Sample records for exercise capacity compared

  1. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis.

    PubMed

    Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S

    2016-05-01

    The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.

  2. Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training

    PubMed Central

    Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.

    2018-01-01

    Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262

  3. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    PubMed

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  4. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    PubMed

    Cappel, David A; Lantier, Louise; Palmisano, Brian T; Wasserman, David H; Stafford, John M

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  5. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity

    PubMed Central

    Cappel, David A.; Lantier, Louise; Palmisano, Brian T.; Wasserman, David H.; Stafford, John M.

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity. PMID:26313355

  6. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD.

    PubMed

    O'Donnell, D E; Flüge, T; Gerken, F; Hamilton, A; Webb, K; Aguilaniu, B; Make, B; Magnussen, H

    2004-06-01

    The aim of this study was to test the hypothesis that use of tiotropium, a new long-acting anticholinergic bronchodilator, would be associated with sustained reduction in lung hyperinflation and, thereby, would improve exertional dyspnoea and exercise performance in patients with chronic obstructive pulmonary disease. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 187 patients (forced expiratory volume in one second 44 +/- 13% pred): 96 patients received 18 microg tiotropium and 91 patients received placebo once daily for 42 days. Spirometry, plethysmographic lung volumes, cycle exercise endurance and exertional dyspnoea intensity at 75% of each patient's maximal work capacity were compared. On day 42, the use of tiotropium was associated with the following effects at pre-dose and post-dose measurements as compared to placebo: vital capacity and inspiratory capacity (IC) increased, with inverse decreases in residual volume and functional residual capacity. Tiotropium increased post-dose exercise endurance time by 105 +/- 40 s (21%) as compared to placebo on day 42. At a standardised time near end-exercise (isotime), IC, tidal volume and minute ventilation all increased, whilst dyspnoea decreased by 0.9 +/- 0.3 Borg scale units. In conclusion, the use of tiotropium was associated with sustained reductions of lung hyperinflation at rest and during exercise. Resultant increases in inspiratory capacity permitted greater expansion of tidal volume and contributed to improvements in both exertional dyspnoea and exercise endurance.

  7. [Effects of TES program on exercise capacity, self-efficacy and patient compliance in patients with myocardial infarction].

    PubMed

    Choo, Jina; Kim, Ja-Mae; Hong, Kyung-Pyo

    2003-12-01

    This study aimed to develop a TES program to improve exercise capacity to promote patient compliance to the prescribed exercise, and to test the feasibility of the program. The 8-week TES program consisted of three components : exercise training, self-efficacy enhancement and social support. Using the matching of gender, age, and the left ventricular ejection fraction, thirty one subjects were consecutively assigned to either TES group (n=15, 52+7 years) or Control group (n=16, 58+11 years) 3 weeks after MI. With the exception of exercise compliance (only after the TES program), the exercise capacity and exercise self-efficacy were both measured both before and after the 8-week TES program. The VO2peak (p=.043), anaerobic threshold (p=.023) and exercise duration (p=.015) improved in TES group compared to Control group after 8 weeks. The cardiac exercise self-efficacy (p=.036) was significantly higher in TES group than Control group. There was a significant increase of exercise compliance(p=.005) in TES group compared to Control group. The 8-week TES program improved the exercise capacity, exercise self-efficacy and exercise compliance. A appropriately implemented TES program in cardiovascular nursing practice may promote healthy behavioral modification and, therefore, contributing to reduce the risk of mortality and morbidity in MI patients.

  8. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity.

    PubMed

    Kasuya, Noriaki; Ohta, Shoichiro; Takanami, Yoshikazu; Kawai, Yukari; Inoue, Yutaka; Murata, Isamu; Kanamoto, Ikuo

    2015-04-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia.

  9. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    PubMed

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P <0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG ( P <0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  10. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    PubMed Central

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF

    2016-01-01

    Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031

  11. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  12. Effect of Baseline Exercise Capacity on Outcomes in Patients With Stable Coronary Heart Disease (A Post Hoc Analysis of the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation Trial)

    PubMed Central

    Padala, Santosh K.; Sidhu, Mandeep S.; Hartigan, Pamela M.; Maron, David J.; Teo, Koon K.; Spertus, John A.; John Mancini, G.B.; Sedlis, Steven P.; Chaitman, Bernard R.; Heller, Gary V.; Weintraub, William S.; Boden, William E.

    2017-01-01

    The impact of baseline exercise capacity on clinical outcomes in patients with stable ischemic heart disease randomized to an initial strategy of optimal medical therapy (OMT) with or without percutaneous coronary intervention (PCI) in the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial has not been studied. A post hoc analysis was performed in 1,052 patients of COURAGE (PCI + OMT: n = 527, OMT: n = 525) who underwent exercise treadmill testing at baseline. Patients were categorized into 2 exercise capacity groups based on metabolic equivalents (METs) achieved during baseline exercise treadmill testing (<7 METs: n = 464, ≥7 METs: n = 588) and were followed for a median of 4.6 years. The primary composite end point of death or myocardial infarction was similar in the PCI + OMT group and the OMT group for patients with exercise capacity <7 METs (19.1% vs 16.1%, p = 0.31) and ≥7 METs (13.3% vs 10.3%, p = 0.27). After adjusting for baseline covariates, the hazard ratio (99% confidence interval) for the primary end point for the PCI + OMT group versus the OMT group was 1.42 (0.90 to 2.23, p = 0.05) and for the exercise capacity subgroups of ≥7 METs and <7 METs was 0.75 (0.46 to 1.22, p = 0.13). There was no statistically significant interaction between the original treatment arm allocation (PCI + OMT vs OMT) and baseline exercise capacity. In conclusion, there was no difference in the long-term clinical outcomes in patients with exercise capacity <7 METs compared with ≥7 METs, irrespective of whether they were assigned to initial PCI. Patients with exercise capacity <7 METs did not derive a proportionately greater clinical benefit from PCI + OMT compared with those patients who received OMT alone. Published by Elsevier Inc. (Am J Cardiol 2015;116:1509–1515) PMID:26410604

  13. Effects of detraining on anthropometry, aerobic capacity and functional ability in adults with Down syndrome.

    PubMed

    Boer, P H

    2018-01-01

    Structured exercise has shown to improve parameters of functional fitness in adults with Down syndrome (DS). However, few, if any, continue to exercise after exercise intervention studies. Consequently, the purpose of this study was to determine the effects of detraining on anthropometry, aerobic capacity and functional ability of adults with DS. In a previous study, forty-two participants either performed 12 weeks of interval training, continuous aerobic training or no training (CON). After 3 months of detraining, the same participants were tested again for anthropometry, aerobic capacity, leg strength and functional ability. Significant reductions in maximal aerobic capacity, time to exhaustion and both functional test items were reported for both exercise groups compared to CON (p < .05). No significant differences were reported between the exercise groups concerning aerobic and functional capacity reductions. Detraining occurred significantly in both exercise groups regarding parameters associated with aerobic and functional capacity. © 2017 John Wiley & Sons Ltd.

  14. Left ventricular assist device: exercise capacity evolution and rehabilitation added value.

    PubMed

    Lamotte, Michel X; Chimenti, Sara; Deboeck, Gael; Gillet, Alexis; Kacelenenbogen, Raymond; Strapart, Jonathan; Vandeneynde, Frédéric; Van Nooten, Guido; Antoine, Martine

    2018-06-01

    With more than 15,000 implanted patients worldwide and a survival rate of 80% at 1-year and 59% at 5-years, left ventricular assist device (LVAD) implantation has become an interesting strategy in the management of heart failure patients who are resistant to other kinds of treatment. There are limited data in the literature on the change over time of exercise capacity in LVAD patients, as well as limited knowledge about the beneficial effects that rehabilitation might have on these patients. Therefore, the aim of our study was to evaluate the evolution of exercise capacity on a cohort of patients implanted with the same device (HeartWare © ) and to analyse the potential impact of rehabilitation. Sixty-two patients implanted with a LVAD between June 2011 and June 2015 were screened. Exercise capacity was evaluated by cardiopulmonary exercise testing at 6 weeks, 6 and 12 months after implantation. We have observed significant differences in the exercise capacity and evolution between the trained and non-trained patients. Some of the trained patients nearly normalised their exercise capacity at the end of the rehabilitation programme. Exercise capacity of patient implanted with a HeartWare © LVAD increased in the early period after implantation. Rehabilitation allowed implanted patients to have a significantly better evolution compared to non-rehabilitated patients.

  15. Cigarette smoking decreases dynamic inspiratory capacity during maximal exercise in patients with type 2 diabetes.

    PubMed

    Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki

    2012-06-01

    To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.

  16. The influence of training characteristics on the effect of aerobic exercise training in patients with chronic heart failure: A meta-regression analysis.

    PubMed

    Vromen, T; Kraal, J J; Kuiper, J; Spee, R F; Peek, N; Kemps, H M

    2016-04-01

    Although aerobic exercise training has shown to be an effective treatment for chronic heart failure patients, there has been a debate about the design of training programs and which training characteristics are the strongest determinants of improvement in exercise capacity. Therefore, we performed a meta-regression analysis to determine a ranking of the individual effect of the training characteristics on the improvement in exercise capacity of an aerobic exercise training program in chronic heart failure patients. We focused on four training characteristics; session frequency, session duration, training intensity and program length, and their product; total energy expenditure. A systematic literature search was performed for randomized controlled trials comparing continuous aerobic exercise training with usual care. Seventeen unique articles were included in our analysis. Total energy expenditure appeared the only training characteristic with a significant effect on improvement in exercise capacity. However, the results were strongly dominated by one trial (HF-action trial), accounting for 90% of the total patient population and showing controversial results compared to other studies. A repeated analysis excluding the HF-action trial confirmed that the increase in exercise capacity is primarily determined by total energy expenditure, followed by session frequency, session duration and session intensity. These results suggest that the design of a training program requires high total energy expenditure as a main goal. Increases in training frequency and session duration appear to yield the largest improvement in exercise capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  18. Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?

    PubMed

    Bouwsema, Melissa M; Tedjasaputra, Vincent; Stickland, Michael K

    2017-03-01

    Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (Dl CO ) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower Dl CO , Dl CO relative to cardiac output (Dl CO /Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o 2peak ) and sixteen men (118 ± 22% predicted relative V̇o 2peak ) were matched for height and weight. Hemoglobin-corrected diffusing capacity (Dl CO ), Vc, and Dm were determined via the multiple-[Formula: see text] Dl CO technique at rest and during incremental exercise up to 90% of V̇o 2peak Both groups increased Dl CO , Vc, and Dm with exercise intensity, but women had 20% lower Dl CO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in Dl CO /Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower Dl CO , Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the Dl CO , Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (Dl CO /Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in Dl CO /Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in Dl CO , Vc, or Dm response to exercise. Copyright © 2017 the American Physiological Society.

  19. Exercise Capacity Assessment by the Modified Shuttle Walk Test and its Correlation with Biochemical Parameters in Obese Children and Adolescents.

    PubMed

    de Assumpção, Priscila Kurz; Heinzmann-Filho, João Paulo; Isaia, Heloisa Ataíde; Holzschuh, Flávia; Dalcul, Tiéle; Donadio, Márcio Vinícius Fagundes

    2018-03-23

    To evaluate exercise capacity of obese children and adolescents compared with normal-weight individuals and to investigate possible correlations with blood biochemical parameters. In this study, children and adolescents between 6 and 18 y were included and divided into control (eutrophic) and obese groups according to body mass index (BMI). Data were collected regarding demographic, anthropometric, waist circumference and exercise capacity through the Modified Shuttle Walk Test (MSWT). In the obese group, biochemical parameters in the blood (total cholesterol, HDL, LDL, triglycerides and glucose) were evaluated, and a physical activity questionnaire was applied. Seventy seven participants were included; 27 in the control group and 50 obese. There was no significant difference between the two groups regarding sample characteristics, except for body weight, BMI and waist circumference. Most obese children presented results of biochemical tests within the desirable limit, though none were considered active. There was a significant exercise capacity reduction (p < 0.001) in the obese group compared to control subjects. Positive correlations were identified for the MSWT with age and height, and a negative correlation with BMI. However, there were no correlations with the biochemical parameters analyzed. Obese children and adolescents have reduced exercise capacity when compared to normal individuals. The MSWT performance seems to have a negative association with BMI, but is not correlated with blood biochemical parameters.

  20. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  1. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients.

    PubMed

    Singleton, J Robinson; Marcus, Robin L; Lessard, Margaret K; Jackson, Justin E; Smith, A Gordon

    2015-01-01

    Unmyelinated cutaneous axons are vulnerable to physical and metabolic injury, but also capable of rapid regeneration. This balance may help determine risk for peripheral neuropathy associated with diabetes or metabolic syndrome. Capsaicin application for 48 hours induces cutaneous fibers to die back into the dermis. Regrowth can be monitored by serial skin biopsies to determine intraepidermal nerve fiber density (IENFD). We used this capsaicin axotomy technique to examine the effects of exercise on cutaneous regenerative capacity in the setting of metabolic syndrome. Baseline ankle IENFD and 30-day cutaneous regeneration after thigh capsaicin axotomy were compared for participants with type 2 diabetes (n = 35) or metabolic syndrome (n = 32) without symptoms or examination evidence of neuropathy. Thirty-six participants (17 with metabolic syndrome) then joined twice weekly observed exercise and lifestyle counseling. Axotomy regeneration was repeated in month 4 during this intervention. Baseline distal leg IENFD was significantly reduced for both metabolic syndrome and diabetic groups. With exercise, participants significantly improved exercise capacity and lower extremity power. Following exercise, 30-day reinnervation rate improved (0.051 ± 0.027 fibers/mm/day before vs 0.072 ± 0.030 after exercise, p = 0.002). Those who achieved improvement in more metabolic syndrome features experienced a greater degree of 30-day reinnervation (p < 0.012). Metabolic syndrome was associated with reduced baseline IENFD and cutaneous regeneration capacity comparable to that seen in diabetes. Exercise-induced improvement in metabolic syndrome features increased cutaneous regenerative capacity. The results underscore the potential benefit to peripheral nerve function of a behavioral modification approach to metabolic improvement. © 2014 American Neurological Association.

  2. The influence of training characteristics on the effect of exercise training in patients with coronary artery disease: Systematic review and meta-regression analysis.

    PubMed

    Kraal, Jos J; Vromen, Tom; Spee, Ruud; Kemps, Hareld M C; Peek, Niels

    2017-10-15

    Although exercise-based cardiac rehabilitation improves exercise capacity of coronary artery disease patients, it is unclear which training characteristic determines this improvement. Total energy expenditure and its constituent training characteristics (training intensity, session frequency, session duration and programme length) vary considerably among clinical trials, making it hard to compare studies directly. Therefore, we performed a systematic review and meta-regression analysis to assess the effect of total energy expenditure and its constituent training characteristics on exercise capacity. We identified randomised controlled trials comparing continuous aerobic exercise training with usual care for patients with coronary artery disease. Studies were included when training intensity, session frequency, session duration and programme length was described, and exercise capacity was reported in peakVO 2 . Energy expenditure was calculated from the four training characteristics. The effect of training characteristics on exercise capacity was determined using mixed effects linear regression analyses. The analyses were performed with and without total energy expenditure as covariate. Twenty studies were included in the analyses. The mean difference in peakVO 2 between the intervention group and control group was 3.97ml·min -1 ·kg -1 (p<0.01, 95% CI 2.86 to 5.07). Total energy expenditure was significantly related to improvement of exercise capacity (effect size 0.91ml·min -1 ·kg -1 per 100J·kg, p<0.01, 95% CI 0.77 to 1.06), no effect was found for its constituent training characteristics after adjustment for total energy expenditure. We conclude that the design of an exercise programme should primarily be aimed at optimising total energy expenditure rather than on one specific training characteristic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study.

    PubMed

    Andersen, Kasper; Rasmussen, Finn; Held, Claes; Neovius, Martin; Tynelius, Per; Sundström, Johan

    2015-09-16

    To investigate the associations of exercise capacity and muscle strength in late adolescence with risk of vascular disease and arrhythmia. Cohort study. General population in Sweden. 1.1 million men who participated in mandatory military conscription between 1 August 1972 and 31 December 1995, at a median age of 18.2 years. Participants were followed until 31 December 2010. Associations between exercise capacity and muscle strength with risk of vascular disease and subgroups (ischaemic heart disease, heart failure, stroke, and cardiovascular death) and risk of arrhythmia and subgroups (atrial fibrillation or flutter, bradyarrhythmia, supraventricular tachycardia, and ventricular arrhythmia or sudden cardiac death). Maximum exercise capacity was estimated by the ergometer bicycle test, and muscle strength was measured as handgrip strength by a hand dynamometer. High exercise capacity or muscle strength was deemed as above the median level. During a median follow-up of 26.3 years, 26 088 vascular disease events and 17 312 arrhythmia events were recorded. Exercise capacity was inversely associated with risk of vascular disease and its subgroups. Muscle strength was also inversely associated with vascular disease risk, driven by associations of higher muscle strength with lower risk of heart failure and cardiovascular death. Exercise capacity had a U shaped association with risk of arrhythmia, driven by a direct association with risk of atrial fibrillation and a U shaped association with bradyarrhythmia. Higher muscle strength was associated with lower risk of arrhythmia (specifically, lower risk of bradyarrhythmia and ventricular arrhythmia). The combination of high exercise capacity and high muscle strength was associated with a hazard ratio of 0.67 (95% confidence interval 0.65 to 0.70) for vascular events and 0.92 (0.88 to 0.97) for arrhythmia compared with the combination of low exercise capacity and low muscle strength. Exercise capacity and muscle strength in late adolescence are independently and jointly associated with long term risk of vascular disease and arrhythmia. The health benefit of lower risk of vascular events with higher exercise capacity was not outweighed by higher risk of arrhythmia. © Andersen et al 2015.

  4. Benefits of aerobic exercise after stroke.

    PubMed

    Potempa, K; Braun, L T; Tinknell, T; Popovich, J

    1996-05-01

    The debilitating loss of function after a stroke has both primary and secondary effects on sensorimotor function. Primary effects include paresis, paralysis, spasticity, and sensory-perceptual dysfunction due to upper motor neuron damage. Secondary effects, contractures and disuse muscle atrophy, are also debilitating. This paper presents theoretical and empirical benefits of aerobic exercise after stroke, issues relevant to measuring peak capacity, exercise training protocols, and the clinical use of aerobic exercise in this patient population. A stroke, and resulting hemiparesis, produces physiological changes in muscle fibres and muscle metabolism during exercise. These changes, along with comorbid cardiovascular disease, must be considered when exercising stroke patients. While few studies have measured peak exercise capacity in hemiparetic populations, it has been consistently observed in these studies that stroke patients have a lower functional capacity than healthy populations. Hemiparetic patients have low peak exercise responses probably due to a reduced number of motor units available for recruitment during dynamic exercise, the reduced oxidative capacity of paretic muscle, and decreased overall endurance. Consequently, traditional methods to predict aerobic capacity are not appropriate for use with stroke patients. Endurance exercise training is increasingly recognised as an important component in rehabilitation. An average improvement in maximal oxygen consumption (VO2max) of 13.3% in stroke patients who participated in a 10-week aerobic exercise training programme has been reported compared with controls. This study underscored the potential benefits of aerobic exercise training in stroke patients. In this paper, advantages and disadvantages of exercise modalities are discussed in relation to stroke patients. Recommendations are presented to maximise physical performance and minimise potential cardiac risks during exercise.

  5. Exercise training enhances aerobic capacity in juvenile estuarine crocodiles (Crocodylus porosus).

    PubMed

    Owerkowicz, Tomasz; Baudinette, Russell V

    2008-06-01

    Aerobic capacity (VO2max) of endothermic vertebrates is known to increase with exercise training, but this effect has not been found to-date in non-avian reptiles. We exercised juvenile estuarine crocodiles (Crocodylus porosus) to walk at 0.75-0.88 km/h on a treadmill for up to 20 min a day over 16 weeks, and compared their aerobic performance with that of unexercised crocodiles. In the exercised group, VO2max increased from 6.9 to 8.5 mLO2/kg/min (+28%), and locomotor endurance increased from 3.8 to 6.9 min (+82%). Neither VO2max nor endurance changed significantly in the sedentary group. This finding extends the exercise training effect onto another vertebrate clade, and demonstrates that ectothermic amniotes are capable of elevating their aerobic capacity in response to exercise training. We propose that differences in cardiopulmonary structure and function in non-avian reptiles may be responsible for the absence (in squamates) or presence (in crocodilians) of a strong training effect on aerobic capacity.

  6. Body mass index, exercise capacity, and mortality risk in male veterans with hypertension.

    PubMed

    Faselis, Charles; Doumas, Michael; Panagiotakos, Demosthenes; Kheirbek, Raya; Korshak, Lauren; Manolis, Athanasios; Pittaras, Andreas; Tsioufis, Costas; Papademetriou, Vasilios; Fletcher, Ross; Kokkinos, Peter

    2012-04-01

    Overweight and obesity are associated with increased risk of chronic diseases and mortality. Exercise capacity is inversely associated with mortality risk. However, little is known on the interaction between fitness, fatness, and mortality risk in hypertensive individuals. Thus, we assessed the interaction between exercise capacity, fatness, and all-cause mortality in hypertensive males. A graded exercise test was performed in 4,183 hypertensive veterans (mean age ± s.d.; 63.3 ± 10.5 years) at the Veterans Affairs Medical Center, Washington, DC. We defined three body weight categories based on body mass index (BMI): normal weight (BMI <25); overweight (BMI 25-29.9); and obese (BMI ≥30); and three fitness categories based on peak metabolic equivalents (METs) achieved: low-fit (≤5 METs); moderate-fit (5.1-7.5 MET); and high-fit (>7.5 METs). During a median follow-up period of 7.2 years, there were 1,000 deaths. The association between exercise capacity and mortality risk was strong, inverse, and graded. For each 1-MET increase in exercise capacity the adjusted risk was 20% for normal weight, 12% for overweight, and 25% for obese (P < 0.001). When compared to normal weight but unfit individuals, mortality risks were 60% lower in the overweight/high-fit and 78% lower in the obese/high-fit individuals (P < 0.001). Increased exercise capacity is associated with lower mortality risk in hypertensive males regardless of BMI. The risk for overweight and obese but fit individuals was significantly lower when compared to normal weight but unfit. These findings suggest that in older hypertensive men, it may be healthier to be fit regardless of standard BMI category than unfit and normal weight.

  7. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    PubMed

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  8. Exercise therapy for functional capacity in chronic diseases: an overview of meta-analyses of randomised controlled trials.

    PubMed

    Pasanen, Tero; Tolvanen, Samppa; Heinonen, Ari; Kujala, Urho M

    2017-10-01

    To summarise all meta-analyses of randomised controlled trials that have evaluated the effects of exercise therapy on functional capacity in patients with chronic diseases. Umbrella review of meta-analyses of randomised controlled trials. We systematically searched the CENTRAL, CINAHL, DARE, Medline, OTSeeker, PEDro, SPORTDiscus, ProQuest Nursing & Allied Health Database, Web of Science, Scopus, OpenGrey and BMC Proceedings from database inception to 1 September 2016. We included meta-analyses that compared the effects of exercise therapy with no treatment or usual care in adults with non-communicable chronic diseases and included outcomes related to functional capacity. We excluded meta-analyses with less than 100 patients. Eighty-five meta-analyses with 22 different chronic diseases were included. The exercise interventions resulted in statistically significant (p<0.05) improvements for 126 of 146 (86%) functional capacity outcomes, compared with the control group. The standardised mean differences were small in 64 (44%), moderate in 54 (37%) and large in 28 (19%) of the 146 functional capacity outcomes. The results were similar for aerobic exercise, resistance training, and aerobic and resistance training combined. There were no significant differences in serious adverse effects between the intervention and control groups in any of the meta-analyses. Exercise therapy appears to be a safe way to improve functional capacity and reduce disability in individuals with chronic disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. One year of high-intensity interval training improves exercise capacity, but not left ventricular function in stable heart transplant recipients: a randomised controlled trial.

    PubMed

    Rustad, Lene A; Nytrøen, Kari; Amundsen, Brage H; Gullestad, Lars; Aakhus, Svend

    2014-02-01

    Heart transplant recipients have lower exercise capacity and impaired cardiac function compared with the normal population. High-intensity interval training (HIIT) improves exercise capacity and cardiac function in patients with heart failure and hypertension, but the effect on cardiac function in stable heart transplant recipients is not known. Thus, we investigated whether HIIT improved cardiac function and exercise capacity in stable heart transplant recipients by use of comprehensive rest- and exercise-echocardiography and cardiopulmonary exercise testing. Fifty-two clinically stable heart transplant recipients were randomised either to HIIT (4 × 4 minutes at 85-95% of peak heart rate three times per week for eight weeks) or to control. Three such eight-week periods were distributed throughout one year. Echocardiography (rest and submaximal exercise) and cardiopulmonary exercise testing were performed at baseline and follow-up. One year of HIIT increased VO 2peak from 27.7 ± 5.5 at baseline to 30.9 ± 5.0 ml/kg/min at follow-up, while the control group remained unchanged (28.5 ± 7.0 vs. 28.0 ± 6.7 ml/kg per min, p < 0.001 for difference between the groups). Systolic and diastolic left ventricular functions at rest and during exercise were generally unchanged by HIIT. Whereas HIIT is feasible in heart transplant recipients and effectively improves exercise capacity, it does not alter cardiac systolic and diastolic function significantly. Thus, the observed augmentation in exercise capacity is best explained by extra-cardiac adaptive mechanisms.

  10. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.

    PubMed

    Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M

    2009-09-25

    Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.

  11. Predictive factors for work capacity in patients with musculoskeletal disorders.

    PubMed

    Lydell, Marie; Baigi, Amir; Marklund, Bertil; Månsson, Jörgen

    2005-09-01

    To identify predictive factors for work capacity in patients with musculoskeletal disorders. A descriptive, evaluative, quantitative study. The study was based on 385 patients who participated in a rehabilitation programme. Patients were divided into 2 groups depending on their ability to work. The groups were compared with each other with regard to sociodemographic factors, diagnoses, disability pension and number of sick days. The patient's level of exercise habits, ability to undertake activities, physical capacity, pain and quality of life were compared further using logistic regression analysis. Predictive factors for work capacity, such as ability to undertake activities, quality of life and fitness on exercise, were identified as important independent factors. Other well-known factors, i.e. gender, age, education, pain and earlier sickness certification periods, were also identified. Factors that were not significantly different between the groups were employment status, profession, diagnosis and levels of exercise habits. Identifying predictors for ability to return to work is an essential task for deciding on suitable individual rehabilitation. This study identified new predictive factors, such as ability to undertake activities, quality of life and fitness on exercise.

  12. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki

    2014-10-05

    We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Regulation of fuel metabolism during exercise in hypopituitarism with growth hormone-deficiency (GHD).

    PubMed

    Zueger, Thomas; Loher, Hannah; Egger, Andrea; Boesch, Chris; Christ, Emanuel

    2016-08-01

    Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Statins Affect Skeletal Muscle Performance: Evidence for Disturbances in Energy Metabolism.

    PubMed

    Allard, Neeltje A E; Schirris, Tom J J; Verheggen, Rebecca J; Russel, Frans G M; Rodenburg, Richard J; Smeitink, Jan A M; Thompson, Paul D; Hopman, Maria T E; Timmers, Silvie

    2018-01-01

    Statin myopathy is linked to disturbances in mitochondrial function and exercise intolerance. To determine whether differences exist in exercise performance, muscle function, and muscle mitochondrial oxidative capacity and content between symptomatic and asymptomatic statin users, and control subjects. Cross-sectional study. Department of Physiology, Radboud University Medical Center. Long-term symptomatic and asymptomatic statin users, and control subjects (n = 10 per group). Maximal incremental cycling tests, involuntary electrically stimulated isometric quadriceps-muscle contractions, and biopsy of vastus lateralis muscle. Maximal exercise capacity, substrate use during exercise, muscle function, and mitochondrial energy metabolism. Peak oxygen uptake, maximal work load, and ventilatory efficiency were comparable between groups, but both statin groups had a depressed anaerobic threshold compared with the control group (P = 0.01). Muscle relaxation time was prolonged in both statin groups compared with the control group and rate of maximal force rise was decreased (Ptime×group < 0.001 for both measures). Mitochondrial activity of complexes II and IV was lower in symptomatic statin users than control subjects and tended to be lower for complex (C) III (CII: P = 0.03; CIII: P = 0.05; CIV: P = 0.04). Mitochondrial content tended to be lower in both statin groups than in control subjects. Statin use attenuated substrate use during maximal exercise performance, induced muscle fatigue during repeated muscle contractions, and decreased muscle mitochondrial oxidative capacity. This suggests disturbances in mitochondrial oxidative capacity occur with statin use even in patients without statin-induced muscle complaints. Copyright © 2017 Endocrine Society

  15. Exercise capacity before and after an 8-week multidisciplinary inpatient rehabilitation program in lung cancer patients: a pilot study.

    PubMed

    Spruit, Martijn A; Janssen, Paul P; Willemsen, Sonja C P; Hochstenbag, Monique M H; Wouters, Emiel F M

    2006-05-01

    Although lung cancer is a highly prevalent type of cancer, the effects of an inpatient multidisciplinary rehabilitation program on pulmonary function and exercise capacity have never been studied in these patients. Pulmonary function, 6-min walking distance and peak exercise capacity of 10 patients with a severely impaired pulmonary function following treatment of lung cancer were assessed in this pilot study before and after an 8-week inpatient multidisciplinary rehabilitation program. At baseline, patients had a restrictive pulmonary function and an apparent exercise intolerance (median 6-min walking distance: 63.6% predicted; median peak cycling load: 58.5% predicted). Despite the lack of change in median pulmonary function [FEV1: -0.01L, p = 0.5469], functional exercise capacity [145 m; 43.2% of the initial values, p=0.0020] and peak exercise capacity [26 W; 34.4% of the initial values, p = 0.0078] improved significantly compared to baseline. Future trials have to corroborate the present findings. Nevertheless, patients with lung cancer have a clear indication to start a comprehensive rehabilitation program following intensive treatment of their disease. In fact, based on the results of the present pilot study it appears that these patients are good candidates for pulmonary rehabilitation programs.

  16. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial.

    PubMed

    Ghofrani, Hossein A; Reichenberger, Frank; Kohstall, Markus G; Mrosek, Eike H; Seeger, Timon; Olschewski, Horst; Seeger, Werner; Grimminger, Friedrich

    2004-08-03

    Alveolar hypoxia causes pulmonary hypertension and enhanced right ventricular afterload, which may impair exercise tolerance. The phosphodiesterase-5 inhibitor sildenafil has been reported to cause pulmonary vasodilatation. To investigate the effects of sildenafil on exercise capacity under conditions of hypoxic pulmonary hypertension. Randomized, double-blind, placebo-controlled crossover study. University Hospital Giessen, Giessen, Germany, and the base camp on Mount Everest. 14 healthy mountaineers and trekkers. Systolic pulmonary artery pressure, cardiac output, and peripheral arterial oxygen saturation at rest and during assessment of maximum exercise capacity on cycle ergometry 1) while breathing a hypoxic gas mixture with 10% fraction of inspired oxygen at low altitude (Giessen) and 2) at high altitude (the Mount Everest base camp). Oral sildenafil, 50 mg, or placebo. At low altitude, acute hypoxia reduced arterial oxygen saturation to 72.0% (95% CI, 66.5% to 77.5%) at rest and 60.8% (CI, 56.0% to 64.5%) at maximum exercise capacity. Systolic pulmonary artery pressure increased from 30.5 mm Hg (CI, 26.0 to 35.0 mm Hg) at rest to 42.9 mm Hg (CI, 35.6 to 53.5 mm Hg) during exercise in participants taking placebo. Sildenafil, 50 mg, significantly increased arterial oxygen saturation during exercise (P = 0.005) and reduced systolic pulmonary artery pressure at rest (P < 0.001) and during exercise (P = 0.031). Of note, sildenafil increased maximum workload (172.5 W [CI, 147.5 to 200.0 W]) vs. 130.6 W [CI, 108.8 to 150.0 W]); P < 0.001) and maximum cardiac output (P < 0.001) compared with placebo. At high altitude, sildenafil had no effect on arterial oxygen saturation at rest and during exercise compared with placebo. However, sildenafil reduced systolic pulmonary artery pressure at rest (P = 0.003) and during exercise (P = 0.021) and increased maximum workload (P = 0.002) and cardiac output (P = 0.015). At high altitude, sildenafil exacerbated existing headache in 2 participants. The study did not examine the effects of sildenafil on normoxic exercise tolerance. Sildenafil reduces hypoxic pulmonary hypertension at rest and during exercise while maintaining gas exchange and systemic blood pressure. To the authors' knowledge, sildenafil is the first drug shown to increase exercise capacity during severe hypoxia both at sea level and at high altitude.

  17. Functional capacity following univentricular repair--midterm outcome.

    PubMed

    Sen, Supratim; Bandyopadhyay, Biswajit; Eriksson, Peter; Chattopadhyay, Amitabha

    2012-01-01

    Previous studies have seldom compared functional capacity in children following Fontan procedure alongside those with Glenn operation as destination therapy. We hypothesized that Fontan circulation enables better midterm submaximal exercise capacity as compared to Glenn physiology and evaluated this using the 6-minute walk test. Fifty-seven children aged 5-18 years with Glenn (44) or Fontan (13) operations were evaluated with standard 6-minute walk protocols. Baseline SpO(2) was significantly lower in Glenn patients younger than 10 years compared to Fontan counterparts and similar in the two groups in older children. Postexercise SpO(2) fell significantly in Glenn patients compared to the Fontan group. There was no statistically significant difference in baseline, postexercise, or postrecovery heart rates (HRs), or 6-minute walk distances in the two groups. Multiple regression analysis revealed lower resting HR, higher resting SpO(2) , and younger age at latest operation to be significant determinants of longer 6-minute walk distance. Multiple regression analysis also established that younger age at operation, higher resting SpO(2) , Fontan operation, lower resting HR, and lower postexercise HR were significant determinants of higher postexercise SpO(2) . Younger age at operation and exercise, lower resting HR and postexercise HR, higher resting SpO(2) and postexercise SpO(2) , and dominant ventricular morphology being left ventricular or indeterminate/mixed had significant association with better 6-minute work on multiple regression analysis. Lower resting HR had linear association with longer 6-minute walk distances in the Glenn patients. Compared to Glenn physiology, Fontan operation did not have better submaximal exercise capacity assessed by walk distance or work on multiple regression analysis. Lower resting HR, higher resting SpO(2) , and younger age at operation were factors uniformly associated with better submaximal exercise capacity. © 2012 Wiley Periodicals, Inc.

  18. [Improvement in quality of life and exercise capacity without muscular biology changes after general training in patients with severe chronic obstructive pulmonary disease].

    PubMed

    Pascual-Guardia, Sergio; Wodja, Emil; Gorostiza, Amaya; López de Santamaría, Elena; Gea, Joaquim; Gáldiz, Juan B; Sliwinski, Pawel; Barreiro, Esther

    2013-03-02

    Despite the beneficial effects of exercise training in chronic obstructive pulmonary disease (COPD) patients, several studies have revealed functional and biological abnormalities in their peripheral muscles. The objective was to determine whether exercise training of high intensity and long duration modifies oxidative stress levels and structure of respiratory and peripheral muscles of severe COPD patients, while also improving their exercise capacity and quality of life. Multicenter study (Warsaw and Barakaldo) in which 25 severe COPD out-patients were recruited from the COPD clinics. In all patients, lung and muscle functions, exercise capacity (walking test and cycloergometer) and quality of life (QoL) were assessed, and open muscle biopsies from the vastus lateralis and external intercostals (n=14) were obtained before and after an exercise training program of high intensity (respiratory rehabilitation area, 70% maximal tolerated load in a cycloergometer) and long duration (10 weeks). Oxidative stress and muscle structural modifications were evaluated in all muscle biopsies using immunoblotting and immunohistochemistry. In all patients, after the training program, without any drop-outs, exercise capacity and QoL improved significantly, whereas oxidative stress, muscle damage and structure were not modified in their respiratory or limb muscles compared to baseline. In patients with severe COPD, exercise training of high intensity and long duration significantly improves their exercise capacity and QoL, without inducing significant modifications on oxidative stress levels or muscle structure in their respiratory or peripheral muscles. These results may have future clinical therapeutic implications. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  19. Exercise training modalities in chronic heart failure: does high intensity aerobic interval training make the difference?

    PubMed

    Giallauria, Francesco; Smart, Neil Andrew; Cittadini, Antonio; Vigorito, Carlo

    2016-10-14

    Exercise training (ET) is strongly recommended in patients with chronic heart failure (CHF). Moderate-intensity aerobic continuous ET is the best established training modality in CHF patients. In the last decade, however, high-intensity interval exercise training (HIIT) has aroused considerable interest in cardiac rehabilitation community. Basically, HIIT consists of repeated bouts of high-intensity exercise alternated with recovery periods. In CHF patients, HIIT exerts larger improvements in exercise capacity compared to moderate-continuous ET. These results are intriguing, mostly considering that better functional capacity translates into an improvement of symptoms and quality of life. Notably, HIIT did not reveal major safety issues; although CHF patients should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and appropriate supervision and monitoring during and after the exercise session are mandatory. The impact of HIIT on cardiac dimensions and function and on endothelial function remains uncertain. HIIT should not replace other training modalities in heart failure but should rather complement them. Combining and tailoring different ET modalities according to each patient's baseline clinical characteristics (i.e. exercise capacity, personal needs, preferences and goals) seem the most astute approach to exercise prescription.

  20. Size, shape, and stamina: the impact of left ventricular geometry on exercise capacity.

    PubMed

    Lam, Carolyn S P; Grewal, Jasmine; Borlaug, Barry A; Ommen, Steve R; Kane, Garvan C; McCully, Robert B; Pellikka, Patricia A

    2010-05-01

    Although several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction > or = 50% and no valvular disease, myocardial ischemia, or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. All of the subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60+/-14 years; 57% male) subjects, 166 (45%) had normal geometry, 106 (29%) had concentric remodeling, 40 (11%) had eccentric hypertrophy, and 54 (15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents were 9.9+/-2.8 in normal, 8.9+/-2.6 in concentric remodeling, 8.6+/-3.1 in eccentric hypertrophy, and 8.0+/-2.7 in concentric hypertrophy (all P<0.02 versus normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r=-0.14; P=0.009 and r=-0.21; P<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared with normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation, and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease.

  1. Size, Shape and Stamina: The Impact of Left Ventricular Geometry on Exercise Capacity

    PubMed Central

    Lam, Carolyn S.P.; Grewal, Jasmine; Borlaug, Barry A.; Ommen, Steve R.; Kane, Garvan C.; McCully, Robert B.; Pellikka, Patricia A.

    2010-01-01

    While several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction ≥ 50% and no valvular disease, myocardial ischemia or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy and concentric hypertrophy. All subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60±14 years; 57% male) subjects, 166(45%) had normal geometry, 106(29%) had concentric remodeling, 40(11%) had eccentric hypertrophy and 54(15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents was 9.9±2.8 in normal, 8.9±2.6 in concentric remodeling, 8.6±3.1 in eccentric hypertrophy and 8.0±2.7 in concentric hypertrophy (all p<0.02 vs normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r= -0.14; p=0.009 and r= -0.21; p<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared to normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease. PMID:20215563

  2. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis.

    PubMed

    Tyler, Christopher James; Sunderland, Caroline; Cheung, Stephen S

    2015-01-01

    Exercise is impaired in hot, compared with moderate, conditions. The development of hyperthermia is strongly linked to the impairment and as a result various strategies have been investigated to combat this condition. This meta-analysis focused on the most popular strategy: cooling. Precooling has received the most attention but recently cooling applied during the bout of exercise has been investigated and both were reviewed. We conducted a literature search and retrieved 28 articles which investigated the effect of cooling administered either prior to (n=23) or during (n=5) an exercise test in hot (wet bulb globe temperature >26°C) conditions. Mean and weighted effect size (Cohen's d) were calculated. Overall, precooling has a moderate (d=0.73) effect on subsequent performance but the magnitude of the effect is dependent on the nature of the test. Sprint performance is impaired (d=-0.26) but intermittent performance and prolonged exercise are both improved following cooling (d=0.47 and d=1.91, respectively). Cooling during exercise has a positive effect on performance and capacity (d=0.76). Improvements were observed in studies with and without cooling-induced physiological alterations, and the literature supports the suggestion of a dose-response relationship among cooling, thermal strain and improvements in performance and capacity. In summary, precooling can improve subsequent intermittent and prolonged exercise performance and capacity in a hot environment but sprint performance is impaired. Cooling during exercise also has a positive effect on exercise performance and capacity in a hot environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.

    PubMed

    Faoro, Vitalie; Huez, Sandrine; Vanderpool, Rebecca; Groepenhoff, Herman; de Bisschop, Claire; Martinot, Jean-Benot; Lamotte, Michel; Pavelescu, Adriana; Guénard, Hervé; Naeije, Robert

    2014-04-01

    Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.

  4. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4.

    PubMed

    Eguchi, Tomoaki; Kumagai, Chiaki; Fujihara, Takashi; Takemasa, Thoru; Ozawa, Tetsuo; Numata, Osamu

    2013-01-01

    Aerobic exercise can promote "fast-to-slow transition" in skeletal muscles, i.e. an increase in oxidative fibers, mitochondria, and myoglobin and improvement in glucose and lipid metabolism. Here, we found that mice administered Mitochondria Activation Factor (MAF) combined with exercise training could run longer distances and for a longer time compared with the exercise only group; MAF is a high-molecular-weight polyphenol purified from black tea. Furthermore, MAF intake combined with exercise training increased phosphorylation of AMPK and mRNA level of glucose transporter 4 (GLUT4). Thus, our data demonstrate for the first time that MAF activates exercise training-induced intracellular signaling pathways that involve AMPK, and improves endurance capacity.

  5. Exercise Capacity and Mortality in Patients with Ischemic Left Ventricular Dysfunction Randomized to Coronary Artery Bypass Surgery or Medical Therapy: An Analysis From the Surgical Treatment for Ischemic Heart Failure (STICH) Trial

    PubMed Central

    Stewart, Ralph; Szalewska, Dominika; She, Lilin; Lee, Kerry L.; Drazner, Mark H.; Lubiszewska, Barbara; Kosevic, Dragana; Ruengsakulrach, Permyos; Nicolau, José C.; Coutu, Benoit; Choudhary, Shiv K.; Mark, Daniel B.; Cleland, John G.F.; Piña, Ileana L.; Velazquez, Eric J.; Rynkiewicz, Andrzej; White, Harvey

    2014-01-01

    Objective To assess the prognostic significance of exercise capacity in patients with ischemic left ventricular (LV) dysfunction eligible for coronary artery bypass surgery (CABG). Background Poor exercise capacity is associated with mortality, but it is not known how this influences the benefits and risks of CABG compared to medical therapy. Methods In an exploratory analysis physical activity was assessed by questionnaire and 6-minute walk test in 1,212 patients before randomization to CABG (n=610) or medical management (n=602) in the STICH trial. Mortality (n=462) was compared by treatment allocation during 56 (IQR 48 to 68) months follow-up for subjects able (n=682) and unable (n=530) to walk 300m in 6 minutes and with less (Physical Ability Score >55, n= 749) and more (PAS ≤55, n=433) limitation by dyspnea or fatigue. Results Compared to medical therapy mortality was lower for patients randomized to CABG who walked ≥300m (HR 0.77, 95% CI 0.59 to 0.99, p=0.038) and those with a PAS >55 (HR 0.79, 95% CI 0.62 to 1.01, p=0.061). Patients unable to walk 300m or with a PAS ≤55 had higher mortality during the first 60 days with CABG (HR 3.24, 95% CI 1.64 to 6.83, p=0.002) and no significant benefit from CABG during total follow-up (HR 0.95, 95% CI 0.75 to 1.19, p=0.626, interaction p=0.167). Conclusion These observations suggest that patients with ischemic LV dysfunction and poor exercise capacity have increased early risk, and similar 5 year mortality with CABG compared to medical therapy, while those with better exercise capacity have improved survival with CABG. PMID:25023813

  6. Relation between lung function, exercise capacity, and exposure to asbestos cement.

    PubMed Central

    Wollmer, P; Eriksson, L; Jonson, B; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H

    1987-01-01

    A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to variables reflecting lung fibrosis but not to variables reflecting airflow obstruction. Smoking was related to variables reflecting obstructive lung disease. Exercise capacity was reduced in the exposed workers and was related to smoking and to lung function variables, reflecting obstructive airways disease. There was no significant correlation between exercise capacity and exposure to asbestos cement. PMID:3651353

  7. Fit to Forgive: Effect of Mode of Exercise on Capacity to Override Grudges and Forgiveness

    PubMed Central

    Struthers, C. Ward; van Monsjou, Elizabeth; Ayoub, Mariam; Guilfoyle, Joshua R.

    2017-01-01

    Forgiveness is important for repairing relationships that have been damaged by transgressions. In this research we explored the notion that the mode of physical exercise that victims of transgressions engage in and their capacity to override grudges are important in the process of forgiveness. Two exploratory studies that varied in samples (community non-student adults, undergraduate students) and research methods (non-experimental, experimental) were used to test these predictions. Findings showed that, compared to anaerobic or no exercise, aerobic and flexibility exercise facilitated self-control over grudges and forgiveness (Studies 1 and 2), and self-control over grudges explained the relation between exercise and forgiveness (Study 2). Possible mechanisms for future research are discussed. PMID:28533758

  8. Oxygen uptake kinetics and exercise capacity in children with cystic fibrosis.

    PubMed

    Fielding, Jeremy; Brantley, Lucy; Seigler, Nichole; McKie, Katie T; Davison, Gareth W; Harris, Ryan A

    2015-07-01

    Exercise capacity, an objective measure of exercise intolerance, is known to predict quality of life and mortality in cystic fibrosis (CF). The mechanisms for exercise intolerance in patients with cystic fibrosis (CF), however, have yet to be fully elucidated. Accordingly, this study sought to investigate oxygen uptake kinetics and the impact of fat-free mass (FFM) on exercise capacity in young patients with CF. 16 young patients with CF (age 13 ± 4 years; 10 female) and 15 matched controls (age 14 ± 3 years; nine female) participated. Pulmonary function and a maximal exercise test on a cycle ergometer using the Godfrey protocol were performed. Exercise capacity (VO2 peak), VO2 response time (VO2 RT), and functional VO2 gain (ΔVO2 /ΔWR) were all determined. Lung function was the only demographic parameter significantly lower (P < 0.05) in CF compared to controls. Exercise capacity was lower in CF (P < 0.014) only when VO2 peak was normalized for FFM (43.5 ± 7.7 vs. 50.6 ± 7.4 ml/kg-FFM/min) or expressed as % predicted (70.1 ± 14.3 vs. 85.4 ± 16.0%). The VO2 RT was slower (36.1 ± 15.1 vs. 25.0 ± 12.4 sec; P = 0.03) and the ΔVO2 /ΔWR slope was lower (8.4 ± 3 ml/min/watt vs. 10.1 ± 1.4 ml/min/watt; P = 0.02) in patients compared to controls, respectively. In conclusion, a delayed VO2 response time coupled with the lower functional VO2 gain (ΔVO2 /ΔWR) suggest that young patients with CF have impairment in oxygen transport and oxygen utilization by the muscles. These data in addition to differences in VO2 peak normalized for FFM provide some insight that muscle mass and muscle metabolism contribute to exercise intolerance in CF. © 2015 Wiley Periodicals, Inc.

  9. Exercise capacity in pediatric patients with inflammatory bowel disease.

    PubMed

    Ploeger, Hilde E; Takken, Tim; Wilk, Boguslaw; Issenman, Robert M; Sears, Ryan; Suri, Soni; Timmons, Brian W

    2011-05-01

    To examine exercise capacity in youth with Crohn's disease (CD) and ulcerative colitis (UC). Eleven males and eight females with CD and six males and four females with UC participated. Patients performed standard exercise tests to assess peak power (PP) and mean power (MP) and peak aerobic mechanical power (W(peak)) and peak oxygen uptake (VO(2peak)). Fitness variables were compared with reference data and also correlated with relevant clinical outcomes. Pediatric patients with inflammatory bowel disease had lower PP (∼90% of predicted), MP (∼88% of predicted), W(peak) (∼91% of predicted), and VO(2peak) (∼75% of predicted) compared with reference values. When patients with CD or UC were compared separately to reference values, W(peak) was significantly lower only in the CD group. No statistically significant correlations were found between any exercise variables and disease duration (r = 0.01 to 0.14, P = .47 to .95) or disease activity (r = -0.19 to -0.31, P = .11 to .38), measured by pediatric CD activity index or pediatric ulcerative colitis activity index. After controlling for chronological age, recent hemoglobin levels were significantly correlated with PP (r = 0.45, P = .049), MP (r = 0.63, P = .003), VO(2peak) (r = 0.62, P = .004), and W(peak) (r = 0.70, P = .001). Pediatric patients with inflammatory bowel disease exhibit impaired aerobic and anaerobic exercise capacity compared with reference values. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Exercise Capacity and Selected Physiological Factors by Ancestry and Residential Altitude: Cross-Sectional Studies of 9–10-Year-Old Children in Tibet

    PubMed Central

    Berntsen, Sveinung; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Nafstad, Per; Wu, Tianyi; Bjertness, Espen

    2014-01-01

    Abstract Bianba, Sveinung Bernsten, Lars Bo Andersen, Hein Stegum, Ouzhuluobu, Per Nafstad, Tianyi Wu, and Espen Bjertness. Exercise capacity and selected physiological factors by ancestry and residential altitude—Cross-sectional studies of 9–10-year-old children in Tibet. High Alt Med Biol. 15:162–169, 2014.—Aim: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea level) and across ancestry (native Tibetan vs. Han Chinese children living at the same altitude of 3700 m). Methods: A total of 430 9–10-year-old native Tibetan children from Tingri (4300 m) and 406 native Tibetan- and 406 Han Chinese immigrants (77% lowland-born and 33% highland-born) from Lhasa (3700 m) participated in two cross-sectional studies. The maximal power output (Wmax) was assessed using an ergometer cycle. Results: Lhasa Tibetan children had a 20% higher maximal power output (watts/kg) than Tingri Tibetan and 4% higher than Lhasa Han Chinese. Maximal heart rate, arterial oxygen saturation at rest, lung volume, and arterial oxygen saturation were significantly associated with exercise capacity at a given altitude, but could not fully account for the differences in exercise capacity observed between ancestry groups or altitudes. Conclusions: The superior exercise capacity in native Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300 m when measured at their respective residential altitudes. Such altitude- or ancestry-related difference could not be fully attributed to the physiological factors measured. PMID:24836751

  11. Long-term effects of cardiac rehabilitation in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Stevens, Emily; Hodge, Claire; Brown, Casey; Walker, Robert; Body, Dianne; Barclay, Leanne; Nye, Edwin R; Williams, Michael J A

    2016-01-01

    To compare exercise capacity and cardiovascular response to exercise in elderly individuals with coronary artery disease (CAD) who attend ongoing community-based maintenance cardiac rehabilitation (CR) versus age- and gender-matched healthy "very active" (HVA; ≥ 2000 kcal/week) and healthy "less active" (HLA; <2000 kcal/week) individuals. Sixty-three participants (age: 72.3 ± 5.1 years; 62% men; n = 21 per group) completed the following assessments: (1) symptom-limited graded exercise test with expired gas analysis and bioimpedance assessment of cardiovascular function during exercise; (2) walking tests; (3) physical function; (4) anthropometry and (5) 12-month physical activity recall. The CR group achieved 98% (range: 73-154%) of age- and gender-predicted peak oxygen consumption for healthy individuals. Peak oxygen consumption was lower in CR compared to HVA but not HLA group (VO2peak: CR: 19.0 ± 4.5, HVA: 23.7 ± 2.9, HLA: 20.7 ± 4.7 ml ·kg(-1)ċmin(-1), p = 0.001 versus HVA; p = 0.390 versus HLA). Peak heart rate was lower in CR compared to both HVA and HLA. Walking test results and cardiovascular and physical function were not different between the groups. Elderly individuals with CAD participating in maintenance CR have similar exercise capacity and cardiorespiratory response to exercise compared to their age- and gender-matched less active healthy peers. The findings support referral of elderly patients to community-based CR. Fitness benefits of long-term maintenance cardiac rehabilitation (CR) programs remain unknown. Elderly individuals with coronary artery disease participating in maintenance CR have exercise capacity and cardiorespiratory response to exercise similar to their less active healthy peers. Maintenance CR may play an important role prolonging independent living in elderly individuals.

  12. Pulmonary Vascular Response Patterns During Exercise in Left Ventricular Systolic Dysfunction Predict Exercise Capacity and Outcomes

    PubMed Central

    Lewis, Gregory D.; Murphy, Ryan M.; Shah, Ravi V.; Pappagianopoulos, Paul P.; Malhotra, Rajeev; Bloch, Kenneth D.; Systrom, David M.; Semigran, Marc J.

    2012-01-01

    Background Elevated resting pulmonary arterial pressure (PAP) in patients with left ventricular systolic dysfunction (LVSD) purports a poor prognosis. However, PAP response patterns to exercise in LVSD and their relationship to functional capacity and outcomes have not been characterized. Methods and Results Sixty consecutive patients with LVSD (age 60±12 years, LV ejection fraction 0.31±0.07, mean±SD) and 19 controls underwent maximum incremental cardiopulmonary exercise testing with simultaneous hemodynamic monitoring. During low-level exercise (30 Watts), LVSD subjects compared to controls, had greater augmentation in mean PAPs (15±1 vs. 5±1 mmHg), transpulmonary gradients (5±1 vs. 1±1 mmHg), and effective PA elastance (0.05±0.02 vs. −0.03±0.01 mmHg/ml, p<0.0001 for all). A linear increment in PAP relative to work (0.28±0.12 mmHg/watt) was observed in 65% of LVSD patients, which exceeded that observed in controls (0.07±0.02 mmHg/watt, P<0.0001). Exercise capacity and survival was worse in patients with a PAP/watt slope above the median than in patients with a lower slope. In the remaining 35% of LVSD patients, exercise induced a steep initial increment in PAP (0.41±0.16 mmHg/watt) followed by a plateau. The plateau pattern, compared to a linear pattern, was associated with reduced peak VO2 (10.6±2.6 vs. 13.1±4.0 ml/kg/min, P=0.005), lower right ventricular stroke work index augmentation with exercise (5.7±3.8 vs. 9.7±5.0 g/m2, P=0.002), and increased mortality (HR 8.1, 95% CI 2.7-23.8, P<0.001). Conclusions A steep increment in PAP during exercise and failure to augment PAP throughout exercise are associated with decreased exercise capacity and survival in patients with LVSD, and may therefore represent therapeutic targets. Clinical Trial Information URL: http://www.clinicaltrials.gov. Unique Identifier: NCT00309790) PMID:21292991

  13. Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity.

    PubMed

    Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Beasley, Kara M; Mangum, Tyler S; Hawn, Jerold A; Gladstone, Igor M; Lovering, Andrew T

    2014-09-01

    Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency. Copyright © 2014 the American Physiological Society.

  14. Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.

    PubMed

    Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng

    2013-09-01

    Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.

  15. Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Kinugawa, Shintaro; Hirabayashi, Kagami; Suga, Tadashi; Yokota, Takashi; Takahashi, Masashige; Fukushima, Arata; Homma, Tsuneaki; Ono, Taisuke; Sobirin, Mochamad A; Masaki, Yoshihiro; Mizushima, Wataru; Kadoguchi, Tomoyasu; Okita, Koichi; Tsutsui, Hiroyuki

    2013-04-01

    NAD(P)H oxidase-induced oxidative stress is at least in part involved with lowered exercise capacity and impaired mitochondrial function in high-fat diet (HFD)-induced diabetic mice. NAD(P)H oxidase can be activated by activation of the renin-angiotensin system. We investigated whether ANG II receptor blocker can improve exercise capacity in diabetic mice. C57BL/6J mice were fed a normal diet (ND) or HFD, and each group of mice was divided into two groups: treatment with or without olmesartan (OLM; 3 mg·kg(-1)·day(-1) in the drinking water). The following groups of mice were studied: ND, ND+OLM, HFD, and HFD+OLM (n = 10 for each group). After 8 wk, HFD significantly increased body weight, plasma glucose, and insulin compared with ND, and OLM did not affect these parameters in either group. Exercise capacity, as determined by treadmill tests, was significantly reduced in HFD, and this reduction was ameliorated in HFD+OLM. ADP-dependent mitochondrial respiration was significantly decreased, and NAD(P)H oxidase activity and superoxide production by lucigenin chemiluminescence were significantly increased in skeletal muscle from HFD, which were attenuated by OLM. There were no such effects by OLM in ND. We concluded that OLM ameliorated the decrease in exercise capacity in diabetic mice via improvement in mitochondrial function and attenuation of oxidative stress in skeletal muscle. These data may have a clinical impact on exercise capacity in the medical treatment of diabetes mellitus.

  16. Reduced exercise capacity in genetic haemochromatosis.

    PubMed

    Davidsen, Einar Skulstad; Liseth, Knut; Omvik, Per; Hervig, Tor; Gerdts, Eva

    2007-06-01

    Many patients with genetic haemochromatosis complain about fatigue and reduced physical capacity. Exercise capacity, however, has not been evaluated in larger series of haemochromatosis patients treated with repeated phlebotomy. We performed exercise echocardiography in 152 treated haemochromatosis patients (48+/-13 years, 26% women) and 50 healthy blood donors (49+/-13 years, 30% women), who served as controls. Echocardiography was performed at rest and during exercise in a semiupright position on a chair bicycle, starting from 20 W, increasing by 20 W/min. Transmitral early and atrial velocity and isovolumic relaxation time were measured at each step. Ventilatory gas exchange was measured by the breath-to-breath-technique. Compared with healthy controls, haemochromatosis patients were more obese and less trained. More of them smoked, and 17% had a history of cardiovascular or pulmonary disease. Adjusted for training, the left ventricular function and dimensions at rest did not differ between the groups. During exercise the haemochromatosis patients obtained a significantly lower peak oxygen (O2) uptake (28.1 vs. 34.4 ml/kg per min, P<0.001). In a multiple regression analysis haemochromatosis predicted lower peak O2 uptake independently of significant contributions of sex, age, and height, as well as of systolic blood pressure and log-transformed isovolumic relaxation time at peak exercise, whereas no independent association was found with weight or physical activity (multiple R=0.74, P<0.001). Adding genotype, s-ferritin, prevalence of smoking, or history of cardiopulmonary disease among the covariates in subsequent models did not change the results. Genetic haemochromatosis, even when treated with regular phlebotomy, is associated with lower exercise capacity independently of other covariates of exercise capacity.

  17. Chronotropic Incompetence and its Relation to Exercise Intolerance in Chronic Obstructive Pulmonary Disease.

    PubMed

    Liu, Hai-Jian; Guo, Jian; Zhao, Qin-Hua; Wang, Lan; Yang, Wen-Lan; He, Jing; Gong, Su-Gang; Liu, Jin-Ming

    2017-03-01

    To study the relationship between chronotropic incompetence (CI) and disease severity and to assess the effect of CI on exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Arterial blood gas analysis, pulmonary function test and cardiopulmonary exercise testing were conducted in 60 patients with stable COPD and 45 healthy volunteers. CI was defined using the chronotropic response index (CRI = (peak heart rate-resting heart rate) / (220-age-resting heart rate). Based on CRI, patients with COPD were divided into the normal chronotropic group (n = 23) and CI group (n = 37). CI was present in 61.7% of the patients with COPD. Exercise capacity (peak oxygen uptake as percentage of predicted value, peak VO 2 %pred), peak heart rate and CRI were significantly lower in patients with COPD than in controls. However, resting heart rate was significantly higher than in controls. FEV 1 %pred and exercise capacity were significantly decreased in the CI group when compared with those in the normotropic group. There was significant association between CRI with FEV 1 %pred and peak VO 2 %pred. Multivariate regression analysis showed that CRI and FEV 1 %pred were independent predictors of exercise capacity in patients with COPD. A cutoff of 0.74 for the CRI showed a specificity of 94.1% in predicting patients with a peak VO 2 %pred < 60%. CRI was associated with disease severity in patients with COPD. CI may be an important parameter to reflect exercise capacity in patients with COPD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  18. Arm mechanical efficiency and arm exercise capacity are relatively preserved in chronic obstructive pulmonary disease.

    PubMed

    Franssen, Frits M E; Wouters, Emiel F M; Baarends, Erica M; Akkermans, Marco A; Schols, Annemie M W J

    2002-10-01

    Previous studies indicate that energy expenditure related to physical activity is enhanced and that mechanical efficiency of leg exercise is reduced in patients with chronic obstructive pulmonary disease (COPD). However, it is yet unclear whether an inefficient energy expenditure is also present during other activities in COPD. This study was carried out to examine arm efficiency and peak arm exercise performance relative to leg exercise in 33 (23 male) patients with COPD ((mean +/- SEM) age: 61 +/- 2 yr; FEV : 40 +/- 2% of predicted) and 20 sex- and age-matched healthy controls. Body composition, pulmonary function, resting energy expenditure (REE), and peak leg and arm exercise performance were determined. To calculate mechanical efficiency, subjects performed submaximal leg and arm ergometry at 50% of achieved peak loads. During exercise testing, metabolic and ventilatory parameters were measured. In contrast to a reduced leg mechanical efficiency in patients compared with controls (15.6 +/- 0.6% and 22.5 +/- 0.6%, respectively; < 0.001), arm mechanical efficiency was comparable in both groups (COPD: 18.3 +/- 0.9%, controls: 21.0 +/- 1.2%; NS). Arm efficiency was not related to leg efficiency, pulmonary function, work of breathing, or REE. Also, arm exercise capacity was relatively preserved in patients with COPD (ratio arm peak work rate/leg peak work rate in patients: 89% vs 53% in controls; < 0.001). Mechanical efficiency and exercise capacity of the upper and lower limbs are not homogeneously affected in COPD, with a relative preservation of the upper limbs. This may have implications for screening of exercise tolerance and prescription of training interventions in patients with COPD. Future studies need to elucidate the mechanism behind this observation.

  19. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living and physical fitness in patients with cystic fibrosis and healthy subjects.

    PubMed

    Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural

    2015-01-01

    There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of dance therapy on blood pressure and exercise capacity of individuals with hypertension: A systematic review and meta-analysis.

    PubMed

    Conceição, Lino Sergio Rocha; Neto, Mansueto Gomes; do Amaral, Mayra Alves Soares; Martins-Filho, Paulo Ricardo Saquete; Oliveira Carvalho, Vitor

    2016-10-01

    Dance therapy is a less conventional modality of physical activity in cardiovascular rehabilitation. We performed a systematic review and meta-analysis to investigate the effects of dance therapy in hypertensive patients. Pubmed, Scopus, LILACS, IBECS, MEDLINE and SciELO via Virtual Health Library (Bireme) (from the earliest data available to February 2016) for controlled trials that investigated the effects of dance therapy on exercise capacity, systolic (SBP) and diastolic (DBP) blood pressure in hypertensive patients. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I(2) test. Four studies met the eligibility criteria. Dance therapy resulted in a significant reduction in systolic blood pressure (WMD -12.01mmHg; 95% CI: -16.08, -7.94mmHg; P<0.0001) when compared with control subjects. Significant reduction in diastolic blood pressure were also found (WMD -3.38mmHg; 95% CI: -4.81, -1.94mmHg; P<0.0001), compared with control group. Exercise capacity showed a significant improvement (WMD 1.31; 95% CI: 0.16, 2.47; P<0.03). A moderate to high heterogeneity was observed in our analysis: I(2)=92% to SBP, I(2)=55% to DBP, and I(2)=82% to exercise capacity. Our meta-analysis showed a positive effect of dance therapy on exercise capacity and reduction of SBP and DBP in individuals with hypertension. However, the moderate to high heterogeneity found in our analysis limits a pragmatic recommendation of dance therapy in individuals with hypertension. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain.

    PubMed

    Petrie, Meredith; Rejeski, W Jack; Basu, Swati; Laurienti, Paul J; Marsh, Anthony P; Norris, James L; Kim-Shapiro, Daniel B; Burdette, Jonathan H

    2017-09-01

    Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M = 3.91, SE = 0.18, p = .017) following the intervention. Evaluation of peak MET capacity revealed a trend for the exercise + BRJ group to have higher MET capacity following the intervention. Older adults who exercised and consumed BRJ demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without BRJ. The exercise + BRJ group had brain networks that more closely resembled those of younger adults, showing the potential enhanced neuroplasticity conferred by combining exercise and BRJ consumption. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study.

    PubMed

    Mora, Samia; Redberg, Rita F; Cui, Yadong; Whiteman, Maura K; Flaws, Jodi A; Sharrett, A Richey; Blumenthal, Roger S

    2003-09-24

    The value of exercise testing in women has been questioned. To determine the prognostic value of exercise testing in a population-based cohort of asymptomatic women followed up for 20 years. Near-maximal Bruce-protocol treadmill test data from the Lipid Research Clinics Prevalence Study (1972-1976) with follow-up through 1995. A total of 2994 asymptomatic North American women, aged 30 to 80 years, without known cardiovascular disease. Cardiovascular and all-cause mortality. There were 427 (14%) deaths during 20 years of follow-up, of which 147 were due to cardiovascular causes. Low exercise capacity, low heart rate recovery (HRR), and not achieving target heart rate were independently associated with increased all-cause and cardiovascular mortality. There was no increased cardiovascular death risk for exercise-induced ST-segment depression (age-adjusted hazard ratio, 1.02; 95% confidence interval [CI], 0.57-1.80; P =.96). The age-adjusted hazard ratio for cardiovascular death for every metabolic equivalent (MET) decrement in exercise capacity was 1.20 (95% CI, 1.18-1.30; P<.001); for every 10 beats per minute decrement in HRR, the hazard ratio was 1.36 (95% CI, 1.19-1.55; P<.001). After adjusting for multiple other risk factors, women who were below the median for both exercise capacity and HRR had a 3.5-fold increased risk of cardiovascular death (95% CI, 1.57-7.86; P =.002) compared with those above the median for both variables. Among women with low risk Framingham scores, those with below median levels of both exercise capacity and HRR had significantly increased risk compared with women who had above median levels of these 2 exercise variables, 44.5 and 3.5 cardiovascular deaths per 10 000 person-years, respectively (hazard ratio for cardiovascular death, 12.93; 95% CI, 5.62-29.73; P<.001). The prognostic value of exercise testing in asymptomatic women derives not from electrocardiographic ischemia but from fitness-related variables.

  3. Effects of a Community-Based, Post-Rehabilitation Exercise Program in COPD: Protocol for a Randomized Controlled Trial With Embedded Process Evaluation.

    PubMed

    Desveaux, Laura; Beauchamp, Marla K; Lee, Annemarie; Ivers, Noah; Goldstein, Roger; Brooks, Dina

    2016-05-11

    This manuscript (1) outlines the intervention, (2) describes how its effectiveness is being evaluated in a pragmatic randomized controlled trial, and (3) summarizes the embedded process evaluation aiming to understand key barriers and facilitators for implementation in new environments. Participating centers refer eligible individuals with COPD following discharge from their local PR program. Consenting patients are assigned to a year-long community exercise program or usual care using block randomization and stratifying for supplemental oxygen use. Patients in the intervention arm are asked to attend an exercise session at least twice per week at their local community facility where their progress is supervised by a case manager. Each exercise session includes a component of aerobic exercise, and activities designed to optimize balance, flexibility, and strength. All study participants will have access to routine follow-up appointments with their respiratory physician, and additional health care providers as part of their usual care. Assessments will be completed at baseline (post-PR), 6, and 12 months, and include measures of functional exercise capacity, quality of life, self-efficacy, and health care usage. Intervention effectiveness will be assessed by comparing functional exercise capacity between intervention and control groups. A mixed-methods process evaluation will be conducted to better understand intervention implementation, guided by Normalization Process Theory and the Consolidated Framework for Implementation Research. Based on results from our pilot work, we anticipate a maintenance of exercise capacity and improved health-related quality of life in the intervention group, compared with a decline in exercise capacity in the usual care group. Findings from this study will improve our understanding of the effectiveness of community-based exercise programs for maintaining benefits following PR in patients with COPD and provide information on how best to implement them. If effective, the intervention represents an opportunity to transition patients from institutionally-based rehabilitative management to community-based care. The results of the process evaluation will contribute to the science of translating evidence-based programs into regular practice.

  4. Home-based versus center-based aerobic exercise on cardiopulmonary performance, physical function, quality of life and quality of sleep of overweight patients with chronic kidney disease.

    PubMed

    Aoike, Danilo Takashi; Baria, Flavia; Kamimura, Maria Ayako; Ammirati, Adriano; Cuppari, Lilian

    2018-02-01

    The association between chronic kidney disease (CKD) and obesity can decrease the patients' cardiopulmonary capacity, physical functioning and quality of life. The search for effective and practical alternative methods of exercise to engage patients in training programs is of great importance. Therefore, we aimed to compare the effects of home-based versus center-based aerobic exercise on the cardiopulmonary and functional capacities, quality of life and quality of sleep of overweight non-dialysis-dependent patients with CKD (NDD-CKD). Forty sedentary overweight patients CKD stages 3 and 4 were randomly assigned to an exercise group [home-based group (n = 12) or center-based exercise group (n = 13)] or to a control group (n = 15) that did not perform any exercise. Cardiopulmonary exercise test, functional capacity tests, quality of life, quality of sleep and clinical parameters were assessed at baseline, 12 and 24 weeks. The VO 2peak and all cardiopulmonary parameters evaluated were similarly improved (p < 0.05) after 12 and 24 weeks in both exercise groups. The functional capacity tests improved during the follow-up in the home-based group (p < 0.05) and reached values similar to those obtained in the center-based group. The benefits achieved in both exercise groups were also reflected in improvement of quality of life and sleep (p < 0.05). No differences were observed between the exercise groups, and no changes in any of the parameters investigated were found in the control group. Home-based aerobic training was as effective as center-based training in improving the physical and functional capabilities, quality of life and sleep in overweight NDD-CKD patients.

