C.; FOLDI, NANCY S.; MATTIS, PAUL J.; GORDON, MARK F.; FEIGIN, ANDREW; EIDELBERG, DAVID

    2015-01-01

    Parkinson’s disease (PD) is a neurodegenerative movement disorder presenting with subcortical pathology and characterized by motor deficits. However, as is frequently reported in the literature, patients with PD can also exhibit cognitive and behavioral (i.e., nonmotor) impairments, cognitive executive deficits and depression being the most prominent. Considerable attention has addressed the role that disruption to frontostriatal circuitry can play in mediating nonmotor dysfunction in PD. The three nonmotor frontostriatal circuits, which connect frontal cortical regions to the basal ganglia, originate from the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and orbitofrontal cortex (OFC). The objective of the current study was to use our understanding of frontostriatal circuit function (via literature review) to categorize neuropsychological measures of cognitive and behavioral executive functions by circuit. To our knowledge, such an approach has not been previously attempted in the study of executive dysfunction in PD. Neuropsychological measures of executive functions and self-report behavioral inventories, categorized by circuit function, were administered to 32 nondemented patients with Parkinson’s disease (NDPD) and to 29 demographically matched, healthy normal control participants (NC). Our findings revealed significant group differences for each circuit, with the PD group performing worse than the NC group. Among the patients with PD, indices of impairment were greater for tasks associated with DLPFC function than with OFC function. Further, only an index of DLPFC test performance was demonstrated to significantly discriminate individuals with and without PD. In conclusion, our findings suggest that nondemented patients with PD exhibit greater impairment on neuropsychological measures associated with DLPFC than with ACC or OFC circuit function. PMID:16840240

  4. Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)--a neurological view.

    PubMed

    Schneider, Marc; Retz, Wolfgang; Coogan, Andrew; Thome, Johannes; Rösler, Michael

    2006-09-01

    In this review, we discuss current structural and functional imaging data on ADHD in a neurological and neuroanatomical framework. At present, the literature on adult ADHD is somewhat sparse, and so results from imaging have to therefore be considered mainly from the childhood or adolescence perspective. Most work has considered the impairment of executive functions (motor execution, inhibition, working memory), and as such a number of attention networks and their anatomical correlates are discussed in this review (e.g. the cerebello-(thalamo-)-striato-cortical network seems to play a pivotal role in ADHD pathology from childhood to adulthood). The core findings in ADHD imaging are alterations in the architecture and function of prefrontal cortex and cerebellum. The dorsal part of anterior cingulated cortex (dACC) is an important region for decision making, and executive control is impaired in adult ADHD. Finally, dysfunction of basal ganglia is a consistent finding in childhood and adulthood ADHD, reflecting dysregulation of fronto-striatal circuitry. The cerebellum, and its role in affect and cognition, is also persistently implicated in the pathology of ADHD.

  5. Varenicline improves motor and cognitive symptoms in early Huntington’s disease

    PubMed Central

    McGregor, Ailsa L; Dysart, Jo; Tingle, Malcolm D; Russell, Bruce R; Kydd, Rob R; Finucane, Gregory

    2016-01-01

    The aim of this study was to describe the effects of varenicline, a smoking cessation aid that acts as a nicotinic agonist, on cognitive function in patients with early clinical Huntington’s disease (HD) who were current smokers. Three gene-positive patients transitioning to symptomatic HD were evaluated using the Unified Huntington’s Disease Rating Scale part I and III (motor and behavioral subscales) at baseline and after 4 weeks of treatment. Cognitive function was assessed using a touch screen computer-based neurocognitive test battery (IntegNeuro®). Varenicline (1 mg twice daily) significantly improved performance in executive function and emotional recognition tasks. Our case reports describe no clinically significant adverse effects and suggest that varenicline improves aspects of cognitive function in patients with early HD. A randomized controlled study is now underway. PMID:27695336

  6. Neurological and neurocognitive functions from intrauterine methylmercury exposure.

    PubMed

    Yorifuji, Takashi; Kado, Yoko; Diez, Midory Higa; Kishikawa, Toshihiro; Sanada, Satoshi

    2016-05-03

    In the 1950s, large-scale food poisoning caused by methylmercury was identified in Minamata, Japan. Although severe intrauterine exposure cases (ie, congenital Minamata disease patients) are well known, possible impacts of methylmercury exposure in utero among residents, which is likely at lower levels than in congenital Minamata disease patients, are rarely explored. In 2014, the authors examined neurological and neurocognitive functions among 18 exposed participants in Minamata, focusing on fine motor, visuospatial construction, and executive functions. More than half of the participants had some fine motor and coordination difficulties. In addition, several participants had lower performance for neurocognitive function tests (the Rey-Osterrieth Complex Figure test and Keio version of the Wisconsin card sorting test). These deficits imply diffuse brain damage. This study suggests possible neurological and neurocognitive impacts of prenatal exposure to methylmercury among exposed residents of Minamata.

  7. Impaired executive function can predict recurrent falls in Parkinson's disease.

    PubMed

    Mak, Margaret K; Wong, Adrian; Pang, Marco Y

    2014-12-01

    To examine whether impairment in executive function independently predicts recurrent falls in people with Parkinson's disease (PD). Prospective cohort study. University motor control research laboratory. A convenience sample of community-dwelling people with PD (N=144) was recruited from a patient self-help group and movement disorders clinics. Not applicable. Executive function was assessed with the Mattis Dementia Rating Scale Initiation/Perseveration (MDRS-IP) subtest, and fear of falling (FoF) with the Activities-specific Balance Confidence (ABC) Scale. All participants were followed up for 12 months to record the number of monthly fall events. Forty-two people with PD had at least 2 falls during the follow-up period and were classified as recurrent fallers. After accounting for demographic variables and fall history (P=.001), multiple logistic regression analysis showed that the ABC scores (P=.014) and MDRS-IP scores (P=.006) were significantly associated with future recurrent falls among people with PD. The overall accuracy of the prediction was 85.9%. With the use of the significant predictors identified in multiple logistic regression analysis, a prediction model determined by the logistic function was generated: Z = 1.544 + .378 (fall history) - .045 (ABC) - .145 (MDRS-IP). Impaired executive function is a significant predictor of future recurrent falls in people with PD. Participants with executive dysfunction and greater FoF at baseline had a significantly greater risk of sustaining a recurrent fall within the subsequent 12 months. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Hand specific representations in language comprehension.

    PubMed

    Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P

    2014-01-01

    Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  9. Long-Term Experience of Chinese Calligraphic Handwriting Is Associated with Better Executive Functions and Stronger Resting-State Functional Connectivity in Related Brain Regions

    PubMed Central

    He, Yong; Gao, Yang; Zhang, Cuiping; Chen, Chuansheng; Bi, Suyu; Yang, Pin; Wang, Yiwen; Wang, Wenjing

    2017-01-01

    Chinese calligraphic handwriting (CCH) is a traditional art form that requires high levels of concentration and motor control. Previous research has linked short-term training in CCH to improvements in attention and memory. Little is known about the potential impacts of long-term CCH practice on a broader array of executive functions and their potential neural substrates. In this cross-sectional study, we recruited 36 practitioners with at least 5 years of CCH experience and 50 control subjects with no more than one month of CCH practice and investigated their differences in the three components of executive functions (i.e., shifting, updating, and inhibition). Valid resting-state fMRI data were collected from 31 CCH and 40 control participants. Compared with the controls, CCH individuals showed better updating (as measured by the Corsi Block Test) and inhibition (as measured by the Stroop Word-Color Test), but the two groups did not differ in shifting (as measured by a cue-target task). The CCH group showed stronger resting-state functional connectivity (RSFC) than the control group in brain areas involved in updating and inhibition. These results suggested that long-term CCH training may be associated with improvements in specific aspects of executive functions and strengthened neural networks in related brain regions. PMID:28129407

  10. Long-Term Experience of Chinese Calligraphic Handwriting Is Associated with Better Executive Functions and Stronger Resting-State Functional Connectivity in Related Brain Regions.

    PubMed

    Chen, Wen; He, Yong; Gao, Yang; Zhang, Cuiping; Chen, Chuansheng; Bi, Suyu; Yang, Pin; Wang, Yiwen; Wang, Wenjing

    2017-01-01

    Chinese calligraphic handwriting (CCH) is a traditional art form that requires high levels of concentration and motor control. Previous research has linked short-term training in CCH to improvements in attention and memory. Little is known about the potential impacts of long-term CCH practice on a broader array of executive functions and their potential neural substrates. In this cross-sectional study, we recruited 36 practitioners with at least 5 years of CCH experience and 50 control subjects with no more than one month of CCH practice and investigated their differences in the three components of executive functions (i.e., shifting, updating, and inhibition). Valid resting-state fMRI data were collected from 31 CCH and 40 control participants. Compared with the controls, CCH individuals showed better updating (as measured by the Corsi Block Test) and inhibition (as measured by the Stroop Word-Color Test), but the two groups did not differ in shifting (as measured by a cue-target task). The CCH group showed stronger resting-state functional connectivity (RSFC) than the control group in brain areas involved in updating and inhibition. These results suggested that long-term CCH training may be associated with improvements in specific aspects of executive functions and strengthened neural networks in related brain regions.

  11. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial

    PubMed Central

    Falbo, S.; Condello, G.; Capranica, L.; Forte, R.

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n = 16) and physical-cognitive dual task (DT) training (n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living. PMID:28053985

  12. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial.

    PubMed

    Falbo, S; Condello, G; Capranica, L; Forte, R; Pesce, C

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training ( n = 16) and physical-cognitive dual task (DT) training ( n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.

  13. Interactive visuo-motor therapy system for stroke rehabilitation.

    PubMed

    Eng, Kynan; Siekierka, Ewa; Pyk, Pawel; Chevrier, Edith; Hauser, Yves; Cameirao, Monica; Holper, Lisa; Hägni, Karin; Zimmerli, Lukas; Duff, Armin; Schuster, Corina; Bassetti, Claudio; Verschure, Paul; Kiper, Daniel

    2007-09-01

    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.

  14. The basal ganglia is necessary for learning spectral, but not temporal features of birdsong

    PubMed Central

    Ali, Farhan; Fantana, Antoniu L.; Burak, Yoram; Ölveczky, Bence P.

    2013-01-01

    Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control - motor implementation and timing - are acquired, and whether the learning processes underlying them differ, is not well understood. To address this we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analogue nucleus reflected changes to temporal, but not spectral structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977

  15. Functional Topography of the Cerebellum in Verbal Working Memory

    PubMed Central

    Desmond, John E.

    2010-01-01

    Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894

  16. Functional topography of the cerebellum in verbal working memory.

    PubMed

    Marvel, Cherie L; Desmond, John E

    2010-09-01

    Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.

  17. Neural Correlates of Lyrical Improvisation: An fMRI Study of Freestyle Rap

    PubMed Central

    Liu, Siyuan; Chow, Ho Ming; Xu, Yisheng; Erkkinen, Michael G.; Swett, Katherine E.; Eagle, Michael W.; Rizik-Baer, Daniel A.; Braun, Allen R.

    2012-01-01

    The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior. PMID:23155479

  18. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap.

    PubMed

    Liu, Siyuan; Chow, Ho Ming; Xu, Yisheng; Erkkinen, Michael G; Swett, Katherine E; Eagle, Michael W; Rizik-Baer, Daniel A; Braun, Allen R

    2012-01-01

    The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior.

  19. Association between imagined and actual functional reach (FR): a comparison of young and older adults.

    PubMed

    Gabbard, Carl; Cordova, Alberto

    2013-01-01

    Recent studies indicate that the ability to mentally represent action using motor imagery declines with advanced age (>64 years). As the ability to represent action declines, the elderly may experience increasing difficulty with movement planning and execution. Here, we determined the association between estimation of reach via use of motor imagery and actual FR. Young adults (M=22 years) and older adults (M=66 years) estimated reach while standing with targets randomly presented in peripersonal (within actual reach) and extrapersonal (beyond reach) space. Imagined responses were compared to the individual's scaled maximum reach. FR, also while standing, was assessed using the standardized Functional Reach Test (FRT). Results for total score estimation accuracy showed that there was no difference for age; however, results for mean bias and distribution of error revealed that the older group underestimated while the younger group overestimated. In reference to FR, younger adults outperformed older adults (30 versus 14in.) and most prominent, only the younger group showed a significant relationship between estimation and FR. In addition to gaining insight to the effects of advanced age on the ability to mentally represent action and its association with movement execution, these results although preliminary, may have clinical implications based on the question of whether motor imagery training could improve movement estimations and how that might affect actual reach. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Joining forces: Motor control meets mirror neurons. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli, and Maffongelli

    NASA Astrophysics Data System (ADS)

    Casile, Antonino

    2015-03-01

    Several consistent and compelling experimental findings suggest that in primates the observation of actions or movements activates the observer's motor cortex (for a recent and very thorough review see [1]). One important piece of evidence was the discovery of mirror neurons, that are neurons in the macaque ventral pre-motor (area F5), motor and parietal cortices (area PFG) that respond both when the monkey executes a goal-directed motor act (e.g. breaking a peanut) or when it sees a similar action executed by others [2-5]. A similar system has been later reported also in humans ([6-8] but see also [9,10] for negative results).

  1. Executive function impairment in community elderly subjects with questionable dementia.

    PubMed

    Lam, Linda C W; Lui, Victor W C; Chiu, Helen F K; Chan, Sandra S M; Tam, Cindy W C

    2005-01-01

    The neurocognitive profile of community-dwelling Chinese subjects with 'questionable' dementia was studied. One hundred and fifty-four ambulatory Chinese subjects were recruited from local social centers for the elderly. Each subject was examined using the Clinical Dementia Rating (CDR), the Cantonese version of the Mini-Mental State Examination (CMMSE), the Chinese version of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), the Category Verbal Fluency Test (CVFT), digit and visual span tests, and the Cambridge Neurological Inventory. The neurocognitive profile of nondemented subjects (CDR 0) was compared with that of subjects with 'questionable' dementia (CDR 0.5). Subjects with 'questionable' dementia were older, and had lower educational levels and global cognitive assessment scores than the controls (CMMSE and ADAS-Cog; t tests, p < 0.001). In addition, they also had significantly lower scores in delayed recall, reverse span, verbal fluency tests and worse performance in complex motor tasks related to executive function (Mann-Whitney tests, p < 0.001). Logistic regression analysis revealed that ADAS-Cog, CVFT, and reverse visual span were significant predictors for the CDR of 'questionable' dementia. Aside from memory impairment, executive function deficits were also present in subjects with 'questionable' dementia. To identify groups cognitively at risk for dementia, concomitant assessments of memory and executive function are suggested.

  2. Martial Art Training and Cognitive Performance in Middle-Aged Adults.

    PubMed

    Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John

    2015-09-29

    Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking.

  3. Martial Art Training and Cognitive Performance in Middle-Aged Adults

    PubMed Central

    Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John

    2015-01-01

    Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking. PMID:26672872

  4. Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes

    PubMed Central

    Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian

    2013-01-01

    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624

  5. Functional neuroanatomical networks associated with expertise in motor imagery.

    PubMed

    Guillot, Aymeric; Collet, Christian; Nguyen, Vo An; Malouin, Francine; Richards, Carol; Doyon, Julien

    2008-07-15

    Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. As expected, both good and poor imagers activated the inferior and superior parietal lobules, as well as motor-related regions including the lateral and medial premotor cortex, the cerebellum and putamen. Inter-group comparisons revealed that good imagers activated more the parietal and ventrolateral premotor regions, which are known to play a critical role in the generation of mental images. By contrast, poor imagers recruited the cerebellum, orbito-frontal and posterior cingulate cortices. Consistent with findings from the motor sequence learning literature and Doyon and Ungerleider's model of motor learning [Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire, L.R., Schacter, D.L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.

  6. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  7. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  8. Multimodal connectivity of motor learning-related dorsal premotor cortex.

    PubMed

    Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B

    2015-12-01

    The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis.

    PubMed

    Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon

    2013-11-01

    Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.

  10. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    PubMed

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  11. Non-invasive brain stimulation can induce paradoxical facilitation. Are these neuroenhancements transferable and meaningful to security services?

    PubMed Central

    Levasseur-Moreau, Jean; Brunelin, Jerome; Fecteau, Shirley

    2013-01-01

    For ages, we have been looking for ways to enhance our physical and cognitive capacities in order to augment our security. One potential way to enhance our capacities may be to externally stimulate the brain. Methods of non-invasive brain stimulation (NIBS), such as repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), have been recently developed to modulate brain activity. Both techniques are relatively safe and can transiently modify motor and cognitive functions outlasting the stimulation period. The purpose of this paper is to review data suggesting that NIBS can enhance motor and cognitive performance in healthy volunteers. We frame these findings in the context of whether they may serve security purposes. Specifically, we review studies reporting that NIBS induces paradoxical facilitation in motor (precision, speed, strength, acceleration endurance, and execution of daily motor task) and cognitive functions (attention, impulsive behavior, risk-taking, working memory, planning, and deceptive capacities). Although transferability and meaningfulness of these NIBS-induced paradoxical facilitations into real-life situations are not clear yet, NIBS may contribute at improving training of motor and cognitive functions relevant for military, civil, and forensic security services. This is an enthusiastic perspective that also calls for fair and open debates on the ethics of using NIBS in healthy individuals to enhance normal functions. PMID:23966923

  12. Outcome at 2 Years after Dextrose Gel Treatment for Neonatal Hypoglycemia: Follow-Up of a Randomized Trial.

    PubMed

    Harris, Deborah L; Alsweiler, Jane M; Ansell, Judith M; Gamble, Gregory D; Thompson, Benjamin; Wouldes, Trecia A; Yu, Tzu-Ying; Harding, Jane E

    2016-03-01

    To determine neurodevelopmental outcome at 2 years' corrected age in children randomized to treatment with dextrose gel or placebo for hypoglycemia soon after birth (The Sugar Babies Study). This was a follow-up study of 184 children with hypoglycemia (<2.6 mM [47 mg/dL]) in the first 48 hours and randomized to either dextrose (90/118, 76%) or placebo gel (94/119, 79%). Assessments were performed at Kahikatea House, Hamilton, New Zealand, and included neurologic function and general health (pediatrician assessed), cognitive, language, behavior, and motor skills (Bayley Scales of Infant and Toddler Development, Third Edition), executive function (clinical assessment and Behaviour Rating Inventory of Executive Function-Preschool Edition), and vision (clinical examination and global motion perception). Coprimary outcomes were neurosensory impairment (cognitive, language or motor score below -1 SD or cerebral palsy or blind or deaf) and processing difficulty (executive function or global motion perception worse than 1.5 SD from the mean). Statistical tests were two sided with 5% significance level. Mean (± SD) birth weight was 3093 ± 803 g and mean gestation was 37.7 ± 1.6 weeks. Sixty-six children (36%) had neurosensory impairment (1 severe, 6 moderate, 59 mild) with similar rates in both groups (dextrose 38% vs placebo 34%, relative risk 1.11, 95% CI 0.75-1.63). Processing difficulty also was similar between groups (dextrose 10% vs placebo 18%, relative risk 0.52, 95% CI 0.23-1.15). Dextrose gel is safe for the treatment of neonatal hypoglycemia, but neurosensory impairment is common among these children. Australian New Zealand Clinical Trials Registry: ACTRN 12608000623392. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    PubMed

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference

    PubMed Central

    Lieberman, Matthew D.; Eisenberger, Naomi I.

