Results of the International Space Station Interim Resistance Exercise Device Man-in-the-Loop Test
NASA Technical Reports Server (NTRS)
Moore, A. D., Jr.; Amonette, W. E.; Bentley, J. R.; Rapley, M. G.; Blazine, K. L.; Loehr, J. A.; Collier, K. R.; Boettcher, C. R.; Skrocki, J. S.; Hohrnann, R. J.
2004-01-01
The Interim Resistance Exercise Device (iRED), developed for the International Space Station (ISS), was evaluated using human subjects for a Man-In-The-Loop Test (MILT). Thirty-two human subjects exercised using the iRED in a test that was conducted over a 63-working-day period. The subjects performed the same exercises will be used on board ISS, and the iRED operating constraints that are to be used on ISS were followed. In addition, eight of the subjects were astronauts who volunteered to be in the evaluation in order to become familiar with the iRED and provide a critique of the device. The MILT was scheduled to last for 57,000 exercise repetitions on the iRED. This number of repetitions was agreed to as a number typical of that expected during a 3-person, 17-week ISS Increment. One of the canisters of the iRED failed at the 49,683- repetition mark (87.1% of targeted goal). The remaining canister was operated using the plan for operations if one canister fails during flight (contingency operations). This canister remained functional past the 57,000-repetition mark. This report details the results of the iRED MILT, and lists specific recommendations regarding both operation of the iRED and future resistance exercise device development.
Shkaplerov exercises on the aRED
2012-01-05
ISS030-E-235507 (5 Jan. 2012) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-11-15
View of Koichi Wakata, Expedition 38 Flight Engineer (FE), exercising on the Advanced Resistive Exercise Device (aRED), in the Node 3. Photo was taken during Expedition 38. Image was released by astronaut on Twitter.
Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-04-04
ISS018-E-044585 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-04-04
ISS018-E-044576 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
NASA Technical Reports Server (NTRS)
Amonette, William E.; Bentley, Jason R.; Lee, Stuart M. C.; Loehr, James A.; Schneider, Suzanne
2004-01-01
Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.
Spot fat reduction by red and near infrared LED phototherapy
NASA Astrophysics Data System (ADS)
Lim, Sungkyoo; Park, Eal-Whan
2018-02-01
Low level light therapy (LLLT) using light from red and near infrared LEDs or Lasers have been reported effective as noninvasive methods for reducing spot fat. A total of 55 subjects were randomly divided into test groups and control groups for abdominal fat reduction clinical trial using red and near infrared LED phototherapy devices. Red and near infrared light with irradiance of 10 mW/cm2 were irradiated over the abdominal area to the test group for 30 minutes followed by 30 minutes of aerobic exercise, 3 times a week for 4 weeks. Control group used sham devices for 30 minutes and followed by 30 minutes of aerobic exercise. It is expected that red and near infrared LED phototherapy combined with aerobic exercise would be effective and safe for abdominal fat reduction without any side effects.
Training with the International Space Station interim resistive exercise device
NASA Technical Reports Server (NTRS)
Schneider, Suzanne M.; Amonette, William E.; Blazine, Kristi; Bentley, Jason; Lee, Stuart M C.; Loehr, James A.; Moore, Alan D Jr; Rapley, Michael; Mulder, Edwin R.; Smith, Scott M.
2003-01-01
A unique, interim elastomer-based resistive exercise device (iRED) is being used on the International Space Station. PURPOSE: This study characterized iRED training responses in a 1-g environment by: 1) determining whether 16 wk of high-intensity training with iRED produces increases in muscle strength and volume and bone mineral density (BMD), 2) comparing training responses with iRED to free weights, and 3) comparing iRED training responses at two training volumes. METHODS: Twenty-eight untrained men were assigned to four groups of seven subjects each: a no exercise control group (CON), an iRED group who trained with three sets/exercise (iRED3), a free-weight group (FW) who trained with three sets/exercise, and an iRED group who trained with six sets/exercise (iRED6). Training exercises included squat (SQ), heel raise (HR), and dead lift (DL) exercises, 3 d.wk(-1) for 16 wk. RESULTS: For CON, no changes occurred pre- to posttraining. For iRED3, increases (P< or =0.05) in one-repetition maximum (1-RM) strength (SQ 21 +/- 4%, HR 17 +/- 4%, DL 29 +/- 5%), leg lean mass (3.1 +/- 0.5%) by dual energy x-ray absorptiometry (DXA), and thigh (4.5 +/- 0.9%) and calf (5.9 +/- 0.7%) muscle volume (by magnetic resonance imaging) occurred after training with no changes in BMD (DXA). For FW, increases in 1-RM strength (SQ 22 +/- 5%, HR 24 +/- 3%, DL 41 +/- 7%), whole body (3.0 +/- 1.1%) and leg lean mass (5.4 +/- 1.2%), thigh (9.2 +/- 1.3%) and calf (4.2 +/- 1.0%) muscle volumes, and lumbar BMD (4.2 +/- 0.7%) occurred after training. For iRED6, all responses were similar to iRED3. CONCLUSION: High-intensity training with the iRED produced muscle responses similar to FW but was not effective in stimulating bone. Bed rest and spaceflight studies are needed to evaluate the effectiveness of the iRED to prevent microgravity deconditioning.
NASA Technical Reports Server (NTRS)
Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin
2010-01-01
This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.
2009-04-27
ISS019-E-011053 (27 April 2009) --- Cosmonaut Gennady Padalka, Expedition 19/20 commander, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
2012-06-05
ISS031-E-157839 (5 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.
2010-01-01
Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can concurrently improve musculoskeletal and cardiovascular conditioning in ambulatory subjects, but further work is required to validate its use as countermeasure to spaceflight-induced deconditioning.
Design of a resistive exercise device for use on the Space Shuttle
NASA Technical Reports Server (NTRS)
Carlson, Dennis L.; Durrani, Mohammed; Redilla, Christi L.
1992-01-01
The National Aeronautics and Space Administration in conjunction with the Universities Space Research Association sponsored the design of a Resistive Exercise Device (RED) for use on the Space Shuttle. The device must enable the astronauts to perform a number of exercises to prevent skeletal muscle atrophy and neuromuscular deconditioning in microgravity environments. The RED must fit the requirements for limited volume and weight and must provide a means of restraint during exercise. The design team divided the functions of the device into three major groups: methods of supplying force, methods of adjusting force, and methods of transmitting the force to the user. After analyzing the three main functions of the RED and developing alternatives for each, the design team used a comparative decision process to choose the most feasible components for the overall design. The design team selected the constant force spring alternative for further embodiment. The device consists of an array of different sized constant force springs which can be pinned in different combinations to produce the required output forces. The force is transmitted by means of a shaft and gear system. The final report is divided into four sections. An introduction section discusses the sponsor background, problem background and requirements of the device. The second section covers the alternative designs for each of the main functions. The design solution and pertinent calculations comprises the third section. The final section contains design conclusions and recommendations including topics of future work.
2009-06-05
ISS020-E-007089 (5 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
NASA Technical Reports Server (NTRS)
Loehr, J. A.; Lee, S. M. C.; English, K. E.; Leach, M.; Bentley, J.; Nash, R.; Hagan, R. D.
2008-01-01
The advanced Resistive Exercise Device (aRED) is a resistive exercise system designed to maintain muscle mass and strength in microgravity by simulating free weight (FW) exercise. aRED utilizes vacuum cylinders and inertial flywheels to replicate the constant mass and inertial components, respectively, of FW exercise in normal gravity. PURPOSE: To compare the effectiveness of aRED and FW resistive exercise training in ambulatory subjects. METHODS: Untrained subjects were assigned to two groups, FW (6 males, 3 females) and aRED (8 males, 3 females), and performed squat (SQ), heel raise (HR), and deadlift (DL) exercises 3 d wk-1 for 16 wks. SQ, HR and DL strength (1RM) were measured using FW hardware pre-, mid- and post-training. Subjects participated in a periodized training protocol with the exercise prescription based on a percentage of 1RM. Thigh and lower leg muscle volume were assessed using Magnetic Resonance Imaging (MRI), and leg (LLM) and total body lean mass (BLM) were measured using Dual Energy X-ray Absorptiometry (DXA) pre- and post-training. RESULTS: SQ 1RM increased in both FW (48.9+/-6.1%) and aRED (31.2+/-3.8%) groups, and there was a greater training response in FW compared with aRED (p=0.01). HR and DL 1RM increased in FW (HR: 12.3+/-2.4%, DL: 23.3+/-4.4%) and aRED (HR: 18.0+/-1.6%, DL: 23.2+'-2.8%), but there were no differences between groups. Thigh muscle volume was greater following training in both groups (FW: 9.8+/-0.9%, aRED: 7.1+/-1.2%) but lower leg muscle volume increased only in the FW group (3.0+/-1.1%). Lean tissue mass increased in both FW (LLM: 3.9+/-1.1%, BLM: 2.5+/-0.7%) and aRED (LLM: 4.8+/-0.7%, BLM: 2.6 0.7%). There were no between group differences in muscle volume or lean mass in response to training. CONCLUSIONS: In general, the increase in muscle strength, muscle volume, and lean tissue mass when training with aRED was not different than when using the same training protocol with FW. The smaller increase in SQ 1RM in the aRED group may be the result of undersizing the aRED flywheels which were intended to mimic the inertial component of the SQ movement when performing FW exercises. However, the biomechanical differences observed in body position during the performance of the aRED SQ, which may have affected training and testing, cannot be excluded as a factor that may have affected SQ 1RM results. PRACTICAL APPLICATIONS: Improvements in muscle strength, muscle volume and lean mass similar to FW exercise training may be elicited using an alternative source of resistance during exercise training. The acceleration of a mass during resistive exercise may result in greater muscle tension when changing the direction of movement resulting in enhanced strength gains. Therefore, to maximize the benefits of resistive exercise, the inertial components of FW exercise should be considered during exercise selection and hardware design. ACKNOWLEDGEMENT: This investigation was supported by NASA-JSC s Exercise Countermeasures Project.
Phillips exercises with RED in Node 1/Unity module
2005-05-18
ISS011-E-06404 (18 May 2005) --- Astronaut John L. Phillips, Expedition 11 NASA space station science officer and flight engineer, wearing squat harness pads, exercises using the Interim Resistive Exercise Device (IRED) equipment in the Unity node of the International Space Station.
2014-06-01
ISS040-E-006339 (1 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2014-06-01
ISS040-E-006343 (1 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2014-05-30
ISS040-E-006102 (31 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2014-05-30
ISS040-E-006099 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
FE Fossum performs aRED In-Flight Maintenance
2011-07-28
ISS028-E-019392 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
FE Fossum performs aRED In-Flight Maintenance
2011-07-28
ISS028-E-019399 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Wakata uses Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-03-22
ISS018-E-042651 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Unity node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
Foot-Ground Reaction Force During Resistance Exercise in Parabolic Flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2003-01-01
An interim Resistance Exercise Device (iRED) was designed to provide resistive exercise as a countermeasure to space flight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (l-g) versus micro gravity (O-g) achieved during parabolic flight. METHODS: Four subjects performed three exercises using the iRED (squat, heel raise, and deadlift) during I-g and O-g at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in three axes (x,y,z) using a force plate, and the magnitude of the resultant force vector was calculated (r = X 2 + y2 + Z2 ). Range of motion (ROM) was measured using a linear encoder. Peak force (PkF) and total work (TW) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p.::::0.05) were observed between I-g and O-g exercise. RESULTS: PkF and TW measured in the resultant axis were significantly less in O-g for each of the exercises tested. During O-g, PkF was 42-46% and TW was 33- 37% of that measured during I-g. ROM and average time to complete each repetition were not different from I-g to O-g. CONCLUSIONS: When performing exercises in which body mass is a portion of the resistance during I-g, PkF and TW measured during resistive exercise were reduced approximately 60-70% during O-g. Thus, a resistive exercise device during O-g will be required to provided higher resistances to induce a similar training stimulus to that on Earth.
FE Furukawa exercising with the ARED
2011-07-30
ISS028-E-019507 (30 July 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Tani Exercises on the RED in Node 1
2008-02-06
ISS016-E-027909 (6 Feb. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
Tani Exercises on the RED in Node 1
2008-02-06
ISS016-E-027914 (6 Feb. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, prepares to use the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
Kotov exercises on the SchRED during Expedition 15
2007-05-06
ISS015-E-08320 (6 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
2013-08-31
ISS036-E-038720 (31 Aug. 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-08-31
ISS036-E-038715 (31 Aug. 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2009-08-24
ISS020-E-033995 (24 Aug. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, works with the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
2010-09-09
ISS024-E-014009 (9 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Bone Metabolism on ISS Missions
NASA Technical Reports Server (NTRS)
Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.
2014-01-01
Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those that existed before space flight. Studies to assess bone strength after flight are underway at NASA, to better understand the results of bone remodeling. Studies are also underway to evaluate optimized exercise protocols and nutritional countermeasures. Regardless, there is clear evidence of progress being made to protect bone during spaceflight.
2013-10-03
ISS037-E-006562 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-10-03
ISS037-E-006563 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2009-06-05
ISS020-E-007087 (5 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, prepares to use the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Ivanishin at the ARED in the Node 3
2012-01-02
ISS030-E-032246 (2 Jan. 2012) --- Russian cosmonaut Anatoly Ivanishin, Expedition 30 flight engineer, is pictured near the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2009-06-23
ISS020-E-013993 (23 June 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Computer Assisted Exercises - Background
2003-06-01
standard JSAF interface devices. As a result of this HITL capability, Red and Blue engaged in real-time, dynamic free - play . Further, JSAF permitted...Red- vs.-Blue, free play , entity-level synthetic battlespace. JSAF simulates warfare at the platform level. JSAF simulates the entire range of...works to ensure the free play of events maintains a course that serves the overall objectives. 2-34 This slide has been deliberately left blank
Thirsk performs IFM on cable cartridge
2009-06-23
ISS020-E-013990 (23 June 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, performs in-flight maintenance on a cable cartridge for the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012727 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012724 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012725 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Foot-ground reaction force during resistive exercise in parabolic flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2004-01-01
INTRODUCTION: An interim resistance exercise device (iRED) was designed to provide resistive exercise as a countermeasure to spaceflight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (1 G) vs. microgravity (0 G) achieved during parabolic flight. METHODS: There were four subjects who performed three exercises (squat, heel raise, and deadlift) using the iRED during 1 G and 0 G at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in the three orthogonal axes (x, y, z) using a force plate, and the magnitude of the resultant force vector was calculated (r = square root(x2 + y2 + z2)). Linear displacement (LD) was measured using a linear transducer. Peak force (Fpeak) and an index of total work (TWi) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p < or = 0.05) were observed between 1 G and 0 G exercise. RESULTS: Fpeak and TWi measured in the resultant axis were significantly less in 0 G for each of the exercises tested. During 0 G, Fpeak was 42-46% and TWi was 33-37% of that measured during 1 G. LD and average time to complete each repetition were not different from 1 G to 0 G. CONCLUSIONS: Crewmembers who perform resistive exercises during spaceflight that include the movement of a large portion of their body mass will require much greater external resistive force during 0 G than 1 G exercise to provide a sufficient stimulus to maintain muscle and bone mass.
Smith, Scott M; Heer, Martina A; Shackelford, Linda C; Sibonga, Jean D; Ploutz-Snyder, Lori; Zwart, Sara R
2012-09-01
Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions. Copyright © 2012 American Society for Bone and Mineral Research.
The Best Workout on Earth, and in Space
NASA Technical Reports Server (NTRS)
2001-01-01
SpiraFlex(R) is a revolutionary new patented technology for storing and delivering mechanical power in industrial, consumer, and fitness equipment. NASA research facilities and funding helped to develop the "Resistance Exercise Device" (RED), powered by SpiraFlex. SpiraFlex duplicates the benefits of free-weights in a lightweight, portable, and safe system. The RED system is presently aboard the International Space Station (ISS) and is used by the crewmembers as a primary countermeasure against musculoskeletal degradation caused by microgravity. Using SpiraFlex technology, Schwinn Cycling & Fitness, Inc., of Boulder, Colorado, launched an international fitness program for health clubs and select retail distributors, called RiPP(TM) (Resistance Performance Program). RiPP is an exercise program that uses RiPP Pro machines, powered by SpiraFlex technology.
Bone metabolism and renal stone risk during International Space Station missions.
Smith, Scott M; Heer, Martina; Shackelford, Linda C; Sibonga, Jean D; Spatz, Jordan; Pietrzyk, Robert A; Hudson, Edgar K; Zwart, Sara R
2015-12-01
Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk. Published by Elsevier Inc.
MPLM during Expedition 18 / STS-126
2008-11-19
S126-E-008120 (18 Nov. 2008) --- Interior view of the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node. Leonardo was moved from Space Shuttle Endeavour's cargo bay and linked to the station on Nov. 17, carrying two water recovery systems racks for recycling urine into potable water, a second toilet system, new gallery components, two new food warmers, a food refrigerator, an experiment freezer, combustion science experiment rack, two separate sleeping quarters and a resistance exercise device (aRED) that allows station crewmembers to perform a variety of exercises.
MPLM during Expedition 18 / STS-126
2008-11-19
S126-E-008117 (18 Nov. 2008) --- Interior view of the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node. Leonardo was moved from Space Shuttle Endeavour's cargo bay and linked to the station on Nov. 17, carrying two water recovery systems racks for recycling urine into potable water, a second toilet system, new gallery components, two new food warmers, a food refrigerator, an experiment freezer, combustion science experiment rack, two separate sleeping quarters and a resistance exercise device (aRED) that allows station crewmembers to perform a variety of exercises.
MPLM during Expedition 18 / STS-126
2008-11-19
S126-E-008118 (18 Nov. 2008) --- Interior view of the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node. Leonardo was moved from Space Shuttle Endeavour's cargo bay and linked to the station on Nov. 17, carrying two water recovery systems racks for recycling urine into potable water, a second toilet system, new gallery components, two new food warmers, a food refrigerator, an experiment freezer, combustion science experiment rack, two separate sleeping quarters and a resistance exercise device (aRED) that allows station crewmembers to perform a variety of exercises.
Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells
Mairbäurl, Heimo
2013-01-01
During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518
NASA Astrophysics Data System (ADS)
Sawin, Charles F.; Hayes, Judith; Francisco, David R.; House, Nancy
2007-02-01
Countermeasures are necessary to offset or minimize the deleterious changes in human physiology resulting from long duration space flight. Exposure to microgravity alters musculoskeletal, neurosensory, and cardiovascular systems with resulting deconditioning that may compromise crew health and performance. Maintaining health and fitness at acceptable levels is critical for preserving performance capabilities required to accomplish specific mission tasks (e.g.—extravehicular activity) and to optimize performance after landing. To enable the goals of the exploration program, NASA is developing a new suite of exercise hardware such as the improved loading device, the SchRED. This presentation will update the status of current countermeasures, correlate hardware advances with improvements in exercise countermeasures, and discuss future activities for safe and productive exploration missions.
Blood Viscosity Responses to Exercise and Conditioning in Women
1983-10-20
cope with the dis- comfort of exercise induced by acidosis then becomes a major determinant of the duration of exercise . Physiology of Aerobic...long term strenuous activity an increased loss of red blood cells may occur. ’ This has been termed "sports anemia." Exercise - induced loss of red cells...may be significant factors in some cases. ’ ’ With improved training regimens and improvements in running shoes, exercise induced "sports anemia" is
Tiwari, Aseem K; Sharma, Pooja; Pandey, Prashant K; Rawat, Ganesh S; Dixit, Surbhi; Raina, Vimarsh; Bhargava, Richa
2015-01-01
A rule called "30-min rule" defines that red cell unit cannot be used if it has been out of blood bank refrigerator for over 30 min. This rule is useful to guide initiation of transfusion, but is inadequate for deciding whether to reuse or discard units received-back at blood transfusion services (BTS). A simple cost-effective temperature-sensitive indicator was evaluated to decide upon reuse (cold chain was uninterrupted) or discard (where cold chain was interrupted) in a simulation exercise. Temperature-sensitive indicators TH-F™ that irreversibly changed color from white to red demonstrated that heat excursion has occurred and the cumulative temperature has exceeded 10°C for over 30 min, were used in outdated red cells for simulating units, which are not used and received-back. These units were also tagged with a standard temperature monitoring device, which was a re-usable credit card sized device, which would log the actual time and temperature. In few units percent hemolysis was also calculated. Statistically insignificant elevation in average temperature was noted in 102 simulated units at the time of return to BTS (Δ 0.04°C), despite the fact that these units were in the transport box for over 4 h. The average supernatant hemoglobin in these units was 0.24%, much below the prescribed threshold. Transportation of blood in controlled conditions with temperature-sensitive indicator is a cost-effective model to save blood, a precious human resource.
Red cell volume with changes in plasma osmolarity during maximal exercise.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.
1973-01-01
The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.
NASA Technical Reports Server (NTRS)
Schwandt, Douglas F.; Whalen, Robert T.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.
1991-01-01
The paper describes three exercise devices, developed at the NASA-Ames Research Center, for maintaining musculoskeletal and cardiovascular fitness in astronauts during extended space flights. These devices represent the following exercise concepts: (1) exercise against LBNP, (2) instrumented dynamic interlimb resistance, and (3) multiple resistive exercise. The three devices complement each other to provide the aerobic and strength training exercises for different situations. All three devices permit eccentric, concentric, and isometric contractions for a variety of exercises.
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle.
Kuo, C H; Hunt, D G; Ding, Z; Ivy, J L
1999-12-01
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.
Exer-Genie(Registered Trademark) Exercise Device Hardware Evaluation
NASA Technical Reports Server (NTRS)
Schaffner, Grant; Sharp,Carwyn; Stroud, Leah
2008-01-01
An engineering evaluation was performed on the ExerGenie(r) exercise device to quantify its capabilities and limitations to address questions from the Constellation Program. Three subjects performed rowing and circuit training sessions to assess the suitability of the device for aerobic exercise. Three subjects performed a resistive exercise session to assess the suitability of the device for resistive exercise. Since 1 subject performed both aerobic and resistive exercise sessions, a total of 5 subjects participated.
Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A
1996-02-01
Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for...
Cavka, Ana; Stupin, Marko; Panduric, Ana; Plazibat, Ana; Cosic, Anita; Rasic, Lidija; Debeljak, Zeljko; Martinovic, Goran; Drenjancevic, Ines
2015-01-01
Objectives. To assess the effect of Red Bull© on (1) blood glucose and catecholamine levels, (2) cardiovascular and respiratory function changes before, during, and after exercise, (3) reaction time, (4) cognitive functions, and (5) response to mental stress test and emotions in young healthy individuals (N=38). Methods. Heart rate (HR) and arterial blood pressure (ABP), blood glucose, adrenaline, and noradrenalin plasma levels were measured before and after Red Bull© intake. Participants were subjected to 4 different study protocols by randomized order, before and 30 minutes after consumption of 500 mL of Red Bull©. Results. Mean ABP and HR were significantly increased at rest after Red Bull© intake. Blood glucose level and plasma catecholamine levels significantly increased after Red Bull© consumption. Heart rate, respiration rate, and respiratory flow rate were significantly increased during exercise after Red Bull© consumption compared to control condition. Intake of Red Bull© significantly improved reaction time, performance in immediate memory test, verbal fluency, and subject's attention as well as performance in mental stress test. Conclusion. This study demonstrated that Red Bull© has beneficial effect on some cognitive functions and effect on cardiovascular and respiratory system at rest and during exercise by increasing activity of the sympathetic nervous system. PMID:26124829
Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray
This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less
Current ISS Exercise Countermeasures: Where are we now?
NASA Technical Reports Server (NTRS)
Hayes, J. C.; Loerch, L.; Davis-Street, J.; Haralson, Cortni; Sams, C.
2006-01-01
Current International Space Station (ISS) crew schedules include 1.5 h/d for completion of resistive exercise and 1 h/d of aerobic exercise , 6 d/wk. While ISS post flight decrements in muscle strength, bone m ineral density, and aerobic capacity improved in some crewmembers, de conditioning was still evident even with this volume of exercise. Res ults from early ISS expeditions show maximum loss in bone mineral density of the lumbar spine and pelvis in excess of 1.5% per month, with all crewmembers demonstrating significant bone loss in one or more re gions. Similarly, post flight muscle strength losses in the hamstring and quadriceps muscle groups exceeded 30% in the immediate post miss ion period in some crewmembers. Measures of aerobic capacity early in the mission show average decrements of 15%, but with onboard aerobic exercise capability, the crew has been able to "train up" over the co urse of the mission. These findings are highly variable among crewmem bers and appear to be correlated with availability and reliability of the inflight resistive exercise device (RED), cycle ergometer, and t readmill. This suite of hardware was installed on ISS with limited op erational evaluation in groundbased test beds. As a result, onorbit hardware constraints have resulted in inadequate physical stimulus, d econditioning, and increased risk for compromised performance during intra and extravehicular activities. These issues indicate that the c urrent ISS Countermeasures System reliability or validity are not ade quate for extendedduration exploration missions. Learning Objective: A better understanding of the status of ISS exercise countermeasures , their ability to protect physiologic systems, and recommendations for exploration exercise countermeasures.
OpenSim Model Improvements to Support High Joint Angle Resistive Exercising
NASA Technical Reports Server (NTRS)
Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts
Overview of the Exploration Exercise Device Validation Study Plans
NASA Technical Reports Server (NTRS)
DeWitt, J. K.; Swan, B. G.
2018-01-01
The NASA has determined that a multi-functional exercise device will be developed for use as an exercise device during exploration missions. The device will allow for full body resistance and metabolic exercise necessary to minimize physiological losses during space flight and to maintain fitness necessary to perform critical mission tasks. Prior to implementation as an exercise device on an Exploration vehicle, there will be verification and validation testing completed to determine device efficacy at providing the necessary training stimuli to achieve desired goals. Because the exploration device will be new device that has yet be specified, specific Verification and Validation (V&V) protocols have yet to be developed. Upon delivery of an exploration exercise device training unit, stakeholders throughout NASA will develop V&V plans that include ground-based testing and testing on the International Space Station (ISS). Stakeholders will develop test protocols that include success criterion for the device. Ground tests will occur at NASA Johnson Space Station prior to flight testing. The intents of the ground tests are to allow crew, spaceflight medicine, science, engineering, Astronaut Strength, Conditioning, and Reconditioning staff, and others to gain experience in the best utilization of the device. The goal is to obtain an evidence base for recommending use of the device on the ISS. The developed protocol will be created to achieve multiple objectives, including determining if the device provides an adequate training stimulus for 5th - 95th percentile males and females, allows for exercise modalities that protect functional capability, and is robust and can withstand extensive human use. Although protocols are yet to be determined, current expectations include use of the device by test subjects and current crew in order to obtain quantitative and qualitative feedback. Information obtained during the ground tests may be used to influence device modifications during design iterations. Assuming successful ground tests, the device will be installed on the ISS for testing during space flight. Spaceflight testing is envisioned to include an activation and checkout (ACO) phase and a V&V phase. During the ACO phase, 1-2 crewmembers will exercise with the device to ensure proper function. ACO is expected to last multiple months because of the many modes and methods of exercise that need to be assessed. However, the goal is to complete the ACO as quickly as possible. Once successful ACO occurs, the crew will be free to use the device for normal exercise pending concurrence from stakeholders. V&V tests on the ISS will ideally consist of crew using the device for all of their exercise for an entire mission. Exercise prescriptions will be supplied that replicate expected prescriptions during exploration missions. Crew that are not enrolled in the V&V studies would be also free to use the device as their schedule permits. As experience is gained by users, exercise protocols could change. The intent of all V&V testing is to ensure that all have thorough understanding of experience at optimizing device capability
ERIC Educational Resources Information Center
Heil, Caiti S. S.; Manzano-Winkler, Brenda; Hunter, Mika J.; Noor, Juliet K. F.; Noor, Mohamed A. F.
2013-01-01
We present a laboratory exercise that leverages student interest in genetics to observe and understand evolution by natural selection. Students begin with white-eyed fruit fly populations, to which they introduce a single advantageous variant (one male with red eyes). The superior health and vision associated with having the red-eye-color allele…
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-08-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.
Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro
2016-02-01
What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma viscosity and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell deformability (e.g. red blood cell membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.
Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R
2018-03-01
The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.
Advanced resistive exercise device
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)
2008-01-01
The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in...