  5. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction.

    PubMed

    Borlaug, Barry A; Melenovsky, Vojtech; Russell, Stuart D; Kessler, Kristy; Pacak, Karel; Becker, Lewis C; Kass, David A

    2006-11-14

    Nearly half of patients with heart failure have a preserved ejection fraction (HFpEF). Symptoms of exercise intolerance and dyspnea are most often attributed to diastolic dysfunction; however, impaired systolic and/or arterial vasodilator reserve under stress could also play an important role. Patients with HFpEF (n=17) and control subjects without heart failure (n=19) generally matched for age, gender, hypertension, diabetes mellitus, obesity, and the presence of left ventricular hypertrophy underwent maximal-effort upright cycle ergometry with radionuclide ventriculography to determine rest and exercise cardiovascular function. Resting cardiovascular function was similar between the 2 groups. Both had limited exercise capacity, but this was more profoundly reduced in HFpEF patients (exercise duration 180+/-71 versus 455+/-184 seconds; peak oxygen consumption 9.0+/-3.4 versus 14.4+/-3.4 mL x kg(-1) x min(-1); both P<0.001). At matched low-level workload, HFpEF subjects displayed approximately 40% less of an increase in heart rate and cardiac output and less systemic vasodilation (all P<0.05) despite a similar rise in end-diastolic volume, stroke volume, and contractility. Heart rate recovery after exercise was also significantly delayed in HFpEF patients. Exercise capacity correlated with the change in cardiac output, heart rate, and vascular resistance but not end-diastolic volume or stroke volume. Lung blood volume and plasma norepinephrine levels rose similarly with exercise in both groups. HFpEF patients have reduced chronotropic, vasodilator, and cardiac output reserve during exercise compared with matched subjects with hypertensive cardiac hypertrophy. These limitations cannot be ascribed to diastolic abnormalities per se and may provide novel therapeutic targets for interventions to improve exercise capacity in this disorder.

  6. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity

    PubMed Central

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G.; Steinberg, Gregory R.

    2016-01-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. PMID:27117007

  7. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    PubMed

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. Copyright © 2016 the American Physiological Society.

  8. Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy.

    PubMed

    Hövels-Gürich, Hedwig H; Konrad, Kerstin; Skorzenski, Daniela; Nacken, Claudia; Minkenberg, Ralf; Messmer, Bruno J; Seghaye, Marie-Christine

    2006-03-01

    The purpose of this prospective study was to assess whether neurodevelopmental status and exercise capacity of children 5 to 10 years after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy was different compared with normal children and influenced by the preoperative condition of hypoxemia or cardiac insufficiency. Forty unselected children, 20 with tetralogy of Fallot and hypoxemia and 20 with ventricular septal defect and cardiac insufficiency, operated on with combined deep hypothermic circulatory arrest and low flow cardiopulmonary bypass at a mean age of 0.7 +/- 0.3 years (mean +/- SD), underwent, at mean age 7.4 +/- 1.6 years, standardized evaluation of neurologic status, gross motor function, intelligence, academic achievement, language, and exercise capacity. Results were compared between the groups and related to preoperative, perioperative, and postoperative status and management. Rate of mild neurologic dysfunction was increased compared with normal children, but not different between the groups. Exercise capacity and socioeconomic status were not different compared with normal children and between the groups. Compared with the normal population, motor function, formal intelligence, academic achievement, and expressive and receptive language were significantly reduced (p < 0.01 to p < 0.001) in the whole group and in the subgroups, except for normal intelligence in ventricular septal defect patients. Motor dysfunction was significantly higher in the Fallot group compared with the ventricular septal defect group (p < 0.01) and correlated with neurologic dysfunction, lower intelligence, and reduced expressive language (p < 0.05 each). Reduced New York Heart Association functional class was correlated with lower exercise capacity and longer duration of cardiopulmonary bypass (p < 0.05 each). Reduced socioeconomic status significantly influenced dysfunction in formal intelligence (p < 0.01) and academic achievement (p < 0.05). Preoperative risk factors such as prenatal hypoxia, perinatal asphyxia, and preterm birth, factors of perioperative management such as cardiac arrest, lowest nasopharyngeal temperature, and age at surgery, and postoperative risk factors as postoperative cardiocirculatory insufficiency and duration of mechanical ventilation were not different between the groups and had no influence on outcome. Degree of hypoxemia in Fallot patients and degree of cardiac insufficiency in ventricular septal defect patients did not influence the outcome within the subgroups. Children with preoperative hypoxemia in infancy are at higher risk for motor dysfunction than children with cardiac insufficiency. Corrective surgery in infancy for tetralogy of Fallot or ventricular septal defect with combined circulatory arrest and low flow bypass is associated with reduced neurodevelopmental outcome, but not with reduced exercise capacity in childhood. In our experience, the general risk of long-term neurodevelopmental impairment is related to unfavorable effects of the global perioperative management. Socioeconomic status influences cognitive capabilities.

  9. Reduced exercise capacity in persons with Down syndrome: cause, effect, and management

    PubMed Central

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2010-01-01

    Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759

  10. Benefits of physical exercise training on cognition and quality of life in frail older adults.

    PubMed

    Langlois, Francis; Vu, Thien Tuong Minh; Chassé, Kathleen; Dupuis, Gilles; Kergoat, Marie-Jeanne; Bherer, Louis

    2013-05-01

    Frailty is a state of vulnerability associated with increased risks of fall, hospitalization, cognitive deficits, and psychological distress. Studies with healthy senior suggest that physical exercise can help improve cognition and quality of life. Whether frail older adults can show such benefits remains to be documented. A total of 83 participants aged 61-89 years were assigned to an exercise-training group (3 times a week for 12 weeks) or a control group (waiting list). Frailty was determined by a complete geriatric examination using specific criteria. Pre- and post-test measures assessed physical capacity, cognitive performance, and quality of life. Compared with controls, the intervention group showed significant improvement in physical capacity (functional capacities and physical endurance), cognitive performance (executive functions, processing speed, and working memory), and quality of life (global quality of life, leisure activities, physical capacity, social/family relationships, and physical health). Benefits were overall equivalent between frail and nonfrail participants. Physical exercise training leads to improved cognitive functioning and psychological well-being in frail older adults.

  11. Effects of exercise on fatigue, sleep, and performance: a randomized trial.

    PubMed

    Coleman, Elizabeth Ann; Goodwin, Julia A; Kennedy, Robert; Coon, Sharon K; Richards, Kathy; Enderlin, Carol; Stewart, Carol B; McNatt, Paula; Lockhart, Kim; Anaissie, Elias J

    2012-09-01

    To compare usual care with a home-based individualized exercise program (HBIEP) in patients receiving intensive treatment for multiple myeloma (MM)and epoetin alfa therapy. Randomized trial with repeated measures of two groups (one experimental and one control) and an approximate 15-week experimental period. Outpatient setting of the Myeloma Institute for Research and Therapy at the Rockfellow Cancer Center at the University of Arkansas for Medical Sciences. 187 patients with newly diagnosed MM enrolled in a separate study evaluating effectiveness of the Total Therapy regimen, with or without thalidomide. Measurements included the Profile of Mood States fatigue scale, Functional Assessment of Cancer Therapy-Fatigue, ActiGraph® recordings, 6-Minute Walk Test, and hemoglobin levels at baseline and before and after stem cell collection. Descriptive statistics were used to compare demographics and treatment effects, and repeated measures analysis of variance was used to determine effects of HBIEP. Fatigue, nighttime sleep, performance (aerobic capacity) as dependent or outcome measures, and HBIEP combining strength building and aerobic exercise as the independent variable. Both groups were equivalent for age, gender, race, receipt of thalidomide, hemoglobin levels, and type of treatment regimen for MM. No statistically significant differences existed among the experimental and control groups for fatigue, sleep, or performance (aerobic capacity). Statistically significant differences (p < 0.05) were found in each of the study outcomes for all patients as treatment progressed and patients experienced more fatigue and poorer nighttime sleep and performance (aerobic capacity). The effect of exercise seemed to be minimal on decreasing fatigue, improving sleep, and improving performance (aerobic capacity). Exercise is safe and has physiologic benefits for patients undergoing MM treatment; exercise combined with epoetin alfa helped alleviate anemia.

  12. Dietary nitrate supplementation in COPD: an acute, double-blind, randomized, placebo-controlled, crossover trial.

    PubMed

    Kerley, Conor P; Cahill, Kathleen; Bolger, Kenneth; McGowan, Aisling; Burke, Conor; Faul, John; Cormican, Liam

    2015-01-30

    The acute consumption of dietary nitrate has been shown to improve exercise capacity in athletes, healthy adults and subjects with peripheral vascular disease. Many COPD patients have reduced exercise capacity. We hypothesized that acute nitrate consumption might increase incremental shuttle walk test (ISWT) distance in COPD subjects. Eleven COPD subjects were randomly assigned to consume either a high nitrate or a matched, low nitrate beverage in a double-blind, randomized, placebo-controlled, crossover design. ISWT distance was measured both before and 3 h after the beverage and change was recorded. After a 7-day washout, ISWT distances were re-measured before and 3 h after the alternate beverage and changes were recorded. We observed an increase in ISWT distance after consuming the high nitrate juice (25 m) compared with a reduction after the low nitrate juice (14 m) (p < 0.01). This improvement in exercise capacity was associated with significant increases in serum nitrate (p < 0.000005) and nitrite (p < 0.01) levels and a significant lowering of resting blood pressure (<0.05). In patients with stable COPD, the acute consumption of dietary nitrate increased serum nitrate/nitrite levels and exercise capacity and was associated with a decrease in resting blood pressure. Nitrate consumption might alter exercise capacity in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.

    PubMed

    Radtke, Thomas; Hebestreit, Helge; Gallati, Sabina; Schneiderman, Jane E; Braun, Julia; Stevens, Daniel; Hulzebos, Erik Hj; Takken, Tim; Boas, Steven R; Urquhart, Don S; Lands, Larry C; Tejero, Sergio; Sovtic, Aleksandar; Dwyer, Tiffany; Petrovic, Milos; Harris, Ryan A; Karila, Chantal; Savi, Daniela; Usemann, Jakob; Mei-Zahav, Meir; Hatziagorou, Elpis; Ratjen, Felix; Kriemler, Susi

    2018-02-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human skeletal muscle cells. Variations of CFTR dysfunction among patients with cystic fibrosis may be an important determinant of maximal exercise capacity in cystic fibrosis. Previous studies on the relationship between CFTR genotype and maximal exercise capacity are scarce and contradictory. This study was designed to explore factors influencing maximal exercise capacity, expressed as peak oxygen uptake (V.O2peak), with a specific focus on CFTR genotype in children and adults with cystic fibrosis. In an international, multicenter, cross-sectional study, we collected data on CFTR genotype and cardiopulmonary exercise tests in patients with cystic fibrosis who were ages 8 years and older. CFTR mutations were classified into functional classes I–V. The final analysis included 726 patients (45% females; age range, 8–61 yr; forced expiratory volume in 1 s, 16 to 123% predicted) from 17 cystic fibrosis centers in North America, Europe, Australia, and Asia, all of whom had both valid maximal cardiopulmonary exercise tests and complete CFTR genotype data. Overall, patients exhibited exercise intolerance (V.O2peak, 77.3 ± 19.1% predicted), but values were comparable among different CFTR classes. We did not detect an association between CFTR genotype functional classes I–III and either V.O2peak (percent predicted) (adjusted β = −0.95; 95% CI, −4.18 to 2.29; P = 0.57) or maximum work rate (Wattmax) (adjusted β = −1.38; 95% CI, −5.04 to 2.27; P = 0.46) compared with classes IV–V. Those with at least one copy of a F508del-CFTR mutation and one copy of a class V mutation had a significantly lower V.O2peak (β = −8.24%; 95% CI, −14.53 to −2.99; P = 0.003) and lower Wattmax (adjusted β = −7.59%; 95% CI, −14.21 to −0.95; P = 0.025) than those with two copies of a class II mutation. On the basis of linear regression analysis adjusted for relevant confounders, lung function and body mass index were associated with V.O2peak. CFTR functional genotype class was not associated with maximal exercise capacity in patients with cystic fibrosis overall, but those with at least one copy of a F508del-CFTR mutation and a single class V mutation had lower maximal exercise capacity.

  14. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type1 Diabetes.

    PubMed

    Dotzert, Michelle S; McDonald, Matthew W; Murray, Michael R; Nickels, J Zachary; Noble, Earl G; Melling, C W James

    2017-12-04

    Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Is exercise training safe and beneficial in patients receiving left ventricular assist device therapy?

    PubMed

    Alsara, Osama; Perez-Terzic, Carmen; Squires, Ray W; Dandamudi, Sanjay; Miranda, William R; Park, Soon J; Thomas, Randal J

    2014-01-01

    Because a limited number of patients receive heart transplantation, alternative therapies, such as left ventricular assist device (LVAD) therapy, have emerged. Published studies have shown that LVAD implantation, by itself, improves exercise tolerance to the point where it is comparable to those with mild heart failure. The improvement in exercise capacity is maximally achieved 12 weeks after LVAD therapy and can continue even after explantation of the device. This effect varies, depending on the type of LVAD and exercise training. The available data in the literature on safety and benefits of exercise training in patients after LVAD implantation are limited, but the data that are available suggest that training trends to be safe and have an impact on exercise capacity in LVAD patients. Although no studies were identified on the role of cardiac rehabilitation programs in the management of LVAD patients, it appears that cardiac rehabilitation programs offer an ideal setting for the provision of supervised exercise training in this patient group.

  16. Internet Program for Physical Activity and Exercise Capacity in Children With Juvenile Idiopathic Arthritis: A Multicenter Randomized Controlled Trial.

    PubMed

    Armbrust, Wineke; Bos, G J F Joyce; Wulffraat, Nico M; van Brussel, Marco; Cappon, Jeannette; Dijkstra, Pieter U; Geertzen, Jan H B; Legger, G Elizabeth; van Rossum, Marion A J; Sauer, Pieter J J; Lelieveld, Otto T H M

    2017-07-01

    To determine the effects of Rheumates@Work, an internet-based program supplemented with 4 group sessions, aimed at improving physical activity, exercise capacity, health-related quality of life (HRQoL), and participation in children with juvenile idiopathic arthritis. Patients were recruited from 3 pediatric rheumatology centers in The Netherlands for an observer-blinded, randomized controlled multicenter trial. Physical activity level, time spent in rest, light, and moderate-to-vigorous physical activity (MVPA) were recorded in a diary and with an accelerometer, before intervention, after intervention, and at followup after 3 and 12 months (intervention group only). Exercise capacity was assessed using the Bruce treadmill protocol, HRQoL was assessed with the Pediatric Quality of Life Inventory generic core scale, and participation in school and in physical education classes were assessed by questionnaire. The intervention group consisted of 28 children, and there were 21 children in the control group. MVPA , exercise capacity, and participating in school and physical education classes improved significantly in the intervention group. HRQoL improved in the control group. No significant differences were found between groups. The effect of Rheumates@Work on physical activity and exercise capacity lasted during the 12 months of followup. Improvements in physical activity were significantly better for the cohort starting in winter compared to the summer cohort. Rheumates@Work had a positive, albeit small, effect on physical activity, exercise capacity, and participation in school and physical education class in the intervention group. Improvements lasted for 12 months. Participants who started in winter showed the most improvement. Rheumates@Work had no effect on HRQoL. © 2016, American College of Rheumatology.

  17. Relation of exercise capacity with lung volumes before and after 6-minute walk test in subjects with COPD.

    PubMed

    Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-11-01

    There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.

  18. Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity.

    PubMed

    Torma, Ferenc; Koltai, Erika; Nagy, Enikő; Ziaaldini, Mohammad Mosaferi; Posa, Aniko; Koch, Lauren G; Britton, Steven L; Boldogh, Istvan; Radak, Zsolt

    2014-01-01

    The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.

  19. What's the secret behind the benefits of whole-body vibration training in patients with COPD? A randomized, controlled trial.

    PubMed

    Gloeckl, Rainer; Jarosch, Inga; Bengsch, Ulrike; Claus, Magdalena; Schneeberger, Tessa; Andrianopoulos, Vasileios; Christle, Jeffrey W; Hitzl, Wolfgang; Kenn, Klaus

    2017-05-01

    Several studies have shown that whole-body vibration training (WBVT) improves exercise capacity in patients with severe COPD. The aim of this study was to investigate the determinants of improved exercise capacity following WBVT. Seventy-four COPD patients (FEV 1 : 34 ± 9%predicted) were recruited during a 3-week inpatient pulmonary rehabilitation (PR) program. Conventional endurance and strength exercises were supplemented with self-paced dynamic squat training sessions (4bouts*2min, 3times/wk). Patients were randomly allocated to either a WBVT-group performing squat training on a side-alternating vibration platform (Galileo) at a high intensity (24-26 Hz) or a control group performing squat training without WBVT. Patients in the WBVT group significantly improved postural balance in several domains compared to the control-group (i.e. tandem stance: WBVT +20% (95%CI 14 to 26) vs. control -10% (95%CI 6 to 15), p < 0.001; one-leg stance: WBVT +11% (95%CI 4 to 19) vs. control -8% (95%CI -19 to 3), p = 0.009). Six-minute walk distance and muscle power but not muscle strength were also significantly improved compared to control group. Implementation of WBVT improves postural balance performance and muscle power output. The neuromuscular adaptation related to improved balance performance may be an important mechanism of the improvement in exercise capacity after WBVT especially in COPD patients with impaired balance performance and low exercise capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    PubMed

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  1. Predictors and Association With Clinical Outcomes of the Changes in Exercise Capacity After Transcatheter Aortic Valve Replacement.

    PubMed

    Abdul-Jawad Altisent, Omar; Puri, Rishi; Regueiro, Ander; Chamandi, Chekrallah; Rodriguez-Gabella, Tania; Del Trigo, Maria; Campelo-Parada, Francisco; Couture, Thomas; Marsal, Josep Ramon; Côté, Mélanie; Paradis, Jean-Michel; DeLarochellière, Robert; Doyle, Daniel; Mohammadi, Siamak; Dumont, Eric; Rodés-Cabau, Josep

    2017-08-15

    At present, there are no objective data specifically examining the clinical impact of variations in exercise capacity post-transcatheter aortic valve replacement (TAVR). We describe the changes in exercise capacity between baseline and 6 months post-TAVR, and ascertain factors associated with and clinical implications of a lack of improvement in exercise capacity post-TAVR. A total of 305 patients (mean age, 79±9 years; 44% men; Society of Thoracic Surgeons predicted risk mortality score, 6.7±4.2%) undergoing TAVR completed both baseline and follow-up exercise capacity assessments at 6 months post-TAVR. Exercise capacity was evaluated by the 6-minute walk test (6MWT). Clinical outcomes were compared between patients displaying greater than (n=152; improving group) versus less than (n=153; nonimproving group) the median percentage change in distance walked between baseline and 6-month follow-up examinations. The primary outcome measure was clinical event rates, measured from the 6-month post-TAVR period onward. Further dichotomization according to baseline 6MWT distance (less than versus more than median walking distance, or slow walker versus fast walker) was also assessed. The mean overall distances walked pre- and post-TAVR (6 months post-TAVR) were 204±119 and 263±116 m, respectively (Δ6MWT=60±106 m), with 219 (72%) patients demonstrating an increase in their walking distance (median percentage increase of the entire population was 20% [interquartile range, 0%-80%]). Factors independently correlated with reduced exercise capacity improvement included a range of baseline clinical characteristics (older age, female sex, chronic obstructive pulmonary disease; P <0.05 for all), periprocedural major or life-threatening bleeding ( P =0.009) and new-onset anemia at 6 months post-TAVR ( P =0.009). Failure to improve the 6MWT distance by at least 20% was independently associated with all-cause mortality ( P =0.002) and cardiovascular death or rehospitalization for cardiovascular causes ( P =0.001). Baseline slow walkers who were able to improve the 6MWT distance presented with significantly better outcomes than nonimprovers ( P =0.01 for all-cause mortality; P =0.001 for cardiovascular end point). Approximately one-third of patients undergoing TAVR did not improve their exercise capacity postprocedure. The lack of functional improvement post-TAVR was predicted by a mix of baseline and periprocedural factors translating into poorer clinical outcomes. These results suggest that systematically implementing exercise capacity assessment pre- and post-TAVR may help to improve patient risk stratification. © 2017 American Heart Association, Inc.

  2. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled TeleR Study.

    PubMed

    Tsai, Ling Ling Y; McNamara, Renae J; Moddel, Chloe; Alison, Jennifer A; McKenzie, David K; McKeough, Zoe J

    2017-05-01

    Telerehabilitation has the potential to increase access to pulmonary rehabilitation (PR) for patients with COPD who have difficulty accessing centre-based PR due to poor mobility, lack of transport and cost of travel. We aimed to determine the effect of supervised, home-based, real-time videoconferencing telerehabilitation on exercise capacity, self-efficacy, health-related quality of life (HRQoL) and physical activity in patients with COPD compared with usual care without exercise training. Patients with COPD were randomized to either a supervised home-based telerehabilitation group (TG) that received exercise training three times a week for 8 weeks or a control group (CG) that received usual care without exercise training. Outcomes were measured at baseline and following the intervention. Thirty-six out of 37 participants (mean ± SD age = 74 ± 8 years, forced expiratory volume in 1 s (FEV 1 ) = 64 ± 21% predicted) completed the study. Compared with the CG, the TG showed a statistically significant increase in endurance shuttle walk test time (mean difference = 340 s (95% CI: 153-526, P < 0.001)), an increase in self-efficacy (mean difference = 8 points (95% CI: 2-14, P < 0.007)), a trend towards a statistically significant increase in the Chronic Respiratory Disease Questionnaire total score (mean difference = 8 points (95% CI: -1 to 16, P = 0.07)) and no difference in physical activity (mean difference = 475 steps per day (95% CI: -200 to 1151, P = 0.16)). This study showed that telerehabilitation improved endurance exercise capacity and self-efficacy in patients with COPD when compared with usual care. © 2016 Asian Pacific Society of Respirology.

  3. The joint impact of smoking and exercise capacity on clinical outcomes among women with suspected myocardial ischemia: the WISE study.

    PubMed

    Linke, Sarah E; Rutledge, Thomas; Johnson, B Delia; Olson, Marian B; Bittner, Vera; Cornell, Carol E; Shaw, Leslee J; Eteiba, Wafia; Parashar, Susmita; Sheps, David S; Vido, Diane A; Mulukutla, Suresh; Bairey Merz, C Noel

    2009-04-01

    Although extensive research has been conducted on both smoking and low exercise capacity alone, few studies have examined the joint impact or interaction of these two risk factors. We examined the joint and interactive effects of smoking and self-reported exercise capacity on subsequent clinical events (heart failure, myocardial infarction [MI], stroke, and cardiovascular-related mortality) among women with suspected myocardial ischemia. At baseline (1996-1999), 789 women completed angiographic testing of coronary artery disease (CAD) severity and provided self-report information about their smoking history and exercise capacity as well as demographic and other risk factor data. Incidence of clinical events among the women was tracked for a median of 5.9 years; this analysis was conducted in 2008. In an adjusted survival analysis, women with a positive smoking history and self-reported low exercise capacity had the greatest risk of experiencing a clinical event (HR = 7.7, 95% CI 2.3, 25.5), followed by women with a positive smoking history and self-reported high exercise capacity (HR = 6.9, 95% CI 2.0, 24.6) and those with a negative smoking history and self-reported low exercise capacity (HR = 4.9, 95% CI 1.5, 15.8), relative to women with a negative smoking history and self-reported high exercise capacity. Additional analyses revealed a significant interaction between smoking history and exercise capacity, such that (1) women with a positive smoking history did not experience an additional significantly greater risk due to low exercise capacity, unlike those with a negative smoking history, and (2) all women experienced a significantly greater risk due to a positive smoking history regardless of their exercise capacity. Among women with suspected myocardial ischemia, the combined protective health effects of self-reported high exercise capacity and a negative smoking history remained significant after controlling for preexisting CAD severity and other established risk factors. These findings highlight the importance of studying behavioral risk factors in combination.

  4. The effect of habitual waterpipe tobacco smoking on pulmonary function and exercise capacity in young healthy males: A pilot study.

    PubMed

    Hawari, F I; Obeidat, N A; Ghonimat, I M; Ayub, H S; Dawahreh, S S

    2017-01-01

    Evidence regarding the health effects of habitual waterpipe smoking is limited, particularly in young smokers. Respiratory health and cardiopulmonary exercise tests were compared in young male habitual waterpipe smokers (WPS) versus non-smokers. 69 WPS (≥3 times/week for three years) and 69 non-smokers were studied. Respiratory health was assessed through the American Thoracic Society and the Division of Lung Diseases (ATS-DLD-78) adult questionnaire. Pulmonary function and cardiopulmonary exercise tests were performed. Self-reported respiratory symptoms, forced expiratory volume in first second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC ratio, forced expiratory flow between 25 and 75% of FVC (FEF 25-75% ), peak expiratory flow (PEF), exercise time, peak end-tidal CO 2 tension (PetCO 2 ), subject-reported leg fatigue and dyspnea; peak O 2 uptake (VO 2 max), and end-expiratory lung volume (EELV) change from baseline (at peak exercise) were measured. WPS were more likely than non-smokers to report respiratory symptoms. WPS also demonstrated: shorter exercise time; lower peak VO 2 ; higher perceived dyspnea at mid-exercise; lower values of the following: FEV 1 , FVC, PEF, and EELV change. Habitual waterpipe tobacco smoking in young seemingly healthy individuals is associated with a greater burden of respiratory symptoms and impaired exercise capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Effect of Aerobic or Aerobic-Strength Exercise on Body Composition and Functional Capacity in Patients with BMI ≥35 after Bariatric Surgery: a Randomized Control Trial.

    PubMed

    Hassannejad, Alireza; Khalaj, Alireza; Mansournia, Mohammad Ali; Rajabian Tabesh, Mastaneh; Alizadeh, Zahra

    2017-11-01

    Although previous studies suggested that bariatric surgery is the most effective and sustainable treatment method for morbid obesity in long term, but without changing in lifestyle, maintaining optimal weight loss is almost impossible. Sixty morbid obese patients (BMI ≥ 35) were evaluated before and after 12 weeks of bariatric surgery in order to compare the impact of two different exercise programs on body composition and functional capacity outcomes. Participants were divided into three groups: aerobic (A), aerobic-strength (AS), and control (C) group. Aerobic capacity was assessed with 12-min walk-run test (12MWRT). One-repetition maximum (1RM) test was performed to evaluation upper limb muscle strength. Lower extremity functional capacity was assessed by sit-to-stand test. Weight, percent body fat (PBF), and fat mass (FM) reduced greater in the trial groups in comparison to the C group (P < 0.05). In the AS group, the reduction of fat-free mass (FFM) was significantly lower than that in the other groups. Mean changes in 12MWRT increased significantly in the intervention groups. The mean change in the sit-to-stand scores was not statistically significant between the three groups. Comparing the intervention groups showed that mean changes in 1RM variables increased in AS group (P = 0.03). The data suggests a positive effect of exercise on weight and PBF decrease after surgery, and it leads to significant improvement on aerobic capacity. Moreover, doing resisted exercise caused greater preserving of lean mass.

  6. 14 CFR 385.8 - Exercise of authority in “acting” capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Exercise of authority in âactingâ capacity... Provisions § 385.8 Exercise of authority in “acting” capacity. Unless the assignment provides otherwise, staff members serving in an “acting” capacity may exercise the authority assigned to the staff members...

  7. 14 CFR 385.8 - Exercise of authority in “acting” capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Exercise of authority in âactingâ capacity... Provisions § 385.8 Exercise of authority in “acting” capacity. Unless the assignment provides otherwise, staff members serving in an “acting” capacity may exercise the authority assigned to the staff members...

  8. 14 CFR 385.8 - Exercise of authority in “acting” capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Exercise of authority in âactingâ capacity... Provisions § 385.8 Exercise of authority in “acting” capacity. Unless the assignment provides otherwise, staff members serving in an “acting” capacity may exercise the authority assigned to the staff members...

  9. 14 CFR 385.8 - Exercise of authority in “acting” capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Exercise of authority in âactingâ capacity... Provisions § 385.8 Exercise of authority in “acting” capacity. Unless the assignment provides otherwise, staff members serving in an “acting” capacity may exercise the authority assigned to the staff members...

  10. 14 CFR 385.8 - Exercise of authority in “acting” capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Exercise of authority in âactingâ capacity... Provisions § 385.8 Exercise of authority in “acting” capacity. Unless the assignment provides otherwise, staff members serving in an “acting” capacity may exercise the authority assigned to the staff members...

  11. Effect of exercise test on pulmonary function of obese adolescents.

    PubMed

    Faria, Alethéa Guimarães; Ribeiro, Maria Angela G O; Marson, Fernando Augusto Lima; Schivinski, Camila Isabel S; Severino, Silvana Dalge; Ribeiro, José Dirceu; Barros Filho, Antônio A

    2014-01-01

    to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Endurance Exercise in Hypoxia, Hyperoxia and Normoxia: Mitochondrial and Global Adaptations.

    PubMed

    Przyklenk, Axel; Gutmann, Boris; Schiffer, Thorsten; Hollmann, Wildor; Strueder, Heiko K; Bloch, Wilhelm; Mierau, Andreas; Gehlert, Sebastian

    2017-07-01

    We hypothesized short-term endurance exercise (EN) in hypoxia (HY) to exert decreased mitochondrial adaptation, peak oxygen consumption (VO 2peak ) and peak power output (PPO) compared to EN in normoxia (NOR) and hyperoxia (PER). 11 male subjects performed repeated unipedal cycling EN in HY, PER, and NOR over 4 weeks in a cross-over design. VO 2peak , PPO, rate of perceived exertion (RPE) and blood lactate (Bla) were determined pre- and post-intervention to assess physiological demands and adaptation. Skeletal muscle biopsies were collected to determine molecular mitochondrial signaling and adaptation. Despite reduced exercise intensity (P<0.05), increased Bla and RPE levels in HY revealed higher metabolic load compared to PER (P<0.05) and NOR (n.s.). PPO increased in all groups (P<0.05) while VO 2peak and mitochondrial signaling were unchanged (P>0.05). Electron transport chain complexes tended to increase in all groups with the highest increase in HY (n.s.). EN-induced mitochondrial adaptability and exercise capacity neither decreased significantly in HY nor increased in PER compared to NOR. Despite decreased exercise intensity, short term EN under HY may not necessarily impair mitochondrial adaptation and exercise capacity while PER does not augment adaptation. HY might strengthen adaptive responses under circumstances when absolute training intensity has to be reduced. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Exercise-based cardiac rehabilitation in patients with heart failure: a meta-analysis of randomised controlled trials between 1999 and 2013.

    PubMed

    Lewinter, Christian; Doherty, Patrick; Gale, Christopher P; Crouch, Simon; Stirk, Lisa; Lewin, Robert J; LeWinter, Martin M; Ades, Philip A; Køber, Lars; Bland, John M

    2015-12-01

    Guidelines recommend exercise-based cardiac rehabilitation (EBCR) for patients with heart failure (HF). However, established research has not investigated the longer-term outcomes including mortality and hospitalisation in light of the contemporary management of HF. This was a systematic review including a meta-analysis of EBCR on all-cause mortality, hospital admission, and standardised exercise capacity using four separate exercise tests in patients with heart failure over a minimum follow-up of six months from January 1999-January 2013. Electronic searches were performed in the databases: Medline, CENTRAL, EMBASE, CINAHL, and PsycINFO constrained to randomised controlled trials (RCTs). A total of 46 separate RCTs qualified for the meta-analysis, which employed conventional methods for binary and continuous data. The relative risk (RR) ratio for hospital admission (12 studies) was significantly reduced (RR ratio 0.65; 95% confidence interval (CI) 0.50-0.84; p = 0.001), but mortality (21 studies) was not (RR ratio 0.88; 95% CI 0.77-1.02; p = 0.08). The standardised exercise capacity (26 studies) showed a standardised mean difference (SMD) in favour of the exercise group as compared with the controls (SMD 0.98, 95% CI 0.59-1.37; p < 0.001). Women and elderly people were less frequently enrolled in the RCTs independent of the outcomes. Heterogeneity was moderate to high in the analysis of hospital admission and the standardised exercise capacity demonstrated through skewedness in their funnel plots. EBCR in patients with HF is associated with significant improvements in exercise capacity and hospital admission over a minimum of six months follow-up, but not in all-cause mortality. © The European Society of Cardiology 2014.

  14. Effects of Endurance Training at the Crossover Point in Women with Metabolic Syndrome.

    PubMed

    Borel, Benoit; Coquart, Jérémy; Boitel, Guillaume; Duhamel, Alain; Matran, Régis; Delsart, Pascal; Mounier-Vehier, Claire; Garcin, Murielle

    2015-11-01

    On the basis of theoretical evidence, intensity at the crossover point (COP) of substrate utilization could be considered as potential exercise intensity for metabolic syndrome (MetS). This study aimed to examine the effects of a training program at COP on exercise capacity parameters in women with MetS and to compare two metabolic indices (COP and the maximal fat oxidation rate point LIPOXmax®) with ventilatory threshold (VT). Nineteen women with MetS volunteered to perform a 12-wk training program on a cycle ergometer, with intensity corresponding to COP. Pre- and posttraining values of anthropometric and exercise capacity parameters were compared to determine the effects of exercise training. The pre-post training change of COP, LIPOXmax®, and VT were also investigated. After training, anthropometric parameters were significantly modified, with reduction of body mass (3.0% ± 3.0%, P < 0.001), fat mass (3.3% ± 3.4%, P < 0.001), and body mass index (3.2% ± 3.4%, P < 0.001). Exercise capacity was improved after the training program, with significant increase of maximal power output (25.0% ± 18.4%, P < 0.001) and maximal oxygen uptake (V˙O2max, 9.0% ± 11.2%; P < 0.01). Lastly, when expressed in terms of power output, COP, LIPOXmax®, and VT occurred at a similar exercise intensity, but the occurrence of these three indices is different when expressed in terms of oxygen uptake, HR, or RPE. This study highlights the effectiveness of a 12-wk training program at COP to improve physical fitness in women with MetS. The relations between metabolic indices and VT in terms of power output highlight the determination of VT from a shorter maximal exercise as a useful method for determining metabolic indices in MetS.

  15. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis--a randomised controlled trial.

    PubMed

    Lee, Annemarie L; Hill, Catherine J; Cecins, Nola; Jenkins, Sue; McDonald, Christine F; Burge, Angela T; Rautela, Linda; Stirling, Robert G; Thompson, Philip J; Holland, Anne E

    2014-04-15

    Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1-3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1-3]) compared to the control group (2[1-3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. ClinicalTrials.gov (NCT00885521).

  16. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis – a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Methods Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Results Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1–3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1–3]) compared to the control group (2[1–3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Conclusions Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. Trial registry ClinicalTrials.gov (NCT00885521). PMID:24731015

  17. Optimizing functional exercise capacity in the elderly surgical population.

    PubMed

    Carli, Franco; Zavorsky, Gerald S

    2005-01-01

    There are several studies on the effect of exercise post surgery (rehabilitation), but few studies have looked at augmenting functional capacity prior to surgical admission (prehabilitation). A programme of prehabilitation is proposed in order to enhance functional exercise capacity in elderly patients with the intent to minimize the postoperative morbidity and accelerate postsurgical recovery. Few studies have looked at exercise prehabilitation to improve functional capacity prior to surgical admission. Prehabilitation prior to orthopaedic surgery does not seem to improve quality of life or recovery. However, prehabilitation prior to abdominal or cardiac surgery, based on 275 elderly patients, results in fewer postoperative complications, shorter postoperative length of stay, improved quality of life, and reduced declines in functional disability compared to sedentary controls. A concentrated 3-month progressive exercise prehabilitation programme consisting of aerobic training at 45-65% of maximal heart rate reserve (%HRR) along with periodic high-intensity interval training ( approximately 90% HRR) four times per week, 30-50 minutes per session, is recommended for improving cardiovascular functioning. A strength training programme of about 10 different exercises focused on large, multi-jointed muscle groups should also be implemented twice per week at a mean training intensity of 80% of one-repetition maximum. Finally, a minimum of 140 g ( approximately 560 kcal) of carbohydrate (CHO) should be taken 3 h before training to increase liver and muscle glycogen stores and a minimum of about 200 kcal of mixed protein-CHO should be ingested within 30 min following training to enhance muscle hypertrophy.

  18. The influence of age, gender, and training on exercise efficiency.

    PubMed

    Woo, J Susie; Derleth, Christina; Stratton, John R; Levy, Wayne C

    2006-03-07

    The aim of this study was to determine whether changes in oxygen efficiency occur with aging or exercise training in healthy young and older subjects. Exercise capacity declines with age and improves with exercise training. Whether changes in oxygen efficiency, defined as the oxygen cost per unit work, contributes to the effects of aging or training has not yet been defined. Sixty-one healthy subjects were recruited into four groups of younger women (ages 20 to 33 years, n = 15), younger men (ages 20 to 30 years, n = 12), older women (ages 65 to 79 years, n = 16), and older men (ages 65 to 77 years, n = 18). All subjects underwent cardiopulmonary exercise testing to analyze aerobic parameters before and after three to six months of supervised aerobic exercise training. Before training, younger subjects had a much higher exercise capacity, as shown by a 42% higher peak oxygen consumption (VO2) (ml/kg/min, p < 0.0001). This was associated with an 11% lower work VO2/W (p = 0.02) and an 8% higher efficiency than older subjects (p = 0.03). With training, older subjects displayed a larger increase in peak W/kg (+29% vs. +12%, p = 0.001), a larger decrease in work VO2/W (-24% vs. -2%, p < 0.0001), and a greater improvement in exercise efficiency (+30% vs. 2%, p < 0.0001) compared to the young. Older age is associated with a decreased exercise efficiency and an increase in the oxygen cost of exercise, which contribute to a decreased exercise capacity. These age-related changes are reversed with exercise training, which improves efficiency to a greater degree in the elderly than in the young.

  19. Cardiovascular Effects of 1 Year of Alagebrium and Endurance Exercise Training in Healthy Older Individuals

    PubMed Central

    Fujimoto, Naoki; Hastings, Jeffrey L.; Carrick-Ranson, Graeme; Shafer, Keri M.; Shibata, Shigeki; Bhella, Paul S.; Abdullah, Shuaib M.; Barkley, Kyler W.; Adams-Huet, Beverley; Boyd, Kara N.; Livingston, Sheryl A.; Palmer, Dean; Levine, Benjamin D.

    2014-01-01

    Background Lifelong exercise training maintains a youthful compliance of the left ventricle (LV), whereas a year of exercise training started later in life fails to reverse LV stiffening, possibly because of accumulation of irreversible advanced glycation end products. Alagebrium breaks advanced glycation end product crosslinks and improves LV stiffness in aged animals. However, it is unclear whether a strategy of exercise combined with alagebrium would improve LV stiffness in sedentary older humans. Methods and Results Sixty-two healthy subjects were randomized into 4 groups: sedentary+placebo; sedentary+alagebrium (200 mg/d); exercise+placebo; and exercise+alagebrium. Subjects underwent right heart catheterization to define LV pressure–volume curves; secondary functional outcomes included cardiopulmonary exercise testing and arterial compliance. A total of 57 of 62 subjects (67±6 years; 37 f/20 m) completed 1 year of intervention followed by repeat measurements. Pulmonary capillary wedge pressure and LV end-diastolic volume were measured at baseline, during decreased and increased cardiac filling. LV stiffness was assessed by the slope of LV pressure–volume curve. After intervention, LV mass and end-diastolic volume increased and exercise capacity improved (by ≈8%) only in the exercise groups. Neither LV mass nor exercise capacity was affected by alagebrium. Exercise training had little impact on LV stiffness (training×time effect, P=0.46), whereas alagebrium showed a modest improvement in LV stiffness compared with placebo (medication×time effect, P=0.04). Conclusions Alagebrium had no effect on hemodynamics, LV geometry, or exercise capacity in healthy, previously sedentary seniors. However, it did show a modestly favorable effect on age-associated LV stiffening. PMID:24130005

  20. Can endurance training improve physical capacity and quality of life in young Fontan patients?

    PubMed

    Hedlund, Eva R; Lundell, Bo; Söderström, Liselott; Sjöberg, Gunnar

    2018-03-01

    Children after Fontan palliation have reduced exercise capacity and quality of life. Our aim was to study whether endurance training could improve physical capacity and quality of life in Fontan patients. Fontan patients (n=30) and healthy age- and gender-matched control subjects (n=25) performed a 6-minute walk test at submaximal capacity and a maximal cycle ergometer test. Quality of life was assessed with Pediatric Quality of Life Inventory Version 4.0 questionnaires for children and parents. All tests were repeated after a 12-week endurance training programme and after 1 year. Patients had decreased submaximal and maximal exercise capacity (maximal oxygen uptake 35.0±5.1 ml/minute per·kg versus 43.7±8.4 ml/minute·per·kg, p<0.001) and reported a lower quality of life score (70.9±9.9 versus 85.7±8.0, p<0.001) than controls. After training, patients improved their submaximal exercise capacity in a 6-minute walk test (from 590.7±65.5 m to 611.8±70.9 m, p<0.05) and reported a higher quality of life (p<0.01), but did not improve maximal exercise capacity. At follow-up, submaximal exercise capacity had increased further and improved quality of life was sustained. The controls improved their maximal exercise capacity (p<0.05), but not submaximal exercise capacity or quality of life after training. At follow-up, improvement of maximal exercise capacity was sustained. We believe that an individualised endurance training programme for Fontan patients improves submaximal exercise capacity and quality of life in Fontan patients and the effect on quality of life appears to be long-lasting.

  1. Pulmonary arterial pressure detects functional mitral stenosis after annuloplasty for primary mitral regurgitation: An exercise stress echocardiographic study.

    PubMed

    Samiei, Niloufar; Tajmirriahi, Marzieh; Rafati, Ali; Pasebani, Yeganeh; Rezaei, Yousef; Hosseini, Saeid

    2018-02-01

    The restrictive mitral valve annuloplasty (RMA) is the treatment of choice for degenerative mitral regurgitation (MR), but postoperative functional mitral stenosis remains a matter of debate. In this study, we sought to determine the impact of mitral stenosis on the functional capacity of patients. In a cross-sectional study, 32 patients with degenerative MR who underwent RMA using a complete ring were evaluated. All participants performed treadmill exercise test and underwent echocardiographic examinations before and after exercise. The patients' mean age was 50.1 ± 12.5 years. After a mean follow-up of 14.1 ± 5.9 months (6-32 months), the number of patients with a mitral valve peak gradient >7.5 mm Hg, a mitral valve mean gradient >3 mm Hg, and a pulmonary arterial pressure (PAP) ≥25 mm Hg at rest were 50%, 40.6%, and 62.5%, respectively. 13 patients (40.6%) had incomplete treadmill exercise test. All hemodynamic parameters were higher at peak exercise compared with at rest levels (all P < .05). The PAP at rest and at peak exercise as well as peak transmitral gradient at peak exercise were higher in patients with incomplete exercise compared with complete exercise test (all P < .05). The PAP at rest (a sensitivity and a specificity of 84.6% and 52.6%, respectively; area under the curve [AUC] = .755) and at peak exercise (a sensitivity and a specificity of 100% and 47.4%, respectively; AUC = .755) discriminated incomplete exercise test. The RMA for degenerative MR was associated with a functional stenosis and the PAP at rest and at peak exercise discriminated low exercise capacity. © 2017, Wiley Periodicals, Inc.

  2. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study.

    PubMed

    Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André

    2018-03-23

    The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P < 0.0001). These differences were not associated with biventricular systolic or left ventricular (LV) diastolic dysfunction at rest or during exercise. There was no difference in weight, exercise participation or [Formula: see text]peak in T1DM subjects as compared to their controls. After accounting for age, sex and body surface area in a multivariate analysis, significant positive predictors of [Formula: see text]peak were cardiac size (LV end-diastolic volume, LVEDV) and estimated MET-hours, while T2DM was a negative predictor. These combined factors accounted for 80% of the variance in [Formula: see text]peak (P < 0.0001). Exercise capacity is reduced in T2DM subjects relative to matched controls, whereas exercise capacity is preserved in T1DM. There was no evidence of sub-clinical cardiac dysfunction but, rather, there was an association between impaired exercise capacity, small LV volumes and sedentary behavior.

  3. Potential benefits of maximal exercise just prior to return from weightlessness

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  4. Exercise capacity and progression from prehypertension to hypertension.

    PubMed

    Faselis, Charles; Doumas, Michael; Kokkinos, John Peter; Panagiotakos, Demosthenes; Kheirbek, Raya; Sheriff, Helen M; Hare, Katherine; Papademetriou, Vasilios; Fletcher, Ross; Kokkinos, Peter

    2012-08-01

    Prehypertension is likely to progress to hypertension. The rate of progression is determined mostly by age and resting blood pressure but may also be attenuated by increased fitness. A graded exercise test was performed in 2303 men with prehypertension at the Veterans Affairs Medical Centers in Washington, DC. Four fitness categories were defined, based on peak metabolic equivalents (METs) achieved. We assessed the association between exercise capacity and rate of progression to hypertension (HTN). The median follow-up period was 7.8 years (mean (± SD) 9.2±6.1 years). The incidence rate of progression from prehypertension to hypertension was 34.4 per 1000 person-years. Exercise capacity was a strong and independent predictor of the rate of progression. Compared to the High-Fit individuals (>10.0 METs), the adjusted risk for developing HTN was 66% higher (hazard ratio, 1.66; 95% CI, 1.2 to 2.2; P=0.001) for the Low-Fit and, similarly, 72% higher (hazard ratio, 1.72; 95% CI, 1.2 to 2.3; P=0.001) for the Least-Fit individuals, whereas it was only 36% for the Moderate-Fit (hazard ratio, 1.36; 95% CI, 0.99 to 1.80; P=0.056). Significant predictors for the progression to HTN were also age (19% per 10 years), resting systolic blood pressure (16% per 10 mm Hg), body mass index (15.3% per 5 U), and type 2 diabetes mellitus (2-fold). In conclusion, an inverse, S-shaped association was shown between exercise capacity and the rate of progression from prehypertension to hypertension in middle-aged and older male veterans. The protective effects of fitness were evident when exercise capacity exceeded 8.5 METs. These findings emphasize the importance of fitness in the prevention of hypertension.

  5. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study.

    PubMed

    Arcoverde, Cynthia; Deslandes, Andrea; Moraes, Helena; Almeida, Cloyra; Araujo, Narahyana Bom de; Vasques, Paulo Eduardo; Silveira, Heitor; Laks, Jerson

    2014-03-01

    To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer's disease (AD) patients. Elderly (n=20) with mild dementia (NINCDS-ADRDA/CDR1) were randomly assigned to an exercise group (EG) on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO₂max) and control group (GC) 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG). Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Walking on treadmill may be recommended as an augmentation treatment for patients with AD.

  6. Impact of exercise on the functional capacity and pain of patients with knee osteoarthritis: a randomized clinical trial.

    PubMed

    Oliveira, Aline Mizusaki Imoto de; Peccin, Maria Stella; Silva, Kelson Nonato Gomes da; Teixeira, Lucas Emmanuel Pedro de Paiva; Trevisani, Virgínia Fernandes Moça

    2012-12-01

    Muscle weakness, especially of the quadriceps muscle, is one of the major musculoskeletal effects of knee osteoarthritis. Exercises are considered one of the main interventions in the conservative treatment of those patients. To assess the effectiveness of quadriceps strengthening exercises on functional capacity and symptoms related of knee osteoarthritis by use of the Timed Up and Go test (TUG), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lequesne Index. One hundred patients were randomized into two groups: 1) Exercise Group (n = 50), which included stationary bicycle, hamstrings stretching, and quadriceps strengthening; 2) Instruction Group (n = 50), which received a manual with information about knee osteoarthritis and instructions on how to deal with knee symptoms in daily activities. The manual did not include exercise instructions. The Exercise Group showed statistically significant improvement regarding the TUG test, the WOMAC aspects of pain, function, and stiffness, and the Lequesne Index, as compared with the Instruction Group. Quadriceps strengthening exercises for eight weeks are effective to improve pain, function, and stiffness in patients with knee osteoarthritis.

  7. Benefits and costs of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease - a multi-centre randomised controlled equivalence trial.

    PubMed

    Holland, Anne E; Mahal, Ajay; Hill, Catherine J; Lee, Annemarie L; Burge, Angela T; Moore, Rosemary; Nicolson, Caroline; O'Halloran, Paul; Cox, Narelle S; Lahham, Aroub; Ndongo, Rebecca; Bell, Emily; McDonald, Christine F

    2013-09-08

    Pulmonary rehabilitation is widely advocated for people with chronic obstructive pulmonary disease (COPD) to improve exercise capacity, symptoms and quality of life, however only a minority of individuals with COPD are able to participate. Travel and transport are frequently cited as barriers to uptake of centre-based programs. Other models of pulmonary rehabilitation, including home-based programs, have been proposed in order to improve access to this important treatment. Previous studies of home-based pulmonary rehabilitation in COPD have demonstrated improvement in exercise capacity and quality of life, but not all elements of the program were conducted in the home environment. It is uncertain whether a pulmonary rehabilitation program delivered in its entirety at home is cost effective and equally capable of producing benefits in exercise capacity, symptoms and quality of life as a hospital-based program. The aim of this study is to compare the costs and benefits of home-based and hospital-based pulmonary rehabilitation for people with COPD. This randomised, controlled, equivalence trial conducted at two centres will recruit 166 individuals with spirometrically confirmed COPD. Participants will be randomly allocated to hospital-based or home-based pulmonary rehabilitation. Hospital programs will follow the traditional outpatient model consisting of twice weekly supervised exercise training and education for eight weeks. Home-based programs will involve one home visit followed by seven weekly telephone calls, using a motivational interviewing approach to enhance exercise participation and facilitate self management. The primary outcome is change in 6-minute walk distance immediately following intervention. Measurements of exercise capacity, physical activity, symptoms and quality of life will be taken at baseline, immediately following the intervention and at 12 months, by a blinded assessor. Completion rates will be compared between programs. Direct healthcare costs and indirect (patient-related) costs will be measured to compare the cost-effectiveness of each program. This trial will identify whether home-based pulmonary rehabilitation can deliver equivalent benefits to centre-based pulmonary rehabilitation in a cost effective manner. The results of this study will contribute new knowledge regarding alternative models of pulmonary rehabilitation and will inform pulmonary rehabilitation guidelines for COPD.

  8. Exercise-based cardiac rehabilitation in heart transplant recipients.

    PubMed

    Anderson, Lindsey; Nguyen, Tricia T; Dall, Christian H; Burgess, Laura; Bridges, Charlene; Taylor, Rod S

    2017-04-04

    Heart transplantation is considered to be the gold standard treatment for selected patients with end-stage heart disease when medical therapy has been unable to halt progression of the underlying pathology. Evidence suggests that aerobic exercise training may be effective in reversing the pathophysiological consequences associated with cardiac denervation and prevent immunosuppression-induced adverse effects in heart transplant recipients. To determine the effectiveness and safety of exercise-based rehabilitation on the mortality, hospital admissions, adverse events, exercise capacity, health-related quality of life, return to work and costs for people after heart transplantation. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCO) and Web of Science Core Collection (Thomson Reuters) to June 2016. We also searched two clinical trials registers and handsearched the reference lists of included studies. We included randomised controlled trials (RCTs) of parallel group, cross-over or cluster design, which compared exercise-based interventions with (i) no exercise control (ii) a different dose of exercise training (e.g. low- versus high-intensity exercise training); or (iii) an active intervention (i.e. education, psychological intervention). The study population comprised adults aged 18 years or over who had received a heart transplant. Two review authors independently screened all identified references for inclusion based on pre-specified inclusion criteria. Disagreements were resolved by consensus or by involving a third person. Two review authors extracted outcome data from the included trials and assessed their risk of bias. One review author extracted study characteristics from included studies and a second author checked them against the trial report for accuracy. We included 10 RCTs that involved a total of 300 participants whose mean age was 54.4 years. Women accounted for fewer than 25% of all study participants. Nine trials which randomised 284 participants to receive exercise-based rehabilitation (151 participants) or no exercise (133 participants) were included in the main analysis. One cross-over RCT compared high-intensity interval training with continued moderate-intensity training in 16 participants. We reported findings for all trials at their longest follow-up (median 12 weeks).Exercise-based cardiac rehabilitation increased exercise capacity (VO 2peak ) compared with no exercise control (MD 2.49 mL/kg/min, 95% CI 1.63 to 3.36; N = 284; studies = 9; moderate quality evidence). There was evidence from one trial that high-intensity interval exercise training was more effective in improving exercise capacity than continuous moderate-intensity exercise (MD 2.30 mL/kg/min, 95% CI 0.59 to 4.01; N = 16; 1 study). Four studies reported health-related quality of life (HRQoL) measured using SF-36, Profile of Quality of Life in the Chronically Ill (PLC) and the World Health Organization Quality Of Life (WHOQoL) - BREF. Due to the variation in HRQoL outcomes and methods of reporting we were unable to meta-analyse results across studies, but there was no evidence of a difference between exercise-based cardiac rehabilitation and control in 18 of 21 HRQoL domains reported, or between high and moderate intensity exercise in any of the 10 HRQoL domains reported. One adverse event was reported by one study.Exercise-based cardiac rehabilitation improves exercise capacity, but exercise was found to have no impact on health-related quality of life in the short-term (median 12 weeks follow-up), in heart transplant recipients whose health is stable.There was no evidence of statistical heterogeneity across trials for exercise capacity and no evidence of small study bias. The overall risk of bias in included studies was judged as low or unclear; more than 50% of included studies were assessed at unclear risk of bias with respect to allocation concealment, blinding of outcome assessors and declaration of conflicts of interest. Evidence quality was assessed as moderate according to GRADE criteria. We found moderate quality evidence suggesting that exercise-based cardiac rehabilitation improves exercise capacity, and that exercise has no impact on health-related quality of life in the short-term (median 12 weeks follow-up), in heart transplant recipients. Cardiac rehabilitation appears to be safe in this population, but long-term follow-up data are incomplete and further good quality and adequately-powered trials are needed to demonstrate the longer-term benefits of exercise on safety and impact on both clinical and patient-related outcomes, such as health-related quality of life, and healthcare costs.

  9. Enhanced external counterpulsation - effect on angina pectoris, QoL and exercise capacity after 1 year.

    PubMed

    May, Ole; Lynggaard, Vibeke; Mortensen, Jesper C A; Malczynski, Jerzy

    2015-02-01

    Enhanced external counterpulsation (EECP) is a new therapy offered to patients with refractory angina pectoris (AP). To assess the effect of EECP on AP, quality of life (QoL) and exercise capacity in a design starting with a control period to avoid the influence of regression-towards-the-mean. Patients were examined two months before EECP, just before, just after, and three and 12 months after EECP. EECP was given for 1 h 5 days a week in 7 weeks. Three sets of pneumatic cuffs were mounted on the lower extremities and inflated sequentially in diastole to 260 mm Hg. 50 patients were included (male 72%, mean age: 62.5 years). Mean daily AP attacks were reduced during EECP from 2.7 to 0.9 (p < 0.005) and the Canadian Cardiovascular Society classification was reduced by at least 1 class in 82% just after EECP, 79% 3 months and 76% 12 months after EECP (p < 0.0002). Generic (SF36) and disease-specific QoL (Seattle AP questionnaire) improved just after, 3 and 12 months after compared with that before EECP. There was a significant improvement in exercise capacity and exercise-induced chest pain just after, three and 12 months after EECP (p < 0.02). No change was detected during the control period. EECP improves generic and disease-specific QoL, angina intensity and exercise capacity in at least 12 months.

  10. Neural Mechanism of Chronic Fatigue Syndrome

    DTIC Science & Technology

    2004-04-01

    Goodwin GM, Lawrie SM. Effects of exercise on cognitive and motor function in chronic fatigue syndrome and depression. J Neurol Neurosurg Psychiatry 1998;65...about how the CNS is affected by CFS. This study will focus on evaluating brain activities of CFS patients during fatigue and non-fatigue muscle exercises ...capacity of brain signal to the working muscle. Post- exercise motor cortical excitability is reduced in CFS patients as compared with healthy volunteers

  11. Mobile-phone-based home exercise training program decreases systemic inflammation in COPD: a pilot study.

    PubMed

    Wang, Chun-Hua; Chou, Pai-Chien; Joa, Wen-Ching; Chen, Li-Fei; Sheng, Te-Fang; Ho, Shu-Chuan; Lin, Horng-Chyuan; Huang, Chien-Da; Chung, Fu-Tsai; Chung, Kian Fan; Kuo, Han-Pin

    2014-08-30

    Moderate-intensity exercise training improves skeletal muscle aerobic capacity and increased oxidative enzyme activity, as well as exercise tolerance in COPD patients. To investigate whether the home-based exercise training program can reduce inflammatory biomarkers in patients with COPD, twelve patients using mobile phone assistance and 14 with free walk were assessed by incremental shuttle walk test (ISWT), spirometry, strength of limb muscles, and serum C-reactive protein (CRP) and inflammatory cytokines. Patients in the mobile phone group improved their ISWT walking distance, with decrease in serum CRP after 2 months, and sustained at 6 months. Patients in the control group had no improvement. Serum IL-8 in the mobile phone group was significantly reduced at 2, 3 and 6 months after doing home exercise training compared to baseline. IL-6 and TNF-α were significantly elevated at 3 and 6 months in control group, while there were no changes in mobile phone group. The strength of limb muscles was significantly greater compared to baseline at 3 and 6 months in the mobile phone group. A mobile-phone-based system can provide an efficient home endurance exercise training program with improved exercise capacity, strength of limb muscles and a decrease in serum CRP and IL-8 in COPD patients. Decreased systemic inflammation may contribute to these clinical benefits. (Clinical trial registration No.: NCT01631019).

  12. Rationale and design of a trial on the role of bosentan in Fontan patients: improvement of exercise capacity?

    PubMed

    Schuuring, Mark J; Vis, Jeroen C; Bouma, Berto J; van Dijk, Arie P J; van Melle, Joost P; Pieper, Petronella G; Vliegen, Hubert W; Sieswerda, Gertjan Tj; Mulder, Barbara J M

    2011-07-01

    The Fontan circulation is a palliative procedure performed in patients with complex congenital heart disease (CHD), making transpulmonary blood flow dependent on the systemic venous pressure. In a Fontan circulation a low pulmonary vascular resistance (PVR) is crucial, as is epitomized by the observation that a high PVR is a strong predictor of mortality. Long-term follow-up has shown that PVR may rise many years after the Fontan procedure has been performed, possibly due to micro-emboli from a dilated right atrium or from the venous system. Other mechanisms of increased PVR might be aging, obstructed airways caused by lymphatic dysfunction, lack of pulsatile pulmonary flow causing a release of endothelium-derived vasoactive molecules, and prolonged overexpression of vasoconstrictors such as endothelin-1. Mean plasma level of endothelin-1 has been shown to be significantly higher in Fontan patients compared to healthy controls. In patients with pulmonary arterial hypertension (PAH), therapy with bosentan, an endothelin-1 receptor antagonist, has demonstrated to improve exercise capacity and to reduce the elevated PVR. In addition, reduction of PVR is shown early and late after the Fontan procedure on treatment with exogenous NO, another advanced PAH therapy. However, the long term effect of reducing the PVR by bosentan treatment on exercise capacity in Fontan patients is still unknown. We designed a prospective, multicenter, randomized open label trial to study the effect of bosentan in Fontan patients. The primary endpoint will be the change in maximum exercise capacity (peak V'O2). We hypothesize that treatment with bosentan, an endothelin-1 receptor antagonist, improves maximum exercise capacity and functional capacity in adult Fontan patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Exercise recommendations for individuals with spinal cord injury.

    PubMed

    Jacobs, Patrick L; Nash, Mark S

    2004-01-01

    Persons with spinal cord injury (SCI) exhibit deficits in volitional motor control and sensation that limit not only the performance of daily tasks but also the overall activity level of these persons. This population has been characterised as extremely sedentary with an increased incidence of secondary complications including diabetes mellitus, hypertension and atherogenic lipid profiles. As the daily lifestyle of the average person with SCI is without adequate stress for conditioning purposes, structured exercise activities must be added to the regular schedule if the individual is to reduce the likelihood of secondary complications and/or to enhance their physical capacity. The acute exercise responses and the capacity for exercise conditioning are directly related to the level and completeness of the spinal lesion. Appropriate exercise testing and training of persons with SCI should be based on the individual's exercise capacity as determined by accurate assessment of the spinal lesion. The standard means of classification of SCI is by application of the International Standards for Classification of Spinal Cord Injury, written by the Neurological Standards Committee of the American Spinal Injury Association. Individuals with complete spinal injuries at or above the fourth thoracic level generally exhibit dramatically diminished cardiac acceleration with maximal heart rates less than 130 beats/min. The work capacity of these persons will be limited by reductions in cardiac output and circulation to the exercising musculature. Persons with complete spinal lesions below the T(10) level will generally display injuries to the lower motor neurons within the lower extremities and, therefore, will not retain the capacity for neuromuscular activation by means of electrical stimulation. Persons with paraplegia also exhibit reduced exercise capacity and increased heart rate responses (compared with the non-disabled), which have been associated with circulatory limitations within the paralysed tissues. The recommendations for endurance and strength training in persons with SCI do not vary dramatically from the advice offered to the general population. Systems of functional electrical stimulation activate muscular contractions within the paralysed muscles of some persons with SCI. Coordinated patterns of stimulation allows purposeful exercise movements including recumbent cycling, rowing and upright ambulation. Exercise activity in persons with SCI is not without risks, with increased risks related to systemic dysfunction following the spinal injury. These individuals may exhibit an autonomic dysreflexia, significantly reduced bone density below the spinal lesion, joint contractures and/or thermal dysregulation. Persons with SCI can benefit greatly by participation in exercise activities, but those benefits can be enhanced and the relative risks may be reduced with accurate classification of the spinal injury.

  14. [Effects of aerobic exercise combined with resistance training on the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease].

    PubMed

    Liu, S X; Chen, Y Y; Xie, K L; Zhang, W L

    2017-12-24

    Objective: To observe the effects of aerobic exercise combined with resistance training on the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease (CAD) . Methods: From June 2014 to December 2015, 73 patients with stable CAD in our department were recruited and randomly assigned to two groups: the control group ( n= 38) and the exercise group ( n= 35) . Patients in both groups received conventional medical treatment for CAD and related cardiac health education. While for patients in exercise group, a twelve-week aerobic exercise combined with resistance training program were applied on top of conventional treatment and health education. Cardiorespiratory fitness and exercise capacity were evaluated by cardiopulmonary exercise testing. Results: (1) The exercise capacity was significantly increased in the exercise group after 12 weeks training as compared to baseline level: peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (20.88±4.59) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.52±2.92) ml·kg(-1)·min(-1)], peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.77±2.49) ml/beat) , peak Watts ( (113.2±34.0) W vs. (103.7±27.9) W) , peak metabolic equivalent ( (7.57±1.46) METs vs. (6.00±1.32) METs) (all P< 0.05 vs. baseline) . (2) The degree of improvement of peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (22.32±4.00) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.76±2.51) ml·kg(-1)·min(-1)) , peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.99±2.15) ml/beat) and peak metabolic equivalent ( (7.57±1.46) METs vs. (6.47±1.17) METs) were significantly higher in exercise group than in control group (all P< 0.05) . Conclusion: Aerobic training at an aerobic threshold level combined with Thera-band resistance training is safe for patients with stable coronary artery disease. This combined exercise program can significantly improve the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease.

  15. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype.

    PubMed

    Bentley, Robert F; Walsh, Jeremy J; Drouin, Patrick J; Velickovic, Aleksandra; Kitner, Sarah J; Fenuta, Alyssa M; Tschakovsky, Michael E

    2017-09-01

    Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P < 0.001), and compensatory vasodilation was present following nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min -1 ⋅ 100 mmHg -1 ; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min -1 ⋅ 100 mmHg -1 ; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation. NEW & NOTEWORTHY Previously, we identified young, healthy persons who suffer compromised exercise tolerance when exercising muscle perfusion pressure is reduced as a result of a lack of compensatory vasodilation. The ability of nitrate supplementation to restore compensatory vasodilation in such noncompensators is unknown. We demonstrated that beetroot juice supplementation led to compensatory vasodilation and restored perfusion and exercise capacity. Elevated plasma nitrite is an effective intervention for correcting the absence of compensatory vasodilation in the noncompensator phenotype. Copyright © 2017 the American Physiological Society.

  16. Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.

    PubMed

    Parsons, Trisha L; King-Vanvlack, Cheryl E

    2009-11-01

    This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.

  17. Effects of exercise on functional aerobic capacity in adults with fibromyalgia syndrome: A systematic review of randomized controlled trials.

    PubMed

    García-Hermoso, Antonio; Saavedra, Jose M; Escalante, Yolanda

    2015-01-01

    Patients with fibromyalgia present a reduced capacity of upper and lower limb physical performance and affect their independence in performing everyday activities. The purpose of the present systematic review was to summarize evidence for the effectiveness and structure of exercise programs on functional aerobic capacity in patients with fibromyalgia syndrome. Keyword searches were made of seven databases. The systematic review was limited to English language studies of people with FM that evaluated the effects of exercise programs on functional aerobic capacity (6-minute walk test). The criteria for inclusion were satisfied by 12 randomized controlled trial (RCT) studies. The main cumulative evidence indicates that the programs based on aerobic exercise alone and on aquatic exercises have large (effect size = 0.85) and moderate (effect size = 0.44) effects. Aerobic and aquatic exercises at the proper intensity favour the increased functional aerobic capacity of fibromyalgia patients; however, most works do not adequately detail the intensity of the exercises. Moderate intensity exercise (aerobic and aquatic exercise) performed at least two times per week and 30-60 minutes a day is effective for increasing functional aerobic capacity, favouring the daily activities of daily living in this population.

  18. Improved exercise capacity and reduced systemic inflammation after adenoviral-mediated SERCA-2a gene transfer.

    PubMed

    Gupta, Dipin; Palma, Jon; Molina, Ezequiel; Gaughan, John P; Long, Walter; Houser, Steven; Macha, Mahender

    2008-04-01

    We hypothesized that sarcoplasmic reticulum Ca2+ ATPase pump (SERCA-2a) gene delivery would have beneficial effects upon exercise capacity and markers of inflammation in the setting of heart failure. A pressure-overload model of experimental heart failure was used in rats. Following a decrease in fractional shortening of >or=25%, animals underwent intracoronary adenoviral-mediated gene transfection using SERCA-2a. Heart failure animals were randomized to receive the SERCA-2a gene, the beta galactosidase (control) gene, or followed without any further intervention. Exercise and hemodynamic testing were performed, and myocardial and systemic markers of inflammation were assayed after 7 and 21 d. Animals receiving Ad.SERCA-2a showed an increase in exercise tolerance (499.0 +/- 14.9 versus 312.8 +/- 10.5 s, P < 0.0001) relative to Ad.Gal group. Groups treated with Ad.SERCA-2a had significantly decreased serum levels of the inflammatory markers interleukin-1, interleukin-6, and tumor necrosis factor-alpha compared with Ad.Gal-treated animals. Serum levels of atrial natriuretic peptide were decreased in animals receiving Ad.SERCA-2a compared with animals receiving Ad.Gal at day 7 (0.35 +/- 0.03 versus 0.52 +/- 0.11 pg/mL, P = 0.001). Myocardial levels of the proapoptotic protein bax were reduced in Ad.SERCA-2a -treated animals compared with those receiving Ad.Gal at day 7 (protein level/actin: 0.24 +/- 0.05 versus 0.33 +/- 0.04, P = 0.04) and day 21 (protein level/actin: 0.61 +/- 0.04 versus 0.69 +/- 0.01, P = 0.001). Genetic modulation of heart failure using the SERCA-2a gene was associated with improvement in cardiac function and exercise capacity as well as improvements in heart-failure associated inflammatory markers.

  19. [Application of the 6-Minute Walking Test and Shuttle Walking Test in the Exercise Tests of Patients With COPD].

    PubMed

    Ho, Chiung-Fang; Maa, Suh-Hwa

    2016-08-01

    Exercise training improves the management of stable chronic obstructive pulmonary disease (COPD). COPD patients benefit from exercise training programs in terms of improved VO2 peak values and decreased dyspnea, fatigue, hospital admissions, and rates of mortality, increasing exercise capacity and health-related quality of life (HRQOL). COPD is often associated with impairment in exercise tolerance. About 51% of patients have a limited capacity for normal activity, which often further degrades exercise capacity, creating a vicious circle. Exercise testing is highly recommended to assess a patient's individualized functions and limitations in order to determine the optimal level of training intensity prior to initiating an exercise-training regimen. The outcomes of exercise testing provide a powerful indicator of prognosis in COPD patients. The six-minute walking test (6MWT) and the incremental shuttle-walking test (ISWT) are widely used in exercise testing to measure a patient's exercise ability by walking distances. While nursing-related articles published in Taiwan frequently cite and use the 6MWT to assess exercise capacity in COPD patients, the ISWT is rarely used. This paper introduces the testing method, strengths and weaknesses, and application of the two tests in order to provide clinical guidelines for assessing the current exercise capacity of COPD patients.