    2015-01-01

    Dorsal anterior cingulate cortex (dACC) activation is commonly observed in studies of pain, executive control, conflict monitoring, and salience processing, making it difficult to interpret the dACC’s specific psychological function. Using Neurosynth, an automated brainmapping database [of over 10,000 functional MRI (fMRI) studies], we performed quantitative reverse inference analyses to explore the best general psychological account of the dACC function P(Ψ process|dACC activity). Results clearly indicated that the best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing. We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area. PMID:26582792

  15. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age?

    PubMed

    de Graaf, Joke; van Lingen, Richard A; Valkenburg, Abraham J; Weisglas-Kuperus, Nynke; Groot Jebbink, Liesbeth; Wijnberg-Williams, Barbara; Anand, Kanwaljeet J S; Tibboel, Dick; van Dijk, Monique

    2013-03-01

    Morphine is widely used to treat severe pain in neonatal intensive care unit patients. Animal studies suggest adverse long-term side effects of neonatal morphine, but a follow-up study of 5-year-old children who participated in a morphine-placebo controlled trial as newborns found no such effects on the child's general functioning. This study indicated that morphine may negatively affect response inhibition, a domain of executive functions. Therefore, we performed a second follow-up study in the same population at the age of 8 to 9 years, focused on the child's general functioning in terms of intelligence, visual motor integration, and behavior and on executive functions. Children in the morphine group showed significantly less externalizing problems according to the parents but more internalizing behavior according to the teachers, but only after adjustment for intelligence quotient (IQ), potential confounders using a propensity score, and additional open-label morphine. Morphine-treated children showed significantly fewer problems with executive functions in daily life as rated by parents for the subscales inhibition and organization of materials and for planning/organizing as rated by the teachers. After adjustment for IQ and the propensity score, executive functioning as rated by the parents remained statistically significantly better in the morphine-treated group. The influence of the additional morphine given was not of a significant influence for any of the outcome variables. Overall, the present study demonstrates that continuous morphine infusion of 10 μg/kg/h during the neonatal period does not harm general functioning and may even have a positive influence on executive functions at 8 to 9 years. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  17. Role of medial premotor areas in action language processing in relation to motor skills.

    PubMed

    Courson, Melody; Macoir, Joël; Tremblay, Pascale

    2017-10-01

    The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Activity in primary motor cortex during action observation covaries with subsequent behavioral changes in execution.

    PubMed

    Aridan, Nadav; Mukamel, Roy

    2016-11-01

    Observing someone else perform a movement facilitates motor planning, execution, and motor memory formation. Rate, an important feature in the execution of repeated movements, has been shown to vary following movement observation although the underlying neural mechanisms are unclear. In the current study, we examined how the rate of self-paced index finger pressing is implicitly modified following passive observation of a similar action performed at a different rate. Fifty subjects performed a finger pressing sequence with their right hand at their own pace before and after passive observation of either a 1-min video depicting the task performed at 3 Hz by someone else or a black screen. An additional set of 15 subjects performed the task in an MRI scanner. Across all 50 subjects, the spontaneous execution rate prior to video observation had a bimodal distribution with modes around 2 and 4 Hz. Following video observation, the slower subjects performed the task at an increased rate. In the 15 subjects who performed the task in the MRI scanner, we found positive correlation between fMRI signal in the left primary motor strip during passive video observation and subsequent behavioral changes in task performance rate. We conclude that observing someone else perform an action at a higher rate implicitly increases the spontaneous rate of execution, and that this implicit induction is mediated by activity in the contralateral primary motor cortex.

  19. Current Heavy Alcohol Consumption is Associated with Greater Cognitive Impairment in Older Adults

    PubMed Central

    Woods, Adam J.; Porges, Eric C.; Bryant, Vaughn E.; Seider, Talia; Gongvatana, Assawin; Kahler, Christopher W.; de la Monte, Suzanne; Monti, Peter M.; Cohen, Ronald A.

    2016-01-01

    Background The acute consumption of excessive quantities of alcohol causes well-recognized neurophysiological and cognitive alterations. As people reach advanced age, they are more prone to cognitive decline. To date, the interaction of current heavy alcohol (ETOH) consumption and aging remain unclear. The current paper tested the hypothesis that negative consequences of current heavy alcohol consumption on neurocognitive function are worse with advanced age. Further, we evaluated the relations between lifetime history of alcohol dependence and neurocognitive function Methods Sixty-six participants underwent a comprehensive neurocognitive battery. Current heavy ETOH drinkers were classified using NIAAA criteria (ETOH Heavy, n = 21) based on the Timeline follow-back and a structured clinical interview and compared to non-drinkers, and moderate drinkers (ETOH Low, n = 45). Fifty-three-point-three percent of the total population had a lifetime history of alcohol dependence. Neurocognitive data were grouped and analyzed relative to global and domain scores assessing: global cognitive function, attention/executive function, learning, memory, motor function, verbal function, and speed of processing. Results Heavy current ETOH consumption in older adults was associated with poorer global cognitive function, learning, memory, and motor function (p’s<.05). Furthermore, lifetime history of alcohol dependence was associated with poorer function in the same neurocognitive domains, in addition to the attention/executive domain, irrespective of age (p’s<.05). Conclusions These data suggest that while heavy current alcohol consumption is associated with significant impairment in a number of neurocognitive domains, history of alcohol dependence, even in the absence of heavy current alcohol use, is associated with lasting negative consequences for neurocognitive function. PMID:27658235

  20. Improved Cognition While Cycling in Parkinson’s Disease Patients and Healthy Adults

    PubMed Central

    Hazamy, Audrey A.; Altmann, Lori J. P.; Stegemöller, Elizabeth; Bowers, Dawn; Lee, Hyo Keun; Wilson, Jonathan; Okun, Michael S.; Hass, Chris J.

    2017-01-01

    Persons with Parkinson’s disease (PD) are typically more susceptible than healthy adults to impaired performance when two tasks (dual task interference) are performed simultaneously. This limitation has by many experts been attributed to limitations in cognitive resources. Nearly all studies of dual task performance in PD employ walking or balance-based motor tasks, which are commonly impaired in PD. These tasks can be performed using a combination of one or two executive function tasks. The current study examined whether persons with PD would demonstrate greater dual task effects on cognition compared to healthy older adults (HOAs) during a concurrent cycling task. Participants with and without PD completed a battery of 12 cognitive tasks assessing visual and verbal processing in the following cognitive domains: speed of processing, controlled processing, working memory and executive function. Persons with PD exhibited impairments compared to healthy participants in select tasks (i.e., 0-Back, 2-Back and operation span). Further, both groups unexpectedly exhibited dual task facilitation of response times in visual tasks across cognitive domains, and improved verbal recall during an executive function task. Only one measure, 2-back, showed a speed-accuracy trade-off in the dual task. These results demonstrate that, when paired with a motor task in which they are not impaired, people with PD exhibit similar dual task effects on cognitive tasks as HOAs, even when these dual task effects are facilitative. More generally, these findings demonstrate that pairing cognitive tasks with cycling may actually improve cognitive performance which may have therapeutic relevance to cognitive decline associated with aging and PD pathology. PMID:28088064

  1. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.

    PubMed

    Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu

    2009-05-06

    The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.

  2. Impact of one HF-rTMS session on fine motor function in right-handed healthy female subjects: a comparison of stimulation over the left versus the right dorsolateral prefrontal cortex.

    PubMed

    Baeken, C; Schrijvers, D L; Sabbe, B G C; Vanderhasselt, M A; De Raedt, R

    2012-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool to investigate neural conduction in motor processes. Most rTMS research has been conducted by targeting the primary motor cortex. Several studies have also found increased psychomotor speed after rTMS of the dorsolateral prefrontal cortex (DLPFC). However, these studies were mainly performed in psychiatric patients, only targeting the left DLPFC, and often without sham control. Moreover, psychomotor speed is mostly measured based on tasks that also require higher executive functions. Here, we examined the lateralized effect of one sham-controlled high-frequency rTMS session applied to the left or right DLPFC on fine motor function in 36 healthy right-handed females, using the Fitts' paradigm. We found a significant improvement in psychomotor speed only after actively stimulating the right DLPFC. Our results support the assumption of a right prefrontal neural network implicated in visuomotor behavior and performance processes, and that the improvement in psychomotor speed is not a secondary effect of decreased mood. Copyright © 2012 S. Karger AG, Basel.

  3. Impact of familiar and unfamiliar settings on cooking task assessments in frail older adults with poor and preserved executive functions.

    PubMed

    Provencher, Véronique; Demers, Louise; Gagnon, Lise; Gélinas, Isabelle

    2012-05-01

    Hospitalized frail older patients are usually assessed for their ability to perform some daily living activities in a clinical setting prior to discharge. However, assessments that take place in this unfamiliar environment might not be as representative of their functional performance as assessments at home. This may be related to a decline in some cognitive components, such as executive functions (EF), which enable one to cope with new environments. This study thus aims to compare cooking task performance in familiar and unfamiliar settings in a population of frail older adults with poor and preserved EF. Thirty-seven frail older adults were assigned to one of two groups: poor EF or preserved EF. Participants performed two cooking tasks in familiar and unfamiliar settings, using a counterbalanced design. Their performance was assessed with a reliable tool based on observation of motor and process skills (Assessment of Motor and Process Skills). Thirty-three participants were retained for analysis. They demonstrated significantly better motor skills (F = 5.536; p = 0.025) and process skills (F = 8.149; p = 0.008) in the familiar setting. The difference between settings was particularly marked for process skills in participants with poor EF (F = 16.920; p < 0.001). This study suggests that a home setting may be preferable for a more accurate assessment of cooking task performance in frail older adults, especially those with poor EF. These findings highlight the risk of underestimating frail older adults' performance when assessed in an unfamiliar setting (e.g. hospital), which could lead to inefficient allocation of home care services.

  4. Can Driving-Simulator Training Enhance Visual Attention, Cognition, and Physical Functioning in Older Adults?

    PubMed

    Haeger, Mathias; Bock, Otmar; Memmert, Daniel; Hüttermann, Stefanie

    2018-01-01

    Virtual reality offers a good possibility for the implementation of real-life tasks in a laboratory-based training or testing scenario. Thus, a computerized training in a driving simulator offers an ecological valid training approach. Visual attention had an influence on driving performance, so we used the reverse approach to test the influence of a driving training on visual attention and executive functions. Thirty-seven healthy older participants (mean age: 71.46 ± 4.09; gender: 17 men and 20 women) took part in our controlled experimental study. We examined transfer effects from a four-week driving training (three times per week) on visual attention, executive function, and motor skill. Effects were analyzed using an analysis of variance with repeated measurements. Therefore, main factors were group and time to show training-related benefits of our intervention. Results revealed improvements for the intervention group in divided visual attention; however, there were benefits neither in the other cognitive domains nor in the additional motor task. Thus, there are no broad training-induced transfer effects from such an ecologically valid training regime. This lack of findings could be addressed to insufficient training intensities or a participant-induced bias following the cancelled randomization process.

  5. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    PubMed Central

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  6. Cognitive deficits are associated with poorer simulated driving in older adults with heart failure

    PubMed Central

    2013-01-01

    Background Cognitive impairment is prevalent in older adults with heart failure (HF) and associated with reduced functional independence. HF patients appear at risk for reduced driving ability, as past work in other medical samples has shown cognitive dysfunction to be an important contributor to driving performance. The current study examined whether cognitive dysfunction was independently associated with reduced driving simulation performance in a sample of HF patients. Methods 18 persons with HF (67.72; SD = 8.56 year) completed echocardiogram and a brief neuropsychological test battery assessing global cognitive function, attention/executive function, memory and motor function. All participants then completed the Kent Multidimensional Assessment Driving Simulation (K-MADS), a driving simulator scenario with good psychometric properties. Results The sample exhibited an average Mini Mental State Examination (MMSE) score of 27.83 (SD = 2.09). Independent sample t-tests showed that HF patients performed worse than healthy adults on the driving simulation scenario. Finally, partial correlations showed worse attention/executive and motor function were independently associated with poorer driving simulation performance across several indices reflective of driving ability (i.e., centerline crossings, number of collisions, % of time over the speed limit, among others). Conclusion The current findings showed that reduced cognitive function was associated with poor simulated driving performance in older adults with HF. If replicated using behind-the-wheel testing, HF patients may be at elevated risk for unsafe driving and routine driving evaluations in this population may be warranted. PMID:24499466

  7. Impact of Auditory Context on Executed Motor Actions

    PubMed Central

    Yoles-Frenkel, Michal; Avron, Maayan; Prut, Yifat

    2016-01-01

    The auditory and motor systems are strongly coupled, as is evident in the specifically tight motor synchronization that occurs in response to regularly occurring auditory cues compared with cues of other modalities. Timing of rhythmic action is known to rely on multiple neural centers including the cerebellum and the basal-ganglia which have access to both motor cortical and spinal circuitries. To date, however, there is little information on the motor mechanisms that operate during preparation and execution of rhythmic vs. non-rhythmic movements. We measured acceleration profile and muscle activity while subjects performed tapping movements in response to auditory cues. We found that when tapping at random intervals there was a higher variability of both acceleration profile and muscle activity during motor preparation compared to rhythmic tapping. However, the specific rhythmic context (cued, self-paced, or syncopation) did not affect the motor parameters of the executed taps. Finally, during entrainment we found a gradual as opposed to episodic change in low-level motor parameters (i.e., preparatory muscle activity) that was strongly correlated with changes in high-level parameters (i.e., shift in the reaction time to negative asynchrony). These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters that are related to its production. These changes in motor output were insensitive to the specifics of the rhythmic cue: although it took subjects different times to become entrained to different types of rhythmic cues, the motor actions produced once entrainment was obtained were indistinguishable. These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters related to its production. The reduced variability of muscle activity during the preparatory period could be one mechanism used by the motor system to enhance the accuracy of motor timing. PMID:26834584

  8. Influence of stimulant medication and response speed on lateralization of movement-related potentials in attention-deficit/hyperactivity disorder.

    PubMed

    Bender, Stephan; Resch, Franz; Klein, Christoph; Renner, Tobias; Fallgatter, Andreas J; Weisbrod, Matthias; Romanos, Marcel

    2012-01-01

    Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD). However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP) can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP) in patients with ADHD. Fast reactions (indicating increased visuo-motor attention) led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes. A reduced focal (lateralized) motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre-) motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology.

  9. Resting-state functional connectivity and motor imagery brain activation

    PubMed Central

    Saiote, Catarina; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Bommarito, Giulia; Cordano, Christian; Battaglia, Mario; Mancardi, Giovanni Luigi; Inglese, Matilde

    2016-01-01

    Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting-state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting-state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel-matched correlation between the individual MI parameter estimates and seed-based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter-individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. PMID:27273577

  10. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].

    PubMed

    Arshavsky, I; Deliagina, T G; Orlovsky, G N

    2015-01-01

    Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.

  11. Computational models and motor learning paradigms: Could they provide insights for neuroplasticity after stroke? An overview.

    PubMed

    Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea

    2016-10-15

    Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evidence-based Assessment of Cognitive Functioning in Pediatric Psychology

    PubMed Central

    Brown, Ronald T.; Cavanagh, Sarah E.; Vess, Sarah F.; Segall, Mathew J.

    2008-01-01

    Objective To review the evidence base for measures of cognitive functioning frequently used within the field of pediatric psychology. Methods From a list of 47 measures identified by the Society of Pediatric Psychology (Division 54) Evidence-Based Assessment Task Force Workgroup, 27 measures were included in the review. Measures were organized, reviewed, and evaluated according to general domains of functioning (e.g., attention/executive functioning, memory). Results Twenty-two of 27 measures reviewed demonstrated psychometric properties that met “Well-established” criteria as set forth by the Assessment Task Force. Psychometric properties were strongest for measures of general cognitive ability and weakest for measures of visual-motor functioning and attention. Conclusions We report use of “Well-established” measures of overall cognitive functioning, nonverbal intelligence, academic achievement, language, and memory and learning. For several specific tests in the domains of visual-motor functioning and attention, additional psychometric data are needed for measures to meet criteria as “Well established.” PMID:18194973

  13. Enhancement of naming in nonfluent aphasia through gesture.

    PubMed

    Hanlon, R E; Brown, J W; Gerstman, L J

    1990-02-01

    In a number of studies that have examined the gestural disturbance in aphasia and the utility of gestural interventions in aphasia therapy, a variable degree of facilitation of verbalization during gestural activity has been reported. The present study examined the effect of different unilateral gestural movements on simultaneous oral-verbal expression, specifically naming to confrontation. It was hypothesized that activation of the phylogenetically older proximal motor system of the hemiplegic right arm in the execution of a communicative but nonrepresentational pointing gesture would have a facilitatory effect on naming ability. Twenty-four aphasic patients, representing five aphasic subtypes, including Broca's, Transcortical Motor, Anomic, Global, and Wernicke's aphasics were assessed under three gesture/naming conditions. The findings indicated that gestures produced through activation of the proximal (shoulder) musculature of the right paralytic limb differentially facilitated naming performance in the nonfluent subgroup, but not in the Wernicke's aphasics. These findings may be explained on the view that functional activation of the archaic proximal motor system of the hemiplegic limb, in the execution of a communicative gesture, permits access to preliminary stages in the formative process of the anterior action microgeny, which ultimately emerges in vocal articulation.

  14. From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control

    PubMed Central

    Land, William M.; Volchenkov, Dima; Bläsing, Bettina E.; Schack, Thomas

    2013-01-01

    Along with superior performance, research indicates that expertise is associated with a number of mediating cognitive adaptations. To this extent, extensive practice is associated with the development of general and task-specific mental representations, which play an important role in the organization and control of action. Recently, new experimental methods have been developed, which allow for investigating the organization and structure of these representations, along with the functional structure of the movement kinematics. In the current article, we present a new approach for examining the overlap between skill representations and motor output. In doing so, we first present an architecture model, which addresses links between biomechanical and cognitive levels of motor control. Next, we review the state of the art in assessing memory structures underlying complex action. Following we present a new spatio-temporal decomposition method for illuminating the functional structure of movement kinematics, and finally, we apply these methods to investigate the overlap between the structure of motor representations in memory and their corresponding kinematic structures. Our aim is to understand the extent to which the output at a kinematic level is governed by representations at a cognitive level of motor control. PMID:24065915

  15. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation

    PubMed Central

    King, Laurie A.; Cohen, Rajal G.; Horak, Fay B.