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-01-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights
NASA Technical Reports Server (NTRS)
English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald
2008-01-01
The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.
Herbert, N A; Wells, R M G
2002-12-01
It is hypothesised that the visual performance of rainbow trout, Oncorhynchus mykiss, will be impaired by strenuous exercise as a result of metabolic stress (blood lactacidosis) that activates the Root effect and limits the oxygen-carrying capacity of blood flowing to the eye. The ability to resolve high contrast objects on a moving background, as a measure of visual performance, was quantified pre- and post-exercise using the optomotor response. Strenuous exercise induced a metabolic acidosis (8.0 mmol l(-1) blood lactate) and a significant red cell swelling response but no change in the optomotor response threshold (120 min of arc) was observed. Beta-adrenergic blockade (propranolol) abolished post-exercise red cell swelling but optomotor response thresholds were still maintained at 120 min of arc despite a significant blood lactate load (7.8 mmol l(-1)). The choroid rete mirabile of the trout is extremely well developed (rete area:eye area = 0.39) and may maintain visual performance by ensuring a relatively direct supply of oxygen to the central regions of the avascular retina. Exercised fish under beta-adrenergic blockade exhibited an enhanced optomotor response at 240-300 min of arc. Assuming that these responses reflect "tunnel vision", adrenergic regulation of red cell function may preserve a high ocular PO(2) gradient that satisfies the oxygen demand of peripheral retinal cells.
Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1992-01-01
In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.
Force and power characteristics of a resistive exercise device for use in space
NASA Astrophysics Data System (ADS)
Berg, Hans E.; Tesch, Per A.
We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.
Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.
Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore
2017-03-01
The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2 max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO 2 max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO 2 max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity. Copyright © 2017 Elsevier Inc. All rights reserved.
Compact, Controlled Resistance Exercise Device
NASA Technical Reports Server (NTRS)
Paulus, David C.; DeWitt, John K.; Reich, Alton J.; Shaw, James E.; Deaconu, Stelu S.
2011-01-01
Spaceflight leads to muscle and bone atrophy. Isoinertial (free-weight) exercises provide a sufficient stimulus to elicit increases in both muscle strength and bone mineral density in Earth-based studies. While exercise equipment is in use on the International Space Station for crewmember health maintenance, current devices are too large to place in a transport vehicle or small spacecraft. Therefore, a portable computer controlled resistance exercise device is being developed that is able to simulate the inertial loading experienced when lifting a mass on Earth. This portable device weighs less than 50 lb and can simulate the resistance of lifting and lowering up to 600 lb of free-weights. The objective is to allow crewmembers to perform resistance exercise with loads capable of maintaining muscle and bone health. The device is reconfigurable and allows for the performance of typical Earth-based free-weight exercises. Forces exerted, volume of work, range of motion, time-under-tension, and speed/ acceleration of movement are recorded and can be remotely monitored to track progress and modify individual protocols based on exercise session data. A performance evaluation will be completed and data will be presented that include ground-reaction force comparisons between the device and free-weight dead-lifts over a spectrum of resistance levels. Movement biomechanics will also be presented.
jsc2017m000677_SpeedyTime2–Advanced_ Resistive_Exercise_ Device
2017-07-20
SpeedyTime #2 – Advanced Resistive Exercise Device Astronauts on the International Space Station have to exercise for two hours every day, but they can show off the hardware in a lot less time than that. In this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson gives us a rapid-fire display of exercises that can be done with just one piece of equipment, the Advanced Resistive Exercise Device in the Tranquility module. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco
2010-01-01
To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.
Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate.
Remes, K; Vuopio, P; Härkönen, M
1979-11-01
A statistically significant 10% increase (p less than 0.005) in mean red cell 2,3-diphosphoglycerate (2,3-DPG) concentration, concomitantly with a mean 16% increase (p less than 0.001) in the predicted maximal oxygen uptake (VO2max) was observed in 29 recruits, who were studied during 6 months of physical training in military service. The increase in 2,3-DPG was higher, the lower the initial 2,3-DPG and VO2max levels. The mean initial 2,3-DPG level was higher in the subjects with a higher initial VO2max. A strenuous but highly aerobic 21-km marching exercise elicited a mean 9% increase (p less than 0.005) in red cell 2,3-DPG concentration. A significantly greater response of 2,3-DPG to marching exercise was observed in subjects with a lower pre-test VO2max than in those with a higher pre-test VO2max. During another more competitive march 2,3-DPG remained almost unchanged and was associated with a tendency towards a negative correlation with the acccompanying lactate response (r = -0.60, p less than 0.05). Red cell 2,3-DPG response to a standardized exercise is considered to be a suitable indicator for evaluating the effect of training on an individual.
Load Bearing Equipment for Bone and Muscle
NASA Technical Reports Server (NTRS)
Shackelford, Linda; Griffith, Bryan
2015-01-01
Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.
Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J
2016-10-01
Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.
Hereditary Xerocytosis Revisited
Archer, Natasha; Shmukler, Boris E.; Andolfo, Immacolata; Vandorpe, David H.; Gnanasambandam, Radhakrishnan; Higgins, John M.; Rivera, Alicia; Fleming, Mark D.; Sachs, Frederick; Gottlieb, Philip A.; Iolascon, Achille; Brugnara, Carlo; Alper, Seth L.; Nathan, David G.
2014-01-01
A 21 year old male student presented in 1980 as an Olympic athlete with a 12 year history of jaundice, pallor, and darkened urine induced by the atraumatic exercise of swimming (1). Physical examination at that time was remarkable only for moderate scleral icterus without hepatosplenomegaly. Hematological examination revealed moderate macrocytosis (MCV 102 fL) without anemia (Hct 50%, Hb 17 g/dL, 9% reticulocytes). The peripheral blood smear showed occasional target cells. Red cell osmotic fragility was decreased. Red cell Na content was increased and K content was decreased, with reduced total monovalent ion content. Passive red cell permeability of both Na and K were increased. A supervised 2.5 hr swimming workout increased free plasma Hb from <5 to 45 mg/dL and decreased serum haptoglobin from 25 to 6 mg/dL. The post-exercise urine sediment was remarkable for hemosiderin-laden tubular epithelial cells, without frank hemoglobinuria. The circulating 15 day erythrocyte half-life measured after 6 days without exercise was further shortened to 12 days after resumption of twice-per-day swimming workouts for 1 week. The patient’s red cells were hypersensitive to in vitro shear stress applied by cone-plate viscometer. PMID:25044010
Therapeutic hand-exercising device with cycling pressure value
NASA Technical Reports Server (NTRS)
Barthlome, D. E.
1974-01-01
Device exercises hands of persons whose fingers are generally straight and need to be flexed inward toward palms of hands. Device is extremely simple in design, which reduces costs, and fits all hand sizes. Patient can instantly free hand from device by pulling flap free from wrist of straps.
Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L
2004-02-01
The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.
Mairbäurl, Heimo; Ruppe, Florian A; Bärtsch, Peter
2013-10-01
Specific adenosine triphosphate (ATP) release from red blood cells has been discussed as a possible mediator controlling microcirculation in states of decreased tissue oxygen. Because intravascular hemolysis might also contribute to plasma ATP, we tested in vitro which portion of ATP release is due to hemolysis in typical exercise-induced strains to the red blood cells (shear stress, deoxygenation, and lactic acidosis). Human erythrocytes were suspended in dextran-containing media (hematocrit 10%) and were exposed to shear stress in a rotating Couette viscometer at 37°C. Desaturation (oxygen saturation of hemoglobin ∼20%) was achieved by tonometry with N2 before shear stress exposure. Cells not exposed to shear stress were used as controls. Na lactate (15 mM), lactic acid (15 mM, pH 7.0), and HCl (pH 7.0) were added to simulate exercise-induced lactic acidosis. After incubation, extracellular hemoglobin was measured to quantify hemolysis. ATP was measured with the luciferase assay. Shear stress increased extracellular ATP in a stress-related and time-dependent manner. Hypoxia induced a ∼10-fold increase in extracellular ATP in nonsheared cells and shear stress-exposed cells. Lactic acid had no significant effect on ATP release and hemolysis. In normoxic cells, approximately 20%-50% of extracellular ATP was due to hemolysis. This proportion decreased to less than 10% in hypoxic cells. Our results indicate that when exposing red blood cells to typical strains they encounter when passing through capillaries of exercising skeletal muscle, ATP release from red blood cells is caused mainly by deoxygenation and shear stress, whereas lactic acidosis had only a minor effect. Hemolysis effects were decreased when hemoglobin was deoxygenated. Together, by specific release and hemolysis, extracellular ATP reaches values that have been shown to cause local vasodilatation.
Transit Reconfigurable Exerciser - Intern Exit Abstract
NASA Technical Reports Server (NTRS)
Gebara, Christine A.
2014-01-01
The Transit Resistive Exerciser (TREX) was developed during a 16 week period in which a clutch device filled with smart material was built and began the testing phase. The clutch serves as a passive method of creating resistance. When paired with a series of springs, the device creates a rowing machine also capable of resistive exercise configurations. The device has loading profiles similar to the exercise devices used on the International Space Station today. The prototype created was designed in a modular fashion to support parallel development on various aspects of the project. Hardware and software are currently in development and make use of commercially available parts. Similar technologies have been used in the automotive industry but have never been explored in the context of countermeasure systems for space flight. If the work done leads to successful testing and further development, this technology has the potential to cut the size and weight of exercise devices by an order of magnitude or more.
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem
2015-01-01
The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.
Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)
NASA Technical Reports Server (NTRS)
Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori
2011-01-01
Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.
Supplementing biomechanical modeling with EMG analysis
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail
2016-01-01
It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.
Full Body Loading for Small Exercise Devices Project
NASA Technical Reports Server (NTRS)
Downs, Meghan; Hanson, Andrea; Newby, Nathaniel
2015-01-01
Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings
NASA Technical Reports Server (NTRS)
Moore, Alan D.
2011-01-01
Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted during the Shuttle Program demonstrated that attenuation of postflight deconditioning was possible through use of exercise countermeasures and the Shuttle served as a test bed for equipment destined for use on the International Space Station. Learning Objective: Overview of the Space Shuttle Program research results related to aerobic capacity and performance, including what was learned from research and effectiveness of exercise countermeasures.
21 CFR 890.5370 - Nonmeasuring exercise equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonmeasuring exercise equipment. 890.5370 Section 890.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5370...
21 CFR 890.5370 - Nonmeasuring exercise equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonmeasuring exercise equipment. 890.5370 Section 890.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5370...
21 CFR 890.5370 - Nonmeasuring exercise equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonmeasuring exercise equipment. 890.5370 Section 890.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5370...
21 CFR 890.5370 - Nonmeasuring exercise equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonmeasuring exercise equipment. 890.5370 Section 890.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5370...
21 CFR 890.5370 - Nonmeasuring exercise equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonmeasuring exercise equipment. 890.5370 Section 890.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5370...
Kucukdurmaz, Zekeriya; Karavelioglu, Yusuf; Karapinar, Hekim; Sancakdar, Enver; Deveci, Koksal; Gul, Ibrahim; Yilmaz, Ahmet
2014-01-01
There is no study about hypertensive response to exercise (HRE), which is a marker of unborn hypertension (HT), and red cell distribution width (RDW) association, in diabetic normotensive patients. So, we aimed to investigate any correlation among RDW and HRE in normotensive type 2 diabetic patients. Consecutive type 2 diabetic patients without history of HT and with normal blood pressure (BP) on ambulatory BP monitoring were included to the study. We divided the patients into two groups depending on their peak systolic BP on exercise; HRE (Group 1) or normal response to exercise (Group 2). Data of 75 diabetic patients (51.9 ± 9.7) were analyzed (31 male (48%)). Their mean RDW was 13.11 ± 0.46. Patients with HRE were significantly older than patients without HRE. Smoking was more frequent in Group 2. Gender distribution and body mass index were similar between the groups. Else hemoglobin, hematocrit, red blood cell count and RDW values were not significantly different. Office systolic BP and diastolic BP, daytime and 24-h systolic BP were significantly higher in Group 1 but heart rate was similar between the groups. This study revealed that RDW do not differ between diabetic normotensive patients with HRE or not.
Real time simulation using position sensing
NASA Technical Reports Server (NTRS)
Isbell, William B. (Inventor); Taylor, Jason A. (Inventor); Studor, George F. (Inventor); Womack, Robert W. (Inventor); Hilferty, Michael F. (Inventor); Bacon, Bruce R. (Inventor)
2000-01-01
An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course.
ARED (Advanced-Resistive Exercise Device) Update
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This viewgraph presentation describes ARED which is a new hardware exercise device for use on the International Space Station. Astronaut physiological adaptations, muscle parameters, and cardiovascular parameters are also reviewed.
21 CFR 890.5410 - Powered finger exerciser.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...
21 CFR 890.5360 - Measuring exercise equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360 Measuring...
21 CFR 890.5410 - Powered finger exerciser.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...
21 CFR 890.5380 - Powered exercise equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered exercise equipment. 890.5380 Section 890.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5380 Powered...
21 CFR 890.5380 - Powered exercise equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered exercise equipment. 890.5380 Section 890.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5380 Powered...
21 CFR 890.5380 - Powered exercise equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered exercise equipment. 890.5380 Section 890.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5380 Powered...
21 CFR 890.5380 - Powered exercise equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered exercise equipment. 890.5380 Section 890.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5380 Powered...
21 CFR 890.5360 - Measuring exercise equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360 Measuring...
21 CFR 890.5410 - Powered finger exerciser.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...
21 CFR 890.5360 - Measuring exercise equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360 Measuring...
21 CFR 890.5410 - Powered finger exerciser.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...
21 CFR 890.5380 - Powered exercise equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered exercise equipment. 890.5380 Section 890.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5380 Powered...
21 CFR 890.5360 - Measuring exercise equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360 Measuring...
21 CFR 890.5360 - Measuring exercise equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Measuring exercise equipment. 890.5360 Section 890.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5360 Measuring...
21 CFR 890.5410 - Powered finger exerciser.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...
NASA Technical Reports Server (NTRS)
Werner, C. R.; Humphreys, B. T.; Mulugeta, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.
Alsara, Osama; Perez-Terzic, Carmen; Squires, Ray W; Dandamudi, Sanjay; Miranda, William R; Park, Soon J; Thomas, Randal J
2014-01-01
Because a limited number of patients receive heart transplantation, alternative therapies, such as left ventricular assist device (LVAD) therapy, have emerged. Published studies have shown that LVAD implantation, by itself, improves exercise tolerance to the point where it is comparable to those with mild heart failure. The improvement in exercise capacity is maximally achieved 12 weeks after LVAD therapy and can continue even after explantation of the device. This effect varies, depending on the type of LVAD and exercise training. The available data in the literature on safety and benefits of exercise training in patients after LVAD implantation are limited, but the data that are available suggest that training trends to be safe and have an impact on exercise capacity in LVAD patients. Although no studies were identified on the role of cardiac rehabilitation programs in the management of LVAD patients, it appears that cardiac rehabilitation programs offer an ideal setting for the provision of supervised exercise training in this patient group.
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris
2007-01-01
The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.
Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion
NASA Technical Reports Server (NTRS)
Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.
2015-01-01
Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
Bach, Aaron J E; Stewart, Ian B; Disher, Alice E; Costello, Joseph T
2015-01-01
Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Mean skin temperature ([Formula: see text]) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). [Formula: see text] was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Bland-Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of [Formula: see text] found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring [Formula: see text] in the presence of, or following, metabolic and environmental induced heat stress.
Li, Yu-Hsuan; Chang, Wei-Chin; Chiang, Tien-En; Lin, Chiun-Shu; Chen, Yuan-Wu
2018-04-26
This study investigated the clinical effectiveness of intervention with an open-mouth exercise device designed to facilitate maximal interincisal opening (MIO) and improve quality of life in patients with head and neck (H&N) cancer and oral submucous fibrosis (OSF). Sixty patients with H&N cancer, OSF, and trismus (MIO < 35 mm) participated in the functional rehabilitation program. An open-mouth exercise device intervention group and conventional group, each consisting of 20 patients, underwent a 12-week training and exercising program and follow-up. For the control group, an additional 20 patients were randomly selected to match the demographic characteristics of the aforementioned two groups. The patients' MIO improvements in the aforementioned three groups were 14.0, 10.5, and 1.3 mm, respectively. Results of this study confirm the significant improvement in average mouth-opening range. In addition, according to patient feedback, significant improvements in health-related quality of life and reductions in trismus symptoms occurred in the open-mouth exercise device group. This newly designed open-mouth exercise device can facilitate trismus patients with H&N cancer and OSF and improve mouth-opening range and quality of life.
Han, Sang-Wan; Lee, Jeong-Woo
2018-06-01
[Purpose] This study aimed to investigate the effects of the therapeutic device combined with LED and microcurrent (MC) on muscle tone and stiffness in the calf muscle after its application during moderate aerobic exercise. [Subjects and Methods] Twenty healthy adult subjects were randomized to either the test group of the therapeutic device combined with LED and MC or the control group, and they walked on a 10%-sloped treadmill with a 5 km/hr speed for 30 minutes. Each of the subjects in the test group performed treadmill exercise with the therapeutic device attached to the edge of his or her calf muscle. After the exercise, the muscle tone and stiffness at the edge of the calf muscle were measured. [Results] With respect to the muscle tone, a statistically significant difference was found between the two groups only 5 minutes after the exercise. Concerning muscle stiffness, significant differences were shown between the two groups right after the exercise and 5 minutes after the exercise. [Conclusion] Integrated treatment with LED and MC on is considered helpful for lowering the muscle tone 5 minutes after the exercise, and for lowering the muscle stiffness right after the exercise and 5 minutes after the exercise.
Benefits, Consequences, and Uncertainties of Conventional (Exercise) Countermeasure Approaches
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
This presentation will review the pros, cons, and uncertainties of using exercise countermeasures in hypothetical long duration exploration missions. The use of artificial gravity and exercise will be briefly discussed. One benefit to continued use of exercise is related to our extensive experience with spaceflight exercise hardware and programming. Exercise has been a part of each space mission dating back to the 1960's when simple isometric and bungee exercises were performed in the Gemini capsule. Over the next 50 years, exercise hardware improved cumulating in today's ISS suite of exercise equipment: Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), Treadmill (T2) and Advanced Resistive Exercise Device (ARED). Today's exercise equipment is the most robust ever to be flown in space and allows the variety and intensity of exercise that might reasonably be expected to maintain muscle mass and function, bone density and cardiovascular fitness. A second benefit is related to the large body of research literature on exercise training. There is a considerable body of supporting research literature including >40,000 peer reviewed research articles on exercise training in humans. A third benefit of exercise is its effectiveness. With the addition of T2 and ARED to our ISS exercise suite, crew member outcomes on standard medical tests have improved. Additionally exercise has other positive side effects such as stress relief, possible improvement of immune function, improved sleep, etc. Exercise is not without its consequences. The major cons to performance of in-flight exercise are the time and equipment required. Currently crew are scheduled 2.5 hrs/day for exercise and there is considerable cost to develop, fly and maintain exercise hardware. While no major injuries have been reported on ISS, there is always some risk of injury with any form of exercise There are several uncertainties going forward; these relate mostly to the development of small compact robust effective exercise devices for the next generation of space vehicles. It is becoming increasingly apparent that high intensity exercise is required for maintenance of fitness and functional capability and so future hardware will need to be developed, tested and implemented that allow for a wide variety of exercise, at high intensity while likely involving low mass, volume and power. There are many unanswered issues related to the minimum number and type of exercise devices required for exploration, optimizing exercise prescriptions for these devices, whether a treadmill is absolutely required, and even whether any single countermeasure can adequately protect muscle, bone, cardiovascular and sensorimotor function.
NASA Astrophysics Data System (ADS)
Caplan, Nick; Gibbon, Karl; Hibbs, Angela; Evetts, Simon; Debuse, Dorothée
2014-11-01
The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, most muscles showed peaks in activity which were not seen during EX. Spinal extensors (LM, ES) were more active in EX. Internal oblique and RA were less active in EX. In EX, LM and ES were active for longer than during OW. Conversely, EO and RA were active for a shorter duration in EX than OW. The exercise device showed a phasic-to-tonic shift in activation of both local and global lumbopelvic muscles and promoted increased activation of spinal extensors in relation to walking. These features could make the exercise device a useful rehabilitative tool for populations with lumbopelvic muscle atrophy and dysfunction, including those recovering from deconditioning due to long-term bed rest and microgravity in astronauts.
Lenoir, Augustin; Trachsel, Dagmar S; Younes, Mohamed; Barrey, Eric; Robert, Céline
2017-01-01
Analysis of the heart rate variability (HRV) gains more and more importance in the assessment of training practice and welfare in equine industry. It relies on mathematical analyses of reliably and accurately measured variations in successive inter-beat intervals, measured as RR intervals. Nowadays, the RR intervals can be obtained through two different techniques: a heart rate meter (HRM) or an electrocardiogram (ECG). The agreement and reliability of these devices has not been fully assessed, especially for recordings during exercise. The purpose of this study was to assess the agreement of two commercially available devices using the two mentioned techniques (HRM vs ECG) for HRV analysis during a standardized exercise test. Simultaneous recordings obtained during light exercise and during canter with both devices were available for 36 horses. Data were compared using a Bland-Altman analysis and the Lin's coefficient. The agreement between the assessed HRV measures from the data obtained from the ECG and HRM was acceptable only for the mean RR interval and the mean heart rate. For the other studied measures (SDNN, root mean square of successive differences, SD1, SD2, low frequency, high frequency), the agreement between the devices was too poor for them to be considered as interchangeable in these recording conditions. The agreement tended also to be worse when speed of the exercise increased. Therefore, it is necessary to be careful when interpreting and comparing results of HRV analysis during exercise, as the results will depend upon recording devices. Furthermore, corrections and data processing included in the software of the devices affect largely the output used in the subsequent HRV analysis; this must be considered in the choice of the device.
Backer, Lorraine C; Kirkpatrick, Barbara; Fleming, Lora E; Cheng, Yung Sung; Pierce, Richard; Bean, Judy A; Clark, Richard; Johnson, David; Wanner, Adam; Tamer, Robert; Zhou, Yue; Baden, Daniel G
2005-05-01
Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function.
The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.
ERIC Educational Resources Information Center
Roitman, J. L.; Brewer, J. P.
This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…
Mechanism Development, Testing, and Lessons Learned for the Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Lamoreaux, Christopher D.; Landeck, Mark E.
2006-01-01
The Advanced Resistive Exercise Device (ARED) has been developed at NASA Johnson Space Center, for the International Space Station (ISS) program. ARED is a multi-exercise, high-load resistive exercise device, designed for long duration, human space missions. ARED will enable astronauts to effectively maintain their muscle strength and bone mass in the micro-gravity environment more effectively than any other existing devices. ARED's resistance is provided via two, 20.3 cm (8 in) diameter vacuum cylinders, which provide a nearly constant resistance source. ARED also has a means to simulate the inertia that is felt during a 1-G exercise routine via the flywheel subassembly, which is directly tied to the motion of the ARED cylinders. ARED is scheduled to fly on flight ULF 2 to the ISS and will be located in Node 1. Presently, ARED is in the middle of its qualification and acceptance test program. An extensive testing program and engineering evaluation has increased the reliability of ARED by bringing potential design issues to light before flight production. Some of those design issues, resolutions, and design details will be discussed in this paper.
Defining Exercise Performance Metrics for Flight Hardware Development
NASA Technical Reports Server (NTRS)
Beyene, Nahon M.
2004-01-01
The space industry has prevailed over numerous design challenges in the spirit of exploration. Manned space flight entails creating products for use by humans and the Johnson Space Center has pioneered this effort as NASA's center for manned space flight. NASA Astronauts use a suite of flight exercise hardware to maintain strength for extravehicular activities and to minimize losses in muscle mass and bone mineral density. With a cycle ergometer, treadmill, and the Resistive Exercise Device available on the International Space Station (ISS), the Space Medicine community aspires to reproduce physical loading schemes that match exercise performance in Earth s gravity. The resistive exercise device presents the greatest challenge with the duty of accommodating 20 different exercises and many variations on the core set of exercises. This paper presents a methodology for capturing engineering parameters that can quantify proper resistive exercise performance techniques. For each specified exercise, the method provides engineering parameters on hand spacing, foot spacing, and positions of the point of load application at the starting point, midpoint, and end point of the exercise. As humans vary in height and fitness levels, the methodology presents values as ranges. In addition, this method shows engineers the proper load application regions on the human body. The methodology applies to resistive exercise in general and is in use for the current development of a Resistive Exercise Device. Exercise hardware systems must remain available for use and conducive to proper exercise performance as a contributor to mission success. The astronauts depend on exercise hardware to support extended stays aboard the ISS. Future plans towards exploration of Mars and beyond acknowledge the necessity of exercise. Continuous improvement in technology and our understanding of human health maintenance in space will allow us to support the exploration of Mars and the future of space exploration.
NASA Technical Reports Server (NTRS)
Humphreys, B. T.; Thompson, W. K.; Lewandowski, B. E.; Cadwell, E. E.; Newby, N. J.; Fincke, R. S.; Sheehan, C.; Mulugeta, L.
2012-01-01
NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the development of the Adams ARED module including its capabilities, limitations, and assumptions. Preliminary results, validation activities, and a practical application of the module to inform the relative effect of the flywheels on exercise will be discussed.
Feasibility test on green energy harvesting from physical exercise devices
NASA Astrophysics Data System (ADS)
Mustafi, Nirendra N.; Mourshed, M.; Masud, M. H.; Hossain, M. S.; Kamal, M. R.
2017-06-01
The demand of power is increasing day by day due to the increase of world population as well as the industrialization and modernization. Depletion of the world's fossil fuel reserves and the adverse effects of their uses on the environment insist the researchers to find out some means of efficient and cost effective alternative energy sources from small to large scales. In a gymnasium the human metabolism power is used to drive the physical exercise devices. However there are a number of exercise device which can have the potential to generate electricity during physical exercise. By converting the available mechanical energy from these exercise devices into kinetic energy, electric power can be produced. In this work, energy was harvested from the most commonly used physical exercise devices used in the gymnasium - paddling and chin up. The paddle pulley and the chin up pulley were connected to the couple pulley which in turn coupled to an alternator by a V-belt to produce electrical energy and a rechargeable battery was used to store electrical energy. The power generation from the device depends upon the speed at which the alternator runs and the age limit. The electrical energy output was observed 83.6 watt at 1300 rpm and 62.5 watt at1150 rpm alternator speed for the paddling and chin up respectively recorded for an average adult. The device was designed for a constant 49N load on the alternator for both paddling and chin up operation. By running each of these devices for about 12 hours in a day, any gymnasium can avoid burning of almost 23.67 kg and 31.6 kg of diesel fuel per year for chin up and paddling respectively. Also it can cut off the CO2 emission to the environment which reveals itself a standalone green micro gym.
Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P
2018-05-01
We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Exercise-induced oedema due to hormone-containing intrauterine device].
Franssen, Laurens E; Bos, Willem-Jan W
2012-01-01
Oedema is a known adverse effect of the levonorgestrel-containing intrauterine device (Mirena IUD). However, exercise-induced oedema has not been described before. A 38-year-old woman presented with symptoms of diffuse, exercise-induced oedema and dyspnoea. Tests for heart failure and other causes of oedema showed no abnormalities. All symptoms resolved spontaneously after the patient initiated removal of the IUD. The pathophysiology of exercise-induced oedema is still poorly understood. When confronted with a patient with oedema (induced by exercise or other cause), the most common causes must first be excluded. If no explanation can be found, then the effects of medication must not be overlooked.
Novel Musculoskeletal Loading and Assessment System
NASA Technical Reports Server (NTRS)
Downs, Meghan E.