  20. Active Video Games as a Training Tool for Individuals With Chronic Respiratory Diseases: A SYSTEMATIC REVIEW.

    PubMed

    Butler, Stacey J; Lee, Annemarie L; Goldstein, Roger S; Brooks, Dina

    2018-02-26

    Exercise is an effective treatment for reducing symptom severity and improving quality of life for patients with chronic respiratory diseases. Active video games offer a new and enjoyable way to exercise and have gained popularity in a rehabilitation setting. However, it is unclear whether they achieve comparable physiological and clinical effects as traditional exercise training. A systematic literature search was performed to identify studies that included an active video game component as a form of exercise training and a comparator group in chronic respiratory disease. Two assessors independently reviewed study quality using the Cochrane risk of bias tool and extracted data for exercise capacity, quality of life, and preference of exercise model. Six studies were included in this review. Because of the heterogeneity of the populations, study designs, length of intervention, and outcome measures, meta-analysis could not be performed. Active video game training resulted in comparable training maximal heart rate and dyspnea levels to those achieved when exercising using a treadmill or cycle (n = 5). There was insufficient evidence (n = 3) to determine whether active video game training improved exercise capacity as measured by 6-min walk test or treadmill endurance walking. Although the quality of evidence was low, in a small number of studies active video games induced peak heart rates and dyspnea levels comparable with traditional exercise training. Larger and longer-term randomized controlled trials are needed to establish the impact of video game training for individuals with chronic respiratory diseases.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  1. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  2. Effect of Body Mass Index on Exercise Capacity in Patients With Hypertrophic Cardiomyopathy.

    PubMed

    Larsen, Carolyn M; Ball, Caroline A; Hebl, Virginia B; Ong, Kevin C; Siontis, Konstantinos C; Olson, Thomas P; Ackerman, Michael J; Ommen, Steve R; Allison, Thomas G; Geske, Jeffrey B

    2018-01-01

    The objective of this study was to evaluate the relation between body mass index (BMI), exercise capacity, and symptoms in patients with hypertrophic cardiomyopathy (HC) and to utilize results of cardiopulmonary exercise tests (CPX) and transthoracic echocardiograms to understand the mechanism(s) of reduced exercise capacity across body mass index groups. Over a 6-year period, 510 consecutive patients with HC seen at a tertiary referral center underwent (CPX) and a transthoracic echocardiogram. Increasing BMI was associated with decreased exercise capacity as assessed by peak VO 2 (ml/kg/min). However, the prevalence of cardiac impairment did not vary by BMI group. In conclusion, these findings suggest that in some patients with hypertrophic cardiomyopathy, cardiac impairment is not the primary cause of exercise limitation and weight loss may result in improved exercise capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. "EXHALE": exercise as a strategy for rehabilitation in advanced stage lung cancer patients: a randomized clinical trial comparing the effects of 12 weeks supervised exercise intervention versus usual care for advanced stage lung cancer patients.

    PubMed

    Quist, Morten; Langer, Seppo W; Rørth, Mikael; Christensen, Karl Bang; Adamsen, Lis

    2013-10-14

    Lung cancer is the leading cause of cancer death in North America and Western Europe. Patients with lung cancer in general have reduced physical capacity, functional capacity, poor quality of life and increased levels of anxiety and depression. Intervention studies indicate that physical training can address these issues. However, there is a lack of decisive evidence regarding the effect of physical exercise in patients with advanced lung cancer. The aim of this study is to evaluate the effects of a twelve weeks, twice weekly program consisting of: supervised, structured training in a group of advanced lung cancer patients (cardiovascular and strength training, relaxation). A randomized controlled trial will test the effects of the exercise intervention in 216 patients with advanced lung cancer (non-small cell lung cancer (NSCLC) stage IIIb-IV and small cell lung cancer (SCLC) extensive disease (ED)). Primary outcome is maximal oxygen uptake (VO₂peak). Secondary outcomes are muscle strength (1RM), functional capacity (6MWD), lung capacity (Fev1) and patient reported outcome (including anxiety, depression (HADS) and quality of life (HRQOL)). The present randomized controlled study will provide data on the effectiveness of a supervised exercise intervention in patients receiving systemic therapy for advanced lung cancer. It is hoped that the intervention can improve physical capacity and functional level, during rehabilitation of cancer patients with complex symptom burden and help them to maintain independent function for as long as possible. http://ClinicalTrials.gov, NCT01881906.

  4. Cardiovascular testing in Fabry disease: exercise capacity reduction, chronotropic incompetence and improved anaerobic threshold after enzyme replacement.

    PubMed

    Lobo, T; Morgan, J; Bjorksten, A; Nicholls, K; Grigg, L; Centra, E; Becker, G

    2008-06-01

    The aim of this study was to document exercise capacity and serial electrocardiogram and echocardiograph findings in a cohort of Australian patients with Fabry disease, in relation to their history of enzyme replacement therapy (ERT). Fabry disease has multifactorial effects on the cardiovascular system. Most previous studies have focused on electrocardiographic and echocardiographic parameters. Exercise capacity can be used as an integrated measure of cardiovascular function and allows the effects of treatment to be monitored. A total of 38 patients (30 men and 8 women) with Fabry disease were monitored by 12-lead electrocardiograms every 6-12 months, and by annual standardized-protocol echocardiograms. Bicycle stress tests with VO(2) max measurement and once-only 6 minutes' walk tests were also carried out in subsets of patients whose general health status allowed testing. Seventy per cent of patients met electrocardiogram criteria for left ventricular hypertrophy. Left ventricular hypertrophy on echocardiograph was present in 64% of patients (80% of men). Exercise capacity was reduced in patients with Fabry disease compared with that predicted from normative population data. Mild improvement in anaerobic threshold was seen in the first year of ERT (14.1 +/- 3.0 to 15.8 +/- 3.0, P = 0.02), but no consistent further increase was seen beyond the first year. Most patients had resting bradycardia, with impaired ability to increase heart rate during exercise. Serial testing on ERT showed an improvement in anaerobic threshold but no significant change in VO(2) max. Male patients with Fabry disease were unable to attain predicted maximal heart rate on exercise or to achieve normal exercise levels. ERT was associated with a small improvement in anaerobic threshold over the first year.

  5. Dialysis exercise team: the way to sustain exercise programs in hemodialysis patients.

    PubMed

    Capitanini, Alessandro; Lange, Sara; D'Alessandro, Claudia; Salotti, Emilio; Tavolaro, Alba; Baronti, Maria E; Giannese, Domenico; Cupisti, Adamasco

    2014-01-01

    Patients affected by end-stage renal disease (ESRD) show quite lower physical activity and exercise capacity when compared to healthy individuals. In addition, a sedentary lifestyle is favoured by lack of a specific counseling on exercise implementation in the nephrology care setting. Increasing physical activity level should represent a goal for every dialysis patient care management. Three crucial elements of clinical care may contribute to sustain a hemodialysis exercise program: a) involvement of exercise professionals, b) real commitment of nephrologists and dialysis professionals, c) individual patient adaptation of the exercise program. Dialysis staff have a crucial role to encourage and assist patients during intra-dialysis exercise, but other professionals should be included in the ideal "exercise team" for dialysis patients. Evaluation of general condition, comorbidities (especially cardiovascular), nutritional status and physical exercise capacity are mandatory to propose an exercise program, in either extra-dialysis or intra-dialysis setting. To this aim, nephrologist should lead a team of specialists and professionals including cardiologist, physiotherapist, exercise physiologist, renal dietician and nurse. In this scenario, dialysis nurses play a pivotal role since they guarantee a constant and direct approach. Unfortunately dialysis staff may often lack of information and formation about exercise management while they take care patients during the dialysis session. Building an effective exercise team, promoting the culture of exercise and increasing physical activity levels lead to a more complete and modern clinical care management of ESRD patients. © 2014 S. Karger AG, Basel.

  6. Exercise Tolerance in Children With Early Onset Scoliosis: Growing Rod Treatment "Graduates".

    PubMed

    Jeans, Kelly A; Johnston, Charles E; Stevens, Wilshaw R; Tran, Dong-Phuong

    2016-11-01

    Prospectively enrolled early-onset scoliosis (EOS) patients undergoing growing rod treatment, who have had no surgery for >1 year and/or have received definitive fusion (growing rod "graduates"). To assess oxygen consumption during exercise and determine if a diminished conventional pulmonary function test (PFT) correlates with metabolic, pulmonary, and cardiovascular measures during exercise. Based on clinical impression and sequential PFT values, EOS patients who have undergone extensive treatment are thought to have limited capacity during exercise. The use of PFTs in this population has been a primary outcome measure of respiratory capacity; however, PFTs are dependent on effort, and thus subjective. This led us to find a new assessment of outcome, to better understand their pulmonary capacity. Patients underwent oxygen consumption (VO 2 ) testing while walking at self-selected speed over-ground and during a graded exercise test. Maximal VO 2 was predicted in those who completed the test to 85% of maximal heart rate (HR). Statistical analysis included Mann-Whitney U test and Spearman correlation coefficient (α = 0.05). 12 patients participated. Over-ground walking showed that EOS graduates chose to walk at the same speed, but at a higher VO 2 Cost (0.28 mL/kg/m) than controls (0.22 mL/kg/m; p < .001). Treadmill exercise testing showed 9 of 12 subjects able to complete the 85% of predicted maximum protocol. The EOS group had lower VO 2 during the final stage (27.9 mL/kg/min) compared to controls (34.2 mL/kg/min; p = .021); however, their heart rate reached the same values. Subjects completing the protocol had lower predicted VO 2 max (38.5 mL/kg/min) compared with controls (45.0 mL/kg/min), but this was not significant. Although PFT data suggest clinically relevant pulmonary compromise in EOS patients, the current study shows that these children are able to keep up with their peers in daily activities and also have the capacity to exercise. Level II, therapeutic. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  7. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  8. Low-Volume Whole-Body Vibration Training Improves Exercise Capacity in Subjects With Mild to Severe COPD.

    PubMed

    Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R

    2017-03-01

    The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.

  9. Exercise capacity and all-cause mortality in male veterans with hypertension aged ≥70 years.

    PubMed

    Faselis, Charles; Doumas, Michael; Pittaras, Andreas; Narayan, Puneet; Myers, Jonathan; Tsimploulis, Apostolos; Kokkinos, Peter

    2014-07-01

    Aging, even in otherwise healthy subjects, is associated with declines in muscle mass, strength, and aerobic capacity. Older individuals respond favorably to exercise, suggesting that physical inactivity plays an important role in age-related functional decline. Conversely, physical activity and improved exercise capacity are associated with lower mortality risk in hypertensive individuals. However, the effect of exercise capacity in older hypertensive individuals has not been investigated extensively. A total of 2153 men with hypertension, aged ≥70 years (mean, 75 ± 4) from the Washington, DC, and Palo Alto Veterans Affairs Medical Centers, underwent routine exercise tolerance testing. Peak workload was estimated in metabolic equivalents (METs). Fitness categories were established based on peak METs achieved, adjusted for age: very-low-fit, 2.0 to 4.0 METs (n=386); low-fit, 4.1 to 6.0 METs (n=1058); moderate-fit, 6.1 to 8.0 METs (n=495); high-fit >8.0 METs (n=214). Cox proportional hazard models were applied after adjusting for age, body mass index, race, cardiovascular disease, cardiovascular medications, and risk factors. All-cause mortality was quantified during a mean follow-up period of 9.0 ± 5.5 years. There were a total of 1039 deaths or 51.2 deaths per 1000 person-years of follow-up. Mortality risk was 11% lower (hazard ratio, 0.89; 95% confidence interval, 0.86-0.93; P<0.001) for every 1-MET increase in exercise capacity. When compared with those achieving ≤4.0 METs, mortality risk was 18% lower (hazard ratio, 0.82; 95% confidence interval, 0.70-0.95; P=0.011) for the low-fit, 36% for the moderate-fit (hazard ratio, 0.64; 95% confidence interval, 0.52-0.78; P<0.001), and 48% for the high-fit individuals (hazard ratio, 0.52; 95% confidence interval, 0.39-0.69; P<0.001). These findings suggest that exercise capacity is associated with lower mortality risk in elderly men with hypertension. © 2014 American Heart Association, Inc.

  10. Low Cardiorespiratory Fitness is Partially Linked to Ventilatory Factors in Obese Adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Tonini, Julia; Favre-Juvin, Anne; Guinot, Michel; Wuyam, Bernard; Flore, Patrice

    2016-02-01

    To examine the role of ventilatory constraint on cardiorespiratory fitness in obese adolescents. Thirty obese adolescents performed a maximal incremental cycling exercise and were divided into 2 groups based on maximal oxygen uptake (VO2peak): those presenting low (L; n = 15; VO2peak: 72.9 ± 8.6% predicted) or normal (N; n = 15; VO2peak: 113.6 ± 19.2% predicted) cardiorespiratory fitness. Both were compared with a group of healthy controls (C; n = 20; VO2peak: 103.1 ± 11.2% predicted). Ventilatory responses were explored using the flow volume loop method. Cardiorespiratory fitness (VO2peak, in % predicted) was lower in L compared with C and N and was moderately associated with the percent predicted forced vital capacity (FVC) (r = .52; p < .05) in L. At peak exercise, end inspiratory point was lower in L compared with N and C (77.4 ± 8.1, 86.4 ± 7.7, and 89.9 ± 7.6% FVC in L, N, and C, respectively; p < .05), suggesting an increased risk of ventilatory constraint in L, although at peak exercise this difference could be attributed to the lower maximal ventilation in L. Forced vital capacity and ventilatory strategy to incremental exercise slightly differed between N and L. These results suggest a modest participation of ventilatory factors to exercise intolerance.

  11. Comorbidities of COPD Have a Major Impact on Clinical Outcomes, Particularly in African Americans

    PubMed Central

    Putcha, Nirupama; Han, Meilan K.; Martinez, Carlos H.; Foreman, Marilyn G.; Anzueto, Antonio R.; Casaburi, Richard; Cho, Michael H.; Hanania, Nicola A.; Hersh, Craig P.; Kinney, Gregory L.; Make, Barry J.; Steiner, Robert M.; Lutz, Sharon M.; Thomashow, Byron M.; Williams, Andre A.; Bhatt, Surya P.; Beaty, Terri H.; Bowler, Russell P.; Ramsdell, Joe W.; Curtis, Jeffrey L.; Everett, Douglas; Hokanson, John E.; Lynch, David A.; Sutherland, E. Rand; Silverman, Edwin K.; Crapo, James D.; Wise, Robert A.; Regan, Elizabeth A.; Hansel, Nadia N.

    2014-01-01

    Background: COPD patients have a great burden of comorbidity. However, it is not well established whether this is due to shared risk factors such as smoking, if the comorbidities impact patients’ exercise capacity and quality of life, or whether there are racial disparities in their impact on COPD. Methods: We analyzed data from 10,192 current and ex-smokers with (cases) and without COPD (controls) from the Genetic Epidemiology of COPD (COPDGene®) study cohort to establish risk for COPD comorbidities adjusted for pertinent covariates. In adjusted models, we examined comorbidity prevalence and impact in African-Americans (AA) and non-Hispanic whites (NHW). Results: Comorbidities are more common in individuals with COPD compared to those with normal spirometry (controls), and the risk persists after adjustments for covariates including pack-years smoked. After adjustment for confounders, 8 conditions were independently associated with worse exercise capacity, quality of life and dyspnea. There were racial disparities in the impact of comorbidities on exercise capacity, dyspnea and quality of life, with the presence of osteoarthritis and gastroesophageal reflux disease having a greater negative impact on all three outcomes in AAs than NHWs (p<0.05 for all interaction terms). Conclusions: Individuals with COPD have a higher risk for comorbidities than controls, an important finding shown for the first time comprehensively after accounting for confounders. Individual comorbidities are associated with worse exercise capacity, quality of life, and dyspnea, in AAs compared with NHWs. Note: The abstract of a previous version of this work was presented at the American Thoracic Society Conference in Philadelphia, PA on May 21, 2013. PMID:25695106

  12. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension.

    PubMed

    de Man, F S; Handoko, M L; Groepenhoff, H; van 't Hul, A J; Abbink, J; Koppers, R J H; Grotjohan, H P; Twisk, J W R; Bogaard, H-J; Boonstra, A; Postmus, P E; Westerhof, N; van der Laarse, W J; Vonk-Noordegraaf, A

    2009-09-01

    We determined the physiological effects of exercise training on exercise capacity and quadriceps muscle function in patients with idiopathic pulmonary arterial hypertension (iPAH). In total, 19 clinically stable iPAH patients (New York Heart Association II-III) underwent a supervised exercise training programme for the duration of 12 weeks. Maximal capacity, endurance capacity and quadriceps function were assessed at baseline and after 12 weeks. In 12 patients, serial quadriceps muscle biopsies were obtained. 6-min walk distance and peak exercise capacity did not change after training. However, endurance capacity improved significantly after training, demonstrated by a shift of the anaerobic threshold to a higher workload (from 32+/-5 to 46+/-6 W; p = 0.003) together with an increase in exercise endurance time (p<0.001). Moreover, exercise training increased quadriceps strength by 13% (p = 0.005) and quadriceps endurance by 34% (p = 0.001). Training enhanced aerobic capacity of the quadriceps, by increasing capillarisation (1.36+/-0.10 to 1.78+/-0.13 capillaries per muscle fibre; p<0.001) and oxidative enzyme activity, especially of the type-I (slow) muscle fibres. No changes were found in cross-sectional area and fibre type distribution. Exercise training in iPAH improves exercise endurance and quadriceps muscle function, which is also reflected by structural changes of the quadriceps.

  13. Cardio-vascular reserve index (CVRI) during exercise complies with the pattern assumed by the cardiovascular reserve hypothesis.

    PubMed

    Segel, Michael J; Bobrovsky, Ben-Zion; Gabbay, Itay E; Ben-Dov, Issahar; Reuveny, Ronen; Gabbay, Uri

    2017-05-01

    The Cardio-vascular reserve index (CVRI) had been empirically validated in diverse morbidities as a quantitative estimate of the reserve assumed by the cardiovascular reserve hypothesis. This work evaluates whether CVRI during exercise complies with the cardiovascular reserve hypothesis. Retrospective study based on a database of patients who underwent cardio-pulmonary exercise testing (CPX) for diverse indications. Patient's physiological measurements were retrieved at four predefined CPX stages (rest, anaerobic threshold, peak exercise and after 2min of recovery). CVRI was individually calculated retrospectively at each stage. Mean CVRI at rest was 0.81, significantly higher (p<0.001) than at all other stages. CVRI decreased with exercise, reaching an average at peak exercise of 0.35, significant lower than at other stages (p<0.001) and very similar regardless of exercise capacity (mean CVRI 0.33-0.37 in 4 groups classified by exercise capacity, p>0.05). CVRI after 2min of recovery rose considerably, most in the group with the best exercise capacity and least in those with the lowest exercise capacity. CVRI during exercise fits the pattern predicted by the cardiovascular reserve hypothesis. CVRI decreased with exercise reaching a minimum at peak exercise and rising with recovery. The CVRI nadir at peak exercise, similar across groups classified by exercise capacity, complies with the assumed exhaustion threshold. The clinical utility of CVRI should be further evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  15. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  16. Exercise Capacity and the Obesity Paradox in Heart Failure: The FIT (Henry Ford Exercise Testing) Project.

    PubMed

    McAuley, Paul A; Keteyian, Steven J; Brawner, Clinton A; Dardari, Zeina A; Al Rifai, Mahmoud; Ehrman, Jonathan K; Al-Mallah, Mouaz H; Whelton, Seamus P; Blaha, Michael J

    2018-05-03

    To assess the influence of exercise capacity and body mass index (BMI) on 10-year mortality in patients with heart failure (HF) and to synthesize these results with those of previous studies. This large biracial sample included 774 men and women (mean age, 60±13 years; 372 [48%] black) with a baseline diagnosis of HF from the Henry Ford Exercise Testing (FIT) Project. All patients completed a symptom-limited maximal treadmill stress test from January 1, 1991, through May 31, 2009. Patients were grouped by World Health Organization BMI categories for Kaplan-Meier survival analyses and stratified by exercise capacity (<4 and ≥4 metabolic equivalents [METs] of task). Associations of BMI and exercise capacity with all-cause mortality were assessed using multivariable-adjusted Cox proportional hazards models. During a mean follow-up of 10.1±4.6 years, 380 patients (49%) died. Kaplan-Meier survival plots revealed a significant positive association between BMI category and survival for exercise capacity less than 4 METs (log-rank, P=.05), but not greater than or equal to 4 METs (P=.76). In the multivariable-adjusted models, exercise capacity (per 1 MET) was inversely associated, but BMI was not associated, with all-cause mortality (hazard ratio, 0.89; 95% CI, 0.85-0.94; P<.001 and hazard ratio, 0.99; 95% CI, 0.97-1.01; P=.16, respectively). Maximal exercise capacity modified the relationship between BMI and long-term survival in patients with HF, upholding the presence of an exercise capacity-obesity paradox dichotomy as observed over the short-term in previous studies. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    PubMed

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  18. Patients' preference for exercise setting and its influence on the health benefits gained from exercise-based cardiac rehabilitation.

    PubMed

    Tang, Lars H; Kikkenborg Berg, Selina; Christensen, Jan; Lawaetz, Jannik; Doherty, Patrick; Taylor, Rod S; Langberg, Henning; Zwisler, Ann-Dorthe

    2017-04-01

    To assess patient preference for exercise setting and examine if choice of setting influences the long-term health benefit of exercise-based cardiac rehabilitation. Patients participating in a randomised controlled trial following either heart valve surgery, or radiofrequency ablation for atrial fibrillation were given the choice to perform a 12-week exercise programme in either a supervised centre-based, or a self-management home-based setting. Exercise capacity and physical and mental health outcomes were assessed for up to 24months after hospital discharge. Outcomes between settings were compared using a time×setting interaction using a mixed effects regression model. Across the 158 included patients, an equivalent proportion preferred to undertake exercise rehabilitation in a centre-based setting (55%, 95% CI: 45% to 63%) compared to a home-based setting (45%, 95% CI: 37% to 53%, p=0.233). At baseline, those who preferred a home-based setting reported better physical health (mean difference in physical component score: 5.0, 95% CI 2.3 to 7.4; p=0.001) and higher exercise capacity (mean between group difference 15.9watts, 95% CI 3.7 to 28.1; p=0.011). With the exception of the depression score in the Hospital Anxiety and Depression Score (F(3.65), p=0.004), there was no evidence of a significant difference in outcomes between settings. The preference of patients to participate in home-based and centre-based exercise programmes appears to be equivalent and provides similar health benefits. Whilst these findings support that patients should be given the choice between exercise-settings when initiating cardiac rehabilitation, further confirmatory evidence is needed. Copyright © 2017. Published by Elsevier B.V.

  19. The effect of short-term intermittent hypoxic exposure on heart rate variability in a sedentary population.

    PubMed

    Lizamore, C A; Kathiravel, Y; Elliott, J; Hellemans, J; Hamlin, M J

    2016-03-01

    While the effects of instantaneous, single-bout exposure to hypoxia have been well researched, little is known about the autonomic response during, or as an adaptation to, repeated intermittent hypoxic exposure (IHE) in a sedentary population. Resting heart rate variability (HRV) and exercise capacity was assessed in 16 participants (8 receiving IHE, [Hyp] and 8 receiving a placebo treatment [C]) before and after a 4-week IHE intervention. Heart rate variability was also measured during an IHE session in the last week of the intervention. Post-intervention, the root mean squared successive difference (rMSSD) increased substantially in Hyp (71.6 ± 52.5%, mean change ± 90% confidence limits) compared to C suggesting an increase in vagal outflow. However, aside from a likely decrease in submaximal exercise heart rate in the Hyp group (-5.0 ± 6.4%) there was little evidence of improved exercise capacity. During the week 4 IHE measurement, HRV decreased during the hypoxic exposure (reduced R-R interval: -7.5 ± 3.2%; and rMSSD: -24.7 ± 17.3%) suggesting a decrease in the relative contribution of vagal activity. In summary, while 4 weeks of IHE is unlikely to improve maximal exercise capacity, it may be a useful means of increasing HRV in people unable to exercise.

  20. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    PubMed

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.

  1. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  2. The relationship between exercise capacity and masked hypertension in sedentary patients with diabetes mellitus.

    PubMed

    Akilli, Hakan; Kayrak, Mehmet; Arıbas, Alpay; Tekinalp, Mehmet; Ayhan, Selim Suzi; Gündüz, Mehmet; Alibasic, Hajrudin; Altunbas, Gokhan; Yazıcı, Mehmet

    2014-01-01

    Although exaggerated blood pressure responses (EBPR) to exercise have been related to future hypertension and masked hypertension (MHT), the relationship between exercise capacity and MHT remains unclear. A sedentary life style has been related to increased cardiovascular mortality, diabetes mellitus (DM), and hypertension. In this study, we aimed to examine the relationship between exercise capacity and MHT in sedentary patients with DM. This study included 85 sedentary and normotensive patients with DM. Each patient's daily physical activity level was assessed according to the INTERHEART study. All patients underwent an exercise treadmill test, and exercise duration and capacity were recorded. Blood pressure (BP) was recorded during all exercise stages and BP values ≥ 200/110 mmHg were accepted as EBPR. MHT was diagnosed in patients having an office BP <140/90 mmHg and a daytime ambulatory BP >135/85 mmHg. Patients were divided into two groups according to their ambulatory BP monitoring (MHT and normotensive group). The prevalence of MHT was 28.2%. Exercise duration and capacity were lower in the MHT group than in the normotensive group (p<0.05) and were negatively correlated with age, HbA1c, mean daytime BP, and mean 24 hour BP. Peak exercise systolic BP and the frequency of EBPR were both increased in the MHT group (25.0% and 8.1%, respectively, p=0.03). According to a multivariate regression, exercise capacity (OR: 0.61, CI95%: 0.39-0.95, p=0.03), EBPR (OR: 9.45, CI95%: 1.72-16.90, p=0.01), and the duration of DM (OR: 0.84, CI95%: 0.71-0.96, p=0.03) were predictors of MHT. Exercise capacity, EBPR, and the duration of DM were predictors of MHT in sedentary subjects with DM.

  3. Self-reported quality of life before and after aerobic exercise training in individuals with hypertension: a randomised-controlled trial.

    PubMed

    Maruf, Fatai A; Akinpelu, Aderonke O; Salako, Babatunde L

    2013-07-01

    The Effects of Aerobic Exercise Training (AET) on self-reported Quality of Life (QoL) in people with hypertension have been previously documented. However, data on black populations, especially from Africa, seem not to be available. This study investigated the effects of AET on QoL and exercise capacity in Nigerians on treatment for essential hypertension. This randomised-controlled trial involved newly diagnosed individuals, with mild-to-moderate essential hypertension randomly assigned to antihypertensive drugs (ADs) alone (control: n = 60) and AET+ADs (exercise: n = 60) groups. The study lasted for 12 weeks. QoL was measured using the World Health Organization QoL Short Form (WHOQoL-BREF) and exercise capacity was assessed using the Rockport Fitness Walk Test pre- and post-study. Physical health, psychological health, and social relationships domains of QoL improved significantly in the exercise and control groups post-intervention. The environment domain of QoL and exercise capacity improved significantly in only the exercise group. There were larger improvements in the physical health, psychological health, and environment domains of QoL, and exercise capacity in the exercise group. Aerobic exercise improves QoL and exercise capacity in individuals with essential hypertension. © 2013 The Authors. Applied Psychology: Health and Well-Being © 2013 The International Association of Applied Psychology.

  4. Effects of an Exercise Programme on Functional Capacity, Body Composition and Risk of Falls in Patients with Cirrhosis: A Randomized Clinical Trial

    PubMed Central

    Román, Eva; García-Galcerán, Cristina; Torrades, Teresa; Herrera, Silvia; Marín, Ana; Doñate, Maite; Alvarado-Tapias, Edilmar; Malouf, Jorge; Nácher, Laura; Serra-Grima, Ricard; Guarner, Carlos; Soriano, German

    2016-01-01

    Patients with cirrhosis often have functional limitations, decreased muscle mass, and a high risk of falls. These variables could improve with exercise. The aim was to study the effects of moderate exercise on functional capacity, body composition and risk of falls in patients with cirrhosis. Twenty-three cirrhotic patients were randomized to an exercise programme (n = 14) or to a relaxation programme (n = 9). Both programmes consisted of a one-hour session 3 days a week for 12 weeks. At the beginning and end of the study, we measured functional capacity using the cardiopulmonary exercise test, evaluated body composition using anthropometry and dual energy X-ray absorptiometry, and estimated risk of falls using the Timed Up&Go test. In the exercise group, cardiopulmonary exercise test showed an increase in total effort time (p<0.001) and ventilatory anaerobic threshold time (p = 0.009). Upper thigh circumference increased and mid-arm and mid-thigh skinfold thickness decreased. Dual energy X-ray absorptiometry showed a decrease in fat body mass (-0.94 kg, 95%CI -0.48 to -1.41, p = 0.003) and an increase in lean body mass (1.05 kg, 95%CI 0.27 to 1.82, p = 0.01), lean appendicular mass (0.38 kg, 95%CI 0.06 to 0.69, p = 0.03) and lean leg mass (0.34 kg, 95%CI 0.10 to 0.57, p = 0.02). The Timed Up&Go test decreased at the end of the study compared to baseline (p = 0.02). No changes were observed in the relaxation group. We conclude that a moderate exercise programme in patients with cirrhosis improves functional capacity, increases muscle mass, and decreases body fat and the Timed Up&Go time. Trial Registration: ClinicalTrials.gov NCT01447537 PMID:27011355

  5. Exercise training improves vascular mitochondrial function

    PubMed Central

    Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David

    2016-01-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  6. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion

    PubMed Central

    Alghannam, Abdullah F.; Betts, James A.

    2018-01-01

    The importance of post-exercise recovery nutrition has been well described in recent years, leading to its incorporation as an integral part of training regimes in both athletes and active individuals. Muscle glycogen depletion during an initial prolonged exercise bout is a main factor in the onset of fatigue and so the replenishment of glycogen stores may be important for recovery of functional capacity. Nevertheless, nutritional considerations for optimal short-term (3–6 h) recovery remain incompletely elucidated, particularly surrounding the precise amount of specific types of nutrients required. Current nutritional guidelines to maximise muscle glycogen availability within limited recovery are provided under the assumption that similar fatigue mechanisms (i.e., muscle glycogen depletion) are involved during a repeated exercise bout. Indeed, recent data support the notion that muscle glycogen availability is a determinant of subsequent endurance capacity following limited recovery. Thus, carbohydrate ingestion can be utilised to influence the restoration of endurance capacity following exhaustive exercise. One strategy with the potential to accelerate muscle glycogen resynthesis and/or functional capacity beyond merely ingesting adequate carbohydrate is the co-ingestion of added protein. While numerous studies have been instigated, a consensus that is related to the influence of carbohydrate-protein ingestion in maximising muscle glycogen during short-term recovery and repeated exercise capacity has not been established. When considered collectively, carbohydrate intake during limited recovery appears to primarily determine muscle glycogen resynthesis and repeated exercise capacity. Thus, when the goal is to optimise repeated exercise capacity following short-term recovery, ingesting carbohydrate at an amount of ≥1.2 g kg body mass−1·h−1 can maximise muscle glycogen repletion. The addition of protein to carbohydrate during post-exercise recovery may be beneficial under circumstances when carbohydrate ingestion is sub-optimal (≤0.8 g kg body mass−1·h−1) for effective restoration of muscle glycogen and repeated exercise capacity. PMID:29473893

  7. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes.

    PubMed

    Park, Song-Young; Kwak, Yi-Sub

    2016-04-01

    Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance.

  8. Comparative Effectiveness of Low-Volume Time-Efficient Resistance Training Versus Endurance Training in Patients With Heart Failure.

    PubMed

    Munch, Gregers Winding; Rosenmeier, Jaya Birgitte; Petersen, Morten; Rinnov, Anders Rasmussen; Iepsen, Ulrik Winning; Pedersen, Bente Klarlund; Mortensen, Stefan Peter

    2018-05-01

    Cardiorespiratory fitness is positively related to heart failure (HF) prognosis, but lack of time and low energy are barriers for adherence to exercise. We, therefore, compared the effect of low-volume time-based resistance exercise training (TRE) with aerobic moderate-intensity cycling (AMC) on maximal and submaximal exercise capacity, health-related quality of life, and vascular function. Twenty-eight HF patients (New York Heart Association class I-II) performed AMC (n = 14) or TRE (n = 14). Maximal and submaximal exercise capacity, health-related quality of life, and vascular function were evaluated before and after a 6-wk training intervention with 3 training sessions per week. The AMC group and the TRE group trained for 45 and 25 min per training session, respectively. During the training sessions, the TRE and AMC groups trained at 60 ± 4% and 59 ± 2% (mean ± standard deviation) of (Equation is included in full-text article.)O2peak, respectively. The energy expenditure was significantly greater in AMC than in TRE (P < .05). The (Equation is included in full-text article.)O2peak and Wattpeak increased in AMC group (P < .001) and TRE group (P = .001), with no differences between groups. Six-minute walk distance also increased in both groups (AMC, P = .006 and TRE, P = .036), with no difference between groups. Health-related quality of life improved equally in the 2 groups, whereas vascular function did not change in either group. These results demonstrate that AMC and TRE equally improved exercise capacity and health-related quality of life in lower New York Heart Association-stage HF patients, despite less time required as well as lower energy expenditure during TRE than during AMC. Therefore, TRE might represent a time-efficient exercise modality for improving adherence to exercise in patients with class I-II HF.

  9. [Evaluation of exercise capacity in pulmonary arterial hypertension].

    PubMed

    Demir, Rengin; Küçükoğlu, Mehmet Serdar

    2010-12-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by increased pulmonary vascular resistance that leads to right ventricular failure. The most common clinical features of PAH are dyspnea and exercise intolerance. Measurement of exercise capacity is of considerable importance for the assessment of disease severity as well as routine monitoring of disease. Maximal, symptom-limited, cardiopulmonary exercise test (CPET) is the gold standard for the evaluation of exercise capacity, whereby functions of several systems involved in exercise can be assessed, including cardiovascular, respiratory, and metabolic systems. However, in order to derive the most useful diagnostic information on physiologic limitations to exercise, CPET requires maximal effort of the patient, which can be difficult and risky for some severely ill patients. Moreover, it requires specific exercise equipment and measurement systems, and experienced and trained personnel. Thus, routine clinical use of CPET to assess exercise capacity in patients with PAH may not always be feasible. A practical and simple alternative to CPET to determine exercise capacity is the 6-minute walk test (6MWT). It is simple to perform, safe, and reproducible. In contrast to CPET, the 6MWT reflects a submaximal level of exertion that is more consistent with the effort required for daily physical activities. This review focuses on the role of CPET and 6MWT in patients with PAH.

  10. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  11. An in-depth, longitudinal examination of the daily physical activity of a patient with heart failure using a Nintendo Wii at home: a case report.

    PubMed

    Klompstra, Leonie Verheijden; Jaarsma, Tiny; Strömberg, Anna

    2013-06-01

    To explore the influence of the Nintendo Wii on the daily physical activity of a patient with chronic heart failure at home. A 74-year-old Swedish patient with heart failure had access to a Nintendo Wii at home for 12 weeks. Exercise motivation, exercise self-efficacy and exercise capacity were assessed before and after the intervention. Data on perceived physical effort, global well-being and expended energy were collected every day during the intervention. During the 12 weeks of access to the Nintendo Wii, daily physical activity increased by 200% on weekdays and 57% on weekends, compared with baseline. The patient's exercise motivation and exercise self-efficacy increased during the study, whereas perceived physical effort and global well-being did not change. The patient had no difficulties in using the system and did not suffer any major harm. The results of this case study suggest that providing patients with heart failure access to a Nintendo Wii is a promising and safe intervention. The energy expended by the patient per day increased, as did exercise capacity. Playing the Nintendo Wii did not increase the perceived physical effort, but increased motivation to exercise and decreased barriers to exercising.

  12. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness.

    PubMed

    Ren, Yu-Yu; Koch, Lauren G; Britton, Steven L; Qi, Nathan R; Treutelaar, Mary K; Burant, Charles F; Li, Jun Z

    2016-11-01

    Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise. Copyright © 2016 the American Physiological Society.

  13. Does Whole-Body Vibration Improve the Functional Exercise Capacity of Subjects With COPD? A Meta-Analysis.

    PubMed

    Cardim, Adriane B; Marinho, Patrícia Em; Nascimento, Jasiel F; Fuzari, Helen Kb; Dornelas de Andrade, Armèle

    2016-11-01

    Whole-body vibration (WBV) is considered a type of physical activity based on the assumption that it results in an increase in muscle strength and performance and, therefore, may be a promising way to exercise patients with COPD. A comprehensive database search (PubMed/MEDLINE, LILACS, CINAHL, Web of Science, Scopus, and COCHRANE Library) for randomized trials, including original articles, that compared WBV groups versus control groups was conducted and studies were selected for comparison. The effect of WBV treatment was compared for minimum clinically important differences. The statistical heterogeneity among the studies was assessed using the I 2 statistic; the results are expressed as percentages. Inconsistencies of up to 25% were considered low, those between 50 and 75% were considerate moderate, and those > 75% were considered high. Risk of bias was classified based on the Cochrane Collaboration tool, the meta-analysis was conducted using RevMan 5.3 software, and the level of evidence was assessed using the GRADE system. The primary outcome was functional exercise capacity. Secondary outcomes were quality of life, performance in activities of daily living, muscle strength of the lower limbs, and possible adverse effects assessed clinically or by subject reports. We included 4 articles involving 185 subjects for analysis. All subjects in the groups undergoing WBV showed improvement in distance walked in the 6-min walk test compared with the control group (57.85 m, 95% CI 16.36-99.33 m). Regarding the secondary end points, just one article reported improved quality of life and activities of daily living. The only article that assessed muscle strength found no difference between the groups. The quality of evidence for functional exercise capacity outcome was considered moderate. WBV seems to benefit subjects with COPD by improving their functional exercise capacity, without producing adverse effects. The quality of evidence is moderate, but the degree of recommendation is strong. (International Prospective Register of Systematic Reviews, http://www.crd.york.ac.uk/prospero, 2015:CRD42015027659.). Copyright © 2016 by Daedalus Enterprises.

  14. The Effects of Functional Training, Bicycle Exercise, and Exergaming on Walking Capacity of Elderly Patients With Parkinson Disease: A Pilot Randomized Controlled Single-blinded Trial.

    PubMed

    Ferraz, Daniel Dominguez; Trippo, Karen Valadares; Duarte, Gabriel Pereira; Neto, Mansueto Gomes; Bernardes Santos, Kionna Oliveira; Filho, Jamary Oliveira

    2018-05-01

    To compare the effects of functional training, bicycle exercise, and exergaming on walking capacity of elderly with Parkinson disease (PD). A pilot randomized, controlled, single-blinded trial. A state reference health care center for elderly, a public reference outpatient clinic for the elderly. Elderly individuals (≥60 years of age; N=62) with idiopathic PD (stage 2 to 3 of modified Hoehn and Yahr staging scale) according to the London Brain Bank. The participants were randomly assigned to three groups. Group 1 (G1) participated in functional training (n=22); group 2 (G2) performed bicycle exercise (n=20), and group 3 (G3) trained with Kinect Adventures (Microsoft, Redmond, WA) exergames (n=20). The primary outcome measure was the 6-minute walk test (6MWT); secondary outcome measures were the 10-m walk test (10MWT), sitting-rising test (SRT), body mass index, Parkinson Disease Questionnaire-39, World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), and 15-item Geriatric Depression Scale. All groups showed significant improvements in 6MWT (G1 P=.008; G2 P=.001; G3 P=.005), SRT (G1 P<.001; G2 P=.001; G3 P=.003), and WHODAS 2.0 (G1 P=.018; G2 P=.019; G3 P=.041). Only G3 improved gait speed in 10MWT (P=.11). G1 (P=.014) and G3 (P=.004) improved quality of life. No difference was found between groups. Eight weeks of exergaming can improve the walking capacity of elderly patients with PD. Exergame training had similar outcomes compared with functional training and bicycle exercise. The three physical exercise modalities presented significant improvements on walking capacity, ability to stand up and sit, and functionality of the participants. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Functional outcome in contemporary children with total cavopulmonary connection - Health-related physical fitness, exercise capacity and health-related quality of life.

    PubMed

    Hock, Julia; Reiner, Barbara; Neidenbach, Rhoia C; Oberhoffer, Renate; Hager, Alfred; Ewert, Peter; Müller, Jan

    2018-03-15

    Children and adolescents with an univentricular heart after total cavopulmonary connection (TCPC) have functional impairments. This study assesses health-related physical fitness (HRPF) and exercise capacity, as well as their relation to health-related quality of life (HRQoL) in patients with an univentricular heart after total-pulmonary connection (TCPC). Between July 2014 and October 2016 a total of 78 children and adolescents with TCPC (12.0±3.2years, 21 female) performed a motor test including five tasks for strength and flexibility during their routine follow-up appointment. They also underwent a symptom limited cardio-pulmonary exercise test and filled in a HRQoL questionnaire (KINDL-R). Patients' data were compared to a recent sample of healthy children (n=1650, 12.6±2.4years, 49% female). Multivariable regressions corrected for sex, age and BMI showed that TCPC patients achieved 12.4 repetitions of curl-ups (p<0.001) and 2.6 push-ups (p=0.010) less than healthy counterparts. They had impairments in trunk (-8.5cm; p<0.001), shoulder (-7.5cm; p<0.001) and lower limb flexibility (-4.7cm; p<0.001). Peak oxygen uptake was reduced to 34.8±7.5ml/min/kg and 77.7% respectively, compared to peers (p<0.001). Ventilatory efficiency was also impaired (healthy: 27.5±2.9 vs. TCPC: 31.6±3.3; p<0.001). HRQoL did not differ significantly (p=0.233). Children and adolescents with TCPC still present impaired HRPF and exercise capacity whereas HRQoL is similar to healthy peers. Since low HRPF may yield to worse motor competence and exercise capacity, early screening for HRPF and early treatment, if indicated, is recommended. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Smoking status and its relationship with exercise capacity, physical activity in daily life and quality of life in physically independent, elderly individuals.

    PubMed

    Mesquita, R; Gonçalves, C G; Hayashi, D; Costa, V de S P; Teixeira, D de C; de Freitas, E R F S; Felcar, J M; Pitta, F; Molari, M; Probst, V S

    2015-03-01

    To investigate the relationship between smoking status and exercise capacity, physical activity in daily life and health-related quality of life in physically independent, elderly (≥60 years) individuals. Cross-sectional, observational study. Community-dwelling, elderly individuals. One hundred and fifty-four elderly individuals were categorised into four groups according to their smoking status: never smokers (n=57), passive smokers (n=30), ex-smokers (n=45) and current smokers (n=22). Exercise capacity [6-minute walk test (6MWT)], physical activity in daily life (step counting) and health-related quality of life [36-Item Short Form Health Survey (SF-36) questionnaire] were assessed. Current and ex-smokers had lower mean exercise capacity compared with never smokers: 90 [standard deviation (SD) 10] % predicted, 91 (SD 12) % predicted and 100 (SD 13) % predicted distance on 6MWT, respectively [mean differences -9.8%, 95% confidence intervals (CI) -17.8 to -1.8 and -9.1%, 95% CI -15.4 to -2.7, respectively; P<0.05 for both]. The level of physical activity did not differ between the groups, but was found to correlate negatively with the level of nicotine dependence in current smokers (r=-0.47, P=0.03). The median score for the mental health dimension of SF-36 was worse in passive {72 [interquartile range (IQR) 56 to 96] points} and current [76 (IQR 55 to 80) points] smokers compared with ex-smokers [88 (IQR 70 to 100) points] (median differences -16 points, 95% CI -22.2 to -3.0 and -12 points, 95% CI -22.8 to -2.4, respectively; P<0.05 for both). Among elderly individuals, current smokers had lower exercise capacity than never smokers. Although the level of physical activity did not differ between the groups, an association was found with smoking. Tobacco exposure was associated with worse scores for the mental health dimension of SF-36 in physically independent, elderly individuals. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  17. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients.

    PubMed

    Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C

    2009-09-01

    Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.

  18. Separate and combined effects of exposure to heat stress and mental fatigue on endurance exercise capacity in the heat.

    PubMed

    Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Watson, Phillip

    2017-01-01

    This study investigated the effects of exposure to pre-exercise heat stress and mental fatigue on endurance exercise capacity in a hot environment. Eight volunteers completed four cycle exercise trials at 80% maximum oxygen uptake until exhaustion in an environmental chamber maintained at 30 °C and 50% relative humidity. The four trials required them to complete a 90 min pre-exercise routine of either a seated rest (CON), a prolonged demanding cognitive task to induce mental fatigue (MF), warm water immersion at 40 °C during the last 30 min to induce increasing core temperature (WI), or a prolonged demanding cognitive task and warm water immersion at 40 °C during the last 30 min (MF + WI). Core temperature when starting exercise was higher following warm water immersion (~38 °C; WI and MF + WI) than with no water immersion (~36.8 °C; CON and MF, P < 0.001). Self-reported mental fatigue when commencing exercise was higher following cognitive task (MF and MF + WI) than with no cognitive task (CON and WI; P < 0.05). Exercise time to exhaustion was reduced by warm water immersion (P < 0.001) and cognitive task (P < 0.05). Compared with CON (18 ± 7 min), exercise duration reduced 0.8, 26.6 and 46.3% in MF (17 ± 7 min), WI (12 ± 5 min) and MF + WI (9 ± 3 min), respectively. This study demonstrates that endurance exercise capacity in a hot environment is impaired by either exposure to pre-exercise heat stress or mental fatigue, and this response is synergistically increased during combined exposure to them.

  19. Postnatal PPARdelta activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice.

    PubMed

    Bernardo, Barbara L; Wachtmann, Timothy S; Cosgrove, Patricia G; Kuhn, Max; Opsahl, Alan C; Judkins, Kyle M; Freeman, Thomas B; Hadcock, John R; LeBrasseur, Nathan K

    2010-06-25

    Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.

  20. Water-based exercise training for chronic obstructive pulmonary disease.

    PubMed

    McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A

    2013-12-18

    Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.

  1. Work, exercise, and space flight. 3: Exercise devices and protocols

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1989-01-01

    Preservation of locomotor capacity by earth equivalent, exercise in space is the crucial component of inflight exercise. At this time the treadmill appears to be the only way possible to do this. Work is underway on appropriate hardware but this and a proposed protocol to reduce exercise time must be tested. Such exercise will preserve muscle, bone Ca(++) and cardiovascular-respiratory capacity. In addition, reasonable upper body exercise can be supplied by a new force generator/measurement system-optional exercise might include a rowing machine and bicycle ergometer. A subject centered monitoring-evaluation program will allow real time adjustments as required. Absolute protection for any astronaut will not be possible and those with hypertrophied capacities such as marathoners or weight lifters will suffer significant loss. However, the program described should return the crew to earth with adequate capacity of typical activity on earth including immediate ambulation and minimal recovery time and without permanent change. An understanding of the practical mechanics and biomechanics involved is essential to a solution of the problem.

  2. An assessment of anti-schistosomal treatment on physical work capacity.

    PubMed

    Awad El Karim, M A; Collins, K J; Sukkar, M Y; Omer, A H; Amin, M A; Doré, C

    1981-04-01

    Acting as their own controls, village subjects from the Gezira are of the Sudan with relatively high levels of schistosomiasis infection were first tested in an exercise laboratory in Khartoum and the tests were then repeated after a period of about 1 yr during which time the subjects were treated with hycanthone and periodically monitored to ensure that they had remained free of the disease. In the meantime they were also given anti-malarial prophylaxis. Laboratory tests showed a significant improvement in physiological work capacity of up to 20% after treatment compared with untreated controls. An overall improvement in pulmonary function, particularly forced vital capacity, was observed as well as a significant increase in mean haemoglobin concentration by 1.1 g/100 ml of blood in the treated group. Apart from these improvements in physical working capacity, the treated subjects subjectively felt better after the exercise tests, as expressed by the disappearance of fatiguability.

  3. Effects of Aerobic Exercise Applied Early After Coronary Artery Bypass Grafting on Pulmonary Function, Respiratory Muscle Strength, and Functional Capacity: A Randomized Controlled Trial.

    PubMed

    Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá

    2016-09-01

    Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.

  4. The connection between chronic obstructive pulmonary disease symptoms and hyperinflation and its impact on exercise and function.

    PubMed

    Cooper, Christopher B

    2006-10-01

    Forced expiratory volume in 1 second (FEV1) has served as an important diagnostic measurement of chronic obstructive pulmonary disease (COPD) but has not been found to correlate with patient-centered outcomes such as exercise tolerance, dyspnea, or health-related quality of life. It has not helped us understand why some patients with severe FEV1 impairment have better exercise tolerance compared with others with similar FEV1 values. Hyperinflation, or air trapping caused by expiratory flow limitation, causes operational lung volumes to increase and even approach the total lung capacity (TLC) during exercise. Some study findings suggest that a dyspnea limit is reached when the end-inspiratory lung volume encroaches within approximately 500 mL of TLC. The resulting limitation in daily physical activity establishes a cycle of decline that includes physical deconditioning (elevated blood lactic acid levels at lower levels of exercise) and worsening dyspnea. Hyperinflation is reduced by long-acting bronchodilators that reduce airways resistance. The deflation of the lungs, in turn, results in an increased inspiratory capacity. For example, the once-daily anticholinergic bronchodilator tiotropium increases inspiratory capacity, 6-minute walk distance, and cycle exercise endurance time, and it decreases isotime fatigue or dyspnea. Pulmonary rehabilitation and oxygen therapy both reduce ventilatory requirements and improve breathing efficiency, thereby reducing hyperinflation and improving exertional dyspnea. Thus, hyperinflation is directly associated with patient-centered outcomes such as dyspnea and exercise limitation. Furthermore, therapeutic interventions--including pharmacotherapy and lung volume--reduction surgery--that reduce hyperinflation improve these outcomes.

  5. Dietary Nitrate Supplementation Improves Exercise Performance and Decreases Blood Pressure in COPD Patients

    PubMed Central

    Berry, Michael J.; Justus, Nicholas W.; Hauser, Jordan I.; Case, Ashlee H.; Helms, Christine C.; Basu, Swati; Rogers, Zachary; Lewis, Marc T.; Miller, Gary D.

    2014-01-01

    Dietary nitrate (NO3−) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3− ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient’s maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3− and nitrite (NO2−) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3− by 938% and NO2− by 379%. Median (+ interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 sec., respectively). Compared to placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3− supplementation can elevate plasma NO3− and NO2− concentrations, improve exercise performance, and reduce blood pressure in COPD patients. PMID:25445634

  6. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients.

    PubMed

    Berry, Michael J; Justus, Nicholas W; Hauser, Jordan I; Case, Ashlee H; Helms, Christine C; Basu, Swati; Rogers, Zachary; Lewis, Marc T; Miller, Gary D

    2015-08-01

    Dietary nitrate (NO3(-)) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3(-) ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient's maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3(-) and nitrite (NO2(-)) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3(-) by 938% and NO2(-) by 379%. Median (+interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 s, respectively). Compared with placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3(-) supplementation can elevate plasma NO3(-) and NO2(-) concentrations, improve exercise performance, and reduce blood pressure in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effects of Combined Phase III and Phase II Cardiac Exercise Therapy for Middle-aged Male Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Huang, Chien-Hui

    2013-01-01

    [Purpose] To investigate the effects of cardiac exercise therapy (CET) on exercise capacity and coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Methods] Patients who participated in an 8-week supervised, hospital-based phase II and 6-month home-based phase III CET with monthly telephone and/or home visits were defined as the exercise group (EG) (n=20), while those who did not receive phase II or phase III CET were defined as the no-exercise group (NEG) (n=10). CRFs were evaluated pre- and post-phase II and eight months after discharge. One and two-way repeated measures ANOVA were used to perform intra- and inter-group comparisons. [Results] Thirty men with AMI aged 49.3 ± 8.3 years were studied. EG increased their exercise capacity (METs) (6.8 ± 1.6 vs.10.0 ± 1.9) after phase II CET and was able to maintain it at 8-month follow-up. Both groups had significantly fewer persons who kept on smoking compared to the first examination. High density lipoprotein cholesterol (HDL-C) increased from 38.1 ± 11.0 to 43.7 ± 8.7 mg/dl at follow-up in EG while no significant difference was noted in NEG. [Conclusion] After phase III CET subjects had maintained the therapeutic effects of smoking cessation, and increasing exercise capacity obtained in phase II CET. HDL-C in EG continued to improve during phase III CET. PMID:24396201

  8. Pulmonary rehabilitation for mild COPD: a systematic review.

    PubMed

    Jácome, Cristina; Marques, Alda

    2014-04-01

    Pulmonary rehabilitation (PR) is effective in improving exercise capacity and health-related quality of life (HRQOL) in patients with moderate-to-very-severe COPD. Quadriceps strength and HRQOL can be impaired in patients with mild COPD, therefore, patients at this grade may already benefit from PR. However, the impact of PR in patients with mild COPD remains unestablished. Thus, this systematic review assessed the impact of PR on exercise capacity, HRQOL, health-care resource use and lung function in patients with mild COPD. The Web of Knowledge, EBSCO, MEDLINE, and SCOPUS databases were searched up to April 2013. Reviewers independently selected studies according to the eligibility criteria. Three studies with different designs (retrospective, one group pretest-posttest, and randomized controlled trial) were included. Out-patient PR programs were implemented in two studies, which included mainly aerobic, strength, and respiratory muscle training. The randomized controlled trial compared a PR home-based program, consisting of 6 months of walking and participating in ball games, with standard medical treatment. Significant improvements in exercise capacity (effect size [ES] 0.87-1.82) and HRQOL (ES 0.24-0.86) were found when comparing pretest-posttest data and when comparing PR with standard medical treatment. In one study, a significant decrease in hospitalization days was found (ES 0.38). No significant effects were observed on the number of emergency department visits (ES 0.32), number of hospitalizations (ES 0.219), or lung function (ES 0.198). Most of the PR programs had significant positive effects on exercise capacity and HRQOL in patients with mild COPD; however, their effects on health-care resource use and lung function were inconclusive. This systematic review suggests that patients with mild COPD may benefit from PR; however, insufficient evidence is still available. Studies with robust designs and with longer follow-up times should be conducted.

  9. The functional exercise capacity and its correlates in obese treatment-seeking people with binge eating disorder: an exploratory study.

    PubMed

    Vancampfort, Davy; De Herdt, Amber; Vanderlinden, Johan; Lannoo, Matthias; Adriaens, An; De Hert, Marc; Stubbs, Brendon; Soundy, Andrew; Probst, Michel

    2015-01-01

    The primary aim was to compare the functional exercise capacity between obese treatment-seeking people with and without binge eating disorder (BED) and non-obese controls. The secondary aim was to identify clinical variables including eating and physical activity behaviour, physical complaints, psychopathology and physical self-perception variables in obese people with BED that could explain the variability in functional exercise capacity. Forty people with BED were compared with 20 age-, gender- and body mass index (BMI)-matched obese persons without BED and 40 age and gender matched non-obese volunteers. A 6-minute walk test (6MWT), the Baecke physical activity questionnaire, the Symptom Checklist-90, the Physical Self-Perception Profile and the Eating Disorder Inventory were administered. Physical complaints before and after the 6MWT were also documented. The distance achieved on the 6MWT was significantly lower in obese participants with BED (512.1 ± 75.8 m versus 682.7 ± 98.4, p < 0.05) compared to non-obese controls. No significant differences were found between obese participants with and without BED. Participants with BED reported significantly (p < 0.05) more musculoskeletal pain and fatigue after the walk test than obese and non-obese controls. A forward stepwise regression analysis demonstrated that sports participation and perceived physical strength explained 41.7% of the variance on the 6MWT in obese participants with BED. Physical activity participation, physical self-perception and perceived physical discomfort during walking should be considered when developing rehabilitation programs for obese people with BED. Rehabilitation programmes in people with binge eating disorder should incorporate a functional exercise capacity assessment. Clinicians involved in the rehabilitation of people with binge eating disorder should consider depression and lower self-esteem as potential barriers. Clinicians should take into account the frequently observed physical discomfort when developing rehabilitation programmes for people with binge eating disorder.

  10. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity.

    PubMed

    Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Wagner, P D; Ge, R L

    2015-07-15

    Tibetans living at high altitude have adapted genetically such that many display a low erythropoietic response, resulting in near sea-level haemoglobin (Hb) concentration. We hypothesized that absence of the erythropoietic response would be associated with greater exercise capacity compared to those with high [Hb] as a result of beneficial changes in oxygen transport. We measured, in 21 Tibetan males with [Hb] ranging from 15.2 g dl(-1) to 22.9 g dl(-1) (9.4 mmol l(-1) to 14.2 mmol l(-1) ), [Hb], ventilation, volumes of O2 and CO2 utilized at peak exercise (V̇O2 and V̇CO2), heart rate, cardiac output and arterial blood gas variables at peak exercise on a cycle ergometer at ∼4200 m. Lung and muscle O2 diffusional conductances were computed from these measurements. [Hb] was related (negatively) to V̇O2 kg(-1) (r = -0.45, P< 0.05), cardiac output kg(-1) (QT kg(-1) , r = -0.54, P < 0.02), and O2 diffusion capacity in muscle (DM kg(-1) , r = -0.44, P<0.05), but was unrelated to ventilation, arterial partial pressure of O2 (PaO2) or pulmonary diffusing capacity. Using multiple linear regression, variance in peak V̇O2 kg(-1) was primarily attributed to QT, DM, and PCO2 (R(2) = 0.88). However, variance in pulmonary gas exchange played essentially no role in determining peak V̇O2. These results (1) show higher exercise capacity in Tibetans without the erythropoietic response, supported mostly by cardiac and muscle O2 transport capacity and ventilation rather than pulmonary adaptations, and (2) support the emerging hypothesis that the polycythaemia of altitude, normally a beneficial response to low cellular PO2, may become maladaptive if excessively elevated under chronic hypoxia. The cause and effect relationships among [Hb], QT, DM, and PCO2 remain to be elucidated. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Effects of chronic nitric oxide synthase inhibition on V'O2max and exercise capacity in mice.

    PubMed

    Wojewoda, M; Przyborowski, K; Sitek, B; Zakrzewska, A; Mateuszuk, L; Zoladz, J A; Chlopicki, S

    2017-03-01

    Acute inhibition of NOS by L-NAME (N ω -nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O 2max ) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O 2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O 2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO 2 - ) and nitrate (NO 3 - )) and prostacyclin (PGI 2 ) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O 2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO 2 - plasma concentration. PGI 2 production was activated (increased 6-keto-PGF 1α plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO 2 - plasma concentration), and 6-keto-PGF 1α plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V'O 2max . Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI 2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.

  12. Intestinal adaptations to a combination of different diets with and without endurance exercise.

    PubMed

    Daniels, Janice L; Bloomer, Richard J; van der Merwe, Marie; Davis, Samantha L; Buddington, Karyl K; Buddington, Randal K

    2016-01-01

    Endurance athletes search for diet regimens that will improve performance and decrease gastrointestinal disturbances during training and events. Although the intestine can adapt to changes in the amount and composition of dietary inputs, the responses to the combination of endurance exercise and diet are poorly understood. We evaluated small intestinal dimensions and mucosal architecture and calculated the capacities of the entire small intestine to digest maltose and maltodextrin and absorb glucose in response to two different diet types; a western human diet and the Daniel Fast, a vegan style diet, and with moderate intensity endurance training or a no-exercise sedentary lifestyle for a 13 week period (n = 7 per group). The influences of diet and exercise, alone and in combination, were analyzed by analysis of variation. Rats fed the western diet gained more weight (P < 0.05) due to more fat mass (P < 0.05), with a similar response for the sedentary compared with the exercised rats in each diet group (P < 0.05). The Daniel Fast rats had longer and heavier intestines with deeper crypts with villi that were wider (P < 0.05), but not taller. Despite increased energetic demands, the exercised rats had shorter and lighter intestines with shorter villi (P < 0.05). Yet, the percentage of mucosa did not differ among groups. Total small intestinal activities for maltase and α-glucoamylase, and capacities for glucose absorption were similar regardless of diet or exercise. These findings indicate the structural responses of the small intestine to a vegan style diet are modified by exercise, but without altering the capacities of the brush border membrane to digest and absorb carbohydrates.

  13. High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study.

    PubMed

    Ryerson, Christopher J; Camp, Pat G; Eves, Neil D; Schaeffer, Michele; Syed, Nafeez; Dhillon, Satvir; Jensen, Dennis; Maltais, Francois; O'Donnell, Denis E; Raghavan, Natya; Roman, Michael; Stickland, Michael K; Assayag, Deborah; Bourbeau, Jean; Dion, Genevieve; Fell, Charlene D; Hambly, Nathan; Johannson, Kerri A; Kalluri, Meena; Khalil, Nasreen; Kolb, Martin; Manganas, Helene; Morán-Mendoza, Onofre; Provencher, Steve; Ramesh, Warren; Rolf, J Douglass; Wilcox, Pearce G; Guenette, Jordan A

    2016-09-01

    Pulmonary rehabilitation improves dyspnea and exercise capacity in idiopathic pulmonary fibrosis (IPF); however, it is unknown whether breathing high amounts of oxygen during exercise training leads to further benefits. Herein, we describe the design of the High Oxygen Delivery to Preserve Exercise Capacity in IPF Patients Treated with Nintedanib study (the HOPE-IPF study). The primary objective of this study is to determine the physiological and perceptual impact of breathing high levels of oxygen during exercise training in patients with IPF who are receiving antifibrotic therapy. HOPE-IPF is a two-arm double-blind multicenter randomized placebo-controlled trial of 88 patients with IPF treated with nintedanib. Patients will undergo 8 weeks of three times weekly aerobic cycle exercise training, breathing a hyperoxic gas mixture with a constant fraction of 60% inhaled oxygen, or breathing up to 40% oxygen as required to maintain an oxygen saturation level of at least 88%. End points will be assessed at baseline, postintervention (Week 8), and follow-up (Week 26). The primary analysis will compare the between-group baseline with post-training change in endurance time during constant work rate cycle exercise tests. Additional analyses will evaluate the impact of training with high oxygen delivery on 6-minute walk distance, dyspnea, physical activity, and quality of life. The HOPE-IPF study will lead to a comprehensive understanding of IPF exercise physiology, with the potential to change clinical practice by indicating the need for increased delivery of supplemental oxygen during pulmonary rehabilitation in patients with IPF. Clinical trial registered with www.clinicaltrials.gov (NCT02551068).

  14. Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training

    PubMed Central

    Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza

    2013-01-01

    Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762

  15. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients

    PubMed Central

    Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin

    2017-01-01

    Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733

  16. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients.

    PubMed

    Wang, Kai; Zeng, Guang-Qiao; Li, Rui; Luo, Yu-Wen; Wang, Mei; Hu, Yu-He; Xu, Wen-Hui; Zhou, Lu-Qian; Chen, Rong-Chang; Chen, Xin

    2017-01-01

    Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group ( P <0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPI max [maximal inspiratory pressure] 5.20±0.89 cmH 2 O vs 1.32±0.91 cmH 2 O; P <0.05). However, there were no significant differences in the other indices between the two groups ( P >0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness ( P >0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program ( P >0.05). Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT.

  17. Supine Lower Body Negative Pressure Exercise Maintains Upright Exercise Capacity in Male Twins during 30 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Schneider, Suzanne M.; Boda, Wanda L.; Watenpaugh, Donald E.; Macias, Brandon R.; Meyer, R. Scott; Hargens, Alan R.

    2006-01-01

    Exercise capacity is reduced following both short and long duration exposures to microgravity. We have shown previously that supine lower body negative pressure with exercise (LBNP(sub ex) maintains upright exercise capacity in men after 5d and 15d bed rest, as a simulation of microgravity. We hypothesized that LBNP(sub ex) would protect upright exercise capacity (VO2pk) and sprint performance in eight sets of identical male twins during a 30-d bed rest. Twins within each set were randomly assigned to either a control group (CON) who performed no exercise or to an exercise group (EX) who performed a 40-min interval (40-80% pre-BR VO2pk) LBNP(sub ex) (55+/-4 mmHg) exercise protocol, plus 5 min of resting LBNP, 6 d/wk. LBNP produced footward force equivalent to 1.0- 1.2 times body weight. Pre- and post-bed rest, subjects completed an upright graded exercise test to volitional fatigue and sprint test of 30.5 m. After bed rest, VO2pk was maintained in the EX subjects (-3+/-3%), but was significantly decreased in the CON subjects (-24+/-4%). Sprint time also was increased in the CON subjects (24+/-8%), but maintained in the EX group (8+/-2%). The performance of a supine, interval exercise protocol with LBNP maintains upright exercise capacity and sprint performance during 30 d of bed rest. This exercise countermeasure protocol may help prevent microgravity-induced deconditioning during long duration space flight.

  18. Influence of simulated microgravity on the sympathetic response to exercise

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Kregel, K. C.; Tipton, C. M.

    1997-01-01

    Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.

  19. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis.

    PubMed

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi; Zhou, Hao

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO 2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits.

  20. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis

    PubMed Central

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits. PMID:28316986

  1. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    PubMed

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.

  2. Adenoviral beta-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy.

    PubMed

    Gupta, Dipin; Molina, Ezequiel J; Palma, Jon; Gaughan, John P; Long, Walter; Macha, Mahender

    2008-10-01

    We hypothesized that intracoronary adenoviral-mediated delivery of betaARKct would improve heart failure associated pathophysiologic abnormalities related to exercise capacity, cardiac contractility, systemic inflammation and volume overload. After aortic banding, a cohort of Sprague-Dawley rats was followed by echocardiography. When an absolute decline of 25% in fractional shortening was detected, animals were randomized to intracoronary delivery of Ad.ssARKct (n=14), Ad.beta-Gal (n=13), or followed without any other further intervention (n=18). Assessment of exercise tolerance and hemodynamic profile and measurement of markers of systemic inflammation and volume overload was performed at 7, 14, and 21 days after gene delivery. Data were analyzed using ANOVA. Animals receiving Ad.ssARKct showed improved exercise tolerance compared to Ad.Gal-treated animals at 14 days (507+/-26 s vs. 408+/-19 s, P=0.01) and 21 days (526+/-55 s vs. 323+/-19 s, P<0.001) following injection. Animals receiving Ad.ssARKct demonstrated improved +dP/dtmax (mean+/-SD, 5,581+/-960 mmHg/s vs. 3,134+/-438 mmHg/s, P<0.01) and -dP/dtmax (mean+/-SD, -3,494+/-1,269 mmHg/s vs. -1,925+/-638 mmHg/s, P<0.01) compared to Ad.Gal-treated animals at 7 days. These differences were observed up to 21 days following injection. Serum levels of IL-1, IL-6, and TNF-alpha, as well as ANP were also decreased in animals receiving Ad.betaARKct. Genetic modulation of heart failure using the betaARKct gene was associated with improved exercise capacity and cardiac function as well as amelioration in heart failure-associated profiles of systemic inflammation and volume overload.

  3. The impact of exercise-only-based rehabilitation on depression and anxiety in patients after myocardial infarction.

    PubMed

    Korzeniowska-Kubacka, Iwona; Bilińska, Maria; Piotrowska, Dorota; Stepnowska, Monika; Piotrowicz, Ryszard

    2017-06-01

    The aim of the study was to assess the effectiveness of exercise training on depression, anxiety, physical capacity and sympatho-vagal balance in patients after myocardial infarction and compare differences between men and women. Thirty-two men aged 56.3±7.6 years and 30 women aged 59.2±8.1 years following myocardial infarction underwent an 8-week training programme consisting of 24 interval trainings on cycloergometer, three times a week. Before and after completing the training programme, patients underwent: depression intensity assessment with the Beck depression inventory; anxiety assessment with the state-trait anxiety inventory; a symptom-limited exercise test during which were analysed: maximal workload, duration, double product. In women the initial depression intensity was higher than in men, and decreased significantly after the training programme (14.8±8.7 vs. 10.5±8.8; P<0.01). The anxiety manifestation for state anxiety in women was higher than in men and decreased significantly after the training programme (45.7±9.7 vs. 40.8±0.3; P<0.01). Of note, no depression and anxiety manifestation was found in men. Physical capacity improved significantly after the training programme in all groups, and separately in men and in women. Moreover, an 8-week training programme favourably modified the parasympathetic tone. Participating in the exercise training programme contributed beneficially to a decrease in depression and anxiety manifestations in women post-myocardial infarction. Neither depression nor anxiety changed significantly in men. The impact of exercise training on physical capacity and autonomic balance was beneficial and comparable between men and women.

  4. Effects of 1-Methylnicotinamide (MNA) on Exercise Capacity and Endothelial Response in Diabetic Mice.

    PubMed

    Przyborowski, Kamil; Wojewoda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Kij, Agnieszka; Wandzel, Krystyna; Zoladz, Jerzy Andrzej; Chlopicki, Stefan

    2015-01-01

    1-Methylnicotinamide (MNA), which was initially considered to be a biologically inactive endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflammatory agent with the capacity to release prostacyclin (PGI2). In the present study, we characterized the effects of MNA on exercise capacity and the endothelial response to exercise in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks (100 mg·kg-1), and their exercise capacity as well as NO- and PGI2-dependent response to endurance running were subsequently assessed. MNA treatment of db/db mice resulted in four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-2PY + Met-4PY), respectively (P<0.01), but did not affect HbA1c concentration, fasting glucose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01). In MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly prolonged (P<0.05). Post-exercise Δ6-keto-PGF1α (difference between mean concentration in the sedentary and exercised groups) tended to increase, and post-exercise leukocytosis was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the first time that MNA improves endurance exercise capacity in mice with diabetes, and may also decrease the cardiovascular risk of exercise.