    2016-01-01

    People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. PMID:26381808

  16. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation.

    PubMed

    Peterson, Daniel S; King, Laurie A; Cohen, Rajal G; Horak, Fay B

    2016-05-01

    People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. © 2016 American Physical Therapy Association.

  17. Narrative discourse deficits in amyotrophic lateral sclerosis.

    PubMed

    Ash, Sharon; Menaged, Anna; Olm, Christopher; McMillan, Corey T; Boller, Ashley; Irwin, David J; McCluskey, Leo; Elman, Lauren; Grossman, Murray

    2014-08-05

    We examined narrative discourse in amyotrophic lateral sclerosis (ALS) to assess the role of executive functioning in support of language and the neuroanatomical basis for such support. We analyzed a semistructured speech sample in 26 patients with ALS and 19 healthy seniors for narrative discourse features of coherence. Regression analyses related a measure of discourse coherence ("local connectedness") to gray matter atrophy and reduced white matter fractional anisotropy. Patients with ALS were impaired relative to controls on measures of discourse adequacy, including local connectedness and maintenance of the theme. These discourse measures were related to measures of executive functioning but not to motor functioning. Regressions related local connectedness to gray matter atrophy in ventral and dorsal prefrontal regions and to reduced fractional anisotropy in white matter tracts mediating projections between prefrontal regions. Patients with ALS exhibit deficits in their ability to organize narrative discourse. These deficits appear to be related in part to executive limitations. Consistent with the hypothesis that ALS is a multisystem disorder, this deficit is related to disease in prefrontal regions. © 2014 American Academy of Neurology.

  18. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    PubMed

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions.

    PubMed

    Shafir, Tal; Tsachor, Rachelle P; Welch, Kathleen B

    2015-01-01

    We have recently demonstrated that motor execution, observation, and imagery of movements expressing certain emotions can enhance corresponding affective states and therefore could be used for emotion regulation. But which specific movement(s) should one use in order to enhance each emotion? This study aimed to identify, using Laban Movement Analysis (LMA), the Laban motor elements (motor characteristics) that characterize movements whose execution enhances each of the basic emotions: anger, fear, happiness, and sadness. LMA provides a system of symbols describing its motor elements, which gives a written instruction (motif) for the execution of a movement or movement-sequence over time. Six senior LMA experts analyzed a validated set of video clips showing whole body dynamic expressions of anger, fear, happiness and sadness, and identified the motor elements that were common to (appeared in) all clips expressing the same emotion. For each emotion, we created motifs of different combinations of the motor elements common to all clips of the same emotion. Eighty subjects from around the world read and moved those motifs, to identify the emotion evoked when moving each motif and to rate the intensity of the evoked emotion. All subjects together moved and rated 1241 motifs, which were produced from 29 different motor elements. Using logistic regression, we found a set of motor elements associated with each emotion which, when moved, predicted the feeling of that emotion. Each emotion was predicted by a unique set of motor elements and each motor element predicted only one emotion. Knowledge of which specific motor elements enhance specific emotions can enable emotional self-regulation through adding some desired motor qualities to one's personal everyday movements (rather than mimicking others' specific movements) and through decreasing motor behaviors which include elements that enhance negative emotions.

  20. Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions

    PubMed Central

    Shafir, Tal; Tsachor, Rachelle P.; Welch, Kathleen B.

    2016-01-01

    We have recently demonstrated that motor execution, observation, and imagery of movements expressing certain emotions can enhance corresponding affective states and therefore could be used for emotion regulation. But which specific movement(s) should one use in order to enhance each emotion? This study aimed to identify, using Laban Movement Analysis (LMA), the Laban motor elements (motor characteristics) that characterize movements whose execution enhances each of the basic emotions: anger, fear, happiness, and sadness. LMA provides a system of symbols describing its motor elements, which gives a written instruction (motif) for the execution of a movement or movement-sequence over time. Six senior LMA experts analyzed a validated set of video clips showing whole body dynamic expressions of anger, fear, happiness and sadness, and identified the motor elements that were common to (appeared in) all clips expressing the same emotion. For each emotion, we created motifs of different combinations of the motor elements common to all clips of the same emotion. Eighty subjects from around the world read and moved those motifs, to identify the emotion evoked when moving each motif and to rate the intensity of the evoked emotion. All subjects together moved and rated 1241 motifs, which were produced from 29 different motor elements. Using logistic regression, we found a set of motor elements associated with each emotion which, when moved, predicted the feeling of that emotion. Each emotion was predicted by a unique set of motor elements and each motor element predicted only one emotion. Knowledge of which specific motor elements enhance specific emotions can enable emotional self-regulation through adding some desired motor qualities to one's personal everyday movements (rather than mimicking others' specific movements) and through decreasing motor behaviors which include elements that enhance negative emotions. PMID:26793147

  1. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  2. Motor simulation and the coordination of self and other in real-time joint action

    PubMed Central

    Ticini, Luca F.; Schütz-Bosbach, Simone; Keller, Peter E.

    2014-01-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others’ perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one’s own behaviour with others in dynamic social contexts. PMID:23709353

  3. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    PubMed

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dopamine Inactivation Efficacy Related to Functional DAT1 and COMT Variants Influences Motor Response Evaluation

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8). Results The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered. Conclusions Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming. PMID:22649558

  5. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  6. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  7. The Impact of Executive Functions on the Written Language Process: Some Evidence from Children with Writing Disabilities

    ERIC Educational Resources Information Center

    Alevriadou, Anastasia; Giaouri, Stergiani

    2015-01-01

    Written language is a difficult endeavour as the demands of transcription require self-regulatory skills from a motor, cognitive and attention perspective. The purpose of the present study was to investigate the relation between the Test of Writing Difficulties (Porpodas et al., 2007) and the Test of Detection and Investigation of Executive…

  8. Training, executive, attention and motor skills (TEAMS) training versus standard treatment for preschool children with attention deficit hyperactivity disorder: a randomised clinical trial.

    PubMed

    Vibholm, Helle Annette; Pedersen, Jesper; Faltinsen, Erlend; Marcussen, Michael H; Gluud, Christian; Storebø, Ole Jakob

    2018-06-08

    This study compared the effectiveness of manualised training, executive, attention, and motor skills (TEAMS) training versus standard treatment in preschool children with attention deficit hyperactivity disorder (ADHD). We conducted a randomised parallel group, single-blinded, superiority trial. The primary outcome was ADHD symptoms and the secondary outcome was functionality. Parents and primary school teachers assessed outcomes at pretreatment, posttreatment, and at one, three, and 6 months follow-up. In total, 67 children (aged 3-6 years) were randomised. In the TEAMS group, 32 out of 33 (97%) participants completed the total 8-week program, compared with only 7 out of 26 (27%) in the control group. The repeated-model analyses showed no significant change between the two interventions for ADHD symptoms and functionality levels over time. The mean difference in ADHD symptoms between TEAMS versus standard treatment at posttreatment was 2.18 points (95% confidence interval - 8.62 to 13.0; trial sequential analysis-adjusted confidence interval - 19.3 to 23.7). Trial registration Clinical Trials identifier: NCT01918436 (Retrospectively registered). Registered on 7 August 2013.

  9. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    PubMed

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  10. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI.

    PubMed

    Schuster-Amft, Corina; Henneke, Andrea; Hartog-Keisker, Birgit; Holper, Lisa; Siekierka, Ewa; Chevrier, Edith; Pyk, Pawel; Kollias, Spyros; Kiper, Daniel; Eng, Kynan

    2015-01-01

    To evaluate feasibility and neurophysiological changes after virtual reality (VR)-based training of upper limb (UL) movements. Single-case A-B-A-design with two male stroke patients (P1:67 y and 50 y, 3.5 and 3 y after onset) with UL motor impairments, 45-min therapy sessions 5×/week over 4 weeks. Patients facing screen, used bimanual data gloves to control virtual arms. Three applications trained bimanual reaching, grasping, hand opening. Assessments during 2-week baseline, weekly during intervention, at 3-month follow-up (FU): Goal Attainment Scale (GAS), Chedoke Arm and Hand Activity Inventory (CAHAI), Chedoke-McMaster Stroke Assessment (CMSA), Extended Barthel Index (EBI), Motor Activity Log (MAL). Functional magnetic resonance imaging scans (FMRI) before, immediately after treatment and at FU. P1 executed 5478 grasps (paretic arm). Improvements in CAHAI (+4) were maintained at FU. GAS changed to +1 post-test and +2 at FU. P2 executed 9835 grasps (paretic arm). CAHAI improvements (+13) were maintained at FU. GAS scores changed to -1 post-test and +1 at FU. MAL scores changed from 3.7 at pre-test to 5.5 post-test and 3.3 at FU. The VR-based intervention was feasible, safe, and intense. Adjustable application settings maintained training challenge and patient motivation. ADL-relevant UL functional improvements persisted at FU and were related to changed cortical activation patterns. Implications for Rehabilitation YouGrabber trains uni- and bimanual upper motor function. Its application is feasible, safe, and intense. The control of the virtual arms can be done in three main ways: (a) normal (b) virtual mirror therapy, or (c) virtual following. The mirroring feature provides an illusion of affected limb movements during the period when the affected upper limb (UL) is resting. The YouGrabber training led to ADL-relevant UL functional improvements that were still assessable 12 weeks after intervention finalization and were related to changed cortical activation patterns.

  11. Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: A diffusion tensor imaging (DTI) study

    PubMed Central

    Wozniak, Jeffrey R.; Krach, Linda; Ward, Erin; Mueller, Bryon A.; Muetzel, Ryan; Schnoebelen, Sarah; Kiragu, Andrew; Lim, Kelvin O.

    2010-01-01

    This study examined the sensitivity of diffusion tensor imaging (DTI) to microstructural white matter (WM) damage in mild and moderate pediatric traumatic brain injury (TBI). Fourteen children with TBI and 14 controls ages 10–18 had DTI scans and neurocognitive evaluations at 6–12 months post-injury. Groups did not differ in intelligence, but children with TBI showed slower processing speed, working memory and executive deficits, and greater behavioral dysregulation. The TBI group had lower fractional anisotropy (FA) in three WM regions: inferior frontal, superior frontal, and supracallosal. There were no group differences in corpus callosum. FA in the frontal and supracallosal regions was correlated with executive functioning. Supracallosal FA was also correlated with motor speed. Behavior ratings showed correlations with supracallosal FA. Parent-reported executive deficits were inversely correlated with FA. Results suggest that DTI measures are sensitive to long-term WM changes and associated with cognitive functioning following pediatric TBI. PMID:17446039

  12. Striatal and Hippocampal Involvement in Motor Sequence Chunking Depends on the Learning Strategy

    PubMed Central

    Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien

    2014-01-01

    Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy. PMID:25148078

  13. Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy.

    PubMed

    Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien

    2014-01-01

    Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.

  14. Microstructural White Matter Changes Underlying Cognitive and Behavioural Impairment in ALS – An In Vivo Study Using DTI

    PubMed Central

    Kasper, Elisabeth; Schuster, Christina; Machts, Judith; Kaufmann, Joern; Bittner, Daniel; Vielhaber, Stefan; Benecke, Reiner; Teipel, Stefan; Prudlo, Johannes

    2014-01-01

    Background A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients. Methods We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures. Results Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts. Conclusion In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients. PMID:25501028

  15. Using neuropsychological profiles to classify neglected children with or without physical abuse.

    PubMed

    Nolin, Pierre; Ethier, Louise

    2007-06-01

    The aim of this study is twofold: First, to investigate whether cognitive functions can contribute to differentiating neglected children with or without physical abuse compared to comparison participants; second, to demonstrate the detrimental impact of children being victimized by a combination of different types of maltreatment. Seventy-nine children aged 6-12 years and currently receiving Child Protection Services because of one of two types of maltreatment (neglect with physical abuse, n=56; neglect without physical abuse, n=28) were compared with a control group of 53 children matched for age, gender, and annual family income. The neuropsychological assessment focused on motor performance, attention, memory and learning, visual-motor integration, language, frontal/executive functions, and intelligence. Discriminant analysis identified auditory attention and response set, and visual-motor integration (Function 1), and problem solving, abstraction, and planning (Function 2) as the two sets of variables that most distinguished the groups. Discriminant analysis predicted group membership in 80% of the cases. Children who were neglected with physical abuse showed cognitive deficits in auditory attention and response set, and visual-motor integration (Function 1) and problem solving, abstraction, and planning (Function 2). Children who were neglected without physical abuse differed from the control group in that they obtained lower scores in auditory attention and response set, and visual-motor integration (Function 1). Surprisingly, these same children demonstrated a greater capacity for problem solving, abstraction, and planning (Function 2) than the physically abused neglected and control children. The present study underscores the relevance of neuropsychology to maltreatment research. The results support the heterogeneity of cognitive deficits in children based on different types of maltreatment and the fact that neglect with physical abuse is more harmful than neglect alone.

  16. Influence of educational status on executive function and functional balance in individuals with Parkinson disease.

    PubMed

    Souza, Carolina de Oliveira; Voos, Mariana Callil; Francato, Débora Valente; Chien, Hsin Fen; Barbosa, Egberto Reis

    2013-03-01

    This study investigated whether educational status influenced how people with Parkinson disease (PD) performed on Parts A, B, and DELTA of the Trail Making Test (TMT) and on the Berg Balance Scale (BBS). Recent studies have shown that educational status may influence cognitive and motor test performance. We gave the TMT and the BBS to assess executive function and functional balance in 28 people with PD (Hoehn and Yahr score between 2 and 3) and 30 healthy elderly people. Participants reported their number of years of formal education. We divided each group of participants by educational status: low (4 to 10 years of education) or high (≥11 years). In both the PD (P=0.018) and control (P=0.003) groups, participants with low educational status performed worse on the TMT Part B than did those with high educational status. Within the PD group, the less-educated participants scored worse on the BBS than did the more educated (P<0.001); this difference was not significant between the more- and less-educated controls (P=0.976). Whether or not they had PD, less-educated people performed worse than more-educated people on the TMT Part B. Educational status affected executive function, but PD status did not. Among individuals with PD, educational status influenced functional balance.

  17. Motor dysfunction and alterations in glutathione concentration, cholinesterase activity, and BDNF expression in substantia nigra pars compacta in rats with pedunculopontine lesion.

    PubMed

    Blanco-Lezcano, Lisette; Jimenez-Martin, Javier; Díaz-Hung, Mei-Li; Alberti-Amador, Esteban; Wong-Guerra, Maylin; González-Fraguela, Ma Elena; Estupiñán-Díaz, Bárbara; Serrano-Sánchez, Teresa; Francis-Turner, Liliana; Delgado-Ocaña, Susana; Núñez-Figueredo, Yanier; Vega-Hurtado, Yamilé; Fernández-Jiménez, Isabel

    2017-04-21

    Pedunculopontine nucleus (PPN) has been considered a critically important region in the regulation of some of the physiological functions that fail during the progression of Parkinson's disease (PD). In this paper, the effects of unilateral neurotoxic lesion of the PPN [through the injection of N-methyl-d-aspartate (NMDA) solution (concentration: 0.1M; volume: 0.5µL)] in motor execution and gait disorders and the changes in cellular and molecular indicators in rat nigral tissue were evaluated. The motor execution was assessed using the beam test (BT) and the gait disorders by footprint test. Glutathione (GSH) concentrations, acetyl cholinesterase enzymatic activity (AChE EA), and brain-derived neurotrophic factor (BDNF) mRNA expression in nigral tissue were analyzed. NMDA-lesioned rats showed fine motor dysfunction with a significant increase in the slow (p≤0.01) and fast movement (p≤0.01) time and in path deviation (p≤0.01) on the smaller diameter beams. Moreover, NMDA-lesioned rats exhibited an imprecise path with moments of advances and setbacks, alternating with left and right deviations, suspensions, and inverted positions. Footprint test revealed slight gait disorders, which were manifested by a reduction in the left and right stride lengths, the intra-step distance, and the support area (p≤0.01). Biochemical studies showed that 48h after the PPN neurotoxic injury, the GSH concentrations and BDNF expression were significantly increased (p≤0.01). These variables returned to normal values 7days after the PPN lesion; the AChE EA showed a significant increase at this time. These functional changes in nigral tissue could be a plastic responses associated with early PD. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Resolving Interference between Body Movements: Retrieval-Induced Forgetting of Motor Sequences

    ERIC Educational Resources Information Center

    Tempel, Tobias; Frings, Christian

    2013-01-01

    When body movements are stored in memory in an organized manner, linked to a common retrieval cue like the effector with which to execute the movement, interference may arise as soon as one initiates the execution of a specific body movement in the presence of the retrieval cue because related motor programs also are activated. We investigated the…

  19. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment

    ERIC Educational Resources Information Center

    Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo

    2016-01-01

    The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical…

  20. Environmental exposure to manganese and motor function of children in Mexico.

    PubMed

    Hernández-Bonilla, D; Schilmann, A; Montes, S; Rodríguez-Agudelo, Y; Rodríguez-Dozal, S; Solís-Vivanco, R; Ríos, C; Riojas-Rodríguez, H

    2011-10-01

    Occupational manganese (Mn) exposure has been associated with motor deficits in adult workers, but data on the potential effects of environmental exposure to Mn on the developing motor function for a children population is scarce. The aim of this study was to evaluate the association between exposure to Mn and motor function of school aged children. We conducted a cross-sectional study selecting 195 children (100 exposed and 95 unexposed) between 7 and 11 years old. The following tests were used to evaluate the motor function: Grooved pegboard, finger tapping, and Santa Ana test. Mn exposure was assessed by blood (MnB) and hair concentrations (MnH). We constructed linear regression models to evaluate the association between exposure to Mn and the different test scores adjusting for age, sex, maternal education, hemoglobin and blood lead. The median concentration of MnH and MnB was significantly higher in exposed (12.6 μg/g and 9.5 μg/L) compared to unexposed children (0.6 μg/g and 8.0 μg/L). The exposed children on average performed the grooved pegboard test faster, but made more errors, although these results did not reach statistical significance with neither one of the Mn exposure biomarkers. MnB showed an inverse association on the execution of the finger tapping test (average in 5 trials β -0.4, p=0.02), but no association was observed with MnH. A subtle negative association of Mn exposure on motor speed and coordination was shown. In adults, the main effect of environmental Mn exposure has been associated with motor skills, but these results suggest that such alterations are not the main effect on children. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. An extra X or Y chromosome: contrasting the cognitive and motor phenotypes in childhood in boys with 47,XYY syndrome or 47,XXY Klinefelter syndrome

    PubMed Central

    Ross, Judith L.; Zeger, Martha P.D.; Kushner, Harvey; Zinn, Andrew R.; Roeltgen, David P.