2017-01-01
Ground based and ISS (International Space Station) exercise research have shown that axial loading via two-point loading at the shoulders and load quality (i.e. consistent load and at least 1:1 concentric to eccentric ratio) are extremely important to optimize musculoskeletal adaptations to resistance exercise. The Advanced Resistance Exercise Device (ARED) is on ISS now and is the "state of the art" for resistance exercise capabilities in microgravity; however, the ARED is far too large and power consuming for exploration vehicles. The single cable exercise device design selected for MPCV (Multi-Purpose Crew Vehicle), does not readily allow for the two-point loading at the shoulders.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Lee, C Matthew; Gorelick, Mark; Mendoza, Albert
2011-12-01
The purpose of this study was to examine the accuracy of the ePulse Personal Fitness Assistant, a forearm-worn device that provides measures of heart rate and estimates energy expenditure. Forty-six participants engaged in 4-minute periods of standing, 2.0 mph walking, 3.5 mph walking, 4.5 mph jogging, and 6.0 mph running. Heart rate and energy expenditure were simultaneously recorded at 60-second intervals using the ePulse, an electrocardiogram (EKG), and indirect calorimetry. The heart rates obtained from the ePulse were highly correlated (intraclass correlation coefficients [ICCs] ≥0.85) with those from the EKG during all conditions. The typical errors progressively increased with increasing exercise intensity but were <5 bpm only during rest and 2.0 mph. Energy expenditure from the ePulse was poorly correlated with indirect calorimetry (ICCs: 0.01-0.36) and the typical errors for energy expenditure ranged from 0.69-2.97 kcal · min(-1), progressively increasing with exercise intensity. These data suggest that the ePulse Personal Fitness Assistant is a valid device for monitoring heart rate at rest and low-intensity exercise, but becomes less accurate as exercise intensity increases. However, it does not appear to be a valid device to estimate energy expenditure during exercise.
Smart Rehabilitation Devices: Part I – Force Tracking Control
Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine
2008-01-01
Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle. PMID:18504509
Body Building Boons From Apollo
NASA Technical Reports Server (NTRS)
1978-01-01
The Exer-Genie program utilizes familiar types of exercise, such as isometrics (pushing or pulling against an immovable object) and isotonics (motive exercises such as calisthenics or weight lifting) but with the important added factor of controlled resistance. The device is an arrangement of hand grips and nylon cord wrapped around an aluminum shaft. Controlled friction determines the resistance and the user can set the amount of resistive force to his own physical conditioning needs. Since Apollo days, the Exer-Genie and a similar device called the Apollo Exerciser have found wide acceptance among professional, collegiate and high school athletic teams, and among the growing number of individuals interested in physical fitness. These devices are efficient and economical replacements for conventional conditioning equipment and extremely versatile, allowing more than 100 basic exercises for shaping up specific muscle groups.
Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017
BUNN, JENNIFER A.; NAVALTA, JAMES W.; FOUNTAINE, CHARLES J.; REECE, JOEL D.
2018-01-01
Wearable physical activity trackers are a popular and useful method to collect biometric information at rest and during exercise. The purpose of this systematic review was to summarize recent findings of wearable devices for biometric information related to steps, heart rate, and caloric expenditure for several devices that hold a large portion of the market share. Searches were conducted in both PubMed and SPORTdiscus. Filters included: humans, within the last 5 years, English, full-text, and adult 19+ years. Manuscripts were retained if they included an exercise component of 5-min or greater and had 20 or more participants. A total of 10 articles were retained for this review. Overall, wearable devices tend to underestimate energy expenditure compared to criterion laboratory measures, however at higher intensities of activity energy expenditure is underestimated. All wrist and forearm devices had a tendency to underestimate heart rate, and this error was generally greater at higher exercise intensities and those that included greater arm movement. Heart rate measurement was also typically better at rest and while exercising on a cycle ergometer compared to exercise on a treadmill or elliptical machine. Step count was underestimated at slower walking speeds and in free-living conditions, but improved accuracy at faster speeds. The majority of the studies reviewed in the present manuscript employed different methods to assess validity and reliability of wearable technology, making it difficult to compare devices. Standardized protocols would provide guidance for researchers to evaluate research-grade devices as well as commercial devices used by the lay public. PMID:29541338
Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015-2017.
Bunn, Jennifer A; Navalta, James W; Fountaine, Charles J; Reece, Joel D
2018-01-01
Wearable physical activity trackers are a popular and useful method to collect biometric information at rest and during exercise. The purpose of this systematic review was to summarize recent findings of wearable devices for biometric information related to steps, heart rate, and caloric expenditure for several devices that hold a large portion of the market share. Searches were conducted in both PubMed and SPORTdiscus. Filters included: humans, within the last 5 years, English, full-text, and adult 19+ years. Manuscripts were retained if they included an exercise component of 5-min or greater and had 20 or more participants. A total of 10 articles were retained for this review. Overall, wearable devices tend to underestimate energy expenditure compared to criterion laboratory measures, however at higher intensities of activity energy expenditure is underestimated. All wrist and forearm devices had a tendency to underestimate heart rate, and this error was generally greater at higher exercise intensities and those that included greater arm movement. Heart rate measurement was also typically better at rest and while exercising on a cycle ergometer compared to exercise on a treadmill or elliptical machine. Step count was underestimated at slower walking speeds and in free-living conditions, but improved accuracy at faster speeds. The majority of the studies reviewed in the present manuscript employed different methods to assess validity and reliability of wearable technology, making it difficult to compare devices. Standardized protocols would provide guidance for researchers to evaluate research-grade devices as well as commercial devices used by the lay public.
Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.
2015-01-01
Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140
Importance of heart rate during exercise for response to cardiac resynchronization therapy.
Maass, Alexander H; Buck, Sandra; Nieuwland, Wybe; Brügemann, Johan; van Veldhuisen, Dirk J; Van Gelder, Isabelle C
2009-07-01
Cardiac resynchronization therapy (CRT) is an established therapy for patients with severe heart failure and mechanical dyssynchrony. Response is only achieved in 60-70% of patients. To study exercise-related factors predicting response to CRT. We retrospectively examined consecutive patients in whom a CRT device was implanted. All underwent cardiopulmonary exercise testing prior to implantation and after 6 months. The occurrence of chronotropic incompetence and heart rates exceeding the upper rate of the device, thereby compromising biventricular stimulation, was studied. Response was defined as a decrease in LVESV of 10% or more after 6 months. We included 144 patients. After 6 months 86 (60%) patients were responders. Peak VO2 significantly increased in responders. Chronotropic incompetence was more frequently seen in nonresponders (21 [36%] vs 9 [10%], P = 0.03), mostly in patients in SR. At moderate exercise, defined as 25% of the maximal exercise tolerance, that is, comparable to daily life exercise, nonresponders more frequently went above the upper rate of the device (13 [22%] vs 2 [3%], P < 0.0001), most of whom were patients in permanent AF. Multivariate analysis revealed heart rates not exceeding the upper rate of the device during moderate exercise (OR 15.8 [3.3-76.5], P = 0.001) and nonischemic cardiomyopathy (OR 2.4 [1.0-5.7], P = 0.04) as predictive for response. Heart rate exceeding the upper rate during moderate exercise is an independent predictor for nonresponse to CRT in patients with AF, whereas chronotropic incompetence is a predictor for patients in SR.
Left ventricular assist device: exercise capacity evolution and rehabilitation added value.
Lamotte, Michel X; Chimenti, Sara; Deboeck, Gael; Gillet, Alexis; Kacelenenbogen, Raymond; Strapart, Jonathan; Vandeneynde, Frédéric; Van Nooten, Guido; Antoine, Martine
2018-06-01
With more than 15,000 implanted patients worldwide and a survival rate of 80% at 1-year and 59% at 5-years, left ventricular assist device (LVAD) implantation has become an interesting strategy in the management of heart failure patients who are resistant to other kinds of treatment. There are limited data in the literature on the change over time of exercise capacity in LVAD patients, as well as limited knowledge about the beneficial effects that rehabilitation might have on these patients. Therefore, the aim of our study was to evaluate the evolution of exercise capacity on a cohort of patients implanted with the same device (HeartWare © ) and to analyse the potential impact of rehabilitation. Sixty-two patients implanted with a LVAD between June 2011 and June 2015 were screened. Exercise capacity was evaluated by cardiopulmonary exercise testing at 6 weeks, 6 and 12 months after implantation. We have observed significant differences in the exercise capacity and evolution between the trained and non-trained patients. Some of the trained patients nearly normalised their exercise capacity at the end of the rehabilitation programme. Exercise capacity of patient implanted with a HeartWare © LVAD increased in the early period after implantation. Rehabilitation allowed implanted patients to have a significantly better evolution compared to non-rehabilitated patients.
2013-01-01
Background Physical exercise and a Mediterranean diet improve serum lipid profile. The present work studied whether red wine has an effect on top of a lipid-lowering lifestyle in patients with carotid atherosclerosis. Methods A prospective randomised unblinded trial was performed from 2009 to 2011 in 108 patients with carotid atherosclerosis, 65% of whom were already on statin therapy with a low mean LDL of 104.9 mg/dl. Half of them were advised to follow a modified Mediterranean diet and to perform moderate physical exercise during 30 min/day (lifestyle changes) for 20 weeks. Within these two groups half of the patients were randomised either to avoid any alcohol or to drink 100 ml of red wine (women) or 200 ml of red wine (men) daily. Results LDL was significantly lowered by 7% in the lifestyle-changes group compared to the no-lifestyle-changes group (p = 0.0296) after 20 weeks. Lifestyle changes lowered the LDL/HDL ratio after 20 weeks by 8% (p = 0.0242) and red wine independently by 13% (p = 0.0049). The effect on LDL/HDL ratio after 20 weeks was, however, more pronounced in the non-LC group. Total cholesterol (−6%; p = 0.0238) and triglycerides (−13%; p = 0.0361) were lowered significantly by lifestyle changes after 20 weeks compared to the no-lifestyle-changes group. Lipoprotein (a) was not significantly affected by any intervention. The given results are per ITT analysis. Conclusions Lifestyle changes including a modified Mediterranean diet and physical exercise as well as a glass of red wine daily improve independently the LDL/HDL ratio in patients with carotid arteriosclerosis even though the vast majority of them was already on statin therapy. Trial registration http://www.clinicaltrials.gov, NCT01146132 PMID:24228901
Influence of skin type and wavelength on light wave reflectance.
Fallow, Bennett A; Tarumi, Takashi; Tanaka, Hirofumi
2013-06-01
A new application of photoplethysmography (PPG) has emerged recently to provide the possibility of heart rate monitoring without a telemetric chest strap. The aim of this study was to determine if a new device could detect pulsation over a broad range of skin types, and what light wavelength would be most suitable for detecting the signals. A light emitting diode-based PPG system was used to detect changes in pulsatile blood flow on 23 apparently healthy individuals (11 male and 12 female, 20-59 years old) of varying skin types classified according to a questionnaire in combination with digital photographs with a skin type chart. Four different light wavelengths (470, 520, 630, and 880 nm) were tested. Normalized modulation level is calculated as the AC/DC component ratio and represents the change in flow over the underlying constant state of flow or perfusion. In the resting condition, green light wavelength (520 nm) displayed greater modulation (p < 0.001) than all the other wavelengths analyzed regardless of skin types. Type V (dark brown) skin type was significantly lower in modulation than all other skin types. In the exercise condition, both blue (470 nm) and green (520 nm) light wavelengths displayed greater signal-to-noise ratios than red (630 nm) or infrared (880 nm) light wavelengths (p < 0.001). We concluded that a PPG-based device can detect pulsation across all skin types and that a greater resolution was obtained using a green light wavelength at rest and a green or blue light wavelength during exercise.
Candidate Exercise Technologies and Prescriptions
NASA Technical Reports Server (NTRS)
Loerch, Linda H.
2010-01-01
This slide presentation reviews potential exercise technologies to counter the effects of space flight. It includes a overview of the exercise countermeasures project, a review of some of the candidate exercise technologies being considered and a few of the analog exercise hardware devices, and a review of new studies that are designed to optimize the current and future exercise protocols.
Lam, Paul; Hebert, Debbie; Boger, Jennifer; Lacheray, Hervé; Gardner, Don; Apkarian, Jacob; Mihailidis, Alex
2008-01-01
Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1) an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2) an unobtrusive upper body postural sensing system; and 3) a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good) out of 4.0 (good). The postural sensors detected 93 of 96 (97%) therapist-simulated abnormal postures and correctly ignored 90 of 96 (94%) of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral) for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as the prototype was considered to be generally well designed and capable of delivering reaching task therapy. The next stage of this project is to proceed to clinical trials with stroke patients. PMID:18498641
Heil, John R; Nordeste, Ricardo F; Charles, Trevor C
2011-04-01
Here we report a simple cost-effective device for screening colonies on plates for expression of the monomeric red fluorescent protein mRFP1 and the fluorescent dye Nile red. This device can be built from any simple light source, in our case a Quebec Colony Counter, and cost-effective theatre gels. The device can be assembled in as little as 20 min, and it produces excellent results when screening a large number of colonies.
Using Mobile Devices for Motor-Learning Laboratory Exercises
ERIC Educational Resources Information Center
Hill, Kory
2014-01-01
When teaching motor-learning concepts, laboratory experiments can be valuable tools for promoting learning. In certain circumstances, traditional laboratory exercises are often impractical due to facilities, time, or cost. Inexpensive or free applications (apps) that run on mobile devices can serve as useful alternatives. This article details…
Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest
NASA Technical Reports Server (NTRS)
Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori
2012-01-01
Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation
Physical therapy applications of MR fluids and intelligent control
NASA Astrophysics Data System (ADS)
Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine
2005-05-01
Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise devices. Adaptive controls for regulating the resistive force or torque of the device as well as the joint motion are presented. The device provides both isometric and isokinetic strength training for various human joints.
Effect Of Leg Exercise On Vascular Volumes During Bed Rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1993-01-01
Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.
Estimated Muscle Loads During Squat Exercise in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.
2012-01-01
Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.
Eichner, E R
1986-10-01
In brief: Physical activity makes the blood more fluid and less likely to clot. The healthy hematologic adaptations to exercise (enhanced fibrinolysis, expanded plasma volume, decreased hematocrit, increased red cell deformability, and decreased blood viscosity) seem to enhance the delivery of oxygen and decrease the risk of thrombosis. Regular exercise, then, by changing the blood, may offer the elite athlete enhanced performance and the general population reduced risk of heart attack. Increased amounts of fish in the diet and-for selected persons-low-dose aspirin, may be useful antithrombotic adjuncts to exercise.
The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages
ERIC Educational Resources Information Center
Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.
2008-01-01
Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…
Development of Magnetorheological Resistive Exercise Device for Rowing Machine
Žiliukas, Pranas
2016-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke. PMID:27293479
Development of Magnetorheological Resistive Exercise Device for Rowing Machine.
Grigas, Vytautas; Šulginas, Anatolijus; Žiliukas, Pranas
2015-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.
Rehabilitation device with variable resistance and intelligent control
Dong, Shufang; Lu, Ke-Qian; Sun, J.Q.; Rudolph, Katherine
2008-01-01
Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise device in the form of a knee brace. An intelligent supervisory control for regulating the resistive force or torque of the knee brace has also been studied. The device provides both isometric and isokinetic strength training for the knee. PMID:15694609
Novel mouth-exercising device for oral submucous fibrosis.
Patil, Pravinkumar G; Patil, Smita P
2012-10-01
Oral submucous fibrosis (OSMF) is a chronic inflammatory disease resulting in progressive juxtaepithelial fibrosis of the oral soft tissues and can cause increasing difficulty in mastication, swallowing, speaking, and mouth opening. The treatment of severe trismus requires a combination of surgical release and physiotherapy. Often physiotherapy alone can modify tissue remodeling in OSMF to increase oral opening. This article describes the fabrication and use of a new mouth-exercising device that helps the patient to squeeze/stretch the cheek mucosa to increase elasticity. The device can be used as a sole treatment modality or can be used in association with pharmacological and surgical treatment modalities for OSMF. Improvement in mouth opening was observed in four OSMF patients treated with a mouth-exercising device for 6 months as a sole treatment modality. © 2012 by the American College of Prosthodontists.
Dynamic inter-limb resistance exercise device for long-duration space flight
NASA Technical Reports Server (NTRS)
Schwandt, Douglas F.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.
1991-01-01
Essential for fitness on Earth, resistive exercise is even more important for astronauts, who must maintain muscle and bone strength in the absence of gravity. To meet this need, designers and scientists at NASA Ames Research Center, Life Science Division, have worked to develop more effective exercise devices for long-duration exposure to microgravity. One of these concepts is the Inter-Limb Resistance Device which allows the subject to exercise one limb directly against another, strengthening muscle groups in the arms, legs, and back. It features a modular harness with an inelastic cable and instrumented pulley. Forces similar to other high resistance exercise equipment are generated. Sensors in the pulley measure force and velocity for performance feedback display and data acquisition. This free-floating apparatus avoids vibration of sensitive experiments on board spacecraft. Compact with low mass, this hardware is also well suited for a 'safe haven' from radiation on board Space Station Freedom, and may prove useful in confined environments on Earth, such as Antarctic stations, submarines, and other underwater habitats. Potential spin-offs of this technology include products for personal strengthening and cardiovascular conditioning, rehabilitation of hospital patients, fitness exercise for the disabled, and retraining after sports injuries.
Portable Load Measurement Device for Use During ARED Exercise on ISS
NASA Technical Reports Server (NTRS)
Hanson, A.; Peters, B.; Caldwell, E.; Sinka, J.; Kreutzburg, G.; Ploutz-Snyder, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) (Fig.1) is unique countermeasure hardware available to crewmembers aboard the International Space Station (ISS) used for resistance exercise training to protect against bone and muscle loss during long duration space missions. ARED instrumentation system was designed to measure and record exercise load data, but: - Reliably accurate data has not been available due to a defective force platform. - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system. ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository. Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions. ARED load data is necessary to fulfill medical requirements. HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoeTM as a means of obtaining ARED load data during exercise sessions. The XSENS ForceShoes"TM" will fly as a hardware demonstration to ISS in May 2014 (39S). Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab. PLMDs are favored over platform redesign as they support future exploration needs.
Effects of transcatheter closure of Fontan fenestration on exercise tolerance. kidecho@yahoo.com.
Momenah, Tarek S; Eltayb, Haifa; Oakley, Reida El; Qethamy, Howeida Al; Faraidi, Yahya Al
2008-05-01
Baffle fenestration is associated with a significantly better outcome in standard and high-risk patients undergoing completion of Fontan. We report the effects of subsequent transcatheter closure of fenestration on exercise capacity and oxygen saturation. Sixteen patients with a mean age of 10.3 years underwent Amplatzer septal occluder (ASO) device transcatheter closure of Fontan fenestration. All had a fenestrated Fontan operation 6 month to 8 years prior to the procedure. A stress test was performed before and after device closure of fenestration in 14 patients (2 patients did not tolerate stress test before the procedure). The fenestrations in all patients were successfully occluded with the use of the Amplatzer device occluder. No complications occurred during or after the procedure. O2 saturation increased from a mean 85.1 +/- 7.89% to 94.5 +/- 3.63% (p < 0.01) at rest and from 66.2 +/- 12.86% to 87.2 +/- 8.64% (p < 0.01) following exercise. Exercise duration has also increased from 8.22 +/- 2.74 min to 10.29 +/- 1.91 min (p < 0.05). Transcatheter closure of Fontan fenestration increases the duration of exercise capacity and increases O2 saturation at rest and after exercise.
Crytzer, Theresa M.; Dicianno, Brad E.; Fairman, Andrea D.
2013-01-01
Background Obesity, deconditioning, cognitive impairment, and poor exercise tolerance are health issues concerning adults with spina bifida (SB). Our aim is to describe exercise participation and identify motivating tactics and exercise devices that increase participation. Design In a quasi-experimental randomized crossover design, the GameCycle was compared to a Saratoga Silver I arm ergometer. Personalized free or low cost text/voice message reminders to exercise were sent. Methods Nineteen young adults with SB were assigned to either the GameCycle or Saratoga exercise group. Within each group, participants were randomized to receive reminders to exercise, or no reminders, then crossed over to the opposite message group after eight weeks. Before and after a 16 week exercise program we collected anthropometric, metabolic, exercise testing and questionnaire data, and recorded participation. Results Miles traveled by the GameCycle group were significantly higher than the Saratoga exercise groups. No significant differences were found in participation between the message reminder groups. Low participation rates were seen overall. Conclusions Those using the GameCycle traveled more miles. Barriers to exercise participation may have superseded ability to motivate adults with SB to exercise even with electronic reminders. Support from therapists to combat deconditioning and develop coping skills may be needed. PMID:24620701
2014-10-01
maneuver • Traditional “ Brick and Mortar ” training models – Difficult to train regularly due to logistics/budget restrictions – Doesn’t scale...complexity, scenario, location , and resources available • Scalable 4-cell planning construct – Exercise Control (White Cell) – Threat Emulation (Red...business impact) • Collaborative effort Trusted Agents ( SMEs ) – Threats – Cyber defense capabilities – Policies and procedures – Project and/or
Dedov, Vadim N; Dedova, Irina V
2015-07-01
Sustained exercise training could significantly improve patient rehabilitation and management of noncommunicable diseases in the community. This study aimed to develop a universal telecare system for delivery of exercise rehabilitation and cardiovascular training services at home. An innovative bilateral leg training device was equipped with an electronic system for the ongoing measurement of training activities with the device. A single-item parameter reflecting the intensity of training was monitored using several modern telecommunication technologies. According to the application protocol, eight volunteers first tried the device for 30-60 min to determine their personal training capacity. Then, they were provided with equipment to use at home for 4 weeks. Adherence to daily training was assessed by the number of training days per week, training intensity, and duration of training sessions. The system provided reliable recording of training activities with the device using (1) long-term data logging without an ongoing connection to the computer, (2) wireless monitoring and recording of training activities on a stand-alone computer, and (3) a secure cloud-based monitoring over the Internet connection using electronic devices, including smartphones. Overall analysis of recordings and phone feedbacks to participants took only approximately 5 h for the duration of study. This study, although of a pilot nature, described the comprehensive exercise telerehabilitation system integrating mobile training equipment with personalized training protocols and remote monitoring. A single-item electronic parameter of the system usage facilitated time-effective data management. Wireless connection allowed various locations of device application and several monitoring arrangements ranging from real-time monitoring to long-term recording of exercise activities. A cloud-based software platform enabled management of multiple users at distance. Implementation of this model may facilitate both accessibility and availability of personalized exercise telerehabilitation services. Further studies would validate it in the clinical and healthcare environment.
Articulating Support for Horizontal Resistive Exercise
NASA Technical Reports Server (NTRS)
Gundo, Daniel; Schaffner, Grant; Bentley, Jason; Loehr, James A.
2005-01-01
A versatile mechanical device provides support for a user engaged in any of a variety of resistive exercises in a substantially horizontal orientation. The unique features and versatility of the device promise to be useful in bedrest studies, rehabilitation, and specialized strength training. The device affords a capability for selectively loading and unloading of portions of the user s body through its support mechanisms, so that specific parts of the body can be trained with little or no effect on other parts that may be disabled or in the process of recovery from injury. Thus, the device is ideal for rehabilitation exercise programs prescribed by physicians and physical therapists. The capability for selective loading and support also offers potential benefits to strength and conditioning trainers and athletes who wish to selectively strengthen selected parts. The principal innovative aspect of the device is that it supports the subject s weight while enabling the subject, lying substantially horizontally, to perform an exercise that closely approximates a full standing squat. The device includes mechanisms that support the subject in such a way that the hips are free to translate both horizontally and vertically and are free to rotate about the line connecting the hips. At the same time, the shoulders are free to translate horizontally while the upper back is free to rotate about the line connecting the shoulders. Among the mechanisms for hip motion and support is a counterbalance that offsets the weight of the subject as the subject s pelvis translates horizontally and vertically and rotates the pelvis about the line connecting the hips. The counterbalance is connected to a pelvic support system that allows these pelvic movements. The subject is also supported at the shoulder by a mechanism that can tilt to provide continuous support of the upper back while allowing the rotation required for arching the back as the pelvis is displaced. The shoulder support also affords a capability for horizontal motion, and acts as the point of attachment of a load that is provided for squat and heel-raise exercises. The device is compatible with any resistive-exercise machine that provides bilateral loading via a moving cable or other mechanical linkage. The hip-translation and shoulder-translation and -rotation degrees of freedom of the supports can be locked individually or in combination in order to support the subject as necessary for exercises other than the standing squat. If necessary, for such exercises, the load can be applied directly to the subject by use of various attachments. In addition to the aforementioned heel raise, such exercises include the upright row, leg press, curls, extension of the triceps, front raise, lateral raise, and rear raise.
Lindgren exercises in Node 3 module
2015-07-28
ISS044E024392 (07/28/2015) --- Newly arrived NASA astronaut Kjell Lindgren exercises on the International Space Station using the Advanced Resistive Exercise Device to help mitigate the potentially adverse effects of long duration stays in microgravity.
Understanding and controlling chromaticity shift in LED devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Mills, Karmann; Lamvik, Michael
Chromaticity shift in light-emitting diode (LED) devices arises from multiple mechanisms, and at least five different chromaticity shift modes (CSMs) have been identified to date. This paper focuses on the impacts of irreversible phosphor degradation as a cause of chromaticity shifts in LED devices. The nitride phosphors used to produce warm white LEDs are especially vulnerable to degradation due to thermal and chemical effects such as reactions with oxygen and water. As a result, LED devices utilizing these phosphors were found to undergo either a green shift or, less commonly, a red shift depending on the phosphor mix in themore » LED devices. These types of chromaticity shifts are classified as CSM-2 (green shift) and CSM-5 (red shift). This paper provides an overview of the kinetic processes responsible for green and red chromaticity shifts along with examples from accelerated stress testing of 6” downlights. Both CSMs appear to proceed through analogous mechanisms that are initiated at the surface of the phosphor. A green shift is produced by the surface oxidation of the nitride phosphor that changes the emission profile to lower wavelengths. As the surface oxidation reaction proceeds, reactant limitations slow the rate and bulk oxidation processes become more prevalent. We found that a red chromaticity shift arises from quenching of the green phosphor, also possibly due to surface reactions of oxygen, which shift the emission chromaticity in the red direction. In conclusion, we discuss the implications of these findings on projecting chromaticity.« less
NASA Technical Reports Server (NTRS)
Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.
2015-01-01
Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.
Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang
2017-11-01
Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.
NASA Technical Reports Server (NTRS)
Gundo, Dan
2003-01-01
Recently, I worked on creating a one-of-a-kind device for a Space Station group studying exercise physiology at another NASA Center. They approached my department at Ames Research Center to design and build an exercise bed that allowed users to perform the motions that they needed for ground-based research. The real challenge was that they needed the device designed, built, and delivered in just one month. The bed was intended to simulate doing squats while in a horizontal position as if on a moving sled. They wanted to incorporate a resistant device called an Interim Resistive Exercise Device (IRED), an adjustable cable tied into a reel to provide a measured amount of resistance. This device was used on the Station for exercising in space; we were taking the same resistant reel and incorporating it in this bed. In the early stages of a design project, I communicate with a customer as much as I can and as often as they will tolerate. There s a lot of learning that needs to go on, and I prefer to spend a little bit of extra time here because that can save a lot of time later. In the beginning, you need to volley the information back-and-forth, so that you understand the customer s requirements and they know what you re capable of doing.
Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael
2014-09-01
Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.
Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex
NASA Astrophysics Data System (ADS)
Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra
2017-01-01
A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.
Self-generating oscillating pressure exercise device
NASA Technical Reports Server (NTRS)
Watenpaugh, Donald E. (Inventor)
1994-01-01
An exercise device, especially suitable for zero gravity workouts, has a collapsible chamber which generates negative pressure on the lower portion of a body situated therein. The negative pressure is generated by virtue of leg, hand and shoulder interaction which contracts and expands the chamber about the person and by virtue of air flow regulation by valve action.
Technical aspects of oxygen saving devices.
Brambilla, I; Arlati, S; Chiusa, I; Micallef, E
1990-01-01
Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise.
Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo
2017-10-19
With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments intended...
1991-05-01
They also estimated that in the post- absorptive state, approximately 25% of glucose use took place in insulin-dependent peripheral tissues (75 to...Measure concentration with refractometer . APPENDIX E RED BLOOD CELL REJUVENATION 94 95 RED BLOOD CELL REJUVENATION Use time expired red blood cells from...a 3 ’P4tr P,~ , Ok di) ej,. J/4CS As rc.< O~ 1. AGENCY USE ONLY (Le.ve blnk 2. REPORT DATE TTESI ADGDRATE CV 4. TITLE AND SUBTITLE S. FUNDING
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2015-06-23
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Stacked white OLED having separate red, green and blue sub-elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Visualizing the Transition State: A Hands-On Approach to the Arrhenius Equation
ERIC Educational Resources Information Center
Kuntzleman, Thomas S.; Swanson, Matthew S.; Sayers, Deborah K.