  5. Decreased exercise capacity and sleep-disordered breathing in patients with hypertrophic cardiomyopathy.

    PubMed

    Konecny, Tomas; Geske, Jeffrey B; Ludka, Ondrej; Orban, Marek; Brady, Peter A; Abudiab, Muaz M; Albuquerque, Felipe N; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R; Gersh, Bernard J; Tajik, A Jamil; Allison, Thomas G; Ommen, Steve R; Somers, Virend K

    2015-06-01

    Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (VO2 peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased VO2 peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with VO2 peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. In patients with HCM, the presence of SDB is associated with decreased VO2 peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population.

  6. Decreased Exercise Capacity and Sleep-Disordered Breathing in Patients With Hypertrophic Cardiomyopathy

    PubMed Central

    Konecny, Tomas; Geske, Jeffrey B.; Ludka, Ondrej; Orban, Marek; Brady, Peter A.; Abudiab, Muaz M.; Albuquerque, Felipe N.; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R.; Gersh, Bernard J.; Tajik, A. Jamil; Allison, Thomas G.; Ommen, Steve R.

    2015-01-01

    BACKGROUND: Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. METHODS: Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (V.o2peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. RESULTS: A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased V.o2peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with V.o2peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. CONCLUSIONS: In patients with HCM, the presence of SDB is associated with decreased V.o2peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population. PMID:25633371

  7. Exercise-based cardiac rehabilitation for adults with atrial fibrillation.

    PubMed

    Risom, Signe S; Zwisler, Ann-Dorthe; Johansen, Pernille P; Sibilitz, Kirstine L; Lindschou, Jane; Gluud, Christian; Taylor, Rod S; Svendsen, Jesper H; Berg, Selina K

    2017-02-09

    Exercise-based cardiac rehabilitation may benefit adults with atrial fibrillation or those who had been treated for atrial fibrillation. Atrial fibrillation is caused by multiple micro re-entry circuits within the atrial tissue, which result in chaotic rapid activity in the atria. To assess the benefits and harms of exercise-based rehabilitation programmes, alone or with another intervention, compared with no-exercise training controls in adults who currently have AF, or have been treated for AF. We searched the following electronic databases; CENTRAL and the Database of Abstracts of Reviews of Effectiveness (DARE) in the Cochrane Library, MEDLINE Ovid, Embase Ovid, PsycINFO Ovid, Web of Science Core Collection Thomson Reuters, CINAHL EBSCO, LILACS Bireme, and three clinical trial registers on 14 July 2016. We also checked the bibliographies of relevant systematic reviews identified by the searches. We imposed no language restrictions. We included randomised controlled trials (RCT) that investigated exercise-based interventions compared with any type of no-exercise control. We included trials that included adults aged 18 years or older with atrial fibrillation, or post-treatment for atrial fibrillation. Two authors independently extracted data. We assessed the risk of bias using the domains outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We assessed clinical and statistical heterogeneity by visual inspection of the forest plots, and by using standard Chi² and I² statistics. We performed meta-analyses using fixed-effect and random-effects models; we used standardised mean differences where different scales were used for the same outcome. We assessed the risk of random errors with trial sequential analysis (TSA) and used the GRADE methodology to rate the quality of evidence, reporting it in the 'Summary of findings' table. We included six RCTs with a total of 421 patients with various types of atrial fibrillation. All trials were conducted between 2006 and 2016, and had short follow-up (eight weeks to six months). Risks of bias ranged from high risk to low risk.The exercise-based programmes in four trials consisted of both aerobic exercise and resistance training, in one trial consisted of Qi-gong (slow and graceful movements), and in another trial, consisted of inspiratory muscle training.For mortality, very low-quality evidence from six trials suggested no clear difference in deaths between the exercise and no-exercise groups (relative risk (RR) 1.00, 95% confidence interval (CI) 0.06 to 15.78; participants = 421; I² = 0%; deaths = 2). Very low-quality evidence from five trials suggested no clear difference between groups for serious adverse events (RR 1.01, 95% CI 0.98 to 1.05; participants = 381; I² = 0%; events = 8). Low-quality evidence from two trials suggested no clear difference in health-related quality of life for the Short Form-36 (SF-36) physical component summary measure (mean difference (MD) 1.96, 95% CI -2.50 to 6.42; participants = 224; I² = 69%), or the SF-36 mental component summary measure (MD 1.99, 95% CI -0.48 to 4.46; participants = 224; I² = 0%). Exercise capacity was assessed by cumulated work, or maximal power (Watt), obtained by cycle ergometer, or by six minute walking test, or ergospirometry testing measuring VO2 peak. We found moderate-quality evidence from two studies that exercise-based rehabilitation increased exercise capacity, measured by VO2 peak, more than no exercise (MD 3.76, 95% CI 1.37 to 6.15; participants = 208; I² = 0%); and very low-quality evidence from four studies that exercise-based rehabilitation increased exercise capacity more than no exercise, measured by the six-minute walking test (MD 75.76, 95% CI 14.00 to 137.53; participants = 272; I² = 85%). When we combined the different assessment tools for exercise capacity, we found very low-quality evidence from six trials that exercise-based rehabilitation increased exercise capacity more than no exercise (standardised mean difference (SMD) 0.86, 95% CI 0.46 to 1.26; participants = 359; I² = 65%). Overall, the quality of the evidence for the outcomes ranged from moderate to very-low. Due to few randomised patients and outcomes, we could not evaluate the real impact of exercise-based cardiac rehabilitation on mortality or serious adverse events. The evidence showed no clinically relevant effect on health-related quality of life. Pooled data showed a positive effect on the surrogate outcome of physical exercise capacity, but due to the low number of patients and the moderate to very low-quality of the underpinning evidence, we could not be certain of the magnitude of the effect. Future high-quality randomised trials are needed to assess the benefits and harms of exercise-based cardiac rehabilitation for adults with atrial fibrillation on patient-relevant outcomes.

  8. Development of Mitral Stenosis After Mitral Valve Repair: Importance of Mitral Valve Area.

    PubMed

    Chan, Kwan Leung; Chen, Shin-Yee; Mesana, Thierry; Lam, Buu Khanh

    2017-12-01

    The development of mitral stenosis (MS) is not uncommon after mitral valve (MV) repair for degenerative mitral regurgitation (MR), but the significance of MS in this setting has not been defined. We prospectively studied 110 such patients who underwent supine bicycle exercise testing to assess intracardiac hemodynamics at rest and at peak exercise. B-type natriuretic peptide (BNP) levels were measured at rest and after the exercise test. The patients also performed the 6-minute walk test and completed the 36-Item Short Form Survey (SF-36). Follow-up was performed by a review of the medical record and telephone interview. Of 110 patients, 22 had MS defined by a mitral valve area (MVA) ≤ 1.5 cm 2 . The resting and peak exercise mitral gradients and pulmonary artery systolic pressure were significantly higher in patients with MS compared with patients with an MVA > 1.5 cm 2 . BNP levels at rest and after exercise were also higher in the patients with MS, who also had lower exercise capacity and worse perception of well-being in 3 domains (physical function, vitality, and social function) on the SF-36. MVA had higher specificity and positive predictive value in predicting outcome events compared with a mean gradient of 3 or 5 mm Hg. In patients who had MV repair for degenerative MR, an MVA ≤ 1.5 cm 2 occurs in about one-fifth of patients and is associated with adverse intracardiac hemodynamics, lower exercise capacity, and adverse outcomes. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  10. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  11. Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension.

    PubMed

    Henein, Michael; Mörner, Stellan; Lindmark, Krister; Lindqvist, Per

    2013-09-30

    Heart failure (HF) patients with preserved left ventricular (LV) ejection fraction (EF) (HFpEF) due to systemic hypertension (SHT) are known to have limited exercise tolerance. Despite having normal EF at rest, we hypothesize that these patients have abnormal systolic function reserve limiting their exercise capacity. Seventeen patients with SHT (mean age 68 ± 9 years) but no valve disease and 14 healthy individuals (mean age of 65 ± 10 years) underwent resting and peak exercise echocardiography using conventional, tissue Doppler and speckle tracking techniques. The differences between resting and peak exercise values were also analyzed (Δ). Exercise capacity was determined as the workload divided by body surface area. Resting values for left atrial (LA) volume/BSA (r=-0.66, p<0.001) and global longitudinal strain rate (GLSR) in early (e) and late (a) diastole (r=0.47 and 0.46, p<0.05 for both) correlated with exercise capacity. LVEF increased during exercise in normals (mean Δ EF=10 ± 8%) but failed to do so in patients (mean Δ EF=0.6 ± 9%, p<0.001 between groups). LV GLSR during systole (s) also failed to increase with exercise in patients, to the same extent as it did in normals (0.2 ± 0.2 vs. 0.6 ± 0.3 1/s, p<0.001). The difference between rest and exercise (Δ) in LV lateral wall systolic velocity from tissue Doppler (s') (0.71, p<0.001), Δ in cardiac output (r=0.60, p<0.001) and Δ GLSRs (r=0.48, p<0.05) all correlated with exercise capacity independent of changes in heart rate. HFpEF patients with hypertensive LV disease have significantly limited exercise capacity which is related to left atrial enlargement as well as compromised LV systolic function at the time of the symptoms. The limited myocardial systolic function reserve seems to be underlying important explanation for their limited exercise capacity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. The Effects of Exercise Training in Addition to Energy Restriction on Functional Capacities and Body Composition in Obese Adults during Weight Loss: A Systematic Review

    PubMed Central

    Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.

    2013-01-01

    Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219

  13. Prognostic capacity of a clinically indicated exercise test for cardiovascular mortality is enhanced by combined analysis of exercise capacity, heart rate recovery and T-wave alternans.

    PubMed

    Minkkinen, Mikko; Nieminen, Tuomo; Verrier, Richard L; Leino, Johanna; Lehtimäki, Terho; Viik, Jari; Lehtinen, Rami; Nikus, Kjell; Kööbi, Tiit; Turjanmaa, Väinö; Kähönen, Mika

    2015-09-01

    Exercise capacity, heart rate recovery and T-wave alternans are independent predictors of cardiovascular mortality. We tested whether these parameters contain supplementary prognostic information. A total of 3609 consecutive patients (2157 men) referred for a routine, clinically indicated bicycle exercise test were enrolled in the Finnish Cardiovascular Study (FINCAVAS). Exercise capacity was measured in metabolic equivalents, heart rate recovery as the decrease in heart rate from maximum to one minute post-exercise, and T-wave alternans by time-domain Modified Moving Average method. During 57-month median follow-up (interquartile range 35-78 months), 96 patients died of cardiovascular causes (primary endpoint) and 233 from any cause. All three parameters were independent predictors of cardiovascular mortality when analysed as continuous variables. Adding metabolic equivalents (p < 0.001), heart rate recovery (p = 0.002) or T-wave alternans (p = 0.01) to the linear model improved its predictive power for cardiovascular mortality. The combination of low exercise capacity (<6 metabolic equivalents), reduced heart rate recovery (≤12 beats/min) and elevated T-wave alternans (≥60 μV) yielded the highest hazard ratio for cardiovascular mortality of 16.5 (95% confidence interval 4.0-67.7, p < 0.001). Harrell's C index was 0.719 (confidence interval 0.665-0.772) for cardiovascular mortality with previously defined cutpoints (<8 units for metabolic equivalents, ≤18 beats/min for heart rate recovery and ≥60 μV for T-wave alternans). The prognostic capacity of the clinical exercise test is enhanced by combined analysis of exercise capacity, heart rate recovery and T-wave alternans. © The European Society of Cardiology 2014.

  14. Sildenafil has little influence on cardiovascular hemodynamics or 6-km time trial performance in trained men and women at simulated high altitude.

    PubMed

    Jacobs, Kevin A; Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L

    2011-01-01

    Sildenafil improves maximal exercise capacity at high altitudes (∼4350-5800 m) by reducing pulmonary arterial pressure and enhancing oxygen delivery, but the effects on exercise performance at less severe altitudes are less clear. To determine the effects of sildenafil on cardiovascular hemodynamics (heart rate, stroke volume, and cardiac output), arterial oxygen saturation (SaO2), and 6-km time-trial performance of endurance-trained men and women at a simulated altitude of ∼3900 m. Twenty men and 15 women, endurance-trained, completed one experimental exercise trial (30 min at 55% of altitude-specific capacity +6-km time trial) at sea level (SL) and two trials at simulated high altitude (HA) while breathing hypoxic gas (12.8% FIo2) after ingestion of either placebo or 50 mg sildenafil in double-blind, randomized, and counterbalanced fashion. Maximal exercise capacity and SaO2 were significantly reduced at HA compared to SL (18%-23%), but sildenafil did not significantly improve cardiovascular hemodynamics or time-trial performance in either men or women compared to placebo and only improved SaO2 in women (4%). One male subject (5% of male subjects, 2.8% of all subjects) exhibited a meaningful 36-s improvement in time-trial performance with sildenafil compared to placebo. In this group of endurance trained men and women, sildenafil had very little influence on cardiovascular hemodynamics, SaO2, and 6-km time-trial performance at a simulated altitude of ∼3900 m. It appears that a very small percentage of endurance-trained men and women derive meaningful improvements in aerobic performance from sildenafil at a simulated altitude of ∼3900 m.

  15. Aquatic exercise training and stable heart failure: A systematic review and meta-analysis.

    PubMed

    Adsett, Julie A; Mudge, Alison M; Morris, Norman; Kuys, Suzanne; Paratz, Jennifer D

    2015-01-01

    A meta-analysis and review of the evidence was conducted to determine the efficacy of aquatic exercise training for individuals with heart failure compared to traditional land-based programmes. A systematic search was conducted for studies published prior to March 2014, using MEDLINE, PUBMED, Cochrane Library, CINAHL and PEDro databases. Key words and synonyms relating to aquatic exercise and heart failure comprised the search strategy. Interventions included aquatic exercise or a combination of aquatic plus land-based training, whilst comparator protocols included usual care, no exercise or land-based training alone. The primary outcome of interest was exercise performance. Studies reporting on muscle strength, quality of life and a range of haemodynamic and physiological parameters were also reviewed. Eight studies met criteria, accounting for 156 participants. Meta-analysis identified studies including aquatic exercise to be superior to comparator protocols for 6 minute walk test (p < 0.004) and peak power (p < 0.044). Compared to land-based training programmes, aquatic exercise training provided similar benefits for VO(2peak), muscle strength and quality of life, though was not superior. Cardiac dimensions, left ventricular ejection fraction, cardiac output and BNP were not influenced by aquatic exercise training. For those with stable heart failure, aquatic exercise training can improve exercise capacity, muscle strength and quality of life similar to land-based training programmes. This form of exercise may provide a safe and effective alternative for those unable to participate in traditional exercise programmes. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Exercise improves cognitive function in aging patients

    PubMed Central

    Hu, Jian-Ping; Guo, Yan-Hua; Wang, Feng; Zhao, Xin-Ping; Zhang, Quan-Hai; Song, Qing-Hua

    2014-01-01

    A decline in cognitive ability commonly occurs among older individuals. This study sought to explore the restorative effects of exercise in older patients with existing cognitive disabilities. Ninety-six patients with mild cognitive impairment were placed in an exercise program for six months. Following completion of the program, participants were assessed via the Chinese Mini Mental Status Examination (MMSE), Activity of Daily Living (ADL) assessment, and body movement testing and compared to a control group of patients with mild cognitive impairment who did not participate in the exercise program (N = 102). Statistical analyses were performed using the Student’s t-test and chi-square test to compare results between groups. Compared with control group, patients who exercised showed improved cognitive function in immediate memory (p < 0.001) and delayed recall (p = 0.004) function. In addition, activities associated with daily living showed improvement (p < 0.001), as did body movement (p < 0.05), arm stability (p < 0.001), and the appearance of rotation (p < 0.05). Based on these results, we conclude that participation in an exercise program can improve patients’ cognitive function, physical abilities, and body movement capacity. PMID:25419345

  17. Short-Term Modulation of the Ventilatory Response to Exercise is Preserved in Obstructive Sleep Apnea

    PubMed Central

    Bernhardt, Vipa; Mitchell, Gordon S.; Lee, Won Y.; Babb, Tony G.

    2016-01-01

    Background The ventilatory response to exercise can be transiently adjusted in response to environmentally (e.g., breathing apparatus) or physiologically altered conditions (e.g., respiratory disease), maintaining constant relative arterial PCO2 regulation from rest to exercise (Mitchell and Babb, 2006); this augmentation is called short-term modulation (STM) of the exercise ventilatory response. Obesity and/or obstructive sleep apnea could affect the exercise ventilatory response and the capacity for STM due to chronically increased mechanical and/or ventilatory loads on the respiratory system, and/or recurrent (chronic) intermittent hypoxia experienced during sleep. We hypothesized that: 1) the exercise ventilatory response is augmented in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is diminished in obese OSA patients. Methods Nine obese adults with OSA (age: 39 ± 6 yr, BMI: 40 ± 5 kg/m2, AHI: 25 ± 24 events/hr [range 6–73], mean ± SD) and 8 obese adults without OSA (age: 38 ± 10 yr, BMI: 37 ± 6 kg/m2, AHI: 1 ± 2) completed three, 20-min bouts of constant-load submaximal cycling exercise (8 min rest, 6 min at 10 and 30 W) with or without added external dead space (200 or 400 ml; 20 min rest between bouts). Steady-state measurements were made of ventilation (V̇E), oxygen consumption (V̇O2), carbon dioxide production (V̇CO2), and end-tidal PCO2 (PETCO2). The exercise ventilatory response was defined as the slope of the V̇E-V̇CO2 relationship (ΔV̇E/ΔV̇CO2). Results In control (i.e. no added dead space), the exercise ventilatory response was not significantly different between non-OSA and OSA groups (ΔV̇E/ΔV̇CO2 slope: 30.5 ± 4.2 vs 30.5 ± 3.8, p > 0.05); PETCO2 regulation from rest to exercise did not differ between groups (p > 0.05). In trials with added external dead space, ΔV̇E/ΔV̇CO2 increased with increased dead space (p < 0.05) and the PETCO2 change from rest to exercise remained small (<2 mmHg) in both groups, demonstrating STM. There were no significant differences between groups. Conclusions Contrary to our hypotheses: 1) the exercise ventilatory response is not increased in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is preserved in obese OSA and non-OSA adults. PMID:27840272

  18. Effects of lumbopelvic sling and abdominal drawing-in exercises on lung capacity in healthy adults.

    PubMed

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Shin, Young-Jun

    2016-08-01

    [Purpose] To examine the effects of lumbopelvic sling and abdominal drawing-in exercises on the lung capacities of healthy subjects. [Subjects and Methods] Twenty-nine healthy subjects with no orthopedic history of the back were recruited. Subjects were randomly assigned to a experimental group and control group. Subjects were allocated to one of two groups; an experimental group that underwent lumbopelvic sling and abdominal drawing-in exercises and a control group that underwent treadmill and abdominal drawing-in exercises. Lung capacities were evaluated 4 weeks after exercises. [Results] The experimental group showed significant increments in EV, ERV, IRV, VT vs. pre-intervention results, and the control group showed significant increments in the EVC and IRV. Significant intergroup differences were observed in terms of post-training gains in EVC, IRV, and VT. [Conclusion] Combined application of lumbopelvic sling and abdominal drawing-in exercises were found to have a positive effect on lung capacity.

  19. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis.

    PubMed

    Alemo Munters, Li; Alexanderson, Helene; Crofford, Leslie J; Lundberg, Ingrid E

    2014-07-01

    With recommended treatment, a majority with idiopathic inflammatory myopathy (IIM) develop muscle impairment and poor health. Beneficial effects of exercise have been reported on muscle performance, aerobic capacity and health in chronic polymyositis and dermatomyositis and to some extent in active disease and inclusion body myositis (IBM). Importantly, randomized controlled trials (RCTs) indicate that improved health and decreased clinical disease activity could be mediated through increased aerobic capacity. Recently, reports seeking mechanisms underlying effects of exercise in skeletal muscle indicate increased aerobic capacity (i.e. increased mitochondrial capacity and capillary density, reduced lactate levels), activation of genes in aerobic phenotype and muscle growth programs, and down regulation in genes related to inflammation. Altogether, exercise contributes to both systemic and within-muscle adaptations demonstrating that exercise is fundamental to improve muscle performance and health in IIM. There is a need for RCTs to study effects of exercise in active disease and IBM.

  20. Short-term evaluation of captopril in patients with chronic left sided valvular regurgitations.

    PubMed

    Jirasirirojanakorn, K; Mahanonda, N; Jootar, P; Chaithiraphan, S; Wansanit, K; Watanaprakarnchai, W

    1998-01-01

    To evaluate the clinical effects and the changes in cardiac performance of high- and low-dose captopril compared to placebo in patients with chronic symptomatic aortic regurgitation (AR), and/or mitral regurgitation (MR). We randomized patients into three groups, placebo (Group 1), incremental daily doses of 50 mg (Group 2), and 100 mg captopril (Group 3). We compared exercise capacity before and after four-week of treatment. Treatment was well tolerated with no serious side effects including blood chemistry. There were no significant effects of treatment on left ventricular dimensions nor calculated left ventricular ejection fraction (LVEF) between groups (LVEF change -0.6%, -2.6%, 2.4%, in group 1, 2 and 3 respectively; p > 0.05). No difference of exercise duration between treatment and placebo arms (change by 13%, 12.8%, 16.4%, respectively; p > 0.05). However, there were trends in the number of the patients who improved in left ventricular performance (absolute LVEF change > 5% unit = 15%, 16%, and 42% respectively; p > 0.05) and exercise performance (exercise time improvement > 75 sec = 50%, 47%, and 68% respectively; p > 0.05) in high dose captopril treatment group. There was no significant improvement of left ventricular performance and exercise capacity after four-weeks' treatment of low and high dose captopril. Further study with a larger sample size, and longer follow-up period may be required.

  1. Efficacy of combined electrostimulation in patients with acute exacerbation of COPD: randomised clinical trial.

    PubMed

    Lopez Lopez, Laura; Granados Santiago, Maria; Donaire Galindo, Maria; Torres Sanchez, Irene; Ortiz Rubio, Araceli; Valenza, Marie Carmen

    2018-04-25

    Muscle dysfunction is very common in patients with chronic obstructive pulmonary disease (COPD). Muscular strength depletion is a result of numerous hospitalisations and this causes an increase in the symptomatology. Numerous interventions have been used in these patients, but there is no consensus on the best. The main objective of this study is to compare the effectiveness of two physiotherapy interventions during hospitalisation in COPD patients. In this clinical trial, we included 39 patients who were randomised into three groups. A control group received standard medical treatment (oxygen therapy and pharmacotherapy), and two groups received, in addition to standard medical treatment, a physiotherapy intervention, one with functional electrostimulation and one with calisthenic exercises. The main variables were the ability to exercise using the Five-time sit-to-stand test as well as the functionality associated with symptomatology, as measured by the London Chest Activity of Daily Living Scale. After comparing the results, there was a significant improvement in dyspnea on discharge versus admission in all three groups. In addition, we found significant differences in functionality, exercise capacity, and fatigue in both intervention groups, being better in the electrostimulation with calisthenic exercises group than in the functional group. An electrostimulation treatment improves the exercise capacity, functionality and fatigue in hospitalised AECOPD patients. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  2. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment.

    PubMed

    McFarlin, Brian K; Henning, Andrea L; Venable, Adam S; Williams, Randall R; Best Sampson, Jill N

    2016-08-01

    Recent advances in clothing design include the incorporation of phase change materials (PCM) and other active cooling components (ACC) to provide better body heat dissipation. The purpose of this study was to determine the effect of wearing a shirt containing multistage PCM/ACC on exercise capacity at low (5.0), moderate-high (7.5) and extreme (9.0) levels of the physiological strain index (PSI). Fourteen individuals tested two shirts (control vs. cooling) during 45-min of interval running in a hot, humid (35 ± 1 °C; 55 ± 6% RH) environment. The cooling shirt resulted in an 8% improvement in exercise capacity at a PSI of 7.5 (p < 0.05). The observed increase in exercise capacity would likely translate to a significant improvement in exercise performance. More research is needed to determine a best practice approach for the use of cooling clothing as a counter to exercise-induced heat exposure. Practitioner Summary: In this report, we demonstrate that when forced to exercise in a hot, humid environment, an individual's exercise capacity may increase by as much as 8% when wearing a shirt composed of multistage phase change material and active cooling components.

  4. Long-term effects of a very low-carbohydrate weight loss diet on exercise capacity and tolerance in overweight and obese adults.

    PubMed

    Wycherley, Thomas P; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M; Brinkworth, Grant D

    2014-01-01

    Compare the long-term effects of an energy-restricted very low-carbohydrate, high-fat (LC) diet with an isocaloric high-carbohydrate, low-fat (HC) diet on exercise tolerance and capacity in overweight and obese adults. Seventy-six adults (25 males; age 49.2 ± 1.1 years; BMI 33.6 ± 0.5 kg/m(2)) were randomized to either a hypocaloric (6-7 MJ/day) LC diet (35% protein, 4% carbohydrate, 61% fat) or isocaloric HC diet (24% protein, 46% carbohydrate, 30% fat) for 52 weeks. Pre- and postintervention, participants' body weight and composition, handgrip, and isometric knee extensor strength were assessed and participants performed an incremental exercise test to exhaustion. Forty-three participants completed the study (LC = 23; HC = 20). Overall, peak relative oxygen uptake increased (+11.3%) and reductions occurred in body weight (-14.6%), body fat percentage (-6.9% [absolute]), isometric knee extensor strength (-12.4%), handgrip strength (-4.5%), and absolute peak oxygen uptake (-5.2%; p ≤ 0.02 time for all) with no diet effect (p ≥ 0.18). During submaximal exercise, rating of perceived exertion did not change in either group (p = 0.16 time, p = 0.59 Time × Group). Compared to the HC diet, the LC diet had greater reductions in respiratory exchange ratio (LC -0.04 ± 0.01, HC -0.00 ± 0.01; p = 0.03), and increased fat oxidation (LC 15.0 ± 5.3% [of energy expenditure], HC 0.5 ± 3.9%; p = 0.04). In overweight and obese patients, an LC diet promoted greater fat utilization during submaximal exercise. Both an LC diet and an HC diet had similar effects on aerobic capacity and muscle strength, suggesting that long-term consumption of an LC weight loss diet does not adversely affect physical function or the ability to perform exercise.

  5. Characterization of Cardiopulmonary Exercise Testing Variables in Patients with Endomyocardial Fibrosis after Endocardial Resection

    PubMed Central

    Sayegh, Ana Luiza C.; dos Santos, Marcelo R.; de Oliveira, Patricia; Fernandes, Fábio; Rondon, Eduardo; de Souza, Francis R.; Salemi, Vera M. C.; Alves, Maria Janieire de N. N.; Mady, Charles

    2017-01-01

    Background Endomyocardial fibrosis (EMF) is a rare disease, characterized by diastolic dysfunction which leads to reduced peak oxygen consumption (VO2). Cardiopulmonary exercise testing (CPET) has been proved to be a fundamental tool to identify central and peripheral alterations. However, most studies prioritize peak VO2 as the main variable, leaving aside other important CPET variables that can specify the severity of the disease and guide the clinical treatment. Objective The aim of this study was to evaluate central and peripheral limitations in symptomatic patients with EMF by different CPET variables. Methods Twenty-six EMF patients (functional class III, NYHA) were compared with 15 healthy subjects (HS). Functional capacity was evaluated using CPET and diastolic and systolic functions were evaluated by echocardiography. Results Age and gender were similar between EMF patients and HS. Left ventricular ejection fraction was normal in EMF patients, but decreased compared to HS. Peak heart rate, peak workload, peak VO2, peak oxygen (O2) pulse and peak pulmonary ventilation (VE) were decreased in EMF compared to HS. Also, EMF patients showed increased Δ heart rate /Δ oxygen uptake and Δ oxygen uptake /Δ work rate compared to HS. Conclusion Determination of the aerobic capacity by noninvasive respiratory gas exchange during incremental exercise provides additional information about the exercise tolerance in patients with EMF. The analysis of different CPET variables is necessary to help us understand more about the central and peripheral alterations cause by both diastolic dysfunction and restrictive pattern. PMID:29364349

  6. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial.

    PubMed

    Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J

    2013-09-22

    After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. This trial is registered with the Clinical Trials.gov Registry (NCT01679600).

  7. Profile of patients with chronic obstructive pulmonary disease classified as physically active and inactive according to different thresholds of physical activity in daily life

    PubMed Central

    Furlanetto, Karina C.; Pinto, Isabela F. S.; Sant’Anna, Thais; Hernandes, Nidia A.; Pitta, Fabio

    2016-01-01

    ABSTRACT Objective To compare the profiles of patients with chronic obstructive pulmonary disease (COPD) considered physically active or inactive according to different classifications of the level of physical activity in daily life (PADL). Method Pulmonary function, dyspnea, functional status, body composition, exercise capacity, respiratory and peripheral muscle strength, and presence of comorbidities were assessed in 104 patients with COPD. The level of PADL was quantified with a SenseWear Armband activity monitor. Three classifications were used to classify the patients as physically active or inactive: 30 minutes of activity/day with intensity >3.2 METs, if age ≥65 years, and >4 METs, if age <65 years; 30 minutes of activity/day with intensity >3.0 METs, regardless of patient age; and 80 minutes of activity/day with intensity >3.0 METs, regardless of patient age. Results In all classifications, when compared with the inactive group, the physically active group had better values of anthropometric variables (higher fat-free mass, lower body weight, body mass index and fat percentage), exercise capacity (6-minute walking distance), lung function (forced vital capacity) and functional status (personal care domain of the London Chest Activity of Daily Living). Furthermore, patients classified as physically active in two classifications also had better peripheral and expiratory muscle strength, airflow obstruction, functional status, and quality of life, as well as lower prevalence of heart disease and mortality risk. Conclusion In all classification methods, physically active patients with COPD have better exercise capacity, lung function, body composition, and functional status compared to physically inactive patients. PMID:27683835

  8. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction

    PubMed Central

    Zizola, Cynthia; Kennel, Peter J.; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi

    2015-01-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. PMID:25713305

  9. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction.

    PubMed

    Zizola, Cynthia; Kennel, Peter J; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi; Schulze, P Christian

    2015-05-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. Copyright © 2015 the American Physiological Society.

  10. Exercise therapy improves aerobic capacity of inpatients with major depressive disorder.

    PubMed

    Kerling, Arno; von Bohlen, Anne; Kück, Momme; Tegtbur, Uwe; Grams, Lena; Haufe, Sven; Gützlaff, Elke; Kahl, Kai G

    2016-06-01

    Unipolar depression is one of the most common diseases worldwide and is associated with a higher cardiovascular risk partly due to reduced aerobic capacity. Therefore, the aim of our study was to examine whether a structured aerobic training program can improve aerobic capacity in inpatients with MDD (major depressive disorder). Overall, 25 patients (13 women, 12 men) diagnosed with MDD were included in the study. Parameters of aerobic capacity, such as maximum performance, maximum oxygen consumption, and VAT (ventilatory anaerobic threshold), were assessed on a bicycle ergometer before and 6 weeks after a training period (three times per week for 45 min on two endurance machines). In addition, a constant load test was carried out at 50% of the maximum performance prior to and after the training period. The performance data were compared with 25 healthy controls matched for sex, age, and body mass index before and after the training period. Compared to controls, patients with MDD had significantly lower aerobic capacity. After training, there was a significant improvement in their performance data. A significant difference remained only for VAT between patients with MDD and healthy controls. With regard to the coincidence of MDD with cardiovascular and cardiometabolic disorders, a structured supervised exercise program carried out during hospitalization is a useful supplement for patients with MDD.

  11. Exercise training programs to improve hand rim wheelchair propulsion capacity: a systematic review.

    PubMed

    Zwinkels, Maremka; Verschuren, Olaf; Janssen, Thomas Wj; Ketelaar, Marjolijn; Takken, Tim

    2014-09-01

    An adequate wheelchair propulsion capacity is required to perform daily life activities. Exercise training may be effective to gain or improve wheelchair propulsion capacity. This review investigates whether different types of exercise training programs are effective in improving wheelchair propulsion capacity. PubMed and EMBASE databases were searched from their respective inceptions in October 2013. Exercise training studies with at least one outcome measure regarding wheelchair propulsion capacity were included. In this study wheelchair propulsion capacity includes four parameters to reflect functional wheelchair propulsion: cardio-respiratory fitness (aerobic capacity), anaerobic capacity, muscular fitness and mechanical efficiency. Articles were not selected on diagnosis, training type or mode. Studies were divided into four training types: interval, endurance, strength, and mixed training. Methodological quality was rated with the PEDro scale, and the level of evidence was determined. The 21 included studies represented 249 individuals with spinal-cord injury (50%), various diagnoses like spina bifida (4%), cerebral palsy (2%), traumatic injury, (3%) and able-bodied participants (38%). All interval training studies found a significant improvement of 18-64% in wheelchair propulsion capacity. Three out of five endurance training studies reported significant effectiveness. Methodological quality was generally poor and there were only two randomised controlled trials. Exercise training programs seem to be effective in improving wheelchair propulsion capacity. However, there is remarkably little research, particularly for individuals who do not have spinal-cord injury. © The Author(s) 2014.

  12. Effect of Selective Heart Rate Slowing in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Pal, Nikhil; Sivaswamy, Nadiya; Mahmod, Masliza; Yavari, Arash; Rudd, Amelia; Singh, Satnam; Dawson, Dana K; Francis, Jane M; Dwight, Jeremy S; Watkins, Hugh; Neubauer, Stefan; Frenneaux, Michael; Ashrafian, Houman

    2015-11-03

    Heart failure with preserved ejection fraction (HFpEF) is associated with significant morbidity and mortality but is currently refractory to therapy. Despite limited evidence, heart rate reduction has been advocated, on the basis of physiological considerations, as a therapeutic strategy in HFpEF. We tested the hypothesis that heart rate reduction improves exercise capacity in HFpEF. We conducted a randomized, crossover study comparing selective heart rate reduction with the If blocker ivabradine at 7.5 mg twice daily versus placebo for 2 weeks each in 22 symptomatic patients with HFpEF who had objective evidence of exercise limitation (peak oxygen consumption at maximal exercise [o2 peak] <80% predicted for age and sex). The result was compared with 22 similarly treated matched asymptomatic hypertensive volunteers. The primary end point was the change in o2 peak. Secondary outcomes included tissue Doppler-derived E/e' at echocardiography, plasma brain natriuretic peptide, and quality-of-life scores. Ivabradine significantly reduced peak heart rate compared with placebo in the HFpEF (107 versus 129 bpm; P<0.0001) and hypertensive (127 versus 145 bpm; P=0.003) cohorts. Ivabradine compared with placebo significantly worsened the change in o2 peak in the HFpEF cohort (-2.1 versus 0.9 mL·kg(-1)·min(-1); P=0.003) and significantly reduced submaximal exercise capacity, as determined by the oxygen uptake efficiency slope. No significant effects on the secondary end points were discernable. Our observations bring into question the value of heart rate reduction with ivabradine for improving symptoms in a HFpEF population characterized by exercise limitation. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02354573. © 2015 The Authors.

  13. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness: executive summary of a Cochrane Collaboration systematic review.

    PubMed

    Connolly, Bronwen; Salisbury, Lisa; O'Neill, Brenda; Geneen, Louise; Douiri, Abdel; Grocott, Michael P W; Hart, Nicholas; Walsh, Timothy S; Blackwood, Bronagh

    2016-12-01

    Skeletal muscle wasting and weakness are major complications of critical illness and underlie the profound physical and functional impairments experienced by survivors after discharge from the intensive care unit (ICU). Exercise-based rehabilitation has been shown to be beneficial when delivered during ICU admission. This review aimed to determine the effectiveness of exercise rehabilitation initiated after ICU discharge on primary outcomes of functional exercise capacity and health-related quality of life. We sought randomized controlled trials, quasi-randomized controlled trials, and controlled clinical trials comparing an exercise intervention commenced after ICU discharge vs. any other intervention or a control or 'usual care' programme in adult survivors of critical illness. Cochrane Central Register of Controlled Trials, Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica Database, and Cumulative Index to Nursing and Allied Health Literature databases were searched up to February 2015. Dual, independent screening of results, data extraction, and quality appraisal were performed. We included six trials involving 483 patients. Overall quality of evidence for both outcomes was very low. All studies evaluated functional exercise capacity, with three reporting positive effects in favour of the intervention. Only two studies evaluated health-related quality of life and neither reported differences between intervention and control groups. Meta-analyses of data were precluded due to variation in study design, types of interventions, and selection and reporting of outcome measurements. We were unable to determine an overall effect on functional exercise capacity or health-related quality of life of interventions initiated after ICU discharge for survivors of critical illness. Findings from ongoing studies are awaited. Future studies need to address methodological aspects of study design and conduct to enhance rigour, quality, and synthesis.

  14. Effects of Community-Based Exercise in Children with Severe Burns: A Randomized Trial

    PubMed Central

    Peña, Raquel; Ramirez, Leybi L.; Crandall, Craig G.; Wolf, Steven; Herndon, David N.; Suman, Oscar E.

    2015-01-01

    Objective To counteract long-lasting muscle break down, muscle weakness, and poor physical fitness resulting from severe burns, we recommend a 12-week in-hospital exercise training rehabilitation program. Unfortunately, this in-hospital training program requires time away from home, family, school or work). This study was undertaken to evaluate an alternative exercise rehabilitation strategy involving a 12-week community-based exercise training rehabilitation program (COMBEX) carried out at or near the patient and caretaker’s home. Study Design and Participants Pediatric patients (7–18 years) with ≥ 30% of the total body surface area (TBSA) burns were randomized to participate in COMBEX (N=12) or an outpatient exercise program (EX) at the hospital (N=22). Both programs were started after hospital discharge and consisted of 12 weeks of progressive resistive and aerobic exercise. COMBEX was performed in community fitness centers near the patients’ home. Endpoints were assessed at discharge (pre-exercise) and after the 12-week program. Primary endpoints were lean body mass (dual energy x-ray absorptiometry), muscle strength (isokinetic dynamometry), and peak aerobic capacity (indirect calorimetry). Results Demographics, length of hospitalization, and TBSA burned were comparable between groups (p>0.05). Both groups exhibited a significant (p≤0.01 for all) increase (mean ± SEM) in lean muscle mass (EX: 6.9 ± 1.7%; COMBEX: 6.5 ± 1.1%), muscle strength (EX: 67.1 ± 7.0%; COMBEX: 49.9 ± 6.8%), and peak aerobic capacity (EX: 35.5 ± 4.0%; COMBEX: 46.9 ± 7.7%). Furthermore, the magnitude of these increases were not different between groups (P>0.12). Conclusions Both EX and COMBEX are efficacious in improving lean mass, strength, and cardiopulmonary capacity in severely burned children. PMID:26643401

  15. Utilization of the graded universal testing system to increase the efficiency for assessing aerobic and anaerobic capacity

    NASA Technical Reports Server (NTRS)

    Rodgers, Sandra L.

    1992-01-01

    The in-flight exercise test performed by cosmonauts as part of the Russian Exercise Countermeasure Program is limited to 5 minutes due to communication restrictions. During a recent graded exercise test on a U.S. Shuttle flight, the test was terminated early due to an upcoming loss of signal (LOS) with the ground. This exercise test was a traditional test where the subject's exercise capacity dictates the length of the test. For example, one crew member may take 15 minutes to complete the test, while another may take 18 minutes. The traditional exercise test limits the flight schedulers to large blocks of space flight time in order to provide medical and research personnel information on the fitness capacity (maximal oxygen uptake: VO2max) of crew members during flight. A graded exercise test that would take a finite amount of time and a set preparation and recovery time would ease this problem by allowing flight schedulers to plan exercise tests in advance of LOS. The Graded Universal Testing System (GUTS) was designed to meet this goal. Fitness testing of astronauts before and after flight provides pertinent data on many variables. The Detailed Supplemental Objective (DSO608) protocol (6) is one of the graded exercise tests (GXT) currently used in astronaut testing before and after flight. Test times for this protocol have lasted from 11 to 18 minutes. Anaerobic capacity is an important variable that is currently not being evaluated before and after flight. Recent reports (1,2,5) from the literature have suggested that the oxygen deficit at supramaximal exercise is a measure of anaerobic capacity. We postulated that the oxygen deficit at maximal exercise would be an indication of anaerobic capacity. If this postulate can be accepted, then the efficiency of acquiring data from a graded exercise test would increase at least twofold. To examine this hypothesis anaerobic capacity was measured using a modified treadmill test (3,4) designed to exhaust the anaerobic systems in approximately 45 to 75 seconds. Lactate concentration in the blood was analyzed after all tests, since lactate is the end-product of anaerobic energy production. Therefore, the peak lactate response is an additional indication of anaerobic capacity. A preliminary comparison of the GUTS and the DSO608 suggests that the GUTS protocol would increase the efficiency of VO2max testing of astronauts before and after flight. Results for anaerobic capacity have not been tabulated.

  16. A practical guide to exercise training for heart failure patients.

    PubMed

    Smart, Neil; Fang, Zhi You; Marwick, Thomas H

    2003-02-01

    Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.

  17. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients.

    PubMed

    Coelho Junior, Hélio José; Callado Sanches, Iris; Doro, Marcio; Asano, Ricardo Yukio; Feriani, Daniele Jardim; Brietzke, Cayque; Gonçalves, Ivan de Oliveira; Uchida, Marco Carlos; Capeturo, Erico Chagas; Rodrigues, Bruno

    2018-01-01

    The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP) on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM) patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed) after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  18. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  19. Exercise training in adults with repaired tetralogy of Fallot: A randomized controlled pilot study of continuous versus interval training.

    PubMed

    Novaković, Marko; Prokšelj, Katja; Rajkovič, Uroš; Vižintin Cuderman, Tjaša; Janša Trontelj, Katja; Fras, Zlatko; Jug, Borut

    2018-03-15

    Adults with repaired tetralogy of Fallot (ToF) have impaired exercise capacity, vascular and cardiac autonomic function, and quality of life (QoL). Specific effects of high-intensity interval or moderate continuous exercise training on these parameters in adults with repaired ToF remain unknown. Thirty adults with repaired ToF were randomized to either high-intensity interval, moderate intensity continuous training (36 sessions, 2-3 times a week) or usual care (no supervised exercise). Exercise capacity, flow-mediated vasodilation, pulse wave velocity, NT-proBNP and fibrinogen levels, heart rate variability and recovery, and QoL (SF-36 questionnaire) were determined at baseline and after the intervention period. Twenty-seven patients (mean age 39±9years, 63% females, 9 from each group) completed this pilot study. Both training groups improved in at least some parameters of cardiovascular health compared to no exercise. Interval-but not continuous-training improved VO2peak (21.2 to 22.9ml/kg/min, p=0.004), flow-mediated vasodilation (8.4 to 12.9%, p=0.019), pulse wave velocity (5.4 to 4.8m/s, p=0.028), NT-proBNP (202 to 190ng/L, p=0.032) and fibrinogen levels (2.67 to 2.46g/L, p=0.018). Conversely, continuous-but not interval-training improved heart rate variability (low-frequency domain, 0.32 to 0.22, p=0.039), heart rate recovery after 2min post-exercise (40 to 47 beats, p=0.023) and mental domain of SF-36 (87 to 95, p=0.028). Both interval and continuous exercise training modalities were safe. Interval training seems more efficacious in improving exercise capacity, vascular function, NT-proBNP and fibrinogen levels, while continuous training seems more efficacious in improving cardiac autonomic function and QoL. (Clinicaltrials.gov, NCT02643810). Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.

  20. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function.

    PubMed

    Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp

    2013-12-05

    Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.

  1. Nonparetic Knee Extensor Strength Is the Determinant of Exercise Capacity of Community-Dwelling Stroke Survivors

    PubMed Central

    Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che

    2014-01-01

    Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712

  2. Nonparetic knee extensor strength is the determinant of exercise capacity of community-dwelling stroke survivors.

    PubMed

    Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che

    2014-01-01

    To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.

  3. Discrepancy between functional exercise capacity and daily physical activity: a cross-sectional study in patients with mild to moderate COPD.

    PubMed

    Fastenau, Annemieke; van Schayck, Onno C P; Gosselink, Rik; Aretz, Karin C P M; Muris, Jean W M

    2013-12-01

    In patients with moderate to severe chronic obstructive pulmonary disease (COPD) the six-minute walk distance reflects the functional exercise level for daily physical activity. It is unknown if this also applies to patients with mild to moderate COPD in primary care. To assess the relationship between functional exercise capacity and physical activity in patients with mild to moderate COPD. A cross-sectional study was performed in 51 patients with mild to moderate COPD in primary care. Functional exercise capacity was assessed by the six-minute walk test and physical activity was measured with an accelerometer-based activity monitor. Functional exercise capacity was close to normal values. However, the daily physical activity of the patients could be classified as 'sedentary' and 'low active'. No significant correlations were observed between six-minute walk distance (% predicted) and any of the physical activity variables (steps per day, movement intensity during walking, total active time, total walking time, physical activity level, and time spent in moderate physical activity). A discrepancy was found between functional exercise capacity and daily physical activity in patients with mild to moderate COPD recruited and assessed in primary care. We conclude that these variables represent two different concepts. Our results reinforce the importance of measuring daily physical activity in order to fine-tune treatment (i.e. focusing on enhancement of exercise capacity or behavioural change, or both).

  4. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats

    PubMed Central

    Qi, Nathan R.

    2018-01-01

    High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes. PMID:29474500

  5. Exercise and multiple sclerosis.

    PubMed

    White, Lesley J; Dressendorfer, Rudolph H

    2004-01-01

    The pathophysiology of multiple sclerosis (MS) is characterised by fatigue, motor weakness, spasticity, poor balance, heat sensitivity and mental depression. Also, MS symptoms may lead to physical inactivity associated with the development of secondary diseases. Persons with MS are thus challenged by their disability when attempting to pursue an active lifestyle compatible with health-related fitness. Although exercise prescription is gaining favour as a therapeutic strategy to minimise the loss of functional capacity in chronic diseases, it remains under-utilised as an intervention strategy in the MS population. However, a growing number of studies indicate that exercise in patients with mild-to-moderate MS provides similar fitness and psychological benefits as it does in healthy controls. We reviewed numerous studies describing the responses of selected MS patients to acute and chronic exercise compared with healthy controls. All training studies reported positive outcomes that outweighed potential adverse effects of the exercise intervention. Based on our review, this article highlights the role of exercise prescription in the multidisciplinary approach to MS disease management for improving and maintaining functional capacity. Despite the often unpredictable clinical course of MS, exercise programmes designed to increase cardiorespiratory fitness, muscle strength and mobility provide benefits that enhance lifestyle activity and quality of life while reducing risk of secondary disorders. Recommendations for the evaluation of cardiorespiratory fitness, muscle performance and flexibility are presented as well as basic guidelines for individualised exercise testing and training in MS. Special considerations for exercise, including medical management concerns, programme modifications and supervision, in the MS population are discussed.

  6. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult‐born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise. PMID:26844666

  7. A comparison between computer-controlled and set work rate exercise based on target heart rate

    NASA Technical Reports Server (NTRS)

    Pratt, Wanda M.; Siconolfi, Steven F.; Webster, Laurie; Hayes, Judith C.; Mazzocca, Augustus D.; Harris, Bernard A., Jr.

    1991-01-01

    Two methods are compared for observing the heart rate (HR), metabolic equivalents, and time in target HR zone (defined as the target HR + or - 5 bpm) during 20 min of exercise at a prescribed intensity of the maximum working capacity. In one method, called set-work rate exercise, the information from a graded exercise test is used to select a target HR and to calculate a corresponding constant work rate that should induce the desired HR. In the other method, the work rate is controlled by a computer algorithm to achieve and maintain a prescribed target HR. It is shown that computer-controlled exercise is an effective alternative to the traditional set work rate exercise, particularly when tight control of cardiovascular responses is necessary.

  8. Distractive Auditory Stimuli in the Form of Music in Individuals With COPD: A Systematic Review.

    PubMed

    Lee, Annemarie L; Desveaux, Laura; Goldstein, Roger S; Brooks, Dina

    2015-08-01

    Music has been used as a distractive auditory stimulus (DAS) in patients with COPD, but its effects are unclear. This systematic review aimed to establish the effect of DAS on exercise capacity, symptoms, and health-related quality of life (HRQOL) under three conditions: (1) during exercise training, (2) during exercise testing, and (3) for symptom management at rest. Randomized controlled or crossover trials as well as cohort studies of DAS during exercise training, during formal exercise testing, and for symptom management among individuals with COPD were identified from a search of seven databases. Two reviewers independently assessed study quality. Weighted mean differences (WMDs) with 95% CIs were calculated using a random-effects model. Thirteen studies (12 of which were randomized controlled or crossover trials) in 415 participants were included. DAS increased exercise capacity when applied over at least 2 months of exercise training (WMD, 98 m; 95% CI, 47-150 m). HRQOL improved only after a training duration of 3 months. Less dyspnea was noted with DAS during exercise training, but this was not consistently observed in short-term exercise testing or as a symptom management strategy at rest. DAS appears to reduce symptoms of dyspnea and fatigue when used during exercise training, with benefits observed in exercise capacity and HRQOL. When applied during exercise testing, the effects on exercise capacity and symptoms and as a strategy for symptom management at rest are inconsistent.

  9. Perfusion scintigraphy and patient selection for lung volume reduction surgery.

    PubMed

    Chandra, Divay; Lipson, David A; Hoffman, Eric A; Hansen-Flaschen, John; Sciurba, Frank C; Decamp, Malcolm M; Reilly, John J; Washko, George R

    2010-10-01

    It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). To study the role of perfusion scintigraphy in patient selection for LVRS. We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non-high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non-upper lobe-predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Among 284 of 1,045 patients with upper lobe-predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe-predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non-upper lobe-predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe-predominant emphysema when there is low rather than high perfusion to the upper lung.

  10. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!

    PubMed

    Cobley, James N; Moult, Peter R; Burniston, Jatin G; Morton, James P; Close, Graeme L

    2015-04-01

    Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).

  11. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat.

    PubMed

    Suvi, Silva; Timpmann, Saima; Tamm, Maria; Aedma, Martin; Kreegipuu, Kairi; Ööpik, Vahur

    2017-01-01

    Acute caffeine ingestion is considered effective in improving endurance capacity and psychological state. However, current knowledge is based on the findings of studies that have been conducted on male subjects mainly in temperate environmental conditions, but some physiological and psychological effects of caffeine differ between the sexes. The purpose of this study was to compare the physical performance and psychological effects of caffeine in young women and men exercising in the heat. Thirteen male and 10 female students completed 2 constant-load walks (60% of thermoneutral peak oxygen consumption on a treadmill until volitional exhaustion) in a hot-dry environment (air temperature, 42 °C; relative humidity, 20%) after caffeine (6 mg·kg -1 ) and placebo (wheat flour) ingestion in a double-blind, randomly assigned, crossover manner. Caffeine, compared with placebo, induced greater increases (p < 0.05) in heart rate (HR) and blood lactate concentrations in both males and females but had no impact on rectal or skin temperatures or on walking time to exhaustion in subjects of either gender. Caffeine decreased (p < 0.05) ratings of perceived exertion and fatigue in males, but not in females. In females, but not in males, a stronger belief that they had been administered caffeine was associated with a shorter time to exhaustion. In conclusion, acute caffeine ingestion increases HR and blood lactate levels during exercise in the heat, but it has no impact on thermoregulation or endurance capacity in either gender. Under exercise-heat stress, caffeine reduces ratings of perceived exertion and fatigue in males but not in females.

  12. Hypercholesterolemia Impairs Exercise Capacity in Mice

    PubMed Central

    Maxwell, Andrew J.; Niebauer, Josef; Lin, Patrick S.; Tsao, Philip S.; Bernstein, Daniel; Cooke, John P.

    2011-01-01

    Objective We previously reported an attenuation of both exercise hyperemia and measures of aerobic capacity in hypercholesterolemic mice. In this study we expanded upon the previous findings by examining the temporal and quantitative relationship of hypercholesterolemia to aerobic and anaerobic capacity and by exploring several potential mechanisms of dysfunction. Methods Eight-week old wild type (n=123) and apoE knockout (n=79) C57BL/6J mice were divided into groups with distinct cholesterol levels by feeding regular or high fat diets. At various ages the mice underwent treadmill ergospirometry. To explore mechanisms, aortic ring vasodilator function and nitrate (NOx) activity, urinary excretion of NOx, running muscle microvascular density and citrate synthase activity, as well as myocardial mass and histologic evidence of ischemia were measured. Results At 8 weeks of age, all mice had similar measures of exercise capacity. All indices of aerobic exercise capacity progressively declined at 12 and 20 weeks of age in the hypercholesterolemic mice as cholesterol levels increased while indices of anaerobic capacity remained unaffected. Across the 4 cholesterol groups, the degree of aerobic dysfunction was related to serum cholesterol levels; a relationship that was maintained after correcting for confounding factors. Associated with the deterioration in exercise capacity was a decline in measures of nitric oxide-mediated vascular function while there was no evidence of aberrations in functional or oxidative capacities or in other components of transport capacity. Conclusion Aerobic exercise dysfunction is observed in murine models of genetic and diet-induced hypercholesterolemia and is associated with a reduction in vascular nitric oxide production. PMID:19651675

  13. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.

  14. Brain, Behavior, and Immunity: Effects and potential mechanisms of exercise training on cancer progression: A translational perspective

    Cancer.gov

    Review of the extant epidemiological evidence examining the association between exercise behavior, function capacity/exercise capacity, and cancer-specific recurrence and mortality as well as all-cause mortality individuals following a cancer diagnosis.

  15. Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment.

    PubMed

    Takeshima, Keisuke; Onitsuka, Sumire; Xinyan, Zheng; Hasegawa, Hiroshi

    2017-04-01

    It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg -1 ) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Online mindfulness as a promising method to improve exercise capacity in heart disease: 12-month follow-up of a randomized controlled trial

    PubMed Central

    Younge, John O.; Wery, Machteld F.; Utens, Elisabeth M. W. J.; Michels, Michelle; Rizopoulos, Dimitris; van Rossum, Liesbeth F. C.; Roos-Hesselink, Jolien W.; Hunink, Myriam M. G.

    2017-01-01

    There is increasing evidence that mindfulness can reduce stress, and thereby affect other psychological and physiological outcomes as well. Earlier, we reported the direct 3-month results of an online modified mindfulness-based stress reduction training in patients with heart disease, and now we evaluate the effect at 12-month follow-up. 324 patients (mean age 43.2 years, 53.7% male) were randomized in a 2:1 ratio to additional 3-month online mindfulness training or to usual care alone. The primary outcome was exercise capacity measured with the 6 minute walk test (6MWT). Secondary outcomes were blood pressure, heart rate, respiratory rate, NT-proBNP, cortisol levels (scalp hair sample), mental and physical functioning (SF-36), anxiety and depression (HADS), perceived stress (PSS), and social support (PSSS12). Differences between groups on the repeated outcome measures were analyzed with linear mixed models. At 12-months follow-up, participants showed a trend significant improvement exercise capacity (6MWT: 17.9 meters, p = 0.055) compared to UC. Cohen’s D showed significant but small improvement on exercise capacity (d = 0.22; 95%CI 0.05 to 0.39), systolic blood pressure (d = 0.19; 95%CI 0.03 to 0.36), mental functioning (d = 0.22; 95%CI 0.05 to 0.38) and depressive symptomatology (d = 0.18; 95%CI 0.02 to 0.35). All other outcome measures did not change statistically significantly. In the as-treated analysis, systolic blood pressure decreased significantly with 5.5 mmHg (p = 0.045; d = 0.23 (95%CI 0.05–0.41)). Online mindfulness training shows favorable albeit small long-term effects on exercise capacity, systolic blood pressure, mental functioning, and depressive symptomatology in patients with heart disease and might therefore be a beneficial addition to current clinical care. Trial registration: www.trialregister.nl NTR3453 PMID:28486559

  17. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    PubMed

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  18. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-01-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  19. Effects of Nordic walking training on exercise capacity and fitness in men participating in early, short-term inpatient cardiac rehabilitation after an acute coronary syndrome--a controlled trial.

    PubMed

    Kocur, Piotr; Deskur-Smielecka, Ewa; Wilk, Malgorzata; Dylewicz, Piotr

    2009-11-01

    To investigate the effects of Nordic Walking training supplemental to a standard, early rehabilitation programme on exercise capacity and physical fitness in men after an acute coronary syndrome. A controlled trial. Cardiac rehabilitation service of a provincial hospital. Eighty men 2-3 weeks after an acute coronary syndrome, with good exercise tolerance. Three-week, inpatient cardiac rehabilitation programme (control group) supplemented with Nordic Walking (Nordic Walking group), or with traditional walking training (walking training group). Exercise capacity was assessed as peak energy cost (in metabolic equivalents) in symptom-limited treadmill exercise test, and physical fitness with the Fullerton Functional Fitness Test. Exercise capacity after the rehabilitation programme was higher in the Nordic Walking group than in the control group (10.8 +/- 1.8 versus 9.2 +/- 2.2 metabolic equivalents, P =0.025). The improvement in exercise capacity in the Nordic Walking group was higher than in the control group (1.8 +/- 1.5 versus 0.7 +/- 1.4 metabolic equivalents, P =0.002). In contrast to the control group, the results of all components of the Fullerton test improved in the Nordic Walking and walking training groups. After the programme, lower body endurance, and dynamic balance were significantly better in the Nordic Walking group in comparison with the walking training and control groups, and upper body endurance was significantly better in the Nordic Walking and walking training groups than in the control group. Nordic Walking may improve exercise capacity, lower body endurance and coordination of movements in patients with good exercise tolerance participating in early, short-term rehabilitation after an acute coronary syndrome.

  20. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    PubMed

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.

  1. Effect of Aerobic Exercise Training on Ventilatory Efficiency and Respiratory Drive in Obese Subjects.

    PubMed

    Chlif, Mehdi; Chaouachi, Anis; Ahmaidi, Said

    2017-07-01

    Obese patients show a decline in exercise capacity and diverse degrees of dyspnea in association with mechanical abnormalities, increased ventilatory requirements secondary to the increased metabolic load, and a greater work of breathing. Consequently, obese patients may be particularly predisposed to the development of respiratory muscle fatigue during exercise. The aim of this study was to assess inspiratory muscle performance during incremental exercise in 19 obese male subjects (body mass index 41 ± 6 kg/m 2 ) after aerobic exercise training using the noninvasive, inspiratory muscle tension-time index (T T0.1 ). Measurements performed included anthropometric parameters, lung function assessed by spirometry, rate of perceived breathlessness with the modified Borg dyspnea scale (0-10), breathing pattern, maximal exercise capacity, and inspiratory muscle performance with a breath-by-breath automated exercise metabolic system during an incremental exercise test. T T0.1 was calculated using the equation, T T0.1 = P 0.1 /P Imax × T I /T tot (where P 0.1 represents mouth occlusion pressure, P Imax is maximal inspiratory pressure, and T I /T tot is the duty cycle). At rest, there was no statistically significant difference for spirometric parameters and cardiorespiratory parameters between pre- and post-training. At maximal exercise, the minute ventilation, the rate of exchange ratio, the rate of perceived breathlessness, and the respiratory muscle performance parameters were not significantly different pre- and post-training; in contrast, tidal volume ( P = .037, effect size = 1.51), breathing frequency ( P = .049, effect size = 0.97), power output ( P = .048, effect size = 0.79), peak oxygen uptake ( P = .02, effect size = 0.92) were significantly higher after training. At comparable work load, training induces lower minute ventilation, mouth occlusion pressure, ratio of occlusion pressure to maximal inspiratory pressure, T T0.1 , and rate of perceived breathlessness. Aerobic exercise at ventilatory threshold can induce significant improvement in respiratory muscle strength, maximal exercise capacity, and inspiratory muscle performance and decreased dyspnea perception in obese subjects. Copyright © 2017 by Daedalus Enterprises.

  2. Exercise training with negative pressure ventilation improves exercise capacity in patients with severe restrictive lung disease: a prospective controlled study

    PubMed Central

    2013-01-01

    Background Exercise training is of benefit for patients with restrictive lung disease. However, it tends to be intolerable for those with severe disease. We examined whether providing ventilatory assistance by using negative pressure ventilators (NPV) during exercise training is feasible for such patients and the effects of training. Methods 36 patients with restrictive lung disease were prospectively enrolled for a 12-week multidisciplinary rehabilitation program. During this program, half of them (n:18; 60.3 ± 11.6 years; 6 men; FVC: 32.5 ± 11.7% predicted ) received regular sessions of exercise training under NPV, whilst the 18 others (59.6 ± 12.3 years; 8 men; FVC: 37.7 ± 10.2% predicted) did not. Exercise capacity, pulmonary function, dyspnea and quality of life were measured. The primary endpoint was the between-group difference in change of 6 minute-walk distance (6MWD) after 12 weeks of rehabilitation. Results All patients in the NPV-exercise group were able to tolerate and completed the program. The between-group differences were significantly better in the NPV-exercise group in changes of 6MWD (34.1 ± 12.7 m vs. -32.5 ± 17.5 m; P = 0.011) and St George Score (−14.5 ± 3.6 vs. 11.8 ± 6.0; P < 0.01). There was an improvement in dyspnea sensation (Borg’s scale, from 1.4 ± 1.5 point to 0.8 ± 1.3 point, P = 0.049) and a small increase in FVC (from 0.85 ± 0.09 L to 0.91 ± 0.08 L, P = 0.029) in the NPV-exercise group compared to the control group. Conclusion Exercise training with NPV support is feasible for patients with severe restrictive lung diseases, and improves exercise capacity and health-related quality of life. PMID:23421438

  3. A randomized trial of the effects of an aquatic exercise program on depression, anxiety levels, and functional capacity in of people who suffered an ischemic stroke.

    PubMed

    Aidar, Felipe J; Jacó de Oliveira, Ricardo; Gama de Matos, Dihogo; Chilibeck, Philip D; de Souza, Raphael F; Carneiro, André L; Machado Reis, Victor

    2017-05-09

    Aquatic exercise programs are used in rehabilitation and might help to reduce disability after stroke. This was a randomized intervention trial to assess the influence of an aquatic exercise program on people suffering from depression and anxiety after ischemic stroke. Participants were randomized to an experimental group (EG) composed of 19 individuals (51.8 ± 8.5 years; ten males and nine females), and a control group (CG) composed of 17 people (52.7 ± 6.7 years; nine males and eight females). The aquatic exercise program consisted of two sessions per week, each lasting between 45 and 60 minutes and divided into 5 to 10 minutes exercise sections during 12 weeks. The State-Trait Anxiety Inventory (STAI) was used to determine anxiety levels while the Beck Depression Inventory was used as a self-assessment of depression. EG improved measures of depression, anxiety trait and anxiety state between pre- and post-treatment, with no changes in CG. EG improved in all tests related to functional capacity compared to CG. The practice of aquatic exercises promotes improvements in the levels of depression and anxiety in people who suffered an ischemic stroke.

  4. Heart rate recovery, exercise capacity, and mortality risk in male veterans.

    PubMed

    Kokkinos, Peter; Myers, Jonathan; Doumas, Michael; Faselis, Charles; Pittaras, Andreas; Manolis, Athanasios; Kokkinos, John Peter; Narayan, Puneet; Papademetriou, Vasilios; Fletcher, Ross

    2012-04-01

    Both impaired heart rate recovery (HRR) and low fitness are associated with higher mortality risk. In addition, HRR is influenced by fitness status. The interaction between HRR, mortality, and fitness has not been clearly defined. Thus, we sought to evaluate the association between HRR and all-cause mortality and to assess the effects of fitness on this association. Treadmill exercise testing was performed in 5974 male veterans for clinical reasons at two Veterans Affairs Medical Centers (Washington, DC and Palo Alto, CA). HRR was calculated at 1 and 2 min of recovery. All-cause mortality was determined over a mean 6.2-year follow-up period. Mortality risk was significantly and inversely associated with HRR, only at 2 min. A cut-off value of 14 beats/min at 2 min recovery was the strongest predictor of mortality for the cohort (hazard ratio = 2.4; CI 1.6-3.5). The mortality risk was overestimated when exercise capacity was not considered. When both low fitness and low HRR were present (≤6 metabolic equivalents and ≤14 beats/min), mortality risk was approximately seven-fold higher compared to the High-fit + High-HRR group (>6 metabolic equivalents and >14 beats/min). HRR at 2 min post exercise is strongly and inversely associated with all-cause mortality. Exercise capacity affects HRR-associated mortality substantially and should be considered when applying HRR to estimate mortality.

  5. No effect of artificial gravity on lung function with exercise training during head-down bed rest

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting

    2016-04-01

    The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

  6. Physical training in children with osteogenesis imperfecta.

    PubMed

    Van Brussel, Marco; Takken, Tim; Uiterwaal, Cuno S P M; Pruijs, Hans J; Van der Net, Janjaap; Helders, Paul J M; Engelbert, Raoul H H

    2008-01-01

    To study the effects of a physical training program on exercise capacity, muscle force, and subjective fatigue levels in patients with mild to moderate forms of osteogenesis imperfecta (OI). Thirty-four children with OI type I or IV were randomly assigned to either a 12-week graded exercise program or care as usual for 3 months. Exercise capacity and muscle force were studied; subjective fatigue, perceived competence, and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0), after intervention (T = 1), and after 6 and 9 months (T = 2 and T = 3, respectively). After intervention (T = 1), peak oxygen consumption (VO2peak), relative VO2peak (VO2peak/kg), maximal working capacity (Wmax), and muscle force were significantly improved (17%, 18%, 10%, and 12%, respectively) compared with control values. Subjective fatigue decreased borderline statistically significantly. Follow-up at T = 2 showed a significant decrease of the improvements measured at T = 1 of VO2peak, but VO2peak/kg, Wmax, and subjective fatigue showed no significant difference. At T = 3, we found a further decrease of the gained improvements. A supervised training program can improve aerobic capacity and muscle force and reduces levels of subjective fatigue in children with OI type I and IV in a safe and effective manner.

  7. Effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone and N-terminal telopeptide in the postmenopausal women.

    PubMed

    Shin, Hyun-Jae; Lee, Ha-Yan; Cho, Hye-Young; Park, Yun-Jin; Moon, Hyung-Hoon; Lee, Sung-Hwan; Lee, Sung-Ki; Kim, Myung-Ki

    2014-04-01

    Menopause is characterized by rapid decreases in bone mineral density, aerobic fitness, muscle strength, and balance. In the present study, we investigated the effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone (FSH) and N-terminal telopeptide (NTX) in the postmenopausal women. Subjects were consisted of 20 postmenopausal women, who had not menstruated for at least 1 yr and had follicle-stimulating hormone levels > 35 mIU/L, estradiol levels< 40 pg/mL. The subjects were randomly divided into two groups: control group (n= 10), new sports tennis type exercise group (n= 10). New sports tennis type exercise was consisted of warm up (10 min), new sports tennis type exercise (40 min), cool down (10 min) 3 days a per week for 12 weeks. The aerobic capacities were increased by 12 weeks new sports tennis type exercise. New sports tennis type exercise significantly increased FSH and NTx levels, indicating biochemical markers of bone formation and resorption. These findings indicate that 12 weeks of new sports tennis type exercise can be effective in prevention of bone loss and enhancement of aerobic capacity in postmenopausal women.

  8. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men.

    PubMed

    Grace, Fergal; Herbert, Peter; Elliott, Adrian D; Richards, Jo; Beaumont, Alexander; Sculthorpe, Nicholas F

    2017-05-13

    This study examined a programme of pre-conditioning exercise with subsequent high intensity interval training (HIIT) on blood pressure, echocardiography, cardiac strain mechanics and maximal metabolic (MET) capacity in sedentary (SED) aging men compared with age matched masters athletes (LEX). Using a STROBE compliant observational design, 39 aging male participants (SED; n=22, aged 62.7±5.2yrs) (LEX; n=17, aged=61.1±5.4yrs) were recruited to a study that necessitated three distinct assessment phases; enrolment (Phase A), following pre-conditioning exercise in SED (Phase B), then following 6weeks of HIIT performed once every five days by both groups before reassessment (Phase C). Hemodynamic, echocardiographic and cardiac strain mechanics were obtained at rest and maximal cardiorespiratory and chronotropic responses were obtained at each measurement phase. The training intervention improved systolic, mean arterial blood pressure, rate pressure product and heart rate reserve (each P<0.05) in SED and increased MET capacity in both SED and LEX (P<0.01) which was amplified by HIIT. Echocardiography and cardiac strain measures were unremarkable apart from trivial increase to intra-ventricular septum diastole (IVSd) (P<0.05) and decrease to left ventricular internal dimension diastole (LVId) (P<0.05) in LEX following HIIT. A programme of preconditioning exercise with HIIT induces clinically relevant improvements in blood pressure, rate pressure product and encourages recovery of heart rate reserve in SED, while improving maximal MET capacity in both SED and LEX without inducing any pathological cardiovascular remodeling. These data add to the emerging repute of HIIT as a safe and promising exercise prescription to improve cardiovascular function and metabolic capacity in sedentary aging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Efficacy and safety of statins and exercise combination therapy compared to statin monotherapy in patients with dyslipidaemia: A systematic review and meta-analysis.