    2010-01-01

    Objective The goal of this study was to contrast the cognitive phenotypes in boys with 47,XYY (XYY) karyotype and boys with 47,XXY karyotype (Klinefelter syndrome, KS), who share an extra copy of the X-Y pseudoautosomal region but differ in their dosage of strictly sex-linked genes. Methods Neuropsychological evaluation of general cognitive ability, language, memory, attention, visual-spatial abilities, visual-motor skills, and motor function. Results Study cohort: 21 boys with 47,XYY and 93 boys with 47,XXY (KS), ages 4-17 years, and 36 age-matched control boys. Both the XYY and KS groups performed less well, on average, than the controls on tests of general cognitive ability, achievement, language, verbal memory, some aspects of attention and executive function, and motor function. The boys with XYY on average had more severe and pervasive language impairment, at both simple and complex levels, and the boys with KS on average had greater motor impairment in gross motor function and coordination, especially in running speed and agility. Conclusions The results from these large XYY and KS cohorts have important neurocognitive and educational implications. From the neurocognitive standpoint, the presenting findings afford an opportunity to gain insights into brain development in boys with XYY and those with KS. From the educational standpoint, it is critical that boys with XYY or KS receive appropriate educational interventions that target their specific learning challenges. These findings also provide important information for counseling clinicians and families about these disorders. PMID:20014371

  2. Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery

    NASA Astrophysics Data System (ADS)

    Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.

  3. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  4. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report.

    PubMed

    Shema-Shiratzky, Shirley; Brozgol, Marina; Cornejo-Thumm, Pablo; Geva-Dayan, Karen; Rotstein, Michael; Leitner, Yael; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-05-17

    To examine the feasibility and efficacy of a combined motor-cognitive training using virtual reality to enhance behavior, cognitive function and dual-tasking in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Fourteen non-medicated school-aged children with ADHD, received 18 training sessions during 6 weeks. Training included walking on a treadmill while negotiating virtual obstacles. Behavioral symptoms, cognition and gait were tested before and after the training and at 6-weeks follow-up. Based on parental report, there was a significant improvement in children's social problems and psychosomatic behavior after the training. Executive function and memory were improved post-training while attention was unchanged. Gait regularity significantly increased during dual-task walking. Long-term training effects were maintained in memory and executive function. Treadmill-training augmented with virtual-reality is feasible and may be an effective treatment to enhance behavior, cognitive function and dual-tasking in children with ADHD.

  5. Evidence of motor-control difficulties in children with attention deficit hyperactivity disorder, explored through a hierarchical motor-systems perspective.

    PubMed

    Macoun, Sarah J; Kerns, Kimberly A

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.

  6. Brain activation associated with eccentric movement: A narrative review of the literature.

    PubMed

    Perrey, Stéphane

    2018-02-01

    The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.

  7. Handwriting Error Patterns of Children with Mild Motor Difficulties.

    ERIC Educational Resources Information Center

    Malloy-Miller, Theresa; And Others

    1995-01-01

    A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…

  8. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions.

    PubMed

    Wang, Yan; Fu, Wei; Liu, Jing

    2016-01-01

    Intrauterine growth restriction (IUGR) is associated with higher rates of fetal, perinatal, and neonatal morbidity and mortality. The consequences of IUGR include short-term metabolic, hematological and thermal disturbances that lead to metabolic syndrome in children and adults. Additionally, IUGR severely affects short- and long-term fetal brain development and brain function (including motor, cognitive and executive function) and neurobehavior, especially neuropsychology. This review details the adverse effects of IUGR on fetal brain development and discusses intervention strategies.

  9. A θ-γ oscillation code for neuronal coordination during motor behavior.

    PubMed

    Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki

    2013-11-20

    Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.

  10. Predicting future learning from baseline network architecture.

    PubMed

    Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S

    2018-05-15

    Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    PubMed

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  12. Examining age-related movement representations for sequential (fine-motor) finger movements.

    PubMed

    Gabbard, Carl; Caçola, Priscila; Bobbio, Tatiana

    2011-12-01

    Theory suggests that imagined and executed movement planning relies on internal models for action. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested children aged 7-11 years and adults on their ability to perform sequential finger movements. Underscoring this tactic was our desire to gain a better understanding of the age-related ability to create internal models for action requiring fine-motor movements. The task required number recognition and ordering and was presented in three levels of complexity. Results for movement duration indicated that 7-year-olds and adults were different from the other groups with no statistical distinction between 9- and 11-year-olds. Correlation analysis indicated a significant relationship between imagined and executed actions. These results are the first to document the increasing convergence between imagined and executed movements in the context of fine-motor behavior; a finding that adds to our understanding of action representation in children. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Impairment of actions chains in autism and its possible role in intention understanding

    PubMed Central

    Cattaneo, Luigi; Fabbri-Destro, Maddalena; Boria, Sonia; Pieraccini, Cinzia; Monti, Annalisa; Cossu, Giuseppe; Rizzolatti, Giacomo

    2007-01-01

    Experiments in monkeys demonstrated that many parietal and premotor neurons coding a specific motor act (e.g., grasping) show a markedly different activation when this act is part of actions that have different goals (e.g., grasping for eating vs. grasping for placing). Many of these “action-constrained” neurons have mirror properties firing selectively to the observation of the initial motor act of the actions to which they belong motorically. By activating a specific action chain from its very outset, this mechanism allows the observers to have an internal copy of the whole action before its execution, thus enabling them to understand directly the agent's intention. Using electromyographic recordings, we show that a similar chained organization exists in typically developing children, whereas it is impaired in children with autism. We propose that, as a consequence of this functional impairment, high-functioning autistic children may understand the intentions of others cognitively but lack the mechanism for understanding them experientially. PMID:17965234

  14. Impairment of actions chains in autism and its possible role in intention understanding.

    PubMed

    Cattaneo, Luigi; Fabbri-Destro, Maddalena; Boria, Sonia; Pieraccini, Cinzia; Monti, Annalisa; Cossu, Giuseppe; Rizzolatti, Giacomo

    2007-11-06

    Experiments in monkeys demonstrated that many parietal and premotor neurons coding a specific motor act (e.g., grasping) show a markedly different activation when this act is part of actions that have different goals (e.g., grasping for eating vs. grasping for placing). Many of these "action-constrained" neurons have mirror properties firing selectively to the observation of the initial motor act of the actions to which they belong motorically. By activating a specific action chain from its very outset, this mechanism allows the observers to have an internal copy of the whole action before its execution, thus enabling them to understand directly the agent's intention. Using electromyographic recordings, we show that a similar chained organization exists in typically developing children, whereas it is impaired in children with autism. We propose that, as a consequence of this functional impairment, high-functioning autistic children may understand the intentions of others cognitively but lack the mechanism for understanding them experientially.

  15. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults

    PubMed Central

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041

  16. Neuropsychological profiles of children with cerebral palsy.

    PubMed

    Stadskleiv, Kristine; Jahnsen, Reidun; Andersen, Guro L; von Tetzchner, Stephen

    2018-02-01

    To explore factors contributing to variability in cognitive functioning in children with cerebral palsy (CP). A geographical cohort of 70 children with CP was assessed with tests of language comprehension, visual-spatial reasoning, attention, working memory, memory, and executive functioning. Mean age was 9;9 years (range 5;1-17;7), 54.3% were girls, and 50.0% had hemiplegic, 25.7% diplegic, 12.9% quadriplegic, and 11.4% dyskinetic CP. For the participants with severe motor impairments, assessments were adapted for gaze pointing. A cognitive quotient (CQ) was computed. Mean CQ was 78.5 (range 19-123). Gross motor functioning, epilepsy, and type of brain injury explained 35.5% of the variance in CQ (F = 10.643, p = .000). Twenty-four percent had an intellectual disability, most of them were children with quadriplegic CP. Verbal comprehension and perceptual reasoning scores did only differ for the 21% with an uneven profile, of whom two-thirds had challenges with perceptual reasoning.

  17. Incident lacunes influence cognitive decline: the LADIS study.

    PubMed

    Jokinen, H; Gouw, A A; Madureira, S; Ylikoski, R; van Straaten, E C W; van der Flier, W M; Barkhof, F; Scheltens, P; Fazekas, F; Schmidt, R; Verdelho, A; Ferro, J M; Pantoni, L; Inzitari, D; Erkinjuntti, T

    2011-05-31

    In cerebral small vessel disease, the core MRI findings include white matter lesions (WML) and lacunar infarcts. While the clinical significance of WML is better understood, the contribution of lacunes to the rate of cognitive decline has not been established. This study investigated whether incident lacunes on MRI determine longitudinal cognitive change in elderly subjects with WML. Within the Leukoaraiosis and Disability Study (LADIS), 387 subjects were evaluated with repeated MRI and neuropsychological assessment at baseline and after 3 years. Predictors of change in global cognitive function and specific cognitive domains over time were analyzed with multivariate linear regression. After controlling for demographic factors, baseline cognitive performance, baseline lacunar and WML lesion load, and WML progression, the number of new lacunes was related to subtle decrease in compound scores for executive functions (p = 0.021) and speed and motor control (p = 0.045), but not for memory or global cognitive function. Irrespective of lacunes, WML progression was associated with decrease in executive functions score (p = 0.016). Incident lacunes on MRI parallel a steeper rate of decline in executive functions and psychomotor speed. Accordingly, in addition to WML, lacunes determine longitudinal cognitive impairment in small vessel disease. Although the individual contribution of lacunes on cognition was modest, they cannot be considered benign findings, but indicate a risk of progressive cognitive impairment.

  18. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.

    PubMed

    Gudiño-Mendoza, Berenice; Sanchez-Ante, Gildardo; Antelis, Javier M

    2016-01-01

    Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation and motor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG) brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the execution of the movements, predominantly in the motor-related α and β frequency bands and in electrodes placed above the motor cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor phase prior to the actual execution of the reaching movement. The results showed, first, significant classification between relax and movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor processes and the actual movement performed by an assisted or rehabilitation robotic device.

  19. Impact of anxiety, apathy and reduced functional autonomy on perceived quality of life in Parkinson's disease.

    PubMed

    D'Iorio, Alfonsina; Vitale, Carmine; Piscopo, Fausta; Baiano, Chiara; Falanga, Anna Paola; Longo, Katia; Amboni, Marianna; Barone, Paolo; Santangelo, Gabriella

    2017-10-01

    Parkinson's disease (PD) is characterized by a wide spectrum of non-motor symptoms that may impact negatively on the activities of the patient's daily life and reduce Health-related quality of life (HRQoL). The present study explored the impact of specific non-motor symptoms on the HRQoL in PD. Eighty-four outpatients underwent the Montreal Cognitive Assessment (MoCA) assessing global functioning and several questionnaires to assess depression, apathy, impulse control disorders (ICD), anxiety, anhedonia and functional impact of cognitive impairment. The perceived QoL was assessed by Parkinson's Disease Questionnaire (PDQ-8). The PD sample was divided into patients with high and low HRQoL around the median of PDQ-8 and compared on clinical features, cognitive and neuropsychiatric variables. A linear regression analysis, in which the global functioning, apathy, depression, anxiety, anhedonia, ICD and the functional autonomy scores were entered as independent variables and PDQ-8 score as dependent variable, was applied. Patients with lower HRQoL were more depressed, apathetic, anxious and showed more severe reduction of functional autonomy and global functioning than patients with high HRQoL. The regression analysis revealed that higher level of anxiety, executive apathy and more reduced functional autonomy were significantly associated with higher score on PDQ-8. The finding indicated that anxiety, apathy associated with impaired planning, attention and organization (i.e., executive apathy evaluated by the Dimensional Apathy Scale) and reduced functional autonomy contribute significantly to reduce the HRQoL in PD. Therefore, early identification and management of these neuropsychiatric symptoms should be relevant to preserve HRQoL in PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of circadian rhythms on the temporal features of motor imagery for older adult inpatients.

    PubMed

    Rulleau, Thomas; Mauvieux, Benoit; Toussaint, Lucette

    2015-07-01

    To examine the circadian modulation on motor imagery quality for older adult inpatients to determine the best time of day to use motor imagery in rehabilitation activities. Time series posttest only. Inpatient rehabilitation center. Participants included older adult inpatients (N=34) who were hospitalized for diverse geriatric or neurogeriatric reasons. They were able to sit without assistance, manipulate objects, and walk 10m in <30 seconds without technical help or with a walking stick. None. The executed and imagined durations of writing and walking movements were recorded 7 times a day (9:15 am-4:45 pm), at times compatible with the hours of rehabilitation activities. Motor imagery quality was evaluated by computing the isochrony index (ie, absolute difference between the average duration of executed and imagined actions) for each trial and each inpatient. The cosinor method was used to analyze the time series for circadian rhythmicity. Imagined movements duration and isochrony index exhibited circadian modulations, whereas no such rhythmic changes appeared for executed movements. Motor imagery quality was better late in the morning, at approximately 10:18 am and 12:10 pm for writing and walking, respectively. Cognitive and sensorimotor aspects of motor behaviors differed among the older adults. The temporal features of motor imagery showed a clear circadian variation. From a practical perspective, this study offers information on an effective schedule for motor imagery in rehabilitation activities with older adult inpatients. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Impaired motor inhibition in adults who stutter - evidence from speech-free stop-signal reaction time tasks.

    PubMed

    Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian

    2016-10-01

    Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cerebral network deficits in post-acute catatonic schizophrenic patients measured by fMRI.

    PubMed

    Scheuerecker, J; Ufer, S; Käpernick, M; Wiesmann, M; Brückmann, H; Kraft, E; Seifert, D; Koutsouleris, N; Möller, H J; Meisenzahl, E M

    2009-03-01

    Twelve patients with catatonic schizophrenia and 12 matched healthy controls were examined with functional MRI while performing a motor task. The aim of our study was to identify the intracerebral pathophysiological correlates of motor symptoms in catatonic patients. The motor task included three conditions: a self-initiated (SI), an externally triggered (ET) and a rest condition. Statistical analysis was performed with SPM5. During the self-initiated movements patients showed significantly less activation than healthy controls in the supplementary motor area (SMA), the prefrontal and parietal cortex. Our results suggest a dysfunction of the "medial motor system" in catatonic patients. Self-initiated and externally triggered movements are mediated by different motor loops. The "medial loop" includes the SMA, thalamus and basal ganglia, and is necessary for self-initiated movements. The "lateral loop" includes parts of the cerebellum, lateral premotor cortex, thalamus and parietal association areas. It is involved in the execution of externally triggered movements. Our findings are in agreement with earlier behavioral data, which show deficits in self-initiated movements in catatonic patients but no impairment of externally triggered movements.

  4. Association of obesity with cognitive function and brain structure in patients with major depressive disorder.

    PubMed

    Hidese, Shinsuke; Ota, Miho; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Yoshida, Sumiko; Noda, Takamasa; Sato, Noriko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi

    2018-01-01

    Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p < 0.05). Among the patient group, working memory, motor speed, executive function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p < 0.05, corrected). MRI determined frontal, temporal, thalamic, and hippocampal volumes, and white matter fractional anisotropy values in the internal capsule and left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p < 0.05, corrected). Sample size for obese population was not very large. Obesity is associated with decreased cognitive function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... with motor vehicle fuel efficiency requirements? (a) Executive agencies operating domestic fleets must comply with motor vehicle fuel efficiency requirements for such fleets. (b) This subpart does not apply...

  6. The effects of music-supported therapy on motor, cognitive, and psychosocial functions in chronic stroke.

    PubMed

    Fujioka, Takako; Dawson, Deirdre R; Wright, Rebecca; Honjo, Kie; Chen, Joyce L; Chen, J Jean; Black, Sandra E; Stuss, Donald T; Ross, Bernhard

    2018-05-24

    Neuroplasticity accompanying learning is a key mediator of stroke rehabilitation. Training in playing music in healthy populations and patients with movement disorders requires resources within motor, sensory, cognitive, and affective systems, and coordination among these systems. We investigated effects of music-supported therapy (MST) in chronic stroke on motor, cognitive, and psychosocial functions compared to conventional physical training (GRASP). Twenty-eight adults with unilateral arm and hand impairment were randomly assigned to MST (n = 14) and GRASP (n = 14) and received 30 h of training over a 10-week period. The assessment was conducted at four time points: before intervention, after 5 weeks, after 10 weeks, and 3 months after training completion. As for two of our three primary outcome measures concerning motor function, all patients slightly improved in Chedoke-McMaster Stroke Assessment hand score, while the time to complete Action Research Arm Test became shorter in the MST group. The third primary outcome measure for well-being, Stroke Impact Scale, was improved for emotion and social communication earlier in MST and coincided with the improved executive function for task switching and music rhythm perception. The results confirmed previous findings and expanded the potential usage of MST for enhancing quality of life in community-dwelling chronic-stage survivors. © 2018 New York Academy of Sciences.

  7. Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study.

    PubMed

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    To investigate the use of P300-based Brain Computer Interface (BCI) technology for the administration of motor-verbal free cognitive tests in Amyotrophic Lateral Sclerosis (ALS). We recruited 15 ALS patients and 15 age- and education-matched healthy subjects. All participants underwent a BCI-based neuropsychological assessment, together with two standard cognitive screening tools (FAB, MoCA), two psychological questionnaires (BDI, STAI-Y) and a usability questionnaire. For patients, clinical and respiratory examinations were also performed, together with a behavioural assessment (FBI). Correlations were observed between standard cognitive and BCI-based neuropsychological assessment, mainly concerning execution times in the ALS group. Moreover, patients provided positive rates concerning the BCI perceived usability and subjective experience. Finally, execution times at the BCI-based neuropsychological assessment were useful to discriminate patients from controls, with patients achieving lower processing speed than controls regarding executive functions. The developed motor-verbal free neuropsychological battery represents an innovative approach, that could provide relevant information for clinical practice and ethical issues. Its use for cognitive evaluation throughout the course of ALS, currently not available by means of standard assessment, must be addressed in further longitudinal validation studies. Further work will be aimed at refining the developed system and enlarging the cognitive spectrum investigated.