2007-01-01
An exercise is presented in which the kinetics of the irreversible "reaction" of pennies in the heads-up state to pennies in the tails-up state is simulated by a hands-on, Monte Carlo approach. In addition, the exercise incorporates a second simulation in which the irreversible "reaction" of dice with a red face uppermost to a blue face uppermost…
Efficacy of a heat exchanger mask in cold exercise-induced asthma.
Beuther, David A; Martin, Richard J
2006-05-01
To determine the efficacy of a novel mask device in limiting cold air exercise-induced decline in lung function in subjects with a history of exercise-induced asthma (EIA). In spite of appropriate medical therapy, many asthma patients are limited in cold weather activities. In study 1, 13 asthmatic subjects performed two randomized, single-blind treadmill exercise tests while breathing cold air (- 25 to - 15 degrees C) through a placebo or active heat exchanger mask. In study 2, five subjects with EIA performed three treadmill exercise tests while breathing cold air: one test using the heat exchanger mask, one test without the mask but with albuterol pretreatment, and one test with neither the mask nor albuterol pretreatment (unprotected exercise). For all studies, spirometry was performed before and at 5, 15, and 30 min after exercise challenge. For both studies, a total of 15 subjects with a history of asthma symptoms during cold air exercise were recruited. In study 1, the mean decrease (+/- SE) in FEV1 was 19 +/- 4.9% with placebo, and 4.3 +/- 1.6% with the active device (p = 0.0002). The mean decrease in maximum mid-expiratory flow (FEF(25-75)) was 31 +/- 5.7% with placebo and 4.7 +/- 1.7% with the active device (p = 0.0002). In study 2, the mean decrease in FEV1 was 6.3 +/- 3.9%, 11 +/- 3.7%, and 28 +/- 10% for the heat exchanger mask, albuterol pretreatment, and unprotected exercises, respectively (p = 0.4375 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). The mean decrease in FEF(25-75) was 10 +/- 4.8%, 23 +/- 6.0%, and 36 +/- 11%, respectively (p = 0.0625 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). This heat exchanger mask blocks cold exercise-induced decline in lung function at least as effectively as albuterol pretreatment.
NASA Astrophysics Data System (ADS)
McManus, Chris J.; Collison, Jay; Cooper, Chris E.
2018-01-01
The purpose of the study was to compare muscle oxygenation as measured by two portable, wireless near-infrared spectroscopy (NIRS) devices under resting and dynamic conditions. A recently developed low-cost NIRS device (MOXY) was compared against an established PortaMon system that makes use of the spatially resolved spectroscopy algorithm. The influence of increasing external pressure on tissue oxygen saturation index (TSI) indicated that both devices are stable between 2 and 20 mmHg. However, above this pressure, MOXY reports declining TSI values. Analysis of adipose tissue thickness (ATT) and TSI shows a significant, nonlinear difference between devices at rest. The devices report similar TSI (%) values at a low ATT (<7 mm) (PortaMon minus MOXY difference is +1.1±2.8%) with the major subsequent change between the devices occurring between 7 and 10 mm at ATT values >10 mm the difference remains constant (-14.7±2.8%). The most likely explanation for this difference is the small source-detector separation (2.5 cm) in the MOXY resulting in lower tissue penetration into muscle in subjects with higher ATT. Interday test-retest reliability of resting TSI was evaluated on five separate occasions, with the PortaMon reporting a lower coefficient of variation (1.8% to 2.5% versus 5.7% to 6.2%). In studies on male subjects with low ATT, decreases in the TSI were strongly correlated during isometric exercise, arterial occlusion, and incremental arm crank exercise. However, the MOXY reports a greater dynamic range, particularly during ischemia induced by isometric contraction or occlusion (Δ74.3% versus Δ43.7% hyperemia MAX-occlusion MIN). This study shows that in this subject group both MOXY and PortaMon produce physiologically credible TSI measures during rest and exercise. However, the absolute values obtained during exercise are generally not comparable between devices unless corrected by physiological calibration following an arterial occlusion.
Loyaga-Rendon, Renzo Y; Plaisance, Eric P; Arena, Ross; Shah, Keyur
2015-08-01
The left ventricular assist device (LVAD) is an accepted treatment alternative for the management of end-stage heart failure. As we move toward implantation of LVADs in less severe cases of HF, scrutiny of functional capacity and quality of life becomes more important. Patients demonstrate improvements in exercise capacity after LVAD implantation, but the effect is less than predicted. Exercise training produces multiple beneficial effects in heart failure patients, which would be expected to improve quality of life. In this review, we describe factors that are thought to participate in the persistent exercise impairment in LVAD-supported patients, summarize current knowledge about the effect of exercise training in LVAD-supported patients, and suggest areas for future research. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Myoclonic epilepsy with ragged-red fibers without increased lactate levels.
Kimura, Shigemi; Ozasa, Shiro; Nakamura, Kyoko; Nomura, Keiko; Kosuge, Hirofumi
2009-07-01
Myoclonic epilepsy associated with ragged-red fibers is one of the mitochondrial encephalomyopathies. Pathogenic mitochondrial DNA mutations have been identified in the mitochondrial transfer RNA (tRNA)(Lys) at positions 8344 and 8356. Characteristics of myoclonic epilepsy associated with ragged-red fibers include myoclonic epilepsy, generalized epilepsy, hearing loss, exercise intolerance, lactic acidosis, and ragged-red fibers. The elevated lactate level is one of the most important symptoms needed to make a diagnosis of mitochondrial encephalomyopathy. In the present case, however, myoclonic epilepsy was associated with ragged-red fibers but without increased lactate levels. Therefore, myoclonic epilepsy associated with ragged-red fibers should be suspected in a patient who has myoclonic epilepsy that is difficult to control with antiepileptic medications and who has other symptoms of mitochondrial disease, such as mental retardation, even if the patient's lactate level is normal.
Separation of whole blood into plasma and red cells by using a hollow-fibre filtration system.
Hornsey, V S; McColl, K; Drummond, O; Prowse, C V
2005-08-01
The aim of this study was to assess the separation of whole blood into red cells and plasma by using the Sangofer device, which is a gravity-fed, hollow-fibre system. The components would then be compared with those produced by the use of more elaborate technical equipment. Ten whole-blood units were leucoreduced by using a WBF2 filter and immediately separated into red cells and plasma by using the Sangofer blood-separation device. Red cells were stored in additive solution and tested on days 1 and 42. The plasma was assayed for levels of various coagulation factors and for markers of both coagulation and complement activation. The red-cell parameters were similar to those obtained when routine centrifugation methods were used. The filter did not cause haemolysis. Levels of plasma factor VIII and factor XI were lower than those seen in routinely produced leucoreduced plasma units but there was no evidence of activation of the coagulation and complement systems. The Sangofer device is simple and straightforward to use and eliminates the need for both centrifugation and automated separation steps during the processing of whole blood into red cells and plasma components. Minor changes are required to make the procedure easier to incorporate into routine use.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... VACAPES Range Complex, the Navy conducted 14 5-lb charge, 28 10-lb charge, and 3 20-lb charge mine... missile) exercises and 1 AGM-65 (Maverick missile) exercise (MISSIEX); and 13 5' explosive Naval gunfire... (PAM) devices. The monitoring efforts for 2011 were conducted within the mine neutralization exercise...
Park, Se-yeon; Ahn, Tae-kyung; Eom, Ji-hwan; Youn, Hyun-ji; Kim, In-kwang; Yoo, Won-gyu
2014-01-01
[Purpose] The purpose of this study was to evaluate the effect of the wall slide device on activation of the scapulothoracic musculature. [Subjects] We recruited 15 healthy male subjects. [Methods] The subjects performed the general wall push-up plus (WPUP) and the wall slide with device (WSD) exercises. During the exercises, the muscle activities of the upper and lower trapezius (UT, LT), middle and lower serratus anterior (MSA, LSA), and pectoralis major (PM) were measured. [Results] The normalized muscle activity data of the WSD were significantly higher in UT, MSA and LSA than the WPUP. [Conclusion] Our results suggest that exercise using the WSD can more effectively activate the scapulothoracic musculature than the general WPUP. PMID:25013271
Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector.
Wagner, H N; Rigo, P; Baxter, R H; Alderson, P O; Douglass, K H; Housholder, D F
1979-05-01
A portable nonimaging device, the nuclear stethoscope, for measuring beat to beat ventricular time-activity curves in normal people and patients with heart disease, both at rest and during exercise, is being developed and evaluated. The latest device has several operating modes that facilitate left ventricular and background localization, measurement of transit times and automatic calculation and display of left ventricular ejection fraction. The correlation coefficient of left ventricular ejection fraction obtained with the device and with a camera-computer system was 0.92 in 35 subjects. During bicycle exercise the ejection fraction in 15 normal persons increased from 44 to 64 percent (P less than 0.001), whereas among 12 patients with heart disease it was unchanged in 5 and decreased in 7.
Effectiveness of flying squirrel excluder devices on red-cockaded woodpecker cavities
Susan C. Loeb
1996-01-01
The author tested the effectiveness of squirrel excluder devices (SQED?s) in deterring southern flying squirrels (Glaucomys volans) from using artificial red-cockaded woodpecker (Picoides borealis) cavities by placing them on approximately one-half of the cavities in 14 inactive recruitment clusters on the Savannah River Site, SC. SQED?s consisted of 2 pieces of 35.5-...
High-efficiency red electroluminescent device based on multishelled InP quantum dots.
Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun
2016-09-01
We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849 cd/m2, a current efficiency of 4.2 cd/A, and an external quantum efficiency of 2.5%.
Validation of Heart Rate Monitor Polar RS800 for Heart Rate Variability Analysis During Exercise.
Hernando, David; Garatachea, Nuria; Almeida, Rute; Casajús, Jose A; Bailón, Raquel
2018-03-01
Hernando, D, Garatachea, N, Almeida, R, Casajús, JA, and Bailón, R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res 32(3): 716-725, 2018-Heart rate variability (HRV) analysis during exercise is an interesting noninvasive tool to measure the cardiovascular response to the stress of exercise. Wearable heart rate monitors are a comfortable option to measure interbeat (RR) intervals while doing physical activities. It is necessary to evaluate the agreement between HRV parameters derived from the RR series recorded by wearable devices and those derived from an electrocardiogram (ECG) during dynamic exercise of low to high intensity. Twenty-three male volunteers performed an exercise stress test on a cycle ergometer. Subjects wore a Polar RS800 device, whereas ECG was also recorded simultaneously to extract the reference RR intervals. A time-frequency spectral analysis was performed to extract the instantaneous mean heart rate (HRM), and the power of low-frequency (PLF) and high-frequency (PHF) components, the latter centered on the respiratory frequency. Analysis was done in intervals of different exercise intensity based on oxygen consumption. Linear correlation, reliability, and agreement were computed in each interval. The agreement between the RR series obtained from the Polar device and from the ECG is high throughout the whole test although the shorter the RR is, the more differences there are. Both methods are interchangeable when analyzing HRV at rest. At high exercise intensity, HRM and PLF still presented a high correlation (ρ > 0.8) and excellent reliability and agreement indices (above 0.9). However, the PHF measurements from the Polar showed reliability and agreement coefficients around 0.5 or lower when the level of the exercise increases (for levels of O2 above 60%).
Exercise therapy for an older patient with left ventricular assist device.
Park, Won Hah; Seo, Yong Gon; Sung, Ji Dong
2014-06-01
A left ventricular assist device (LVAD) is a mechanical circulation support implanted for patients with end-stage heart failure. It may be used either as a bridge to cardiac transplantation or as a destination therapy. The health of a 75-year-old man with a medical history of systolic heart failure worsened. Therefore, he was recommended to have implanted a LVAD (Thoratec Corp.) as a destination therapy. After the surgery, he was enrolled in patient cardiac rehabilitation for the improvement of dyspnea and exercise capacity. In results, there is an improvement on his exercise capacity and quality of life. For the first time in Korea, we reported a benefit of exercise therapy after being implanted with a LVAD.
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
Ugata, Yusuke; Wada, Hiroshi; Sakakura, Kenichi; Ibe, Tatsuro; Ito, Miyuki; Ikeda, Nahoko; Fujita, Hideo; Momomura, Shin-Ichi
2018-01-27
Aerobic training based on anaerobic threshold (AT) is well-known to improve cardiac function, exercise capacity, and long-term outcomes of patients with heart failure. Recent reports suggested that high-intensity interval training (HIIT) for patients with cardiovascular disease may improve cardiopulmonary exercise capacity. We present a 61-year-old male patient of severe left ventricular dysfunction with left ventricular assisted device (LVAD). Following HIIT for 8 weeks, exercise capacity and muscle strength have improved without worsening left ventricular function. Our case showed the possibility that HIIT was feasible and effective even in patients with LVAD.
Development of the Vibration Isolation System for the Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Niebuhr, Jason H.; Hagen, Richard A.
2011-01-01
This paper describes the development of the Vibration Isolation System for the Advanced Resistive Exercise Device from conceptual design to lessons learned. Maintaining a micro-g environment on the International Space Station requires that experiment racks and major vibration sources be isolated. The challenge in characterizing exercise loads and testing the system in the presence of gravity led to a decision to qualify the system by analysis. Available data suggests that the system is successful in attenuating loads, yet there has been a major component failure and several procedural issues during its 3 years of operational use.
Validation of a dual-cycle ergometer for exercise during 100 percent oxygen prebreathing
NASA Technical Reports Server (NTRS)
Wiegman, Janet F.; Ohlhausen, John H.; Webb, James T.; Pilmanis, Andrew A.
1992-01-01
A study has been designed to determine if exercise, while prebreathing 100 percent oxygen prior to decompression, can reduce the current resting-prebreathe time requirements for extravehicular activity and high altitude reconnaissance flight. For that study, a suitable exercise mode was required. Design considerations included space limitations, cost, pressure suit compatibility, ease and maintenance of calibration, accuracy of work output, and assurance that no significant mechanical advantage or disadvantage would be introduced into the system. In addition, the exercise device must enhance denitrogenation by incorporation of both upper and lower body musculature at high levels of oxygen consumption. The purpose of this paper is to describe the specially constructed, dual-cycle ergometer developed for simultaneous arm and leg exercise during prebreathing, and to compare maximal oxygen uptake obtained on the device to that obtained during leg-only cycle ergometry and treadmill testing. Results demonstrate the suitability of the dual-cycle ergometer as an appropriate tool for exercise research during 100 percent oxygen prebreathing.
An affordable, computerised, table-based exercise system for stroke survivors.
King, Marcus; Hale, Leigh; Pekkari, Anna; Persson, Martin; Gregorsson, Malin; Nilsson, Mikaela
2010-07-01
Loss of hand function as a result of upper limb paresis after a stroke leads to reduced independence. Robotic-assisted therapy with virtual reality leads to improvements in motor function, but there is a need to improve the cost-benefit ratio of these therapies. This case series study investigated augmented reality computer games which provided a rewarded, goal-directed task to upper limb rehabilitation via a gravity supported reaching task. A computer game was developed to motivate chronic stroke survivors to undertake gravity supported reaching tasks performed on a table, and a focus group study investigated the application of this device for rehabilitation. From the focus group, a simple device was developed to improve the quality of the exercise and a further focus group study investigated a variety of computer games to determine motivations for undertaking rehabilitation exercises. Of the four participants in the case study, two showed improvement in ability to play the game and in arm function. Participants enjoyed playing a range of computer games and felt that the system provided a worthwhile exercise. Motivation for undertaking exercise with the system included: intellectual stimulation during game play, feedback such as game score, gaining physical benefits from the exercise, the system tolerating varying levels of disability, ability to relate to the game and ability to use the system in social groups. A low-cost device has been developed which increases the exercise of gravity supported reaching movements, provides goal-directed tasks with rewards and motivates the user to undertake extended rehabilitation.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.
2018-01-01
Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932
A new device to study isoload eccentric exercise.
Guilhem, Gaël; Cornu, Christophe; Nordez, Antoine; Guével, Arnaud
2010-12-01
This study was designed to develop a new device allowing mechanical analysis of eccentric exercise against a constant load, with a view in mind to compare isoload (IL) and isokinetic (IK) eccentric exercises. A plate-loaded resistance training device was integrated to an IK dynamometer, to perform the acquisition of mechanical parameters (i.e., external torque, angular velocity). To determine the muscular torque produced by the subject, load torque was experimentally measured (TLexp) at 11 different loads from 30° to 90° angle (0° = lever arm in horizontal position). TLexp was modeled to take friction effect and torque variations into account. Validity of modeled load torque (TLmod) was tested by determining the root mean square (RMS) error, bias, and 2SD between the descending part of TLexp (from 30° to 90°) and TLmod. Validity of TLexp was tested by a linear regression and a Passing-Bablok regression. A pilot analysis on 10 subjects was performed to determine the contribution of the torque because of the moment of inertia to the amount of external work (W). Results showed the validity of TLmod (bias = 0%; RMS error = 0.51%) and TLexp SEM = 4.1 N·m; Intraclass correlation coefficient (ICC) = 1.00; slope = 0.99; y-intercept = -0.13). External work calculation showed a satisfactory reproducibility (SEM = 38.3 J; ICC = 0.98) and moment of inertia contribution to W showed a low value (3.2 ± 2.0%). Results allow us to validate the new device developed in this study. Such a device could be used in future work to study IL eccentric exercise and to compare the effect of IL and IK eccentric exercises in standardized conditions.
Chicotka, Scott; Burkhoff, Daniel; Dickstein, Marc L; Bacchetta, Matthew
Interstitial lung disease (ILD) represents a collection of lung disorders with a lethal trajectory with few therapeutic options with the exception of lung transplantation. Various extracorporeal membrane oxygenation (ECMO) configurations have been used for bridge to transplant (BTT), yet no optimal configuration has been clearly demonstrated. Using a cardiopulmonary simulation, we assessed different ECMO configurations for patients with end-stage ILD to assess the physiologic deficits and help guide the development of new long-term pulmonary support devices. A cardiopulmonary ECMO simulation was created, and changes in hemodynamics and blood gases were compared for different inflow and outflow anatomic locations and for different sweep gas and blood pump flow rates. The system simulated the physiologic response of patients with severe ILD at rest and during exercise with central ECMO, peripheral ECMO, and with no ECMO. The output parameters were total cardiac output (CO), mixed venous oxygen (O2) saturation, arterial pH, and O2 delivery (DO2)/O2 utilization (VO2) at different levels of exercise. The model described the physiologic state of progressive ILD and showed the relative effects of using various ECMO configurations to support them. It elucidated the optimal device configurations and required physiologic pump performance and provided insight into the physiologic demands of exercise in ILD patients. The simulation program was able to model the pathophysiologic state of progressive ILD with PH and demonstrate how mechanical support devices can be implemented to improve cardiopulmonary function at rest and during exercise. The information generated from simulation can be used to optimize ECMO configuration selection for BTT patients and provide design guidance for new devices to better meet the physiologic demands of exercise associated with normal activities of daily living.
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Tesch, Per A; Pozzo, Marco; Ainegren, Mats; Swarén, Mikael; Linnehan, Richard M
2013-05-01
Astronauts are required to perform both resistance and aerobic exercise while in orbit. This study assessed the aerobic energy yield and related physiological measurements using a nongravity dependent flywheel device designed for both resistance and aerobic exercise (RAD) in space. Eight physically active men and women performed all-out rowing on the RAD. For comparison, exercise was also carried out employing a commercially available rowing ergometer (C2). Peak oxygen uptake during exercise using RAD and C2 averaged 3.11 +/- 0.49 and 3.18 +/- 0.50 L x min(-1), respectively. Similarly, peak plasma lactate concentration (9.6 vs. 11.2 mmol x L(-1)), heart rate (183 vs. 184 bpm), and rate of perceived exertion (15.8 vs. 16.0) were comparable across exercise using the two devices. Collectively, the results suggest that this novel exercise modality offers cardiovascular and metabolic responses, and thus aerobic exercise stimulus that is equally effective as that evoked by established technology for indoor rowing. Given the need for physiologically sound and highly effective exercise countermeasures that features small mass and envelope, and allows for resistance and aerobic exercise in a single apparatus, we believe this novel hardware should be considered for use in space.
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2014 CFR
2014-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2012 CFR
2012-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2013 CFR
2013-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting...
Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071
Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
Thimmaiah, Tim; Voje, William E; Carothers, James M
2015-01-01
With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By combining engineered transcript components, such as ribosome binding sites, transcriptional terminators, ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expression in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The successful design of genetic constructs that implement these kinds of RNA-based control mechanisms requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been described (Carothers et al., Science 334:1716-1719, 2011). Here, we provide a detailed practical procedure for computational transcript design by illustrating a high throughput, multiprocessor approach for evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon, Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional folding simulations needed to design functional rREDs and aREDs. The method described here should be broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.
Carbohydrate Supplementation and Immune Responses After Acute Exhaustive Resistance Exercise
2008-01-01
247 International Journal of Sport Nutrition and Exercise Metabolism, 2008, 18, 247-259 © 2008 Human Kinetics , Inc. Carlson is with the Dept. of...the men who participated in the study. References Bachle, T.R., & Earle, R.W. (2000). Essentials of strength and conditioning. Champaign, IL: Human ... Kinetics . Dill, D.B., & Costill, D.L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of
Erythrocyte 2,3-diphosphoglycerate and serum enzyme concentrations in trained and sedentary men.
Lijnen, P; Hespel, P; Van Oppens, S; Fiocchi, R; Goossens, W; Vanden Eynde, E; Amery, A
1986-04-01
The acute effect of exercise on the intraerythrocyte 2,3-diphosphoglycerate concentration and on various serum enzymes and some related variables was investigated in 14 male athletes before and after a 50-min cross-country run and compared at rest to 15 sedentary subjects. Compared to the sedentary subjects, the athletes had higher resting levels of serum creatine phosphokinase, plasma myoglobin, and renin substrate but had a lower plasma renin activity. The red blood cell 2,3-diphosphoglycerate concentration increased after exercise in the runners and was not different at rest between the athletes and the sedentary subjects. Our data therefore suggest that the resting plasma renin activity is reduced in athletes when compared to sedentary subjects. Training seems however not to alter the resting level of 2,3-diphosphoglycerate in the red blood cells.
Horina, J H; Schwaberger, G; Brussee, H; Sauseng-Fellegger, G; Holzer, H; Krejs, G J
1993-01-01
The efficacy of recombinant human erythropoietin (rHuEpo) for the treatment of renal anaemia is well established. To assess the effect of rHuEpo treatment on physical performance we evaluated physical working capacity, oxygen uptake and red cell 2,3-diphosphoglycerate (DPG) values at rest and during and after exercise on a bicycle spiroergometer in eight chronically haemodialysed patients. Follow-up examination was carried out after a mean of 14 weeks (range 9-19 weeks), when mean haemoglobin had increased from 7.8 to a stable value of 13.0 g/dl in response to rHuEpo treatment (P < 0.001). Physical working capacity and oxygen uptake at the anaerobic threshold (4 mmol/l blood lactate concentration) increased from 68 +/- 12 to 80 +/- 16 watts and 0.95 +/- 0.14 to 1.10 +/- 0.20 l/min, respectively (P < 0.01). DPG, which determines oxygen affinity to haemoglobin in red cells, increased by 13% from 13.7 +/- 1.5 to 15.5 +/- 2.2 mumol/g Hb (P < 0.05). With maximal exercise mean DPG values significantly decreased to a much lower level without rHuEpo treatment than after correction of anaemia. Therefore rHuEpo treatment results both in better oxygen transport capacity and reduced intraerythrocytic oxygen affinity, which is followed by improved oxygen delivery to tissues per unit of haemoglobin. These effects may explain the improvement of exercise capacity observed in dialysis patients after rHuEpo treatment.
Kokkinidis, Damianos G; Alvandi, Bejan; Cotter, Ryan; Hossain, Prio; Foley, T Raymond; Singh, Gagan D; Waldo, Stephen W; Laird, John R; Armstrong, Ehrin J
2018-03-09
To examine the impact of re-entry device (RED) use on 1- and 5-year outcomes after endovascular treatment of common iliac artery (CIA) chronic total Occlusions (CTOs). There are not enough data regarding the long-term safety and efficacy of RED. We performed a two-center retrospective study of 115 patients (140 lesions) undergoing CIA CTO endovascular intervention between 2006 and 2016. Baseline characteristics and long-term outcomes were described. A Cox proportional hazard model was developed to determine if REDs were associated with target lesion revascularization (TLR) or major adverse limb events (MALE) after 1 and 5 years. Among 140 lesions, 43 (31%) required use of a RED. The mean age was 63.9 years and the majority (n = 80) of patients were male. An antegrade crossing approach and treatment of restenotic lesions were less common in the RED group (10% vs. 29%, P < .05 and 0% vs. 21%, P < .05, respectively). There were no significant differences in Rutherford class, pre-procedure ABI, or patient presentation. The procedural complication rates were similar between the two groups. The 1- and 5-year TLR rates for lesions treated with re-entry device vs. standard approaches were 11% vs. 9%; P = 0.8 and 29% vs. 29%; P = 0.9 respectively. The 1 and 5-year MALE rates for lesions treated with re-entry device were 5% vs. 6%; P = 0.8 and 11% vs. 11%; P = 0.9 respectively. This retrospective analysis found that recanalization of CIA occlusions using a RED is safe and is associated with long-term clinical outcomes similar to that of standard crossing techniques. © 2018 Wiley Periodicals, Inc.
Navsaria, Rishi; Ryder, Dionne M; Lewis, Jeremy S; Alexander, Caroline M
2015-03-01
Tennis elbow or lateral epicondylopathy (LE) is experienced as the lateral elbow has a reported prevalence of 1.3%, with symptoms lasting up to 18 months. LE is most commonly attributed to tendinopathy involving the extensor carpi radialis brevis (ECRB) tendon. The aim of tendinopathy management is to alleviate symptoms and restore function that initially involves relative rest followed by progressive therapeutic exercise. To assess the effectiveness of two prototype exercises using commonly available clinical equipment to progressively increase resistance and activity of the ECRB. Eighteen healthy participants undertook two exercise progressions. Surface electromyography was used to record ECRB activity during the two progressions, involving eccentric exercises of the wrist extensors and elbow pronation exercises using a prototype device. The two progressions were assessed for their linearity of progression using repeated ANOVA and linear regression analysis. Five participants repeated the study to assess reliability. The exercise progressions led to an increase in ECRB electromyographic (EMG) activity (p<0.001). A select progression of exercises combining the two protocols increased EMG activity in a linear fashion (p<0.001). The ICC values indicated good reliability (ICC>0.7) between the first and second tests for five participants. Manipulation of resistance and leverage with the prototype exercises was effective in creating significant increases of ECRB normalised EMG activity in a linear manner that may, with future research, become useful to clinicians treating LE. In addition, between trial reliability for the device to generate a consistent load was acceptable. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Bao, Yiyang; Zhang, Yanan; Peng, Ling; Zhu, Wenjing; Zhao, Yue; Xu, Yewen; Chen, Shufen
2016-06-01
In top-emitting white organic light-emitting diodes (TWOLEDs), the device performances attribute to the several important factors, such as exciton profile, energy transfer, and microcavity effect. In this paper, a TWOLED containing a heterojunction blue emission layer (EML) and a red EML is reported. A host material with high triplet energy level is employed for the adjacent blue and red EML, while the inefficient red emission reduces the emission efficiency of the TWOLED. In order to enhance the red emission efficiency, mixed-host and co-doping technologies are used in the red EML. By mixing the hole transporting and electron transporting host materials, the exciton recombination zone extends to the red EML to increase the red emission intensity and reduce the efficiency roll-off. And by co-doping a green phosphor into the red EML as the energy transfer medium, the energy transfer rate is enhanced, and then the current efficiency increases. Besides, both the mixed-host and co-doping change the carrier transport and the exciton recombination zone, which further affects the microcavity resonance in the devices. Due to the enhancement on the red emission intensity and the shift of resonant wavelength, the chromaticity of the TWOLED is improved.