    PubMed

    Gui, Ya-Jun; Liao, Cai-Xiu; Liu, Qiong; Guo, Yuan; Yang, Tao; Chen, Jing-Yuan; Wang, Ya-Ting; Hu, Jia-Hui; Xu, Dan-Yan

    2017-06-01

    Background Statin treatment in association with physical exercise can substantially reduce mortality in dyslipidaemic individuals. However, the available data to compare the efficacy and safety of statins and exercise combination therapy with statin monotherapy are limited. Design Systematic review and meta-analysis. Methods We systematically searched PubMed, Embase and the Cochrane Library from database inception until December 2016. We included randomised and non-randomised studies that compared the efficacy and safety of statins and exercise combination therapy with statin monotherapy in patients with dyslipidaemia. Standardised mean differences were calculated and pooled by means of fixed effects models. The risk of bias and heterogeneity among trials was also assessed. Seven articles were assessed in terms of the efficacy of therapy and 13 from the viewpoint of therapeutic safety. Results In terms of efficacy, statins and exercise combination decreased the incidence of diabetes mellitus, improved insulin sensitivity and inflammation, but caused no change in lipid profile compared to statins alone. In terms of safety, statins and exercise combination increased peak oxygen uptake (standardised mean difference 1.01, 95% confidence interval 0.46 to 1.57) compared to statins alone. In contrast to statin-induced myopathy, chronic exercise training prior to statin treatment could counteract statin-induced adverse effects in skeletal muscle. Conclusion Statins and exercise combination therapy is more effective than statin monotherapy in terms of insulin sensitivity, inflammation and exercise capacity. The small number of studies warrants the need for more randomised controlled trials evaluating the efficacy and safety of combination therapy.

  10. Cycle-Powered Short Radius (1.9 m) Centrifuge: Effect of Exercise Versus Passive Acceleration on Heart Rate in Humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.

    1997-01-01

    In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.

  11. Effects of pitavastatin on walking capacity and CD34+/133+ cell number in patients with peripheral artery disease.

    PubMed

    Arao, Kenshiro; Yasu, Takanori; Endo, Yasuhiro; Funazaki, Toshikazu; Ota, Yoshimi; Shimada, Kazunori; Tokutake, Eiichi; Naito, Naoki; Takase, Bonpei; Wake, Minoru; Ikeda, Nahoko; Horie, Yasuto; Sugimura, Hiroyuki; Momomura, Shin-Ichi; Kawakami, Masanobu

    2017-10-01

    This multi-center prospective non-randomized comparative study investigated the effects of pitavastatin in patients with peripheral artery disease (PAD) in terms of exercise tolerance capacities and peripheral CD34 + /133 + cell numbers. At baseline, a peripheral blood test was administered to 75 patients with PAD, along with a treadmill exercise test using the Skinner-Gardner protocol to measure asymptomatic walking distance (AWD) and maximum walking distance (MWD). Each patient was assigned to a 6-month pitavastatin treatment group (n = 53) or a control group (n = 22), according to the patient's preference. The tests were repeated in both groups at 3 and 6 months. Baseline AWD and MWD correlated positively with the ankle-brachial pressure index (r = 0.342, p = 0.0032 and r = 0.324, p = 0.0054, respectively). Both AWD and MWD values improved at 3 and 6 months compared with baseline, and the degrees of their improvement were higher in the pitavastatin treatment group. CD34 + /133 + cell numbers did not change over time or between groups. Eighty-seven percent of patients in the treatment group attained low-density lipoprotein cholesterol levels below 100 mg/dL after 3 months. The study shows that pitavastatin may be effective in increasing exercise tolerance capacity in patients with PAD.

  12. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial

    PubMed Central

    2013-01-01

    Background After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. Methods/Design This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject’s inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Discussion Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. Trial registration This trial is registered with the Clinical Trials.gov Registry (NCT01679600). PMID:24053609

  13. Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters.

    PubMed

    Kinnunen, Susanna; Hyyppä, Seppo; Lehmuskero, Arja; Oksala, Niku; Mäenpää, Pekka; Hänninen, Osmo; Atalay, Mustafa

    2005-12-01

    Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.

  14. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.

    PubMed

    Layec, Gwenael; Malucelli, Emil; Le Fur, Y; Manners, David; Yashiro, Kazuya; Testa, Claudia; Cozzone, Patrick J; Iotti, Stefano; Bendahan, David

    2013-11-01

    Little is known about the metabolic differences that exist among different muscle groups within the same subjects. Therefore, we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to investigate muscle oxidative capacity and the potential effects of pH on PCr recovery kinetics between muscles of different phenotypes (quadriceps (Q), finger (FF) and plantar flexors (PF)) in the same cohort of 16 untrained adults. The estimated muscle oxidative capacity was lower in Q (29 ± 12 mM min(-1), CV(inter-subject) = 42%) as compared with PF (46 ± 20 mM min(-1), CV(inter-subject) = 44%) and tended to be higher in FF (43 ± 35 mM min(-1), CV(inter-subject) = 80%). The coefficient of variation (CV) of oxidative capacity between muscles within the group was 59 ± 24%. PCr recovery time constant was correlated with end-exercise pH in Q (p < 0.01), FF (p < 0.05) and PF (p < 0.05) as well as proton efflux rate in FF (p < 0.01), PF (p < 0.01) and Q (p = 0.12). We also observed a steeper slope of the relationship between end-exercise acidosis and PCr recovery kinetics in FF compared with either PF or Q muscles. Overall, this study supports the concept of skeletal muscle heterogeneity by revealing a comparable inter- and intra-individual variability in oxidative capacity across three skeletal muscles in untrained individuals. These findings also indicate that the sensitivity of mitochondrial respiration to the inhibition associated with cytosolic acidosis is greater in the finger flexor muscles compared with locomotor muscles, which might be related to differences in permeability in the mitochondrial membrane and, to some extent, to proton efflux rates. Copyright © 2013 John Wiley & Sons, Ltd.

  15. The Examination of the Effects of Functional Training Program Applied on Instable Ground on Anaerobic Capacities of Elite Martial Arts Athletes

    ERIC Educational Resources Information Center

    Caglayan, Atakan; Ozbar, Nurper

    2017-01-01

    The aim of this study is to measure both dynamic balance of elite martial arts athletes doing functional strength exercises on instable ground and the effects of circuit training program on their anaerobic capacities, and compare them with those following classical training program. Students studying in Faculty of Sport Sciences at Duzce…

  16. Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.

    1996-01-01

    Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.

  17. EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS

    PubMed Central

    Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.

    2016-01-01

    Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464

  18. Decreased coronary vasodilatory capacity in hypertrophic cardiomyopathy determined by split-dose thallium-dipyridamole myocardial scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, Y.; Yamaguchi, R.; Ogata, M.

    1990-05-01

    Split-dose thallium-dipyridamole myocardial scintigraphy was performed in patients with nonobstructive hypertrophic cardiomyopathy (HC) who had angiographically normal coronary arteries. The dipyridamole-induced increases in thallium-201 uptake, calculated to evaluate coronary vasodilatory capacity, were significantly lower in 30 patients with HC than in 13 control subjects (177 +/- 58 vs 281 +/- 46%) and the reductions were observed in both the septal and lateral segments. The reductions of the septal segment in HC patients were significantly greater than those in 10 hypertensive patients with comparable degrees of septal hypertrophy. Of patients with HC, 16 had increases in thallium uptake well below themore » normal range. Compared with those having normal increases, these patients had significantly lower exercise duration (11 vs 15 minutes), with 33% having ST depression develop at a workload less than or equal to 80 watts. These data indicate that approximately one-half of patients with HC have impaired coronary vasodilatory capacity that could be an important pathophysiologic abnormality of HC resulting in the development of myocardial ischemia and the impairment of cardiac performance during exercise.« less

  19. Exercise Capacity and Response to Training Quantitative Trait Loci in a NZW X 129S1 Intercross and Combined Cross Analysis of Inbred Mouse Strains

    PubMed Central

    Massett, Michael P.; Avila, Joshua J.; Kim, Seung Kyum

    2015-01-01

    Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training. PMID:26710100

  20. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis.

    PubMed

    Saunders, Bryan; Elliott-Sale, Kirsty; Artioli, Guilherme G; Swinton, Paul A; Dolan, Eimear; Roschel, Hamilton; Sale, Craig; Gualano, Bruno

    2017-04-01

    To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of β-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). β-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. How should COPD patients exercise during respiratory rehabilitation? Comparison of exercise modalities and intensities to treat skeletal muscle dysfunction

    PubMed Central

    Puhan, M; Schunemann, H; Frey, M; Scharplatz, M; Bachmann, L

    2005-01-01

    Background: Physical exercise is an important component of respiratory rehabilitation because it reverses skeletal muscle dysfunction, a clinically important manifestation of COPD associated with reduced health-related quality of life (HRQL) and survival. However, there is controversy regarding the components of the optimal exercise protocol. A study was undertaken to systematically evaluate and summarise randomised controlled trials (RCTs) comparing different exercise protocols for COPD patients. Methods: Six electronic databases, congress proceedings and bibliographies of included studies were searched without imposing language restrictions. Two reviewers independently screened all records and extracted data on study samples, interventions and methodological characteristics of included studies. Results: The methodological quality of the 15 included RCTs was low to moderate. Strength exercise led to larger improvements of HRQL than endurance exercise (weighted mean difference for Chronic Respiratory Questionnaire 0.27, 95% CI 0.02 to 0.52). Interval exercise seems to be of similar effectiveness as continuous exercise, but there are few data on clinically relevant outcomes. One small RCT which included patients with mild COPD compared the effect of high and low intensity exercise (at 80% and 40% of the maximum exercise capacity, respectively) and found larger physiological training effects from high intensity exercise. Conclusions: Strength exercise should be routinely incorporated in respiratory rehabilitation. There is insufficient evidence to recommend high intensity exercise for COPD patients and investigators should conduct larger high quality trials to evaluate exercise intensities in patients with moderate to severe COPD. PMID:15860711

  2. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.

    PubMed

    Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun

    2013-10-15

    l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.

  3. Relationship of fatigue and exercise capacity with emotional and physical state in patients with coronary artery disease admitted for rehabilitation program.

    PubMed

    Bunevicius, Adomas; Stankus, Albinas; Brozaitiene, Julija; Girdler, Susan S; Bunevicius, Robertas

    2011-08-01

    The relationship between subjective fatigue, exercise capacity, and symptoms of depression and anxiety in patients with coronary artery disease (CAD) needs to be specified. In this cross-sectional study, a total of 1,470 (64% men; mean age 57 ± 11 years) consecutive CAD patients admitted for cardiac rehabilitation after treatment of acute cardiac events were evaluated for demographic characteristics, for past and current diagnosis and treatment, for New York Heart Association (NYHA) class, for symptoms of depression and for symptoms of anxiety using the Hospital Anxiety and Depression Scale, and for subjective fatigue using the Multidimensional Fatigue Inventory. On the next day, all patients underwent exercise capacity evaluation using a standard bicycle ergometer testing procedure. In univariate regression analyses, there was the strongest positive association between scores on all Multidimensional Fatigue Inventory subscales and scores on the Hospital Anxiety and Depression Scale depression and anxiety subscales and between exercise capacity and NYHA class. Multivariate regression analyses revealed that symptoms of depression were the strongest positive determinants of all dimensions of subjective fatigue and, together with other significant variables, accounted for 17% to 29% of the variance. However, neither depressive nor anxious symptoms were significant determinants of exercise capacity. The association between subjective fatigue and exercise capacity and vice versa was minimal. Subjective fatigue in CAD patients is strongly related to symptoms of depression and symptoms of anxiety. In contrast, exercise capacity in CAD patients is strongly related to NYHA functional class, with no relationship to symptoms of depression and anxiety. Copyright © 2011 Mosby, Inc. All rights reserved.

  4. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    PubMed

    Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.

  5. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    PubMed Central

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  6. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    PubMed Central

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  7. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    PubMed Central

    Anand, R.

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116

  8. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial.

    PubMed

    Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.

  9. Effects of nebivolol on endothelial function and exercise parameters in patients with slow coronary flow.

    PubMed

    Tiryakioglu, Selma; Tiryakioglu, Osman; Ari, Hasan; Basel, Mehmet C; Bozat, Tahsin

    2009-11-03

    Earlier studies have reported that a decrease in exercise capacity might indicate endothelial dysfunction. However, the effects of improvement of endothelial functions on exercise capacity have not been evaluated. The aim of the present study is to investigate the effects of nebivolol on flow-mediated dilatation (FMD), and on the exercise capacities of the patients with slow coronary flow (SCF). The study population included 25 subjects with SCF (Group 1) documented by the thrombolysis in myocardial infarction (TIMI) frame count, and 25 control group (Group 2) subjects with normal coronary angiography, for a total of 50 subjects who underwent coronary angiography due to several indications and had no coronary lesion. The TIMI frame count (TFC) values of the subjects in Group I for left anterior descending artery, right coronary, and circumflex coronary artery were 61.8 +/- 30.6, 37.2 +/- 17.4, and 34.6 +/- 17.4, respectively. All the subjects received nebivolol 5 mg/day. At the end of the first month of FMD, the mean exercise duration (MED) and the Duke Scores of the patients with SCF were significantly higher than the baseline values. However, the values by the sixth month did not differ from that at the first month. Although a numerical improvement compared to the baseline values was observed for the subjects in Group 2 by the measurements at the end of the first and the sixth month, this difference was not statistically significant. Nebivolol treatment increases FMD in the subjects with SCF. The difference in the exercise parameters of these subjects is particularly dramatic, and such an outcome may indirectly indicate long-term improvement in endothelial function.

  10. Five months of physical exercise in hemodialysis patients: effects on aerobic capacity, physical function and self-rated health.

    PubMed

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby; Kristensen, Jens Halkjaer

    2004-01-01

    The number of chronic renal failure patients treated by hemodialysis (HD) is continuously increasing. Most patients have reduced physical capacity and have a high risk of cardiac and vascular diseases. The aim of this study was to determine the effects of 5 months physical exercise of HD patients' physical capacity, self-rated health and risk factors for cardiovascular disease. 33 HD patients were included in the study. HD for more than 3 months, age >18 years. Diabetes mellitus, symptomatic cardiovascular disease, musculoskeletal limitations, severe peripheral polyneuropathy, inability to speak Danish or English, dementia or other mental disorders. The patients were randomly assigned to an exercise group (EG, n = 22) or a control group (CG, n = 11). Prior to randomization, baseline testing was performed. The effects were measured by aerobic capacity, '2-min stair climbing', 'squat test', self-rated health (SF36), blood pressure and lipids. All tests were carried out by blinded testers. The intervention consisted of 1 h of physical exercise twice a week for 5 months. 20 patients completed the intervention. Attendance was 74% of all sessions. There were no dropouts caused by complications related to the intervention. The EG had a significant increase in aerobic capacity, 'squat test' and Physical Function and Physical Component Scale (SF36). No significant changes were observed in any of the parameters in the CG. Physical exercise twice a week for 5 months increases physical function and aerobic capacity in HD patients. An exercise program with only two exercise sessions per week seems easy to implement in clinical practice with high attendance among participants. Further investigation is needed to determine the effects on blood pressure and lipids. There were no medical complications related to the exercise program. Copyright 2004 S. Karger AG, Basel

  11. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  12. Effect of High-Intensity Interval Versus Continuous Exercise Training on Functional Capacity and Quality of Life in Patients With Coronary Artery Disease: A RANDOMIZED CLINICAL TRIAL.

    PubMed

    Jaureguizar, Koldobika Villelabeitia; Vicente-Campos, Davinia; Bautista, Lorena Ruiz; de la Peña, Cesar Hernández; Gómez, María José Arriaza; Rueda, María José Calero; Fernández Mahillo, Ignacio

    2016-01-01

    There is strong evidence that exercise training has beneficial health effects in patients with cardiovascular disease. Most studies have focused on moderate continuous training (MCT); however, a body of evidence has begun to emerge demonstrating that high-intensity interval training (HIIT) has significantly better results in terms of morbidity and mortality. The aim of this study was to compare the effects of MCT versus HIIT on functional capacity and quality of life and to assess safety. Seventy-two patients with ischemic heart disease were assigned to either HIIT or MCT for 8 weeks. We analyzed cardiopulmonary exercise test data, quality of life, and adverse events. High-intensity interval training resulted in a significantly greater increase in (Equation is included in full-text article.)O2peak (4.5 ± 4.7 mL·kg·min) compared with MCT (2.5 ± 3.6 mL·kg·min) (P < .05). The aerobic threshold (VT1) increased by 21% in HIIT and 14% in MCT. Furthermore, there was a significant (P < .05) increase in the distance covered in the 6-minute walk distance test in the HIIT group (49.6 ± 6.3 m) when compared with the MCT group (29.6 ± 12.0 m). Both training protocols improved quality of life. No adverse events were reported in either of the groups. On the basis of the results of this study, HIIT should be considered for use in cardiac rehabilitation as it resulted in a greater increase in functional capacity compared with MCT. We also observed greater improvement in quality of life without any increase in cardiovascular risk.

  13. Is balance exercise training as effective as aerobic exercise training in fibromyalgia syndrome?

    PubMed

    Duruturk, Neslihan; Tuzun, Emine Handan; Culhaoglu, Belde

    2015-05-01

    The aim was to compare the effect of aerobic and balance exercises on pain severity, myalgic score, quality of life, exercise capacity and balance in fibromyalgia syndrome (FMS). A total of 33 females diagnosed with FMS by the American College of Rheumatology criteria were recruited in this randomised controlled study and allocated to aerobic exercise (AE) or balance exercise (BE) groups. Exercises were performed three times a week, for 6 weeks on a treadmill or with a Tetrax interactive balance system (TIBS). Outcome measures were characterised by myalgic score, visual analogue scale, Fibromyalgia Impact Questionnaire (FIQ), exercise testing, Timed Up-Go (TUG) and TIBS measurements. Comparisons from baseline to 6 weeks were evaluated using Wilcoxon test. Mann-Whitney U test was used to compare differences between groups. Effect sizes were also calculated. Improvements in pain, myalgic score and FIQ were found in both groups (p < 0.05). While comparing groups, myalgic score was significant (p = 0.02, d = -1.77), the value was higher in AE. Exercise duration, Borg scale, resting blood pressures (RBP) and maximal heart rate were significant in AE. In BE, Borg scale, exercise duration was significant (p < 0.05). While comparing groups, diastolic RBP (p = 0.04, d = -0.92), exercise duration (p = 0.00, d = -1.64) were significant, with higher values in AE. TUG significantly changed in groups (p < 0.05, d ≥ -1.22). Stability scores, eyes open while standing on elastic pads (p = 0.00, d = -0.98) and head back (p = 0.03, d = -0.74), were significant, with higher values in BE. This study showed that BE provided some improvements in FMS, but AE training led to greater gains. BE training should be included in comprehensive programs.

  14. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats

    PubMed Central

    Dolinsky, Vernon W; Jones, Kelvin E; Sidhu, Robinder S; Haykowsky, Mark; Czubryt, Michael P; Gordon, Tessa; Dyck, Jason R B

    2012-01-01

    Exercise training (ET) improves endurance capacity by increasing both skeletal muscle mitochondrial number and function, as well as contributing to favourable cardiac remodelling. Interestingly, some of the benefits of regular exercise can also be mimicked by the naturally occurring polyphenol, resveratrol (RESV). However, it is not known whether RESV enhances physiological adaptations to ET. To investigate this, male Wistar rats were randomly assigned to a control chow diet or a chow diet that contained RESV (4 g kg−1 of diet) and subsequently subjected to a programme of progressive treadmill running for 12 weeks. ET-induced improvements in exercise performance were enhanced by 21% (P < 0.001) by the addition of RESV to the diet. In soleus muscle, ET + RESV increased both the twitch (1.8-fold; P < 0.05) and tetanic (1.2-fold; P < 0.05) forces generated during isometric contraction, compared to ET alone. In vivo echocardiography demonstrated that ET + RESV also increased the resting left ventricular ejection fraction by 10% (P < 0.05), and reduced left ventricular wall stress compared to ET alone. These functional changes were accompanied by increased cardiac fatty acid oxidation (1.2-fold; P < 0.05) and favourable changes in cardiac gene expression and signal transduction pathways that optimized the utilization of fatty acids in ET + RESV compared to ET alone. Overall, our findings provide evidence that the capacity for fatty acid oxidation is augmented by the addition of RESV to the diet during ET, and that this may contribute to the improved physical performance of rats following ET. PMID:22473781

  15. Efficacy of tiotropium/olodaterol on lung volume, exercise capacity, and physical activity

    PubMed Central

    Ichinose, Masakazu; Minakata, Yoshiaki; Motegi, Takashi; Ueki, Jun; Gon, Yasuhiro; Seki, Tetsuo; Anzai, Tatsuhiko; Nakamura, Shuhei; Hirata, Kazuto

    2018-01-01

    Purpose This study evaluated the efficacy of tiotropium/olodaterol vs tiotropium on lung function, exercise capacity, and physical activity in patients with COPD. Patients and methods A total of 184 patients aged ≥40 years with COPD (Global Initiative for Chronic Obstructive Lung Disease stage II–IV) received tiotropium/olodaterol for 6 weeks, then tiotropium for 6 weeks, or vice versa. The primary endpoint was inspiratory capacity (IC) at peak post-dose. Results Adjusted mean IC after 6-week treatment was 1.990 L with tiotropium/olodaterol vs 1.875 L with tiotropium (difference: 115 mL; 95% CI: 77, 153; p<0.0001). Forced expiratory volume in 1 s (difference: 105 mL; 95% CI: 88, 123), forced vital capacity (difference: 163 mL; 95% CI: 130, 197), and slow vital capacity (difference: 134 mL; 95% CI: 91, 176) improved with tiotropium/olodaterol (all p<0.0001). Adjusted mean 6-min walk distance was similar between treatments in the overall population but was significantly increased with tiotropium/olodaterol in the subgroup with Global Initiative for Chronic Obstructive Lung Disease stage III/IV at baseline (difference: 18.1 m; 95% CI: 2.3, 33.9; p=0.0254). In a post hoc analysis, tiotropium/olodaterol improved the values for ≥2.0 metabolic equivalents (difference: 5.0 min; 95% CI: 0.4, 9.7; p=0.0337). Conclusion Tiotropium/olodaterol significantly improved IC compared with tiotropium and potentially enhanced the exercise capacity in COPD patients. A slight improvement in physical activity of relatively more than moderate intensity was also seen with tiotropium/olodaterol. PMID:29750027

  16. Resistance Training using Low Cost Elastic Tubing is Equally Effective to Conventional Weight Machines in Middle-Aged to Older Healthy Adults: A Quasi-Randomized Controlled Clinical Trial.

    PubMed

    Lima, Fabiano F; Camillo, Carlos A; Gobbo, Luis A; Trevisan, Iara B; Nascimento, Wesley B B M; Silva, Bruna S A; Lima, Manoel C S; Ramos, Dionei; Ramos, Ercy M C

    2018-03-01

    The objectives of the study were to compare the effects of resistance training using either a low cost and portable elastic tubing or conventional weight machines on muscle force, functional exercise capacity, and health-related quality of life (HRQOL) in middle-aged to older healthy adults. In this clinical trial twenty-nine middle-aged to older healthy adults were randomly assigned to one of the three groups a priori defined: resistance training with elastic tubing (ETG; n = 10), conventional resistance training (weight machines) (CTG; n = 9) and control group (CG, n = 10). Both ETG and CTG followed a 12-week resistance training (3x/week - upper and lower limbs). Muscle force, functional exercise capacity and HRQOL were evaluated at baseline, 6 and 12 weeks. CG underwent the three evaluations with no formal intervention or activity counseling provided. ETG and CTG increased similarly and significantly muscle force (Δ16-44% in ETG and Δ25-46% in CTG, p < 0.05 for both), functional exercise capacity (ETG Δ4 ± 4% and CTG Δ6±8%; p < 0.05 for both). Improvement on "pain" domain of HRQOL could only be observed in the CTG (Δ21 ± 26% p = 0.037). CG showed no statistical improvement in any of the variables investigated. Resistance training using elastic tubing (a low cost and portable tool) and conventional resistance training using weight machines promoted similar positive effects on peripheral muscle force and functional exercise capacity in middle-aged to older healthy adults.

  17. Effects of an Exercise Intervention on Cancer-Related Fatigue and Its Relationship to Markers of Oxidative Stress.

    PubMed

    Repka, Chris P; Hayward, Reid

    2018-06-01

    Although the underlying mechanisms of cancer-related fatigue (CRF) are not fully characterized, treatment-associated oxidative stress may play a role. The purpose of this study was to determine the effect of an exercise intervention on the relationship between CRF and oxidative stress. Upon cessation of radiation or chemotherapy, 8 cancer patients participated in a 10-week exercise intervention (EX), while 7 continued standard care (CON). Blood draws and fatigue questionnaires were administered to cancer patients before and after the intervention as well as to 7 age-matched individuals with no cancer history. Changes in plasma 8-hydroxy-deoxyguanosine (8-OHdG), protein carbonyls, antioxidant capacity, and fatigue were compared between groups. Correlations between CRF and oxidative stress were evaluated. Mean total fatigue scores decreased significantly (5.0 ± 2.2 to 2.6 ± 1.5, P < .05) in EX, but not in CON. Antioxidant capacity significantly increased (+41%; P < .05) and protein carbonyls significantly decreased (-36%; P < .05) in EX, but not in CON. Increases in antioxidant capacity were significantly correlated with reductions in affective ( r = -.49), sensory ( r = -.47), and cognitive fatigue ( r = -.58). Changes in total ( r = .46) and affective ( r = .47) fatigue exhibited significant correlations with changes in 8-OHdG over time, while behavioral ( r = .46) and sensory ( r = .47) fatigue changes were significantly correlated with protein carbonyls. Oxidative stress may be implicated in CRF, while improved antioxidant capacity following an exercise intervention may play a role in mitigating CRF in cancer survivors.

  18. Religious coping and religiosity in patients with COPD following pulmonary rehabilitation

    PubMed Central

    da Silva, Guilherme PF; Nascimento, Francisco AB; Macêdo, Tereza PM; Morano, Maria T; Mesquita, Rafael; Pereira, Eanes DB

    2018-01-01

    Background Religious coping (RC) is defined as the use of behavioral and cognitive techniques in stressful life events in a multidimensional construct with positive and negative effects on outcomes, while religiosity is considered a use of individual beliefs, values, practices, and rituals related to faith. There is no evidence for the effects of pulmonary rehabilitation (PR) in RC and religiosity in patients with COPD. The aims of this study were 1) to compare RC and religiosity in patients with COPD following PR and 2) to investigate associations between changes in RC, religiosity and exercise capacity, quality of life (QoL), anxiety, depression, and dyspnea. Methods Seventy-four patients were enrolled in this study including 38 patients in the PR group and 36 patients in the control group. PR protocol was composed of a 12-week (three sessions per week, 60 min per day) outpatient comprehensive program, and the control group was composed of patients in a waiting list for admission to PR program. RC, religiosity, exercise capacity, QoL, anxiety, depression, and dyspnea were measured before and after the study protocol. Results Positive religious coping and organizational religious activities increased (p=0.01; p<0.001, respectively), while negative religious coping decreased (p=0.03) after 12 weeks in the PR group (p<0.001). Significant associations were observed between changes in RC, organizational religiosity with exercise capacity, and QoL following PR. No differences were found in the control group. Conclusion PR improves RC and organizational religiosity in patients with COPD, and these improvements are related to increases in exercise capacity and QoL. PMID:29379282

  19. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  20. Longer-term effects of home-based exercise interventions on exercise capacity and physical activity in coronary artery disease patients: A systematic review and meta-analysis.

    PubMed

    Claes, Jomme; Buys, Roselien; Budts, Werner; Smart, Neil; Cornelissen, Véronique A

    2017-02-01

    Background Exercise-based cardiovascular rehabilitation (CR) improves exercise capacity (EC), lowers cardiovascular risk profile and increases physical functioning in the short term. However, uptake of and adherence to a physically active lifestyle in the long run remain problematic. Home-based (HB) exercise programmes have been introduced in an attempt to enhance long-term adherence to recommended levels of physical activity (PA). The current systematic review and meta-analysis aimed to compare the longer-term effects of HB exercise programmes with usual care (UC) or centre-based (CB) CR in patients referred for CR. Design Systematic review and meta-analysis. Methods Non-randomised controlled trials (RCTs) or randomised trials comparing the effects of HB exercise programmes with UC or CB rehabilitation on EC and/or PA, with a follow-up period of ≥12 months and performed in coronary artery disease patients, were searched in four databases (PubMed, EMBASE, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and the Cochrane Central Register of Controlled trials (CENTRAL)) from their inception until September 7, 2016. Standardised mean differences (SMDs) were calculated and pooled by means of random effects models. Risk of bias, publication bias and heterogeneity among trials were also assessed. Results Seven studies could be included in the meta-analysis on EC, but only two studies could be included in the meta-analysis on PA (total number of 1440 patients). The results showed no significant differences in EC between HB rehabilitation and UC (SMD 0.10, 95% confidence interval (CI) -0.13 to 0.33). There was a small but significant difference in EC in favour of HB compared to CB rehabilitation (SMD 0.25, 95% CI 0.02-0.48). No differences were found for PA (SMD 0.37, 95% CI -0.18 to 0.92). Conclusions HB exercise is slightly more effective than CB rehabilitation in terms of maintaining EC. The small number of studies warrants the need for more RCTs evaluating the long-term effects of different CR interventions on EC and PA behaviour, as this is the ultimate goal of CR.

  1. Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design

    PubMed Central

    Woessner, Mary N; VanBruggen, Mitch D; Pieper, Carl F; O'Reilly, Erin K; Kraus, William E

    2017-01-01

    Background Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC. Trial Registration ClinicalTrials.gov NCT01684930; https://clinicaltrials.gov/ct2/show/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP) PMID:28974486

  2. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation

    PubMed Central

    Jensen, Dennis; Webb, Katherine A; Davies, Gregory A L; O'Donnell, Denis E

    2008-01-01

    The aim of this study was to identify the physiological mechanisms of exertional respiratory discomfort (breathlessness) in pregnancy by comparing ventilatory (breathing pattern, airway function, operating lung volumes, oesophageal pressure (Poes)-derived indices of respiratory mechanics) and perceptual (breathlessness intensity) responses to incremental cycle exercise in 15 young, healthy women in the third trimester (TM3; between 34 and 38 weeks gestation) and again 4–5 months postpartum (PP). During pregnancy, resting inspiratory capacity (IC) increased (P < 0.01) and end-expiratory lung volume decreased (P < 0.001), with no associated change in total lung capacity (TLC) or static respiratory muscle strength. This permitted greater tidal volume (VT) expansion throughout exercise in TM3, while preserving the relationship between contractile respiratory muscle effort (tidal Poes swing expressed as a percentage of maximum inspiratory pressure (PImax)) and thoracic volume displacement (VT expressed as a percentage of vital capacity) and between breathlessness and ventilation (V̇E). At the highest equivalent work rate (HEWR = 128 ± 5 W) in TM3 compared with PP: V̇E, tidal Poes/PImax and breathlessness intensity ratings increased by 10.2 l min−1 (P < 0.001), 8.8%PImax (P < 0.05) and 0.9 Borg units (P < 0.05), respectively. Pulmonary resistance was not increased at rest or during exercise at the HEWR in TM3, despite marked increases in mean tidal inspiratory and expiratory flow rates, suggesting increased bronchodilatation. Dynamic mechanical constraints on VT expansion (P < 0.05) with associated increased breathlessness intensity ratings (P < 0.05) were observed near peak exercise in TM3 compared with PP. In conclusion: (1) pregnancy-induced increases in exertional breathlessness reflected the normal awareness of increased V̇E and contractile respiratory muscle effort; (2) mechanical adaptations of the respiratory system, including recruitment of resting IC and increased bronchodilatation, accommodated the increased VT while preserving effort–displacement and breathlessness–V̇E relationships; and (3) dynamic mechanical ventilatory constraints contributed to respiratory discomfort near the limits of tolerance in late gestation. PMID:18687714

  3. Inspiratory Muscle Training and Functional Electrical Stimulation for Treatment of Heart Failure With Preserved Ejection Fraction: The TRAINING-HF Trial.

    PubMed

    Palau, Patricia; Domínguez, Eloy; López, Laura; Ramón, José María; Heredia, Raquel; González, Jessika; Santas, Enrique; Bodí, Vicent; Miñana, Gema; Valero, Ernesto; Mollar, Anna; Bertomeu González, Vicente; Chorro, Francisco J; Sanchis, Juan; Lupón, Josep; Bayés-Genís, Antoni; Núñez, Julio

    2018-03-16

    Despite the prevalence of heart failure with preserved ejection fraction (HFpEF), there is currently no evidence-based effective therapy for this disease. This study sought to evaluate whether inspiratory muscle training (IMT), functional electrical stimulation (FES), or a combination of both (IMT + FES) improves 12- and 24-week exercise capacity as well as left ventricular diastolic function, biomarker profile, and quality of life in HFpEF. A total of 61 stable symptomatic patients (New York Heart Association II-III) with HFpEF were randomized (1:1:1:1) to receive a 12-week program of IMT, FES, or IMT + FES vs usual care. The primary endpoint of the study was to evaluate change in peak exercise oxygen uptake at 12 and 24 weeks. Secondary endpoints were changes in quality of life, echocardiogram parameters, and prognostic biomarkers. We used a mixed-effects model for repeated-measures to compare endpoints changes. Mean age and peak exercise oxygen uptake were 74 ± 9 years and 9.9 ± 2.5mL/min/kg, respectively. The proportion of women was 58%. At 12 weeks, the mean increase in peak exercise oxygen uptake (mL/kg/min) compared with usual care was 2.98, 2.93, and 2.47 for IMT, FES, and IMT + FES, respectively (P < .001) and this beneficial effect persisted after 6 months (1.95, 2.08, and 1.56; P < .001). Significant increases in quality of life scores were found at 12 weeks (P < .001). No other changes were found. In HFpEF patients with low aerobic capacity, IMT and FES were associated with a significant improvement in exercise capacity and quality of life. This trial was registered at ClinicalTrials.gov (Identifier: NCT02638961).. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  4. [Effect of exhaustive weightlifting exercise on EMG, biochemical markers of muscle damage and performance capacity in young male subjects].

    PubMed

    Minigalin, A D; Shumakov, A R; Novozhilov, A V; Samsonova, A V; Kos'mina, E A; Kalinskiĭ, M I; Baranova, T I; Kubasov, I V; Morozov, V I

    2015-01-01

    The aim of this study was to examine the effect of exhaustive weightlifting exercise on electrical and biochemical variables and performance capacity in young male subjects. The onset of exercise (80-50% 1RM) was associated with a decrease in the amount of work performed, which was followed by a steady performance capacity at 40-10% 1RM. There were no significant changes of m. rectus femoris EMG maximal amplitude though it tended to be increased during the first half of exercise. A significant blood lactate concentration increase indicated that an anaerobic metabolism was a predominant mechanism of muscle contraction energy-supply. CK level in blood plasma did not change but plasma myoglobin concentration doubled immediately post-exercise. The data presented here suggest that decrease in performance capacity was likely due to progressive "refusal of work" of the fast motor units and work prolongation of weaker, intermediate and slow motor units. Unchangeable CK activity and relatively small increase in myoglobin concentration in plasma suggest that used weightlifting exercise did not induced substantial damage in myocytes' membranes in our subjects.

  5. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise.

    PubMed

    Tanabe, Mai; Takahashi, Toshiyuki; Shimoyama, Kazuhiro; Toyoshima, Yukako; Ueno, Toshiaki

    2013-10-28

    The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett's test (p < 0.05). The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food.

  6. Endothelial dysfunction correlates with exaggerated exercise pressor response during whole body maximal exercise in chronic kidney disease.

    PubMed

    Downey, Ryan M; Liao, Peizhou; Millson, Erin C; Quyyumi, Arshed A; Sher, Salman; Park, Jeanie

    2017-05-01

    Chronic kidney disease (CKD) patients have exercise intolerance associated with increased cardiovascular mortality. Previous studies demonstrate that blood pressure (BP) and sympathetic nerve responses to handgrip exercise are exaggerated in CKD. These patients also have decreased nitric oxide (NO) bioavailability and endothelial dysfunction, which could potentially lead to an impaired ability to vasodilate during exercise. We hypothesized that CKD patients have exaggerated BP responses during maximal whole body exercise and that endothelial dysfunction correlates with greater exercise pressor responses in these patients. Brachial artery flow-mediated dilation (FMD) was assessed before maximal treadmill exercise in 56 participants: 38 CKD (56.7 ± 1.2 yr old, 38 men) and 21 controls (52.8 ± 1.8 yr old, 20 men). During maximal treadmill exercise, the slope-of-rise in systolic BP (+10.32 vs. +7.75 mmHg/stage, P < 0.001), mean arterial pressure (+3.50 vs. +2.63 mmHg/stage, P = 0.004), and heart rate (+11.87 vs. +10.69 beats·min -1 ·stage -1 , P = 0.031) was significantly greater in CKD compared with controls. Baseline FMD was significantly lower in CKD (2.76 ± 0.42% vs. 5.84 ± 0.97%, P = 0.008). Lower FMD values were significantly associated with a higher slope-of-rise in systolic BP (+11.05 vs. 8.71 mmHg/stage, P = 0.003) during exercise in CKD, as well as poorer exercise capacity measured as peak oxygen uptake (V̇o 2peak ; 19.47 ± 1.47 vs. 24.57 ± 1.51 ml·min -1 ·kg -1 , P < 0.001). These findings demonstrate that low FMD in CKD correlates with augmented BP responses during exercise and lower V̇o 2peak , suggesting that endothelial dysfunction may contribute to exaggerated exercise pressor responses and poor exercise capacity in CKD patients.

  7. Long-term benefits of exercising on quality of life and fatigue in multiple sclerosis patients with mild disability: a pilot study.

    PubMed

    McCullagh, Ruth; Fitzgerald, Anthony P; Murphy, Raymond P; Cooke, Grace

    2008-03-01

    To determine if exercise benefits patients with multiple sclerosis. Randomized controlled trial. Participants exercised at home and also attended exercise classes held in a hospital physiotherapy gym. Thirty patients, diagnosed and independently mobile, were recruited in the Dublin area. For three months, classes were held twice-weekly and participants exercised independently once-weekly. The control group was monitored monthly and management remained unchanged. Measurements were taken at baseline, three and six months. The Modified Fatigue Impact Scale (MFIS), Multiple Sclerosis Impact Scale-29 (MSIS-29) and Functional Assessment of Multiple Sclerosis (FAMS) were used to measure fatigue and quality of life (QOL). Heart rate (HR) and the Borg's Rating of Perceived Exertion (RPE) were recorded during an incremental exercise test. The change from baseline scores between groups was compared using the Mann-Whitney U-test. Twenty-four participants completed the programme (n = 12 in each group). Based on the change in scores at three months, the exercise group had significantly greater improvements in exercise capacity (HR: -14 [-18.5, -2.5] versus 0.5 [-4, 5.5], P= 0.009), QOL (FAMS: 23 [9.5, 42.5] versus -3.5 [-16, 5], P=0.006) and fatigue (MFIS: -13 [-20, -3] versus 1 [-4, 4.5], P=0.02). At six months, the difference in change scores remained significant for FAMS (19 [14, 31] versus -4.5 [-25, 8], P=0.002) and MFIS (-8.5 [-19.5, -1] versus 0.5 [-2.5, 6.5], P=0.02) only. A three-month exercise programme improved participants' exercise capacity, QOL and fatigue, with the improvements in QOL and fatigue lasting beyond the programme.

  8. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet

    PubMed Central

    Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071

  9. Respiratory diseases and their effects on respiratory function and exercise capacity.

    PubMed

    Van Erck-Westergren, E; Franklin, S H; Bayly, W M

    2013-05-01

    Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes. © 2013 EVJ Ltd.

  10. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise.

    PubMed

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K

    2017-02-20

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.

  11. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

    PubMed Central

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.

    2017-01-01

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506

  12. Effectiveness of a programme of exercise on physical function in survivors of critical illness following discharge from the ICU: study protocol for a randomised controlled trial (REVIVE)

    PubMed Central

    2014-01-01

    Background Following discharge home from the ICU, patients often suffer from reduced physical function, exercise capacity, health-related quality of life and social functioning. There is usually no support to address these longer term problems, and there has been limited research carried out into interventions which could improve patient outcomes. The aim of this study is to investigate the effectiveness and cost-effectiveness of a 6-week programme of exercise on physical function in patients discharged from hospital following critical illness compared to standard care. Methods/Design The study design is a multicentre prospective phase II, allocation-concealed, assessor-blinded, randomised controlled clinical trial. Participants randomised to the intervention group will complete three exercise sessions per week (two sessions of supervised exercise and one unsupervised session) for 6 weeks. Supervised sessions will take place in a hospital gymnasium or, if this is not possible, in the participants home and the unsupervised session will take place at home. Blinded outcome assessment will be conducted at baseline after hospital discharge, following the exercise intervention, and at 6 months following baseline assessment (or equivalent time points for the standard care group). The primary outcome measure is physical function as measured by the physical functioning subscale of the Short-Form-36 health survey following the exercise programme. Secondary outcomes are health-related quality of life, exercise capacity, anxiety and depression, self efficacy to exercise and healthcare resource use. In addition, semi-structured interviews will be conducted to explore participants’ perceptions of the exercise programme, and the feasibility (safety, practicality and acceptability) of providing the exercise programme will be assessed. A within-trial cost-utility analysis to assess the cost-effectiveness of the intervention compared to standard care will also be conducted. Discussion If the exercise programme is found to be effective, this study will improve outcomes that are meaningful to patients and their families. It will inform the design of a future multicentre phase III clinical trial of exercise following recovery from critical illness. It will provide useful information which will help the development of services for patients after critical illness. Trial registration ClinicalTrials.gov NCT01463579 PMID:24767671

  13. Effectiveness of a programme of exercise on physical function in survivors of critical illness following discharge from the ICU: study protocol for a randomised controlled trial (REVIVE).

    PubMed

    O'Neill, Brenda; McDowell, Kathryn; Bradley, Judy; Blackwood, Bronagh; Mullan, Brian; Lavery, Gavin; Agus, Ashley; Murphy, Sally; Gardner, Evie; McAuley, Daniel F

    2014-04-27

    Following discharge home from the ICU, patients often suffer from reduced physical function, exercise capacity, health-related quality of life and social functioning. There is usually no support to address these longer term problems, and there has been limited research carried out into interventions which could improve patient outcomes. The aim of this study is to investigate the effectiveness and cost-effectiveness of a 6-week programme of exercise on physical function in patients discharged from hospital following critical illness compared to standard care. The study design is a multicentre prospective phase II, allocation-concealed, assessor-blinded, randomised controlled clinical trial. Participants randomised to the intervention group will complete three exercise sessions per week (two sessions of supervised exercise and one unsupervised session) for 6 weeks. Supervised sessions will take place in a hospital gymnasium or, if this is not possible, in the participants home and the unsupervised session will take place at home. Blinded outcome assessment will be conducted at baseline after hospital discharge, following the exercise intervention, and at 6 months following baseline assessment (or equivalent time points for the standard care group). The primary outcome measure is physical function as measured by the physical functioning subscale of the Short-Form-36 health survey following the exercise programme. Secondary outcomes are health-related quality of life, exercise capacity, anxiety and depression, self efficacy to exercise and healthcare resource use. In addition, semi-structured interviews will be conducted to explore participants' perceptions of the exercise programme, and the feasibility (safety, practicality and acceptability) of providing the exercise programme will be assessed. A within-trial cost-utility analysis to assess the cost-effectiveness of the intervention compared to standard care will also be conducted. If the exercise programme is found to be effective, this study will improve outcomes that are meaningful to patients and their families. It will inform the design of a future multicentre phase III clinical trial of exercise following recovery from critical illness. It will provide useful information which will help the development of services for patients after critical illness. ClinicalTrials.gov NCT01463579.

  14. Relationship Between Post-exercise Heart Rate Recovery and Changing Ratio of Cardiopulmonary Exercise Capacity.

    PubMed

    Kim, Ji-Hyun; Choe, Yu-Ri; Song, Min-Keun; Choi, In-Sung; Han, Jae-Young

    2017-12-01

    To determine whether heart rate recovery (HRR) following an exercise tolerance test (ETT) is correlated with a changing ratio of peak oxygen consumption (VO 2 ) and maximal metabolic equivalents (MET max ). A total of 60 acute myocardial infarction (AMI) patients who underwent ETT at both assessment points - 3 weeks (T0) after the AMI attack and 3 months after T0 (T1) were included. After achieving a peak workload, the treadmill was stopped with a 5-minute cooldown period, and the patients recovered in a comfortable and relaxed seated position. HRR was defined as the difference between the maximal heart rate (HR max ) and the HR measured at specific time intervals - immediately after the cool down period (HRR-0) and 3 minutes after the completion of the ETT (HRR-3). HRR-0 and HRR-3 increased over time, whereas VO 2max and MET max did not show significant changes. There was a positive correlation between HRR at T0 and the exercise capacity at T0. HRR at T0 also showed a positive correlation with the exercise capacity at T1. There was no significant correlation between HRR measured at T0 and the change in the ratio of VO 2max and MET max , as calculated by subtracting VO 2max and MET max obtained at T0 from those obtained at T1, divided by VO 2max at T0 and multiplied by 100. Post-exercise HRR measured at 3 weeks after the AMI onset can reflect the exercise capacity 3 months after the first ETT. However, it may be difficult to correlate post-exercise HRR at T0 with the degree of increase in cardiopulmonary exercise capacity in patients with AMI.

  15. Effects of dynamic hyperinflation on exercise capacity and quality of life in stable COPD patients.

    PubMed

    Zhao, Li; Peng, Liyue; Wu, Baomei; Bu, Xiaoning; Wang, Chen

    2016-09-01

    Dynamic hyperinflation (DH) is an important pathophysiological characteristic of chronic obstructive pulmonary disease (COPD). There is increasing evidence that DH has negative effects on exercise performance and quality of life. The objective of this study was to explore effects of DH on exercise capacity and quality of life in stable COPD patients. Fifty-eight COPD patients and 20 matched healthy individuals underwent pulmonary function test, 6-min walk test and symptom-limited cardiopulmonary exercise test (CPET). End-expiratory lung volume/total lung capacity ratio (EELVmax/TLC) at peak exercise of CPET was evaluated, and EELVmax/TLC ≥ 75% was defined as 'severe dynamic hyperinflation (SDH)'. Of the 58 patients studied, 29 (50.0%) presented with SDH (SDH+ group, EELVmax/TLC 79.60 ± 3.60%), having worse maximal exercise capacity reflected by lower peakload, maximal oxygen uptake (VO2 max), maximal carbon dioxide output (VCO2 max) and maximal minute ventilation (VEmax) than did those without SDH (SDH- group, EELVmax/TLC 67.44 ± 6.53%). The EELVmax/TLC ratio at peak exercise had no association with variables of pulmonary function and 6-min walk distance (6MWD), but correlated inversely with peakload, VO2 max, VCO2 max and VEmax (r = -0.300~-0.351, P < 0.05). Although no significant differences were observed, patients with EELVmax/TLC ≥ 75% tended to have higher COPD assessment test score (15.07 ± 6.55 vs 13.28 ± 6.59, P = 0.303). DH develops variably during exercise and has a greater impact on maximal exercise capacity than 6MWD, even in those with the same extent of pulmonary function impairment at rest. © 2015 John Wiley & Sons Ltd.

  16. A Randomized Pilot Trial of Remote Ischemic Preconditioning in Heart Failure with Reduced Ejection Fraction

    PubMed Central

    McDonald, Michael A.; Braga, Juarez R.; Li, Jing; Manlhiot, Cedric; Ross, Heather J.; Redington, Andrew N.

    2014-01-01

    Background Remote ischemic preconditioning (RIPC) induced by transient limb ischemia confers multi-organ protection and improves exercise performance in the setting of tissue hypoxia. We aimed to evaluate the effect of RIPC on exercise capacity in heart failure patients. Methods We performed a randomized crossover trial of RIPC (4×5-minutes limb ischemia) compared to sham control in heart failure patients undergoing exercise testing. Patients were randomly allocated to either RIPC or sham prior to exercise, then crossed over and completed the alternate intervention with repeat testing. The primary outcome was peak VO2, RIPC versus sham. A mechanistic substudy was performed using dialysate from study patient blood samples obtained after sham and RIPC. This dialysate was used to test for a protective effect of RIPC in a mouse heart Langendorff model of infarction. Mouse heart infarct size with RIPC or sham dialysate exposure was also compared with historical control data. Results Twenty patients completed the study. RIPC was not associated with improvements in peak VO2 (15.6+/−4.2 vs 15.3+/−4.6 mL/kg/min; p = 0.53, sham and RIPC, respectively). In our Langendorff sub-study, infarct size was similar between RIPC and sham dialysate groups from our study patients, but was smaller than expected compared to healthy controls (29.0%, 27.9% [sham, RIPC] vs 51.2% [controls]. We observed less preconditioning among the subgroup of patients with increased exercise performance following RIPC (p<0.04). Conclusion In this pilot study of RIPC in heart failure patients, RIPC was not associated with improvements in exercise capacity overall. However, the degree of effect of RIPC may be inversely related to the degree of baseline preconditioning. These data provide the basis for a larger randomized trial to test the potential benefits of RIPC in patients with heart failure. Trial Registration ClinicalTrials.gov +++++NCT01128790 PMID:25181050

  17. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  18. Effects of high-intensity interval training on central haemodynamics and skeletal muscle oxygenation during exercise in patients with chronic heart failure.

    PubMed

    Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M

    2016-12-01

    Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.

  19. Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise.

    PubMed

    Voces, J; Alvarez, A I; Vila, L; Ferrando, A; Cabral de Oliveira, C; Prieto, J G

    1999-06-01

    The effect of prolonged treatment with the standardized Panax ginseng extract G115 on the antioxidant capacity of the liver was investigated. For this purpose, rats that had received G115 orally at different doses for 3 months and untreated control rats were subjected to exhaustive exercise on a treadmill. A bell-shaped dose response on running time was obtained. The results showed that the administration of G115 significantly increases the hepatic glutathione peroxidase activity (GPX) and the reduced glutathione (GSH) levels in the liver, with a dose-dependent reduction of the thiobarbituric acid reactant substances (TBARS). After the exercise, there is reduced hepatic lipid peroxidation, as evidenced by the TBARS levels in both the controls and the treated animals. The GPX (glutathione peroxidase) and SOD (superoxide dismutase) activity are also significantly increased in the groups receiving G115, compared with the controls. The hepatic transaminase levels, ALT (Alanine-amino-transferase) and AST (Aspartate-amino-transferase), in the recuperation phase 48 h after the exercise, indicate a clear hepatoprotective effect related to the administration of the standardized Panax ginseng extract G115. At hepatic level, G115 increases the antioxidant capacity, with a marked reduction of the effects of the oxidative stress induced by the exhaustive exercise.

  20. Effects of Detraining on Anthropometry, Aerobic Capacity and Functional Ability in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Boer, P. H.

    2018-01-01

    Background: Structured exercise has shown to improve parameters of functional fitness in adults with Down syndrome (DS). However, few, if any, continue to exercise after exercise intervention studies. Consequently, the purpose of this study was to determine the effects of detraining on anthropometry, aerobic capacity and functional ability of…

  1. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity

    PubMed Central

    Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D.; Padilla, Jaume; Scroggins, Rebecca J.; Welly, Rebecca; Britton, Steven L.; Koch, Lauren G.; Vieira-Potter, Victoria J.; Swanson, Kelly S.

    2015-01-01

    The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function. PMID:26301712

  2. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial.

    PubMed

    Peixoto, Thatiana C A; Begot, Isis; Bolzan, Douglas W; Machado, Lais; Reis, Michel S; Papa, Valeria; Carvalho, Antonio C C; Arena, Ross; Gomes, Walter J; Guizilini, Solange

    2015-03-01

    The purpose of this study was to evaluate the influence of an early cardiac rehabilitation (CR) program on health-related quality of life (HRQL) and functional capacity in patients who recently experienced an acute myocardial infarction (AMI). This program was initiated in the inpatient setting and was followed by an unsupervised outpatient intervention. After the same inpatient care plan, low-risk patients who experienced an AMI were randomized into 2 groups: (1) a control group (CG) (n = 43) entailing usual care and (2) an intervention group (IG) (n = 45) entailing outpatient (unsupervised) CR primarily centered on a progressive walking program. Initially, all patients underwent a supervised exercise program with early mobilization beginning 12 hours after an AMI. On hospital discharge, all patients were classified according to cardiovascular risk. Quality of life was evaluated by the MacNew Heart Disease HRQL questionnaire 30 days after discharge. Functional capacity was determined by a 6-minute walk test (6MWT) distance on the day of inpatient discharge as well as 30 days afterward. The HRQL global score was higher in the IG compared with the CG 30 days after discharge (P < 0.001); physical and emotional domain scores were both significantly higher in the IG (P < 0.001). Furthermore, the IG showed a greater 6MWT distance compared with the CG (P < 0.001). A CR program based on early progressive exercises, initiated by supervised inpatient training and followed by an unsupervised outpatient program, improved HRQL and functional capacity in patients at low cardiovascular risk who recently experienced an AMI. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  3. Effects of different duration exercise programs in children with severe burns.

    PubMed

    Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E

    2017-06-01

    Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  4. Importance of physical capacity and the effects of exercise in heart transplant recipients

    PubMed Central

    Yardley, Marianne; Gullestad, Lars; Nytrøen, Kari

    2018-01-01

    One of the most important prognostic factors in heart failure patients is physical capacity. Patients with very poor physical performance and otherwise eligible, may be listed as candidates for heart transplantation (HTx). After such surgery, life-long immunosuppression therapy is needed to prevent rejection of the new heart. The dark side of immunosuppression is the increased risk of infections, kidney failure, cancer and advanced atherosclerosis (cardiac allograft vasculopathy), with the two latter conditions as the main causes of later mortality. In a worldwide perspective, 50% of the HTx patients survive past 10 years. Poor aerobic capacity prior to graft deterioration is not only limited to the failing heart, but also caused by peripheral factors, such as limited function in the skeletal muscles and in the blood vessels walls. Exercise rehabilitation after HTx is of major importance in order to improve physical capacity and prognosis. Effects of high-intensity interval training (HIT) in HTx recipients is a growing field of research attracting worldwide focus and interest. Accumulating evidence has shown that HIT is safe and efficient in maintenance HTx recipients; with superior effects on physical capacity compared to conventional moderate exercise. This article generates further evidence to the field by summarizing results from a decade of research performed at our center supported by a broad, but not strict formal, literature review. In short, this article demonstrates a strong association between physical capacity measured after HTx and long-term survival. It describes the possible “HIT-effect” with increased levels of inflammatory mediators of angiogenesis. It also describes long-term effects of HIT; showing a positive effect in development of anxiety symptoms despite that the improved physical capacity was not sustained, due to downregulation of exercise and intensity. Finally, our results are linked to the ongoing HITTS study, which investigates safety and efficiency of HIT in de novo HTx recipients. Together with previous results, this study may have the potential to change existing guidelines and contribute to a better prognosis for the HTx population as a whole. PMID:29507857

  5. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis.

    PubMed

    Tyler, Christopher J; Reeve, Tom; Hodges, Gary J; Cheung, Stephen S

    2016-11-01

    Exercise performance and capacity are impaired in hot, compared to temperate, conditions. Heat adaptation (HA) is one intervention commonly adopted to reduce this impairment because it may induce beneficial exercise performance and physiological and perceptual adaptations. A number of investigations have been conducted on HA but, due to large methodological differences, the effectiveness of different HA regimens remain unclear. (1) To quantify the effect of different HA regimens on exercise performance and the physiological and perceptual responses to subsequent heat exposure. (2) To offer practical HA recommendations and suggestions for future HA research based upon a systematic and quantitative synthesis of the literature. PubMed was searched for original research articles published up to, and including, 16 February 2016 using appropriate first- and second-order search terms. English-language, peer-reviewed, full-text original articles using human participants were reviewed using the four-stage process identified in the PRISMA statement. Data for the following variables were obtained from the manuscripts by at least two of the authors: participant sex, maximal oxygen consumption and age; HA duration, frequency, modality, temperature and humidity; exercise performance and capacity; core and skin temperature; heart rate, stroke volume, cardiac output, skin blood flow, sweat onset temperature, body mass loss, sweat rate, perception of thirst, volitional fluid consumption, plasma volume changes; sweat concentrations of sodium, chloride and potassium; aldosterone, arginine vasopressin, heat shock proteins (Hsp), ratings of perceived exertion (RPE) and thermal sensation. Data were divided into three groups based upon the frequency of the HA regimen. Performance and capacity data were also divided into groups based upon the type of HA used. Hedges' g effect sizes and 95 % confidence intervals were calculated. Correlations were run where appropriate. Ninety-six articles were reviewed. The most common duration was 7-14 days and the most common method of HA was the controlled work-rate approach. HA had a moderately beneficial effect on exercise capacity and performance in the heat irrespective of regimen; however, longer regimens were more effective than shorter approaches. HA had a moderate-to-large beneficial effect on lowering core body temperature before and during exercise, maintaining cardiovascular stability, and improving heat-loss pathways. Data are limited but HA may reduce oxygen consumption during subsequent exercise, improve glycogen sparing, increase the power output at lactate threshold, reduce lactate concentrations during exercise, have a trivial effect on increasing extracellular concentrations of Hsp, and improve perceived ratings of exertion and thermal sensation. HA regimens lasting <14 days induce many beneficial physiological and perceptual adaptations to high ambient temperatures, and improve subsequent exercise performance and capacity in the heat; however, the extent of the adaptations is greatest when HA regimens lasting longer than 14 days are adopted. Large methodological differences in the HA literature mean that there is still uncertainty regarding the magnitude and time course of potential adaptation for a number of physiological and perceptual variables.

  6. Association Between Exercise Capacity and Late Onset of Dementia, Alzheimer Disease, and Cognitive Impairment.

    PubMed

    Müller, Jan; Chan, Khin; Myers, Jonathan N

    2017-02-01

    To address the association between exercise capacity and the onset of dementia, Alzheimer disease, and cognitive impairment. For 6104 consecutive veteran patients (mean ± SD age: 59.2±11.4 years) referred for treadmill exercise testing, the combined end point of dementia, Alzheimer disease, and cognitive impairment was abstracted from the Veterans Affairs computerized patient record system. After mean ± SD follow-up of 10.3±5.5 years, 353 patients (5.8%) developed the composite end point at a mean ± SD age of 76.7±10.3 years. After correction for confounders in multivariate Cox proportional hazards regression, higher age at exercise testing (hazard ratio [HR]=1.08; 95% CI, 1.07-1.09; P<.001), current smoking (HR=1.44; 95% CI, 1.08-1.93; P=.01), and exercise capacity (HR=0.92; 95% CI, 0.89-0.96; P<.001) emerged as predictors of cognitive impairment. Each 1-metabolic equivalent increase in exercise capacity conferred a nearly 8% reduction in the incidence of cognitive impairment. Meeting the recommendations for daily activity was not associated with a delay in onset of cognitive impairment (HR=1.07; 95% CI, 0.86-1.32; P=.55). Exercise capacity is strongly associated with cognitive function; the inverse association between fitness and cognitive impairment provides an additional impetus for health care providers to promote physical activity. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  7. Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea.

    PubMed

    Kline, Christopher E; Crowley, E Patrick; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D

    2013-08-20

    Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥ 15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO(2peak)), were obtained. OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5-min post-exercise (P=.03). For OSA participants, exercise training improved VO2 peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5-min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=-.30, P<.05), but no other CPET markers. These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2 peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Blunted Heart Rate Recovery Is Improved Following Exercise Training in Overweight Adults with Obstructive Sleep Apnea

    PubMed Central

    Kline, Christopher E.; Crowley, E. Patrick; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.

    2012-01-01

    Background Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. Methods The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO2peak), were obtained. Results OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5 min post-exercise (P=.03). For OSA participants, exercise training improved VO2peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5 min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=−.30, P<.05), but no other CPET markers. Conclusions These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. PMID:22572632

  9. Electrocardiographic and scintigraphic evaluation of patients with subclinical hyperthyroidism during workout.

    PubMed

    Kaminski, Grzegorz; Dziuk, Mirosław; Szczepanek-Parulska, Ewelina; Zybek-Kocik, Ariadna; Ruchala, Marek

    2016-08-01

    Subclinical hyperthyroidism (sHT) was found to be associated with elevated heart rate, blood pressure and increased risk of extrasystoles. However, the full clinical relevance of morphological and functional implications of sHT on the cardiovascular system is still a matter of debate. The aim of the study was to prospectively assess the influence of endogenous sHT on exercise capacity and cardiac function during workout with the use of exercise electrocardiography (ExECG) and perfusion scintigraphy. The studied group consisted of 44 consecutively recruited patients diagnosed with sHT. In all patients, ExECG, followed by post-exercise myocardial perfusion imaging, was performed. Both ExECG and scintigraphy were performed twice-in the state of sHT and after euthyroidism was restored. An average time period of exercise test was significantly longer in the state of euthyroidism than in sHT. An average oxygen consumption during exercise test was also higher after euthyroidism was achieved when compared to sHT. The end-diastolic and end-systolic volume indexes, stroke volume index and cardiac index were significantly larger in patients with sHT if compared values achieved after euthyroidism restoration. Stroke volume index was negatively correlated with TSH, and positively with free thyroid hormones values in the state of sHT, before euthyroidism was achieved. Cardiac index was positively correlated with free thyroid hormones levels. The obtained results indicate worse physical capacity in subjects with sHT and improvement of several parameters assessed during ExECG and perfusion scintiscan after therapy. Observed changes might reflect the mechanism of the deleterious effect exerted by sHT on the heart.

  10. Exercise-based cardiac rehabilitation for adults after heart valve surgery.

    PubMed

    Sibilitz, Kirstine L; Berg, Selina K; Tang, Lars H; Risom, Signe S; Gluud, Christian; Lindschou, Jane; Kober, Lars; Hassager, Christian; Taylor, Rod S; Zwisler, Ann-Dorthe

    2016-03-21

    Exercise-based cardiac rehabilitation may benefit heart valve surgery patients. We conducted a systematic review to assess the evidence for the use of exercise-based intervention programmes following heart valve surgery. To assess the benefits and harms of exercise-based cardiac rehabilitation compared with no exercise training intervention, or treatment as usual, in adults following heart valve surgery. We considered programmes including exercise training with or without another intervention (such as a psycho-educational component). We searched: the Cochrane Central Register of Controlled Trials (CENTRAL); the Database of Abstracts of Reviews of Effects (DARE); MEDLINE (Ovid); EMBASE (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS (Bireme); and Conference Proceedings Citation Index-S (CPCI-S) on Web of Science (Thomson Reuters) on 23 March 2015. We handsearched Web of Science, bibliographies of systematic reviews and trial registers (ClinicalTrials.gov, Controlled-trials.com, and The World Health Organization International Clinical Trials Registry Platform). We included randomised clinical trials that investigated exercise-based interventions compared with no exercise intervention control. The trial participants comprised adults aged 18 years or older who had undergone heart valve surgery for heart valve disease (from any cause) and received either heart valve replacement, or heart valve repair. Two authors independently extracted data. We assessed the risk of systematic errors ('bias') by evaluation of bias risk domains. Clinical and statistical heterogeneity were assessed. Meta-analyses were undertaken using both fixed-effect and random-effects models. We used the GRADE approach to assess the quality of evidence. We sought to assess the risk of random errors with trial sequential analysis. We included two trials from 1987 and 2004 with a total 148 participants who have had heart valve surgery. Both trials had a high risk of bias.There was insufficient evidence at 3 to 6 months follow-up to judge the effect of exercise-based cardiac rehabilitation compared to no exercise on mortality (RR 4.46 (95% confidence interval (CI) 0.22 to 90.78); participants = 104; studies = 1; quality of evidence: very low) and on serious adverse events (RR 1.15 (95% CI 0.37 to 3.62); participants = 148; studies = 2; quality of evidence: very low). Included trials did not report on health-related quality of life (HRQoL), and the secondary outcomes of New York Heart Association class, left ventricular ejection fraction and cost. We did find that, compared with control (no exercise), exercise-based rehabilitation may increase exercise capacity (SMD -0.47, 95% CI -0.81 to -0.13; participants = 140; studies = 2, quality of evidence: moderate). There was insufficient evidence at 12 months follow-up for the return to work outcome (RR 0.55 (95% CI 0.19 to 1.56); participants = 44; studies = 1; quality of evidence: low). Due to limited information, trial sequential analysis could not be performed as planned. Our findings suggest that exercise-based rehabilitation for adults after heart valve surgery, compared with no exercise, may improve exercise capacity. Due to a lack of evidence, we cannot evaluate the impact on other outcomes. Further high-quality randomised clinical trials are needed in order to assess the impact of exercise-based rehabilitation on patient-relevant outcomes, including mortality and quality of life.

  11. Exercise starts and ends in the brain.

    PubMed

    Kayser, Bengt

    2003-10-01

    Classically the limit to endurance of exercise is explained in terms of metabolic capacity. Cardio-respiratory capacity and muscle fatigue are thought to set the limit and the majority of studies on factors limiting endurance exercise discuss issues such as maximal oxygen uptake (VO2max), aerobic enzyme capacity, cardiac output, glycogen stores, etc. However, this paradigm does not explain the limitation to endurance exercise with large muscle groups at altitude, when at exhaustion exercise is ended without limb locomotor muscle fatigue and with sub-maximal cardiac output. A simple fact provides a basis for an explanation. Voluntary exercise starts and ends in the brain. It starts with spatial and temporal recruitment of motor units and ends with their de-recruitment. A conscious decision precedes a voluntary effort. The end of effort is again volitional and a forced conscious decision to stop precedes it, but it is unknown what forces the off-switch of recruitment at exhaustion although sensation of exertion certainly plays a role. An alternative model explaining the limitation of exercise endurance thus proposes that the central nervous system integrates input from various sources all related to the exercise and limits the intensity and duration of recruitment of limb skeletal muscle to prevent jeopardizing the integrity of the organism. This model acknowledges the cardio-respiratory and muscle metabolic capacities as prime actors on the performance scene, while crediting the central nervous system for its pivotal role as the ultimate site where exercise starts and ends.

  12. The effects of in-flight treadmill exercise on postflight orthostatic tolerance

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F.; Charles, John B.

    1992-01-01

    In-flight aerobic exercise is thought to decrease the deconditioning effects of microgravity. Two deconditioning characteristics are the decreases in aerobic capacity (maximum O2 uptake) and an increased cardiovascular response to orthostatic stress (supine to standing). Changes in both parameters were examined after Shuttle flights of 8 to 11 days in astronauts who performed no in-flight exercise, a lower than normal volume of exercise, and a near-normal volume of exercise. The exercise regimen was a traditional continuous protocol. Maximum O2 uptake was maintained in astronauts who completed a near-normal exercise volume of in-flight exercise. Cardiovascular responses to stand test were equivocal among the groups. The use of the traditional exercise regimen as a means to maintain adequate orthostatic responses produced equivocal responses. A different exercise prescription may be more effective in maintaining both exercise capacity and orthostatic tolerance.

  13. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  14. Dysanapsis and the resistive work of breathing during exercise in healthy men and women.

    PubMed

    Dominelli, Paolo B; Molgat-Seon, Yannick; Bingham, Derek; Swartz, Philippa M; Road, Jeremy D; Foster, Glen E; Sheel, A William

    2015-11-15

    We asked if the higher work of breathing (Wb) during exercise in women compared with men is explained by biological sex. We created a statistical model that accounts for both the viscoelastic and the resistive components of the total Wb and independently compares the effects of biological sex. We applied the model to esophageal pressure-derived Wb values obtained during an incremental cycle test to exhaustion. Subjects were healthy men (n = 17) and women (n = 18) with a range of maximal aerobic capacities (V̇o2 max range: men = 40-68 and women = 39-60 ml·kg(-1)·min(-1)). We also calculated the dysanapsis ratio using measures of lung recoil and forced expiratory flow as index of airway caliber. By applying the model we found that the differences in the total Wb during exercise in women are due to a higher resistive Wb rather than viscoelastic Wb. We also found that the higher resistive Wb is independently explained by biological sex. To account for the known effect of lung volumes on the dysanapsis ratio we compared the sexes with an analysis of covariance procedures and found that when vital capacity was accounted for the adjusted mean dysanapsis ratio is statistically lower in women (0.17 vs. 0.25 arbitrary units; P < 0.05). Our collective findings suggest that innate sex-based differences may exist in human airways, which result in significant male-female differences in the Wb during exercise in healthy subjects. Copyright © 2015 the American Physiological Society.

  15. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    PubMed

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  16. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  17. Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery

    PubMed Central

    Chandra, Divay; Lipson, David A.; Hoffman, Eric A.; Hansen-Flaschen, John; Sciurba, Frank C.; DeCamp, Malcolm M.; Reilly, John J.; Washko, George R.

    2010-01-01

    Rationale: It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). Objectives: To study the role of perfusion scintigraphy in patient selection for LVRS. Methods: We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non–high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non–upper lobe–predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Measurements and Main Results: Among 284 of 1,045 patients with upper lobe–predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe–predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non–upper lobe–predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Conclusions: Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe–predominant emphysema when there is low rather than high perfusion to the upper lung. PMID:20538961

  18. Estimating exercise capacity from walking tests in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A

    2013-01-01

    Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.

  19. Effects of yoga versus hydrotherapy training on health-related quality of life and exercise capacity in patients with heart failure: A randomized controlled study.