  8. Household Wealth and Neurocognitive Development Disparities among School-aged Children in Nepal

    PubMed Central

    Patel, Shivani A; Murray-Kolb, Laura E; LeClerq, Steven C; Khatry, Subarna K; Tielsch, James M; Katz, Joanne; Christian, Parul

    2013-01-01

    Background Wealth disparities in child developmental outcomes are well documented in developed countries. We sought to (1) describe the extent of wealth-based neurocognitive development disparities and (2) examine potential mediating factors of disparities among a population-based cohort of children in rural Nepal. Methods We investigated household wealth-based differences in intellectual, executive and motor function of n = 1692 children aged between 7 and 9 years in Nepal. Using linear mixed models, wealth-based differences were estimated before and after controlling for child and household demographic characteristics. We further examined wealth-based differences adjusted for three sets of mediators: child nutritional status, home environment, and schooling pattern. Results We observed a positive gradient in child neurocognitive performance by household wealth. After adjusting for child and household control factors, disparities between children in the highest and lowest wealth quintiles persisted in intellectual and motor function, but not executive function. No statistically significant wealth-based differentials in outcomes remained after accounting for nutritional status, home environment, and schooling patterns. The largest differences in neurocognitive development were associated with schooling pattern. Conclusions Household wealth patterns child neurocognitive development in rural Nepal, likely through its influence on nutritional status, the home environment, and schooling. In the current context, improving early and regular schooling in this setting is critical to addressing wealth-based disparities in outcomes. PMID:24118003

  9. Household wealth and neurocognitive development disparities among school-aged children in Nepal.

    PubMed

    Patel, Shivani A; Murray-Kolb, Laura E; LeClerq, Steven C; Khatry, Subarna K; Tielsch, James M; Katz, Joanne; Christian, Parul

    2013-11-01

    Wealth disparities in child developmental outcomes are well documented in developed countries. We sought to (1) describe the extent of wealth-based neurocognitive development disparities and (2) examine potential mediating factors of disparities among a population-based cohort of children in rural Nepal. We investigated household wealth-based differences in intellectual, executive and motor function of n = 1692 children aged between 7 and 9 years in Nepal. Using linear mixed models, wealth-based differences were estimated before and after controlling for child and household demographic characteristics. We further examined wealth-based differences adjusted for three sets of mediators: child nutritional status, home environment, and schooling pattern. We observed a positive gradient in child neurocognitive performance by household wealth. After adjusting for child and household control factors, disparities between children in the highest and lowest wealth quintiles persisted in intellectual and motor function, but not executive function. No statistically significant wealth-based differentials in outcomes remained after accounting for nutritional status, home environment, and schooling patterns. The largest differences in neurocognitive development were associated with schooling pattern. Household wealth patterns child neurocognitive development in rural Nepal, likely through its influence on nutritional status, the home environment, and schooling. In the current context, improving early and regular schooling in this setting is critical to addressing wealth-based disparities in outcomes. © 2013 The Authors. Paediatric and Perinatal Epidemiology published by John Wiley & Sons Ltd.

  10. Adaptations of Prefrontal Brain Activity, Executive Functions, and Gait in Healthy Elderly Following Exergame and Balance Training: A Randomized-Controlled Study

    PubMed Central

    Schättin, Alexandra; Arner, Rendel; Gennaro, Federico; de Bruin, Eling D.

    2016-01-01

    During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = −2.28, p = 0.021; divided attention auditory: z = −2.51, p = 0.009; divided attention visual: z = −2.06, p = 0.040; go/no-go: z = −2.55, p = 0.008; set-shifting: z = −2.90, p = 0.002) and within the balance group (set-shifting: z = −2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = −2.90, p = 0.002; speed fast walking: z = −2.97, p = 0.001; cadence normal walking: z = −2.97, p = 0.001; stride length fast walking: z = −2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = −2.54, p = 0.009; speed fast walking: z = −1.98, p = 0.049; cadence normal walking: z = −2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion. PMID:27932975

  11. MRI and Neuropsychological Correlates in African Americans with Hypertension and left vEntricular Hypertrophy.

    PubMed

    Waldron-Perrine, B; Kisser, J E; Brody, A; Haacke, E M; Dawood, R; Millis, S; Levy, P

    2018-04-17

    African Americans (AA) are at high risk for hypertension (HTN) and poor blood pressure (BP) control. Persistently elevated BP contributes to cardiovascular morbidity. White matter hyperintensities (WMH) are a definable magnetic resonance imaging (MRI) marker of cerebrovascular injury linked to impairments in higher level thinking (i.e., executive functions), memory formation and speed of perceptual-motor processing. This sub-investigation evaluated neuropsychological functioning in association with WMH on brain MRIs in 23 otherwise healthy hypertensive AAs participating in an NIH-funded study of the effects of Vitamin D on BP and cardiac remodeling in AA patients 30-74 years of age with HTN and left ventricular hypertrophy. Neuropsychological assessment included psychomotor processing speed [(Symbol Digit Modality Test (SDMT) and Trail Making Test], executive functioning (Controlled Oral Word Association Test and Trail Making Test Part B), memory (Rey Auditory Verbal Learning Test), and fine motor functioning (Finger Tapping). Significant correlations (p< .05) were found between volume of periventricular lesions and Trails A (r = .51) and dominant hand finger tapping speed (r = -.69) and between subcortical lesion volume and Trails A (r = .60), both dominant (r = -.62) and non-dominant hand finger tapping speed (r = -.76) and oral SDMT (r = -.60); higher lesion volumes correlated to worse neuropsychological performance. Psychomotor tests including the Trail Making Test and finger tapping speed are sensitive indicators of subclinical deficits in mental processing speed and could serve as early markers of deep subcortical cerebrovascular injury in otherwise-healthy individuals with uncontrolled chronic HTN.

  12. No Overt Effects of a 6-Week Exergame Training on Sensorimotor and Cognitive Function in Older Adults. A Preliminary Investigation

    PubMed Central

    Ordnung, Madeleine; Hoff, Maike; Kaminski, Elisabeth; Villringer, Arno; Ragert, Patrick

    2017-01-01

    Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming-induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming-induced changes. PMID:28420973

  13. Kinesthetic motor imagery modulates body sway.

    PubMed

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population

    PubMed Central

    Molina, Juan L.; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I.; de Erausquin, Gabriel A.

    2016-01-01

    Background: Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. Aims: To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Method: Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Results: Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. Conclusions: PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. PMID:26994395

  15. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy.

    PubMed

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.

  16. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy

    PubMed Central

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    Background In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10–34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population. PMID:28860778

  17. Automatic Imitation in Rhythmical Actions: Kinematic Fidelity and the Effects of Compatibility, Delay, and Visual Monitoring

    PubMed Central

    Eaves, Daniel L.; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  18. Enhancing both motor and cognitive functioning in Parkinson's disease: Aerobic exercise as a rehabilitative intervention.

    PubMed

    Duchesne, C; Lungu, O; Nadeau, A; Robillard, M E; Boré, A; Bobeuf, F; Lafontaine, A L; Gheysen, F; Bherer, L; Doyon, J

    2015-10-01

    Aerobic exercise training (AET) has been shown to provide health benefits in individuals with Parkinson's disease (PD). However, it is yet unknown to what extent AET also improves cognitive and procedural learning capacities, which ensure an optimal daily functioning. In the current study, we assessed the effects of a 3-month AET program on executive functions (EF), implicit motor sequence learning (MSL) capacity, as well as on different health-related outcome indicators. Twenty healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike-training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after AET, EF tests assessed participants' inhibition and flexibility functions, whereas implicit MSL capacity was evaluated using a version of the Serial Reaction Time Task. The AET program was effective as indicated by significant improvement in aerobic capacity in all participants. Most importantly, AET improved inhibition but not flexibility, and motor learning skill, in both groups. Our results suggest that AET can be a valuable non-pharmacological intervention to promote physical fitness in early PD, but also better cognitive and procedural functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Growth Patterns of Neuropsychological Functions in Indian Children

    PubMed Central

    Kar, Bhoomika R.; Rao, Shobini L.; Chandramouli, B. A.; Thennarasu, K.

    2011-01-01

    We investigated age-related differences in neuropsychological performance in 400 Indian school children (5–15 years of age). Functions of motor speed, attention, executive functions, visuospatial functions, comprehension, learning, and memory were examined. Growth curve analysis was performed. Different growth models fitted different cognitive functions. Neuropsychological task performance improved slowly between 5 and 7 years, moderately between 8 and 12 years and slowly between 13 and 15 years of age. The overall growth patterns of neuropsychological functions in Indian children have been discussed with the findings reported on American children. The present work describes non-linear, heterogeneous, and protracted age trends of neuropsychological functions in Indian children and adolescents. PMID:22053158

  20. Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture.

    PubMed

    Engel, Annerose; Hijmans, Brenda S; Cerliani, Leonardo; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, Christian

    2014-05-01

    Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning. Copyright © 2013 Wiley Periodicals, Inc.

  1. Characteristics of Executive Functioning in a Small Sample of Children With Tourette Syndrome.

    PubMed

    Schwam, Dina M; King, Tricia Z; Greenberg, Daphne

    2015-01-01

    Tourette syndrome (TS) is a disorder that involves at least one vocal tic and two or more motor tics; however, associated symptoms of obsessive-compulsive disorder (OCD) and attention-deficit disorder or attention-deficit hyperactivity disorder (ADHD) are common. Many children with TS exhibit educational difficulties and one possible explanation may be deficits in executive functioning. The focus of this study was to look at the severity of symptoms often associated with TS (tics and OCD and ADHD symptoms) and its potential relationship with the Behavior Rating Inventory of Executive Function (BRIEF) Parent Form in 11 children diagnosed with TS aged 8 to 14 years old. The parent of the child completed the BRIEF along with symptom measures evaluating tics, OCD behaviors, and ADHD symptoms. Despite relatively low mean scores on the symptom measures and just a few children exhibiting clinically significant scores on the BRIEF indexes, at least half the children exhibited abnormal scores on the Working Memory, Inhibit, and Shift subscales of the BRIEF. Varying patterns of relationships were found on the BRIEF subscales for each symptom severity scale. Results suggest that the BRIEF may be useful in determining the specific areas of difficulty in a population with variable symptomatology.

  2. Frontal Assessment Battery (FAB) is a simple tool for detecting executive deficits in chronic cannabis users.

    PubMed

    Fontes, Maria Alice; Bolla, Karen I; Cunha, Paulo Jannuzzi; Almeida, Priscila Previato; Jungerman, Flávia; Laranjeira, Ronaldo Ramos; Bressan, Rodrigo A; Lacerda, Acioly L T

    2011-06-01

    Cannabis is the most used illicit drug in the world, and its use has been associated with prefrontal cortex (PFC) dysfunction, including deficits in executive functions (EF). Considering that EF may influence treatment outcome, it would be interesting to have a brief neuropsychological battery to assess EF in chronic cannabis users (CCU). In the present study, the Frontal Assessment Battery (FAB), a brief, easy to use neuropsychological instrument aimed to evaluate EF, was used to evaluate cognitive functioning of CCU. We evaluated 107 abstinent CCU with the FAB and compared with 44 controls matched for age, estimated IQ, and years of education. CCU performed poorly as compared to controls (FAB total score = 16.53 vs. 17.09, p < .05). CCU had also a poor performance in the Motor Programming subtest (2.47 vs. 2.73, p < .05). This study examined effects of cannabis in executive functioning and showed evidence that the FAB is sensitive to detect EF deficits in early abstinent chronic cannabis users. Clinical significance of these findings remains to be investigated in further longitudinal studies. FAB may be useful as a screening instrument to evaluate the necessity for a complete neuropsychological assessment in this population.

  3. A Network Model of Observation and Imitation of Speech

    PubMed Central

    Mashal, Nira; Solodkin, Ana; Dick, Anthony Steven; Chen, E. Elinor; Small, Steven L.

    2012-01-01

    Much evidence has now accumulated demonstrating and quantifying the extent of shared regional brain activation for observation and execution of speech. However, the nature of the actual networks that implement these functions, i.e., both the brain regions and the connections among them, and the similarities and differences across these networks has not been elucidated. The current study aims to characterize formally a network for observation and imitation of syllables in the healthy adult brain and to compare their structure and effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables spoken by a human actor. We constructed four structural equation models to characterize the networks for observation and imitation in each of the two hemispheres. Our results show that the network models for observation and imitation comprise the same essential structure but differ in important ways from each other (in both hemispheres) based on connectivity. In particular, our results show that the connections from posterior superior temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and dorsal premotor to primary motor cortex in the left hemisphere are stronger during imitation than during observation. The first two connections are implicated in a putative dorsal stream of speech perception, thought to involve translating auditory speech signals into motor representations. Thus, the current results suggest that flow of information during imitation, starting at the posterior superior temporal cortex and ending in the motor cortex, enhances input to the motor cortex in the service of speech execution. PMID:22470360

  4. Encoding of point of view during action observation in the local field potentials of macaque area F5.

    PubMed

    Caggiano, Vittorio; Giese, Martin; Thier, Peter; Casile, Antonino

    2015-02-01

    The discovery of mirror neurons compellingly shows that the monkey premotor area F5 is active not only during the execution but also during the observation of goal-directed motor acts. Previous studies have addressed the functioning of the mirror-neuron system at the single-unit level. Here, we tackled this research question at the network level by analysing local field potentials in area F5 while the monkey was presented with goal-directed actions executed by a human or monkey actor and observed either from a first-person or third-person perspective. Our analysis showed that rhythmic responses are not only present in area F5 during action observation, but are also modulated by the point of view. Observing an action from a subjective point of view produced significantly higher power in the low-frequency band (2-10 Hz) than observing the same action from a frontal view. Interestingly, an increase in power in the 2-10 Hz band was also produced by the execution of goal-directed motor acts. Independently of the point of view, action observation also produced a significant decrease in power in the 15-40 Hz band and an increase in the 60-100 Hz band. These results suggest that, depending on the point of view, action observation might activate different processes in area F5. Furthermore, they may provide information about the functional architecture of action perception in primates. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Young adults perinatally infected with HIV perform more poorly on measures of executive functioning and motor speed than ethnically matched healthy controls.

    PubMed

    Willen, Elizabeth J; Cuadra, Anai; Arheart, Kristopher L; Post, M J D; Govind, Varan

    2017-03-01

    Perinatal HIV is associated with significant neurocognitive morbidities, but few studies have examined cognitive impact of early HIV infection on patients surviving to adulthood. The purpose of this study was to evaluate neurocognitive outcomes among a cohort of perinatally infected young adults. Individuals between the ages of 18 and 24 with perinatal infection were recruited for this cross-sectional study along with similarly aged healthy controls. Participants completed an MRI and brief neuropsychological assessment battery. Multivariate analysis of covariance controlling for age, gender, race/ethnicity, and education was completed to detect differences between the HIV+ and control groups. Multivariable linear regression was performed to assess HIV-associated factors potentially impacting neuropsychological findings among the HIV+ group. Twenty-nine HIV+ young adults and 13 healthy controls were included in the study. After adjusting for age and sociodemographic variables, the HIV+ group scored lower on attention/working memory (Digit Span (p = .008) and Letter-Number Sequencing (p = .038)), set-shifting (DKEFS Trail Making Test Condition 4 (p = .026) and motor speed (DKEFS Trail Making Test Condition 5 (p = .003)). For the HIV+ group, nadir CD4 was associated with better Letter-Number Sequencing score (p = .029) and use of highly active antiretroviral therapy was associated with better performance on Category Fluency (p = .040). After controlling for sociodemographic variables, executive dysfunction persists among young adults with perinatal HIV infection in comparison to controls. Future studies to further elucidate the impact of executive dysfunction on independent living and functional outcomes are indicated.

  6. Decreased Connectivity and Cerebellar Activity in Autism during Motor Task Performance

    ERIC Educational Resources Information Center

    Mostofsky, Stewart H.; Powell, Stephanie K.; Simmonds, Daniel J.; Goldberg, Melissa C.; Caffo, Brian; Pekar, James J.

    2009-01-01

    Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel…

  7. 41 CFR 102-34.35 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enforcement duties; or (4) A forfeited motor vehicle seized by a Federal agency that is subsequently used for..., establishment, corporation, or service by which the motor vehicle is used. Motor vehicle markings (see... vehicles are any Government motor vehicles used by an executive agency or activity, including those used by...

  8. Object-directed imitation in autism spectrum disorder is differentially influenced by motoric task complexity, but not social contextual cues.

    PubMed

    Chetcuti, Lacey; Hudry, Kristelle; Grant, Megan; Vivanti, Giacomo

    2017-11-01

    We examined the role of social motivation and motor execution factors in object-directed imitation difficulties in autism spectrum disorder. A series of to-be-imitated actions was presented to 35 children with autism spectrum disorder and 20 typically developing children on an Apple ® iPad ® by a socially responsive or aloof model, under conditions of low and high motor demand. There were no differences in imitation performance (i.e. the number of actions reproduced within a fixed sequence), for either group, in response to a model who acted socially responsive or aloof. Children with autism spectrum disorder imitated the high motor demand task more poorly than the low motor demand task, while imitation performance for typically developing children was equivalent across the low and high motor demand conditions. Furthermore, imitative performance in the autism spectrum disorder group was unrelated to social reciprocity, though positively associated with fine motor coordination. These results suggest that difficulties in object-directed imitation in autism spectrum disorder are the result of motor execution difficulties, not reduced social motivation.

  9. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.

    PubMed

    Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg

    2015-01-21

    Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans. Copyright © 2015 the authors 0270-6474/15/351068-14$15.00/0.

  10. A Comparison of Cognitive Function in Former Rugby Union Players Compared with Former Non-Contact-Sport Players and the Impact of Concussion History.