Closed Loop Control Compact Exercise Device for Use on MPCV
NASA Technical Reports Server (NTRS)
Sheehan, Chris; Funk, Justin; Funk, Nathan; Kutnick, Gilead; Humphreys, Brad; Bruinsma, Douwe; Perusek, Gail
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented in terms of addressing key functional requirements and human interfaces. The device aerobic modality is modelled as a rowing exercise using ground data sets obtained from Concept 2 rowers as well as competitive rowing1. A discussion of software and electronic implementations are presented which demonstrate unique approaches to meeting the constrained mass, volume and power requirements of the MPCV. . In addition to utilizing traditional PID control, controllers utilizing state feedback with gains solved using a Linear Quadratic Regulator will be developed. Controllability and observability will be utilized to investigate the need for state measurement in the design. As the control system directly interacts with human test subjects, robust methods such as H-infinity are also being investigated.1. Kleshnev V. Biomechanics. In: Rowing, Handbook of Sports Medicine and Science. ed. by Secher N., Voliantis S. IOC Medical Commission, Blackwell Pub. pp. 22-34, 2007
Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine
2006-03-01
In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.
Nishiyama, Yasuhiro; Niiyama, Hiroshi; Harada, Haruhito; Katou, Atsushi; Yoshida, Noriko; Ikeda, Hisao
2016-09-28
Red blood cell distribution width (RDW) can predict mortality in cardiovascular disease. However, the underlying mechanisms of the beneficial prognostic marker remain unknown. The purpose of this study was to investigate whether the RDW is related to impaired exercise tolerance and exercise training (ET) effect on RDW in patients with coronary artery disease (CAD).Seventy-eight patients who underwent ET by supervised bicycle ergometer during 3 weeks served as the ET group whereas 30 patients who did not undergo ET were the control group. Exercise stress test with cardiopulmonary analysis was performed in the ET group. Peak oxygen uptake (from 14.1 ± 4.0 to 15.1 ± 3.8 mL/kg/minute, P < 0.05) significantly increased in the ET group. Although RDW and serum erythropoietin concentration (EP) before the observation period did not differ between the ET and control groups, RDW (from 44.4 ± 4.7 to 43.4 ± 3.8 fL, P < 0.01) and EP (from 27.9 ± 15.8 to 22.9 ± 8.2 mIU/mL, P < 0.005) significantly decreased in the ET group, however, these parameters did not change in the control group. In the ET group, RDW was negatively correlated with peak oxygen uptake (r = -0.55, P < 0.01) and the changes in RDW before and after ET were positively correlated with the changes in EP (r = 0.39, P < 0.005).Thus, ET increases exercise tolerance and decreases RDW in association with increased oxygen uptake in patients with CAD.
de Araujo, G G; Gobatto, C A; de Barros Manchado-Gobatto, F; Teixeira, L Fm; Dos Reis, I Gm; Caperuto, L C; Papoti, M; Bordin, S; Cavaglieri, C R; Verlengia, R
2015-01-01
We evaluate the mRNA expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in skeletal muscle (soleus, red and white gastrocnemius), heart and liver tissues in mice submitted to a single bout of swimming exercise at the maximal lactate steady state workload (MLSSw). After 72 h of MLSS test, the animals were submitted to a swimming exercise session for 25 min at individual MLSSw. Tissues and muscle samples were obtained at rest (control, n=5), immediately (n=5), 5 h (n=5) and 10 h (n=5) after exercise for determination of the MCT1 and MCT4 mRNA expression (RT-PCR). The MCT1 mRNA expression in liver increased after 10 h in relation to the control, immediate and 5 h groups, but the MCT4 remained unchanged. The MCT1 mRNA expression in heart increased by 31 % after 10 h when compared to immediate, but no differences were observed in relation to the control group. No significant differences were observed for red gastrocnemius in MCT1 and MCT4 mRNA expression. However, white gastrocnemius increased MCT1 mRNA expression immediately when compared to rest, 5 and 10 h test groups. In soleus muscle, the MCT1 mRNA expression increased immediately, 5 and 10 h after exercise when compared to the control. In relation to MCT4 mRNA expression, the soleus increased immediately and 10 h after acute exercise when compared to the control group. The soleus, liver and heart were the main tissues that showed improved the MCT1 mRNA expression, indicating its important role in controlling MLSS concentration in mice.
33 CFR 117.253 - Anacostia River.
Code of Federal Regulations, 2013 CFR
2013-07-01
... open position for vessel traffic. During open span movement, the channel traffic lights will flash red... traffic lights will flash red, and an audio voice-warning device will announce bridge movement during... will continue to flash red. (6) The owners of the bridge shall provide and keep in good legible...
33 CFR 117.253 - Anacostia River.
Code of Federal Regulations, 2014 CFR
2014-07-01
... open position for vessel traffic. During open span movement, the channel traffic lights will flash red... traffic lights will flash red, and an audio voice-warning device will announce bridge movement during... will continue to flash red. (6) The owners of the bridge shall provide and keep in good legible...
33 CFR 117.253 - Anacostia River.
Code of Federal Regulations, 2012 CFR
2012-07-01
... open position for vessel traffic. During open span movement, the channel traffic lights will flash red... traffic lights will flash red, and an audio voice-warning device will announce bridge movement during... will continue to flash red. (6) The owners of the bridge shall provide and keep in good legible...
Yamaguti, Wellington Pereira dos Santos; Sakamoto, Eliana Takahama; Panazzolo, Danilo; Peixoto, Corina da Cunha; Cerri, Giovanni Guido; Albuquerque, André Luis Pereira
2010-01-01
To compare the diaphragmatic mobility of healthy subjects during incentive spirometry with a volume-oriented device, during incentive spirometry with a flow-oriented device, and during diaphragmatic breathing. To compare men and women in terms of diaphragmatic mobility during these three types of breathing exercises. We evaluated the pulmonary function and diaphragmatic mobility of 17 adult healthy volunteers (9 women and 8 men). Diaphragmatic mobility was measured via ultrasound during diaphragmatic breathing and during the use of the two types of incentive spirometers. Diaphragmatic mobility was significantly greater during the use of the volume-oriented incentive spirometer than during the use of the flow-oriented incentive spirometer (70.16 ± 12.83 mm vs. 63.66 ± 10.82 mm; p = 0.02). Diaphragmatic breathing led to a greater diaphragmatic mobility than did the use of the flow-oriented incentive spirometer (69.62 ± 11.83 mm vs. 63.66 ± 10.82 mm; p = 0.02). During all three types of breathing exercises, the women showed a higher mobility/FVC ratio than did the men. Incentive spirometry with a volume-oriented device and diaphragmatic breathing promoted greater diaphragmatic mobility than did incentive spirometry with a flow-oriented device. Women performed better on the three types of breathing exercises than did men.
The Art of Space Flight Exercise Hardware: Design and Implementation
NASA Technical Reports Server (NTRS)
Beyene, Nahom M.
2004-01-01
The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware while it is deployed and conduct all sanitization, calibration, and maintenance for the devices. Thus, hardware designs must account for these issues with a goal of minimizing crew time on orbit required to complete these tasks. In the future, humans will venture to Mars and exercise countermeasures will play a critical role in allowing us to continue in our spirit of exploration. NASA will benefit from further experimentation on Earth, through the International Space Station, and with advanced biomechanical models to quantify how each device counteracts specific symptoms of weightlessness. With the continued support of international space agencies and the academic research community, we will usher the next frontier in human space exploration.
NASA Astrophysics Data System (ADS)
Hasan, Mahadi; Tarashima, Noriko; Fujikawa, Koki; Ohgita, Takashi; Hama, Susumu; Tanaka, Tamotsu; Saito, Hiroyuki; Minakawa, Noriaki; Kogure, Kentaro
2016-01-01
An intelligent shRNA expression device (iRed) contains the minimum essential components needed for shRNA production in cells, and could be a novel tool to regulate target genes. However, general delivery carriers consisting of cationic polymers/lipids could impede function of a newly generated shRNA via electrostatic interaction in the cytoplasm. Recently, we found that faint electric treatment (fET) of cells enhanced delivery of siRNA and functional nucleic acids into the cytoplasm in the absence of delivery carriers. Here, we examined fET of cells stably expressing luciferase in the presence of iRed encoding anti-luciferase shRNA. Transfection of lipofectamine 2000 (LFN)/iRed lipoplexes showed an RNAi effect, but fET-mediated iRed transfection did not, likely because of the endosomal localization of iRed after delivery. However, fET in the presence of lysosomotropic agent chloroquine significantly improved the RNAi effect of iRed/fET to levels that were higher than those for the LFN/iRed lipoplexes. Furthermore, the amount of lipid droplets in adipocytes significantly decreased following fET with iRed against resistin in the presence of chloroquine. Thus, iRed could be a useful tool to regulate target genes following fET-mediated cytoplasmic delivery with endosomal escape devices.
Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat
Ganio, Matthew S; Brown, Christopher M; Casa, Douglas J; Becker, Shannon M; Yeargin, Susan W; McDermott, Brendon P; Boots, Lindsay M; Boyd, Paul W; Armstrong, Lawrence E; Maresh, Carl M
2009-01-01
Context: When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. Objective: To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. Design: Time series study. Setting: Laboratory environmental chamber (temperature = 36.4 ± 1.2°C [97.5 ± 2.16°F], relative humidity = 52%) and cool laboratory (temperature = approximately 23.3°C [74.0°F], relative humidity = 40%). Patients or Other Participants: Fifteen males and 10 females. Intervention(s): Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than ±0.27°C (±0.50°F). Main Outcome Measure(s): Measured temperature from each device (mean and across time). Results: The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29°C [0.52°F]), oral temperature using an inexpensive device (−1.13°C [−2.03°F]), temporal temperature measured according to the instruction manual (−0.87°C [−1.56°F]), temporal temperature using a modified technique (−0.63°C [−1.13°F]), oral temperature using an expensive device (−0.86°C, [−1.55°F]), aural temperature (−0.67°C, [−1.20°F]), axillary temperature using an inexpensive device (−1.25°C, [−2.24°F]), and axillary temperature using an expensive device (−0.94°F [−1.70°F]). Measurement of intestinal temperature (mean bias of −0.02°C [−0.03°F]) was the only device considered valid. Devices measured in succession (intestinal, forehead, temporal, and aural) showed acceptable reliability (all had a mean bias = 0.09°C [0.16°F] and r ≥ 0.94]). Conclusions: Even during laboratory exercise in a controlled environment, devices used to measure forehead, temporal, oral, aural, and axillary body sites did not provide valid estimates of rectal temperature. Only intestinal temperature measurement met the criterion. Therefore, we recommend that rectal or intestinal temperature be used to assess hyperthermia in individuals exercising indoors in the heat. PMID:19295956
Balsalobre-Fernández, Carlos; Kuzdub, Matt; Poveda-Ortiz, Pedro; Campo-Vecino, Juan Del
2016-07-01
Balsalobre-Fernández, C, Kuzdub, M, Poveda-Ortiz, P, and Campo-Vecino, Jd. Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J Strength Cond Res 30(7): 1968-1974, 2016-The purpose of this study was to analyze the validity and reliability of a wearable device to measure movement velocity during the back squat exercise. To do this, 10 recreationally active healthy men (age = 23.4 ± 5.2 years; back squat 1 repetition maximum [1RM] = 83 ± 8.2 kg) performed 3 repetitions of the back squat exercise with 5 different loads ranging from 25 to 85% 1RM on a Smith Machine. Movement velocity for each of the total 150 repetitions was simultaneously recorded using the T-Force linear transducer (LT) and the PUSH wearable band. Results showed a high correlation between the LT and the wearable device mean (r = 0.85; standard error of estimate [SEE] = 0.08 m·s) and peak velocity (r = 0.91, SEE = 0.1 m·s). Moreover, there was a very high agreement between these 2 devices for the measurement of mean (intraclass correlation coefficient [ICC] = 0.907) and peak velocity (ICC = 0.944), although a systematic bias between devices was observed (PUSH peak velocity being -0.07 ± 0.1 m·s lower, p ≤ 0.05). When measuring the 3 repetitions with each load, both devices displayed almost equal reliability (Test-retest reliability: LT [r = 0.98], PUSH [r = 0.956]; ICC: LT [ICC = 0.989], PUSH [ICC = 0.981]; coefficient of variation [CV]: LT [CV = 4.2%], PUSH [CV = 5.0%]). Finally, individual load-velocity relationships measured with both the LT (R = 0.96) and the PUSH wearable device (R = 0.94) showed similar, very high coefficients of determination. In conclusion, these results support the use of an affordable wearable device to track velocity during back squat training. Wearable devices, such as the one in this study, could have valuable practical applications for strength and conditioning coaches.
Using Non-Traditional Interfaces to Support Physical Therapy for Knee Strengthening.
Torres, Andrea; López, Gustavo; Guerrero, Luis A
2016-09-01
Physical therapy consists mainly in the execution of rehabilitation processes that aim to help overcome injuries, as well as develop, maintain, or restore maximum body movement. Knee rehabilitation is one kind of physical therapy that requires daily exercises which could be considered monotonous and boring by the patients, discouraging their improvement. This is coupled with the fact that most physical therapists assess exercise performance through verbal and visual means with mostly manual measurements, making it difficult to constantly verify and validate if patients perform the exercises correctly. This article describes a physical therapy monitoring system that uses wearable technology to assess exercise performance and patient progress. This wearable device is able to measure and transfer the movement's data from the patient's limb to a mobile device. Moreover, the user interface is a game, which provides an entertaining approach to therapy exercising. In this article, it is shown that the developed system significantly increases daily user engagement in rehabilitation exercises, through a gameplay that matches physical therapy requirements for knee rehabilitation, as well as offering useful quantitative information to therapists.
Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)
1995-01-01
A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
21 CFR 864.6160 - Manual blood cell counting device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual blood cell counting device. 864.6160...
21 CFR 864.6160 - Manual blood cell counting device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual blood cell counting device. 864.6160...
21 CFR 864.6160 - Manual blood cell counting device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual blood cell counting device. 864.6160...
21 CFR 864.6160 - Manual blood cell counting device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual blood cell counting device. 864.6160...
21 CFR 864.6160 - Manual blood cell counting device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general...
2009-06-01
Whidbey Island on 26 March; however, due to the eruption of the Redoubt volcano , the flight was suspended. The second flight was scheduled to fly in on...GOALS 2009 research cruise (green = fin whales, red = gray whales, orange = humpback whales, yellow = minke whales; open circles = on-effort...otter sightings during GOALS 2009 research cruise (black = Steller sea lion, green = sea otter, yellow = harbor seal, red = unidentified pinniped
Zhou, Liang; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming
2013-07-15
In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.
NASA Astrophysics Data System (ADS)
Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei
2012-10-01
We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.
Radiological Exposure Devices (RED) Technical Basis for Threat Profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Jesse John; Potter, Charles A.; Homann, Steven
Facilities that manufacture, store or transport significant quantities of radiological material must protect against the risk posed by sabotage events. Much of the analysis of this type of event has been focused on the threat from a radiological dispersion device (RDD) or "dirty bomb" scenario, in which a malicious assailant would, by explosives or other means, loft a significant quantity of radioactive material into a plume that would expose and contaminate people and property. Although the consequences in cost and psychological terror would be severe, no intentional RDD terrorism events are on record. Conversely, incidents in which a victim ormore » victims were maliciously exposed to a Radiological Exposure Device (RED), without dispersal of radioactive material, are well documented. This paper represents a technical basis for the threat profile related to the risk of nefarious use of an RED, including assailant and material characterization. Radioactive materials of concern are detailed in Appendix A.« less
Fabrication and properties of gallium phosphide variable colour displays
NASA Technical Reports Server (NTRS)
Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.
1973-01-01
The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.
Summary and recommendations for initial exercise prescription
NASA Technical Reports Server (NTRS)
Stewart, Donald F.; Harris, Bernard A., Jr.
1989-01-01
The recommendations summarized herein constitute a basis on which an initial exercise prescription can be formulated. It is noteworthy that any exercise program designed currently would be an approximation. Examination of the existing space-flight data reveals a scarcity of in-flight data on which to rigorously design an exercise program. The relevant experience within the U.S. space program (with regard to long-duration space flight) is limited to the Skylab Program. Lessons learned from Skylab are relevant to the design of a Space Station exercise program, especially with regard to the total length of exercise time required, cardiovascular (CV) deconditioning/reconditioning, and bone loss. Certain observations of the U.S.S.R. exercise activities can also contribute to the formulation of an exercise prescription of Space Station. Reportedly, the U.S.S.R. uses both a bicycle ergometer and a treadmill device on long-duration missions with some degree of success. Using the third crew of Salyut 6, which was a 175-day stay, as a representative mission, the typical time dedicated to exercise varies from 2 to 3 hours per day. In addition, the cosmonauts wear an elasticized suit, called a penquin suit, for time periods ranging from 12 to 16 hours per day. This device provides a load across the axial skeleton against which the wearer must exert himself. Despite these extensive countermeasures, the effects of adaptation are not totally prevented.
White, Dalon P.; Baumgarner, Bradley L.; Watanabe, Wade O.; Alam, Md Shah; Kinsey, Stephen T.
2018-01-01
β-guandinopropionic acid (β-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental β-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that β-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. β-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with β-GPA treatment. These results suggest that β-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that β-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes. PMID:29175483
Intensive Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1997-01-01
Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
Oxygenated-Blood Colour Change Thresholds for Perceived Facial Redness, Health, and Attractiveness
Re, Daniel E.; Whitehead, Ross D.; Xiao, Dengke; Perrett, David I.
2011-01-01
Blood oxygenation level is associated with cardiovascular fitness, and raising oxygenated blood colouration in human faces increases perceived health. The current study used a two-alternative forced choice (2AFC) psychophysics design to quantify the oxygenated blood colour (redness) change threshold required to affect perception of facial colour, health and attractiveness. Detection thresholds for colour judgments were lower than those for health and attractiveness, which did not differ. The results suggest redness preferences do not reflect a sensory bias, rather preferences may be based on accurate indications of health status. Furthermore, results suggest perceived health and attractiveness may be perceptually equivalent when they are assessed based on facial redness. Appearance-based motivation for lifestyle change can be effective; thus future studies could assess the degree to which cardiovascular fitness increases face redness and could quantify changes in aerobic exercise needed to increase facial attractiveness. PMID:21448270
Oxygenated-blood colour change thresholds for perceived facial redness, health, and attractiveness.
Re, Daniel E; Whitehead, Ross D; Xiao, Dengke; Perrett, David I
2011-03-23
Blood oxygenation level is associated with cardiovascular fitness, and raising oxygenated blood colouration in human faces increases perceived health. The current study used a two-alternative forced choice (2AFC) psychophysics design to quantify the oxygenated blood colour (redness) change threshold required to affect perception of facial colour, health and attractiveness. Detection thresholds for colour judgments were lower than those for health and attractiveness, which did not differ. The results suggest redness preferences do not reflect a sensory bias, rather preferences may be based on accurate indications of health status. Furthermore, results suggest perceived health and attractiveness may be perceptually equivalent when they are assessed based on facial redness. Appearance-based motivation for lifestyle change can be effective; thus future studies could assess the degree to which cardiovascular fitness increases face redness and could quantify changes in aerobic exercise needed to increase facial attractiveness.
Birch, Nick; Graham, Jon; Priestley, Tom; Heywood, Chris; Sakel, Mohamed; Gall, Angela; Nunn, Andrew; Signal, Nada
2017-06-19
The RAPPER II study investigates the feasibility, safety and acceptability of using the REX self-stabilising robotic exoskeleton in people with spinal cord injury (SCI) who are obligatory wheelchair users. Feasibility is assessed by the completion of transfer into the REX device, competency in achieving autonomous control and completion of upper body exercise in an upright position in the REX device. Safety is measured by the occurrence of serious adverse events. Device acceptability is assessed with a user questionnaire. RAPPER II is a prospective, multi-centre, open label, non-randomised, non-comparative cohort study in people with SCI recruited from neurological rehabilitation centres in the United Kingdom, Australia and New Zealand. This is the planned interim report of the first 20 participants. Each completed a transfer into the REX, were trained to achieve machine control and completed Timed Up and Go (TUG) tests as well as upper body exercises in standing in a single first time session. The time to achieve each task as well as the amount of assistance required was recorded. After finishing the trial tasks a User Experience questionnaire, exploring device acceptability, was completed. All participants could transfer into the REX. The mean transfer time was 439 s. Nineteen completed the exercise regime. Eighteen could achieve autonomous control of the REX, 17 of whom needed either no assistance or the help of just one therapist. Eighteen participants completed at least one TUG test in a mean time of 313 s, 15 with the assistance of just one therapist. The questionnaire demonstrated high levels of acceptability amongst users. There were no Serious Adverse Events. This first interim analysis of RAPPER II shows that it is feasible and safe for people with SCI to use the REX powered assisted walking device to ambulate and exercise in. Participants with tetraplegia and paraplegia could walk and perform a functional exercise program when standing needing only modest levels of assistance in most cases. User acceptability was high. ClinicalTrials.gov , NCT02417532 . Registered 11 April 2015.
Limb Lengthening Surgery: Internal Lengthening Device (For Parents)
... and bathing. Your child will need help doing stretching and strengthening exercises. These are a very important ... therapy in a pool). Help your child with stretching and strengthening exercises. Give your child medicine for ...
Cardiovascular fitness strengthening using portable device.
Alqudah, Hamzah; Kai Cao; Tao Zhang; Haddad, Azzam; Su, Steven; Celler, Branko; Nguyen, Hung T
2016-08-01
The paper describes a reliable and valid Portable Exercise Monitoring system developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening.
... pelvic exam, or special tests. Treatments include special pelvic muscle exercises called Kegel exercises. A mechanical support device called a pessary helps some women. Surgery and medicines are other treatments. NIH: National Institute of Child Health and Human Development
Iversen, Maura Daly
2012-01-01
Osteoarthritis (OA) results in progressive destruction of articular cartilage and bone at the joint margins, leading to impairments extending far beyond the synovial joint. Rehabilitation interventions that target specific impairments and activity restrictions can help restore independence and promote healthy living. Such interventions include exercise, physical modalities (ice, heat, ultrasonography), manual techniques (mobilization and manipulation), and assistive devices. The predominance of evidence on the effects of rehabilitation interventions for knee and hip OA suggest that they afford modest pain relief, reduced disability, and improved function. Research is needed to identify the modes of exercise and the effective doses for relief of symptoms and functional limitations.
Durable electrooptic devices comprising ionic liquids
Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Cronin,; John, P [Tucson, AZ; Tonazzi, Juan C. L. [Tucson, AZ; Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-12-15
Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.
Durable Electrooptic Devices Comprising Ionic Liquids
Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark
2008-11-11
Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.
Individual Characteristics and Unit Performance: A Review of Research and Methods
1985-02-01
behavioral segments, improves performance. Simu- lation exercises , especially those employing new high-technology devices, provide surrogate...high-technology training simulation exercise MOB Military Occupational Specialty ORTT Operational Readiness Training Test-a field test REALTRAIN A...REAListic TRAINing simulation exercise SAM Surface-to-Air Missile SAT Scholastic Aptitude Test SQT Skill Qualification Test-an Army performance meas
21 CFR 864.5950 - Blood volume measuring device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood volume measuring device. 864.5950 Section...
21 CFR 864.5950 - Blood volume measuring device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section...
21 CFR 864.5950 - Blood volume measuring device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume measuring device. 864.5950 Section...
21 CFR 864.5950 - Blood volume measuring device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood volume measuring device. 864.5950 Section...
21 CFR 864.5950 - Blood volume measuring device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood volume measuring device. 864.5950 Section...
Red gaming in support of the war on terrorism : Sandia Red Game report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Judy Hennessey; Whitley, John B.; Craft, Richard Layne, II
2004-02-01
The Advanced Concepts Group (ACG) at Sandia National Laboratories is exploring the use of Red Teaming to help intelligence analysts with two key processes: determining what a piece or pieces of information might imply and deciding what other pieces of information need to be found to support or refute hypotheses about what actions a suspected terrorist organization might be pursuing. In support of this effort, the ACG hosted a terrorism red gaming event in Albuquerque on July 22-24, 2003. The game involved two 'red teams' playing the roles of two terrorist cells - one focused on implementing an RDD attackmore » on the DC subway system and one focused on a bio attack against the same target - and two 'black teams' playing the role of the intelligence collection system and of intelligence analysts trying to decide what plans the red teams might be pursuing. This exercise successfully engaged human experts to seed a proposed compute engine with detailed operational plans for hypothetical terrorist scenarios.« less
Dooley, Erin E; Golaszewski, Natalie M
2017-01-01
Background Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. Objective The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. Methods A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). Results For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly different at vigorous (P=.70) or recovery (P=.10). For Garmin Forerunner 225, HR MAPE was between 7.87% and 24.38%. HR was not significantly different at vigorous intensity (P=.35). The device measured higher HR readings at start, baseline, light intensity, moderate intensity (P<.001), and recovery (P=.04). EE MAPE was between 30.77% and 155.05%. The device measured higher EE at all stages (P<.001). Conclusions This study provides one of the first validation assessments for the Fitbit Charge HR, Apple Watch, and Garmin Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist. PMID:28302596
Viana, Marcelo Tavares; Perez, Manuella Cavalcanti; Ribas, Valdenilson Ribeiro; Martins, Gilberto de Freire; de Castro, Célia Maria Machado Barbosa
2012-01-01
Objective To analyze the impact of moderate physical exercise on the total and differential leukocyte counts and red blood cell count of 36 sixty-day-old adult male Wistar rats subjected to early malnourishment. Methods The rats were divided in nourished (N - casein 17%) and malnourished groups (M - casein 8%) and thesegroups were then subdivided in trained (T) untrained (U) creating four groups NT, NU, MT and MU. The NT and MTgroups were submitted to moderate physical exercise using a treadmill (60 min/day, 5 days/week for 8 weeks). Onthe 1st day, before the training started T0 and 24 hours after the last training day of the week (T1 until T8), a 1 mLaliquot of blood was collected from the animals' tails for analysis. The total leukocyte count was evaluated in a cellcounter with an electronic microscope. The cyanmethemoglobin technique was used to measure the hemoglobin level. The hematocrit values were determined as a percentage using the micro-hematocrit technique with a microcapillaryreader and a cell counter was used to determine the red blood cell count. The t-test was used for statistical analysis and a p-value < 0.05 was considered significant. Data are expressed as means ± standard deviation. Results There was a significant difference in the total leukocyte count between the NT (9.1 ± 0.1) and MT groups (8.0 ± 0.1) from T1 and in neutrophils between the NT (22.1 ± 0.6) and MT groups (24.6 ± 1.8) from T7 (p < 0.05). There was no statistical significance in the hemoglobin, hematocrit and red blood cell count from T1. Conclusions According to the results of this study, moderate physical exercise seems to have induced physiologic adaptation in adult rats from T1. PMID:23049442
Killackey, Eoin; Anda, Anna Lee; Gibbs, Martin; Alvarez-Jimenez, Mario; Thompson, Andrew; Sun, Pamela; Baksheev, Gennady N
2011-05-12
Young people with first episode psychosis are at an increased risk for a range of poor health outcomes. In contrast to the growing body of evidence that suggests that exercise therapy may benefit the physical and mental health of people diagnosed with schizophrenia, there are no studies to date that have sought to extend the use of exercise therapy among patients with first episode psychosis. The aim of the study is to test the feasibility and acceptability of an exercise program that will be delivered via internet enabled mobile devices and social networking technologies among young people with first episode psychosis. This study is a qualitative pilot study being conducted at Orygen Youth Health Research Centre in Melbourne, Australia. Participants are young people aged 15-24 who are receiving clinical care at a specialist first episode psychosis treatment centre. Participants will also comprise young people from the general population. The exercise intervention is a 9-week running program, designed to gradually build a person's level of fitness to be able to run 5 kilometres (3 miles) towards the end of the program. The program will be delivered via an internet enabled mobile device. Participants will be asked to post messages about their running experiences on the social networking website, and will also be asked to attend three face-to-face interviews. This paper describes the development of a qualitative study to pilot a running program coupled with the use of internet enabled mobile devices among young people with first episode psychosis. If the program is found to be feasible and acceptable to patients, it is hoped that further rigorous evaluations will ultimately lead to the introduction of exercise therapy as part of an evidence-based, multidisciplinary approach in routine clinical care.