    PubMed

    Hägglund, Ewa; Hagerman, Inger; Dencker, Kerstin; Strömberg, Anna

    2017-06-01

    The aims of this study were to determine whether yoga and hydrotherapy training had an equal effect on the health-related quality of life in patients with heart failure and to compare the effects on exercise capacity, clinical outcomes, and symptoms of anxiety and depression between and within the two groups. The design was a randomized controlled non-inferiority study. A total of 40 patients, 30% women (mean±SD age 64.9±8.9 years) with heart failure were randomized to an intervention of 12 weeks, either performing yoga or training with hydrotherapy for 45-60 minutes twice a week. Evaluation at baseline and after 12 weeks included self-reported health-related quality of life, a six-minute walk test, a sit-to-stand test, clinical variables, and symptoms of anxiety and depression. Yoga and hydrotherapy had an equal impact on quality of life, exercise capacity, clinical outcomes, and symptoms of anxiety and depression. Within both groups, exercise capacity significantly improved (hydrotherapy p=0.02; yoga p=0.008) and symptoms of anxiety decreased (hydrotherapy p=0.03; yoga p=0.01). Patients in the yoga group significantly improved their health as rated by EQ-VAS ( p=0.004) and disease-specific quality of life in the domains symptom frequency ( p=0.03), self-efficacy ( p=0.01), clinical summary as a combined measure of symptoms and social factors ( p=0.05), and overall summary score ( p=0.04). Symptoms of depression were decreased in this group ( p=0.005). In the hydrotherapy group, lower limb muscle strength improved significantly ( p=0.01). Yoga may be an alternative or complementary option to established forms of exercise training such as hydrotherapy for improvement in health-related quality of life and may decrease depressive symptoms in patients with heart failure.

  20. Simulated Partners and Collaborative Exercise (SPACE) to boost motivation for astronauts: study protocol.

    PubMed

    Feltz, Deborah L; Ploutz-Snyder, Lori; Winn, Brian; Kerr, Norbert L; Pivarnik, James M; Ede, Alison; Hill, Christopher; Samendinger, Stephen; Jeffery, William

    2016-11-14

    Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners and Collaborative Exercise (SPACE) is to use recently documented motivation gains in task groups to heighten the exercise experience for participants, similar in age and fitness to astronauts, for vigorous exercise over a 6-month exercise regimen. A secondary focus is to determine the most effective features in simulated exercise partners for enhancing enjoyment, self-efficacy, and social connectedness. The aims of the project are to (1) Create software-generated (SG) exercise partners and interface software with a cycle ergometer; (2) Pilot test design features of SG partners within a video exercise game (exergame), and (3) Test whether exercising with an SG partner over 24-week time period, compared to exercising alone, leads to greater work effort, aerobic capacity, muscle strength, exercise adherence, and enhanced psychological parameters. This study was approved by the Institutional Review Board (IRB). Chronic exercisers, between the ages 30 and 62, were asked to exercise on a cycle ergometer 6 days per week for 24 weeks using a routine consisting of alternating between moderate-intensity continuous and high-intensity interval sessions. Participants were assigned to one of three conditions: no partner (control), always faster SG partner, or SG partner who was not always faster. Participants were told they could vary cycle ergometer output to increase or decrease intensity during the sessions. Mean change in cycle ergometer power (watts) from the initial continuous and 4 min. interval sessions was the primary dependent variable reflecting work effort. Measures of physiological, strength, and psychological parameters were also taken. This paper describes the rationale, development, and methods of the SPACE exergame. We believe this will be a viable intervention that can be disseminated for astronaut use and adapted for use by other populations.

  1. The effects of water-based exercise in combination with blood flow restriction on strength and functional capacity in post-menopausal women.

    PubMed

    Araújo, Joamira P; Neto, Gabriel R; Loenneke, Jeremy P; Bemben, Michael G; Laurentino, Gilberto C; Batista, Gilmário; Silva, Júlio C G; Freitas, Eduardo D S; Sousa, Maria S C

    2015-12-01

    Water-based exercise and low-intensity exercise in combination with blood flow restriction (BFR) are two methods that have independently been shown to improve muscle strength in those of advancing age. The objective of this study was to assess the long-term effect of water-based exercise in combination with BFR on maximum dynamic strength and functional capacity in post-menopausal women. Twenty-eight women underwent an 8-week water-based exercise program. The participants were randomly allocated to one of the three groups: (a) water exercise only, (b) water exercise + BFR, or (c) a non-exercise control group. Functional capacity (chair stand test, timed up and go test, gait speed, and dynamic balance) and strength testing were tested before and after the 8-week aquatic exercise program. The main findings were as follows: (1) water-based exercise in combination with BFR significantly increased the lower limb maximum strength which was not observed with water-based exercise alone and (2) water-based exercise, regardless of the application of BFR, increased functional performance measured by the timed up and go test over a control group. Although we used a healthy population in the current study, these findings may have important implications for those who may be contraindicated to using traditional resistance exercise. Future research should explore this promising modality in these clinical populations.

  2. Effect of physical exercise training in patients with Chagas heart disease: study protocol for a randomized controlled trial (PEACH study).

    PubMed

    Mendes, Fernanda de Souza Nogueira Sardinha; Sousa, Andréa Silvestre; Souza, Fernando Cesar de Castro Cesar; Pinto, Vivian Liane Mattos; Silva, Paula Simplicio; Saraiva, Roberto Magalhães; Xavier, Sergio Salles; Veloso, Henrique Horta; Holanda, Marcelo Teixeira; Costa, Andréa Rodrigues; Carneiro, Fernanda Martins; Silva, Gilberto Marcelo Sperandio; Borges, Juliana Pereira; Tibirica, Eduardo; Pinheiro, Roberta Olmo; Lara, Flávio Alves; Hasslocher-Moreno, Alejandro Marcel; Brasil, Pedro Emmanuel Alvarenga Americano; Mediano, Mauro Felippe Felix

    2016-09-02

    The effects of exercise training on Chagas heart disease are still unclear. This study aimed to evaluate the effect of exercise training over functional capacity, cardiac function, quality of life, and biomarkers in Chagas heart disease. The PEACH study is a superiority randomized clinical trial which will include subjects who meet the following criteria: Chagas heart disease with a left ventricular ejection fraction below 45 % with or without heart failure symptoms; clinical stability in the last 3 months; adherence to clinical treatment; and age above 18 years. The exclusion criteria are: pregnancy; neuromuscular limitations; smoking; evidence of non-chagasic heart disease; systemic conditions that limit exercise practice or cardiopulmonary exercise test; unavailability to attend the center three times a week during the intervention period; and practitioners of regular exercise. The intervention group will perform an exercise training intervention three times per week during 6 months and will be compared to the control group without exercise. Both groups will undergo the same monthly pharmaceutical and nutritional counseling as well as standard medical treatment according to the Brazilian consensus on Chagas disease. The primary outcome is functional capacity based on peak exercise oxygen consumption during cardiopulmonary exercise testing. Secondary outcomes are: cardiac function; body composition; muscle respiratory strength; microvascular reactivity; cardiac rhythm abnormalities; autonomic function; biochemical; oxidative stress and inflammatory biomarkers; and quality of life. Subjects will be evaluated at baseline, and at 3 and 6 months after randomization. Thirty patients will be randomly assigned into exercise or control groups at a ratio of 1:1. Findings of the present study will be useful to determine if physical exercise programs should be included as an important additional therapy in the treatment of patients with Chagas heart disease. ClinicalTrials.gov ID: NCT02517632 (registered on 6 August 2015).

  3. Work, exercise, and space flight. 2: Modification of adaptation by exercise (exercise prescription)

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1989-01-01

    The fundamentals of exercise theory on earth must be rigorously understood and applied to prevent adaptation to long periods of weightlessness. Locomotor activity, not weight, determines the capacity or condition of the largest muscles and bones in the body and usually also determines cardio-respiratory capacity. Absence of this activity results in rapid atrophy of muscle, bone, and cardio-respiratory capacity. Upper body muscle and bone are less affected depending upon the individual's usual, or 1-g, activities. Methodology is available to prevent these changes but space operations demand that it be done in the most efficient fashion, i.e., shortest time. At this point in time we can reasonably select the type of exercise and methods of obtaining it, but additional work in 1-g will be required to optimize the time.

  4. Reduction of physical activity in daily life and its determinants in smokers without airflow obstruction.

    PubMed

    Furlanetto, Karina Couto; Mantoani, Leandro Cruz; Bisca, Gianna; Morita, Andrea Akemi; Zabatiero, Juliana; Proença, Mahara; Kovelis, Demétria; Pitta, Fabio

    2014-04-01

    In smokers without airflow obstruction, detailed, objective and controlled quantification of the level of physical inactivity in daily life has never been performed. This study aimed to objectively assess the level of physical activity in daily life in adult smokers without airflow obstruction in comparison with matched non-smokers, and to investigate the determinants for daily physical activity in smokers. Sixty smokers (aged 50 (39-54) years) and 50 non-smokers (aged 48 (40-53) years) matched for gender, age, anthropometric characteristics, educational level, employment status and seasons of the year assessment period were cross-sectionally assessed regarding their daily physical activity with a step counter, besides assessment of lung function, functional exercise capacity, quality of life, anxiety, depression, self-reported comorbidities carbon monoxide level, nicotine dependence and smoking habits. When compared with non-smokers, smokers walked less in daily life (7923 ± 3558 vs 9553 ± 3637 steps/day, respectively), presented worse lung function, functional exercise capacity, quality of life, anxiety and depression. Multiple regression analyses identified functional exercise capacity, Borg fatigue, self-reported motivation/physical activity behaviour and cardiac disease as significant determinants of number of steps/day in smokers (partial r(2)  = 0.10, 0.12, 0.16 and 0.05; b = 15, -997, 1207 and -2330 steps/day, respectively; overall fit of the model R(2)  = 0.38; P < 0.001). Adult smokers without airflow obstruction presented reduced level of daily physical activity. Functional exercise capacity, extended fatigue sensation, aspects of motivation/physical activity behaviour and self-reported cardiac disease are significant determinants of physical activity in daily life in smokers. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  5. Can patients with coronary heart disease go to high altitude?

    PubMed

    Dehnert, Christoph; Bärtsch, Peter

    2010-01-01

    Tourism to high altitude is very popular and includes elderly people with both manifest and subclinical coronary heart disease (CHD). Thus, risk assessment regarding high altitude exposure of patients with CHD is of increasing interest, and individual recommendations are expected despite the lack of sufficient scientific evidence. The major factor increasing cardiac stress is hypoxia. At rest and for a given external workload, myocardial oxygen demand is increased at altitude, particularly in nonacclimatized individuals, and there is some evidence that blood-flow reserve is reduced in atherosclerotic coronary arteries even in the absence of severe stenosis. Despite a possible imbalance between oxygen demand and oxygen delivery, studies on selected patients have shown that exposure and exercise at altitudes of 3000 to 3500 m is generally safe for patients with stable CHD and sufficient work capacity. During the first days at altitude, patients with stable angina may develop symptoms of myocardial ischemia at slightly lower heart rate x  blood-pressure products. Adverse cardiac events, however, such as unstable angina coronary syndromes, do not occur more frequently compared with sea level except for those who are unaccustomed to exercise. Therefore, training should start before going to altitude, and the altitude-related decrease in exercise capacity should be considered. Travel to 3500 m should be avoided unless patients have stable disease, preserved left ventricular function without residual capacity, and above-normal exercise capacity. CHD patients should avoid travel to elevations above 4500 m owing to severe hypoxia at these altitudes. The risk assessment of CHD patients at altitude should always consider a possible absence of medical support and that cardiovascular events may turn into disaster.

  6. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise

    PubMed Central

    2013-01-01

    Background The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Methods Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett’s test (p < 0.05). Results The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. Conclusions The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food. PMID:24160307

  7. Measurement of Exercise Tolerance before Surgery (METS) study: a protocol for an international multicentre prospective cohort study of cardiopulmonary exercise testing prior to major non-cardiac surgery.

    PubMed

    Wijeysundera, Duminda N; Pearse, Rupert M; Shulman, Mark A; Abbott, Tom E F; Torres, Elizabeth; Croal, Bernard L; Granton, John T; Thorpe, Kevin E; Grocott, Michael P W; Farrington, Catherine; Myles, Paul S; Cuthbertson, Brian H

    2016-03-11

    Preoperative functional capacity is considered an important risk factor for cardiovascular and other complications of major non-cardiac surgery. Nonetheless, the usual approach for estimating preoperative functional capacity, namely doctors' subjective assessment, may not accurately predict postoperative morbidity or mortality. 3 possible alternatives are cardiopulmonary exercise testing; the Duke Activity Status Index, a standardised questionnaire for estimating functional capacity; and the serum concentration of N-terminal pro-B-type natriuretic peptide (NT pro-BNP), a biomarker for heart failure and cardiac ischaemia. The Measurement of Exercise Tolerance before Surgery (METS) Study is a multicentre prospective cohort study of patients undergoing major elective non-cardiac surgery at 25 participating study sites in Australia, Canada, New Zealand and the UK. We aim to recruit 1723 participants. Prior to surgery, participants undergo symptom-limited cardiopulmonary exercise testing on a cycle ergometer, complete the Duke Activity Status Index questionnaire, undergo blood sampling to measure serum NT pro-BNP concentration and have their functional capacity subjectively assessed by their responsible doctors. Participants are followed for 1 year after surgery to assess vital status, postoperative complications and general health utilities. The primary outcome is all-cause death or non-fatal myocardial infarction within 30 days after surgery, and the secondary outcome is all-cause death within 1 year after surgery. Both receiver-operating-characteristic curve methods and risk reclassification table methods will be used to compare the prognostic accuracy of preoperative subjective assessment, peak oxygen consumption during cardiopulmonary exercise testing, Duke Activity Status Index scores and serum NT pro-BNP concentration. The METS Study has received research ethics board approval at all sites. Participant recruitment began in March 2013, and 1-year follow-up is expected to finish in 2016. Publication of the results of the METS Study is anticipated to occur in 2017. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. The Effectiveness of Lifestyle Adaptation for the Prevention of Prediabetes in Adults: A Systematic Review

    PubMed Central

    Kerrison, George; Gillis, Richard B.; Jiwani, Shahwar I.; Alzahrani, Qushmua; Kok, Samil; Harding, Stephen E.; Shaw, Ian

    2017-01-01

    Diabetes prevalence is increasing exceptionally worldwide and with this come associated healthcare costs. The primary outcome of this systematic review was to assess glycaemic control and incidence of Type 2 diabetes mellitus (T2DM) diagnosis after exercise and dietary intervention (measured with any validated scale). The secondary outcome assessed body mass index change, weight change, and physical exercise capacity after diet and exercise intervention (measured with any validated scale). 1,780 studies were identified from searching electronic databases. Relevant studies went through a selection process. The inclusion criteria for all studies were people with prediabetes diagnosed by either impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). Lifestyle adaptation reduced the incidence of diabetes development more than standard treatment. Furthermore, better glycaemic control, improved physical exercise capacity, and increased weight reduction were observed with lifestyle intervention over standard treatment. Finally, improvements over the long term deteriorated, highlighting problems with long-term adherence to lifestyle changes. Overall, cumulative incidence of diabetes is drastically reduced in the intervention groups compared to control groups (standard care). Furthermore, glycaemic control was improved in the short term, with many participants reverting to normoglycaemia. PMID:28567425

  9. The Effectiveness of Lifestyle Adaptation for the Prevention of Prediabetes in Adults: A Systematic Review.

    PubMed

    Kerrison, George; Gillis, Richard B; Jiwani, Shahwar I; Alzahrani, Qushmua; Kok, Samil; Harding, Stephen E; Shaw, Ian; Adams, Gary G

    2017-01-01

    Diabetes prevalence is increasing exceptionally worldwide and with this come associated healthcare costs. The primary outcome of this systematic review was to assess glycaemic control and incidence of Type 2 diabetes mellitus (T2DM) diagnosis after exercise and dietary intervention (measured with any validated scale). The secondary outcome assessed body mass index change, weight change, and physical exercise capacity after diet and exercise intervention (measured with any validated scale). 1,780 studies were identified from searching electronic databases. Relevant studies went through a selection process. The inclusion criteria for all studies were people with prediabetes diagnosed by either impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). Lifestyle adaptation reduced the incidence of diabetes development more than standard treatment. Furthermore, better glycaemic control, improved physical exercise capacity, and increased weight reduction were observed with lifestyle intervention over standard treatment. Finally, improvements over the long term deteriorated, highlighting problems with long-term adherence to lifestyle changes. Overall, cumulative incidence of diabetes is drastically reduced in the intervention groups compared to control groups (standard care). Furthermore, glycaemic control was improved in the short term, with many participants reverting to normoglycaemia.

  10. Interactive videogame as rehabilitation tool of patients with chronic respiratory diseases: preliminary results of a feasibility study.

    PubMed

    Mazzoleni, Stefano; Montagnani, Giulia; Vagheggini, Guido; Buono, Lorenzo; Moretti, Francesca; Dario, Paolo; Ambrosino, Nicolino

    2014-10-01

    To evaluate the effectiveness of an interactive videogame (IV) system in addition to a supervised pulmonary rehabilitation programme (PRP) in patients with chronic respiratory diseases. Randomised Controlled Trial comparing standard PRP (20 patients, control group: CG), and PRP + sessions of interactive videogame-aided exercises (20 patients, experimental group: EG). Lung and respiratory muscle function, arterial blood gases, exercise capacity, dyspnoea, health status and health-related quality of life (HRQL) and emotional response were measured before and after PRP. A questionnaire on acceptability of the PRP was administered. Exercise capacity, dyspnoea and HRQL significantly improved in both groups after the PRP, whereas the EG showed a greater improvement in six-minute walk test and transitional dyspnoea index than the CG. No difference in psychological status or acceptability of PRP was observed between the two groups. The addition of IV training was more effective for improving some parameters of exercise tolerance and dyspnoea, although did not result in better psychological status nor it was better accepted than the standard PRP in patients with chronic respiratory diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Improvement in exercise capacity and delayed anaerobic metabolism induced by far-infrared-emitting garments in active healthy subjects: A pilot study.

    PubMed

    Mantegazza, Valentina; Contini, Mauro; Botti, Maurizia; Ferri, Ada; Dotti, Francesca; Berardi, Pierluigi; Agostoni, Piergiuseppe

    2018-01-01

    Background Far-infrared-emitting garments have several biological properties including the capability to increase blood perfusion in irradiated tissues. Design The aim of the study was to evaluate whether far-infrared radiation increases exercise capacity and delays anaerobic metabolism in healthy subjects. Methods With a double-blind, crossover protocol, a maximal cardiopulmonary exercise test was performed in 20 volunteers, wearing far-infrared or common sport clothes, identical in texture and colour. Results Comparing far-infrared with placebo garments, higher oxygen uptake at peak of exercise and longer endurance time were observed (peak oxygen uptake 38.0 ± 8.9 vs. 36.2 ± 8.5 ml/kg/min, endurance time 592 ± 85 vs. 570 ± 71 seconds; P < 0.01); the anaerobic threshold was significantly delayed (anaerobic threshold time 461 ± 93 vs. 417 ± 103 seconds) and anaerobic threshold oxygen uptake and anaerobic threshold oxygen pulse were significantly higher (25.3 ± 6.4 vs. 20.9 ± 5.4 ml/kg/min and 13.3 ± 3.8 vs. 12.4 ± 3.3 ml/beat, respectively). In 10 subjects the blood lactate concentration was measured every 2 minutes during exercise and at peak; lower values were observed with far-infrared fabrics compared to placebo from the eighth minute of exercise, reaching a significant difference at 10 minutes (3.6 ± 0.83 vs. 4.4 ± 0.96 mmol/l; P = 0.02). Conclusions In healthy subjects, exercising with a far-infrared outfit is associated with an improvement in exercise performance and a delay in anaerobic metabolism. In consideration of the acknowledged non-thermic properties of functionalised clothes, these effects could be mediated by an increase in oxygen peripheral delivery secondary to muscular vasodilation. These data suggest the need for testing far-infrared-emitting garments in patients with exercise limitation or in chronic cardiovascular and respiratory patients engaged in rehabilitation programmes.

  12. Best Protocol for the Sit-to-Stand Test in Subjects With COPD.

    PubMed

    Morita, Andrea A; Bisca, Gianna W; Machado, Felipe V C; Hernandes, Nidia A; Pitta, Fabio; Probst, Vanessa S

    2018-05-22

    Different protocols for the sit-to-stand test (STS) are available for assessing functional capacity in COPD. We sought to correlate each protocol of the STS (ie, the 5-repetition [5-rep STS], the 30-s STS, and the 1-min STS) with clinical outcomes in subjects with COPD. We also aimed to compare the 3 protocols of the STS, to verify their association and agreement, and to verify whether the 3 protocols are able to predict functional exercise capacity and physical activity in daily life (PADL). 23 subjects with COPD (11 men; FEV 1 53 ± 15% predicted) performed 3 protocols of the STS. Subjects also underwent the following assessments: incremental shuttle walking test, 6-min walk test (6MWT), 4-m gait speed test (4MGS), 1-repetition maximum of quadriceps muscle, assessment of PADL, and questionnaires on health-related quality of life and functional status. The 1-min STS showed significant correlations with the 6MWT (r = 0.40), 4MGS (r = 0.64), and PADL (0.40 ≤ r ≤ 0.52), and the 5-rep STS and 30-s STS were associated with the 4MGS (r = 0.54 and r = 0.52, respectively). The speed differed for each protocol (5-rep STS 0.53 ± 0.16 rep/s, 30-s STS 0.48 ± 0.13 rep/s, 1-min STS 0.45 ± 0.11 rep/s, P = .01). However, they presented good agreement (intraclass correlation coefficient ≥ 0.73 for all) and correlated well with each other (r ≥ 0.68 for all). More marked changes in peripheral oxygen saturation ( P = .004), heart rate ( P < .001), blood pressure ( P < .001), dyspnea ( P < .001), and leg fatigue ( P < .001) were found after the 1-min STS protocol. Furthermore, the 3 protocols were equally able to identify subjects with low exercise capacity or preserved exercise capacity. The 1-min STS generated higher hemodynamic demands and correlated better with clinical outcomes in subjects with COPD. Despite the difference in speed performance and physiological demands between the 5-rep STS and 1-min STS, there was a good level of agreement among the 3 protocols. In addition, all 3 tests were able to identify subjects with low exercise capacity or preserved exercise capacity. Copyright © 2018 by Daedalus Enterprises.

  13. Feedback-controlled robotics-assisted treadmill exercise to assess and influence aerobic capacity early after stroke: a proof-of-concept study.

    PubMed

    Stoller, Oliver; Schindelholz, Matthias; Bichsel, Lukas; Schuster, Corina; de Bie, Rob A; de Bruin, Eling D; Hunt, Kenneth J

    2014-07-01

    The majority of post-stroke individuals suffer from low exercise capacity as a secondary reaction to immobility. The aim of this study was to prove the concept of feedback-controlled robotics-assisted treadmill exercise (RATE) to assess aerobic capacity and guide cardiovascular exercise in severely impaired individuals early after stroke. Subjects underwent constant load and incremental exercise testing using a human-in-the-loop feedback system within a robotics-assisted exoskeleton (Lokomat, Hocoma AG, CH). Inclusion criteria were: stroke onset ≤8 weeks, stable medical condition, non-ambulatory status, moderate motor control of the lower limbs and appropriate cognitive function. Outcome measures included oxygen uptake kinetics, peak oxygen uptake (VO2peak), gas exchange threshold (GET), peak heart rate (HRpeak), peak work rate (Ppeak) and accuracy of reaching target work rate (P-RMSE). Three subjects (18-42 d post-stroke) were included. Oxygen uptake kinetics during constant load ranged from 42.0 to 60.2 s. Incremental exercise testing showed: VO2peak range 19.7-28.8 ml/min/kg, GET range 11.6-12.7 ml/min/kg, and HRpeak range 115-161 bpm. Ppeak range was 55.2-110.9 W and P-RMSE range was 3.8-7.5 W. The concept of feedback-controlled RATE for assessment of aerobic capacity and guidance of cardiovascular exercise is feasible. Further research is warranted to validate the method on a larger scale. Aerobic capacity is seriously reduced in post-stroke individuals as a secondary reaction to immobility. Robotics-assisted walking devices may have substantial clinical relevance regarding assessment and improvement of aerobic capacity early after stroke. Feedback-controlled robotics-assisted treadmill exercise represents a new concept for cardiovascular assessment and intervention protocols for severely impaired individuals.

  14. Exercise Capacity and Functional Performance in Heart Failure Patients Supported by a Left Ventricular Assist Device at Discharge From Inpatient Rehabilitation.

    PubMed

    Schmidt, Thomas; Bjarnason-Wehrens, Birna; Bartsch, Petra; Deniz, Ezin; Schmitto, Jan; Schulte-Eistrup, Sebastian; Willemsen, Detlev; Reiss, Nils

    2018-01-01

    Adequate physical and functional performance is an important prerequisite for renewed participation and integration in self-determined private and (where appropriate) professional lives following left ventricular assist device (LVAD) implantation. During cardiac rehabilitation (CR), individually adapted exercise programs aim to increase exercise capacity and functional performance. A retrospective analysis of cardiopulmonary exercise capacity and functional performance in LVAD patients at discharge from a cardiac rehabilitation program was conducted. The results from 68 LVAD patients (59 males, 9 females; 55.9 ± 11.7 years; 47 HVAD, 2 MVAD, 15 HeartMate II, 4 HeartMate 3, and 4 different implanting centers) were included in the analysis. Exercise capacity was assessed using a cardiopulmonary exercise test on a bicycle ergometer (ramp protocol; 10 W/min). The 6-min walk test was used to determine functional performance. At discharge from CR (53 ± 17 days after implantation), the mean peak work load achieved was 62.2 ± 19.3 W (38% of predicted values) or 0.79 ± 0.25 W/kg body weight. The mean cardiopulmonary exercise capacity (relative peak oxygen uptake) was 10.6 ± 5.3 mL/kg/min (37% of predicted values). The 6-min walk distance improved significantly during CR (325 ± 106 to 405 ± 77 m; P < 0.01). No adverse events were documented during CR. The results show that, even following LVAD implantation, cardiopulmonary exercise capacity remains considerably restricted. In contrast, functional performance, measured by the 6-min walk distance, reaches an acceptable level. Light everyday tasks seem to be realistically surmountable for patients, making discharge from inpatient rehabilitation possible. Long-term monitoring is required in order to evaluate the situation and how it develops further. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the National Emphysema Treatment Trial Research Group.

    PubMed

    Naunheim, Keith S; Wood, Douglas E; Mohsenifar, Zab; Sternberg, Alice L; Criner, Gerard J; DeCamp, Malcolm M; Deschamps, Claude C; Martinez, Fernando J; Sciurba, Frank C; Tonascia, James; Fishman, Alfred P

    2006-08-01

    The National Emphysema Treatment Trial defined subgroups of patients with severe emphysema in whom lung-volume-reduction surgery (LVRS) improved survival and function at 2 years. Two additional years of follow-up provide valuable information regarding durability. A total of 1218 patients with severe emphysema were randomized to receive LVRS or medical treatment. We present updated analyses (4.3 versus 2.4 years median follow-up), including 40% more patients with functional measures 2 years after randomization. The intention-to-treat analysis of 1218 randomized patients demonstrates an overall survival advantage for LVRS, with a 5-year risk ratio (RR) for death of 0.86 (p = 0.02). Improvement was more likely in the LVRS than in the medical group for maximal exercise through 3 years and for health-related quality of life (St. George's Respiratory Questionnaire [SGRQ]) through 4 years. Updated comparisons of survival and functional improvement were consistent with initial results for four clinical subgroups of non-high-risk patients defined by upper-lobe predominance and exercise capacity. After LVRS, the upper-lobe patients with low exercise capacity demonstrated improved survival (5-year RR, 0.67; p = 0.003), exercise throughout 3 years (p < 0.001), and symptoms (SGRQ) through 5 years (p < 0.001 years 1 to 3, p = 0.01 year 5). Upper-lobe-predominant and high-exercise-capacity LVRS patients obtained no survival advantage but were likely to improve exercise capacity (p < 0.01 years 1 to 3) and SGRQ (p < 0.01 years 1 to 4). Effects of LVRS are durable, and it can be recommended for upper-lobe-predominant emphysema patients with low exercise capacity and should be considered for palliation in patients with upper-lobe emphysema and high exercise capacity.

  16. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids.

    PubMed

    Blumenthal, James A; Babyak, Michael A; Sherwood, Andrew; Craighead, Linda; Lin, Pao-Hwa; Johnson, Julie; Watkins, Lana L; Wang, Jenny T; Kuhn, Cynthia; Feinglos, Mark; Hinderliter, Alan

    2010-05-01

    This study examined the effects of the Dietary Approaches to Stop Hypertension (DASH) diet on insulin sensitivity and lipids. In a randomized control trial, 144 overweight (body mass index: 25 to 40) men (n=47) and women (n=97) with high blood pressure (130 to 159/85 to 99 mm Hg) were randomly assigned to one of the following groups: (1) DASH diet alone; (2) DASH diet with aerobic exercise and caloric restriction; or (3) usual diet controls (UC). Body composition, fitness, insulin sensitivity, and fasting lipids were measured before and after 4 months of treatment. Insulin sensitivity was estimated on the basis of glucose and insulin levels in the fasting state and after an oral glucose load. Participants in the DASH diet with aerobic exercise and caloric restriction condition lost weight (-8.7 kg [95% CI: -2.0 to -9.7 kg]) and exhibited a significant increase in aerobic capacity, whereas the DASH diet alone and UC participants maintained their weight (-0.3 kg [95% CI: -1.2 to 0.5 kg] and +0.9 kg [95% CI: 0.0 to 1.7 kg], respectively) and had no improvement in exercise capacity. DASH diet with aerobic exercise and caloric restriction demonstrated lower glucose levels after the oral glucose load, improved insulin sensitivity, and lower total cholesterol and triglycerides compared with both DASH diet alone and UC, as well as lower fasting glucose and low-density lipoprotein cholesterol compared with UC. DASH diet alone participants generally did not differ from UC in these measures. Combining the DASH diet with exercise and weight loss resulted in significant improvements in insulin sensitivity and lipids. Despite clinically significant reductions in blood pressure, the DASH diet alone, without caloric restriction or exercise, resulted in minimal improvements in insulin sensitivity or lipids.

  17. Resistance training and mitochondrial metabolism

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine if resistance exercise training improves skeletal muscle substrate oxidative capacity in older adults. Background: A decline in skeletal muscle oxidative capacity occurs with aging. Aerobic exercise increases skeletal muscle’s ability to oxidize multiple substrates. Th...

  18. Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise

    PubMed Central

    Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A

    1998-01-01

    The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403

  19. Loss of capacity to recover from acidosis on repeat exercise in chronic fatigue syndrome: a case-control study.

    PubMed

    Jones, David E J; Hollingsworth, Kieren G; Jakovljevic, Djordje G; Fattakhova, Gulnar; Pairman, Jessie; Blamire, Andrew M; Trenell, Michael I; Newton, Julia L

    2012-02-01

    Chronic fatigue syndrome (CFS) patients frequently describe difficulties with repeat exercise. Here, we explore muscle bioenergetic function in response to three bouts of exercise. A total of 18 CFS (CDC 1994) patients and 12 sedentary controls underwent assessment of maximal voluntary contraction (MVC), repeat exercise with magnetic resonance spectroscopy and cardio-respiratory fitness test to determine anaerobic threshold. Chronic fatigue syndrome patients undertaking MVC fell into two distinct groups: 8 (45%) showed normal PCr depletion in response to exercise at 35% of MVC (PCr depletion >33%; lower 95% CI for controls); 10 CFS patients had low PCr depletion (generating abnormally low MVC values). The CFS whole group exhibited significantly reduced anaerobic threshold, heart rate, VO(2) , VO(2) peak and peak work compared to controls. Resting muscle pH was similar in controls and both CFS patient groups. However, the CFS group achieving normal PCr depletion values showed increased intramuscular acidosis compared to controls after similar work after each of the three exercise periods with no apparent reduction in acidosis with repeat exercise of the type reported in normal subjects. This CFS group also exhibited significant prolongation (almost 4-fold) of the time taken for pH to recover to baseline. When exercising to comparable levels to normal controls, CFS patients exhibit profound abnormality in bioenergetic function and response to it. Although exercise intervention is the logical treatment for patients showing acidosis, any trial must exclude subjects who do not initiate exercise as they will not benefit. This potentially explains previous mixed results in CFS exercise trials. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Effect of metformin on exercise capacity in metabolic syndrome.

    PubMed

    Paul, Abi Albon; Dkhar, Steven Aibor; Kamalanathan, Sadishkumar; Thabah, Molly Mary; George, Melvin; Chandrasekaran, Indumathi; Gunaseelan, Vikneswaran; Selvarajan, Sandhiya

    2017-11-01

    Metabolic syndrome is a constellation of risk factors with increased predilection towards occurrence of cardiovascular diseases. Currently physical exercise and management with metformin are the prevailing treatment modalities for metabolic syndrome. Patients with metabolic syndrome have been found to have reduced exercise capacity over a period of time. Likewise metformin has been shown to decrease exercise capacity among healthy volunteers. Hence this study aims to evaluate the effect of metformin on the exercise capacity of patients with metabolic syndrome. Prospective study with 6 weeks follow up. Newly diagnosed patients with metabolic syndrome and to be started on Table Metformin 500mg twice a day were recruited for the study after obtaining written informed consent. Cardiopulmonary Exercise Testing (CPET) was done at baseline before the subjects were started on metformin and after 6 weeks of treatment using cardiopulmonary exercise testing apparatus (ZAN600). Fifteen treatment naïve patients with metabolic syndrome completed six weeks of therapy with metformin. In these patients oxygen uptake [VO2] showed statistically significant decrease from 1.10±0.44 at baseline to 0.9±0.39 (l/min) after six weeks of treatment with metformin [mean difference of -0.20 (-0.31 to -0.09); P=0.001]. Similarly oxygen uptake/kg body weight [VO2/Kg] showed a significant decrease from 14.10±4.73 to 11.44±3.81 (mlkg -1 min -1 ) at the end of six weeks of treatment [mean difference of -2.66 (-4.06 to -1.26); P=0.001]. Six weeks of treatment with metformin significantly decreases exercise capacity in newly diagnosed patients with metabolic syndrome. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. Statins are related to impaired exercise capacity in males but not females.

    PubMed

    Bahls, Martin; Groß, Stefan; Ittermann, Till; Busch, Raila; Gläser, Sven; Ewert, Ralf; Völzke, Henry; Felix, Stephan B; Dörr, Marcus

    2017-01-01

    Exercise and statins reduce cardiovascular disease (CVD). Exercise capacity may be assessed using cardiopulmonary exercise testing (CPET). Whether statin medication is associated with CPET parameters is unclear. We investigated if statins are related with exercise capacity during CPET in the general population. Cross-sectional data of two independent cohorts of the Study of Health in Pomerania (SHIP) were merged (n = 3,500; 50% males). Oxygen consumption (VO2) at peak exercise (VO2peak) and anaerobic threshold (VO2@AT) was assessed during symptom-limited CPET. Two linear regression models related VO2peak with statin usage were calculated. Model 1 adjusted for age, sex, previous myocardial infarction, and physical inactivity and model 2 additionally for body mass index, smoking, hypertension, diabetes and estimated glomerular filtration rate. Propensity score matching was used for validation. Statin usage was associated with lower VO2peak (no statin: 2336; 95%-confidence interval [CI]: 2287-2,385 vs. statin 2090; 95%-CI: 2,031-2149 ml/min; P < .0001) and VO2@AT (no statin: 1,172; 95%-CI: 1,142-1,202 vs. statin: 1,111; 95%-CI: 1,075-1,147 ml/min; P = .0061) in males but not females (VO2peak: no statin: 1,467; 95%-CI: 1,417-1,517 vs. statin: 1,503; 95%-CI: 1,426-1,579 ml/min; P = 1.00 and VO2@AT: no statin: 854; 95%-CI: 824-885 vs. statin 864; 95%-CI: 817-911 ml/min; P = 1.00). Model 2 revealed similar results. Propensity scores analysis confirmed the results. In the general population present statin medication was related with impaired exercise capacity in males but not females. Sex specific effects of statins on cardiopulmonary exercise capacity deserve further research.

  2. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

    PubMed

    Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

    2012-08-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

  3. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study

    PubMed Central

    Rice, Treva K.; Sarzynski, Mark A.; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M.; Teran-Garcia, Margarita; Rao, D. C.; Bouchard, Claude

    2014-01-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO260), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO260 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1–29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO260 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P<1.0 × 10−5) for ΔVO260. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO260 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance. PMID:22170014

  4. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle

    PubMed Central

    Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia

    2016-01-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306

  5. Selection for intrinsic endurance modifies endocrine stress responsiveness

    PubMed Central

    Waters, R Parrish; Renner, Kenneth J; Summers, Cliff H; Watt, Michael L; Forster, Gina L; Koch, Lauren G; Britton, Steven L; Swallow, John G

    2010-01-01

    Physical exercise dampens an individual’s stress response and decreases symptoms of anxiety and depression disorders. While the extrinsic relationship of exercise and psychological state are established, their intrinsic relationship is unresolved. We investigated the potential intrinsic relationship of exercise with stress responsiveness using NIH rats bidirectionally selected for intrinsic endurance capacity. Selection resulted in two populations, one with high intrinsic endurance (high capacity runners; HCR) and one with low intrinsic endurance (low capacity runners; LCR). Animals from these populations were subjected to the elevated plus maze (EPM) and novel environment to assess levels of anxiety-like behavior, and to restraint stress to determine stress responsiveness. Pre-test plasma corticosterone levels and the response of plasma corticosterone to exposure to the EPM and restraint were analyzed using ELISA. A dexamethasone suppression test was performed to assess negative feedback tone of corticosterone release. Pre-test plasma corticosterone levels were similar between LCR and HCR, and these populations had similar behavioral and corticosterone responses to the EPM. Following restraint, HCR animals exhibited more anxiotypic behavior than LCR animals on the EPM, and exhibited an increase in plasma corticosterone following EPM and restraint that was not observed in LCR animals. HCR animals also exhibited more anxiotypic behavior in the novel environment compared to LCR animals. Plasma corticosterone levels were equally reduced in both populations following dexamethasone administration. Overall, our data suggest a positive genetic relationship between exercise endurance and stress responsiveness, which is at odds with the established extrinsic relationship of these traits. PMID:20682296

  6. Arterial Stiffness Measured with the Cuff Oscillometric Method Is Predictive of Exercise Capacity in Patients with Cardiac Diseases.

    PubMed

    Tazawa, Yasushi; Mori, Nobuyoshi; Ogawa, Yoshiko; Ito, Osamu; Kohzuki, Masahiro

    2016-06-01

    Arterial stiffness is widely used in assessing arteriosclerosis in the background of increased cardiovascular events. Arteriosclerosis also causes reduction in exercise capacity, which is a most important prognostic factor in patients with cardiovascular disease; however, data on the association between arterial stiffness and exercise capacity are limited. Therefore, a simple and noninvasive measurement of arterial stiffness that reflects the central circulation and exercise capacity is needed. The arterial velocity pulse index (AVI) is a parameter of arterial stiffness measurable with the cuff oscillometric method; however, the clinical utility of this method is unclear. We aimed to evaluate the trend of AVI in patients with coronary artery disease (CAD), and the association between AVI and exercise capacity. A cross-sectional study of 116 patients with cardiac disease (34 CAD and 82 non-CAD patients) was performed. Non-CAD patients were those with any cardiac diseases who did not have proven CAD. The results showed that the AVI was significantly higher in CAD patients than non-CAD patients (P < 0.05, analysis of covariance). The AVI was inversely correlated with peakVO2 (r = -0.239, P < 0.05) and was a significant explanatory variable for peakVO2 in stepwise regression analysis (β = -14.62, t = -2.5, P < 0.05). These results indicate that the AVI is strongly associated with CAD and predictive of the exercise capacity in patients with cardiac diseases. We, therefore, propose that the cuff oscillometric method is clinically useful in evaluating arterial stiffness in patients with cardiac diseases, especially CAD.

  7. Aerobic capacity, orthostatic tolerance, and exercise perceptions at discharge from inpatient spinal cord injury rehabilitation.

    PubMed

    Pelletier, Chelsea A; Jones, Graham; Latimer-Cheung, Amy E; Warburton, Darren E; Hicks, Audrey L

    2013-10-01

    To describe physical capacity, autonomic function, and perceptions of exercise among adults with subacute spinal cord injury (SCI). Cross-sectional. Two inpatient SCI rehabilitation programs in Canada. Participants (N=41; mean age ± SD, 38.9 ± 13.7y) with tetraplegia (TP; n=19), high paraplegia (HP; n=8), or low paraplegia (LP; n=14) completing inpatient SCI rehabilitation (mean ± SD, 112.9 ± 52.5d postinjury). Not applicable. Peak exercise capacity was determined by an arm ergometry test. As a measure of autonomic function, orthostatic tolerance was assessed by a passive sit-up test. Self-efficacy for exercise postdischarge was evaluated by a questionnaire. There was a significant difference in peak oxygen consumption and heart rate between participants with TP (11.2 ± 3.4;mL·kg(-1)·min(-1) 113.9 ± 19.7 beats/min) and LP (17.1 ± 7.5 mL·kg(-1)·min(-1); 142.8 ± 22.7 beats/min). Peak power output was also significantly lower in the TP group (30.0 ± 6.9W) compared with the HP (55.5 ± 7.56W) and LP groups (62.5 ± 12.2W). Systolic blood pressure responses to the postural challenge varied significantly between groups (-3.0 ± 33.5 mmHg in TP, 17.8 ± 14.7 mmHg in HP, 21.6 ± 18.7 mmHg in LP). Orthostatic hypotension was most prevalent among participants with motor complete TP (73%). Results from the questionnaire revealed that although participants value exercise and see benefits to regular participation, they have low confidence in their abilities to perform the task of either aerobic or strengthening exercise. Exercise is well tolerated in adults with subacute SCI. Exercise interventions at this stage should focus on improving task-specific self-efficacy, and attention should be made to blood pressure regulation, particularly in individuals with motor complete TP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.

    PubMed

    Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi; Geraci, Salvatore; Bhuva, Rushik; Konda, Prasad; Doulias, Paschalis-Thomas; Ischiropoulos, Harry; Townsend, Raymond R; Margulies, Kenneth B; Cappola, Thomas P; Poole, David C; Chirinos, Julio A

    2015-01-27

    Inorganic nitrate (NO3(-)), abundant in certain vegetables, is converted to nitrite by bacteria in the oral cavity. Nitrite can be converted to nitric oxide in the setting of hypoxia. We tested the hypothesis that NO3(-) supplementation improves exercise capacity in heart failure with preserved ejection fraction via specific adaptations to exercise. Seventeen subjects participated in this randomized, double-blind, crossover study comparing a single dose of NO3-rich beetroot juice (NO3(-), 12.9 mmol) with an identical nitrate-depleted placebo. Subjects performed supine-cycle maximal-effort cardiopulmonary exercise tests, with measurements of cardiac output and skeletal muscle oxygenation. We also assessed skeletal muscle oxidative function. Study end points included exercise efficiency (total work/total oxygen consumed), peak VO2, total work performed, vasodilatory reserve, forearm mitochondrial oxidative function, and augmentation index (a marker of arterial wave reflections, measured via radial arterial tonometry). Supplementation increased plasma nitric oxide metabolites (median, 326 versus 10 μmol/L; P=0.0003), peak VO2 (12.6±3.7 versus 11.6±3.1 mL O2·min(-1)·kg(-1); P=0.005), and total work performed (55.6±35.3 versus 49.2±28.9 kJ; P=0.04). However, efficiency was unchanged. NO3(-) led to greater reductions in systemic vascular resistance (-42.4±16.6% versus -31.8±20.3%; P=0.03) and increases in cardiac output (121.2±59.9% versus 88.7±53.3%; P=0.006) with exercise. NO3(-) reduced aortic augmentation index (132.2±16.7% versus 141.4±21.9%; P=0.03) and tended to improve mitochondrial oxidative function. NO3(-) increased exercise capacity in heart failure with preserved ejection fraction by targeting peripheral abnormalities. Efficiency did not change as a result of parallel increases in total work and VO2. NO3(-) increased exercise vasodilatory and cardiac output reserves. NO3(-) also reduced arterial wave reflections, which are linked to left ventricular diastolic dysfunction and remodeling. www.clinicaltrials.gov. Unique identifier: NCT01919177. © 2014 American Heart Association, Inc.

  9. Exercise-induced changes in cardiovascular function after stroke: a randomized controlled trial

    PubMed Central

    Tang, Ada; Krassioukov, Andrei V; Madden, Kenneth M; Mohammadi, Azam; Tsang, Michael YC; Tsang, Teresa SM

    2015-01-01

    Background and aims Cardiovascular co-morbidities are prevalent after stroke, with heart disease, hypertension and impaired glucose tolerance present in the majority of cases. Exercise has the potential to mediate cardiovascular risk factors commonly present in people with stroke. This single-blinded randomized controlled trial compared the effects of high versus low intensity exercise on fitness, cardiovascular risk factors, and cardiac function after stroke. Methods Fifty participants (age 50–80y, >1y post-stroke) were randomized to a high-intensity Aerobic Exercise (AE) or low-intensity non-aerobic Balance/Flexibility (BF) program (6 months, 3 60-minute sessions/week). Outcomes assessed by VO2peak (primary outcome), arterial stiffness, ambulatory capacity, hemodynamics and cardiac function using echocardiography, and lipid, glucose and homocysteine levels. Assessors were blinded to group allocation. Results Twenty-three (92%) of 25 AE group participants (withdrawals unrelated to the intervention) and all BF group participants completed the program. One BF group participant experienced 2 non-injurious falls during class. No other adverse events occurred. There were no changes in VO2peak in either group (AE 16.9±7 to 17.4±7 ml•kg−1•min−1 vs. BF 16.9±6 to 16.6±5 ml•kg−1•min−1, P=0.45), but AE group demonstrated greater improvement in right atrial emptying fraction (AE 30±22 to 37±22% vs. BF 35±20 to 31±20%, P=0.04). Both groups demonstrated improvements in lipid profiles, glucose and homocysteine levels, and ambulatory capacity (P<0.04). Conclusions This was the first study to examine the effects of aerobic exercise after stroke on cardiovascular hemodynamics. High-intensity exercise improved right-sided function and early myocardial relaxation. Low-intensity exercise may also benefit plasma lipid, glucose and inflammatory markers, and ambulatory capacity. This study is an important step towards understanding mechanisms by which exercise may reduce cardiovascular risk and function. Clinical Trial Registration Information http://www.clinicaltrials.gov. Unique identifier: NCT01189045 PMID:24148695

  10. Hospital-based versus hybrid cardiac rehabilitation program in coronary bypass surgery patients in western Iran: effects on exercise capacity, risk factors, psychological factors, and quality of life.

    PubMed

    Najafi, Farid; Nalini, Mahdi

    2015-01-01

    The efficacy of alternative delivery models for a cardiac rehabilitation program (CRP) in low- and middle-income countries is not well documented. This study compared the traditional hospital-based CRP with a hybrid CRP in western Iran. This observational study was conducted with postcoronary surgery patients in Imam-Ali Hospital in Kermanshah, Iran. Both program models included 2 phases: (1) a common preliminary phase (2-4 weeks) involving exercise training and a plan to control cardiac risk factors; and (2) a complementary phase (8 weeks) consisting of group educational classes and exercise training conducted 3 times a week in the hospital or once a week accompanied by phone calls in the hybrid program. Changes in exercise capacity, blood pressure, lipids, resting heart rate, body mass index, waist circumference, smoking, depression, anxiety, and quality of life as well as differences in attendance at hospital sessions were investigated. From a total of 887 patients, 780 (87.9%) completed the programs. There was no association between course completion and type of CRP. Mean age of patients completing the programs was 55.6 ± 8.7 years and 23.8% were female. The hospital-based (n = 585) and hybrid (n = 195) programs resulted in a significant increase in exercise capacity (P < .001 for both). Additional improvements in other outcomes were noted and attendance rates were similar in both CRPs. A well-designed hybrid CRP can be a viable alternative for hospital-based CRP in low- and middle-income countries where there are no appropriate health facilities in remote areas.

  11. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice.

    PubMed

    Ma, Sihui; Huang, Qingyi; Yada, Koichi; Liu, Chunhong; Suzuki, Katsuhiko

    2018-05-25

    Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  12. Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training.

    PubMed

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    Introduction Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. Aim To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Methods Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity ([Formula: see text]). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. Results As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved [Formula: see text] (4.4 and 4.7%, respectively), v [Formula: see text] (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). Conclusions After 12 weeks of interval training program, the increase of [Formula: see text] and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both aerobic capacity and life quality were improved. Intermittent training should be advised in the clinical setting for subjects with adverse health behaviors.

  13. Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training.

    PubMed

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity (VO2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved VO2max (4.4 and 4.7%, respectively), v VO2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). After 12 weeks of interval training program, the increase of VO2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both aerobic capacity and life quality were improved. Intermittent training should be advised in the clinical setting for subjects with adverse health behaviors.

  14. Heart rate behavior during an exercise stress test in obese patients.

    PubMed

    Gondoni, L A; Titon, A M; Nibbio, F; Augello, G; Caetani, G; Liuzzi, A

    2009-03-01

    Heart rate (HR) response to exercise has not been fully described in the obese. We wanted to study the differences between obese and non-obese patients in HR behavior during an exercise stress test and to determine whether these differences influence exercise capacity. We studied 554 patients (318 females) who underwent a treadmill exercise test. All subjects were in sinus rhythm. Patients with ischemic heart disease, with reduced ejection fraction and patients taking drugs that interfere with HR were excluded. The population included 231 patients with BMI<30 kg/m(2) (group 1), 212 patients who were unfit and obese (group 2) and 111 patients who were trained obese (group 3). Resting HR was similar in the various groups. Peak HR, HR recovery and chronotropic index were lower in obese subjects, regardless of their fitness level. Multivariate analysis showed that HR related variables were associated with age, BMI, height, hypertension and various pharmacologic treatments, while exercise capacity was strongly dependent on HR behavior, as well as on sex, age, BMI and diabetes. Obese subjects have a marked impairment of HR behavior during exercise and in the recovery period, and the blunted increase in HR is the most important factor that influences exercise capacity.

  15. Effects of group exercise on functional abilities: Differences between physically active and physically inactive women.

    PubMed

    Cokorilo, Nebojsa; Mikalacki, Milena; Satara, Goran; Cvetkovic, Milan; Marinkovic, Dragan; Zvekic-Svorcan, Jelena; Obradovic, Borislav

    2018-03-30

    Aerobic exercises to music can have a positive effect on functional and motor skills of an exerciser, their health, as well as an aesthetic and socio-psychological component. The objective of this study was to determine the effects of reactive exercising in a group on functional capabilities in physically active and physically inactive women. A prospective study included 64 healthy women aged 40-60 years. The sample was divided into the experimental group (n= 36), i.e. physically active women who have been engaged in recreational group exercises at the Faculty of Sport and Physical Education, University of Novi Sad, Serbia, and the control group (n= 28), which consisted of physically inactive women. All the participants were monitored using the same protocol before and after the implementation of the research. All women had their height, weight, body mass index measured as well as spiroergometric parameters determined according to the Bruce protocol. A univariate analysis of variance has shown that there is a statistically significant difference between the experimental group and the control group in maximum speed, the total duration of the test, relative oxygen consumption, absolute oxygen consumption and ventilation during the final measurement. After the training intervention, the experimental group showed improvements in all the parameters analyzed compared with pretest values. The recreational group exercise model significantly improves aerobic capacity and functioning of the cardiovascular system. Therefore, it is essential for women to be involved more in any form of recreational group exercising in order to improve functional capacity and health.

  16. [Physical activity and blood pressure. An epidemiological brief review of primary preventive effects of physical exercise activities].

    PubMed

    Marti, B

    1992-04-07

    The relation between physical exercise and blood pressure as well as the risk of hypertension has been investigated extensively during recent years. Cross-sectional studies on exercising and physically fit subjects have shown that endurance capacity (i. e. maximum aerobic capacity) is inversely related to resting blood pressure. However, not all physical activities are associated with lower blood pressure levels; e.g. swimming, weight lifting and competitive cross-country skiing were found to be related to elevated blood pressure values in some studies. Population-based investigations reveal a trend towards lower blood pressure values in physically habitually active persons, with the difference between active and inactive subjects not exceeding 5 mmHg. Three epidemiological cohort studies have consistently demonstrated that sedentary, unfit persons have a 20 to 50% higher prospective risk of hypertension, as compared to exercising, physically fit persons. Some intervention studies with normotensive subjects show a reduction in resting blood pressure of 5 to 10 mmHg at best after several months of aerobic training, while other studies show no effect. At least two factors could be responsible for these somewhat inconsistent observations: 1. exercise intensity may act as an 'effect modifier', since vigorous to maximally hard exercise rather increases than lowers resting blood pressure, 2. in statistical analysis on the effect of physical training on blood pressure, it is crucial whether concomitant changes in body weight and body composition are taken into account: any adjustment for changes in body composition will substantially reduce the magnitude of 'exercise-induced' reductions in blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Right ventricular pressure response to exercise in adults with isolated ventricular septal defect closed in early childhood.

    PubMed

    Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik

    2018-06-01

    We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.

  18. A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients.

    PubMed

    Smart, Neil A; Steele, Michael

    2012-01-01

    The authors compared the effects of continuous (CON) and intermittent (INT) exercise training programs on functional capacity, quality of life (QOL), and cardiac function in 23 congestive heart failure patients. Patients were randomized to CON exercise training (n=13; aged 66±7 years; peak oxygen consumption [VO(2)], 12.4±2.5 mL/kg/min; weight, 83±12 kg; left ventricular ejection fraction [LVEF], 29.5%±7.2%) or INT exercise training (n=10; aged 59±11 years; VO(2), 12.2±6.5 mL/kg/min; weight, 87±24 kg; LVEF 27%±7.9%). These groups completed 16 weeks of stationary cycling at 70% VO(2) thrice weekly for 30 minutes continuously or 60 minutes (60 seconds work:60 seconds rest) intermittently; both groups completed the same absolute volume of work. Three QOL questionnaire responses, VO(2), LVEF, and regional tissue Doppler were quantified. After exercise training, VO(2) increased by 13% in the CON group (P=.12) and significantly by 21% in the INT group (P=.03), although not significantly between the groups (P=.72). In the CON group, Minnesota Living With Heart Failure score improved at 16 weeks (P=.02), while in the INT group, Hare-Davis scores improved (P=.02). Cardiac volumes, resting and peak LVEF, contractile reserve, and tissue velocities were all unchanged from baseline. Intermittent exercise may improve functional capacity to a greater extent than continuous exercise. QOL changes were variable between groups. © 2011 Wiley Periodicals, Inc.

  19. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    PubMed Central

    Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  20. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity.

    PubMed

    Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn

    2016-08-22

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.

  1. Repeatability and responsiveness of exercise tests in pulmonary arterial hypertension.

    PubMed

    Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Bonnet, Sébastien; Maltais, François; Saey, Didier; Provencher, Steeve

    2013-08-01

    Exercise tolerance in pulmonary arterial hypertension (PAH) is most commonly assessed by the 6-min walk test (6MWT). Whether endurance exercise tests are more responsive than the 6MWT remains unknown. 20 stable PAH patients (mean±sd age 53±15 years and mean pulmonary arterial pressure 44±16 mmHg) already on PAH monotherapy completed the 6MWT, the endurance shuttle walk test (ESWT) and the cycle endurance test (CET) before and after the addition of sildenafil citrate 20 mg three times daily or placebo for 28 days in a randomised double-blind crossover setting. Pre- or post-placebo tests were used to assess repeatability of each exercise test, whereas pre- or post-sildenafil citrate tests were used to assess their responsiveness. Sildenafil citrate led to placebo-corrected changes in exercise capacity of 18±25 m (p = 0.02), 58±235 s (p = 0.58) and 29±77 s (p = 0.09) for the 6MWT, the ESWT and the CET, respectively. The 6MWT was associated with a lower coefficient of variation between repeated measures (3% versus 18% versus 13%), resulting in a higher standardised response mean compared with endurance tests (0.72, 0.25 and 0.38 for the 6MWT, the ESWT and the CET, respectively). The 6MWT had the best ability to capture changes in exercise capacity when sildenafil citrate was combined with patients' baseline monotherapy, supporting its use as an outcome measure in PAH.

  2. Lack of ventilatory threshold in patients with chronic obstructive pulmonary disease.

    PubMed

    Midorikawa, J; Hida, W; Taguchi, O; Okabe, S; Kurosawa, H; Mizusawa, A; Ogawa, H; Ebihara, S; Kikuchi, Y; Shirato, K

    1997-01-01

    We investigated whether the ventilatory threshold (VET) could be detected in 25 patients with severe chronic obstructive pulmonary disease (COPD). Exercise on a treadmill was performed until symptom-limited maximum oxygen uptake (VO2SL) was obtained. VET was absent in 14 patients (56%, VET(-) group) and present in the others (44%, VET(+) group). Basal pulmonary functions and dyspnea index (VE,SL/MVV) were not different between the two groups. Endurance time and exercise tolerance (VO2SL/bw) were significantly less in VET(-) than in VET(+). In the former group, PaO2 and pH at maximal exercise decreased and PaCO2 increased significantly, but HCO3- did not change compared with the corresponding values before exercise. In the latter group, PaCO2 at maximal exercise increased significantly, and pH and HCO3- decreased significantly compared with the values before exercise, but PaO2 did not. The changes in PaO2 and PaCO2 were not different between the two groups, but changes in pH and HCO3- in VET(+) were greater than those in VET(-). These results suggest that the absence of VET in some COPD patients indicates a lower exercise capacity without producing metabolic acidosis. This may be caused by rapidly developing dyspnea.

  3. Peripheral arterial disease decreases muscle torque and functional walking capacity in elderly.

    PubMed

    Dziubek, Wioletta; Bulińska, Katarzyna; Stefańska, Małgorzata; Woźniewski, Marek; Kropielnicka, Katarzyna; Jasiński, Tomasz; Jasiński, Ryszard; Pilch, Urszula; Dąbrowska, Grażyna; Skórkowska-Telichowska, Katarzyna; Wojcieszczyk-Latos, Joanna; Kałka, Dariusz; Janus, Agnieszka; Zywar, Katarzyna; Paszkowski, Rafał; Szuba, Andrzej

    2015-08-01

    The aim of this study is to compare values of force-velocity and functional walking capacity in elderly patients with intermittent claudication with respect to the control group. The study involved 135 individuals: 85-peripheral arterial disease (PAD) group diagnosed with stage II chronic lower limb ischemia, according to Fontaine's classification, and 50-control group. The studies included an assessment of walking capacity using a six-minute walk test (6MWT) and measurement of force-velocity parameters (peak torque-PTQ, total work-TW, average power-AVGP) of the lower limbs obtained by means of a functional dynamometry under isokinetic conditions. The peripheral arterial disease group is characterized by significantly lower values of force-velocity parameters compared to the control group (p<0.005). Walking capacity in this group is significantly reduced due to significant differences in the distance covered (p<0.0001), walking speed (p<0.01), and its intensity (p<0.01). Further, a positive correlation was found between the maximum distance specified in the six-minute walk test and lower limb muscle strength in the isokinetic test. Mean values of all force-velocity parameters and walk distance were significantly higher in the control group than in the peripheral arterial disease group. In the PAD group, in both men and women, the value of the agonist/antagonist ratio of both lower limbs are lower in men and women comparing to the control group. A rehabilitation program for patients with intermittent claudication must consider exercises improving strength, exercise capacity, and endurance in patients with PAD. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Impact of CPAP on physical exercise tolerance and sympathetic-vagal balance in patients with chronic heart failure.

    PubMed

    Reis, Hugo V; Borghi-Silva, Audrey; Catai, Aparecida M; Reis, Michel S

    2014-01-01

    Chronic heart failure (CHF) leads to exercise intolerance. However, non-invasive ventilation is able to improve functional capacity of patients with CHF. The aim of this study was to evaluate the effectiveness of continuous positive airway pressure (CPAP) on physical exercise tolerance and heart rate variability (HRV) in patients with CHF. Method : Seven men with CHF (62 ± 8 years) and left ventricle ejection fraction of 41 ± 8% were submitted to an incremental symptom-limited exercise test (IT) on the cicloergometer. On separate days, patients were randomized to perform four constant work rate exercise tests to maximal tolerance with and without CPAP (5 cmH2O) in the following conditions: i) at 50% of peak work rate of IT; and ii) at 75% of peak work rate of IT. At rest and during these conditions, instantaneous heart rate (HR) was recorded using a cardiofrequencimeter and HRV was analyzed in time domain (SDNN and RMSSD indexes). For statistical procedures, Wilcoxon test or Kruskall-Wallis test with Dunn's post-hoc were used accordingly. In addition, categorical variables were analysed through Fischer's test (p<0.05). There were significant improvements in exercise tolerance at 75% of peak work rate of IT with CPAP (405 ± 52 vs. 438 ± 58 s). RMSSD indexes were lower during exercise tests compared to CPAP at rest and with 50% of peak work rate of IT. These data suggest that CPAP appears to be a useful strategy to improve functional capacity in patients with CHF. However, the positive impact of CPAP did not generate significant changes in the HRV during physical exercises.

  5. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  7. Evaluation of exercise capacity after severe stroke using robotics-assisted treadmill exercise: a proof-of-concept study.

    PubMed

    Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J

    2013-01-01

    Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.

  8. High-Intensity Interval Training for Severe Left Ventricular Dysfunction Treated with Left Ventricular Assist Device.

    PubMed

    Ugata, Yusuke; Wada, Hiroshi; Sakakura, Kenichi; Ibe, Tatsuro; Ito, Miyuki; Ikeda, Nahoko; Fujita, Hideo; Momomura, Shin-Ichi

    2018-01-27

    Aerobic training based on anaerobic threshold (AT) is well-known to improve cardiac function, exercise capacity, and long-term outcomes of patients with heart failure. Recent reports suggested that high-intensity interval training (HIIT) for patients with cardiovascular disease may improve cardiopulmonary exercise capacity. We present a 61-year-old male patient of severe left ventricular dysfunction with left ventricular assisted device (LVAD). Following HIIT for 8 weeks, exercise capacity and muscle strength have improved without worsening left ventricular function. Our case showed the possibility that HIIT was feasible and effective even in patients with LVAD.

  9. Effects of obesity on weight-bearing versus weight-supported exercise testing in patients with COPD.

    PubMed

    Maatman, Robbert C; Spruit, Martijn A; van Melick, Paula P; Peeters, Jos P I; Rutten, Erica P A; Vanfleteren, Lowie E G W; Wouters, Emiel F M; Franssen, Frits M E

    2016-04-01

    Obesity is associated with increased dyspnoea and reduced health status in patients with chronic obstructive pulmonary disease (COPD). Studies on the effects of obesity on exercise capacity showed divergent results. The objective of this study is to investigate the impact of obesity on weight-bearing versus weight-supported exercise tolerance in obese and normal weight patients, matched for age, gender and degree of airflow limitation. Retrospective analyses of data obtained during pre-pulmonary rehabilitation assessment in 108 obese COPD patients (OB) (age: 61.2 ± 5.3y, FEV1 : 43.2 ± 7.4%, BMI: 34.1 ± 3.9 kg/m(2) ,) and 108 age and FEV1 -matched normal weight COPD patients (NW) (age: 61.7 ± 3.6y, FEV1 : 41.5 ± 8.4%, BMI: 22.9 ± 1.2 kg/m(2) ,). Cardiopulmonary exercise test (CPET) and 6 min walk test (6MWT) were performed, Borg scores for dyspnoea and leg fatigue were recorded, before and after the tests. Six-minute walk distance differed between OB (398 ± 107 m) and NW patients (446 ± 109 m, P < 0.05), while peak cycling exercise load was comparable (OB: 75 ± 29 W, NW: 70 ± 25 W, ns). Dyspnoea (OB 3.2 ± 2.0 vs NW 3.1 ± 1.7, ns) and leg fatigue (OB 2.4 ± 2.3 vs NW 1.9 ± 1.7, ns) were not significantly different in OB compared with NW after 6MWT, or after CPET (dyspnoea: OB 5.1 ± 2.4 vs NW 5.4 ± 2.2, ns; leg fatigue: OB 4.0 ± 2.3 vs NW 4.0 ± 2.7, ns). In contrast to weight-supported exercise, obesity has a negative impact on weight-bearing exercise capacity, despite comparable exercise-related symptoms. The results of this study enhance the understanding of the impact of obesity on physical performance in COPD. © 2015 Asian Pacific Society of Respirology.

  10. Effect of exercise training program in post-CRET post-CABG patients with normal and subnormal ejection fraction (EF > 50% or < 50%) after coronary artery bypass grafting surgery.

    PubMed

    Ansari, Basit; Qureshi, Masood A; Zohra, Raheela Rahmat

    2014-11-01

    The aim of the present study is to compare the effect of exercise training program in post-Cardiac Rehabilitation Exercise Training (CRET), post-CABG patients with normal & subnormal ejection fraction (EF >50% or <50%) who have undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 100 cardiac patients of both sexes (age: 57-65 years) who after CABG surgery, were referred to the department of Physiotherapy and Rehabilitation between 2008 and 2010 at Liaquat National Hospital & Medical College, Karachi. The patients undertook exercise training program (using treadmill, Recumbent Bike), keeping in view the Borg's scale of perceived exertion, for 6 weeks. Heart Rate (HR) and Blood Pressure (BP) were measured & compared in post CABG Patients with EF (>50% or <50%) at the start and end of the exercise training program. Statistical formulae were applied to analyze the improvement in cardiac functional indicators. Exercise significantly restores the values of HR and BP (systolic) in post CABGT Patients with EF (>50% or <50%) from the baseline to the last session of the training program. There appeared significant improvement in cardiac function four to six weeks of treadmill exercise training program. After CABG all patients showed similar improvement in cardiac function with exercise training program. The exercise training program is beneficial for improving exercise capacity linked with recovery cardiac function in Pakistani CABG patients.

  11. Effect of energy drink dose on exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise.

    PubMed

    An, Sang Min; Park, Jong Suk; Kim, Sang Ho

    2014-03-01

    The purpose of this research was to investigate the effects of exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise on caffeine concentration of energy drink. The volunteers for this study were 15 male university student. 15 subjects were taken basic physical examinations such as height, weight and BMI before the experiment. Primary tests were examined of VO2max per weight of each subjects by graded exercise test using Bruce protocol. Each of five subject was divided 3 groups (CON, ECGⅠ, ECGⅡ) by matched method based on weight and VO2max per weight what gained of primary test for minimize the differences of exercise capacity and ingestion of each groups. For the secondary tests, the groups of subjects were taken their materials before and after exercise as a blind test. After the ingestion, subjects were experimented on exercise test of VO2max 80% by treadmill until the all-out. Heart rate was measured by 1minute interval, and respiratory variables were analyzed VO2, VE, VT, RR and so on by automatic respiratory analyzer. And exercise exhaustion time was determined by stopwatch. Moreover, HRV was measured after exercise and recovery 3 min. Among the intake groups, ECGⅡ was showed the longest of exercise exhaustion time more than CON group (p = .05). Result of heart rate during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). Result of RPE during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). In conclusion, EDGⅡ showed the significant increase of exercise exhaustion time more than CON group (p=.05) and not significant differences in HR, RPE, RER, HRV, HRR, blood pressure (p > .05). Therefore, 2.5 mg/kg(-1) ingestion of energy drink might be positive effect to increase exercise performance capacity without side-effect in cardiovascular disease.

  12. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality.

    PubMed

    Jorge, Luciana; Rodrigues, Bruno; Rosa, Kaleizu Teodoro; Malfitano, Christiane; Loureiro, Tatiana Carolina Alba; Medeiros, Alessandra; Curi, Rui; Brum, Patricia Chakur; Lacchini, Silvia; Montano, Nicola; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2011-04-01

    To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO(2) max). Left ventricular function was evaluated non-invasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 ± 6%) compared with SI (34 ± 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.

  13. Number of thoracotomies predicts impairment in lung function and exercise capacity in patients with congenital heart disease.

    PubMed

    Müller, Jan; Ewert, Peter; Hager, Alfred

    2018-01-01

    Many patients with congenital heart disease (CHD) require surgery to ensure survival into adulthood. But history of previous thoracotomies is associated with respiratory muscle weakness, impairments in chest wall compliance, and moderately to severely impaired lung function. This study evaluated the impact of thoracotomies on functional outcome in patients with CHD. In total 1372 adolescents and adults with CHD (32.4±11.5 years, 624 female), who underwent spirometry and cardiopulmonary exercise testing in our institution from January 2010 to August 2015, were analyzed. After adjusting for confounding variables, with every thoracotomy the prevalence for a restrictive ventilatory pattern increased by 1.8-fold (CI: 1.606-2.050; p<0.001). The number of thoracotomies had no direct influence on an impaired exercise capacity in a multivariate model, but with every percentage point increase in forced vital capacity probability of impaired exercise capacity diminished (OR: 0.944, CI: 0.933-0.955, p<0.001). There was a moderate correlation of forced vital capacity and peak oxygen uptake (r=0.464, p<0.001). After a follow-up of 2.1±1.6 years 21 patients had died. Survival was only related to age (p<0.001) and peak oxygen uptake (p<0.001) after considering together with thoracotomies, oxygen saturation at rest and forced vital capacity in a multivariate model. Independent of CHD complexity and other risk factors, multiple thoracotomies lead to restrictive lung pattern. It could be suggested that those limitations in forced vital capacity contribute to impairments in exercise capacity, which turned out to be the strongest predictor for survival. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  14. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome

    PubMed Central

    Fournier, Sara B.; Reger, Brian L.; Donley, David A.; Bonner, Daniel E.; Warden, Bradford E.; Gharib, Wissam; Failinger, Conard F.; Olfert, Melissa D.; Frisbee, Jefferson C.; Olfert, I. Mark; Chantler, Paul D.

    2013-01-01

    MetS is the manifestation of a cluster of cardiovascular (CV) risk factors and is associated with a three-fold increase risk of CV morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to comprehensively examine LV and arterial responses to exercise in MetS individuals without diabetes and/or overt CVD compared to a healthy control population. CV function was characterized using Doppler echocardiography and gas exchange in MetS (n=27) vs. healthy controls (n=20) at rest and during peak exercise. At rest, MetS individuals displayed normal LV systolic function but reduced LV diastolic function vs. healthy controls. During peak exercise, individuals with MetS had impaired contractility; pump performance, and vasodilator reserve capacity vs. controls. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in MetS vs. controls. These findings possess clinical importance as they provide insight to the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of CV morbidity and mortality. PMID:24036595

  15. Salivary antioxidants of male athletes after aerobic exercise and garlic supplementation on: A randomized, double blind, placebo-controlled study.