    PubMed

    Hume, Patria A; Theadom, Alice; Lewis, Gwyn N; Quarrie, Kenneth L; Brown, Scott R; Hill, Rosamund; Marshall, Stephen W

    2017-06-01

    This study investigated differences in cognitive function between former rugby and non-contact-sport players, and assessed the association between concussion history and cognitive function. Overall, 366 former players (mean ± standard deviation [SD] age 43.3 ± 8.2 years) were recruited from October 2012 to April 2014. Engagement in sport, general health, sports injuries and concussion history, and demographic information were obtained from an online self-report questionnaire. Cognitive functioning was assessed using the online CNS Vital Signs neuropsychological test battery. Cohen's d effect size statistics were calculated for comparisons across player groups, concussion groups (one or more self-reported concussions versus no concussions) and between those groups with CNS Vital Signs age-matched norms (US norms). Individual differences within groups were represented as SDs. The elite-rugby group (n = 103) performed worse on tests of complex attention, processing speed, executive functioning, and cognitive flexibility than the non-contact-sport group (n = 65), and worse than the community-rugby group (n = 193) on complex attention. The community-rugby group performed worse than the non-contact group on executive functioning and cognitive flexibility. Compared with US norms, all three former player groups performed worse on verbal memory and reaction time; rugby groups performed worse on processing speed, cognitive flexibility and executive functioning; and the community-rugby group performed worse on composite memory. The community-rugby group and non-contact-sport group performed slightly better than US norms on complex attention, as did the elite-rugby group for motor speed. All three player groups had greater individual differences than US norms on composite memory, verbal memory and reaction time. The elite-rugby group had greater individual differences on processing speed and complex attention, and the community-rugby group had greater individual differences on psychomotor speed and motor speed. The average number of concussions recalled per player was greater for elite rugby and community rugby than non-contact sport. Former players who recalled one or more concussions (elite rugby, 85 %; community rugby, 77 %; non-contact sport, 23 %) had worse scores on cognitive flexibility, executive functioning, and complex attention than players who did not recall experiencing a concussion. Past participation in rugby or a history of concussion were associated with small to moderate neurocognitive deficits (as indicated by worse CNS Vital Signs scores) in athletes post retirement from competitive sport.

  11. Neural processes mediating the preparation and release of focal motor output are suppressed or absent during imagined movement

    PubMed Central

    Eagles, Jeremy S.; Carlsen, Anthony N.

    2016-01-01

    Movements that are executed or imagined activate a similar subset of cortical regions, but the extent to which this activity represents functionally equivalent neural processes is unclear. During preparation for an executed movement, presentation of a startling acoustic stimulus (SAS) evokes a premature release of the planned movement with the spatial and temporal features of the tasks essentially intact. If imagined movement incorporates the same preparatory processes as executed movement, then a SAS should release the planned movement during preparation. This hypothesis was tested using an instructed-delay cueing paradigm during which subjects were required to rapidly release a handheld weight while maintaining the posture of the arm or to perform first-person imagery of the same task while holding the weight. In a subset of trials, a SAS was presented at 1500, 500, or 200 ms prior to the release cue. Task-appropriate preparation during executed and imagined movements was confirmed by electroencephalographic recording of a contingent negative variation waveform. During preparation for executed movement, a SAS often resulted in premature release of the weight with the probability of release progressively increasing from 24 % at −1500 ms to 80 % at −200 ms. In contrast, the SAS rarely (<2 % of trials) triggered a release of the weight during imagined movement. However, the SAS frequently evoked the planned postural response (suppression of bicep brachii muscle activity) irrespective of the task or timing of stimulation (even during periods of postural hold without preparation). These findings provide evidence that neural processes mediating the preparation and release of the focal motor task (release of the weight) are markedly attenuated or absent during imagined movement and that postural and focal components of the task are prepared independently. PMID:25744055

  12. Domains of cognitive function in early old age: which ones are predicted by pre-retirement psychosocial work characteristics?

    PubMed Central

    Sabbath, Erika; Andel, Ross; Zins, Marie; Goldberg, Marcel; Berr, Claudine

    2016-01-01

    Background Psychosocial work characteristics may predict cognitive functioning after retirement. However, little research has explored specific cognitive domains associated with psychosocial work environments. Our study tested whether exposure to job demands, job control, and their combination during working life predicted post-retirement performance on eight cognitive tests. Methods We used data from French GAZEL cohort members who had undergone post-retirement cognitive testing (n=2,149). Psychosocial job characteristics were measured on average four years before retirement using Karasek’s Job Content Questionnaire (job demands, job control, demand-control combinations). We tested associations between these exposures and post-retirement performance on tests of executive function, visual-motor speed, psycho-motor speed, verbal memory, and verbal fluency using OLS regression. Results Low job control during working life was negatively associated with executive function, psychomotor speed, phonemic fluency, and semantic fluency after retirement (p’s<.05) even after adjustment for demographics, socioeconomic status, health and social behaviours, and vascular risk factors. Both passive (low-demand, low-control) and high-strain (high-demand, low-control) jobs were associated with lower scores on phonemic and semantic fluency when compared to low-strain (low-demand, high-control) jobs. Conclusions Low job control, in combination with both high and low job demands, is associated with post-retirement deficits in some, but not all, cognitive domains. In addition to work stress, associations between passive work and subsequent cognitive function may implicate lack of cognitive engagement at work as a risk factor for future cognitive difficulties. PMID:27188277

  13. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-07-01

    Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an absolute threshold of beta power that must be reached in order to move, and that an inability to suppress beta power to this threshold results in an increase in movement duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles.

    PubMed

    Hasegawa, Keita; Kasuga, Shoko; Takasaki, Kenichi; Mizuno, Katsuhiro; Liu, Meigen; Ushiba, Junichi

    2017-08-25

    Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.

  15. Movement Issues Identified in Movement ABC2 Checklist Parent Ratings for Students with Persisting Dysgraphia, Dyslexia, and OWL LD and Typical Literacy Learners

    ERIC Educational Resources Information Center

    Nielsen, Kathleen; Henderson, Sheila; Barnett, Anna L.; Abbott, Robert D.; Berninger, Virginia

    2018-01-01

    Movement, which draws on motor skills and executive functions for managing them, plays an important role in literacy learning (e.g., movement of mouth during oral reading and movement of hand and fingers during writing); but relatively little research has focused on movement skills in students with specific learning disabilities as the current…

  16. The Impacts of Physical Activity Intervention on Physical and Cognitive Outcomes in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Sung, Ming-Chih; Huang, Chu-Yang; Ma, Wei-Ya

    2017-01-01

    This study examined the effects of a 12-week physical activity intervention on the motor skill proficiency and executive function of 22 boys (aged 9.08 ± 1.75 years) with autism spectrum disorder. In Phase I of the 12 weeks, 11 boys with autism spectrum disorder (Group A) received the intervention, whereas the other 11 boys with autism spectrum…

  17. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial

    PubMed Central

    Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu

    2015-01-01

    Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492

  18. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects.

    PubMed

    Anguera, Joaquin A; Lyman, Kyle; Zanto, Theodore P; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to "GO" stimuli when the preceding trial involved the presentation of a "STOP" signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18-30 years) on "GO" trials following a previously "Successful Inhibition" trial (pSI), a previously "Failed Inhibition" trial (pFI), and a previous "GO" trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., "GO" trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., "GO" trials that were preceded by another "GO" trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control.

  19. Executive control over unconscious cognition: attentional sensitization of unconscious information processing

    PubMed Central

    Kiefer, Markus

    2012-01-01

    Unconscious priming is a prototypical example of an automatic process, which is initiated without deliberate intention. Classical theories of automaticity assume that such unconscious automatic processes occur in a purely bottom-up driven fashion independent of executive control mechanisms. In contrast to these classical theories, our attentional sensitization model of unconscious information processing proposes that unconscious processing is susceptible to executive control and is only elicited if the cognitive system is configured accordingly. It is assumed that unconscious processing depends on attentional amplification of task-congruent processing pathways as a function of task sets. This article provides an overview of the latest research on executive control influences on unconscious information processing. I introduce refined theories of automaticity with a particular focus on the attentional sensitization model of unconscious cognition which is specifically developed to account for various attentional influences on different types of unconscious information processing. In support of the attentional sensitization model, empirical evidence is reviewed demonstrating executive control influences on unconscious cognition in the domains of visuo-motor and semantic processing: subliminal priming depends on attentional resources, is susceptible to stimulus expectations and is influenced by action intentions and task sets. This suggests that even unconscious processing is flexible and context-dependent as a function of higher-level executive control settings. I discuss that the assumption of attentional sensitization of unconscious information processing can accommodate conflicting findings regarding the automaticity of processes in many areas of cognition and emotion. This theoretical view has the potential to stimulate future research on executive control of unconscious processing in healthy and clinical populations. PMID:22470329

  20. Executive control over unconscious cognition: attentional sensitization of unconscious information processing.

    PubMed

    Kiefer, Markus

    2012-01-01

    Unconscious priming is a prototypical example of an automatic process, which is initiated without deliberate intention. Classical theories of automaticity assume that such unconscious automatic processes occur in a purely bottom-up driven fashion independent of executive control mechanisms. In contrast to these classical theories, our attentional sensitization model of unconscious information processing proposes that unconscious processing is susceptible to executive control and is only elicited if the cognitive system is configured accordingly. It is assumed that unconscious processing depends on attentional amplification of task-congruent processing pathways as a function of task sets. This article provides an overview of the latest research on executive control influences on unconscious information processing. I introduce refined theories of automaticity with a particular focus on the attentional sensitization model of unconscious cognition which is specifically developed to account for various attentional influences on different types of unconscious information processing. In support of the attentional sensitization model, empirical evidence is reviewed demonstrating executive control influences on unconscious cognition in the domains of visuo-motor and semantic processing: subliminal priming depends on attentional resources, is susceptible to stimulus expectations and is influenced by action intentions and task sets. This suggests that even unconscious processing is flexible and context-dependent as a function of higher-level executive control settings. I discuss that the assumption of attentional sensitization of unconscious information processing can accommodate conflicting findings regarding the automaticity of processes in many areas of cognition and emotion. This theoretical view has the potential to stimulate future research on executive control of unconscious processing in healthy and clinical populations.

  1. Low intensity magnetic field influences short-term memory: A study in a group of healthy students.

    PubMed

    Navarro, Enrique A; Gomez-Perretta, Claudio; Montes, Francisco

    2016-01-01

    This study analyzes if an external magnetic stimulus (2 kHz and approximately 0.1 μT applied near frontal cortex) influences working memory, perception, binary decision, motor execution, and sustained attention in humans. A magnetic stimulus and a sham stimulus were applied to both sides of the head (frontal cortex close to temporal-parietal area) in young and healthy male test subjects (n = 65) while performing Sternberg's memory scanning task. There was a significant change in reaction time. Times recorded for perception, sustained attention, and motor execution were lower in exposed subjects (P < 0.01). However, time employed in binary decision increased for subjects exposed to magnetic fields. From results, it seems that a low intensity 2 kHz exposure modifies short-term working memory, as well as perception, binary decision, motor execution, and sustained attention. © 2015 Wiley Periodicals, Inc.

  2. Functional Role of Internal and External Visual Imagery: Preliminary Evidences from Pilates

    PubMed Central

    Montuori, Simone; Sorrentino, Pierpaolo; Belloni, Lidia; Sorrentino, Giuseppe

    2018-01-01

    The present study investigates whether a functional difference between the visualization of a sequence of movements in the perspective of the first- (internal VMI-I) or third- (external VMI-E) person exists, which might be relevant to promote learning. By using a mental chronometry experimental paradigm, we have compared the time or execution, imagination in the VMI-I perspective, and imagination in the VMI-E perspective of two kinds of Pilates exercises. The analysis was carried out in individuals with different levels of competence (expert, novice, and no-practice individuals). Our results showed that in the Expert group, in the VMI-I perspective, the imagination time was similar to the execution time, while in the VMI-E perspective, the imagination time was significantly lower than the execution time. An opposite pattern was found in the Novice group, in which the time of imagination was similar to that of execution only in the VMI-E perspective, while in the VMI-I perspective, the time of imagination was significantly lower than the time of execution. In the control group, the times of both modalities of imagination were significantly lower than the execution time for each exercise. The present data suggest that, while the VMI-I serves to train an already internalised gesture, the VMI-E perspective could be useful to learn, and then improve, the recently acquired sequence of movements. Moreover, visual imagery is not useful for individuals that lack a specific motor experience. The present data offer new insights in the application of mental training techniques, especially in field of sports. However, further investigations are needed to better understand the functional role of internal and external visual imagery. PMID:29849565

  3. Gender and rapid alterations of hemispheric dominance during planning.

    PubMed

    Schuepbach, Daniel; Skotchko, Tatjana; Duschek, Stefan; Theodoridou, Anastasia; Grimm, Simone; Boeker, Heinz; Seifritz, Erich

    2012-01-01

    Mental planning and carrying out a plan provoke specific cerebral hemodynamic responses. Gender aspects of hemispheric laterality using rapid cerebral hemodynamics have not been reported. Here, we applied functional transcranial Doppler sonography to examine lateralization of cerebral hemodynamics of the middle cerebral arteries of 28 subjects (14 women and 14 men) performing a standard planning task. There were easy and difficult problems, and mental planning without motor activity was separated from movement execution. Difficult mental planning elicited lateralization to the right hemisphere after 2 or more seconds, a feature that was not observed during movement execution. In females, there was a dominance to the left hemisphere during movement execution. Optimized problem solving yielded an increased laterality change to the right during mental planning. Gender-related hemispheric dominance appears to be condition-dependent, and change of laterality to the right may play a role in optimized performance. Results are of relevance when considering laterality from a perspective of performance enhancement of higher cognitive functions, and also of psychiatric disorders with cognitive dysfunctions and abnormal lateralization patterns such as schizophrenia. Copyright © 2012 S. Karger AG, Basel.

  4. Neurofeedback and its possible relevance for the treatment of Tourette syndrome.

    PubMed

    Farkas, Aniko; Bluschke, Annet; Roessner, Veit; Beste, Christian

    2015-04-01

    Neurofeedback is an increasingly recognized therapeutic option in various neuropsychiatric disorders to treat dysfunctions in cognitive control as well as disorder-specific symptoms. In this review we propose that neurofeedback may also reflect a valuable therapeutic option to treat executive control functions in Gilles-de-la-Tourette syndrome (GTS). Deficits in executive control functions when ADHD symptoms appear in GTS likely reflect pathophysiological processes in cortico-thalamic-striatal circuits and may also underlie the motor symptoms in GTS. Such executive control deficits evident in comorbid GTS/ADHD depend on neurophysiological processes well-known to be modifiable by neurofeedback. However, so far efforts to use neurofeedback to treat cognitive dysfunctions are scarce. We outline why neurofeedback should be considered a promising treatment option, what forms of neurofeedback may prove to be most effective and how neurofeedback may be implemented in existing intervention strategies to treat comorbid GTS/ADHD and associated dysfunctions in cognitive control. As cognitive control deficits in GTS mostly appear in comorbid GTS/ADHD, neurofeedback may be most useful in this frequent combination of disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.

    PubMed

    Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai

    2018-05-01

    Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Very Early Administration of Progesterone Does Not Improve Neuropsychological Outcomes in Subjects with Moderate to Severe Traumatic Brain Injury.

    PubMed

    Goldstein, Felicia C; Caveney, Angela F; Hertzberg, Vicki S; Silbergleit, Robert; Yeatts, Sharon D; Palesch, Yuko Y; Levin, Harvey S; Wright, David W

    2017-01-01

    A Phase III, double-blind, placebo-controlled trial (ProTECT III) found that administration of progesterone did not reduce mortality or improve functional outcome as measured by the Glasgow Outcome Scale Extended (GOSE) in subjects with moderate to severe traumatic brain injury. We conducted a secondary analysis of neuropsychological outcomes to evaluate whether progesterone is associated with improved recovery of cognitive and motor functioning. ProTECT III was conducted at 49 level I trauma centers in the United States. Adults with moderate to severe TBI were randomized to receive intravenous progesterone or placebo within 4 h of injury for a total of 4 days. At 6 months, subjects underwent evaluation of memory, attention, executive functioning, language, and fine motor coordination/dexterity. Chi-square analysis revealed no significant difference in the proportion of subjects (263/280 progesterone, 283/295 placebo) with Galveston Orientation and Amnesia Test scores ≥75. Analyses of covariance did not reveal significant treatment effects for memory (Buschke immediate recall, p = 0.53; delayed recall, p = 0.94), attention (Trails A speed, p = 0.81 and errors, p = 0.22; Digit Span Forward length, p = 0.66), executive functioning (Trails B speed, p = 0.97 and errors, p = 0.93; Digit Span Backward length, p = 0.60), language (timed phonemic fluency, p = 0.05), and fine motor coordination/dexterity (Grooved Pegboard dominant hand time, p = 0.75 and peg drops, p = 0.59; nondominant hand time, p = 0.74 and peg drops, p = 0.61). Pearson Product Moment Correlations demonstrated significant (p < 0.001) associations between better neuropsychological performance and higher GOSE scores. Similar to the ProTECT III trial's results of the primary outcome, the secondary outcomes do not provide evidence of a neuroprotective effect of progesterone.

  7. Very Early Administration of Progesterone Does Not Improve Neuropsychological Outcomes in Subjects with Moderate to Severe Traumatic Brain Injury

    PubMed Central

    Caveney, Angela F.; Hertzberg, Vicki S; Silbergleit, Robert; Yeatts, Sharon D.; Palesch, Yuko Y.; Levin, Harvey S.; Wright, David W.

    2017-01-01

    Abstract A Phase III, double-blind, placebo-controlled trial (ProTECT III) found that administration of progesterone did not reduce mortality or improve functional outcome as measured by the Glasgow Outcome Scale Extended (GOSE) in subjects with moderate to severe traumatic brain injury. We conducted a secondary analysis of neuropsychological outcomes to evaluate whether progesterone is associated with improved recovery of cognitive and motor functioning. ProTECT III was conducted at 49 level I trauma centers in the United States. Adults with moderate to severe TBI were randomized to receive intravenous progesterone or placebo within 4 h of injury for a total of 4 days. At 6 months, subjects underwent evaluation of memory, attention, executive functioning, language, and fine motor coordination/dexterity. Chi-square analysis revealed no significant difference in the proportion of subjects (263/280 progesterone, 283/295 placebo) with Galveston Orientation and Amnesia Test scores ≥75. Analyses of covariance did not reveal significant treatment effects for memory (Buschke immediate recall, p = 0.53; delayed recall, p = 0.94), attention (Trails A speed, p = 0.81 and errors, p = 0.22; Digit Span Forward length, p = 0.66), executive functioning (Trails B speed, p = 0.97 and errors, p = 0.93; Digit Span Backward length, p = 0.60), language (timed phonemic fluency, p = 0.05), and fine motor coordination/dexterity (Grooved Pegboard dominant hand time, p = 0.75 and peg drops, p = 0.59; nondominant hand time, p = 0.74 and peg drops, p = 0.61). Pearson Product Moment Correlations demonstrated significant (p < 0.001) associations between better neuropsychological performance and higher GOSE scores. Similar to the ProTECT III trial's results of the primary outcome, the secondary outcomes do not provide evidence of a neuroprotective effect of progesterone. PMID:26973025

  8. Cognitive-behavioral screening in elderly patients with new-onset epilepsy before treatment.

    PubMed

    Witt, J-A; Werhahn, K J; Krämer, G; Ruckes, C; Trinka, E; Helmstaedter, C

    2014-09-01

    Cognitive comorbidity at epilepsy onset reflects disease severity and provides a baseline estimate of reserve capacities with regard to the effects of epilepsy and its treatment. Given the high incidence of epilepsy at an older age, this study analyzed objective and subjective cognition as well as quality of life in elderly patients with new-onset focal epilepsy before initiation of anti-epileptic treatment. A total of 257 untreated patients (60-95 years of age) with new-onset epilepsy underwent objective assessment of executive function (EpiTrack) and performed subjective ratings of cognition (Portland Neurotoxicity Scale) and quality of life (QoL; QOLIE-31). According to age-corrected norms, 58% of patients (N=257) demonstrated deficits in executive function; major determinants were cerebrovascular etiology, neurological comorbidity, and higher body mass index. Subjective ratings indicated deficits in up to 27% of patients. Self-perceived deficits were associated with neurological, cardiovascular, and/or psychiatric comorbidity, whereas poorer QoL was related to neurological comorbidity and female gender. Objectively assessed executive functions correlated with subjective social functioning, energy, motor function, and vigilance. We found a relatively high QoL, a low rate of subjective impairment, but a high incidence of objective executive deficits in untreated elderly patients with new-onset epilepsy. Neurological status and body mass index, rather than seizure frequency or severity, were risk factors for cognitive impairment. Given the relevance of cognition in the course of epilepsy and its treatment, routine screening before treatment initiation is highly recommended. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. 48 CFR 970.2307-1 - Motor vehicle fleet operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency... that the Federal motor vehicle fleet will serve as an example and provide a leadership role in the... management contracts which include Federal motor vehicle fleet operations. Section 506 of Executive Order...