Scheiderer, Rachel; Belden, Courtney; Schwab, Darla; Haney, Casey; Paz, Jaime
2013-06-01
For patients with end-stage heart failure awaiting transplantation, lack of donor organs has created an increased need for alternatives such as left ventricular assist device (LVAD) implantation. The purpose of this study is to determine safe and effective exercise parameters for physical therapy in the acute care setting. A systematic literature review was conducted according to PRISMA guidelines using Sackett's Levels of Evidence to rate the evidence. Multiple databases were searched with inclusion criteria of: available in English, inpatient care up to 6 months postoperatively, description of intervention type and exercise parameters. no defined exercise parameters, outpatient treatment, infection post VAD, or palliative or hospice care post VAD. Six studies out of 1,291 articles met inclusion criteria. Common exercise parameters used were the Borg Rating of Perceived Exertion scale 11-13 (6-20 scale) or > 4 (0-10 scale), Dyspnea scale > 2 (0-4 scale) and > 5 (0-10 scale), mean arterial pressure (MAP) 70-95 mmHg, and LVAD flow > 3L/min. Levels of evidence ranged from case controlled to expert opinion. Current evidence on inpatient exercise parameters for patient's status post LVAD implantation is not sufficient to suggest definitive guidelines; however, these exercise parameters provide a reference for patient care.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie K.
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
Heat Production During Countermeasure Exercises Planned for the International Space Station
NASA Technical Reports Server (NTRS)
Rapley, Michael G.; Lee, Stuart M. C.; Guilliams, Mark E.; Greenisen, Michael C.; Schneider, Suzanne M.
2004-01-01
This investigation's purpose was to determine the amount of heat produced when performing aerobic and resistance exercises planned as part of the exercise countermeasures prescription for the ISS. These data will be used to determine thermal control requirements of the Node 1 and other modules where exercise hardware might reside. To determine heat production during resistive exercise, 6 subjects using the iRED performed 5 resistance exercises which form the core exercises of the current ISS resistive exercise countermeasures. Each exerciser performed a warm-up set at 50% effort, then 3 sets of increasing resistance. We measured oxygen consumption and work during each exercise. Heat loss was calculated as the difference between the gross energy expenditure (minus resting metabolism) and the work performed. To determine heat production during aerobic exercise, 14 subjects performed an interval, cycle exercise protocol and 7 subjects performed a continuous, treadmill protocol. Each 30-min. exercise is similar to exercises planned for ISS. Oxygen consumption monitored continuously during the exercises was used to calculate the gross energy expenditure. For cycle exercise, work performed was calculated based on the ergometer's resistance setting and pedaling frequency. For treadmill, total work was estimated by assuming 25% work efficiency and subtracting the calculated heat production and resting metabolic rate from the gross energy expenditure. This heat production needs to be considered when determining the location of exercise hardware on ISS and designing environmental control systems. These values reflect only the human subject s produced heat; heat produced by the exercise hardware also will contribute to the heat load.
Song, Wenxuan; Shi, Lijiang; Gao, Lei; Hu, Peijun; Mu, Haichuan; Xia, Zhenyuan; Huang, Jinhai; Su, Jianhua
2018-02-14
The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (η ext ) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy) 3 -based green, and Ir(pq) 2 (acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and η c of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.
The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy
NASA Astrophysics Data System (ADS)
Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael
2008-01-01
The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.
Grahn, Dennis A; Cao, Vinh H; Heller, H Craig
2005-09-01
In situations where the accumulation of internal heat limits physical performance, enhanced heat extraction from the body should improve performance capacity. The combined application of local subatmospheric pressure (35-45 mmHg) to an entire hand (to increase blood volume) and a heat sink (18-22 degrees C) to the palmar surface were used to draw heat out of the circulating blood. Subjects walked uphill (5.63 km/h) on a treadmill in a 40 degree C environment. Slopes of the treadmill were held constant during paired experimental trials (with and without the device). Heat extraction attenuated the rate of esophageal temperature rise during exercise (2.1 +/- 0.4 degrees and 2.9 +/- 0.5 degrees C/h, mean +/- SE, with and without the device, respectively; n = 8) and increased exercise duration (46.1 +/- 3.4 and 32.3 +/- 1.7 min with and without the device, respectively; n = 18). Hand cooling alone had little effect on exercise duration (34.1 +/- 3.0, 38.0 +/- 3.5, and 57.0 +/- 6.4 min, for control, cooling only, and cooling, and subatmospheric pressure, respectively; n = 6). In a longer term study, nine subjects participated in two or four trials per week for 8 wk. The individual workloads (treadmill slope) were varied weekly. Use of the device had a beneficial effect on exercise endurance at all workloads, but the benefit proportionally decreased at higher workloads. It is concluded that heat can be efficiently removed from the body by using the described technology and that such treatment can provide a substantial performance benefit in thermally stressful conditions.
Siddiqi, M A; Kilduff, G M; Gearhart, J D
2003-11-01
We describe the design, construction and testing of a prototype device that allows the direct visualization by eye of far-red and near-infrared (NIR) fluorescence through an optical microscope. The device incorporates a gallium arsenide (GaAs) image intensifier, typically utilized in low-light or 'night vision' applications. The intensifier converts far-red and NIR light into electrons and then into green light, which is visible to the human eye. The prototype makes possible the direct, real-time viewing by eye of normally invisible far-red and NIR fluorescence from a wide variety of fluorophores, using the full field of view of the microscope to which it is applied. The high sensitivity of the image intensifier facilitates the viewing of a wide variety of photosensitive specimens, including live cells and embryos, at vastly reduced illumination levels in both fluorescence and bright-field microscopy. Modifications to the microscope are not required in order to use the prototype, which is fully compatible with all current fluorescence techniques. Refined versions of the prototype device will have broad research and clinical applications.
NASA Astrophysics Data System (ADS)
Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo
2013-09-01
We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.
NASA Technical Reports Server (NTRS)
Newby, Nathaniel J.; Scott-Pandorf, M. M.; Caldwell, E.; DeWitt, J.K.; Fincke, R.; Peters, B.T.
2010-01-01
NASA and Wyle engineers constructed a Horizontal Exercise Fixture (HEF) that was patented in 2006. Recently modifications were made to HEF with the goal of creating a device that mimics squat exercise on the Advanced Resistive Exercise Device (ARED) and can be used by bed rest subjects who must remain supine during exercise. This project posed several engineering challenges, such as how best to reproduce the hip motions (we used a sled that allowed hip motion in the sagittal plane), how to counterweight the pelvis against gravity (we used a pulley and free-weight mechanism), and how to apply large loads (body weight plus squat load) to the shoulders while simultaneously supporting the back against gravity (we tested a standard and a safety bar that allowed movement in the subject s z-axis, both of which used a retractable plate for back support). METHODS An evaluation of the HEF was conducted with human subjects (3F, 3M), who performed sets of squat exercises of increasing load from 10-repetition maximum (RM) up to 1-RM. Three pelvic counterweight loads were tested along with each of the two back-support squat bars. Data collection included 3-dimensional ground reaction forces (GRF), muscle activation (EMG), body motion (video-based motion capture), and subjective comments. These data were compared with previous ground-based ARED study data. RESULTS All subjects in the evaluation were able to perform low- to high-loading squats on the HEF. Four of the 6 subjects preferred a pelvic counterweight equivalent to 60 percent of their body weight. Four subjects preferred the standard squat bar, whereas 2 female subjects preferred the safety bar. EMG data showed muscle activation in the legs and low back typical of squat motion. GRF trajectories and eccentric-concentric loading ratios were similar to ARED. CONCLUSION: Squat exercise performed on HEF approximated squat exercise on ARED.
49 CFR 571.125 - Standard No. 125; Warning devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 125; Warning devices. 571.125 Section... Motor Vehicle Safety Standards § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard... affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red...
49 CFR 571.125 - Standard No. 125; Warning devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Standard No. 125; Warning devices. 571.125 Section... Motor Vehicle Safety Standards § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard... affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red...
49 CFR 571.125 - Standard No. 125; Warning devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 6 2012-10-01 2012-10-01 false Standard No. 125; Warning devices. 571.125 Section... Motor Vehicle Safety Standards § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard... affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red...
49 CFR 571.125 - Standard No. 125; Warning devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 125; Warning devices. 571.125 Section... Motor Vehicle Safety Standards § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard... affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red...
49 CFR 571.125 - Standard No. 125; Warning devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 6 2014-10-01 2014-10-01 false Standard No. 125; Warning devices. 571.125 Section... Motor Vehicle Safety Standards § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard... affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red...
Exercise countermeasures for spaceflight.
Convertino, V A; Sandler, H
1995-01-01
The authors present a physiological basis for the use of exercise as a weightlessness countermeasure, outline special considerations for the development of exercise countermeasures, review and evaluate exercise used during space flight, and provide new approaches and concepts for the implementation of novel exercise countermeasures for future space flight. The discussion of the physiological basis for countermeasures examines maximal oxygen uptake, blood volume, metabolic responses to work, muscle function, bone loss, and orthostatic instability. The discussion of considerations for exercise prescriptions during space flight includes operational considerations, type of exercise, fitness considerations, age and gender, and psychological considerations. The discussion of exercise currently used in space flight examines cycle ergometry, the treadmill, strength training devices, electrical stimulation, and the Penguin suit worn by Russian crews. New approaches to exercise countermeasures include twin bicycles, dynamic resistance exercisers, maximal exercise effects, grasim (gravity simulators), and the relationship between exercise and LBNP.
Voces, J; Cabral de Oliveira, A C; Prieto, J G; Vila, L; Perez, A C; Duarte, I D G; Alvarez, A I
2004-12-01
Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 +/- 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.
ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Newby, N.; Caldwell, E.; Sibonga, J.; Ploutz-Snyder, L.
2014-01-01
Visual assessment of exercise form on the Advanced Resistive Exercise Device (ARED) on orbit is difficult due to the motion of the entire device on its Vibration Isolation System (VIS). The VIS allows for two degrees of device translational motion, and one degree of rotational motion. In order to minimize the forces that the VIS must damp in these planes of motion, the floor of the ARED moves as well during exercise to reduce changes in the center of mass of the system. To help trainers and other exercise personnel better assess squat and deadlift form a tool was developed that removes the VIS motion and creates a stick figure video of the exerciser. Another goal of the study was to determine whether any useful kinematic information could be obtained from just a single camera. Finally, the use of these data may aid in the interpretation of QCT hip structure data in response to ARED exercises performed in-flight. After obtaining informed consent, four International Space Station (ISS) crewmembers participated in this investigation. Exercise was videotaped using a single camera positioned to view the side of the crewmember during exercise on the ARED. One crewmember wore reflective tape on the toe, heel, ankle, knee, hip, and shoulder joints. This technique was not available for the other three crewmembers, so joint locations were assessed and digitized frame-by-frame by lab personnel. A custom Matlab program was used to assign two-dimensional coordinates to the joint locations throughout exercise. A second custom Matlab program was used to scale the data, calculate joint angles, estimate the foot center of pressure (COP), approximate normal and shear loads, and to create the VIS motion-corrected stick figure videos. Kinematics for the squat and deadlift vary considerably for the four crewmembers in this investigation. Some have very shallow knee and hip angles, and others have quite large ranges of motion at these joints. Joint angle analysis showed that crewmembers do not return to a normal upright stance during squat, but remain somewhat bent at the hips. COP excursions were quite large during these exercises covering the entire length of the base of support in most cases. Anterior-posterior shear was very pronounced at the bottom of the squat and deadlift correlating with a COP shift to the toes at this part of the exercise. The stick figure videos showing a feet fixed reference frame have made it visually much easier for exercise personnel and trainers to assess exercise kinematics. Not returning to fully upright, hips extended position during squat exercises could have implications for the amount of load that is transmitted axially along the skeleton. The estimated shear loads observed in these crewmembers, along with a concomitant reduction in normal force, may also affect bone loading. The increased shear is likely due to the surprisingly large deviations in COP. Since the footplate on ARED moves along an arced path, much of the squat and deadlift movement is occurring on a tilted foot surface. This leads to COP movements away from the heel. The combination of observed kinematics and estimated kinetics make squat and deadlift exercises on the ARED distinctly different from their ground-based counterparts. CONCLUSION This investigation showed that some useful exercise information can be obtained at low cost, using a single video camera that is readily available on ISS. Squat and deadlift kinematics on the ISS ARED differ from ground-based ARED exercise. The amount of COP shift during these exercises sometimes approaches the limit of stability leading to modifications in the kinematics. The COP movement and altered kinematics likely reduce the bone loading experienced during these exercises. Further, the stick figure videos may prove to be a useful tool in assisting trainers to identify exercise form and make suggestions for improvements
Processing of Cells' Trajectories Data for Blood Flow Simulation Model*
NASA Astrophysics Data System (ADS)
Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika
2018-06-01
Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.
Use of the International Space Station as an Exercise Physiology Lab
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com
Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGsmore » are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.« less
Seo, Yong Gon; Park, Won Hah; Jeon, Eun Seok; Sung, Ji Dong; Jang, Mi Ja
2017-10-01
Left ventricular assist devices (LVADs) are used in patients with progressive heart failure symptoms to provide circulatory support. Patients with LVADs are referred to inpatient cardiac rehabilitation to prevent postoperative complications and improve aerobic capacity and quality of life. Preoperative exercise therapy for cardiac patients is an emerging treatment modality, and several studies have reported that it improves postoperative outcomes, such as length of hospital stay and postoperative complications. This case report describes the benefits of preoperative cognitive behavioral and exercise therapy in a Korean patient undergoing LVAD implantation. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Novel Musculoskeletal Loading System for Small Exercise Devices
NASA Technical Reports Server (NTRS)
Downs, Meghan; Newby, Nate; Trinh, Tinh; Hanson, Andrea
2016-01-01
Long duration spaceflight places astronauts at increased risk for muscle strain and bone fracture upon return to a 1-g or partial gravity environment. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume, little to no power). This is particularly alarming for exploration missions because astronauts will be required to perform novel and physically demanding tasks (i.e. vehicle egress, exploration, and habitat building activities) on unfamiliar terrain. Accordingly, NASA's exploration roadmap identifies the need for development of small exercise equipment that can prevent musculoskeletal atrophy and has the ability to assess musculoskeletal health at multiple time points during long-duration missions.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Perilli, Viviana; Zimbaro, Carmen; Boccasini, Adele; Mazzola, Carlo; Russo, Roberto
2018-06-01
This study assessed a technology-aided program (monitoring responding, and ensuring preferred stimulation and encouragements) for promoting physical activity with 11 participants with severe/profound intellectual and multiple disabilities. Each participant was provided with an exercise device (e.g. a static bicycle and a stepper) and exposed to the program according to an ABAB design, in which A and B represented baseline and intervention phases, respectively. Data recording concerned (a) the participants' responses with the exercise device (e.g. pedaling) during baseline and intervention phases and (b) their heart rates during the last intervention phase. The results showed that all participants had significant increases in responding with the exercise devices during the intervention phases. Heart-rate values during the intervention sessions indicated that the participants' responding during those sessions mostly amounted to moderate-intensity physical activity, with potential benefits for their overall physical condition. Implications of the findings and questions for future research in the area were discussed.
THE EFFECT OF DOUBLE VERSUS SINGLE OSCILLATING EXERCISE DEVICES ON TRUNK AND LIMB MUSCLE ACTIVATION
Arora, Shruti; Button, Duane C.; Basset, Fabien A.
2013-01-01
Purpose/Background: Proper strengthening of the core and upper extremities is important for muscular health, performance, and rehabilitation. Exercise devices have been developed that attempt to disrupt the center of gravity in order to activate the trunk stabilizing muscles. The objective of this study was to analyze the trunk and shoulder girdle muscle activation with double and single oscillating exercise devices (DOD and SOD respectively) in various planes. Methods: Twelve male subjects performed three interventions using both devices under randomized conditions: single-handed vertical orientation of DOD and SOD to produce 1) medio-lateral oscillation in the frontal plane 2) dorso-ventral oscillation in the sagittal plane and 3) single-handed horizontal orientation for superior and inferior oscillation in the transverse plane. Electromyographic (EMG) activity during the interventions of the anterior deltoid, triceps brachii, biceps brachii, forearm flexors as well as lower abdominal and back stabilizer muscles was collected, and were normalized to maximal voluntary contractions. A two way repeated measures ANOVA (2x3) was conducted to assess the influence of the devices and movement planes on muscle activation. Results: The DOD provided 35.9%, 40.8%, and 52.3% greater anterior deltoid, transverse abdominus (TA)/internal oblique (IO) and lumbo-sacral erector spinae (LSES) activation than did the SOD respectively. Effect size calculations revealed that these differences were of moderate to large magnitude (0.86, 0.48, and 0.61 respectively). There were no significant differences in muscular activation achieved between devices for the triceps brachii, biceps brachii and forearm flexor muscles. Exercise in the transverse plane resulted in 30.5%, 29.5%, and 19.5% greater activation than the sagittal and 21.8%, 17.2%, and 26.3% greater activation than the frontal plane for the anterior deltoid, TA/IO and LSES respectively. Conclusions: A DOD demonstrated greater muscular activity for trunk and shoulder muscle activation but does not provide an advantage for limb activation. Overall, oscillating the devices in the transverse plane provided greater muscular activation of the anterior deltoid, TA/IO and LSES than use of the devices during frontal or sagittal plane movements. Level of evidence: 2c: Outcomes research. PMID:24175124
White, Dalon P; Baumgarner, Bradley L; Watanabe, Wade O; Alam, Md Shah; Kinsey, Stephen T
2018-02-01
β-guanidinopropionic acid (β-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental β-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that β-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. β-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with β-GPA treatment. These results suggest that β-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that β-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of skeletal muscle blood flow during exercise in ageing humans
Hearon, Christopher M.
2015-01-01
Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887
Web-based emergency response exercise management systems and methods thereof
Goforth, John W.; Mercer, Michael B.; Heath, Zach; Yang, Lynn I.
2014-09-09
According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, and computer program products are included according to other embodiments of the invention.
Foot pedal operated fluid type exercising device
NASA Technical Reports Server (NTRS)
Crum, G. W.; Sauter, R. J. (Inventor)
1973-01-01
A foot pedal operated exercising device is reported that contains a dynamometer formed of a pair of cylinders each containing a piston. The pistons are linked to each other. The upper portions of the two cylinders are joined together by a common opening to provide a common fluid reservoir and each piston is provided with a one way check valve to maintain an adequate supply of working fluid. Fluid from the driven cylinder is transmitted to the other cylinder through separate constant force spring biased valves each valve takes the predominant portion of the pressure drop thereby providing a constant force hydraulic dynamometer. A device is provided to determine the amount of movement of piston travel.
RGB and white-emitting organic lasers on flexible glass.
Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D
2016-02-08
Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).
Liu, Li-Ping; Li, Qian; Xiang, Song-Po; Liu, Li; Zhong, Xin-Xin; Liang, Chen; Li, Guang Hua; Hayat, Tasawar; Alharbi, Njud S; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Qin, Hai-Mei; Wang, Lei
2018-06-07
Recently, highly emissive neutral copper halide complexes have received much attention. Here, a series of four-coordinate mononuclear Cu(i) halide complexes, [CuX(dpqu)(dpna)] (dpqu = 8-(diphenylphosphino)quinoline, dpna = 1-(diphenylphosphino)naphthalene, X = I (1), Br (2) and Cl (3)), were synthesized, and their molecular structures and photophysical properties were investigated. These complexes exhibit near-saturated red emission in the solid state at room temperature and have peak emission wavelengths at 669-691 nm with microsecond lifetimes (τ = 0.46-1.80 μs). Small S1-T1 energy gaps in the solid state indicate that the emission occurs from a thermally activated excited singlet state at ambient temperature. The emission of the complexes 1-3 mainly originates from MLCT transition. The solution-processed devices of complex 1 exhibit stable red emission with a CIE(x, y) of (0.62, 0.38) for a doped device and (0.63, 0.37) for a non-doped device.
Validity of field expedient devices to assess core temperature during exercise in the cold.
Bagley, James R; Judelson, Daniel A; Spiering, Barry A; Beam, William C; Bartolini, J Albert; Washburn, Brian V; Carney, Keven R; Muñoz, Colleen X; Yeargin, Susan W; Casa, Douglas J
2011-12-01
Exposure to cold environments affects human performance and physiological function. Major medical organizations recommend rectal temperature (TREC) to evaluate core body temperature (TcORE) during exercise in the cold; however, other field expedient devices claim to measure TCORE. The purpose of this study was to determine if field expedient devices provide valid measures of TcRE during rest and exercise in the cold. Participants included 13 men and 12 women (age = 24 +/- 3 yr, height = 170.7 +/- 10.6 cm, mass = 73.4 +/- 16.7 kg, body fat = 18 +/- 7%) who reported being healthy and at least recreationally active. During 150 min of cold exposure, subjects sequentially rested for 30 min, cycled for 90 min (heart rate = 120-140 bpm), and rested for an additional 30 min. Investigators compared aural (T(AUR)), expensive axillary (T(AXLe)), inexpensive axillary (T(AXLi)), forehead (T(FOR)), gastrointestinal (T(GI)), expensive oral (T(ORLe)), inexpensive oral (T(ORLi)), and temporal (T(TEM)) temperatures to T(REc) every 15 min. Researchers used mean difference between each device and T(REC) (i.e., mean bias) as the primary criterion for validity. T(AUR), T(AXLe), T(AXLi), T(FOR), TORLe, T(ORLi), and TTEM provided significantly lower measures compared to T(REC) and fell below our validity criterion. T(GI) significantly exceeded T(REC) at three of eleven time points, but no significant difference existed between mean T(REC) and T(GI) across time. Only T(GI) achieved our validity criterion and compared favorably to T(REC). T(GI) offers a valid measurement with which to assess T(CORE) during rest and exercise in the cold; athletic trainers, mountain rescuers, and military medical personnel should avoid other field expedient devices in similar conditions.
A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
Ar, Ilktan; Akgul, Yusuf Sinan
2014-11-01
Computerized recognition of the home based physiotherapy exercises has many benefits and it has attracted considerable interest among the computer vision community. However, most methods in the literature view this task as a special case of motion recognition. In contrast, we propose to employ the three main components of a physiotherapy exercise (the motion patterns, the stance knowledge, and the exercise object) as different recognition tasks and embed them separately into the recognition system. The low level information about each component is gathered using machine learning methods. Then, we use a generative Bayesian network to recognize the exercise types by combining the information from these sources at an abstract level, which takes the advantage of domain knowledge for a more robust system. Finally, a novel postprocessing step is employed to estimate the exercise repetitions counts. The performance evaluation of the system is conducted with a new dataset which contains RGB (red, green, and blue) and depth videos of home-based exercise sessions for commonly applied shoulder and knee exercises. The proposed system works without any body-part segmentation, bodypart tracking, joint detection, and temporal segmentation methods. In the end, favorable exercise recognition rates and encouraging results on the estimation of repetition counts are obtained.
Female upper body and breast skin temperature and thermal comfort following exercise.
Ayres, B; White, J; Hedger, W; Scurr, J
2013-01-01
Breast support reduces breast pain and movement during exercise, however, an extra layer of clothing may affect thermoregulation. This preliminary study investigated female upper body and breast skin temperature and thermal comfort following short-duration exercise. Eight female participants with C-cup breasts had thermal images (infra-red camera, FLIR systems) of the bare breasts, the breasts in two sports bras (composite and polyester) and the abdomen, taken before and after 20 min of exercise at 28(o)C. Following exercise, bare-breast, bra and abdomen temperatures reduced by 0.61(o)C, 0.92(o)C and 2.06(o)C, respectively. The polyester sports bra demonstrated greater thermal comfort and enabled a greater change in skin temperature than the composite sports bra. It is concluded that following short-duration exercise, sports bras reduced the cooling ability of the breast. Material properties of the bras affect thermal comfort and post-exercise skin temperature; this should be an important consideration for sports bra manufacturers. This study investigates the effect of sports bras on thermal regulation of the breast following exercise. Sports bras negatively affected the cooling ability of the skin on the breast, with the material properties of the bra affecting thermal comfort following exercise. These results present important considerations for sports bra manufacturers.
Cardiac rhythm management devices
Stevenson, Irene; Voskoboinik, Alex
2018-05-01
The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.
Astronaut Hammond gets microgravity exercise on rowing machine
1994-09-10
STS064-09-026 (9-20 Sept. 1994) --- Astronaut L. Blaine Hammond, STS-64 pilot, gets microgravity exercise on the rowing machine. This area of the space shuttle Discovery's middeck was also used for the treadmill exercising device. Blaine and five other NASA astronauts spent almost 11 days in Earth orbit in support of the mission. Photo credit: NASA or National Aeronautics and Space Administration
Mobile, Virtual Enhancements for Rehabilitation (MOVER)
2015-08-28
bottom of the figure. The patient uses COTS input devices, such as the Microsoft Kinect and the Wii Balance Board , to perform therapeutic exercises...specific, commonly used balance exercises into the system and enabling the therapists to select and customize pre-identified parameters for these exercises... balance disorder patients. We made these games highly customizable to enable therapists to tune each game to the capabilities of individual
Fresiello, Libera; Rademakers, Frank; Claus, Piet; Ferrari, Gianfranco; Di Molfetta, Arianna; Meyns, Bart
2017-01-01
Patients with a Ventricular Assist Device (VAD) are hemodynamically stable but show an impaired exercise capacity. Aim of this work is to identify and to describe the limiting factors of exercise physiology with a VAD. We searched for data concerning exercise in heart failure condition and after VAD implantation from the literature. Data were analyzed by using a cardiorespiratory simulator that worked as a collector of inputs coming from different papers. As a preliminary step the simulator was used to reproduce the evolution of hemodynamics from rest to peak exercise (ergometer cycling) in heart failure condition. Results evidence an increase of cardiac output of +2.8 l/min and a heart rate increase to 67% of the expected value. Then, we simulated the effect of a continuous-flow VAD at both rest and exercise. Total cardiac output increases of +3.0 l/min (+0.9 l/min due to the VAD and +2.1 l/min to the native ventricle). Since the left ventricle works in a non-linear portion of the diastolic stiffness line, we observed a consistent increase of pulmonary capillary wedge pressure (from 14 to 20 mmHg) for a relatively small increase of end-diastolic volume (from 182 to 189 cm3). We finally increased VAD speed during exercise to the maximum possible value and we observed a reduction of wedge pressure (-4.5 mmHg), a slight improvement of cardiac output (8.0 l/min) and a complete unloading of the native ventricle. The VAD can assure a proper hemodynamics at rest, but provides an insufficient unloading of the left ventricle and does not prevent wedge pressure from rising during exercise. Neither the VAD provides major benefits during exercise in terms of total cardiac output, which increases to a similar extend to an unassisted heart failure condition. VAD speed modulation can contribute to better unload the ventricle but the maximal flow reachable with the current devices is below the cardiac output observed in a healthy heart.
Dooley, Erin E; Golaszewski, Natalie M; Bartholomew, John B
2017-03-16
Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly different at vigorous (P=.70) or recovery (P=.10). For Garmin Forerunner 225, HR MAPE was between 7.87% and 24.38%. HR was not significantly different at vigorous intensity (P=.35). The device measured higher HR readings at start, baseline, light intensity, moderate intensity (P<.001), and recovery (P=.04). EE MAPE was between 30.77% and 155.05%. The device measured higher EE at all stages (P<.001). This study provides one of the first validation assessments for the Fitbit Charge HR, Apple Watch, and Garmin Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist. ©Erin E Dooley, Natalie M Golaszewski, John B Bartholomew. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 16.03.2017.
Bipolar host materials for red and green phosphorescent OLED
NASA Astrophysics Data System (ADS)
Kwon, Jang Hyuk; Park, Tae Jin; Jeon, Woo Sik; Park, Jung Joo
2007-11-01
We report novel bipolar host materials for high efficiency red and green phosphorescent OLEDs (PHOLEDs). Phenyl moieties were inserted in a 4,4'-N,N'-dicarbazolebipheyl (CBP) compound to provide much easier electron injection and to increase electron mobility. The efficiency increase and voltage reduction by this modification were observed in red and green PHOLEDs. At a given constant luminance of 1000 cd/m2, the power efficiency was enhanced at least by twenty percent in the general red and green PHOLED devices.
Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.