    PubMed

    Damirchi, Arsalan; Saati Zareei, Alireza; Sariri, Reyhaneh

    2015-01-01

    Production of reactive oxygen species and reactive nitrogen species is a natural biological event in metabolism. However, the presence of antioxidants can highly reduce the negative effect of free radicals. Thus, the efficiency of antioxidant system in the physiology of exercise is very important. Considering the known antioxidant capacity of garlic, the purpose of this study was to evaluate the effect on combining 14 days aerobic exercise till exhaustion with garlic extract supplementation on the antioxidant capacity of saliva. Sixteen young men volunteered to participate in this randomized, double blind, placebo-controlled study and were randomly placed into two groups, placebo (Group I) and garlic extract (Group II). The participants performed exhaustive aerobic exercise on a treadmill before and after supplementation. Their unstimulated salivary samples were collected before, immediately after, and 1 h after the activity. The antioxidant activity in terms of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) was then measured in the collected samples using their specific substrates. A significant increase in salivary antioxidant activity of SOD, POD, and CAT was observed in saliva of the supplement group compared to the placebo group (P ≤ 0.05). The findings from this study suggest that increased activity of antioxidant enzymes could possibly decrease exercise-induced oxidative damage in male athletes.

  16. Exercise Training and Recreational Activities to Promote Executive Functions in Chronic Stroke: A Proof-of-Concept Study

    PubMed Central

    Liu-Ambrose, Teresa; Eng, Janice J

    2015-01-01

    Background Stroke survivors represent a target population in need of intervention strategies to promote cognitive function and prevent dementia. Both exercise and recreational activities are promising strategies. We assessed the effect of a six-month exercise and recreation program on executive functions in adults with chronic stroke. Methods A six-month ancillary study within a multi-centre randomized trial. Twenty-eight chronic stroke survivors (i.e., ≥ 12 months since an index stroke) were randomized to one of two experimental groups: intervention (INT; n=12) or delayed intervention (D-INT; n=16). Participants of the INT group received a six-month community-based structured program that included two sessions of exercise training and one session of recreation and leisure activities per week. Participants of the D-INT group received usual care. The primary outcome measure was the Stroop Test, a cognitive test of selective attention and conflict resolution. Secondary cognitive measures included set shifting and working memory. Mood, functional capacity, and general balance and mobility were additional secondary outcome measures. Results Compared with the D-INT group, the INT group significantly improved selective attention and conflict resolution (p=0.02), working memory (p=0.04), and functional capacity (p=0.02) at the end of the six-month intervention period. Improved selective attention and conflict resolution was significantly associated with functional capacity at six months (r=0.39; p=0.04). Conclusions This is the first randomized study to demonstrate that an exercise and recreation program can significantly benefit executive functions in community-dwelling chronic stroke survivors who are mildly cognitively impaired – a population at high-risk for dementia and functional decline. Thus, clinicians should consider prescribing exercise and recreational activities in the cognitive rehabilitation of chronic stroke survivors. Clinical Trial Registration http://clinicaltrials.gov. Unique identifier: NCT01085240. PMID:25440324

  17. Exercise countermeasures for bed rest deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John (Editor)

    1989-01-01

    The major objectives were to evaluate the efficiency of different modes of exercise (isotonic and isokinetic) for countering the effects of bed rest deconditioning on work capacity (peak oxygen uptake), muscular strength, orthostatic tolerance, posture, equilibrium and gait; and to collect additional data of a more fundamental nature to help understand how these deconditioning responses occur. These data will be used for writing prescriptions for exercise to be utilized by astronauts for maintaining work capacity and well-being on Freedom Station, and to determine what exercise devices should be place in the station.

  18. Effects of carbohydrate ingestion 15 min before exercise on endurance running capacity.

    PubMed

    Tokmakidis, Savvas P; Karamanolis, Ioannis A

    2008-06-01

    This study examined the effects of pre-exercise carbohydrate ingestion on exercise metabolism and endurance running capacity. Eleven active subjects (VO(2) (max) 49.0 +/- 1.7 mL x kg(-1) x min(-1), mean +/- SE) performed two exercise trials 15 min after ingesting glucose (G; 1 g x kg body mass(-1)) and placebo (CON). Each subject ran on a level treadmill for 5 min at 60%, 45 min at 70%, and then at 80% of VO(2) (max) until exhaustion. Serum glucose and plasma insulin reached their peak concentrations (p < 0.01) 15 min after glucose ingestion and declined at the onset of exercise. Serum glycerol concentrations were lower (p < 0.01) in the G trial than in the CON trial after 30 min of exercise to exhaustion. In addition, after 45 min of exercise to exhaustion, the levels of free fatty acids were lower in G than in CON (p < 0.05). No differences were observed in carbohydrate oxidation rates during exercise between treatments (G, 2.53 +/- 0.08 g x min(-1); CON, 2.40 +/- 0.09 g x min(-1)). Time to exhaustion was 12.8% longer in G (p < 0.01) than in CON. These results suggest that glucose ingestion 15 min before prolonged exercise provides an additional carbohydrate source to the exercising muscle, thus improving endurance running capacity.

  19. Sildenafil does not improve steady state cardiovascular hemodynamics, peak power, or 15-km time trial cycling performance at simulated moderate or high altitudes in men and women.

    PubMed

    Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L; Perry, Arlette C; Signorile, Joseph F; Jacobs, Kevin A

    2011-12-01

    Sildenafil improves oxygen delivery and maximal exercise capacity at very high altitudes (≥ 4,350 m), but it is unknown whether sildenafil improves these variables and longer-duration exercise performance at moderate and high altitudes where competitions are more common. The purpose of this study was to determine the effects of sildenafil on cardiovascular hemodynamics, arterial oxygen saturation (SaO(2)), peak exercise capacity (W (peak)), and 15-km time trial performance in endurance-trained subjects at simulated moderate (MA; ~2,100 m, 16.2% F(I)O(2)) and high (HA; ~3,900 m, 12.8% F(I)O(2)) altitudes. Eleven men and ten women completed two HA W (peak) trials after ingesting placebo or 50 mg sildenafil. Subjects then completed four exercise trials (30 min at 55% of altitude-specific W (peak) + 15-km time trial) at MA and HA after ingesting placebo or 50 mg sildenafil. All trials were performed in randomized, counterbalanced, and double-blind fashion. Sildenafil had little influence on cardiovascular hemodynamics at MA or HA, but did result in higher SaO(2) values (+3%, p < 0.05) compared to placebo during steady state and time trial exercise at HA. W (peak) at HA was 19% lower than SL (p < 0.001) and was not significantly affected by sildenafil. Similarly, the significantly slower time trial performance at MA (28.1 ± 0.5 min, p = 0.016) and HA (30.3 ± 0.6 min, p < 0.001) compared to SL (27.5 ± 0.6 min) was unaffected by sildenafil. We conclude that sildenafil is unlikely to exert beneficial effects at altitudes <4,000 m for a majority of the population.

  20. Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.

    PubMed

    Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert

    2015-09-01

    Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women. Copyright © 2015 the American Physiological Society.

  1. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    PubMed Central

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-01-01

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study. PMID:26506374

  2. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation.

    PubMed

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-10-21

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  3. Patient-Reported Dyspnea Correlates Poorly with Aerobic Exercise Capacity Measured During Cardiopulmonary Exercise Testing.

    PubMed

    Gaspard, Dany; Kass, Jonathan; Akers, Stephen; Hunter, Krystal; Pratter, Melvin

    2017-10-01

    Patient-reported dyspnea plays a central role in assessing cardiopulmonary disease. There is little evidence, however, that dyspnea correlates with objective exercise capacity measurements. If the correlation is poor, dyspnea as a proxy for objective assessment may be misleading. To compare patient's perception of dyspnea with maximum oxygen uptake (MaxVO2) during cardiopulmonary exercise testing (CPET). Fifty patients undergoing CPET for dyspnea evaluation were studied prospectively. Dyspnea assessment was measured by a metabolic equivalent of task (METs) table, Mahler Dyspnea Index, Borg Index, number of blocks walked, and flights of stairs climbed before stopping due to dyspnea. These descriptors were compared to MaxVO2. MaxVO2 showed low correlation with METs table (r = 0.388, p = 0.005) and no correlation with Mahler Index (r = 0.24, p = 0.093), Borg Index (r = -0.017, p = 0.905), number of blocks walked (r = 0.266, p = 0.077) or flights of stairs climbed (r = 0.188, p = 0.217). When adjusted for weight (maxVO2/kg), there was significant correlation between MaxVO2 and METs table (r = 0.711, p < 0.001), moderate correlation with blocks walked (r = 0.614, p < 0.001), and low correlation with Mahler Index (r = 0.488 p = 0.001), Borg Index (r = -0.333 p = 0.036), and flights of stairs (r = 0.457 p = 0.004). Subgroup analysis showed worse correlation when patients with normal CPET were excluded (12/50 excluded). Patients with BMI < 30 had no correlation between Max VO2 and the assessment methods, while patients with BMI > 30 had moderate correlation between MaxVO2 and METs table (r = 0.568, p = 0.002). Patient-reported dyspnea correlates poorly with MaxVO2 and fails to predict exercise capacity. Reliance on reported dyspnea may result in suboptimal categorization of cardiopulmonary disease severity.

  4. How Is Pulmonary Function and Exercise Tolerance Affected in Patients With AIS Who Have Undergone Spinal Fusion?

    PubMed

    Jeans, Kelly A; Lovejoy, John F; Karol, Lori A; McClung, Anna M

    2017-11-01

    Prospectively enrolled AIS patients who underwent spinal fusion, with 2 year follow-up. To evaluate the cardiovascular fitness and activity level in patients with AIS pre- and post-spinal fusion and to determine if initial curve magnitude or pulmonary function is predictive of exercise capacity. Researchers have tried to link pulmonary function testing (PFT) to exercise capacity; the results are mixed. Some report no improvement in PFTs or aerobic activity after surgical correction, and PFT measures were not predictive of exercise capacity. Conflicting results have shown Vo 2max results to fall within normal range in AIS patients while PFTs show minimal impairment. AIS patients underwent PFT and oxygen consumption (VO 2 ) testing during a submaximal graded exercise test (GXT) pre- and post-spinal fusion. Vo 2max was predicted in those patients who completed the test to 85% of maximal heart rate. Pre- to postoperative changes were assessed and then compared to age-matched control subjects. Correlations between Vo 2max and curve severity, pulmonary function, and activity level were assessed. Thirty-seven patients participated. Vo 2max was predicted in 23 patients pre- and postoperation. There was a significant reduction in Vo 2max postfusion (39.5 ± 6.5 mL/kg/min vs 42.1 ± 8.1 mL/kg/min, p = .033); however, compared with controls (40.5 ± 6.5 mL/kg/min), all data were within the normal range (p > .05). AIS patients reporting high activity had significantly greater Vo 2max than those reporting low activity both pre and postoperatively, but this difference only met statistical significance preop (p < .05). Curve magnitude and PFT measures were not found to correlate with Vo 2max (p > .05). Vo 2max in patients with AIS is within normal range both pre- and postfusion. Pulmonary limitations are accommodated for with a slightly increased breathing rate and a slightly reduced overall workload. Activity level rather than curve severity affects Vo 2max outcomes following fusion in AIS. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  5. Comparison of the effect of different modalities of physical exercise on functionality and anthropometric measurements in community-dwelling older women.

    PubMed

    Vasconcelos, Ana Paula Sena Lomba; Cardozo, Diogo Correia; Lucchetti, Alessandra Lamas Granero; Lucchetti, Giancarlo

    2016-10-01

    The present study aims to assess the effect of different modalities of physical exercises ("Functional Gymnastics"-FG, "Resistance Training"-RT and "Pilates combined with Hydrogymnastics"-PCH) on functional capacity and anthropometric measurements of 148 older women (60 years old or more). A comparative observational study was conducted. Functional and anthropometric measurements were assessed at baseline and after 16 weeks. All groups assessed showed significant changes between baseline and post-training. On the comparison of pre and post-training, differences in anthropometric measurements but not in functional test performance were found. The PCH had greater weight loss compared to the FG and RT, reduction in BMI compared to the FG and RT; reduction in waist compared to the FG and RT, and in hip compared to the RT. Although all groups improved, Pilates/Hydrogymnastics combination was more strongly associated with reductions in weight, BMI, waist and hip measurements but not functionality, than other modalities. These results highlight the role of combination physical exercise training in older women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. (−)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats

    PubMed Central

    Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.

    2013-01-01

    Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  7. An exploratory study of the effect of regular aquatic exercise on the function of neutrophils from women with fibromyalgia: role of IL-8 and noradrenaline.

    PubMed

    Bote, M E; García, J J; Hinchado, M D; Ortega, E

    2014-07-01

    Fibromyalgia (FM) syndrome is associated with elevated systemic inflammatory and stress biomarkers, and an elevated innate cellular response mediated by monocytes and neutrophils. Exercise is accepted as a good non-pharmacological therapy for FM. We have previously found that regular aquatic exercise decreases the release of inflammatory cytokines by monocytes from FM patients. However, its effects on the functional capacity of neutrophils have not been studied. The aim of the present exploratory study was to evaluate, in 10 women diagnosed with FM, the effect of an aquatic exercise program (8months, 2sessions/week, 60min/session) on their neutrophils' function (phagocytic process), and on IL-8 and NA as potential inflammatory and stress mediators, respectively. A control group of 10 inactive FM patients was included in the study. After 4months of the exercise program, no significant changes were observed in neutrophil function (chemotaxis, phagocytosis, or fungicidal capacity) or in IL-8 and NA. However, at the end of the exercise program (8months), a neuro-immuno-endocrine adaptation was observed, manifested by a significant decrease to values below those in the basal state in neutrophil chemotaxis, IL-8, and NA. No significant seasonal changes in these parameters were observed during the same period in the group of non-exercised FM patients. After the 8months of the exercise program, the FM patients had lower concentrations of IL-8 and NA together with reduced chemotaxis of neutrophils compared with the values determined in the same month in the control group of non-exercised FM women. These results suggest that "anti-inflammatory" and "anti-stress" adaptations may be contributing to the symptomatic benefits that have been attributed to regular aquatic exercise in FM syndrome, as was corroborated in the present study by the scores on the Fibromyalgia Impact Questionnaire. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    PubMed

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  9. Effects of obstructive sleep apnea and obesity on exercise function in children.

    PubMed

    Evans, Carla A; Selvadurai, Hiran; Baur, Louise A; Waters, Karen A

    2014-06-01

    Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Tertiary pediatric hospital. Healthy weight and obese children, aged 7-12 y. N/A. Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children.

  10. Effects of Exercise Training on Exercise Capacity in Pulmonary Arterial Hypertension: A Systematic Review of Clinical Trials.

    PubMed

    Babu, Abraham Samuel; Padmakumar, Ramachandran; Maiya, Arun G; Mohapatra, Aswini Kumar; Kamath, R L

    2016-04-01

    Pulmonary arterial hypertension (PAH) causes profound functional limitations and poor quality of life. Yet, there is only a limited literature available on the role of exercise training. This paper systematically reviews the effects of exercise training on exercise capacity in PAH. A systematic search of databases (PubMed, CINAHL, CENTRAL, Web of Science and PEDRo) was undertaken for English language articles published between 1(st) January 1980 and 31(st) March 2015. Quality rating for all articles was done using the Downs and Black scoring system. Fifteen articles of good (n=4), moderate (n=6) and poor (n=5) quality were included in the review. Exercise interventions included aerobic, resistance, inspiratory muscle training or a combination, for 6-18 weeks. Improvements were seen in exercise capacity (six minute walk distance (6MWD) and peak VO2) by 17-96m and 1.1-2.1ml/Kg/min, functional class by one class and quality of life, with minimal adverse events. There is evidence to recommend the use of exercise training as an adjunct to medical treatment in PAH. More clinical trials and research are required to assess the effects of different types of exercise programs in patients with PAH, while focussing on strong exercise endpoints to quantify the improvements seen with exercise training. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  11. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  12. [Insight into the training of patients with idiopathic inflammatory myopathy].

    PubMed

    Váncsa, Andrea

    2016-09-01

    Using current recommended treatment, a majority of patients with idiopathic inflammatory myopathy develop muscle impairment and poor health. Beneficial effects of exercise have been reported on muscle performance, aerobic capacity and health in chronic polymyositis and dermatomyositis, as well as in active disease and inclusion body myositis to some extent. Importantly, randomized controlled trials indicate that improved health and decreased clinical disease activity could be mediated through increased aerobic capacity. Recently, reports seeking pathomechanisms of the underlying effects of exercise on skeletal muscle indicate increased aerobic capacity (i.e. increased mitochondrial capacity and capillary density, reduced lactate levels), activation of genes of aerobic phenotype and muscle growth programs and down regulation of genes related to inflammation. Exercise contributes to both systemic and within-muscle adaptations demonstrating that it is fundamental for improving muscle performance and health in patients with idiopathic inflammatory myopathy. There is a need for randomized controlled trials to study the effects of exercise in patients with active disease and inclusion body myositis. Orv. Hetil., 2016, 157(39), 1557-1562.

  13. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    PubMed

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    PubMed Central

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  15. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    PubMed

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  16. Exercise capacity in polycystic kidney disease.

    PubMed

    Reinecke, Natália Lopes; Cunha, Thulio Marquez; Heilberg, Ita Pfeferman; Higa, Elisa Mieko Suemitsu; Nishiura, José Luiz; Neder, José Alberto; Almeida, Waldemar Silva; Schor, Nestor

    2014-08-01

    Reports about exercise performance in autosomal dominant polycystic kidney disease (ADPKD) are scarce. We aimed to evaluate exercise capacity and levels of nitric oxide and asymmetric dimethylarginine (ADMA) in normotensive patients with ADPKD. Prospective controlled cohort study. 26 patients with ADPKD and 30 non-ADPKD control participants (estimated glomerular filtration rate>60 mL/min/1.73 m2, aged 19-39 years, and blood pressure [BP]<140/85 mmHg). We excluded smokers, obese people, and individuals with associated diseases. ADPKD versus control. Exercise capacity and nitric oxide and ADMA levels in response to exercise. Cardiopulmonary exercise testing and serum and urinary nitric oxide, plasma ADMA, and BP levels before and after exercise. Mean basal systolic and diastolic BP, estimated glomerular filtration rate, and age did not differ between the ADPKD and control groups (116±12 vs. 110±11 mmHg, 76±11 vs 71±9 mmHg, 113±17 vs. 112±9.6 mL/min/1.73 m2, and 30±8 vs. 28.9±7.3 years, respectively). Peak oxygen uptake and anaerobic threshold were significantly lower in the ADPKD group than in controls (22.2±3.3 vs. 31±4.8 mL/kg/min [P<0.001] and 743.6±221 vs. 957.4±301 L/min [P=0.01], respectively). Postexercise serum and urinary nitric oxide levels in patients with ADPKD were not significantly different from baseline (45±5.1 vs. 48.3±4.6 μmol/L and 34.7±6.5 vs. 39.8±6.8 μmol/mg of creatinine, respectively), contrasting with increased postexercise values in controls (63.1±1.9 vs. 53.9±3.1 μmol/L [P=0.01] and 61.4±10.6 vs. 38.7±5.6 μmol/mg of creatinine [P=0.01], respectively). Similarly, whereas postexercise ADMA level did not change in the ADPKD group compared to those at rest (0.47±0.04 vs. 0.45±0.02 μmol/L [P=0.6]), it decreased in controls (0.39±0.02 vs. 0.47±0.02 μmol/L [P=0.006]), as expected. A negative correlation between nitric oxide and ADMA levels after exercise was found in only the control group (r = -0.60; P<0.01). Absence of measurements of flow-mediated dilatation and oxidative status. We found lower aerobic capacity in young normotensive patients with ADPKD with preserved kidney function and inadequate responses of nitric oxide and ADMA levels to acute exercise, suggesting the presence of early endothelial dysfunction in this disease. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. A randomized controlled trial comparing McKenzie therapy and motor control exercises on the recruitment of trunk muscles in people with chronic low back pain: a trial protocol.

    PubMed

    Halliday, Mark H; Ferreira, Paulo H; Hancock, Mark J; Clare, Helen A

    2015-06-01

    To investigate if McKenzie exercises when applied to a cohort of patients with chronic LBP who have a directional preference demonstrate improved recruitment of the transversus abdominis compared to motor control exercises when measurements were assessed from ultrasound images. A randomized blinded trial with a 12-month follow-up. The Physiotherapy department of Concord Hospital a primary health care environment. 70-adults with greater than three-month history of LBP who have a directional preference. McKenzie techniques or motor control exercises for 12-sessions over eight weeks. Transversus abdominus thickness measured from real time ultrasound images, pain, global perceived effect and capacity to self-manage. This study will be the first to investigate the possible mechanism of action that McKenzie therapy and motor control exercises have on the recruitment of the transversus abdominus in a cohort of low back pain patients sub-classified with a directional preference. Patients receiving matched exercises according to their directional preference are believed to have better outcomes than those receiving unmatched exercises. A better understanding of the mechanism of action that specific treatments such as motor control exercises or McKenzie exercises have on patients classified with a directional preference will allow therapist to make a more informed choice about treatment options. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  18. Cardiopulmonary involvement in Fabry's disease.

    PubMed

    Koskenvuo, Juha W; Kantola, Ilkka M; Nuutila, Pirjo; Knuuti, Juhani; Parkkola, Riitta; Mononen, Ilkka; Hurme, Saija; Kalliokoski, Riikka; Viikari, Jorma S; Wendelin-Saarenhovi, Maria; Kiviniemi, Tuomas O; Hartiala, Jaakko J

    2010-04-01

    Fabry's disease is an X-linked lysosomal storage disease caused by deficiency of alpha-galactosidase A enzyme activity. Decreased enzyme activity leads to accumulation of glycosphingolipid in different tissues, including endothelial and smooth-muscle cells and cardiomyocytes. There is controversial data on cardiopulmonary involvement in Fabry's disease, because many reports are based on small and selected populations with Fabry's disease. Furthermore, the aetiology of cardiopulmonary symptoms in Fabry's disease is poorly understood. We studied cardiopulmonary involvement in seventeen patients with Fabry's disease (20-65 years, 6 men) using ECG, bicycle stress, cardiac magnetic resonance imaging, spirometry, diffusing capacity and pulmonary high-resolution computed tomography (HRCT) tests. Cardiopulmonary symptoms were compared to observed parameters in cardiopulmonary tests. Left ventricular hypertrophy (LVH) and reduced exercise capacity are the most apparent cardiac changes in both genders with Fabry's disease. ECG parameters were normal when excluding changes related to LVH. Spirometry showed mild reduction in vital capacity and forced expiratory volume in one second (FEV I), and mean values in diffusing capacity tests were within normal limits. Generally, only slight morphological pulmonary changes were detected using pulmonary HRCT, and they were not associated with changes in pulmonary function. The self-reported amount of pulmonary symptoms associated only with lower ejection fraction (P < 0.001) and longer QRS-duration (P = 0.04) of all measured cardiopulmonary parameters, whereas cardiac symptoms have no statistically significant association with any of these parameters. LVH and reduced exercise capacity are the most apparent cardiopulmonary changes in Fabry's disease but they have only a minor association to cardiopulmonary symptoms.Therefore, routine cardiopulmonary evaluation in Fabry's disease using echocardiography is maybe enough when integrated to counselling for aerobic exercise training.

  19. Comparison of three methods to identify the anaerobic threshold during maximal exercise testing in patients with chronic heart failure.

    PubMed

    Beckers, Paul J; Possemiers, Nadine M; Van Craenenbroeck, Emeline M; Van Berendoncks, An M; Wuyts, Kurt; Vrints, Christiaan J; Conraads, Viviane M

    2012-02-01

    Exercise training efficiently improves peak oxygen uptake (V˙O2peak) in patients with chronic heart failure. To optimize training-derived benefit, higher exercise intensities are being explored. The correct identification of anaerobic threshold is important to allow safe and effective exercise prescription. During 48 cardiopulmonary exercise tests obtained in patients with chronic heart failure (59.6 ± 11 yrs; left ventricular ejection fraction, 27.9% ± 9%), ventilatory gas analysis findings and lactate measurements were collected. Three technicians independently determined the respiratory compensation point (RCP), the heart rate turning point (HRTP) and the second lactate turning point (LTP2). Thereafter, exercise intensity (target heart rate and workload) was calculated and compared between the three methods applied. Patients had significantly reduced maximal exercise capacity (68% ± 21% of predicted V˙O2peak) and chronotropic incompetence (74% ± 7% of predicted peak heart rate). Heart rate, workload, and V˙O2 at HRTP and at RCP were not different, but at LTP2, these parameters were significantly (P < 0.0001) higher. Mean target heart rate and target workload calculated using the LTP2 were 5% and 12% higher compared with those calculated using HRTP and RCP, respectively. The calculation of target heart rate based on LTP2 was 5% and 10% higher in 12 of 48 (25%) and 6 of 48 (12.5%) patients, respectively, compared with the other two methods. In patients with chronic heart failure, RCP and HRTP, determined during cardiopulmonary exercise tests, precede the occurrence of LTP2. Target heart rates and workloads used to prescribe tailored exercise training in patients with chronic heart failure based on LTP2 are significantly higher than those derived from HRTP and RCP.

  20. Exercise and physical activity in systemic lupus erythematosus: A systematic review with meta-analyses.

    PubMed

    O'Dwyer, Tom; Durcan, Laura; Wilson, Fiona

    2017-10-01

    Systemic lupus erythematosus (SLE) associates with enhanced cardiovascular (CV) risk frequently unexplained by traditional risk factors. Physical inactivity, common in SLE, likely contributes to the burden of CV risk and may also be a factor in co-morbid chronic fatigue. This systematic review evaluates whether exercise has a deleterious effect on disease activity in SLE, and explores effects on CV function and risk factors, physical fitness and function and health-related measures. A systematic review, with meta-analyses, was conducted; quasi-randomised and randomised controlled trials in SLE comparing at least one exercise group to controls were included. MEDLINE/PubMed, EMBASE, PEDro, AMED, CINAHL, The Cochrane Central Register of Controlled Trials, and relevant conference abstracts were searched. Random-effects meta-analyses were used to pool extracted data as mean differences. Heterogeneity was evaluated with χ 2 test and I 2 , with p < 0.05 considered significant. The search identified 3068 records, and 31 full-texts were assessed for eligibility. Eleven studies, including 469 participants, were included. Overall risk of bias of these studies was unclear. Exercise interventions were reported to be safe, while adverse effects were rare. Meta-analyses suggest that exercise does not adversely affect disease activity, positively influences depression, improves cardiorespiratory capacity and reduces fatigue, compared to controls. Exercise programmes had no significant effects on CV risk factors compared to controls. Therapeutic exercise programmes appear safe, and do not adversely affect disease activity. Fatigue, depression and physical fitness were improved following exercise-based interventions. A multimodal approach may be suggested, however the optimal exercise protocol remains unclear. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Diet and sex modify exercise and cardiac adaptation in the mouse

    PubMed Central

    Chen, Hao; Luczak, Elizabeth; McKee, Laurel A.; Regan, Jessica; Watson, Peter A.; Stauffer, Brian L.; Khalpey, Zain I; Mckinsey, Timothy A.; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A.

    2014-01-01

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex. PMID:25398983

  2. Diet and sex modify exercise and cardiac adaptation in the mouse.

    PubMed

    Konhilas, John P; Chen, Hao; Luczak, Elizabeth; McKee, Laurel A; Regan, Jessica; Watson, Peter A; Stauffer, Brian L; Khalpey, Zain I; Mckinsey, Timothy A; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A

    2015-01-15

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.

  3. Effect of Body Weight-supported Walking on Exercise Capacity and Walking Speed in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

    PubMed Central

    Someya, Fujiko

    2013-01-01

    Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901

  4. Cardiovascular group

    NASA Technical Reports Server (NTRS)

    Blomqvist, Gunnar

    1989-01-01

    As a starting point, the group defined a primary goal of maintaining in flight a level of systemic oxygen transport capacity comparable to each individual's preflight upright baseline. The goal of maintaining capacity at preflight levels would seem to be a reasonable objective for several different reasons, including the maintenance of good health in general and the preservation of sufficient cardiovascular reserve capacity to meet operational demands. It is also important not to introduce confounding variables in whatever other physiological studies are being performed. A change in the level of fitness is likely to be a significant confounding variable in the study of many organ systems. The principal component of the in-flight cardiovascular exercise program should be large-muscle activity such as treadmill exercise. It is desirable that at least one session per week be monitored to assure maintenance of proper functional levels and to provide guidance for any adjustments of the exercise prescription. Appropriate measurements include evaluation of the heart-rate/workload or the heart-rate/oxygen-uptake relationship. Respiratory gas analysis is helpful by providing better opportunities to document relative workload levels from analysis of the interrelationships among VO2, VCO2, and ventilation. The committee felt that there is no clear evidence that any particular in-flight exercise regimen is protective against orthostatic hypotension during the early readaptation phase. Some group members suggested that maintenance of the lower body muscle mass and muscle tone may be helpful. There is also evidence that late in-flight interventions to reexpand blood volume to preflight levels are helpful in preventing or minimizing postflight orthostatic hypotension.

  5. Thermoregulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Fortney, Suzanne M.

    1992-01-01

    The purpose of this flight proposal is to investigate human thermoregulatory parameters during exercise in microgravity. The hypothesis to be tested is that microgravity-adopted astronauts will exhibit accentuated increases in their core temperature (excess hyperthermia) during exercise because of altered heat loss responses due to reduced sweating and/or accentuated vasodilation. The specific aims are (1) to compare core and skin temperature responses during moderate exercise before flight and inflight; (2) to determine whether the hypothesized inflight excessive hyperthermia is due to increased heat production, reduced, sweating, impaired peripheral vasodilation, or to some combination of these factors; and (3) to determine whether heat production at an exercise load of 60 percent of the maximal working capacity is similar preflight and inflight. It is expected that the astronauts will exhibit excessive hyperthermia during exposure to microgravity which will be caused by decreased sweating and decreased skin blood flow.

  6. The Benefits of Exercise Training on Aerobic Capacity in Patients with Heart Failure and Preserved Ejection Fraction.

    PubMed

    do Prado, Danilo Marcelo Leite; Rocco, Enéas Antônio

    2017-01-01

    Heart failure with preserved ejection fraction (HFpEF) is defined as an inability of the ventricles to optimally accept blood from atria with blunted end- diastolic volume response by limiting the stroke volume and cardiac output. The HEpEF prevalence is higher in elderly and women and may be associated to hypertension, diabetes mellitus and atrial fibrillation. Severe exercise intolerance, manifested by dyspnea and fatigue during physical effort is the important chronic symptom in HFpEF patients, in which is the major determinant of their reduced quality of life. In this sense, several studies demonstrated reduced aerobic capacity in terms of lower peak oxygen consumption (peak VO 2 ) in patients with HFpEF. In addition, the lower aerobic capacity observed in HFpEF may be due to impaired both convective and diffusive O 2 transport (i.e. reduced cardiac output and arteriovenous oxygen difference, respectively).Exercise training program can help restore physiological function in order to increase aerobic capacity and improve the quality of life in HFpEF patients. Therefore, the primary purpose of this chapter was to clarify the physiological mechanisms associated with reduced aerobic capacity in HFpEF patients. Secondly, special focus was devoted to show how aerobic exercise training can improve aerobic capacity and quality of life in HFpEF patients.

  7. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations.

    PubMed

    Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J

    2015-01-01

    Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKα2 in the regulation of exercise capacity in vivo.

    PubMed

    Lee-Young, R S; Ayala, J E; Fueger, P T; Mayes, W H; Kang, L; Wasserman, D H

    2011-07-01

    Skeletal muscle AMP-activated protein kinase (AMPK)α2 activity is impaired in obese, insulin-resistant individuals during exercise. We determined whether this defect contributes to the metabolic dysregulation and reduced exercise capacity observed in the obese state. C57BL/6J wild-type (WT) mice and/or mice expressing a kinase dead AMPKα2 subunit in skeletal muscle (α2-KD) were fed chow or high-fat (HF) diets from 3 to 16 weeks of age. At 15 weeks, mice performed an exercise stress test to determine exercise capacity. In WT mice, muscle glucose uptake and skeletal muscle AMPKα2 activity was assessed in chronically catheterized mice (carotid artery/jugular vein) at 16 weeks. In a separate study, HF-fed WT and α2-KD mice performed 5 weeks of exercise training (from 15 to 20 weeks of age) to test whether AMPKα2 is necessary to restore work tolerance. HF-fed WT mice had reduced exercise tolerance during an exercise stress test, and an attenuation in muscle glucose uptake and AMPKα2 activity during a single bout of exercise (P<0.05 versus chow). In chow-fed α2-KD mice, running speed and time were impaired ∼45 and ∼55%, respectively (P<0.05 versus WT chow); HF feeding further reduced running time ∼25% (P<0.05 versus α2-KD chow). In response to 5 weeks of exercise training, HF-fed WT and α2-KD mice increased maximum running speed ∼35% (P<0.05 versus pre-training) and maintained body weight at pre-training levels, whereas body weight increased in untrained HF WT and α2-KD mice. Exercise training restored running speed to levels seen in healthy, chow-fed mice. HF feeding impairs AMPKα2 activity in skeletal muscle during exercise in vivo. Although this defect directly contributes to reduced exercise capacity, findings in HF-fed α2-KD mice show that AMPKα2-independent mechanisms are also involved. Importantly, α2-KD mice on a HF-fed diet adapt to regular exercise by increasing exercise tolerance, demonstrating that this adaptation is independent of skeletal muscle AMPKα2 activity.

  9. Maintenance of exercise training benefits is associated with adequate milk and dairy products intake in elderly hypertensive subjects following detraining.

    PubMed

    Moraes, Wilson Max Almeida Monteiro de; Santos, Neucilane Silveira Dos; Aguiar, Larissa Pereira; Sousa, Luís Gustavo Oliveira de

    2017-01-01

    To investigate whether maintenance of exercise training benefits is associated with adequate milk and dairy products intake in hypertensive elderly subjects after detraining. Twenty-eight elderly hypertensive patients with optimal clinical treatment underwent 16 weeks of multicomponent exercise training program followed by 6 weeks of detraining, and were classified according to milk and dairy products intake as low milk (<3 servings) and high milk (≥3 servings) groups. After exercise training, there was a significant reduction (p<0.001) in body weight, systolic, diastolic and mean blood pressure, an increase in lower and upper limb strength (chair-stand test and elbow flexor test) as well as in aerobic capacity (stationary gait test) and functional capacity (sit down, stand up, and move around the house) in both groups. However, in the Low Milk Intake Group significant changes were observed: body weight (+0.5%), systolic, diastolic and mean blood pressure (+0.9%,+1.4% and +1.1%, respectively), lower extremity strength (-7.0%), aerobic capacity (-3.9%) and functional capacity (+5.4) after detraining. These parameters showed no significant differences between post-detraining and post-training period in High Milk Intake Group. Maintenance of exercise training benefits related to pressure levels, lower extremity strength and aerobic capacity, is associated with adequate milk and dairy products intake in hypertensive elderly subjects following 6 weeks of detraining.

  10. Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.

    PubMed

    Martin, W H

    1993-07-01

    Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.

  11. A comparison of echocardiographic variables of right ventricular function with exercise capacity after bosentan treatment in patients with pulmonary arterial hypertension: Results from a multicenter, prospective, cohort study.

    PubMed

    Kim, Hyungseop; Bae Lee, Jin; Park, Jae-Hyeong; Yoo, Byung-Su; Son, Jang-Won; Yang, Dong Heon; Lee, Bong-Ryeol

    2017-01-01

    Bosentan reduces pulmonary arterial pressure and improves exercise capacity in patients with pulmonary arterial hypertension (PAH). However, there are limited data regarding the extent to which the changes in echocardiographic variables reflect improvements in exercise capacity. We aimed to assess the improvement of echocardiographic variables and exercise capacity after 6 months of bosentan treatment for PAH. We performed a prospective study from June 2012 to June 2015 in seven participating medical centers. Echocardiography, including tissue Doppler imaging (TDI) and the 6-minute walk test distance (6MWD), was performed at baseline and after 6 months of bosentan treatment. We analyzed 19 patients with PAH: seven with congenital shunt, six with collagen vascular disease, and six with idiopathic PAH. After bosentan treatment, mean 6MWD increased by 50 meters. Right ventricle (RV) systolic pressure, tricuspid annular plane systolic excursion, myocardial performance index (MPI) derived from TDI (MPI-TDI) of RV and left ventricle (LV), RV fractional area change, and RV ejection fraction were significantly improved. In particular, the magnitude of RV and LV MPI-TDI showed good correlation with changes in the 6MWD. The magnitude of RV and LV MPI-TDI was strongly associated with improvements in exercise capacity. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:28-34, 2017. © 2016 Wiley Periodicals, Inc.

  12. Effects of Endurance and Endurance Strength Training on Body Composition and Physical Capacity in Women with Abdominal Obesity.

    PubMed

    Skrypnik, Damian; Bogdański, Paweł; Mądry, Edyta; Karolkiewicz, Joanna; Ratajczak, Marzena; Kryściak, Jakub; Pupek-Musialik, Danuta; Walkowiak, Jarosław

    2015-01-01

    To compare the effects of endurance training with endurance strength training on the anthropometric, body composition, physical capacity, and circulatory parameters in obese women. 44 women with abdominal obesity were randomized into groups A and B, and asked to perform endurance (A) and endurance strength training (B) for 3 months, 3 times/week, for 60 min. Dual-energy X-ray absorptiometry and Graded Exercise Test were performed before and after training. Significant decreases in body mass, BMI, total body fat, total body fat mass, and waist and hip circumference were observed after both types of intervention. Marked increases in total body lean and total body fat-free mass were documented in group B. In both groups, significant increases in peak oxygen uptake, time to exhaustion, maximal work rate, and work rate at ventilatory threshold were accompanied by noticeably decreased resting heart rate, resting systolic blood pressure, and resting and exercise diastolic blood pressure. No significant differences were noticed between groups for the investigated parameters. Our findings demonstrate evidence for a favorable and comparable effect of 3-month endurance and endurance strength training on anthropometric parameters, body composition, physical capacity, and circulatory system function in women with abdominal obesity. © 2015 S. Karger GmbH, Freiburg.

  13. Effects of Endurance and Endurance Strength Training on Body Composition and Physical Capacity in Women with Abdominal Obesity

    PubMed Central

    Skrypnik, Damian; Bogdański, Paweł; Mądry, Edyta; Karolkiewicz, Joanna; Ratajczak, Marzena; Kryściak, Jakub; Pupek-Musialik, Danuta; Walkowiak, Jarosław

    2015-01-01

    Aims To compare the effects of endurance training with endurance strength training on the anthropometric, body composition, physical capacity, and circulatory parameters in obese women. Methods 44 women with abdominal obesity were randomized into groups A and B, and asked to perform endurance (A) and endurance strength training (B) for 3 months, 3 times/week, for 60 min. Dual-energy X-ray absorptiometry and Graded Exercise Test were performed before and after training. Results Significant decreases in body mass, BMI, total body fat, total body fat mass, and waist and hip circumference were observed after both types of intervention. Marked increases in total body lean and total body fat-free mass were documented in group B. In both groups, significant increases in peak oxygen uptake, time to exhaustion, maximal work rate, and work rate at ventilatory threshold were accompanied by noticeably decreased resting heart rate, resting systolic blood pressure, and resting and exercise diastolic blood pressure. No significant differences were noticed between groups for the investigated parameters. Conclusion Our findings demonstrate evidence for a favorable and comparable effect of 3-month endurance and endurance strength training on anthropometric parameters, body composition, physical capacity, and circulatory system function in women with abdominal obesity. PMID:25968470

  14. Exercise-heat acclimation in young and older trained cyclists.

    PubMed

    Best, Stuart; Thompson, Martin; Caillaud, Corinne; Holvik, Liv; Fatseas, George; Tammam, Amr

    2014-11-01

    The purpose of this study was to investigate the effect of age on the capacity to acclimatise to exercise-heat stress. This study hypothesised that age would not affect body temperature and heat loss effector responses to short-term exercise-heat acclimation in trained subjects. Seven young subjects (19-32 years) were matched with 7 older subjects (50-63 years). Subjects were highly trained but not specifically heat acclimated when they exercised for 60 min at 70%VO2max in hot-dry (35 °C, 40%RH) and thermoneutral (20 °C, 40%RH) conditions, pre and post 6 days of exercise-heat acclimation (70%VO2max, 35 °C, 40%RH). Rectal temperature (Tr), skin temperature (Tsk), heart rate (HR), cutaneous vascular conductance (CVC) and whole body sweat loss (Msw) were measured during each testing session and Tr and HR were measured during each acclimation session. Tr, Tsk, %HRmax, CVC and Msw were similar across age groups both pre and post heat acclimation. Following heat acclimation relative decreases and increases in Tr and Msw, respectively, were similar in both subject groups. There was a significant reduction in heart rate (%HRmax) and increase in final CVC following the acclimation programme in the young group (all p < 0.05) but not the older group. When comparing young and older well trained adults we found age affected the cardiovascular adaptation but not body temperature or whole body sweat loss to exercise-heat acclimation. These data suggest age does not affect the capacity to acclimatise to exercise-heat stress in highly trained adults undergoing short-term heat acclimation. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet.

    PubMed

    Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; Lee-Young, Robert S; Mayes, Wesley H; James, Freyja D; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H

    2012-10-15

    The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2(Tg)), mitochondria-targeted catalase (mcat(Tg)), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H(2)O(2) emitting potential (JH(2)O(2)) in muscle fibers. sod2(Tg) did not decrease JH(2)O(2) in chow-fed mice, but decreased JH(2)O(2) in HF-fed mice. mcat(Tg) and mtAO decreased JH(2)O(2) in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2(Tg) in chow-fed mice, but was increased in HF-fed sod2(Tg) and both chow- and HF-fed mcat(Tg) and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2(Tg), mcat(Tg), and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[(14)C]-deoxyglucose during exercise. In chow-fed mice, sod2(Tg), mcat(Tg), and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2(Tg) and mcat(Tg) mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state.

  16. Comparison of Different Forms of Exercise Training in Patients With Cardiac Disease: Where Does High-Intensity Interval Training Fit?

    PubMed

    Gayda, Mathieu; Ribeiro, Paula A B; Juneau, Martin; Nigam, Anil

    2016-04-01

    In this review, we discuss the most recent forms of exercise training available to patients with cardiac disease and their comparison or their combination (or both) during short- and long-term (phase II and III) cardiac rehabilitation programs. Exercise training modalities to be discussed include inspiratory muscle training (IMT), resistance training (RT), continuous aerobic exercise training (CAET), and high-intensity interval training (HIIT). Particular emphasis is placed on HIIT compared or combined (or both) with other forms such as CAET or RT. For example, IMT combined with CAET was shown to be superior to CAET alone for improving functional capacity, ventilatory function, and quality of life in patients with chronic heart failure. Similarly, RT combined with CAET was shown to optimize benefits with respect to functional capacity, muscle function, and quality of life. Furthermore, in recent years, HIIT has emerged as an alternative or complementary (or both) exercise modality to CAET, providing equivalent if not superior benefits to conventional continuous aerobic training with respect to aerobic fitness, cardiovascular function, quality of life, efficiency, safety, tolerance, and exercise adherence in both short- and long-term training studies. Finally, short-interval HIIT was shown to be useful in the initiation and improvement phases of cardiac rehabilitation, whereas moderate- or longer-interval (or both) HIIT protocols appear to be more appropriate for the improvement and maintenance phases because of their high physiological stimulus. We now propose progressive models of exercise training (phases II-III) for patients with cardiac disease, including a more appropriate application of HIIT based on the scientific literature in the context of a multimodal cardiac rehabilitation program. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    PubMed

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  18. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.

    PubMed

    Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B

    2017-04-01

    We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg -1 ·day -1 ) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O 2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients. NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.

  19. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    PubMed

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  20. The Link between Reduced Inspiratory Capacity and Exercise Intolerance in Chronic Obstructive Pulmonary Disease.

    PubMed

    O'Donnell, Denis E; Elbehairy, Amany F; Webb, Katherine A; Neder, J Alberto

    2017-07-01

    Low inspiratory capacity (IC), chronic dyspnea, and reduced exercise capacity are inextricably linked and are independent predictors of increased mortality in chronic obstructive pulmonary disease. It is no surprise, therefore, that a major goal of management is to improve IC by reducing lung hyperinflation to improve respiratory symptoms and health-related quality of life. The negative effects of lung hyperinflation on respiratory muscle and cardiocirculatory function during exercise are now well established. Moreover, there is growing appreciation that a key mechanism of exertional dyspnea in chronic obstructive pulmonary disease is critical mechanical constraints on tidal volume expansion during exercise when resting IC is reduced. Further evidence for the importance of lung hyperinflation comes from multiple studies, which have reported the clinical benefits of therapeutic interventions that reduce lung hyperinflation and increase IC. A reduced IC in obstructive pulmonary disease is further eroded by exercise and contributes to ventilatory limitation and dyspnea. It is an important outcome for both clinical and research studies.

  1. Enzymatic capacities of skeletal muscle - Effects of different types of training

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Hugman, G. R.

    1981-01-01

    Long-term adaptation mechanisms to maintain homeostasis at increased levels of exertion such as those caused by regular exercise are described. Mitochondrial changes have been found to be a result of endurance exercises, while mitochondrial responses to other types of exercise are small. Further discussion is devoted to long-term changes in glucose transport, hexokinase, phosphofructokinase, pyruvate kinase, and the increased sensitivity of an endurance trained muscle to insulin. Less lactate has been found to be produced by the skeletal muscles at the same work rate after adaptation to endurance exercise training, and the capacity for the flux of the two-carbon acetyl chain through the citric acid cycle increases in skeletal muscles in response to endurance training. Finally, endurance training is noted to result in glycogen sparing and an increase in the capacity to utilize fatty acids.

  2. Exercise Tolerance Testing in a Prospective Cohort of Adolescents with Chronic Fatigue Syndrome and Recovered Controls Following Infectious Mononucleosis

    PubMed Central

    Katz, Ben Z.; Boas, Steven; Shiraishi, Yukiko; Mears, Cynthia J.; Taylor, Renee

    2010-01-01

    Objective Six months following acute infectious mononucleosis (IM), 13%, of adolescents meet criteria for chronic fatigue syndrome (CFS). We measured exercise tolerance in adolescents with CFS and controls 6 months following IM. Study design 21 adolescents with CFS 6 months following IM and 21 recovered controls performed a maximal incremental exercise tolerance test with breath-by-breath gas analysis. Values expressed are mean ± standard deviation. Results The adolescents diagnosed with CFS and controls did not differ in age, weight, body-mass index or peak work capacity. Lower VO2 (oxygen consumption) peak percent of predicted was seen in adolescents with CFS compared with controls (CFS 99.3 ± 16.6 vs control 110.7 ± 19.9, p = 0.05). Peak oxygen pulse also was lower in adolescents with CFS compared with recovered controls (CFS 12.4 ± 2.9 vs controls 14.9 ± 4.3, p = 0.03). Conclusions Adolescents with CFS 6 months following IM have a lower degree of fitness and efficiency of exercise than recovered adolescents. Whether these abnormal exercise findings are a cause or effect of CFS is unknown. IM can lead to both fatigue and measurable changes in exercise testing in a subset of adolescents. PMID:20447647

  3. The measurement of energy consumption by exercise bikes

    NASA Astrophysics Data System (ADS)

    Jwo, Ching-Song; Chien, Chao-Chun; Jeng, Lung-Yue

    2006-11-01

    This paper is intended as an investigation is that to measure the amount of energy consumption can be consumed by riding bikes and also could recycle the consuming energy during exercising. Exercisers ride the bicycle inputting the driving force through a compressor of refrigeration system, which can circulate the refrigerant in the system and calculate the calorific capacity from the spread of the condenser. In addition, we can make up chiller water in the evaporator. Experiments were performed to prove the hypotheses. Therefore, this experiment has designed the sports goods which reach the purpose of doing exercise, measuring accurately the consuming calorific capacity and having the function of making chiller water. After exercising, you can drink the water producing during exercise and apply on the system of air conditioner, which attains two objectives.

  4. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women.

    PubMed

    Cardoso, A M; Bagatini, M D; Roth, M A; Martins, C C; Rezer, J F P; Mello, F F; Lopes, L F D; Morsch, V M; Schetinger, M R C

    2012-12-01

    The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.

  5. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women

    PubMed Central

    Cardoso, A.M.; Bagatini, M.D.; Roth, M.A.; Martins, C.C.; Rezer, J.F.P.; Mello, F.F.; Lopes, L.F.D.; Morsch, V.M.; Schetinger, M.R.C.

    2012-01-01

    The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity. PMID:23090122

  6. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise.

    PubMed

    Davison, Glen; Callister, Robin; Williamson, Gary; Cooper, Karen A; Gleeson, Michael

    2012-02-01

    Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.

  7. Effects of combined exercise training and electromyostimulation treatments in chronic heart failure: A prospective multicentre study.

    PubMed

    Iliou, Marie C; Vergès-Patois, Bénédicte; Pavy, Bruno; Charles-Nelson, Anais; Monpère, Catherine; Richard, Rudy; Verdier, Jean C

    2017-08-01

    Background Exercise training as part of a comprehensive cardiac rehabilitation is recommended for patients with cardiac heart failure. It is a valuable method for the improvement of exercise tolerance. Some studies reported a similar improvement with quadricipital electrical myostimulation, but the effect of combined exercise training and electrical myostimulation in cardiac heart failure has not been yet evaluated in a large prospective multicentre study. Purpose The aim of this study was to determine whether the addition of low frequency electrical myostimulation to exercise training may improve exercise capacity and/or muscular strength in cardiac heart failure patients. Methods Ninety-one patients were included (mean age: 58 ± 9 years; New York Heart Association II/III: 52/48%, left ventricular ejection fraction: 30 ± 7%) in a prospective French study. The patients were randomised into two groups: 41 patients in exercise training and 50 in exercise training + electrical myostimulation. All patients underwent 20 exercise training sessions. In addition, in the exercise training + electrical myostimulation group, patients underwent 20 low frequency (10 Hz) quadricipital electrical myostimulation sessions. Each patient underwent a cardiopulmonary exercise test, a six-minute walk test, a muscular function evaluation and a quality of life questionnaire, before and at the end of the study. Results A significant improvement of exercise capacity (Δ peak oxygen uptake+15% in exercise training group and +14% in exercise training + electrical myostimulation group) and of quality of life was observed in both groups without statistically significant differences between the two groups. Mean creatine kinase level increased in the exercise training group whereas it remained stable in the combined group. Conclusions This prospective multicentre study shows that electrical myostimulation on top of exercise training does not demonstrate any significant additional improvement in exercise capacity in cardiac heart failure patients.

  8. Impact of a brief exercise program on the physical and psychosocial health of prostate cancer survivors: A pilot study.

    PubMed

    Skinner, Tina L; Peeters, Gmme Geeske; Croci, Ilaria; Bell, Katherine R; Burton, Nicola W; Chambers, Suzanne K; Bolam, Kate A

    2016-09-01

    It is well established that exercise is beneficial for prostate cancer survivors. The challenge for health professionals is to create effective strategies to encourage survivors to exercise in the community. Many community exercise programs are brief in duration (e.g. <5 exercise sessions); whilst evidence for the efficacy of exercise within the literature are derived from exercise programs ≥8 weeks in duration, it is unknown if health benefits can be obtained from a shorter program. This study examined the effect of a four-session individualized and supervised exercise program on the physical and psychosocial health of prostate cancer survivors. Fifty-one prostate cancer survivors (mean age 69±7 years) were prescribed 1 h, individualized, supervised exercise sessions once weekly for 4 weeks. Participants were encouraged to increase their physical activity levels outside of the exercise sessions. Objective measures of muscular strength, exercise capacity, physical function and flexibility; and self-reported general, disease-specific and psychosocial health were assessed at baseline and following the intervention. Improvements were observed in muscle strength (leg press 17.6 percent; P < 0.001), exercise capacity (400-m walk 9.3 percent; P < 0.001), physical function (repeated chair stands 20.1 percent, usual gait speed 19.3 percent, timed up-and-go 15.0 percent; P < 0.001), flexibility (chair sit and reach +2.9 cm; P < 0.001) and positive well-being (P = 0.014) following the exercise program. A four-session exercise program significantly improved the muscular strength, exercise capacity, physical function and positive well-being of prostate cancer survivors. This short-duration exercise program is safe and feasible for prostate cancer survivors and a randomized controlled trial is now required to determine whether a similar individualized exercise regimen improves physical health and mental well-being over the short, medium and long term. © 2016 John Wiley & Sons Australia, Ltd.

  9. Use of ratings of perceived exertion in sports.

    PubMed

    Eston, Roger

    2012-06-01

    The rating of perceived exertion (RPE) is a recognized marker of intensity and of homeostatic disturbance during exercise. It is typically monitored during exercise tests to complement other measures of intensity. The purpose of this commentary is to highlight the remarkable value of RPE as a psychophysiological integrator in adults. It can be used in such diverse fashions as to predict exercise capacity, assess changes in training status, and explain changes in pace and pacing strategy. In addition to using RPE to self-regulate exercise, a novel application of the intensity:RPE relationship is to clamp RPE at various levels to produce self-paced bouts of exercise, which can be used to assess maximal functional capacity. Research also shows that the rate of increase in RPE during self-paced competitive events of varying distance, or constant-load tasks where the participant exercises until volitional exhaustion, is proportional to the duration that remains. These findings suggest that the brain regulates RPE and performance in an anticipatory manner based on awareness of metabolic reserves at the start of an event and certainty of the anticipated end point. Changes in pace may be explained by a continuous internal negotiation of momentary RPE compared with a preplanned "ideal rate of RPE progression" template, which takes into account the portion of distance covered and the anticipated end point. These observations have led to the development of new techniques to analyze the complex relationship of RPE and pacing. The use of techniques to assess frontal-cortex activity will lead to further advances in understanding.

  10. [Results of a physical therapy program in nursing home residents: A randomized clinical trial].

    PubMed

    Casilda-López, Jesús; Torres-Sánchez, Irene; Garzón-Moreno, Victor Manuel; Cabrera-Martos, Irene; Valenza, Marie Carmen

    2015-01-01

    The maintenance of the physical functionality is a key factor in the care of the elderly. Inactive people have a higher risk of death due to diseases associated with inactivity. In addition, the maintenance of optimal levels of physical and mental activity has been suggested as a protective factor against the development and progression of chronic illnesses and disability. The objective of this study is to assess the effectiveness of an 8-week exercise program with elastic bands, on exercise capacity, walking and balance in nursing home residents. A nursing home sample was divided into two groups, intervention group (n=26) and control group (n=25). The intervention group was included in an 8-week physical activity program using elastic bands, twice a week, while the control group was took part in a walking programme. Outcome measurements were descriptive variables (anthropometric characteristics, quality of life, fatigue, fear of movement) and fundamental variables (exercise capacity, walking and balance). A significant improvement in balance and walking speed was observed after the programme. Additionally, exercise capacity improved significantly (P≤.001), and the patients showed an improvement in perceived dyspnea after the physical activity programme in the intervention group. The exercise program was safe and effective in improving dyspnea, exercise capacity, walking, and balance in elderly. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  11. Low-level carbon monoxide exposure and work capacity at 1600 meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiser, P.C.; Cropp, G.J.A.; Morrill, C.G.

    At sea level, low-level carbon monoxide (CO) exposure impairs exercise performance. To determine if altitude residence at 1600 m augments this CO effect, two studies of graded treadmill work capacity were done. The Initial Study investigated nine, non-smoking male subjects breathing either filtered air (FA) or 28 ppm CO in filtered air. End-exercise carboxyhemoglobin (HbCO) levels averaged 0.9 %HbCO breathing FA and 4.7 %HbCO breathing CO. Total work performance and aerobic work capacity were reduced. Work heart rate was elevated, and post-exercise left ventricular ejection time breathing CO did not shorten to the same degree as with FA exposure. COmore » exposure resulted in a lower anaerobic threshold, and a greater minute ventilation occurred at work rates heavier than the anaerobic threshold due to an increased blood lactate level. The Dose-Response Study exposed twelve subjects to FA or CO such that the end-exercise HbCO levels were 0.7, 3.5, 5.4 and 8.7 %HbCO. Exercise performance and aerobic work capacity were impaired in proportion to the CO exposure. In both studies, maximal cardio-pulmonary responses were not different, but submaximal exercise changes were elevated breathing CO. Thus, in healthy young men residing near 1600 m, an increase in low-level CO exposure produced a linear decrement in maximal aerobic performance similar to that reported at sea level.« less

  12. A Pilot Study: The Beneficial Effects of Combined Statin-exercise Therapy on Cognitive Function in Patients with Coronary Artery Disease and Mild Cognitive Decline.

    PubMed

    Toyama, Kensuke; Sugiyama, Seigo; Oka, Hideki; Hamada, Mari; Iwasaki, Yuri; Horio, Eiji; Rokutanda, Taku; Nakamura, Shinichi; Spin, Joshua M; Tsao, Philip S; Ogawa, Hisao

    2017-01-01

    Objective Hypercholesterolemia, a risk factor in cognitive impairment, can be treated with statins. However, cognitive decline associated with "statins" (HMG-CoA reductase inhibitors) is a clinical concern. This pilot study investigated the effects of combining statins and regular exercise on cognitive function in coronary artery disease (CAD) patients with prior mild cognitive decline. Methods We recruited 43 consecutive CAD patients with mild cognitive decline. These patients were treated with a statin and weekly in-hospital aerobic exercise for 5 months. We measured serum lipids, exercise capacity, and cognitive function using the mini mental state examination (MMSE). Results Low-density lipoprotein cholesterol levels were significantly decreased, and maximum exercise capacity (workload) was significantly increased in patients with CAD and mild cognitive decline after treatment compared with before. Combined statin-exercise therapy significantly increased the median (range) MMSE score from 24 (22-25) to 25 (23-27) across the cohort (p<0.01). Changes in body mass index (BMI) were significantly and negatively correlated with changes in the MMSE. After treatment, MMSE scores in the subgroup of patients that showed a decrease in BMI were significantly improved, but not in the BMI-increased subgroup. Furthermore, the patients already on a statin at the beginning of the trial displayed a more significant improvement in MMSE score than statin-naïve patients, implying that exercise might be the beneficial aspect of this intervention as regards cognition. In a multivariate logistic regression analysis adjusted for age >65 years, sex, and presence of diabetes mellitus, a decrease in BMI during statin-exercise therapy was significantly correlated with an increase in the MMSE score (odds ratio: 4.57, 95% confidence interval: 1.05-20.0; p<0.05). Conclusion Statin-exercise therapy may help improve cognitive dysfunction in patients with CAD and pre-existing mild cognitive decline.

  13. The impact of gas exchange measurement during exercise in pulmonary sarcoidosis.

    PubMed

    Kollert, Florian; Geck, Barbara; Suchy, Rolf; Jörres, Rudolf A; Arzt, Michael; Heidinger, Dominic; Hamer, Okka W; Prasse, Antje; Müller-Quernheim, Joachim; Pfeifer, Michael; Budweiser, Stephan

    2011-01-01

    Pulmonary sarcoidosis shows a remarkable heterogeneity of phenotypes ranging from bihilar lymphadenopathy to progressive fibrosis. Individual disease assessment is demanding and requires sensible, practical measures. We tested whether gas exchange measurements during exercise reflects disease activity and clinical course in sarcoidosis. In 149 patients with proven pulmonary sarcoidosis the alveolar-arterial oxygen pressure gradient (P(A-a)O(2)) during exercise was assessed and compared with chest X-ray typing, pulmonary function, single breath-diffusing capacity for carbon monoxide (DL(CO)), serological markers, cell composition of bronchoalveolar lavage fluid (BALF) and clinical course. Patients were categorized according to thresholds of P(A-a)O(2) during exercise. Chest X-ray typing, pulmonary function, DL(CO) and the need for immunosuppressive treatment differed between the disease categories based on P(A-a)O(2) during exercise (p < 0.0001 each). Patients with an impairment of gas exchange during exercise also showed elevated levels of neopterin (p = 0.002) and higher percentages of neutrophils (p = 0.013) and eosinophils (p < 0.0001) in BALF. Multivariate regression analysis showed that forced vital capacity (FVC) (p = 0.009) and P(A-a)O(2) during exercise (p < 0.0001) were independently associated with a prolonged need for immunosuppressive treatment (>1 year), but not DL(CO). About 50% (n = 75) of the study population showed a normal spirometry. Even in this subgroup 23% had an impaired gas exchange during exercise, which correlated with chest X-ray types (p < 0.0001) and the need for immunosuppressive treatment (p < 0.005). Impaired gas exchange during exercise reflects disease activity and its extent and is associated with a prolonged need for immunosuppressive treatment during follow-up in patients with pulmonary sarcoidosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Effect of Moderate-Intensity Exercise Training on Peak Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy: A Randomized Clinical Trial.

    PubMed

    Saberi, Sara; Wheeler, Matthew; Bragg-Gresham, Jennifer; Hornsby, Whitney; Agarwal, Prachi P; Attili, Anil; Concannon, Maryann; Dries, Annika M; Shmargad, Yael; Salisbury, Heidi; Kumar, Suwen; Herrera, Jonathan J; Myers, Jonathan; Helms, Adam S; Ashley, Euan A; Day, Sharlene M

    2017-04-04

    Formulating exercise recommendations for patients with hypertrophic cardiomyopathy is challenging because of concern about triggering ventricular arrhythmias and because a clinical benefit has not been previously established in this population. To determine whether moderate-intensity exercise training improves exercise capacity in adults with hypertrophic cardiomyopathy. A randomized clinical trial involving 136 patients with hypertrophic cardiomyopathy was conducted between April 2010 and October 2015 at 2 academic medical centers in the United States (University of Michigan Health System and Stanford University Medical Center). Date of last follow-up was November 2016. Participants were randomly assigned to 16 weeks of moderate-intensity exercise training (n = 67) or usual activity (n = 69). The primary outcome measure was change in peak oxygen consumption from baseline to 16 weeks. Among the 136 randomized participants (mean age, 50.4 [SD, 13.3] years; 42% women), 113 (83%) completed the study. At 16 weeks, the change in mean peak oxygen consumption was +1.35 (95% CI, 0.50 to 2.21) mL/kg/min among participants in the exercise training group and +0.08 (95% CI, -0.62 to 0.79) mL/kg/min among participants in the usual-activity group (between-group difference, 1.27 [95% CI, 0.17 to 2.37]; P = .02). There were no occurrences of sustained ventricular arrhythmia, sudden cardiac arrest, appropriate defibrillator shock, or death in either group. In this preliminary study involving patients with hypertrophic cardiomyopathy, moderate-intensity exercise compared with usual activity resulted in a statistically significant but small increase in exercise capacity at 16 weeks. Further research is needed to understand the clinical importance of this finding in patients with hypertrophic cardiomyopathy, as well as the long-term safety of exercise at moderate and higher levels of intensity. clinicaltrials.gov Identifier: NCT01127061.

  15. Intrinsic aerobic capacity sets a divide for aging and longevity

    PubMed Central

    Koch, Lauren Gerard; Kemi, Ole J.; Qi, Nathan; Leng, Sean X.; Bijma, Piter; Gilligan, Lori J.; Wilkinson, John E.; Wisløff, Helene; Høydal, Morten A.; Rolim, Natale; Abadir, Peter M.; Van Grevenhof, Ilse; Smith, Godfrey L.; Burant, Charles F.; Ellingsen, Øyvind; Britton, Steven L.; Wisløff, Ulrik

    2011-01-01

    Rationale Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Objectives Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Methods and Results Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15 and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO2max), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28-45% shorter than high capacity rats (hazard ratio, 0.06; P<.001). VO2max, measured across adulthood was a reliable predictor of lifespan (P<.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca2+ handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (VO2), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. Conclusions These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and useful for deeper mechanistic exploration. PMID:21921265

  16. Intrinsic aerobic capacity sets a divide for aging and longevity.

    PubMed

    Koch, Lauren Gerard; Kemi, Ole J; Qi, Nathan; Leng, Sean X; Bijma, Piter; Gilligan, Lori J; Wilkinson, John E; Wisløff, Helene; Høydal, Morten A; Rolim, Natale; Abadir, Peter M; van Grevenhof, Elizabeth M; Smith, Godfrey L; Burant, Charles F; Ellingsen, Oyvind; Britton, Steven L; Wisløff, Ulrik

    2011-10-28

    Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO(2max), measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca(2+) handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.

  17. Effect of a six month yoga exercise intervention on fitness outcomes for breast cancer survivors

    PubMed Central

    Hughes, Daniel C.; Darby, Nydia; Gonzalez, Krystle; Boggess, Terri; Morris, Ruth M.; Ramirez, Amelie G.

    2016-01-01

    Yoga-based exercise has proven to be beneficial for practitioners, including cancer survivors. This study reports on the improvements in physical fitness for 20 breast cancer survivors who participated in a six-month yoga-based (YE) exercise program. Results are compared to a comprehensive exercise (CE) program group and a comparison (C) exercise group who chose their own exercises. “Pre” and “post” fitness assessments included measures of anthropometrics, cardiorespiratory capacity, strength and flexibility. Descriptive statistics, effect size (d), dependent sample ‘t’ tests for all outcome measures were calculated for the YE group. Significant improvements included: decreased % body fat (−3.00%, d = −0.44, p < 0.001); increased sit to stand leg strength repetitions (2.05, d = 0.48, p = 0.003); forward reach (3.59 cm, d = 0.61, p = 0.01); and right arm sagittal range of motion (6.50°, d = 0.92, p= 0.05). To compare YE outcomes with the other two groups, a one-way analysis of variance (ANOVA) was used. YE participants significantly outperformed C participants on “forward reach” (3.59 cm gained versus −2.44 cm lost), (p = 0.009) and outperformed CE participants (3.59 cm gained versus 1.35 cm gained), but not statistically significant. Our results support yoga-based exercise modified for breast cancer survivors as safe and effective. PMID:26395825

  18. Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes

    PubMed Central

    Dubé, John J.; Broskey, Nicholas T.; Despines, Alex A.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.; Amati, Francesca

    2015-01-01

    Purpose The goal of this study was to explore the effect of lifelong aerobic exercise (i.e. chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared to non-competitive recreational younger (YA) athletes matched by frequency and mode of training. Methods Thirteen OA (64.8±4.9 yo) exercising ≥ 5 times/week were compared to 14 YA (27.8±4.9 yo) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase (SDH) and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. Results V̇O2peak was lower in OA than YA. OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, while type II fibers were smaller in OA compared to YA. Both groups had similar SDH content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, CHO-ox was lower in OA but with similar Fatox. Conclusion Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older to younger athletes matched by exercise mode and frequency. PMID:26460630

  19. Exercise-induced bronchoconstriction alters airway nitric oxide exchange in a pattern distinct from spirometry.

    PubMed

    Shin, Hye-Won; Schwindt, Christina D; Aledia, Anna S; Rose-Gottron, Christine M; Larson, Jennifer K; Newcomb, Robert L; Cooper, Dan M; George, Steven C

    2006-12-01

    Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.

  20. Echocardiographic assessment of right heart function in heart transplant recipients and the relation to exercise hemodynamics.

    PubMed

    Clemmensen, Tor Skibsted; Eiskjaer, Hans; Løgstrup, Brian Bridal; Andersen, Mads Jønsson; Mellemkjaer, Søren; Poulsen, Steen Hvitfeldt

    2016-08-01

    This study aimed to characterize right heart function in heart transplantation (HTx) patients using advanced echocardiographic assessment and simultaneous right heart catheterization (RHC). Comprehensive two-dimensional (2D) and three-dimensional (3D) echocardiographic assessment of right heart function was performed in 105 subjects (64 stable HTx patients and 41 healthy controls). RHC was performed at rest and during semi-supine maximal exercise test. Compared with controls, in conclusion, HTx patients had impaired right ventricle (RV) systolic function in terms of decreased RV-free wall (FW) global longitudinal strain (GLS) (-20 ± 5% vs. -28 ± 5%, P < 0.0001) and 3D-ejection fraction (EF) (50 ± 8% vs. 60 ± 6%, P < 0.0001). In HTx patients, echocardiographic RV systolic function was significantly correlated with NYHA-class (3D-RVEF: r = -0.62, P < 0.0001; RV-FW-GLS: r = -0.41, P = 0.0009) and cardiac allograft vasculopathy (3D-RVEF: r = -0.42, P = 0.0005; RV-FW-GLS: r = -0.25, P = 0.0444). RHC demonstrated a good correlation between invasively assessed resting RV-stroke volume index and exercise capacity (r = 0.58, P < 0.0001) and NYHA-class (r = -0.41, P = 0.0009). RV systolic function is reduced in HTx patients compared with controls. 3D RVEF and 2D longitudinal deformation analyses are associated with clinical performance in stable HTx patients and seem suitable in noninvasive routine right heart function evaluation after HTx. Invasively assessed RV systolic reserve was strongly associated with exercise capacity. © 2016 Steunstichting ESOT.

  1. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes.

    PubMed

    Stupin, Marko; Stupin, Ana; Rasic, Lidija; Cosic, Anita; Kolar, Luka; Seric, Vatroslav; Lenasi, Helena; Izakovic, Kresimir; Drenjancevic, Ines

    2018-02-01

    The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined. Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry. At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise. Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.