  10. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    PubMed

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Sequelae of closed craniocerebral trauma and the efficacy of piracetam in its treatment in adolescents.

    PubMed

    Zavadenko, N N; Guzilova, L S

    2009-05-01

    The efficacy of piracetam in treating the sequelae of moderate and severe closed craniocerebral trauma (CCT) in adolescents was evaluated in studies of 42 patients aged 12-18 years who had suffered CCT 1.5-5 years prior to the study. Adolescents of the experimental group (20 individuals) received piracetam (Nootropil) at doses of 40-50 mg/kg (daily daily 1600-2400 mg) for one month; patients of group 2 (22 individuals) served as controls. Piracetam was found to have positive therapeutic effects on impairments to higher mental (memory, attention, executive) and motor (coordination) functions and on measures of the speeds of cognitive and motor operations.

  12. Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.

    PubMed

    Schumacher, Christian; Seyfarth, André

    2017-01-01

    In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.

  13. A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples.

    PubMed

    Prado, Catherine E; Watt, Stephanie; Crowe, Simon F

    2018-03-01

    A thorough understanding of the cognitive effects of antidepressant medications is essential given their frequency of use. This meta-analysis was conducted to investigate whether antidepressants differentially affect the various domains of cognitive functioning for depressed and non-depressed participants. An electronic search of PsycInfo, Medline and Google Scholar was conducted for all journal articles published between January 1998 and January 2017. Thirty-three studies were included enabling calculation of Hedges' g using a random effects model for the cognitive domains of divided attention, executive function, expressive language, immediate memory, perceptual motor skills, processing speed, recent memory, sustained attention, visuospatial-constructional skills and working memory. Results revealed that overall, antidepressants have a modest, positive effect on divided attention, executive function, immediate memory, processing speed, recent memory and sustained attention for depressed participants. Selective serotonin reuptake inhibitors (SSRI's) were found to have the greatest positive effect on cognition for depressed participants, as compared to the other classes of antidepressants analysed. Antidepressants did not significantly affect cognitive function in non-depressed participants.

  14. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis.

    PubMed

    Veronese, Nicola; Facchini, Silvia; Stubbs, Brendon; Luchini, Claudio; Solmi, Marco; Manzato, Enzo; Sergi, Giuseppe; Maggi, Stefania; Cosco, Theodore; Fontana, Luigi

    2017-01-01

    Whilst obesity is associated with a higher risk of cognitive impairment, the influence of weight loss on cognitive function in obese/overweight people is equivocal. We conducted a meta-analysis of randomized controlled trials (RCTs) and longitudinal studies evaluating the influence of voluntary weight loss on cognitive function in obese/overweight individuals. Articles were acquired from a systematic search of major databases from inception till 01/2016. A random effect meta-analysis of weight loss interventions (diet, physical activity, bariatric surgery) on different cognitive domains (memory, attention, executive functions, language and motor speed) was conducted. Twenty studies (13 longitudinal studies=551 participants; 7 RCTs=328 treated vs. 140 controls) were included. Weight loss was associated with a significant improvement in attention and memory in both longitudinal studies and RCTs, whereas executive function and language improved in longitudinal and RCT studies, respectively. In conclusion, intentional weight loss in obese/overweight people is associated with improvements in performance across various cognitive domains. Future adequately powered RCTs are required to confirm/refute these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... Contracts 970.5223-6 Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation... contracts for the operation of a DOE facility or motor vehicle fleet. Executive Order 13423, Strengthening...

  16. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... Contracts 970.5223-6 Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation... contracts for the operation of a DOE facility or motor vehicle fleet. Executive Order 13423, Strengthening...

  17. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... Contracts 970.5223-6 Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation... contracts for the operation of a DOE facility or motor vehicle fleet. Executive Order 13423, Strengthening...

  18. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... Contracts 970.5223-6 Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation... contracts for the operation of a DOE facility or motor vehicle fleet. EXECUTIVE ORDER 13423, STRENGTHENING...

  19. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  20. Heterogeneous Attractor Cell Assemblies for Motor Planning in Premotor Cortex

    PubMed Central

    Pani, Pierpaolo; Mirabella, Giovanni; Costa, Stefania; Del Giudice, Paolo

    2013-01-01

    Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computational strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of both upward and downward STs in other modules. Such web of “flip-flops” rapidly converged to a stereotyped distributed representation of the motor program, as prescribed by the long-standing theory of associative networks. PMID:23825419

  1. State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.

    PubMed

    Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone

    2013-10-30

    Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.

  2. Graded motor imagery and the impact on pain processing in a case of CRPS.

    PubMed

    Walz, Andrea D; Usichenko, Taras; Moseley, G Lorimer; Lotze, Martin

    2013-03-01

    Graded motor imagery (GMI) shows promising results for patients with complex regional pain syndrome (CRPS). In a case with chronic unilateral CRPS type I, we applied GMI for 6 weeks and recorded clinical parameters and cerebral activation using functional magnetic resonance imaging (fMRI; pre-GMI, after each GMI block, and after 6 mo). Changes in fMRI activity were mapped during movement execution in areas associated with pain processing. A healthy participant served as a control for habituation effects. Pain intensity decreased over the course of GMI, and relief was maintained at follow-up. fMRI during movement execution revealed marked changes in S1 and S2 (areas of discriminative pain processing), which seemed to be associated with pain reduction, but none in the anterior insula and the anterior cingulate cortex (areas of affective pain processing). After mental rotation training, the activation intensity of the posterior parietal cortex was reduced to one third. Our case report develops a design capable of differentiating cerebral changes associated with behavioral therapy of CRPS type I study.

  3. Frontal networks associated with command following after hemorrhagic stroke.

    PubMed

    Mikell, Charles B; Banks, Garrett P; Frey, Hans-Peter; Youngerman, Brett E; Nelp, Taylor B; Karas, Patrick J; Chan, Andrew K; Voss, Henning U; Connolly, E Sander; Claassen, Jan

    2015-01-01

    Level of consciousness is frequently assessed by command-following ability in the clinical setting. However, it is unclear what brain circuits are needed to follow commands. We sought to determine what networks differentiate command following from noncommand following patients after hemorrhagic stroke. Structural MRI, resting-state functional MRI, and electroencephalography were performed on 25 awake and unresponsive patients with acute intracerebral and subarachnoid hemorrhage. Structural injury was assessed via volumetric T1-weighted MRI analysis. Functional connectivity differences were analyzed against a template of standard resting-state networks. The default mode network (DMN) and the task-positive network were investigated using seed-based functional connectivity. Networks were interrogated by pairwise coherence of electroencephalograph leads in regions of interest defined by functional MRI. Functional imaging of unresponsive patients identified significant differences in 6 of 16 standard resting-state networks. Significant voxels were found in premotor cortex, dorsal anterior cingulate gyrus, and supplementary motor area. Direct interrogation of the DMN and task-positive network revealed loss of connectivity between the DMN and the orbitofrontal cortex and new connections between the task-positive network and DMN. Coherence between electrodes corresponding to right executive network and visual networks was also decreased in unresponsive patients. Resting-state functional MRI and electroencephalography coherence data support a model in which multiple, chiefly frontal networks are required for command following. Loss of DMN anticorrelation with task-positive network may reflect a loss of inhibitory control of the DMN by motor-executive regions. Frontal networks should thus be a target for future investigations into the mechanism of responsiveness in the intensive care unit environment. © 2014 American Heart Association, Inc.

  4. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.

  5. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition

    PubMed Central

    Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413

  6. [The Influence of the Functioning of Brain Regulatory Systems onto the Voluntary Regulation of Cognitive Performance in Children. Report 2. Neuropsychological and Electrophysiological Assessment of Brain Regulatory Functions in Children Aged 10-12 with Learning Difficulties].

    PubMed

    Semenova, O A; Machinskaya, R I

    2015-01-01

    A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.

  7. An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-Suprapostural Task

    PubMed Central

    Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou

    2016-01-01

    Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830

  8. Measuring the effects of a visual or auditory Stroop task on dual-task costs during obstacle crossing.

    PubMed

    Worden, Timothy A; Mendes, Matthew; Singh, Pratham; Vallis, Lori Ann

    2016-10-01

    Successful planning and execution of motor strategies while concurrently performing a cognitive task has been previously examined, but unfortunately the varied and numerous cognitive tasks studied has limited our fundamental understanding of how the central nervous system successfully integrates and executes these tasks simultaneously. To gain a better understanding of these mechanisms we used a set of cognitive tasks requiring similar central executive function processes and response outputs but requiring different perceptual mechanisms to perform the motor task. Thirteen healthy young adults (20.6±1.6years old) were instrumented with kinematic markers (60Hz) and completed 5 practice, 10 single-task obstacle walking trials and two 40 trial experimental blocks. Each block contained 20 trials of seated (single-task) trials followed by 20 cognitive and obstacle (30% lower leg length) crossing trials (dual-task). Blocks were randomly presented and included either an auditory Stroop task (AST; central interference only) or a visual Stroop task (VST; combined central and structural interference). Higher accuracy rates and shorter response times were observed for the VST versus AST single-task trials (p<0.05). Conversely, for the obstacle stepping performance, larger dual task costs were observed for the VST as compared to the AST for clearance measures (the VST induced larger clearance values for both the leading and trailing feet), indicating VST tasks caused greater interference for obstacle crossing (p<0.05). These results supported the hypothesis that structural interference has a larger effect on motor performance in a dual-task situation compared to cognitive tasks that pose interference at only the central processing stage. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A firm size and safety performance profile of the U.S. motor carrier industry : [executive summary].

    DOT National Transportation Integrated Search

    2015-11-01

    Motor carrier crashes continue to present a societal and public policy : problem. Large commercial truck crashes are a topic of serious concern : in Iowa. Statistics illustrate the need to make further progress on the : safety performance of motor ca...

  10. Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly

    PubMed Central

    Seiler, Stephan; Pirpamer, Lukas; Hofer, Edith; Duering, Marco; Jouvent, Eric; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2014-01-01

    Magnetization transfer imaging (MTI) can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR) in gray and white matter (WM) and cognitive functioning in 355 participants of the Austrian stroke prevention family study (ASPS-Fam) aged 38–86 years. MTR maps were generated for the neocortex, deep gray matter structures, WM hyperintensities, and normal appearing WM (NAWM). Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function, and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and NAWM correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions, and cortex volume. Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia. PMID:25309438

  11. Frequency-dependent oscillatory neural profiles during imitation.

    PubMed

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-04-10

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.

  12. Frequency-dependent oscillatory neural profiles during imitation

    PubMed Central

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-01-01

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation. PMID:28393878

  13. The functional anatomy of suggested limb paralysis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W

    2013-02-01

    Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Technology-assisted rehabilitation interventions following pediatric brain injury.

    PubMed

    Wade, Shari L; Narad, Megan E; Shultz, Emily L; Kurowski, Brad G; Miley, Aimee E; Aguilar, Jessica M; Adlam, Anna-Lynne R

    2018-04-01

    Following traumatic brain injury (TBI), children experience a variety of physical, motor, speech, and cognitive deficits that can have a long-term detrimental impact. The emergence and popularity of new technologies has led to research into the development of various apps, gaming systems, websites, and robotics that might be applied to rehabilitation. The objective of this narrative review was to describe the current literature regarding technologically-assisted interventions for the rehabilitation of motor, neurocognitive, behavioral, and family impairments following pediatric TBI. We conducted a series of searches for peer-reviewed manuscripts published between 2000 and 2017 that included a technology-assisted component in the domains of motor, language/communication, cognition, behavior, social competence/functioning, family, and academic/school-based functioning. Findings suggested several benefits of utilizing technology in TBI rehabilitation including facilitating engagement/adherence, increasing access to therapies, and improving generalizability across settings. There is fairly robust evidence regarding the efficacy of online family problem-solving therapy in improving behavior problems, executive functioning, and family functioning. There was less compelling, but still promising, evidence regarding the efficacy other technology for motor deficits, apps for social skills, and computerized programs for cognitive skills. Overall, many studies were limited in the rigor of their methodology due to small heterogeneous samples and lack of control groups. Technology-assisted interventions have the potential to enhance pediatric rehabilitation after TBI. Future research is needed to further support their efficacy with larger controlled trials and to identify characteristics of children who are most likely to benefit.

  15. Supplementary motor area as key structure for domain-general sequence processing: A unified account.

    PubMed

    Cona, Giorgia; Semenza, Carlo

    2017-01-01

    The Supplementary Motor Area (SMA) is considered as an anatomically and functionally heterogeneous region and is implicated in several functions. We propose that SMA plays a crucial role in domain-general sequence processes, contributing to the integration of sequential elements into higher-order representations regardless of the nature of such elements (e.g., motor, temporal, spatial, numerical, linguistic, etc.). This review emphasizes the domain-general involvement of the SMA, as this region has been found to support sequence operations in a variety of cognitive domains that, albeit different, share an inherent sequence processing. These include action, time and spatial processing, numerical cognition, music and language processing, and working memory. In this light, we reviewed and synthesized recent neuroimaging, stimulation and electrophysiological studies in order to compare and reconcile the distinct sources of data by proposing a unifying account for the role of the SMA. We also discussed the differential contribution of the pre-SMA and SMA-proper in sequence operations, and possible neural mechanisms by which such operations are executed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal.

    PubMed

    Christian, Parul; Murray-Kolb, Laura E; Khatry, Subarna K; Katz, Joanne; Schaefer, Barbara A; Cole, Pamela M; Leclerq, Steven C; Tielsch, James M

    2010-12-22

    Iron and zinc are important for the development of both intellectual and motor skills. Few studies have examined whether iron and zinc supplementation during gestation, a critical period of central nervous system development, affects children's later functioning. To examine intellectual and motor functioning of children whose mothers received micronutrient supplementation during pregnancy. Cohort follow-up of 676 children aged 7 to 9 years in June 2007-April 2009 who had been born to women in 4 of 5 groups of a community-based, double-blind, randomized controlled trial of prenatal micronutrient supplementation between 1999 and 2001 in rural Nepal. Study children were also in the placebo group of a subsequent preschool iron and zinc supplementation trial. Women whose children were followed up had been randomly assigned to receive daily iron/folic acid, iron/folic acid/zinc, or multiple micronutrients containing these plus 11 other micronutrients, all with vitamin A, vs a control group of vitamin A alone from early pregnancy through 3 months postpartum. These children did not receive additional micronutrient supplementation other than biannual vitamin A supplementation. Children's intellectual functioning, assessed using the Universal Nonverbal Intelligence Test (UNIT); tests of executive function, including go/no-go, the Stroop test, and backward digit span; and motor function, assessed using the Movement Assessment Battery for Children (MABC) and finger-tapping test. The difference across outcomes was significant (Bonferroni-adjusted P < .001) for iron/folic acid vs control but not for other supplement groups. The mean UNIT T score in the iron/folic acid group was 51.7 (SD, 8.5) and in the control group was 48.2 (SD, 10.2), with an adjusted mean difference of 2.38 (95% confidence interval [CI], 0.06-4.70; P = .04). Differences were not significant between the control group and either the iron/folic acid/zinc (0.73; 95% CI, -0.95 to 2.42) or multiple micronutrient (1.00; 95% CI, -0.55 to 2.56) groups. In tests of executive function, scores were better in the iron/folic acid group relative to the control group for the Stroop test (adjusted mean difference in proportion who failed, -0.14; 95% CI, -0.23 to -0.04) and backward digit span (adjusted mean difference, 0.36; 95% CI, 0.01-0.71) but not for the go/no-go test. The MABC score was lower (better) in the iron/folic acid group compared with the control group but not after adjustment for confounders (mean difference, -1.47; 95% CI, -3.06 to 0.12; P = .07). Finger-tapping test scores were higher (mean difference, 2.05; 95% CI, 0.87-3.24; P = .001) in the iron/folic acid group. Aspects of intellectual functioning including working memory, inhibitory control, and fine motor functioning among offspring were positively associated with prenatal iron/folic acid supplementation in an area where iron deficiency is prevalent. clinicaltrials.gov Identifier: NCT00115271.

  17. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population.

    PubMed

    Molina, Juan L; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I; de Erausquin, Gabriel A

    2016-11-01

    Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. What differs in visual recognition of handwritten vs. printed letters? An fMRI study.

    PubMed

    Longcamp, Marieke; Hlushchuk, Yevhen; Hari, Riitta

    2011-08-01

    In models of letter recognition, handwritten letters are considered as a particular font exemplar, not qualitatively different in their processing from printed letters. Yet, some data suggest that recognizing handwritten letters might rely on distinct processes, possibly related to motor knowledge. We applied functional magnetic resonance imaging to compare the neural correlates of perceiving handwritten letters vs. standard printed letters. Statistical analysis circumscribed to frontal brain regions involved in hand-movement triggering and execution showed that processing of handwritten letters is supported by a stronger activation of the left primary motor cortex and the supplementary motor area. At the whole-brain level, additional differences between handwritten and printed letters were observed in the right superior frontal, middle occipital, and parahippocampal gyri, and in the left inferior precentral and the fusiform gyri. The results are suggested to indicate embodiment of the visual perception of handwritten letters. Copyright © 2010 Wiley-Liss, Inc.