Georgiou, Konstantinos; Larentzakis, Andreas V; Khamis, Nehal N; Alsuhaibani, Ghadah I; Alaska, Yasser A; Giallafos, Elias J
2018-03-01
A growing number of wearable devices claim to provide accurate, cheap and easily applicable heart rate variability (HRV) indices. This is mainly accomplished by using wearable photoplethysmography (PPG) and/or electrocardiography (ECG), through simple and non-invasive techniques, as a substitute of the gold standard RR interval estimation through electrocardiogram. Although the agreement between pulse rate variability (PRV) and HRV has been evaluated in the literature, the reported results are still inconclusive especially when using wearable devices. The purpose of this systematic review is to investigate if wearable devices provide a reliable and precise measurement of classic HRV parameters in rest as well as during exercise. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases, as well as, through internet search. The 308 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Eighteen studies were included. Sixteen of them integrated ECG - HRV technology and two of them PPG - PRV technology. All of them examined wearable devices accuracy in RV detection during rest, while only eight of them during exercise. The correlation between classic ECG derived HRV and the wearable RV ranged from very good to excellent during rest, yet it declined progressively as exercise level increased. Wearable devices may provide a promising alternative solution for measuring RV. However, more robust studies in non-stationary conditions are needed using appropriate methodology in terms of number of subjects involved, acquisition and analysis techniques implied.
The excitation mechanism of btp2 Ir(acac) in CBP host.
Xiao-Bo, Zhang; Fu-Xiang, Wei
2017-05-01
Whether bis(2-(2'-benzo[4,5-α]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp 2 Ir(acac)) emission comes from carrier trapping and/or energy transfer, when doped in the 4,4'-bis(N-carbazolyl)biphenyl (CBP) host in organic light-emitting devices, is not clear; therefore, the btp 2 Ir(acac) emission in CBP hosts was studied. In the red-doped device, both N,N'-bis(1-naphthyl)-N,N'-diphenyl-1.1'-bipheny1-4-4'-diamine (NPB) and (1,1'-biphenyl-4'-oxy)bis(8-hydroxy-2-methylquinolinato)-aluminum (BAlq) emission appeared, which illustrated that CBP excitons cannot be formed at two emissive layer (EML) interfaces in the device. In the co-doped devices, NPB and BAlq emissions disappear and 1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene (BCzVB) emission appears, illustrating the formation of CBP excitons at two EML interfaces in these devices. The reason for this difference was analyzed and it was found that holes in the NPB layer could be made directly into the CBP host in the EML interface of the red-doped device. In contrast, holes were injected into CBP host via the btp 2 Ir(acac)/BCzVB dopants in the co-doped devices, which facilitated hole injection from the NPB layer to the EML, leading to the formation of CBP excitons at two EML interfaces in the co-doped devices. Therefore, btp 2 Ir(acac) emission was caused by carrier trapping in the red-doped device, while, in the co-doped devices, it resulted from both carrier trapping and energy transfer from the CBP. Furthermore, it was revealed that the carrier trapping mechanism is less efficient than the energy transfer mechanism for btp 2 Ir(acac) excitation in co-doped devices. In summary, our results clarified the excitation mechanism of btp 2 Ir(acac) in the CBP host. Copyright © 2016 John Wiley & Sons, Ltd.
Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).
Hasumura, Takahiro; Meguro, Shinichi
2016-07-01
Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.
Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim
2016-01-01
To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.
Protection of Lotus Seedpod Proanthocyanidins on Organs and Tissues under High-intensity Excercise
Mengyan, Zhang
2015-01-01
Lotus seedpod proanthocyanidins (LSPC) as a kind of polyphenols is widely used in medicines, cosmetics, health products. High-intensity exercise can cause damage to the body's organs and tissues. Different doses of LSPC is given to mice to check the function of protect effect to the body's organs and tissues under high-intensity exercise. The hemoglobin (HB) content, red blood cell (RBC) number and white blood cell (WBC) number were tested for mice after exercise. The activity of superoxide dismutase (SOD) and the contents of glutathione (GSH) and malondialdehyde (MDA) in muscle and viscera were evaluated. The result showed that LSPC can effectively reduce inflammation reaction in the body of mice with high intensity exercise, alleviate oxidative stress-induced injury of tissues and organs, and execute protective function on skeletal muscle and cardiac muscle. And the LSPC could enhance myocardial anti-oxygen and enzymatic activity which suggests the protective effects of resveratrol against exercise-induced myocardial damage in mice. PMID:26998176
Effect of strenuous physical exercise on circulating cell-derived microparticles.
Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe
2011-01-01
Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.
Pneumatic strength assessment device: design and isometric measurement.
Paulus, David C; Reiser, Raoul F; Troxell, Wade O
2004-01-01
In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.
Widman, Lana M; McDonald, Craig M; Abresch, R Ted
2006-01-01
To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Pre-post intervention. University-based research facility. SUBJECT POPULATION: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 +/- 0.6 years; 4 boys, 17.5 +/- 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise.
Next Gen One Portal Usability Evaluation
NASA Technical Reports Server (NTRS)
Cross, E. V., III; Perera, J. S.; Hanson, A. M.; English, K.; Vu, L.; Amonette, W.
2018-01-01
Each exercise device on the International Space Station (ISS) has a unique, customized software system interface with unique layouts / hierarchy, and operational principles that require significant crew training. Furthermore, the software programs are not adaptable and provide no real-time feedback or motivation to enhance the exercise experience and/or prevent injuries. Additionally, the graphical user interfaces (GUI) of these systems present information through multiple layers resulting in difficulty navigating to the desired screens and functions. These limitations of current exercise device GUI's lead to increased crew time spent on initiating, loading, performing exercises, logging data and exiting the system. To address these limitations a Next Generation One Portal (NextGen One Portal) Crew Countermeasure System (CMS) was developed, which utilizes the latest industry guidelines in GUI designs to provide an intuitive ease of use approach (i.e., 80% of the functionality gained within 5-10 minutes of initial use without/limited formal training required). This is accomplished by providing a consistent interface using common software to reduce crew training, increase efficiency & user satisfaction while also reducing development & maintenance costs. Results from the usability evaluations showed the NextGen One Portal UI having greater efficiency, learnability, memorability, usability and overall user experience than the current Advanced Resistive Exercise Device (ARED) UI used by astronauts on ISS. Specifically, the design of the One-Portal UI as an app interface similar to those found on the Apple and Google's App Store, assisted many of the participants in grasping the concepts of the interface with minimum training. Although the NextGen One-Portal UI was shown to be an overall better interface, observations by the test facilitators noted specific exercise tasks appeared to have a significant impact on the NextGen One-Portal UI efficiency. Future updates to the NextGen One Portal UI will address these inefficiencies.
Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.
Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M
2007-05-01
Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.
Photobiomodulation in human muscle tissue: an advantage in sports performance?
Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R.
2016-01-01
Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to vstimulate, heal, and regenerate damaged tissue. Both pre-conditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n=1045 participants). Studies used single laser probes, cluster of laser-diodes, LED-clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. PMID:27874264
21 CFR 864.7250 - Erythropoietin assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... assay. (a) Identification. A erythropoietin assay is a device that measures the concentration of erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...
21 CFR 864.7250 - Erythropoietin assay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... assay. (a) Identification. A erythropoietin assay is a device that measures the concentration of erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...
21 CFR 864.7250 - Erythropoietin assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... assay. (a) Identification. A erythropoietin assay is a device that measures the concentration of erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...
21 CFR 864.7250 - Erythropoietin assay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... assay. (a) Identification. A erythropoietin assay is a device that measures the concentration of erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...
21 CFR 864.7250 - Erythropoietin assay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... assay. (a) Identification. A erythropoietin assay is a device that measures the concentration of erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...
Energy drinks give you wings but also an abnormal exercise test.
Choudhury, Tawfiqur R; Abdool, Muhammad A; Galasko, Gavin
2017-07-27
This is the case of a 53-year-old man with known coronary artery disease who underwent two exercise treadmill tests (ETT). The first test, which yielded an abnormal result, was undertaken shortly after he had drunk two cans of Red Bull, a popular energy drink (ED). A second ETT was undertaken 1 week later by the same team without EDs on board and the test result was normal. This case suggests that drinking EDs prior to an ETT could lead to a false positive result and should be discouraged prior to exercise testing. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Mobile, Virtual Enhancements for Rehabilitation (MOVER)
2015-05-31
patient uses COTS input devices, such as the Microsoft Kinect and the Wii Balance Board , to perform therapeutic exercises that are mapped to controls...in place of having an exercise creation tool for the therapists, we have simplified the process by hardcoding specific, commonly used balance
Bitar, Raoul; Nordt, Carlos; Grosshans, Martin; Herdener, Marcus; Seifritz, Erich; Mutschler, Jochen
2017-01-01
Methodological shortcomings of gambling studies relying on self-report or on data sets derived from gambling operators tend to result in biased conclusions. The aim of this study was to analyze online gambling behavior using a novel network database approach. From October 13 to October 26, 2014, telecommunications network data from a major telecommunications provider in Switzerland were analyzed. Netflows between mobile devices and a poker operator were quantified to measure the gambling duration and session number. Time spent gambling during night and working hours was compared between devices with longest (red group), intermediate (orange group), and shortest gambling time (green group). Online gambling behavior differed depending on overall gambling time, F (2, 3,143). Night and working hours gambling was the highest in the red group (53%), compared to the orange (50.1%) and the green groups (41.5%). Post hoc analyses indicated significant differences between the orange and green groups (p < 0.05). No differences were observed between the red and orange groups (p = 0.850), and the red and green groups (p = 0.053). On mobile devices, distinct gambling patterns were observed depending on the overall gambling time. This methodology could also be used to investigate online gaming, social media use, and online pornography. © 2017 S. Karger AG, Basel.
Brown, Gregory A; Cook, Chad M; Krueger, Ryan D; Heelan, Kate A
2010-06-01
Treadmills (TM) and elliptical devices (EL) are popular forms of exercise equipment. The differences in the training stimulus presented by TM or EL are unknown. The purpose of this investigation was to evaluate oxygen consumption, energy expenditure, and heart rate on a TM or EL when persons exercise at the same perceived level of exertion. After measuring peak oxygen uptake (VO2peak) in 9 male and 9 female untrained college-aged participants, the subjects performed 2 separate 15-minute submaximal exercise tests on the TM and EL at a rating of perceived exertion (RPE) of 12-13. VO2peak was higher (p<0.05) in the males (48.6+/-1.5 vs. 45.2+/-1.6 ml/kg/min) than the females (41.7+/-1.8 vs. 38.8+/-2.2 ml/kg/min) for both TM and EL (means+/-standard error of the mean; for TM vs. EL respectively), but there were no differences in the measured VO2peak between TM or EL. During submaximal exercise there were no differences in RPE between TM and EL. Total oxygen consumption was higher (p<0.05) in males (30.8+/-2.2 vs. 34.9+/-2.2 L) than females (24.1+/-1.8 vs. 26.9+/-1.7 L) but did not differ between TM and EL. Energy expenditure was not different between TM (569+/-110 J) or EL (636+/-120 kJ). Heart rate was higher (p<0.05) on the EL (164+/-16 beats/min) compared to the TM (145+/-15 beats/min). When subjects exercise at the same RPE on TM or EL, oxygen consumption and energy expenditure are similar in spite of a higher heart rate on the EL. These data indicate that during cross training or noncompetition-specific exercise, an elliptical device is an acceptable alternative to a treadmill.
Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M
2018-01-17
Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.
Blood Volume: Its Adaptation to Endurance Training
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1991-01-01
Expansion of blood volume (hypervolemia) has been well documented in both cross-sectional and longitudinal studies as a consequence of endurance exercise training. Plasma volume expansion can account for nearly all of the exercise-induced hypervolemia up to 2-4 wk; after this time expansion may be distributed equally between plasma and red cell volumes. The exercise stimulus for hypervolemia has both thermal and nonthermal components that increase total circulating plasma levels of electrolytes and proteins. Although protein and fluid shifts from the extravascular to intravascular space may provide a mechanism for rapid hypervolemia immediately after exercise, evidence supports the notion that chronic hypervolemia associated with exercise training represents a net expansion of total body water and solutes. This net increase of body fluids with exercise training is associated with increased water intake and decreased urine volume output. The mechanism of reduced urine output appears to be increased renal tubular reabsorption of sodium through a more sensitive aldosterone action in man. Exercise training-induced hypervolemia appears to be universal among most animal species, although the mechanisms may be quite different. The hypervolemia may provide advantages of greater body fluid for heat dissipation and thermoregulatory stability as well as larger vascular volume and filling pressure for greater cardiac stroke volume and lower heart rates during exercise.
Resistance exercise training and the orthostatic response
NASA Technical Reports Server (NTRS)
McCarthy, J. P.; Bamman, M. M.; Yelle, J. M.; LeBlanc, A. D.; Rowe, R. M.; Greenisen, M. C.; Lee, S. M.; Spector, E. R.; Fortney, S. M.
1997-01-01
Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4-14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance.
Exercise countermeasures for bed rest deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John (Editor)
1989-01-01
The major objectives were to evaluate the efficiency of different modes of exercise (isotonic and isokinetic) for countering the effects of bed rest deconditioning on work capacity (peak oxygen uptake), muscular strength, orthostatic tolerance, posture, equilibrium and gait; and to collect additional data of a more fundamental nature to help understand how these deconditioning responses occur. These data will be used for writing prescriptions for exercise to be utilized by astronauts for maintaining work capacity and well-being on Freedom Station, and to determine what exercise devices should be place in the station.
77 FR 45333 - Tehama County Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
...) will meet in Red Bluff, California. The committee is authorized under the Secure Rural Schools and... Lincoln Street School, Conference Room E, 1135 Lincoln Street, Red Bluff, CA. Written comments may be... for sign language interpreting, assistive listening devices or other reasonable accomodation for...
An Evidence-Based Approach To Exercise Prescriptions on ISS
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.
Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine
NASA Technical Reports Server (NTRS)
Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.
2010-01-01
Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature
Preparing Students for Leadership through Experiential Learning
ERIC Educational Resources Information Center
Bauermeister, Maria C.; Greer, Jon; Kalinovich, Angelina V.; Marrone, Jennifer A.; Pahl, Megan M.; Rochholz, Lauren B.; Wilson, Barry R.
2016-01-01
This Application Brief highlights Seattle University's Red Winged Leadership (RWL) exercise, an innovative curriculum for graduate business leadership education. RWL requires students to apply course materials to a visible and challenging class project, and to critically examine and recognize leadership in the broader community. Both allow for…
Responsive Space Situation Awareness in 2020
2007-04-01
sensor did not satisfy the most stressing characterization or search requirements. Examples include STSS, Sea-Based X-Band, and NFIRE .36 The goal of...Orbital Express, NFIRE , etc.) to serve as the Red Team to practice these operations. In each exercise, the grey beards and network should conduct
Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges
2016-01-01
Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783
Separation of cancer cells from a red blood cell suspension using inertial force.
Tanaka, Tatsuya; Ishikawa, Takuji; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Ueno, Hironori; Matsuki, Noriaki; Yamaguchi, Takami
2012-11-07
The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces. The device was able to effectively remove RBCs up to the 1% hematocrit (Hct) condition with a throughput of 565 μL min(-1). The collection efficiency of cancer cells from a RBC suspension was about 85%, and the enrichment of cancer cells was about 120-fold. Further improvements can be easily achieved by parallelizing the device. These results illustrate that the separation of cancer cells from RBCs is possible using only inertial migration forces, thus paving the way for the development of a novel microfluidic device for future CTC tests.
Gosewade, Nitin B.; Shende, Vinod S.; Kashalikar, Shriniwas J.
2013-01-01
Introduction: We depend on eyesight more than any other of our senses to maneuver through the space around us. In a fraction of a second, our eyes work with our brain to tell us the size, shape, colour, and texture of an object. Our eyes are body’s most highly developed sensory organs. The use of computers and television in the era of information technology has given new heights to the professional success rate and it saves time but on the other hand, it has led to an increase in the number of patients with ocular complaints. Aims: The objective of the study was to study the effect of eye exercise techniques along with kapalbhati pranayama on Visual Reaction Time (VRT). Material & Methods: Total 60 subjects in an age group of 18–30 were recruited in the study. All the subjects were divided into two equal groups (study group and control group) containing 30 subjects (18 male & 12 female) each. Both the male and female subjects were selected on the basis of their voluntary involvement. Visual reaction time for red and green light was recorded from all 60 subjects before the start of the study. Study group subjects were trained to practice various eye exercise techniques and kapalbhati pranayama for 8 weeks regularly whereas control group were busy with their routine activities. After 8 weeks, visual reaction time was measured for red and green light from all 60 subjects. Statistical Analysis: Data expressed as Mean ± S.D, Student t –test was applied for analysis of data, p value <0.05 is taken as statistically significant. Results: Statistical analysis of data shows that there is a significant decrease in the visual reaction time for red and green light after intervention in study group (p value <0.05). Whereas there is no significant decrease in VRT in control group (p value >0.05). Conclusion: The results of our study suggest that simple eye exercises along with pranayama helps in improvement of visual reaction time. PMID:24179885
Film dosimetry using a smart device camera: a feasibility study for point dose measurements
NASA Astrophysics Data System (ADS)
Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie
2017-10-01
In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.
Film dosimetry using a smart device camera: a feasibility study for point dose measurements.
Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie
2017-10-03
In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.
Jauchem, James R
2011-01-01
Conducted energy weapons (CEWs) are used by law enforcement personnel to incapacitate individuals quickly and effectively, without intending to cause lethality. CEWs have been deployed for relatively long or repeated exposures in some cases. In laboratory animal models, central venous hematocrit has increased significantly after CEW exposure. Even limited applications (e.g., three 5-sec applications) resulted in statistically significant increases in hematocrit. Preexposure hematocrit was significantly higher in nonsurvivors versus survivors after more extreme CEW applications. The purpose of this technical note is to address specific questions that may be generated when examining these results. Comparisons among results of CEW applications, other electrical muscle stimulation, and exercise/voluntary muscle contraction are included. The anesthetized swine appears to be an acceptable animal model for studying changes in hematocrit and associated red blood cell changes. Potential detrimental effects of increased hematocrit, and considerations during law enforcement use, are discussed. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.
Effect of Robot-Assisted and Unassisted Exercise on Functional Reaching in Chronic Hemiparesis
2001-10-25
EFFECT OF ROBOT-ASSISTED AND UNASSISTED EXERCISE ON FUNCTIONAL REACHING IN CHRONIC HEMIPARESIS L. E. Kahn1,2, M. L. Zygman1, W. Z. Rymer1,2, D...Abstract – A common therapeutic approach for the rehabilitation of patients with hemiparesis involves repetitive voluntary movements with manual...of subjects with chronic hemiparesis (N = 7) performed the same repetitive exercises without the aid of the robotic device. Each group performed 24
Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin
2014-02-15
The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.
21 CFR 866.5460 - Haptoglobin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...
21 CFR 866.5460 - Haptoglobin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...
21 CFR 866.5460 - Haptoglobin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...
21 CFR 866.5460 - Haptoglobin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...
Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat
Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M
2007-01-01
Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings. Objective: To assess the validity of commonly used temperature devices at various body sites during outdoor exercise in the heat. Design: Observational field study. Setting: Outdoor athletic facilities. Patients or Other Participants: Fifteen men and 10 women (age = 26.5 ± 5.3 years, height = 174.3 ± 11.1 cm, mass = 72.73 ± 15.95 kg, body fat = 16.2 ± 5.5%). Intervention(s): We simultaneously tested inexpensive and expensive devices orally and in the axillary region, along with measures of aural, gastrointestinal, forehead, temporal, and rectal temperatures. Temporal temperature was measured according to the instruction manual and a modified method observed in medical tents at local road races. We also measured forehead temperatures directly on the athletic field (other measures occurred in a covered pavilion) where solar radiation was greater. Rectal temperature was the criterion standard used to assess the validity of all other devices. Subjects' temperatures were measured before exercise, every 60 minutes during 180 minutes of exercise, and every 20 minutes for 60 minutes of postexercise recovery. Temperature devices were considered invalid if the mean bias (average difference between rectal temperature and device temperature) was greater than ±0.27°C (±0.5°F). Main Outcome Measure(s): Temperature from each device at each site and time point. Results: Mean bias for the following temperatures was greater than the allowed limit of ±0.27°C (±0.5°F): temperature obtained via expensive oral device (−1.20°C [−2.17°F]), inexpensive oral device (−1.67°C [−3.00°F]), expensive axillary device (−2.58°C [−4.65°F]), inexpensive axillary device (−2.07°C [−3.73°F]), aural method (−1.00°C [−1.80°F]), temporal method according to instruction manual (−1.46°C [−2.64°F]), modified temporal method (−1.36°C [−2.44°F]), and forehead temperature on the athletic field (0.60°C [1.08°F]). Mean bias for gastrointestinal temperature (−0.19°C [−0.34°F]) and forehead temperature in the pavillion (−0.14°C [−0.25°F]) was less than the allowed limit of ±0.27°C (±0.5°F). Forehead temperature depended on the setting in which it was measured and showed greater variation than other temperatures. Conclusions: Compared with rectal temperature (the criterion standard), gastrointestinal temperature was the only measurement that accurately assessed core body temperature. Oral, axillary, aural, temporal, and field forehead temperatures were significantly different from rectal temperature and, therefore, are considered invalid for assessing hyperthermia in individuals exercising outdoors in the heat. PMID:18059987
Opar, David A; Piatkowski, Timothy; Williams, Morgan D; Shield, Anthony J
2013-09-01
Reliability and case-control injury study. To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95% confidence interval: 1.4, 98.5; P = .04), and 18% weaker than the normative right limb (mean difference, 66.5 N; 95% confidence interval: 18.0, 115.1; P<.01). The experimental device offers a reliable method to measure eccentric knee flexor strength and strength asymmetry and to detect residual weakness in previously injured elite athletes.
Wibmer, Thomas; Rüdiger, Stefan; Heitner, Claudia; Kropf-Sanchen, Cornelia; Blanta, Ioanna; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian
2014-05-01
Dynamic hyperinflation is an important target in the treatment of COPD. There is increasing evidence that positive expiratory pressure (PEP) could reduce dynamic hyperinflation during exercise. PEP application through a nasal mask and a flow resistance device might have the potential to be used during daily physical activities as an auxiliary strategy of ventilatory assistance. The aim of this study was to determine the effects of nasal PEP on lung volumes during physical exercise in patients with COPD. Twenty subjects (mean ± SD age 69.4 ± 6.4 years) with stable mild-to-severe COPD were randomized to undergo physical exercise with nasal PEP breathing, followed by physical exercise with habitual breathing, or vice versa. Physical exercise was induced by a standard 6-min walk test (6 MWT) protocol. PEP was applied by means of a silicone nasal mask loaded with a fixed-orifice flow resistor. Body plethysmography was performed immediately pre-exercise and post-exercise. Differences in mean pre- to post-exercise changes in total lung capacity (-0.63 ± 0.80 L, P = .002), functional residual capacity (-0.48 ± 0.86 L, P = .021), residual volume (-0.56 ± 0.75 L, P = .004), S(pO2) (-1.7 ± 3.4%, P = .041), and 6 MWT distance (-30.8 ± 30.0 m, P = .001) were statistically significant between the experimental and the control interventions. The use of flow-dependent expiratory pressure, applied with a nasal mask and a PEP device, might promote significant reduction of dynamic hyperinflation during walking exercise. Further studies are warranted addressing improvements in endurance performance under regular application of nasal PEP during physical activities.
Koehler, Karsten; Drenowatz, Clemens
2017-01-01
In order to monitor their energy requirements, athletes may desire to assess energy expenditure (EE) during training and competition. Recent technological advances and increased customer interest have created a market for wearable devices that measure physiological variables and bodily movement over prolonged time periods and convert this information into EE data. This mini-review provides an overview of the applicability of the SenseWear armband (SWA), which combines accelerometry with measurements of heat production and skin conductivity, to measure total daily energy expenditure (TDEE) and its components such as exercise energy expenditure (ExEE) in athletic populations. While the SWA has been shown to provide valid estimates of EE in the general population, validation studies in athletic populations indicate a tendency toward underestimation of ExEE particularly during high-intensity exercise (>10 METs) with an increasing underestimation as exercise intensity increases. Although limited information is available on the accuracy of the SWA during resistance exercise, high-intensity interval exercise, or mixed exercise forms, there seems to be a similar trend of underestimating high levels of ExEE. The SWA, however, is capable of detecting movement patterns and metabolic measurements even at high exercise intensities, suggesting that underestimation may result from limitations in the proprietary algorithms. In addition, the SWA has been used in the assessment of sleep quantity and quality as well as non-exercise activity thermogenesis. Overall, the SWA provides viable information and remains to be used in various clinical and athletic settings, despite the termination of its commercial sale.
Harada, Kiyoshi; Sato, Masaru; Omura, Ken
2004-01-01
We examined the ratio between actual maxillary distraction and the distraction of the rigid external distraction device (Rigid external distraction (RED) system) used for maxillary distraction in patients with a cleft deformity. Twelve patients were examined. The amount of maxillary advancement was measured on lateral cephalograms and divided by the activation amount on the RED system. The value obtained was represented as the distraction ratio of the maxilla to the system. The mean ratio in 10 patients with complete cleft lip, palate, and alveolus (complete cleft) was 0.24. However, the ratios in two patients with cleft lip and alveolus or soft cleft palate (incomplete cleft) were considerably higher than the mean ratios in patients with complete cleft. When the maxilla is distracted in patients with complete cleft using the RED system, the amount of activation on the system needs to be about four times the amount of planned maxillary distraction. However, the distraction ratio may be affected by the type of cleft.
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.
NASA Technical Reports Server (NTRS)
Smith, Damon C. (Inventor)
2005-01-01
An exercise device 10 is particularly well suited for use in low gravity environments, and includes a frame 12 with plurality of resistance elements 30,82 supported in parallel on the frame. A load transfer member 20 is moveable relative to the frame for transferring the applied force to the free end of each captured resistance element. Load selection template 14 is removably secured both to the load transfer member, and a plurality of capture mechanisms engage the free end of corresponding resistance elements. The force applying mechanism 53 may be a handle, harness or other user interface for applying a force to move the load transfer member.
Tinkertoy Color-Addition Device.
ERIC Educational Resources Information Center
Ferguson, Joe L.
1995-01-01
Describes construction and use of a simple home-built device, using an overhead projector, for use in demonstrations of the addition of various combinations of red, green, and blue light. Useful in connection with discussions of color, color vision, or color television. (JRH)
A Laboratory Exercise for Visible Gel Filtration Chromatography Using Fluorescent Proteins
ERIC Educational Resources Information Center
Zhang, Wenqiang; Cao, Yibin; Xu, Lishan; Gong, Jufang; Sun, Meihao
2015-01-01
Gel filtration chromatography (GFC) separates molecules according to size and is one of the most widely used methods for protein purification. Here, red fluorescent protein (RFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), and/or their fusion proteins were prokaryotically expressed, purified,…
Firefighters from Mayport Naval Station train at CCAFS
NASA Technical Reports Server (NTRS)
2000-01-01
Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.
Battlefield training in impaired visibility
NASA Astrophysics Data System (ADS)
Gammarino, Rudolph R.; Surhigh, James W.
1991-04-01
A laser training system entitled Shoot Through Obscuration MILES (STOM) is being developed to operate with Forward Looking InfraRed (FLIR) systems during battlefield exercises where visibility is impaired. The STOM system is capable of ranges in excess of 6 km and can penetrate battlefield obscurants such as fog-oil, smoke, dust, and rain.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.
Effects of an Elastic Hamstring Assistance Device During Downhill Running
Aldret, Randy L; Trahan, Brittany A; Davis, Greggory; Campbell, Brian; Bellar, David M
2017-01-01
Abstract The purpose of this study was to determine the appropriateness of using an elastic hamstring assistance device to reduce perceived levels of soreness, increase isometric strength, increase passive range of motion, and decrease biomarkers of muscle damage after eccentric exercise, specifically, downhill running This study was conducted in a university exercise physiology laboratory placing sixteen apparently healthy males (X = 21.6 ± 2.5 years) into two groups using a pre-test/post-test design. Pre-intervention measures taken included participants’ body height, body mass, body fat, capillary blood samples, VO2max, isometric hamstring strength at 45 and 90 degrees of flexion and passive hamstring range of motion. Post-intervention measures included blood biomarkers, passive range of motion, the perceived level of soreness and isometric strength. An analysis of normality of data was initially conducted followed by multivariate analysis of variance (MANOVA) of hamstring strength at 45 and 90 degrees of flexion, blood myoglobin and passive range of motion of the hamstrings. Statistically significant changes were noted in subject-perceived muscle soreness and isometric strength at 90 degrees at the 24-hour post-exercise trial measure between the two groups. Results would suggest the findings could be explained by the decrease in muscle soreness from utilizing the device during the exercise trial. Further research should be conducted to address sample size issues and to determine if the results are comparable on different surfaces. PMID:28713460
Comparision and analysis of top 10 exercise android Apps in mainland China.