  2. The effects of exercise-based rehabilitation on balance and gait for stroke patients: a systematic review.

    PubMed

    An, Minjeong; Shaughnessy, Marianne

    2011-12-01

    This review evaluated the effects of balance and/or gait exercise interventions for stroke survivors and summarized the available evidence on these exercise interventions. A search for studies published between January 2001 and January 2010 was performed using the keywords stroke, walking or balance, and physical activity or exercise. Seventeen randomized clinical trials were identified. The findings suggest that initiating early rehabilitation during acute to subacute stroke recovery can improve balance and walking capacity. The findings also demonstrate that at least 1 hour, three to five times per week, of balance training and 30 minutes, three to five times per week, of gait-oriented exercise are effective to improve balance and walking. This review confirms that balance and walking capacity are improved with specific exercise modalities. A combination of balance, gait, and aerobic exercises would be ideal.

  3. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair.

    PubMed

    Sarga, L; Hart, N; Koch, L G; Britton, S L; Hajas, G; Boldogh, I; Ba, X; Radak, Z

    2013-11-12

    Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high-running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and post-translational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Selectively bred rat model system for low and high response to exercise training

    PubMed Central

    Pollott, Geoffrey E.; Britton, Steven L.

    2013-01-01

    We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262

  5. Effects of adjunctive exercise on physiological and psychological parameters in depression: a randomized pilot trial.

    PubMed

    Kerling, Arno; Tegtbur, Uwe; Gützlaff, Elke; Kück, Momme; Borchert, Luise; Ates, Zeynep; von Bohlen, Anne; Frieling, Helge; Hüper, Katja; Hartung, Dagmar; Schweiger, Ulrich; Kahl, Kai G

    2015-05-15

    Major depressive disorder (MDD) is associated with decreased physical activity and increased rates of the metabolic syndrome (MetS), a risk factor for the development of type 2 diabetes and cardiovascular disorders. Exercise training has been shown to improve cardiorespiratory fitness and metabolic syndrome factors. Therefore, our study aimed at examining whether patients receiving an exercise program as an adjunct to inpatient treatment will benefit in terms of physiological and psychological factors. Fourty-two inpatients with moderate to severe depression were included. Twenty-two patients were randomized to additional 3x weekly exercise training (EXERCISE) and compared to treatment as usual (TAU). Exercise capacity was assessed as peak oxygen uptake (VO2peak), ventilatory anaerobic threshold (VAT) and workload expressed as Watts (W). Metabolic syndrome was defined according to NCEP ATPIII panel criteria. After 6 weeks of treatment, cardiorespiratory fitness (VO2peak, VAT, Watt), waist circumference and HDL cholesterol were significantly improved in EXERCISE participants. Treatment response expressed as ≥50% MADRS reduction was more frequent in the EXERCISE group. Adjunctive exercise training in depressed inpatients improves physical fitness, MetS factors, and psychological outcome. Given the association of depression with cardiometablic disorders, exercise training is recommended as an adjunct to standard antidepressant treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Lower skin temperature decreases maximal cycling performance.

    PubMed

    Imai, Daiki; Okazaki, Kazunobu; Matsumura, Shinya; Suzuki, Takashi; Miyazawa, Taiki; Suzuki, Akina; Takeda, Ryosuke; Hamamoto, Takeshi; Zako, Tetsuo; Kawabata, Takashi; Miyagawa, Toshiaki

    2011-12-01

    It is known that external cooling of body regions involved in exercise, prior to exercise, decreases anaerobic performance. However, there have been no studies reporting the effects of whole body skin surface cooling before exercise on maximal anaerobic capacity. In order to clarify the effects, we compared power output during the Wingate anaerobic test between preconditioning by exposure to temperature 10 degrees C and 25 degrees C. Eight healthy males carried out the Wingate test for 30 seconds, after pre-conditioning for 60 minutes using a perfusion suit with water at a temperature of 10 degrees C or 25 degrees C. We evaluated the peak power (PP) and peak power slope (PS) of the power output. Mean skin temperature (T(sk)) at 60 minutes of pre-conditioning in the 10 degrees C trial was significantly lower than in the 25 degrees C trial (p < 0.05). PP and also PS were significantly lower in the 10 degrees C trial than in the 25 degrees C trial. Changes (Δ) in PP between the 10 degrees C trial and the 25 degrees C trial were strongly correlated with ΔT(sk) and Δ in thigh and leg skin temperature (ΔT(thigh) and ΔT(leg), respectively), whereas ΔPS was strongly correlated with ΔT(sk), but not with ΔT(thigh) and ΔT(leg). Whole body skin surface cooling prior to exercise restricts anaerobic capacity, especially in the initial phase of exercise.

  7. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome.

    PubMed

    Fournier, Sara B; Reger, Brian L; Donley, David A; Bonner, Daniel E; Warden, Bradford E; Gharib, Wissam; Failinger, Conard F; Olfert, Melissa D; Frisbee, Jefferson C; Olfert, I Mark; Chantler, Paul D

    2014-01-01

    Metabolic syndrome (MetS) is the manifestation of a cluster of cardiovascular risk factors and is associated with a threefold increase in the risk of cardiovascular morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to examine comprehensively the LV and arterial responses to exercise in individuals with MetS without diabetes and/or overt cardiovascular disease in comparison to a healthy control population. Cardiovascular function was characterized using Doppler echocardiography and gas exchange in individuals with MetS (n = 27) versus healthy control subjects (n = 20) at rest and during peak exercise. At rest, individuals with MetS displayed normal LV systolic function but reduced LV diastolic function compared with healthy control subjects. During peak exercise, individuals with MetS had impaired contractility, pump performance and vasodilator reserve capacity versus control subjects. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in individuals with MetS versus control subjects. These findings are of clinical importance, because they provide insight into the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of cardiovascular morbidity and mortality.

  8. Norepinephrine spillover at rest and during submaximal exercise in young and old subjects.

    PubMed

    Mazzeo, R S; Rajkumar, C; Jennings, G; Esler, M

    1997-06-01

    Aging is associated with elevations in plasma norepinephrine concentrations. The purpose of this investigation was to examine total body and regional norepinephrine spillover as an indicator of sympathetic nerve activity. Eight young (26 +/- 3 yr) and seven old (69 +/- 5 yr) male subjects were studied at rest and during 20 min of submaximal cycling exercise at 50% of peak work capacity. Norepinephrine spillover was determined by continuous intravenous infusion of [3H]norepinephrine. Arterial norepinephrine concentrations were significantly greater at rest for old vs. young subjects (280 +/- 36 vs. 196 +/- 27 ng/ml, respectively). Whereas total norepinephrine spillover did not differ between groups at rest, hepatomesenteric norepinephrine spillover was 50% greater in old subjects compared with their young counterparts (51 +/- 7 vs. 34 +/- 5 ng/min, respectively). Additionally, norepinephrine clearance rates at rest were significantly lower for the old subjects (-23%). During exercise, plasma norepinephrine concentrations increased compared with rest, with old subjects again demonstrating greater values than the young group. Hepatomesenteric norepinephrine spillover was significantly greater (+36%) during exercise for old subjects compared with young; however, no difference was found for whole body spillover rates between age groups. Norepinephrine clearance rates remained depressed (-80%) in the old subjects during exercise. Clearance of epinephrine mirrored that for norepinephrine both at rest and during exercise across age groups. It was concluded that in old subjects, a reduction in norepinephrine clearance and an increase in regional norepinephrine spillover can account for the higher plasma norepinephrine concentrations observed at rest. This relationship is not exacerbated by the stress imposed during an acute bout of exercise.

  9. Left ventricular dyssynchrony in patients with normal ventricular systolic function referred for exercise echocardiography.

    PubMed

    Bernheim, Alain M; Nakajima, Yoshie; Pellikka, Patricia A

    2008-10-01

    Exercise testing is often normal despite the presence of exertional symptoms. We hypothesized that left ventricular (LV) dyssynchrony might occur in some patients in the absence of ischemia, LV dysfunction, or wide QRS, and might contribute to exertional symptoms and diminished exercise capacity. Echocardiographic parameters were assessed before and with exercise in 40 patients (age 62 +/- 8 years, 27 with exertional symptoms). All had normal clinically indicated exercise echocardiograms and narrow QRS. The time to peak systolic velocity (Ts) was measured in 12 segments to calculate the standard deviation (Ts-SD) and the maximal difference (Ts-diff). At rest, 25 patients (63%) had dyssynchrony by Ts-SD. With exercise, mean Ts-SD did not increase significantly (34.9 +/- 19.3 ms vs 39.5 +/- 27.2 ms, P = .28). However, Ts-SD increased by greater than 40% in 15 patients (37.5%), remained stable in 19 patients (47.5%), and decreased by greater than 40% in 6 patients (15%). Similar responses were observed for Ts-diff. Patients with exercise-induced dyssynchrony were not more likely to have symptoms. Exercise capacity was inversely correlated with resting Ts-SD (r = -0.37, P = .02) and resting Ts-diff (r = -0.38, P = .02), but not with exercise-induced changes in dyssynchrony. Patients with resting dyssynchrony had higher resting heart rate (73 +/- 12 vs 63 +/- 11 beats/min, P = .02). LV dyssynchrony may occur more frequently than previously thought and may develop with exercise in the absence of ischemia. Exercise-induced LV dyssynchrony was not related to exertional symptoms or exercise capacity. Patients with dyssynchrony at rest had a higher resting heart rate and achieved a lower workload; this may indicate early myocardial impairment.

  10. Effects of Obstructive Sleep Apnea and Obesity on Exercise Function in Children

    PubMed Central

    Evans, Carla A.; Selvadurai, Hiran; Baur, Louise A.; Waters, Karen A.

    2014-01-01

    Study Objectives: Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Design: Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Setting: Tertiary pediatric hospital. Participants: Healthy weight and obese children, aged 7–12 y. Interventions: N/A. Measurements and Results: Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Conclusions: Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children. Citation: Evans CA, Selvadurai H, Baur LA, Waters KA. Effects of obstructive sleep apnea and obesity on exercise function in children. SLEEP 2014;37(6):1103-1110. PMID:24882905

  11. Nordic walking in fibromyalgia: a means of promoting fitness that is easy for busy clinicians to recommend

    PubMed Central

    2011-01-01

    A total of 67 women with fibromyalgia were recruited to an exercise study and were randomized to moderate-to-high-intensity Nordic walking (age 48 ± 7.8 years) or to a control group engaging in supervised low-intensity walking (age 50 ± 7.6 years). A total of 58 patients completed. Significantly greater improvement in the 6-minute walk test was found in the Nordic walking group (P = 0.009), compared with the low-intensity walking group. A significantly larger decrease in exercise heart rate (P = 0.020) and significantly improved scores on the Fibromyalgia Impact Questionnaire Physical function (P = 0.027) were found in the Nordic walking group as compared with the low-intensity walking group. No between-group difference was found for the Fibromyalgia Impact Questionnaire total or pain scores. The authors conclude that moderate-to-high intensity aerobic exercise by means of Nordic walking twice a week for 15 weeks was found to be a feasible mode of exercise, resulting in improved functional capacity and a decreased level of activity limitations. PMID:21345243

  12. The effect of atrial-based pacing on exercise capacity as measured by the 6-minute walk test: a substudy of the Canadian Trial of Physiological Pacing (CTOPP).

    PubMed

    Baranchuk, Adrian; Healey, Jeff S; Thorpe, Kevin E; Morillo, Carlos A; Nair, Girish; Crystal, Eugene; Kerr, Charles R; Connolly, Stuart J

    2007-08-01

    Although several randomized trials have detected no reduction in major cardiovascular events with the routine use of dual-chamber as opposed to ventricular pacemakers, many individuals continue to advocate their use as a means of improving exercise capacity. The Canadian Trial of Physiological Pacing (CTOPP) trial is the largest trial comparing ventricular pacing to atrial-based pacing (atrial or dual-chamber) in patients with bradycardia. All patients in this trial were asked to complete a 6-minute hall walk test (6MWT) at the time of their first study follow-up. The distance walked in 6 minutes and the patient's heart rate before and immediately after the walk were recorded. Of the 2568 patients in the CTOPP, 76% completed the 6MWT. The mean distance walked was 350 +/- 127 m in the ventricular pacing group and 356 +/- 127 m in the atrial-based group (P = NS). Similarly, there was no difference in the change in heart rate between the two groups (17 +/- 13 vs. 18 +/- 12 bpm: P = NS). However, among patients with an unpaced heart rate of

  13. Resistance Training using Low Cost Elastic Tubing is Equally Effective to Conventional Weight Machines in Middle-Aged to Older Healthy Adults: A Quasi-Randomized Controlled Clinical Trial

    PubMed Central

    Lima, Fabiano F.; Camillo, Carlos A.; Gobbo, Luis A.; Trevisan, Iara B.; Nascimento, Wesley B. B. M.; Silva, Bruna S. A.; Lima, Manoel C. S.; Ramos, Dionei; Ramos, Ercy M. C.

    2018-01-01

    The objectives of the study were to compare the effects of resistance training using either a low cost and portable elastic tubing or conventional weight machines on muscle force, functional exercise capacity, and health-related quality of life (HRQOL) in middle-aged to older healthy adults. In this clinical trial twenty-nine middle-aged to older healthy adults were randomly assigned to one of the three groups a priori defined: resistance training with elastic tubing (ETG; n = 10), conventional resistance training (weight machines) (CTG; n = 9) and control group (CG, n = 10). Both ETG and CTG followed a 12-week resistance training (3x/week - upper and lower limbs). Muscle force, functional exercise capacity and HRQOL were evaluated at baseline, 6 and 12 weeks. CG underwent the three evaluations with no formal intervention or activity counseling provided. ETG and CTG increased similarly and significantly muscle force (Δ16-44% in ETG and Δ25-46% in CTG, p < 0.05 for both), functional exercise capacity (ETG Δ4 ± 4% and CTG Δ6±8%; p < 0.05 for both). Improvement on “pain” domain of HRQOL could only be observed in the CTG (Δ21 ± 26% p = 0.037). CG showed no statistical improvement in any of the variables investigated. Resistance training using elastic tubing (a low cost and portable tool) and conventional resistance training using weight machines promoted similar positive effects on peripheral muscle force and functional exercise capacity in middle-aged to older healthy adults. Key points There is compeling evidence linking resistance training to health. Elastic resistance training improves the functionality of middle-aged to older healthy adults. Elastic resistance training was shown to be as effective as conventional resistence training in middle-aged to older healthy adults. PMID:29535589

  14. Feasibility and effects of a combined adjuvant high-intensity interval/strength training in breast cancer patients: a single-center pilot study.

    PubMed

    Schulz, Sebastian Viktor Waldemar; Laszlo, Roman; Otto, Stephanie; Prokopchuk, Dmytro; Schumann, Uwe; Ebner, Florian; Huober, Jens; Steinacker, Jürgen Michael

    2018-06-01

    To evaluate feasibility of an exercise intervention consisting of high-intensity interval endurance and strength training in breast cancer patients. Twenty-six women with nonmetastatic breast cancer were consecutively assigned to the exercise intervention- (n= 15, mean age 51.9 ± 9.8 years) and the control group (n = 11, mean age 56.9 ± 7.0 years). Cardiopulmonary exercise testing that included lactate sampling, one-repetition maximum tests and a HADS-D questionnaire were used to monitor patients both before and after a supervised six weeks period of either combined high-intensity interval endurance and strength training (intervention group, twice a week) or leisure training (control group). Contrarily to the control group, endurance (mean change of VO 2 , peak 12.0 ± 13.0%) and strength performance (mean change of cumulative load 25.9 ± 11.2%) and quality of life increased in the intervention group. No training-related adverse events were observed. Our guided exercise intervention could be used effectively for initiation and improvement of performance capacity and quality of life in breast cancer patients in a relatively short time. This might be especially attractive during medical treatment. Long-term effects have to be evaluated in randomized controlled studies also with a longer follow-up. Implications for Rehabilitation High-intensity interval training allows improvement of aerobic capacity within a comparable short time. Standard leisure training in breast cancer patients is rather suitable for the maintenance of performance capacity and quality of life. Guided high-intensity interval training combined with strength training can be used effectively for the improvement of endurance and strength capacity and also quality of life. After exclusion of contraindications, guided adjuvant high-intensity interval training combined with strength training can be safely used in breast cancer patients.

  15. The effects of elastic tubing-based resistance training compared with conventional resistance training in patients with moderate chronic obstructive pulmonary disease: a randomized clinical trial.

    PubMed

    Ramos, Ercy Mara Cipulo; de Toledo-Arruda, Alessandra Choqueta; Fosco, Luciana Cristina; Bonfim, Rafaela; Bertolini, Giovana Navarro; Guarnier, Flavia Alessandra; Cecchini, Rubens; Pastre, Carlos Marcelo; Langer, Daniel; Gosselink, Rik; Ramos, Dionei

    2014-11-01

    To investigate the effects of elastic tubing training compared with conventional resistance training on the improvement of functional exercise capacity, muscle strength, fat-free mass, and systemic inflammation in patients with chronic obstructive pulmonary disease. A prospective, randomized, eight-week clinical trial. The study was conducted in a university-based, outpatient, physical therapy clinic. A total of 49 patients with moderate chronic obstructive pulmonary disease. Participants were randomly assigned to perform elastic tubing training or conventional resistance training three times per week for eight weeks. The primary outcome measure was functional exercise capacity. The secondary outcome measures were peripheral muscle strength, health-related quality of life assessed by the Chronic Respiratory Disease Questionnaire (CRDQ), fat-free mass, and cytokine profile. After eight weeks, the mean distance covered during six minutes increased by 73 meters (±69) in the elastic tubing group and by 42 meters (±59) in the conventional group (p < 0.05). The muscle strength and quality of life improved in both groups (P < 0.05), with no significant differences between the groups. There was a trend toward an improved fat-free mass in both groups (P = 0.05). After the first and last sessions, there was an increase in interleukin 1β (IL-1β) and interleukin 10 (IL-10) in both groups, while tumour necrosis factor alpha (TNF-α) was stimulated only in the conventional training group. Elastic tubing training had a greater effect on functional exercise capacity than conventional resistance training. Both interventions were equally effective in improving muscle strength and quality of life. © The Author(s) 2014.

  16. Peripheral Vascular Disease: The Beneficial Effect of Exercise in Peripheral Vascular Diseases Based on Clinical Trials.

    PubMed

    Elnady, Basant M; Saeed, Ayman

    2017-01-01

    Intermittent claudication (IC) due to peripheral artery diseases (PAD) is one of the disabling disease that can affect quality of life (QOL) and functional status of capacity. It is characterized by cramping pain which develops with exercise and eliminated by rest secondary to decrease blood flow to the muscles. The annual incidence rate is increased with age. Exercise rehabilitation has a great impact in improving the functional capacity and prevent the functional disability. The available evidences from current studies have showed that exercise therapy is considered the primary treatment in PAD, which in consequently improves the QOL. In this chapter we will illustrate the current available evidences which support exercise benefit and outcomes in PAD with IC.

  17. Variable prognostic value of blood pressure response to exercise.

    PubMed

    Kato, Yuko; Suzuki, Shinya; Uejima, Tokuhisa; Semba, Hiroaki; Yamashita, Takeshi

    2018-01-01

    The aim of this study was to evaluate the impact of patient background including exercise capacity on the relationship between the blood pressure (BP) response to exercise and prognosis in patients visiting a cardiovascular hospital. A total of 2134 patients who were referred to our hospital underwent symptom-limited maximal cardiopulmonary exercise testing, and were followed through medical records and mail. The BP response to exercise was defined as the difference between peak and rest systolic BP. The end point was set as cardiovascular events including cardiovascular death, acute coronary syndrome, hospitalization for heart failure, and cerebral infarction. During a median follow-up period of 3 years, 179 (8%) patients reached the end point (2.5%/year). Multivariate analysis showed that BP response was independently and negatively associated with the occurrence of the end point. This prognostic significance of BP response was consistent regardless of left ventricular ejection fraction, renal function, presence of heart failure symptoms, the presence of organic heart disease, and hypertension. However, peak VO 2 showed a significant interaction with the effects of BP response on the end point, suggesting that the prognostic value of BP response was limited in patients with preserved exercise capacity. The role of BP response to exercise as the predictor depends on exercise capacity of each patient. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  18. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis.

    PubMed

    Hsieh, Meng-Jer; Lee, Wei-Chun; Cho, Hsiu-Ying; Wu, Meng-Fang; Hu, Han-Chung; Kao, Kuo-Chin; Chen, Ning-Hung; Tsai, Ying-Huang; Huang, Chung-Chi

    2018-04-20

    Acute respiratory distress syndrome (ARDS) due to severe influenza A H1N1 pneumonitis would result in impaired pulmonary functions and health-related quality of life (HRQoL) after hospital discharge. The recovery of pulmonary functions, exercise capacity, and HRQoL in the survivors of ARDS due to 2009 pandemic influenza A H1N1 pneumonitis (H1N1-ARDS) was evaluated in a tertiary teaching hospital in northern Taiwan between May 2010 and June 2011. Data of spirometry, total lung capacity (TLC), diffusing capacity of carbon monoxide (DL CO ), and 6-minute walk distance (6MWD) in the patients survived from H1N1-ARDS were collected 1, 3, and 6 months post-hospital discharge. HRQoL was evaluated with St. George respiratory questionnaire (SGRQ). Nine survivors of H1N1-ARDS in the study period were included. All these patients received 2 months' pulmonary rehabilitation program. Pulmonary functions and exercise capacity included TLC, forced vital capacity (FVC), forced expiratory volume in the first second (FEV 1 ), DL CO , and 6MWD improved from 1 to 3 months post-hospital discharge. Only TLC had further significant improvement from 3 to 6 months. HRQoL represented as the total score of SGRQ had no significant improvement in the first 3 months but improved significantly from 3 to 6 months post-discharge. The impaired pulmonary functions and exercise capacity in the survivors of H1N1-ARDS improved soon at 3 months after hospital discharge. Their quality of life had keeping improved at 6 months even though there was no further improvement of their pulmonary functions and exercise capacity. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  20. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity

    PubMed Central

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S.; Soya, Hideaki

    2017-01-01

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain. PMID:28515312

  1. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    PubMed

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  2. The exercise and environmental physiology of extravehicular activity

    NASA Technical Reports Server (NTRS)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  3. The exercise and environmental physiology of extravehicular activity.

    PubMed

    Cowell, Stephenie A; Stocks, Jodie M; Evans, David G; Simonson, Shawn R; Greenleaf, John E

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  4. “Nutraceuticals” in relation to human skeletal muscle and exercise

    PubMed Central

    Deane, Colleen S.; Wilkinson, Daniel J.; Phillips, Bethan E.; Smith, Kenneth; Etheridge, Timothy

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and “nutraceutical” compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. PMID:28143855

  5. Predictive Accuracy of Exercise Stress Testing the Healthy Adult.

    ERIC Educational Resources Information Center

    Lamont, Linda S.

    1981-01-01

    Exercise stress testing provides information on the aerobic capacity, heart rate, and blood pressure responses to graded exercises of a healthy adult. The reliability of exercise tests as a diagnostic procedure is discussed in relation to sensitivity and specificity and predictive accuracy. (JN)

  6. 38 CFR 4.96 - Special provisions regarding evaluation of respiratory conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-6845. (1) Pulmonary function tests (PFT's) are required to evaluate these conditions except: (i) When the results of a maximum exercise capacity test are of record and are 20 ml/kg/min or less. If a maximum exercise capacity test is not of record, evaluate based on alternative criteria. (ii) When...

  7. [Ergometric results of r-erythropoietin treatment of hemodialysis patients].

    PubMed

    Hortian, B; Schmidt, R; Wüstenberg, P W; Dörp, E; Schumann, L; Winkler, R; Klinkmann, H

    1990-05-15

    To investigate the effect of partial correction of anemia in patients maintained by chronic intermittent hemodialysis on exercise capacity, patients underwent a bicycle acido-ergometry before and after treatment with recombinant human erythropoietin. The results demonstrate a (subjective) improvement of exercise capacity without any evidence for that in the pH values.

  8. Exercise Training for Heart Failure Patients with and without Systolic Dysfunction: An Evidence-Based Analysis of How Patients Benefit

    PubMed Central

    Smart, Neil

    2011-01-01

    Significant benefits can be derived by heart failure patients from exercise training. This paper provides an evidence-based assessment of expected clinical benefits of exercise training for heart failure patients. Meta-analyses and randomized, controlled trials of exercise training in heart failure patients were reviewed from a search of PubMed, Cochrane Controlled Trial Registry (CCTR), CINAHL, and EMBASE. Exercise training improves functional capacity, quality of life, hospitalization, and systolic and diastolic function in heart failure patients. Heart failure patients with preserved systolic function (HFnEF) participating in exercise training studies are more likely to be women and are 5–7 years older than their systolic heart failure (CHF) counterparts. All patients exhibit low functional capacities, although in HFnEF patients this may be age related, therefore subtle differences in exercise prescriptions are required. Published works report that exercise training is beneficial for heart failure patients with and without systolic dysfunction. PMID:20953365

  9. [Effects of an inpatient pulmonary rehabilitation program on dyspnea, exercise capacity, and health related quality of life for patients with chronic lung disease].

    PubMed

    Lee, Chang Kwan

    2007-04-01

    The purpose of this study was to examine the effects of an inpatient pulmonary rehabilitation program on dyspnea, exercise capacity, and health related quality of life in inpatients with chronic lung disease. This quasi experimental study was designed with a nonequivalent control group pre-post test time series. Twenty three patients were assigned to the experimental group and nineteen to the control group. The inpatient pulmonary rehabilitation program was composed of upper and lower extremity exercise, breathing retraining, inspiratory muscle training, education, relaxation and telephone contacts. This program consisted of 4 sessions with inpatients and 4 weeks at home after discharge. The control group was given a home based pulmonary rehabilitation program at the time of discharge. The outcomes were measured by the Borg score, 6MWD and the Chronic Respiratory Disease Questionnaire(CRQ). There was a statistically significant difference in dyspnea between the experimental group and control group, but not among time sequence, or interaction between groups and time sequence. Also significant improvements in exercise capacity and health related quality of life were found only in the experimental group. An Inpatient pulmonary rehabilitation program may be a useful intervention to reduce dyspnea, and increase exercise capacity and health related quality of life for chronic lung disease patients.

  10. Physical function was related to mortality in patients with chronic kidney disease and dialysis.

    PubMed

    Morishita, Shinichiro; Tsubaki, Atsuhiro; Shirai, Nobuyuki

    2017-10-01

    Previous studies have shown that exercise improves aerobic capacity, muscular functioning, cardiovascular function, walking capacity, and health-related quality of life (QOL) in patients with chronic kidney disease (CKD) and dialysis. Recently, additional studies have shown that higher physical activity contributes to survival and decreased mortality as well as physical function and QOL in patients with CKD and dialysis. Herein, we review the evidence that physical function and physical activity play an important role in mortality for patients with CKD and dialysis. During November 2016, Medline and Web of Science databases were searched for published English medical reports (without a time limit) using the terms "CKD" or "dialysis" and "mortality" in conjunction with "exercise capacity," "muscle strength," "activities of daily living (ADL)," "physical activity," and "exercise." Numerous studies suggest that higher exercise capacity, muscle strength, ADL, and physical activity contribute to lower mortality in patients with CKD and dialysis. Physical function is associated with mortality in patients with CKD and dialysis. Increasing physical function may decrease the mortality rate of patients with CKD and dialysis. Physicians and medical staff should recognize the importance of physical function in CKD and dialysis. In addition, exercise is associated with reduced mortality among patients with CKD and dialysis. © 2017 International Society for Hemodialysis.

  11. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    PubMed

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  12. Can whole body vibration exercises affect growth hormone concentration? A systematic review.

    PubMed

    Paineiras-Domingos, Laisa Liane; Sá-Caputo, Danúbia da Cunha de; Moreira-Marconi, Eloá; Morel, Danielle Soares; da Fontoura Dionello, Carla; Sousa-Gonçalves, Cintia Renata; Frederico, Éric Heleno Freire Ferreira; Marín, Pedro Jesus; Tamini, Sofia; Sartorio, Alessandro; Bernardo-Filho, Mario

    2017-10-01

    Whole body vibration (WBV) has been recognized as an effective alternative exercise modality to resistance exercise for its ability in enhancing force and power, generating capacity in skeletal muscle, increasing bone mass and improving cardiovascular function. Since the effect of WBV exercises on growth hormone (GH) levels has been never compared and discussed, the aim of this study was to review systematically the literature to verify the WBV effects on GH concentration. By using PubMed, Scopus and PEDRo databases with the keywords 'growth hormone' or GH and 'whole body vibration' or WBV, we found and analysed 12 papers (182 subjects recruited), verifying their level of evidence (National Health and Medical Research Council hierarchy of evidence) and the methodological quality (PEDRo scale). Although WBV induced GH responses in nine out of 12 publications, caution should be however taken when considering the results due to the markedly different methodologies among these publications.

  13. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism.

    PubMed

    Venditti, P; De Rosa, R; Caldarone, G; Di Meo, S

    2005-10-15

    We investigated effects of prolonged aerobic exercise and severe hyperthyroidism on indices of oxidative damage, susceptibility to oxidants, and respiratory capacity of homogenates from rat liver, heart and skeletal muscle. Both treatments induced increases in hydroperoxide and protein-bound carbonyl levels. Moreover, the highest increases were found when hyperthyroid animals were subjected to exercise. These changes, which were associated to reduced exercise endurance capacity, were in part due to higher susceptibility to oxidants of hyperthyroid tissues. Levels of oxidative damage indices were scarcely related to changes in antioxidant enzyme activities and lipid-soluble antioxidant concentrations. However, the finding that, following exercise the scavenger levels generally decreased in liver homogenates and increased in heart and muscles ones, suggested a net shuttle of antioxidants from liver to other tissues under need. Aerobic capacity, evaluated by cytochrome oxidase activity, was not modified by exercise, which, conversely, affected the rates of oxygen consumption of hyperthyroid preparations. These results seem to confirm the higher susceptibility of hyperthyroid tissues to oxidative challenge, because the mechanisms underlying the opposite changes in respiration rates during State 4 and State 3 likely involve oxidative modifications of components of mitochondrial respiratory chain, different from cytochrome aa3.

  14. Systemic impairment in relation to disease burden in patients with moderate COPD eligible for a lifestyle program. Findings from the INTERCOM trial

    PubMed Central

    van Wetering, Carel R; van Nooten, Floortje E; Mol, Stijn J M; Hoogendoorn, Martine; Rutten-van Mölken, Maureen P M H; Schols, Annemie M

    2008-01-01

    Introduction In contrast with the frequency distribution of chronic obstructive pulmonary disease (COPD) stages in the population, in which the majority of the patients is classified as GOLD 2, much less information is available on the prevalence and implications of systemic manifestations in less severe patients relative to GOLD 3 and 4. Aim To characterize local and systemic impairment in relation to disease burden in a group of GOLD 2 COPD patients (n = 127, forced expiratory volume in one second (SD): 67 (11)% pred) that were eligible for the Interdisciplinary Community-based COPD management (INTERCOM) trial. Methods Patients were included for this lifestyle program based on a peak exercise capacity (Wmax) <70% of predicted. Metabolic and ventilatory response to incremental cycle ergometry, 6 minute walking distance (6MWD), constant work rate test (CWR), lung function, maximal inspiratory pressure (Pimax), quadriceps force (QF), quadriceps average power (QP) (isokinetic dynamometry), handgrip force (HGF) and body composition were measured. Quality of life (QoL) was assessed by the St. George’s Respiratory Questionnaire (SGRQ) and dyspnea by the modified Medical Research Council (MRC) dyspnea scale. Exacerbations and COPD-associated hospital admissions in 12 months prior to the start of the study were recorded. Burden of disease was defined in terms of exercise capacity, QoL, hospitalization, and exacerbation frequency. GOLD 2 patients were compared with reference values and with GOLD 3 patients who were also included in the trial. Results HGF (77.7 (18.8) % pred) and Pimax (67.1 (22.5)% pred) were impaired in GOLD 2, while QF (93.5 (22.5)% pred) was only modestly decreased. Depletion of FFM was present in 15% of weight stable GOLD 2 patients while only 2% had experienced recent involuntary weight loss. In contrast to Wmax, submaximal exercise capacity, muscle function, and body composition were not significantly different between GOLD 2 and 3 subgroups. Body mass index and fat-free mass index were significantly lower in smokers compared to ex-smokers. In multivariate analysis, QF and diffusing capacity (DLco) were independently associated with Wmax and 6 MWD in GOLD 2 while only 6 MWD was identified as an independent determinant of health-related QoL. HGF was an independent predictor of hospitalization. Conclusions This study shows that also in patients with moderate COPD, eligible for a lifestyle program based on a decreased exercise capacity, systemic impairment is an important determinant of disease burden and that smoking affects body composition. PMID:18990973

  15. Relationship between nutritional risk and exercise capacity in severe chronic obstructive pulmonary disease in male patients

    PubMed Central

    Shan, Xizheng; Liu, Jinming; Luo, Yanrong; Xu, Xiaowen; Han, Zhiqing; Li, Hailing

    2015-01-01

    Objective The nutritional status of chronic obstructive pulmonary disease (COPD) patients is associated with their exercise capacity. In the present study, we have explored the relationship between nutritional risk and exercise capacity in severe male COPD patients. Methods A total of 58 severe COPD male patients were enrolled in this study. The patients were assigned to no nutritional risk group (n=33) and nutritional risk group (n=25) according to the Nutritional Risk Screening (NRS, 2002) criteria. Blood gas analysis, conventional pulmonary function testing, and cardiopulmonary exercise testing were performed on all the patients. Results Results showed that the weight and BMI of the patients in the nutritional risk group were significantly lower than in the no nutritional risk group (P<0.05). The pulmonary diffusing capacity for carbon monoxide of the no nutritional risk group was significantly higher than that of the nutritional risk group (P<0.05). Besides, the peak VO2 (peak oxygen uptake), peak O2 pulse (peak oxygen pulse), and peak load of the nutritional risk group were significantly lower than those of the no nutritional risk group (P<0.05) and there were significantly negative correlations between the NRS score and peak VO2, peak O2 pulse, or peak load (r<0, P<0.05). Conclusion The association between exercise capacity and nutritional risk based on NRS 2002 in severe COPD male patients is supported by these results of this study. PMID:26150712

  16. Iron Deficiency Is a Determinant of Functional Capacity and Health-related Quality of Life 30 Days After an Acute Coronary Syndrome.

    PubMed

    Meroño, Oona; Cladellas, Mercè; Ribas-Barquet, Núria; Poveda, Paula; Recasens, Lluis; Bazán, Víctor; García-García, Cosme; Ivern, Consol; Enjuanes, Cristina; Orient, Salvador; Vila, Joan; Comín-Colet, Josep

    2017-05-01

    Iron deficiency (ID) is a prevalent condition in patients with ischemic heart disease and heart failure. Little is known about the impact of ID on exercise capacity and quality of life (QoL) in the recovery phase after an acute coronary syndrome (ACS). Iron status and its impact on exercise capacity and QoL were prospectively evaluated in 244 patients 30 days after the ACS. QoL was assessed by the standard EuroQoL-5 dimensions, EuroQoL visual analogue scale, and Heart-QoL questionnaires. Exercise capacity was analyzed by treadmill/6-minute walk tests. The effect of ID on cardiovascular mortality and readmission rate was also investigated. A total of 46% of the patients had ID. These patients had lower exercise times (366±162 vs 462±155seconds; P<.001), metabolic consumption rates (7.9±2.9 vs 9.3±2.6 METS; P=.003), and EuroQoL-5 dimensions (0.76±0.25 vs 0.84±0.16), visual analogue scale (66±16 vs 72±17), and Heart-QoL (1.9±0.6 vs 2.2±0.6) scores (P<.05). ID independently predicted lower exercise times (OR, 2.9; 95%CI, 1.1-7.6; P=.023) and worse QoL (OR, 1.9; 95%CI, 1.1-3.3; P<.001) but had no effect on cardiovascular morbidity or mortality. ID, a prevalent condition in ACS patients, results in a poorer mid-term functional recovery, as measured by exercise capacity and QoL. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Wii-Workouts on Chronic Pain, Physical Capabilities and Mood of Older Women: A Randomized Controlled Double Blind Trial.

    PubMed

    Monteiro-Junior, Renato Sobral; de Souza, Cíntia Pereira; Lattari, Eduardo; Rocha, Nuno Barbosa Ferreira; Mura, Gioia; Machado, Sérgio; da Silva, Elirez Bezerra

    2015-01-01

    Chronic Low Back Pain (CLBP) is a public health problem and older women have higher incidence of this symptom, which affect body balance, functional capacity and behavior. The purpose of this study was to verifying the effect of exercises with Nintendo Wii on CLBP, functional capacity and mood of elderly. Thirty older women (68 ± 4 years; 68 ± 12 kg; 154 ± 5 cm) with CLBP participated in this study. Elderly individuals were divided into a Control Exercise Group (n = 14) and an Experimental Wii Group (n = 16). Control Exercise Group did strength exercises and core training, while Experimental Wii Group did ones additionally to exercises with Wii. CLBP, balance, functional capacity and mood were assessed pre and post training by the numeric pain scale, Wii Balance Board, sit to stand test and Profile of Mood States, respectively. Training lasted eight weeks and sessions were performed three times weekly. MANOVA 2 x 2 showed no interaction on pain, siting, stand-up and mood (P = 0.53). However, there was significant difference within groups (P = 0.0001). ANOVA 2 x 2 showed no interaction for each variable (P > 0.05). However, there were significant differences within groups in these variables (P < 0.05). Tukey's post-hoc test showed significant difference in pain on both groups (P = 0.0001). Wilcoxon and Mann-Whitney tests identified no significant differences on balance (P > 0.01). Capacity to Sit improved only in Experimental Wii Group (P = 0.04). In conclusion, physical exercises with Nintendo Wii Fit Plus additional to strength and core training were effective only for sitting capacity, but effect size was small.

  18. Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.

    2010-01-01

    An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.

  19. Nordic Walking Can Be Incorporated in the Exercise Prescription to Increase Aerobic Capacity, Strength, and Quality of Life for Elderly: A Systematic Review and Meta-Analysis.

    PubMed

    Bullo, Valentina; Gobbo, Stefano; Vendramin, Barbara; Duregon, Federica; Cugusi, Lucia; Di Blasio, Andrea; Bocalini, Danilo Sales; Zaccaria, Marco; Bergamin, Marco; Ermolao, Andrea

    2018-04-01

    The aim of this systematic review and meta-analysis was to summarize and analyze the effects of Nordic Walking on physical fitness, body composition, and quality of life in the elderly. Keyword "Nordic Walking" associated with "elderly" AND/OR "aging" AND/OR "old subjects" AND/OR "aged" AND/OR "older adults" were used in the online database MEDLINE, Embase, PubMed, Scopus, PsycINFO, and SPORTDiscus. Only studies written in English language and published in peer-reviewed journals were considered. A meta-analysis was performed and effect sizes calculated. Fifteen studies were identified; age of participants ranged from 60 to 92 years old. Comparing with a sedentary group, effect sizes showed that Nordic Walking was able to improve dynamic balance (0.30), functional balance (0.62), muscle strength of upper (0.66) and lower limbs (0.43), aerobic capacity (0.92), cardiovascular outcomes (0.23), body composition (0.30), and lipid profile (0.67). It seemed that Nordic Walking had a negative effect on static balance (-0.72). Comparing with a walking (alone) training, effect sizes showed that Nordic Walking improved the dynamic balance (0.30), flexibility of the lower body (0.47), and quality of life (0.53). Walking training was more effective in improving aerobic capacity (-0.21). Comparing Nordic Walking with resistance training, effect sizes showed that Nordic Walking improved dynamic balance (0.33), muscle strength of the lower body (0.39), aerobic capacity (0.75), flexibility of the upper body (0.41), and the quality of life (0.93). Nordic Walking can be considered as a safe and accessible form of aerobic exercise for the elderly population, able to improve cardiovascular outcomes, muscle strength, balance ability, and quality of life.

  20. Aortic valve prosthesis-patient mismatch and exercise capacity in adult patients with congenital heart disease.

    PubMed

    van Slooten, Ymkje J; van Melle, Joost P; Freling, Hendrik G; Bouma, Berto J; van Dijk, Arie Pj; Jongbloed, Monique Rm; Post, Martijn C; Sieswerda, Gertjan T; Huis In 't Veld, Anna; Ebels, Tjark; Voors, Adriaan A; Pieper, Petronella G

    2016-01-01

    To report the prevalence of aortic valve prosthesis-patient mismatch (PPM) in an adult population with congenital heart disease (CHD) and its impact on exercise capacity. Adults with congenital heart disease (ACHD) with a history of aortic valve replacement may outgrow their prosthesis later in life. However, the prevalence and clinical consequences of aortic PPM in ACHD are presently unknown. From the national Dutch Congenital Corvitia (CONCOR) registry, we identified 207 ACHD with an aortic valve prosthesis for this cross-sectional cohort study. Severe PPM was defined as an indexed effective orifice area ≤0.65 cm2/m2 and moderate PPM as an indexed orifice area ≤0.85 cm2/m2 measured using echocardiography. Exercise capacity was reported as percentage of predicted exercise capacity (PPEC). Of the 207 patients, 68% was male, 71% had a mechanical prosthesis and mean age at inclusion was 43.9 years ±11.4. The prevalence of PPM was 42%, comprising 23% severe PPM and 19% moderate PPM. Prevalence of PPM was higher in patients with mechanical prostheses (p<0.001). PPM was associated with poorer exercise capacity (mean PPEC 84% vs. 92%; p=0.048, mean difference =-8.3%, p=0.047). Mean follow-up was 2.6±1.1 years during which New York Heart Association (NYHA) class remained stable in most patients. PPM showed no significant effect on death or hospitalisation during follow-up (p=0.218). In this study we report a high prevalence (42%) of PPM in ACHD with an aortic valve prosthesis and an independent association of PPM with diminished exercise capacity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. The impact of iron deficiency and anaemia on exercise capacity and outcomes in patients with chronic heart failure. Results from the Studies Investigating Co-morbidities Aggravating Heart Failure.

    PubMed

    Ebner, Nicole; Jankowska, Ewa A; Ponikowski, Piotr; Lainscak, Mitja; Elsner, Sebastian; Sliziuk, Veronika; Steinbeck, Lisa; Kube, Jennifer; Bekfani, Tarek; Scherbakov, Nadja; Valentova, Miroslava; Sandek, Anja; Doehner, Wolfram; Springer, Jochen; Anker, Stefan D; von Haehling, Stephan

    2016-02-15

    Anaemia and iron deficiency (ID) are important co-morbidities in patients with chronic heart failure (HF) and both may lead to reduced exercise capacity. We enrolled 331 out-patients with stable chronic HF (mean age: 64 ± 11 years, 17% female, left ventricular ejection fraction [LVEF] 35 ± 13%, body mass index [BMI] 28.5 ± 5.2 kg/m(2), New York Heart Association [NYHA] class 2.2 ± 0.7, chronic kidney disease 35%, glomerular filtration rate 61.7 ± 20.1 mL/min). Anaemia was defined according to World Health Organization criteria (haemoglobin [Hb] < 13 g/dL in men, < 12 g/dL in women). ID was defined as serum ferritin < 100 μg/L or ferritin < 300 μg/L with transferrin saturation (TSAT) < 20%. Exercise capacity was assessed as peak oxygen consumption (peak VO2) by spiroergometry and 6-minute walk test (6MWT). A total of 91 (27%) patients died from any cause during a mean follow-up of 18 months. At baseline, 98 (30%) patients presented with anaemia and 149 (45%) patients presented with ID. We observed a significant reduction in exercise capacity in parallel to decreasing Hb levels (r = 0.24, p < 0.001). In patients with anaemia and ID (n = 63, 19%), exercise capacity was significantly lower than in patients with ID or anaemia only. Cox regression analysis showed that after adjusting for NYHA, age, hsCRP and creatinine anaemia is an independent predictor of mortality in patients with HF (hazard ratio [HR]: 0.56, 95% confidence interval [CI]: 0.33-0.97, p = 0.04). The impact of anaemia on reduced exercise capacity and on mortality is stronger than that of ID. Anaemia remained an independent predictor of death after adjusting for clinically relevant variables. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Nutritional status is related to fat-free mass, exercise capacity and inspiratory strength in severe chronic obstructive pulmonary disease patients.

    PubMed

    Sabino, Pollyane Galinari; Silva, Bruno Moreira; Brunetto, Antonio Fernando

    2010-06-01

    Being overweight or obese is associated with a higher rate of survival in patients with advanced chronic obstructive pulmonary disease (COPD). This paradoxical relationship indicates that the influence of nutritional status on functional parameters should be further investigated. To investigate the impact of nutritional status on body composition, exercise capacity and respiratory muscle strength in severe chronic obstructive pulmonary disease patients. Thirty-two patients (nine women) were divided into three groups according to their body mass indices (BMI): overweight/obese (25 < or = BMI < or = 34.9 kg/m(2), n=8), normal weight (18.5 < or = BMI < or = 24.9 kg/m(2), n=17) and underweight (BMI <18.5 kg/m(2), n=7). Spirometry, bioelectrical impedance, a six-minute walking distance test and maximal inspiratory and expiratory pressures were assessed. Airway obstruction was similar among the groups (p=0.30); however, overweight/obese patients had a higher fat-free mass (FFM) index [FFMI=FFM/body weight(2) (mean+/-SEM: 17+/-0.3 vs. 15+/-0.3 vs. 14+/-0.5 m/kg(2), p<0.01)], exercise capacity (90+/-8 vs. 79+/-6 vs. 57+/-8 m, p=0.02) and maximal inspiratory pressure (63+/-7 vs. 57+/-5 vs. 35+/-8 % predicted, p=0.03) in comparison to normal weight and underweight patients, respectively. In addition, on backward multiple regression analysis, FFMI was the unique independent predictor of exercise capacity (partial r=0.52, p<0.01). Severe chronic obstructive pulmonary disease (COPD) patients who were overweight or obese had a greater FFM, exercise capacity and inspiratory muscle strength than patients with the same degree of airflow obstruction who were of normal weight or underweight, and higher FFM was independently associated with higher exercise capacity. These characteristics of overweight or obese patients might counteract the drawbacks of excess weight and lead to an improved prognosis in COPD.

  3. Anthropometry, muscular strength and aerobic capacity up to 5 years after pediatric burns.

    PubMed

    Disseldorp, Laurien M; Mouton, Leonora J; Van der Woude, Lucas H V; Van Brussel, Marco; Nieuwenhuis, Marianne K

    2015-12-01

    Physical functioning is of major importance after burns in many areas of life, in both the short and the long term. This cross-sectional study aimed to describe anthropometry, muscular strength and aerobic capacity in children and adolescents between 0.5-5 years after burns over 10% TBSA. Assessments took place in a mobile exercise lab. Demographics, burn characteristics and anthropometrics were recorded. Muscular strength in six muscle groups was measured using hand-held dynamometry and aerobic capacity was measured with a graded cardiopulmonary exercise test. Subjects' scores were compared with Dutch age- and gender-matched norm values and converted to Z-scores. The assessments were completed by 24 subjects with pediatric burns ranging from 10 to 41% TBSA and time after burn from 1 to 5 years (58.3% male; 6-18 years). On group level, no significant differences between the subjects' scores and norm values were found. No trends were seen indicating an effect of extent of burn or time after burn. Individually, eight subjects (33.3%), mostly aged 6 or 7, showed significantly low performance on at least one variable: seven for strength, one for aerobic capacity and one for both. Anthropometry, muscular strength and aerobic capacity are adequate in the majority of Dutch children and adolescents 1-5 years after 10-41% TBSA burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  4. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    PubMed Central

    Foley, Teresa E.; Brooks, Leah R.; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5–15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15–51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  5. Comparison of outpatient and home-based exercise training programmes for COPD: A systematic review and meta-analysis.

    PubMed

    Wuytack, Francesca; Devane, Declan; Stovold, Elizabeth; McDonnell, Melissa; Casey, Michelle; McDonnell, Timothy J; Gillespie, Paddy; Raymakers, Adam; Lacasse, Yves; McCarthy, Bernard

    2018-03-01

    Chronic obstructive pulmonary disease is a common, preventable and treatable disease. Exercise training programmes (ETPs) improve symptoms, health-related quality of life (HRQoL) and exercise capacity, but the optimal setting is unknown. In this review, we compared the effects of ETPs in different settings on HRQoL and exercise capacity. We searched (5 July 2016) the Cochrane Airways Group Specialised Register, ClinicalTrials.gov and World Health Organization trials portal. We selected studies, extracted data and assessed risk of bias with two independent reviewers. We calculated mean differences (MD) with 95% CI. We assessed the quality of evidence using Grades of Recommendation, Assessment, Development and Evaluation. Ten trials (934 participants) were included. Hospital (outpatient) and home-based ETPs (seven trials) were equally effective at improving HRQoL on the Chronic Respiratory Questionnaire (CRQ) (dyspnoea: MD -0.09, 95% CI: -0.28 to 0.10; fatigue: MD -0.00, 95% CI: -0.18 to 0.17; emotional: MD 0.10, 95% CI: -0.24 to 0.45; and mastery: MD -0.02, 95% CI: -0.28 to 0.25; moderate quality) and on the St George's Respiratory Questionnaire (SGRQ) (MD -0.82, 95% CI: -7.47 to 5.83, low quality). Hospital (outpatient) and community-based ETPs (three trials) were equally effective at improving HRQoL (CRQ dyspnoea: MD 0.29, 95% CI: -0.05 to 0.62, moderate quality; fatigue: MD -0.02, 95% CI: -1.09 to 1.05, low quality; emotional: MD 0.10, 95% CI: -0.40 to 0.59, moderate quality; and mastery: MD -0.08, 95% CI: -0.45 to 0.28, moderate quality). There was no difference in exercise capacity. There was low to moderate evidence that outpatient and home-based ETPs are equally effective. See related Editorial. © 2017 Asian Pacific Society of Respirology.

  6. Impact of aerobic interval training and continuous training on left ventricular geometry and function: a SAINTEX-CAD substudy.

    PubMed

    Van De Heyning, Caroline M; De Maeyer, Catherine; Pattyn, Nele; Beckers, Paul J; Cornelissen, Véronique A; Goetschalckx, Kaatje; Possemiers, Nadine; Van Craenenbroeck, Emeline M; Voigt, Jens-Uwe; Vanhees, Luc; Shivalkar, Bharati

    2018-04-15

    Increase of exercise capacity (peak VO 2 ) after cardiac rehabilitation improves outcome in patients with coronary artery disease (CAD). Systolic and diastolic function have been associated with peak VO 2 , but their role towards improvement of exercise capacity remains unclear. It is unknown which exercise intensity has the most beneficial impact on left ventricular (LV) geometry and function in CAD patients without heart failure. 200 stable CAD patients without heart failure were randomized to 3months of aerobic interval training (AIT) or aerobic continuous training (ACT). Cardiopulmonary exercise test and transthoracic echocardiography were scheduled before and after 3months of training. At baseline, a higher peak VO 2 correlated with lower LV posterior wall thickness (p=0.002), higher LV ejection fraction (p=0.008), better LV global longitudinal strain (p=0.043) and lower E/e' (0=0.001). After multivariate stepwise regression analysis only E/é remained an independent predictor of peak VO 2 (p=0.042). Improvement of peak VO 2 after 3months of training correlated with reverse remodeling of the interventricular septum (p=0.005), enlargement of LV diastolic volume (p=0.007) and increase of LV stroke volume (p=0.018) but not with other indices of systolic or diastolic function. Significant reduction of the interventricular septum thickness after cardiac rehabilitation was observed (p=0.012), with a trend towards more reverse remodeling after ACT compared to AIT (p=0.054). In contrast, there were no changes in other parameters of LV geometry, diastolic or systolic function. Systolic and diastolic function are determinants of baseline exercise capacity in CAD patients without heart failure, but do not seem to mediate improvement of peak VO 2 after either AIT or ACT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Integrative Conductance of Oxygen During Exercise at Altitude.

    PubMed

    Calbet, José A L; Lundby, Carsten; Boushel, Robert

    2016-01-01

    In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.

  8. Evaluating pulmonary function, aerobic capacity, and pediatric quality of life following a 10-week aerobic exercise training in school-aged asthmatics: a randomized controlled trial.

    PubMed

    Abdelbasset, Walid K; Alsubaie, Saud F; Tantawy, Sayed A; Abo Elyazed, Tamer I; Kamel, Dalia M

    2018-01-01

    It has been documented that aerobic exercise may increase pulmonary functions and aerobic capacity, but limited data has evaluated a child's satisfaction and pediatric quality of life (PQoL) with exercise training. This study aimed to investigate the effects of moderate-intensity exercise training on asthmatic school-aged children. This study included 38 school-aged children with asthma (23 males and 15 females) aged between 8-12 years. They were randomly assigned to two groups, aerobic exercise (AE) and conventional treatment (Con ttt) groups. The AE group received a program of moderate-intensity aerobic exercise for 10 weeks with asthma medications and the Con ttt group received only asthma medications without exercise intervention. A home respiratory exercise was recommended for the two groups. Aerobic capacity was investigated using maximal oxygen uptake (VO 2max ), 6-minute walk test (6MWT), and fatigue index. PQoL was evaluated using Pediatric Quality of Life Questionnaire (PQoLQ). Also, pulmonary function tests were performed, and the results recorded. The findings of this study showed significant improvements in pulmonary functions and VO 2max in the two groups; however, this improvement was significantly higher in the AE group than in the Con ttt group ( p <0.05). The 6MWT and fatigue index improved in the AE group ( p <0.05) but not in the Con ttt group ( p >0.05). All dimensions of PQoL significantly improved in the AE group ( p <0.05), but there was no significant improvement in the Con ttt group after the 10-week intervention period ( p >0.05). Ten weeks of physical exercise had beneficial effects on pulmonary functions, aerobic capacity, and PQoL in school-aged children with asthma. Effort and awareness should be dedicated to encouraging the active lifestyle among different populations, especially asthmatic children.

  9. Reduced neural responses to food cues might contribute to the anorexigenic effect of acute exercise observed in obese but not lean adolescents.

    PubMed

    Fearnbach, S N; Silvert, L; Pereira, B; Boirie, Y; Duclos, M; Keller, K L; Thivel, D

    2017-08-01

    Acute exercise has been found to reduce subsequent energy intake in obese adolescents. Although it has been suggested that some neural pathways are involved in this post-exercise energy intake regulation, it remains unknown whether the post-exercise attentional response to food cues differs as a function of weight status. We hypothesize that there will be a reduction in the neural response to food cues as a result of exercise in obese adolescents, but not in their lean counterparts. Fourteen obese and 14 lean adolescent boys (12-15 years) were randomized (within-subjects design) to remain seated (CON) or to exercise 45 minutes at 65% of their maximal capacities (EX). After the exercise or sitting period, the adolescents' cognitive engagement in the processing of food vs. non-food cues was assessed during an attentional computer-based task with electroencephalography (EEG) recording. An ad libitum lunch meal was offered and appetite feelings were assessed (visual analog scales). There was no main effect of condition on energy intake in lean subjects, but obese adolescents ate significantly less following EX compared with CON (P<.05). There was no effect of condition or stimulus type (food vs. non-food) on the EEG-recorded amplitude of the P3b component in lean adolescents. However, the response to food cues was significantly reduced compared with non-food stimuli after exercise in obese participants (P<.01). Following EX, but not CON, total body weight, body mass index, and fat mass were inversely correlated with the EEG response to food-non-food stimuli (all P<.05). However, this response was not associated with ad libitum EI (both P>.1). Acute exercise favors decreased neural response to food cues compared with non-food cues in obese but not lean adolescents, suggesting differential effects of exercise on the neural processing of food cues based on weight status. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap.

    PubMed

    Convertino, Victor A; Cooke, William H

    2005-09-01

    Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.

  11. Ultra short-term heart rate recovery after maximal exercise: relations to aerobic power in sportsmen.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko D; Calleja-Gonzalez, Julio

    2011-04-30

    The main aim of the study was to investigate whether different levels of aerobic power influence heart rate (HR) responses during the first minute of recovery following maximal exercise in athletes. Thirty-two young male soccer players were recruited for the study during the final week of their training prior to [corrected] the competition. Following the maximal exercise on treadmill the participants were placed supine for 60 s of HR recording. The time between exercise cessation and the recovery HR measurement was kept as short as possible. At the end of exercise (i.e., the start of recovery), HRs were [corrected] was similar in both trials. At both 10 s and 20 s of recovery period, the players characterized by high aerobic power (> 60 ml/kg/ min) revealed significantly lower HR as compared to their sub-elite counterparts (< 50 ml/kg/min; P < 0.05). No differences between the groups were found at later stages of the analyzed post-exercise HR. The data suggest that the athletes characterized by high aerobic capacity could be better adapted to maximal exercise with faster recovery HR immediately following an exercise test. These results generally suggest that the aerobic power along with autonomic modulation might have played a role in the ultra short-term cardiovascular responses to all-out exercise.

  12. Diet composition and the performance of high-intensity exercise.

    PubMed

    Maughan, R J; Greenhaff, P L; Leiper, J B; Ball, D; Lambert, C P; Gleeson, M

    1997-06-01

    The crucial role of muscle glycogen as a fuel during prolonged exercise is well established, and the effects of acute changes in dietary carbohydrate intake on muscle glycogen content and on endurance capacity are equally well known. More recently, it has been recognized that diet can also affect the performance of high-intensity exercise of short (2-7 min) duration. If the muscle glycogen content is lowered by prolonged (1-1.5 h) exhausting cycle exercise, and is subsequently kept low for 3-4 days by consumption of a diet deficient in carbohydrate (< 5% of total energy intake), there is a dramatic (approximately 10-30%) reduction in exercise capacity during cycling sustainable for about 5 min. The same effect is observed if exercise is preceded by 3-4 days on a carbohydrate-restricted diet or by a 24 h total fast without prior depletion of the muscle glycogen. Consumption of a diet high in carbohydrate (70% of total energy intake from carbohydrate) for 3-4 days before exercise improves exercise capacity during high-intensity exercise, although this effect is less consistent. The blood lactate concentration is always lower at the point of fatigue after a diet low in carbohydrate and higher after a diet high in carbohydrate than after a normal diet. Even when the duration of the exercise task is kept constant, the blood lactate concentration is higher after exercise on a diet high in carbohydrate than on a diet low in carbohydrate. Consumption of a low-carbohydrate isoenergetic diet is achieved by an increased intake of protein and fat. A high-protein diet, particularly when combined with a low carbohydrate intake, results in metabolic acidosis, which ensues within 24 h and persists for at least 4 days. This appears to be the result of an increase in the circulating concentrations of strong organic acids, particularly free fatty acids and 3-hydroxybutyrate, together with an increase in the total plasma protein concentration. This acidosis, rather than any decrease in the muscle glycogen content, may be responsible for the reduced exercise capacity in high-intensity exercise; this may be due to a reduced rate of efflux of lactate and hydrogen ions from the working muscles. Alternatively, the accumulation of acetyl groups in the carbohydrate-deprived state may reduce substrate flux through the pyruvate dehydrogenase complex, thus reducing aerobic energy supply and accelerating the onset of fatigue.

  13. Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise.

    PubMed

    Walls, Justin; Maskrey, Michael; Wood-Baker, Richard; Stedman, Wade

    2002-06-01

    Arterial haemoglobin saturation during exercise in healthy young women [eight subjects mean (SEM) age 20.8 (1.8) years] was measured to confirm the theory that young women experience exercise-induced arterial hypoxaemia (EIAH) at a lower relative percentage of maximal oxygen uptake (VO(2max)) than has been documented in their male counterparts. To determine if flow limitation [the percentage of the tidal volume ( V(T)) that met or exceeded the boundary established by multiple maximal expiratory manoeuvres] and/or post-exercise lung diffusing capacity are linked to EIAH in women, and to investigate the influence of exercise intensity and duration on post-exercise carbon monoxide lung diffusing capacity ( D(L, CO)), these parameters were measured during and after three exercise tests (incremental test until exhaustion, 5 km run and 5 km run with sprint). All subjects experienced physiologically significant EIAH (a fall of more than 3% in oxygen saturation of arterial blood from levels at rest) and seven subjects experienced flow limitation during the VO(2max) protocol [mean (SD) 12.2 (8.8)% of V(T)]. Even though there was no significant relationship between aerobic capacity and the degree of flow limitation ( r=0.33, P>0.05), the flow limitation was related to absolute ventilation in the subjects studied ( r=0.82, P<0.05). There was no significant relationship between decrements in post exercise D(L, CO) and EIAH ( r=0.05, P>0.05), however there was a strong correlation between the extent of flow limitation (% of V(T)) and EIAH ( r=0.71). Significant decreases in D(L, CO) lasted for up to 16 h after each of the exercise tests ( P<0.05) and lasted for a further 8 h after the maximal test ( P<0.05). Exercise intensity was the main contributing factor to the observed decreases in post-exercise D(L, CO) with the percentage of VO(2max) attained during the various tests being significantly related to the fall in D(L, CO) for 1, 2, 3, 16 and 24 h after exercise ( P<0.05). As the appearance of flow limitation closely coincided with the appearance of EIAH, the results from the present study suggest that flow limitation is a contributing factor to EIAH in women although the exact mechanism remains unclear.

  14. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.

    PubMed

    Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten

    2013-09-01

    Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.

  15. Physical activity and maximal oxygen uptake in adults with Prader-Willi syndrome.

    PubMed

    Gross, Itai; Hirsch, Harry J; Constantini, Naama; Nice, Shachar; Pollak, Yehuda; Genstil, Larry; Eldar-Geva, Talia; Tsur, Varda Gross

    2017-03-16

    Prader-Willi Syndrome (PWS) is the most common genetic syndrome causing life-threatening obesity. Strict adherence to a low-calorie diet and regular physical activity are needed to prevent weight gain. Direct measurement of maximal oxygen uptake (VO 2 max), the "gold standard" for assessing aerobic exercise capacity, has not been previously described in PWS. Assess aerobic capacity by direct measurement of VO 2 max in adults with PWS, and in age and BMI-matched controls (OC), and compare the results with values obtained by indirect prediction methods. Seventeen individuals (12 males) age: 19-35 (28.6 ± 4.9) years, BMI: 19.4-38.1 (27.8 ± 5) kg/m 2 with genetically confirmed PWS who exercise daily, and 32 matched OC (22 males) age: 19-36 (29.3 ± 5.2) years, BMI: 21.1-48.1 (26.3 ± 4.9) kg/m 2 . All completed a medical questionnaire and performed strength and flexibility tests. VO 2 max was determined by measuring oxygen consumption during a graded exercise test on a treadmill. VO 2 max (24.6 ± 3.4 vs 46.5 ± 12.2 ml/kg/min, p < 0.001) and ventilatory threshold (20 ± 2 and 36.2 ± 10.5 ml/kg/min, p < 0.001), maximal strength of both hands (36 ± 4 vs 91.4 ± 21.2 kg, p < 0.001), and flexibility (15.2 ± 9.5 vs 26 ± 11.1 cm, p = 0.001) were all significantly lower for PWS compared to OC. Predicted estimates and direct measurements of VO 2 max were almost identical for the OC group (p = 0.995), for the PWS group, both methods for estimating VO 2 max gave values which were significantly greater (p < 0.001) than results obtained by direct measurements. Aerobic capacity, assessed by direct measurement of VO 2 max, is significantly lower in PWS adults, even in those who exercise daily, compared to OCs. Indirect estimates of VO 2 max are accurate for OC, but unreliable in PWS. Direct measurement of VO 2 should be used for designing personal training programs and in clinical studies of exercise in PWS.

  16. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    PubMed

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  17. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: A randomized study

    PubMed Central

    Mina, Daniel Santa; Connor, Michael K.; Alibhai, Shabbir M.H.; Toren, Paul; Guglietti, Crissa; Matthew, Andrew G.; Trachtenberg, John; Ritvo, Paul

    2013-01-01

    Background Androgen deprivation therapy (ADT) has significant deleterious effects on body composition that may be accompanied by unfavourable changes in adipokine levels. While exercise has been shown to improve a number of side effects associated with ADT for prostate cancer, no studies have assessed the effect of exercise on adiponectin and leptin levels, which have been shown to alter the mitogenic environment. Methods: Twenty-six men with prostate cancer treated with ADT were randomized to home-based aerobic exercise training or resistance exercise training for 24 weeks. Adiponectin, leptin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) were analyzed by ELISA (enzyme-linked immunosorbent assay), in addition to physical activity volume, peak aerobic capacity, and anthropometric measurements, at baseline, 3 months and 6 months. Results: Resistance exercise significantly reduced IGF-1 after 3 months (p = 0.019); however, this change was not maintained at 6 months. At 6 months, IGFBP-3 was significantly increased compared to baseline for the resistance training group (p = 0.044). In an exploratory analysis of all exercisers, favourable changes in body composition and aerobic fitness were correlated with favourable levels of leptin, and favourable leptin:adiponectin and IGF-1:IGFBP-3 ratios at 3 and 6 months. Conclusions: Home-based exercise is correlated with positive changes in adipokine levels and the IGF-axis that may be related to healthy changes in physical fitness and body composition. While the improvements of adipokine markers appear to be more apparent with resistance training compared to aerobic exercise, these findings must be considered cautiously and require replication from larger randomized controlled trials to clarify the role of exercise on adipokines and IGF-axis proteins for men with prostate cancer. PMID:24282459

  18. Effect of changes in fat availability on exercise capacity in McArdle disease.

    PubMed

    Andersen, Susanne T; Jeppesen, Tina D; Taivassalo, Tanja; Sveen, Marie-Louise; Heinicke, Katja; Haller, Ronald G; Vissing, John

    2009-06-01

    The major fuel for exercising muscle at low exercise intensities is fat. To investigate the role of fat metabolism in McArdle disease (also known as glycogen storage disease type V), an inborn error of muscle glycogenolysis, by manipulating free fatty acid availability for oxidation during exercise. Randomized, placebo-controlled, crossover trial. Hospitalized care. Ten patients (8 men and 2 women) with McArdle disease. Patients cycled at a constant workload corresponding to 70% of their maximum oxygen consumption. In random order and on separate days, patients received nicotinic acid (a known blocker of lipolysis) to decrease the availability of free fatty acids or 20% Intralipid infusion to increase free fatty acid availability during exercise. Results were compared with placebo (isotonic sodium chloride solution infusion) and glucose infusion trials. Exercise tolerance was assessed by heart rate response to exercise during different infusions. Free fatty acid levels more than tripled by Intralipid infusion and were halved by nicotinic acid administration. Heart rate was significantly higher during exercise in the Intralipid infusion and nicotinic acid trials compared with the placebo and glucose infusion trials, an effect that was observed before and after the patients had experienced the second wind phenomenon. Lipids are an important source of fuel for exercising muscle in McArdle disease, but maximal rates of fat oxidation seem limited and cannot be increased above physiologically normal rates during exercise. This limitation is probably caused by a metabolic bottleneck in the tricarboxylic acid cycle due to impaired glycolytic flux in McArdle disease. Therapies aimed at enhancing fat use in McArdle disease should be combined with interventions targeting expansion of the tricarboxylic acid cycle.

  19. Exercise for Those with Chronic Heart Failure: Matching Programs to Patients.

    ERIC Educational Resources Information Center

    Braith, Randy W.

    2002-01-01

    Exercise training increases functional capacity and improves symptoms in selected patients with chronic heart failure and moderate-to-severe left ventricular systolic dysfunction. Aerobic training forms the basis of such a program. This paper describes contributors to exercise intolerance, responses to exercise training, favorable outcomes with…

  20. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis.

    PubMed

    Zenith, Laura; Meena, Neha; Ramadi, Ailar; Yavari, Milad; Harvey, Andrea; Carbonneau, Michelle; Ma, Mang; Abraldes, Juan G; Paterson, Ian; Haykowsky, Mark J; Tandon, Puneeta

    2014-11-01

    Patients with cirrhosis have reduced exercise tolerance, measured objectively as decreased peak exercise oxygen uptake (peak VO2). Reduced peak VO2 is associated with decreased survival time. The effect of aerobic exercise training on peak VO2 has not been well studied in patients with cirrhosis. We evaluated the safety and efficacy of 8 weeks of supervised exercise on peak VO2, quadriceps muscle thickness, and quality of life. In a prospective pilot study, stable patients (79% male, 57.6 ± 6.7 years old) with Child-Pugh class A or B cirrhosis (mean Model for End-Stage Liver Disease score, 10 ± 2.2) were randomly assigned to groups that received exercise training (n = 9) or usual care (controls, n = 10) at the University of Alberta Hospital in Canada from February through June 2013. Supervised exercise was performed on a cycle ergometer 3 days/week for 8 weeks at 60%-80% of baseline peak VO2. Peak VO2, quadriceps muscle thickness (measured by ultrasound), thigh circumference, answers from Chronic Liver Disease Questionnaires, EQ-visual analogue scales, 6-minute walk distance, and Model for End-Stage Liver Disease scores were evaluated at baseline and at week 8. Analysis of covariance was used to compare variables. At week 8, peak VO2 was 5.3 mL/kg/min higher in the exercise group compared with controls (95% confidence interval, 2.9-7.8; P = .001). Thigh circumference (P = .001), thigh muscle thickness (P = .01), and EQ-visual analogue scale determined self-perceived health status (P = .01) was also significantly higher in the exercise group compared with controls at week 8; fatigue subscores of the Chronic Liver Disease Questionnaires were lower in the exercise group compared with controls (P = .01). No adverse events occurred during cardiopulmonary exercise testing or training. In a controlled prospective pilot trial, 8 weeks of supervised aerobic exercise training increased peak VO2 and muscle mass and reduced fatigue in patients with cirrhosis. No relevant adverse effects were observed. Larger trials are needed to evaluate the effects of exercise in patients with cirrhosis. ClinicalTrials.gov number: NCT01799785. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

Top