  19. Assessing hopping developmental level in childhood using wearable inertial sensor devices.

    PubMed

    Masci, Ilaria; Vannozzi, Giuseppe; Getchell, Nancy; Cappozzo, Aurelio

    2012-07-01

    Assessing movement skills is a fundamental issue in motor development. Current process-oriented assessments, such as developmental sequences, are based on subjective judgments; if paired with quantitative assessments, a better understanding of movement performance and developmental change could be obtained. Our purpose was to examine the use of inertial sensors to evaluate developmental differences in hopping over distance. Forty children executed the task wearing the inertial sensor and relevant time durations and 3D accelerations were obtained. Subjects were also categorized in different developmental levels according to the hopping developmental sequence. Results indicated that some time and kinematic parameters changed with some developmental levels, possibly as a function of anthropometry and previous motor experience. We concluded that, since inertial sensors were suitable in describing hopping performance and sensitive to developmental changes, this technology is promising as an in-field and user-independent motor development assessment tool.

  20. A functional approach to movement analysis and error identification in sports and physical education

    PubMed Central

    Hossner, Ernst-Joachim; Schiebl, Frank; Göhner, Ulrich

    2015-01-01

    In a hypothesis-and-theory paper, a functional approach to movement analysis in sports is introduced. In this approach, contrary to classical concepts, it is not anymore the “ideal” movement of elite athletes that is taken as a template for the movements produced by learners. Instead, movements are understood as the means to solve given tasks that in turn, are defined by to-be-achieved task goals. A functional analysis comprises the steps of (1) recognizing constraints that define the functional structure, (2) identifying sub-actions that subserve the achievement of structure-dependent goals, (3) explicating modalities as specifics of the movement execution, and (4) assigning functions to actions, sub-actions and modalities. Regarding motor-control theory, a functional approach can be linked to a dynamical-system framework of behavioral shaping, to cognitive models of modular effect-related motor control as well as to explicit concepts of goal setting and goal achievement. Finally, it is shown that a functional approach is of particular help for sports practice in the context of structuring part practice, recognizing functionally equivalent task solutions, finding innovative technique alternatives, distinguishing errors from style, and identifying root causes of movement errors. PMID:26441717

  1. Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9–12 years of age

    PubMed Central

    Sagiv, Sharon K.; Kogut, Katherine; Gaspar, Fraser; Gunier, Robert; Harley, Kim; Parra, Kimberly; Villaseñor, Diana; Bradman, Asa; Holland, Nina; Eskenazi, Brenda

    2015-01-01

    Objective California children’s exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest measured worldwide. We previously reported associations for prenatal and childhood PBDE exposures with decrements in attention, processing speed, fine motor coordination, and cognition in children at ages 5 and 7 years. Here, we investigate associations of PBDEs with attention and executive function at ages 9 to 12 years in the expanded CHAMACOS cohort. Methods We measured PBDEs in prenatal and child age 9 year serum samples for families enrolled in the study since pregnancy (“CHAM1”, N=321). In a subsequent cohort for which families were enrolled at child age 9 (“CHAM2”, N=301), we measured PBDEs in maternal and child samples collected at child age 9, and used predictive modeling to estimate prenatal exposure levels. We examined associations of measured and estimated PBDE concentrations on children’s attention and executive functioning at ages 9, 10½, and 12 years. Results Geometric means for prenatal and childhood ΣPBDE levels (sum of PBDE−47,−99,−100,−153) for the expanded CHAMACOS cohort were 26.3 and 63.2 ng/g lipid, respectively, and did not differ significantly between CHAM1 and CHAM2 families. We found consistent associations of prenatal exposure to PBDEs with poorer attention and executive function, measured with parent report and direct neuropsychological testing of the child. For example, using GEE models of repeated outcome measures at age 9 and 12, a 10-fold increase in prenatal ΣPBDE was associated with poorer response consistency on the Conners’ Continuous Performance Test II (β=2.9; 95% CI: 0.9, 4.8) and poorer working memory on the Behavioral Rating Inventory of Executive Function (β=2.5; 95% CI: 0.5, 4.4). Child age 9 ΣPBDE levels were associated with poorer parent-reported attention and executive function for girls but not boys. Conclusions Our results suggest that the prefrontal cortex may be a potential target for PBDE exposure and add to a growing literature showing that these ubiquitous toxicants may adversely affect neurodevelopment. PMID:26271888

  2. A catalytic oligomeric motor that walks along a filament track

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  3. A catalytic oligomeric motor that walks along a filament track

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Mu-Jie, E-mail: mjhuang@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described bymore » a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.« less

  4. Evidence for a distributed hierarchy of action representation in the brain

    PubMed Central

    Grafton, Scott T.; de C. Hamilton, Antonia F.

    2007-01-01

    Complex human behavior is organized around temporally distal outcomes. Behavioral studies based on tasks such as normal prehension, multi-step object use and imitation establish the existence of relative hierarchies of motor control. The retrieval errors in apraxia also support the notion of a hierarchical model for representing action in the brain. In this review, three functional brain imaging studies of action observation using the method of repetition suppression are used to identify a putative neural architecture that supports action understanding at the level of kinematics, object centered goals and ultimately, motor outcomes. These results, based on observation, may match a similar functional anatomic hierarchy for action planning and execution. If this is true, then the findings support a functional anatomic model that is distributed across a set of interconnected brain areas that are differentially recruited for different aspects of goal oriented behavior, rather than a homogeneous mirror neuron system for organizing and understanding all behavior. PMID:17706312

  5. Functional mobility in a divided attention task in older adults with cognitive impairment.

    PubMed

    Borges, Sheila de Melo; Radanovic, Márcia; Forlenza, Orestes Vicente

    2015-01-01

    Motor disorders may occur in mild cognitive impairment (MCI) and at early stages of Alzheimer's disease (AD), particularly under divided attention conditions. We examined functional mobility in 104 older adults (42 with MCI, 26 with mild AD, and 36 cognitively healthy) using the Timed Up and Go test (TUG) under 4 experimental conditions: TUG single task, TUG plus a cognitive task, TUG plus a manual task, and TUG plus a cognitive and a manual task. Statistically significant differences in mean time of execution were found in all four experimental conditions when comparing MCI and controls (p < .001), and when comparing MCI and AD patients (p < .05). Receiver-operating characteristic curve analyses showed that all four testing conditions could differentiate the three groups (area under the curve > .8, p < .001 for MCI vs. controls; area under the curve > .7, p < .001 for MCI vs. AD). The authors conclude that functional motor deficits occurring in MCI can be assessed by the TUG test, in single or dual task modality.

  6. Paradoxical effect of dopamine medication on cognition in Parkinson's disease: relationship to side of motor onset.

    PubMed

    Hanna-Pladdy, Brenda; Pahwa, Rajesh; Lyons, Kelly E

    2015-04-01

    Parkinson's disease (PD) is characterized by asymmetric motor symptom onset attributed to greater degeneration of dopamine neurons contralateral to the affected side. However, whether motor asymmetries predict cognitive profiles in PD, and to what extent dopamine influences cognition remains controversial. This study evaluated cognitive variability in PD by measuring differential response to dopamine replacement therapy (DRT) based on hemispheric asymmetries. The influence of DRT on cognition was evaluated in mild PD patients (n = 36) with left or right motor onset symptoms. All subjects were evaluated on neuropsychological measures on and off DRT and compared to controls (n = 42). PD patients were impaired in executive, memory and motor domains irrespective of side of motor onset, although patients with left hemisphere deficit displayed greater cognitive impairment. Patients with right hemisphere deficit responded to DRT with significant improvement in sensorimotor deficits, and with corresponding improvement in attention and verbal memory functions. Conversely, patients with greater left hemisphere dopamine deficiency did not improve in attentional functions and declined in verbal memory recall following DRT. These findings support the presence of extensive mild cognitive deficits in early PD not fully explained by dopamine depletion alone. The paradoxical effects of levodopa on verbal memory were predicted by extent of fine motor impairment and sensorimotor response to levodopa, which reflects extent of dopamine depletion. The findings are discussed with respect to factors influencing variable cognitive profiles in early PD, including hemispheric asymmetries and differential response to levodopa based on dopamine levels predicting amelioration or overdosing.

  7. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    PubMed

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  8. Elevated airborne manganese and low executive function in school-aged children in Brazil.

    PubMed

    Carvalho, Chrissie F; Menezes-Filho, José A; de Matos, Vitor P; Bessa, Jonatas Reis; Coelho-Santos, Juliana; Viana, Gustavo F S; Argollo, Nayara; Abreu, Neander

    2014-12-01

    Exposure to airborne manganese (Mn) has been associated with neurotoxic effects, including motor and cognitive deficits. The main deficits related to excessive exposure to Mn are predominantly the dysfunction of fronto-striatal and dopaminergic circuits observed in animal experimental studies, which are involved in attention, working memory and motor function. The present study aims to assess the association between elevated Mn exposure and performance on executive function and attention neuropsychological tests in children living in two communities near a ferro-manganese alloy plant. Seventy children aged between 7 and 12 years with no history of neurologic disease and an estimated IQ >68 (Vocabulary and Block Design subtests) that had lived near the iron-Mn production alloy plant for at least 1.5 years were included. Participants were assessed for cognitive functioning with neuropsychological measures for sustained attention (Test of Visual Attention - TAVIS-3R), cognitive flexibility (WCST), and verbal and visual working memory (WISC-III Digit Span subtest and Corsi Block). Manganese hair (MnH) levels were used as a biomarker of exposure. Mean scores among study participants were lower than general population norms/averages for block design, digit span, reaction time and commission errors. The median MnH level was 11.48 (range 0.52-55.74) μg/g, and no difference between sexes was observed. Spearman's correlation analysis showed a significant inverse correlation between MnH levels and estimated IQ (rho=-0.448, p=0.0001), Vocabulary (rho=-0.272, p=0.02), Block Design (rho=-0.485, p=0.00002) and Digit Span (rho=-0.410, p=0.0004). Multiple regression analyses detected inverse associations between log MnH and scores on estimated IQ (β=-9.67; 95%CI=-16.97 to -2.37), Block Design (β=-2.50; 95%CI=-3.91 to -1.10) and Digit Span Total (β=-2.59; 95%CI=-4.13 to -1.05) standardized scores and the number of correct answers in forward and backward Digit Span methods, after adjusting for covariates (β=-1.32=95%CI=-2.23 to -0.40; β=-1.09 95%CI=-2.02 to -0.16, respectively). The results suggest that airborne Mn exposure may be associated with lower IQ and neuropsychological performance in tests of executive function of inhibition responses, strategic visual formation and verbal working memory. Executive function is dependent on the fronto-striatal circuit, which may be disrupted by Mn accumulation in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Responses of mirror neurons in area F5 to hand and tool grasping observation

    PubMed Central

    Rochat, Magali J.; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo

    2010-01-01

    Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template. PMID:20577726

  10. Investigating common coding of observed and executed actions in the monkey brain using cross-modal multi-variate fMRI classification.

    PubMed

    Fiave, Prosper Agbesi; Sharma, Saloni; Jastorff, Jan; Nelissen, Koen

    2018-05-19

    Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  12. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  13. Changes in cortical activity measured with EEG during a high-intensity cycling exercise

    PubMed Central

    Cortese, Filomeno; Maurer, Christian; Baltich, Jennifer; Protzner, Andrea B.; Nigg, Benno M.

    2015-01-01

    This study investigated the effects of a high-intensity cycling exercise on changes in spectral and temporal aspects of electroencephalography (EEG) measured from 10 experienced cyclists. Cyclists performed a maximum aerobic power test on the first testing day followed by a time-to-exhaustion trial at 85% of their maximum power output on 2 subsequent days that were separated by ∼48 h. EEG was recorded using a 64-channel system at 500 Hz. Independent component (IC) analysis parsed the EEG scalp data into maximal ICs. An equivalent current dipole model was calculated for each IC, and results were clustered across subjects. A time-frequency analysis of the identified electrocortical clusters was performed to investigate the magnitude and timing of event-related spectral perturbations. Significant changes (P < 0.05) in electrocortical activity were found in frontal, supplementary motor and parietal areas of the cortex. Overall, there was a significant increase in EEG power as fatigue developed throughout the exercise. The strongest increase was found in the frontal area of the cortex. The timing of event-related desynchronization within the supplementary motor area corresponds with the onset of force production and the transition from flexion to extension in the pedaling cycle. The results indicate an involvement of the cerebral cortex during the pedaling task that most likely involves executive control function, as well as motor planning and execution. PMID:26538604

  14. Automatically Characterizing Sensory-Motor Patterns Underlying Reach-to-Grasp Movements on a Physical Depth Inversion Illusion.

    PubMed

    Nguyen, Jillian; Majmudar, Ushma V; Ravaliya, Jay H; Papathomas, Thomas V; Torres, Elizabeth B

    2015-01-01

    Recently, movement variability has been of great interest to motor control physiologists as it constitutes a physical, quantifiable form of sensory feedback to aid in planning, updating, and executing complex actions. In marked contrast, the psychological and psychiatric arenas mainly rely on verbal descriptions and interpretations of behavior via observation. Consequently, a large gap exists between the body's manifestations of mental states and their descriptions, creating a disembodied approach in the psychological and neural sciences: contributions of the peripheral nervous system to central control, executive functions, and decision-making processes are poorly understood. How do we shift from a psychological, theorizing approach to characterize complex behaviors more objectively? We introduce a novel, objective, statistical framework, and visuomotor control paradigm to help characterize the stochastic signatures of minute fluctuations in overt movements during a visuomotor task. We also quantify a new class of covert movements that spontaneously occur without instruction. These are largely beneath awareness, but inevitably present in all behaviors. The inclusion of these motions in our analyses introduces a new paradigm in sensory-motor integration. As it turns out, these movements, often overlooked as motor noise, contain valuable information that contributes to the emergence of different kinesthetic percepts. We apply these new methods to help better understand perception-action loops. To investigate how perceptual inputs affect reach behavior, we use a depth inversion illusion (DII): the same physical stimulus produces two distinct depth percepts that are nearly orthogonal, enabling a robust comparison of competing percepts. We find that the moment-by-moment empirically estimated motor output variability can inform us of the participants' perceptual states, detecting physiologically relevant signals from the peripheral nervous system that reveal internal mental states evoked by the bi-stable illusion. Our work proposes a new statistical platform to objectively separate changes in visual perception by quantifying the unfolding of movement, emphasizing the importance of including in the motion analyses all overt and covert aspects of motor behavior.

  15. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

    PubMed Central

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding less phase-dependent sensory processing and motor planning, as opposed to walking. PMID:26924977

  16. Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease

    PubMed Central

    Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.

    2013-01-01

    Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120

  17. Architecture for Control of the K9 Rover

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  18. Characterizing neurocognitive late effects in childhood leukemia survivors using a combination of neuropsychological and cognitive neuroscience measures.

    PubMed

    Van Der Plas, Ellen; Erdman, Lauren; Nieman, Brian J; Weksberg, Rosanna; Butcher, Darci T; O'connor, Deborah L; Aufreiter, Susanne; Hitzler, Johann; Guger, Sharon L; Schachar, Russell J; Ito, Shinya; Spiegler, Brenda J

    2017-10-10

    Knowledge about cognitive late effects in survivors of childhood acute lymphoblastic leukemia (ALL) is largely based on standardized neuropsychological measures and parent reports. To examine whether cognitive neuroscience paradigms provided additional insights into neurocognitive and behavioral late effects in ALL survivors, we assessed cognition and behavior using a selection of cognitive neuroscience tasks and standardized measures probing domains previously demonstrated to be affected by chemotherapy. 130 ALL survivors and 158 control subjects, between 8 and 18 years old at time of testing, completed the n-back (working memory) and stop-signal (response inhibition) tasks. ALL survivors also completed standardized measures of intelligence (Wechsler Intelligence Scales [WISC-IV]), motor skills (Grooved Pegboard), math abilities (WIAT-III), and executive functions (Delis-Kaplan Executive Function System). Parents completed behavioral measures of executive functions (Behavior Rating Inventory of Executive Function [BRIEF]) and attention (Conners-3). ALL survivors exhibited deficiencies in working memory and response inhibition compared with controls. ALL survivors also exhibited deficits on WISC-IV working memory and processing speed, Grooved Pegboard, WIAT-III addition and subtraction fluency, and numerical operations, as well as DKEFS number-letter switching. Parent reports suggested more attention deficits (Conners-3) and behavioral difficulties (BRIEF) in ALL survivors compared with referenced norms. Low correspondence between standardized and experimental measures of working memory and response inhibition was noted. The use of cognitive neuroscience paradigms complements our understanding of the cognitive deficits evident after treatment of ALL. These measures could further delineate cognitive processes involved in neurocognitive late effects, providing opportunities to explore their underlying mechanisms.

  19. Neuropsychological function in individuals with morbid obesity: a cross-sectional study.

    PubMed

    Sargénius, Hanna L; Lydersen, Stian; Hestad, Knut

    2017-01-01

    Previous research has shown cognitive dysfunction to be present in a significant number of individuals with obesity. The objective of this study was to assess the neuropsychological profile of morbidly obese patients referred to weight-loss treatment. An extensive battery of neuropsychological tests with well-known normative data covering various cognitive domains was administered to 96 patients. The test results were transformed to z-scores for comparisons with normative data. As a means of determining level of cognitive impairment within the group, deficit scores were applied. Group comparisons on the different cognitive domains were conducted between patients with depressive symptoms and patients reporting no such symptoms. As illustrated in mean z-scores, the patients demonstrated lower performance compared to normative data on visual memory (mean -.26, CI -.43 to -.09, p  = .003), speed of information processing (mean -.22, CI -.34 to -.09, p  = .001), executive functions (mean -.28, CI -.40 to -.16, p  < .001), and attention/vigilance (mean -.25, CI -.37 to -.13, p  < .001). Their performance was good on verbal fluency (mean .24, CI .04 to .44, p  = .016) and verbal memory (mean .55, CI .38 to .72, p  < .001). No significant performance differences were observed in the cognitive domains of visuospatial ability, motor function, and working memory. The deficit scores, however, revealed working memory and motor function to be significantly impaired within the group as well. Patients with depressive symptoms differed from patients without such symptoms on visual memory (mean .43, CI .07 to .80, p  = .021). Some characteristic cognitive weaknesses and strengths were evident at the group level, although pronounced variation was observed. Deficits in executive functions, information processing, and attention should be taken into consideration in clinical practice.

  20. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Shen, Kaikai; Doecke, James D; Boyd, Roslyn N; Bradley, Andrew P; Rose, Stephen; Dowson, Nicholas

    2016-11-01

    Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r 2  = 0.62, P < 0.005), executive function (r 2  = 0.55, P < 0.005), and communication (r 2  = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

Top