Wang, Yanling; Sun, Liu; Xu, Yahong; Xiao, Qian; Chang, Polun; Wu, Ying
2015-01-01
Medical guidelines highly recommend physical activity and aerobic exercise in the prevention of primary and secondary cardiovascular disease. The use of exercise-promoting application software may improve clinical outcomes for cardiovascular disease (CVD) patients. The study aimed to compare and analyze the functions of the top 10 exercise Android Apps which had more than 1,000,000 downloads from the main four Android App stores in mainland China. The results showed that most of these popular apps had pedometer, exercise plan preset, user data presentation, user encouragement and community sharing functions while a few of them had exercise video clips or animation support and wearable devices. Given these data, the conclusion is that these popular apps fulfill some of the functions recommended by medical guidelines, however, lack of some functions such as pre-exercise risk assessment, the exercise intensity recording, specific instructions by professionals, and monitoring functions for CVD patients.
Red phosphorescent organic light-emitting diodes based on the simple structure.
Seo, Ji Hyun; Lee, Seok Jae; Kim, Bo Young; Choi, Eun Young; Han, Wone Keun; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan
2012-05-01
We demonstrated that the simple layered red phosphorescent organic light-emitting diodes (OLEDs) are possible to have high efficiency, low driving voltage, stable roll-off efficiency, and pure emission color without hole injection and transport layers. We fabricated the OLEDs with a structure of ITO/CBP doped with Ir(pq)2(acac)/BPhen/Liq/Al, where the doping concentration of red dopant, Ir(pq)2(acac), was varied from 4% to 20%. As a result, the quantum efficiencies of 13.4, 11.2, 16.7, 10.8 and 9.8% were observed in devices with doping concentrations of 4, 8, 12, 16 and 20%, respectively. Despite of absence of the hole injection and transport layers, these efficiencies are superior to efficiencies of device with hole transporting layer due to direct hole injection from anode to dopant in emission layer.
A webcam in Bayer-mode as a light beam profiler for the near infra-red
Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas
2013-01-01
Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique. PMID:23645943
A webcam in Bayer-mode as a light beam profiler for the near infra-red.
Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas
2013-05-01
Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique.
Ferrando, A; Vila, L; Voces, J A; Cabral, A C; Alvarez, A I; Prieto, J G
1999-04-01
The effect of standardized Panax ginseng extract G115 on enzymatic activities, myotypological composition, capillaries and mitochondrial content was studied in the skeletal muscle of male rats Wistar. Simultaneously to the G115 administration the rats performed exercise. The animals were divided into 4 groups. The dose of the ginseng extract G115 was 50 mg/kg. The length of the experimental period was 12 weeks. After 24 hours of inactivity the muscles of the hindlimb were extracted. With regard to the enzymatic activities of the citrate synthase (CS) and lactate dehydrogenase (LDH), CS increases with exercise, while the LDH undergoes no major variations, either due to the exercise or the treatment. Treatment with G115 increases the capillary density and the mitochondrial content of the red gastrocnemius muscle. The results suggest that prolonged treatment with G115 increases the capillary density and the oxidative capacity of the muscles with greater aerobic potential in a manner similar to the performance of physical exercise. When exercise and treatment are combined, the effects that are obtained separately are not potentiated.
Muscle damage and repeated bout effect induced by enhanced eccentric squats.
Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico
2016-12-01
Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P<0.05) than baseline respectively up to 72 and 96 hours. Isometric peak torque was significantly lower (P<0.05) up to 72 hours. After the second bout, CK showed no significant increase (P>0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.
Hayward, Christopher S; Fresiello, Libera; Meyns, Bart
2016-05-01
The majority of patients currently implanted with left ventricular assist devices have the expectation of support for more than 2 years. As a result, survival alone is no longer a sufficient distinctive for this technology, and there have been many studies within the last few years examining functional capacity and exercise outcomes. Despite strong evidence for functional class improvements and increases in simple measures of walking distance, there remains incomplete normalization of exercise capacity, even in the presence of markedly improved resting hemodynamics. Reasons for this remain unclear. Despite current pumps being run at a fixed speed, it is widely recognized that pump outputs significantly increase with exercise. The mechanism of this increase involves the interaction between preload, afterload, and the intrinsic pump function curves. The role of the residual heart function is also important in determining total cardiac output, as well as whether the aortic valve opens with exercise. Interactions with the vasculature, with skeletal muscle blood flow and the state of the autonomic nervous system are also likely to be important contributors to exercise performance. Further studies examining optimization of pump function with active pump speed modulation and options for optimization of the overall patient condition are likely to be needed to allow left ventricular assist devices to be used with the hope of full functional physiological recovery.
Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation
NASA Technical Reports Server (NTRS)
Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.
2007-01-01
Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA
Micro lens design for efficiency improvement of red organic light-emitting diode
NASA Astrophysics Data System (ADS)
Ki, Hyun-Chul; Kim, Doo-Gun; Kim, Seon-Hoon; Jung, U.-Ra; Kim, Sang-Gi; Hong, Kyung-Jin
2012-11-01
We have proposed a micro lens to improve the luminance of red organic light-emitting devices (ROLEDs). The micro lenses were applied on the glass/indium tin oxide (ITO)/OLED. The size, thickness and diameter of micro lenses were calculated by using FDTD (finite-difference timedomain) method. Simulations were performed for 5 µm and 10 µm sized. The thickness and the gap of the micro lens were both 1 µm. The material of the micro lenses was silicon dioxide. The highest luminance of an OLED applied with a micro lens was 11,185 cd/m2, at on approval voltage of 14.5 V, The efficiency of the device with a micro lens increased by 3 times compared to that of the device with no micro lens.
Virtual Exercise Training Software System
NASA Technical Reports Server (NTRS)
Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.
2018-01-01
The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.
Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia.
Garhöfer, Gerhard; Kopf, Andreas; Polska, Elzbieta; Malec, Magdalena; Dorner, Guido T; Wolzt, Michael; Schmetterer, Leopold
2004-05-01
Short term hyperglycemia has previously been shown to induce a blood flow increase in the retina. The mechanism behind this effect is poorly understood. We set out to investigate whether exercise-induced hyperlactatemia may alter the response of retinal blood flow to hyperglycemia. We performed a randomized, controlled two-way cross over study comprising 12 healthy subjects, performed a 6-minutes period of dynamic exercise during an euglcaemic or hyperglycaemic insulin clamp. Retinal blood flow was assessed by combined vessel size measurement with the Zeiss retinal vessel analyzer and measurement of red blood cell velocities using bi-directional laser Doppler velocimetry. Retinal and systemic hemodynamic parameters were measured before, immediately after and 10 and 20 minutes after isometric exercise. On the euglycemic study day retinal blood flow increased after dynamic exercise. The maximum increase in retinal blood flow was observed 10 minutes after the end of exercise when lactate plasma concentration peaked. Hyperglycemia increased retinal blood flow under basal conditions, but had no incremental effect during exercise induced hyperlactatemia. Our results indicate that both lactate and glucose induce an increase in retinal blood flow in healthy humans. This may indicate a common pathway between glucose and lactate induced blood flow changes in the human retina.
Effects of a Meal on the Hemorheologic Responses to Exercise in Young Males
Bilski, Jan; Teległów, Aneta; Pokorski, Janusz; Nitecki, Jacek; Pokorska, Joanna; Nitecka, Ewa; Marchewka, Anna; Dąbrowski, Zbigniew; Marchewka, Jakub
2014-01-01
Aim. This study investigates the changes in hemorheologic parameters resulting from exercise followed by a standard meal. Methods. In twelve moderately active men a period of exercise on a bicycle ergometer for 30 min at 60% VO2max was followed by a test meal or by 30 min rest. Venous blood was sampled for further analysis at baseline, after exercise, and after the meal/rest period. Results. The elongation index (EI) was reduced and a marked rise in plasma viscosity was observed after exercise. A significant decrease in half time of total aggregation (T 1/2) and a rise in aggregation index (AI) after exercise were observed; however, after the postexercise period these changes were reversed. Conclusion. The present study demonstrates that physical exercise causes several changes in blood rheology parameters, such as an increase of blood viscosity, a decrease in EI and an increase in AI, and a fall in the T 1/2 values. The meal eaten in the postexercise period caused a further reduction in EI values indicating higher red cell rigidity, but not in plasma viscosity or aggregations indices. Such alterations in hemorheologic parameters should not impair the function of the cardiovascular system in fit and healthy people but it could constitute a serious risk under various pathophysiological conditions. PMID:25089277
Effects of a meal on the hemorheologic responses to exercise in young males.
Bilski, Jan; Teległów, Aneta; Pokorski, Janusz; Nitecki, Jacek; Pokorska, Joanna; Nitecka, Ewa; Marchewka, Anna; Dąbrowski, Zbigniew; Marchewka, Jakub
2014-01-01
This study investigates the changes in hemorheologic parameters resulting from exercise followed by a standard meal. In twelve moderately active men a period of exercise on a bicycle ergometer for 30 min at 60% VO2max was followed by a test meal or by 30 min rest. Venous blood was sampled for further analysis at baseline, after exercise, and after the meal/rest period. The elongation index (EI) was reduced and a marked rise in plasma viscosity was observed after exercise. A significant decrease in half time of total aggregation (T 1/2) and a rise in aggregation index (AI) after exercise were observed; however, after the postexercise period these changes were reversed. The present study demonstrates that physical exercise causes several changes in blood rheology parameters, such as an increase of blood viscosity, a decrease in EI and an increase in AI, and a fall in the T 1/2 values. The meal eaten in the postexercise period caused a further reduction in EI values indicating higher red cell rigidity, but not in plasma viscosity or aggregations indices. Such alterations in hemorheologic parameters should not impair the function of the cardiovascular system in fit and healthy people but it could constitute a serious risk under various pathophysiological conditions.
Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.
2014-01-01
Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
Donovan, Luke; Hart, Joseph M; Hertel, Jay
2015-03-01
Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were consistent increases in fibularis longus sEMG amplitudes during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, and pre-initial contact and post-initial contact during lateral hops and walking.
What Are the Safety Considerations for Insulin Control for Athletes?
ERIC Educational Resources Information Center
McDaniel, Larry W.; Olson, Sara; Gaudet, Laura; Jackson, Allen
2010-01-01
Athletes diagnosed with diabetes may have difficulty with their blood sugar levels fluctuating during intense exercise. Considerations for athletes with insulin concerns may range anywhere from exercise rehabilitation to the use of an automatic insulin pump. The automatic insulin pump is a small battery-operated device about the size of a pager.…
Williams exercises with short bar from the IRED in the Node 1 during Expedition 15
2007-05-07
ISS015-E-06911 (7 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
ERIC Educational Resources Information Center
Smith, Eugene T.; Hill, Marc
2011-01-01
In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…
Muscle fibre conduction and fatigue during dynamic actions on a flywheel exercise device
NASA Astrophysics Data System (ADS)
Pozzo, Marco; Alkner, Bjorn; Norrbrand, Lena; Farina, Dario; Tesch, Per A.
2005-08-01
Exposure to microgravity has adverse effects on skeletal muscle size and function. Such effects can be counteracted by training using a Flywheel Exercise Device (FWED). Multichannel EMG signals were detected in nine males from vastus medialis and laterialis muscles during 30 coupled concentric (CON) and eccentric (ECC) actions on the FWED. Muscle fiber conduction velocity (CV) was assessed for each action. CV initial values depended on muscle action type (CON/ECC) and were higher in CON than ECC actions. CV decreased (P<0.05) over time during the task. Its slope was greater for VL than VM but was not different between CON and ECC. It was concluded that direct measure of CV is feasible during dynamic exercise, and that this technique may be used for objective assessment of the effect of resistance training in counteracting microgravity-induced muscle atrophy.
Gibbon, K C; Debuse, D; Caplan, N
2013-10-01
The aim of this study was to determine the kinematic differences between movements on a new exercise device (EX) that promotes a stable trunk over a moving, unstable base of support, and overground walking (OW). Sixteen male participants performed EX and OW trials while their movements were tracked using a 3D motion capture system. Trunk and pelvis range of motion (ROM) were similar between EX and OW in the sagittal and frontal planes, and reduced for EX in the transverse plane. The pelvis was tilted anteriorly, on average, by about 16° in EX compared to OW. Hip and knee ROM were reduced in EX compared to OW. The exercise device appears to promote similar or reduced lumbopelvic motion, compared to walking, which could contribute to more tonic activity of the local lumbopelvic musculature. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.
1996-10-01
Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate thatmore » all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.« less
Borreani, Sebastien; Colado, Juan Carlos; Furio, Josep; Martin, Fernando; Tella, Víctor
2014-05-01
Little research has been reported on the effects of using different devices with resistance exercises in a water environment. This study compared muscular activation of lower extremity and core muscles during leg adduction performed at maximum velocity with drag and floating devices of different sizes. A total of 24 young men (mean age 23.20 ± 1.18 years) performed 3 repetitions of leg adduction at maximum velocity using 4 different devices (ie, large/small and drag/floating). The maximum amplitude of the electromyographic root mean square of the adductor longus, rectus abdominis, external oblique on the dominant side, external oblique on the nondominant side, and erector lumbar spinae were recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Unexpectedly, no significant (P > 0.05) differences were found in the neuromuscular responses among the different devices used; the average activation of agonist muscle adequate for neuromuscular conditioning was 40.95% of MVIC. In addition, external oblique activation is greater on the contralateral side to stabilize the body (average, 151.74%; P < 0.05). Therefore, if maximum muscle activation is required, the kind of device is not relevant. Thus, the choice should be based on economic factors.
Widman, Lana M; McDonald, Craig M; Abresch, R. Ted
2006-01-01
Background/Objective: To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Design: Pre-post intervention. Setting: University-based research facility. Subject Population: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 ± 0.6 years; 4 boys, 17.5 ± 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Main Outcome Measures: Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Results: Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. Conclusions: The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise. PMID:17044386
21 CFR 862.1365 - Glutathione test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
....1365 Glutathione test system. (a) Identification. A glutathione test system is a device intended to measure glutathione (the tripeptide of glycine, cysteine, and glutamic acid) in erythrocytes (red blood... I (general controls). The device is exempt from the premarket notification procedures in subpart E...
21 CFR 862.1365 - Glutathione test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
....1365 Glutathione test system. (a) Identification. A glutathione test system is a device intended to measure glutathione (the tripeptide of glycine, cysteine, and glutamic acid) in erythrocytes (red blood... I (general controls). The device is exempt from the premarket notification procedures in subpart E...
21 CFR 862.1365 - Glutathione test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
....1365 Glutathione test system. (a) Identification. A glutathione test system is a device intended to measure glutathione (the tripeptide of glycine, cysteine, and glutamic acid) in erythrocytes (red blood... I (general controls). The device is exempt from the premarket notification procedures in subpart E...
Code of Federal Regulations, 2010 CFR
2010-10-01
... devices for daytime flagging include “ STOP/SLOW” paddles or red flags. For nighttime flagging, a... Administration's Manual on Uniform Traffic Control Devices addresses standards and guides for flaggers and... follow them to the greatest extent possible. Copies of the latest MUTCD provisions regarding flagging...
21 CFR 864.9145 - Processing system for frozen blood.
Code of Federal Regulations, 2012 CFR
2012-04-01
... system for frozen blood is a device used to glycerolize red blood cells prior to freezing to minimize... thawing of red blood cells and to deglycerolize and wash thawed cells for subsequent reinfusion. (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Processing system for frozen blood. 864.9145...
21 CFR 864.9145 - Processing system for frozen blood.
Code of Federal Regulations, 2014 CFR
2014-04-01
... system for frozen blood is a device used to glycerolize red blood cells prior to freezing to minimize... thawing of red blood cells and to deglycerolize and wash thawed cells for subsequent reinfusion. (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Processing system for frozen blood. 864.9145...
21 CFR 864.9145 - Processing system for frozen blood.
Code of Federal Regulations, 2010 CFR
2010-04-01
... system for frozen blood is a device used to glycerolize red blood cells prior to freezing to minimize... thawing of red blood cells and to deglycerolize and wash thawed cells for subsequent reinfusion. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Processing system for frozen blood. 864.9145...
21 CFR 864.9145 - Processing system for frozen blood.
Code of Federal Regulations, 2013 CFR
2013-04-01
... system for frozen blood is a device used to glycerolize red blood cells prior to freezing to minimize... thawing of red blood cells and to deglycerolize and wash thawed cells for subsequent reinfusion. (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Processing system for frozen blood. 864.9145...
21 CFR 864.9145 - Processing system for frozen blood.
Code of Federal Regulations, 2011 CFR
2011-04-01
... system for frozen blood is a device used to glycerolize red blood cells prior to freezing to minimize... thawing of red blood cells and to deglycerolize and wash thawed cells for subsequent reinfusion. (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Processing system for frozen blood. 864.9145...
Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy
2016-01-01
Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. Conclusion ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. Level of evidence 3 PMID:27104052
Bouillon, Lucinda; Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy
2016-04-01
Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Cohort, repeated measures. Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. 3.
Importance of upper-limb inertia in calculating concentric bench press force.
Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel
2008-03-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.
Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1992-01-01
Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS).
NASA Astrophysics Data System (ADS)
Chuang, Yi-Ting
The advancement of mobile computing technology has provided diverse way for education. Combination of mobile devices and GIS tools has become a trend in many geospatial technology applications (i.e., Google Maps application on smartphones). This research aims to develop an iBook prototype (a GIS textbook) for GIS education on Apple iPads and to evaluate the effectiveness of adopting the GIS iBook in classes and fieldwork exercises. We conducted the evaluation tests in two GIS courses (GEOG104 and GEOG381) in Fall 2014 at San Diego State University. There are two main research questions in this study: (1) How to assess and evaluate the effectiveness of location-based learning exercises (from iBook) and fieldwork exercises for first-time GIS students? (2) What were major technical challenges and opportunities to utilize mobile device and mobile technology in GIS education? The procedures of developing and evaluating the prototype of the GIS iBook include creating two new chapters (chapter three: Wander the World through Remote Sensing Data and chapter four: Internet and Mobile GIS), interviewing five educators from high schools and community colleges, and improving the contents of the GIS iBook after the interview. There were 31 students who tested the GIS iBook and did a fieldwork exercise with iPads. The 31 students were required to finish five questionnaires after the exercise to express their user experiences and thoughts about the GIS iBook. Based on the result of questionnaires, most students preferred to take GIS classes with the free GIS iBook and thought fieldwork exercise can help their learning. The students also performed better in knowledge oriented survey after reading the GIS iBook. This research also adopts the SWOT analysis method to evaluate the prototype of the GIS iBook. The result of the SWOT analysis indicates that utilizing mobile device in GIS education does have a great potential value in enhancing student's understanding. The strengths of utilizing mobile device in GIS education include portability, easy update contents and abundant free development resources, while the weaknesses include distracting multimedia widgets, lack of Internet access, and security issues. The opportunities of SWOT analysis include financial plan for iPads and lack of competitors, while the threats include higher price and incompatibility of iBooks on other tablet computers. The major limitations and key challenges are limited survey time, small sample size, and technical difficulties of developing the GIS iBook.
A 21st Century Approach to Electronic Device Reliability
2013-10-25
roughness due to growth of Au-rich grains that ultimately led to cracks in passivation . The two primary degradation mechanisms were Au inter-diffusion...pumping occurred when the devices were illuminated with blue, violet, and UV light. In these cases, the drain current response to green and red...of the AFRL devices as shown in Figure 45. Both devices responded nearly identically in that the only change occurred during UV illumination. This
NASA Astrophysics Data System (ADS)
Tajima, Kazuki; Shimoike, Mika; Li, Heng; Inagaki, Masumi; Izumi, Hitomi; Akiyama, Misaki; Matsushima, Yukiko; Ohta, Hidenobu
2013-04-01
We have fabricated a controllable light filter using an all-solid-state switchable mirror incorporating a Mg-Ir thin film for use in preterm infant incubators. The solid-state switchable mirror device was fabricated by depositing a multilayer on a glass substrate. The mixed hydride of MgH2 and Mg6Ir2H11 created from the Mg-Ir thin film is red in the transparent state. The optical switching speeds between the reflective and transparent red states depended on applied voltage. The device showed three states, namely, reflective, black, and transparent red, due to the properties of the switchable mirror material. These results suggest that the material could be used as a controllable light filter for preterm infant incubators, since it eliminates the light wavelength that disturbs regular sleep-wake cycles of preterm infants.
Odje, O E; Ramsey, J M
1995-01-01
The literature on the response of erythrocyte 2,3-diphosphoglycerate (2,3-DPG) following exercise is replete with inconsistencies, and recent studies have shown that the time of blood sampling during and following exercise, as well as the duration of exercise, are important in evaluating the response of 2,3-DPG. Experiments were designed to measure the response of 2,3-DPG following short-term strenuous exercise in two groups of untrained men. Twelve men, 19-22 years old (study 1), exercised on a bicycle ergometer at 122.5 W for 10 min and red blood cell (RBC) 2,3-DPG was measured at 0 and 50 min following exercise. The level of 2,3-DPG (mumol.ml-1 RBC) increased after exercise (P < 0.05), but this increase was not significant when 2,3-DPG was expressed as mol.mol-1 hemoglobin (Hb). However, following 50 min of rest, 2,3-DPG (mol.mol-1 Hb) decreased significantly. In a second group (study 2), nine other men, aged 18-19 years, exercised at the same workload for 15 min and 2,3-DPG was measured at 0, 30, 60, 180, and 330 min respectively after exercise, and no significant mean changes in the level of the phosphate were observed. Findings from these studies suggest that 2,3-DPG does not provide a compensatory adjustment to facilitate oxygen delivery in the hypoxia of short-term strenuous exercise in untrained males immediately following exercise and when recovery intervals of up to 330 min are also examined. It is suggested that 2,3-DPG be reported as mol.mol-1 Hb, since the phosphate exists on Hb in an equimolar ratio in normal physiological states.
Ko, Il-Gyu; Park, Eung-Mi; Choi, Hye-Jung; Yoo, Jaehyun; Lee, Jong-Kyun; Jee, Yong-Seok
2014-05-01
Aging increases the risk of chronic diseases including cancers. Physical exercise has the beneficial effects for the elderly susceptible to the development of cancers, through maintaining a healthy body condition and improving the immune system. However, excessive or insufficient exercise might increase the risk for cancer. In the present study, we investigated what exercise frequency improves cancer-related biomarkers, such as carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), red blood cell (RBC), and white blood cell (WBC), and the body composition of elderly women. Fifty-four females, aged 70 to 77 years, were divided into 4 groups: control, 1-day exercise (1E), 2-3-day exercise (2-3E), and 5-day exercise (5E) groups. The control group did not participate in any physical activity, while the subjects in the exercise groups underwent the exercise program for 12 weeks. As results, CEA was significantly decreased in the exercise groups, with the lowest values in 2-3E group. In contrast, AFP, RBC and WBC were not significantly changed. CEA is an oncofetal glycoprotein that is overexpressed in adenocarcinomas. Although the function of CEA has not been fully understood, CEA has been suggested to be involved in the release of pro-inflammatory cytokines via stimulating monocytes and macrophages. Moreover, body weight and body mass index were improved in the exercise groups, with the lowest levels in 5E group. Thus, we suggest that exercise for 2-3 days per week decreases the expression of CEA and improves body condition, without loading fatigue or stress, which may contribute to preventing cancer in the elderly women.
Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro
2015-01-01
Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653
Schmidt, Christina; Xhrouet, Marine; Hamacher, Manon; Delloye, Eric; LeGoff, Caroline; Cavalier, Etienne; Collette, Fabienne; Vandewalle, Gilles
2018-06-26
We aimed at assessing whether a head-mounted light therapy device, enriched in blue wavelengths, suppresses melatonin secretion and improves vigilant attention in the late evening hours. We also assessed whether using such light device is associated with discomfort and physiological stress. Seventeen healthy young participants (eight females) participated in a counterbalanced within-subject design during which they were exposed for 2 hr before habitual sleep time to a blue-enriched light (1500 lx) or to a lower intensity red-light (150 lx) control condition, using a new-generation light emitting diode (LED) head-mounted device. Compared to the red light control condition, blue-enriched light significantly reduced melatonin secretion and reaction times during a psychomotor vigilance task while no significant differences were detected in discomfort and cortisol levels. These results suggest that, compared to a control condition, blue-enriched light, delivered by a new-generation head-mounted device, elicits typical non-visual responses to light without detectable discomfort and physiological stress. They suggest that such devices might constitute an effective alternative to standard light boxes. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Use of a Mobile Device Simulation as a Preclass Active Learning Exercise.
Keegan, Robert D; Oliver, M Cecile; Stanfill, Teresa J; Stevens, Kevin V; Brown, Gary R; Ebinger, Michael; Gay, John M
2016-01-01
Research shows that preclass activities introducing new material can increase student performance. In an effort to engage students in an active learning, preclass activity, the authors developed a mobile application. Eighty-four nursing students were assigned a preclass reading exercise, whereas 32 students completed the preclass simulation scenario on their mobile device. All students completed the same electronic fetal monitoring (EFM) quiz 1 week following the lecture. The effects of reading or simulation on student quiz performance was evaluated with a student's paired t test, using an alpha of .05. Students completing the preclass simulation scored higher on the EFM quiz, compared with students assigned the preclass reading (85% versus 70% correct answers, p = .01). Student survey data indicated that the mobile device simulation was perceived as an engaging and desirable instructional tool. Nursing students completing the mobile device EFM preclass simulation outperformed the students who were given the traditional reading assignment. Copyright 2016, SLACK Incorporated.
[Methodologic and clinical comparison of four different ergospirometry systems].
Winter, U J; Fritsch, J; Gitt, A K; Pothoff, G; Berge, P G; Hilger, H H
1994-01-01
The clinician who uses cardio-pulmonary exercise testing (CPX) systems relies on the technical informations from the device producers. In this paper, the practicability, the accuracy and the safety of four different, available CPX systems are compared in the clinical area, using clinically orientated criteria. The exercise tests were performed in healthy subjects, in patients with cardiac and/or pulmonary disease as well as in young or old people. The comparison study showed, that there were partially large differences in device design and measurement accuracy. Furthermore, our investigation demonstrated that beneath repetitive calibrations of the CPX systems a frequent validation of the devices by means of a metabolic simulator is necessary. Problems in calibration can be caused by an inadequate performance or by unclean calibration gases. Problems in validation can be due to incompatibility of the CPX device and the validator. The comparison study of the four different systems showed that in the future standards for CPX testing should be defined.
Red vertical cavity surface emitting lasers (VCSELs) for consumer applications
NASA Astrophysics Data System (ADS)
Duggan, Geoffrey; Barrow, David A.; Calvert, Tim; Maute, Markus; Hung, Vincent; McGarvey, Brian; Lambkin, John D.; Wipiejewski, Torsten
2008-02-01
There are many potential applications of visible, red (650nm - 690nm) vertical cavity surface emitting lasers (VCSELs) including high speed (Gb) communications using plastic optical fiber (POF), laser mouse sensors, metrology, position sensing. Uncertainty regarding the reliability of red VCSELs has long been perceived as the most significant roadblock to their commercialization. In this paper we will present data on red VCSELs optimized for performance and reliability that will allow exploitation of this class of VCSEL in a wide range of high volume consumer, communication and medical applications. VCSELs operating at ~665nm have been fabricated on 4" GaAs substrates using MOCVD as the growth process and using standard VCSEL processing technology. The active region is AlGaInP-based and the DBR mirrors are made from AlGaAs. Threshold currents are typically less than 2mA, the devices operate up to >60C and the light output is polarized in a stable, linear characteristic over all normal operating conditions. The 3dB modulation bandwidth of the devices is in excess of 3GHz and we have demonstrated the operation of a transceiver module operating at 1.25Gb/s over both SI-POF and GI-POF. Ageing experiments carried out using a matrix of current and temperature stress conditions allows us to estimate that the time to failure of 1% of devices (TT1%F) is over 200,000h for reasonable use conditions - making these red VCSELs ready for commercial exploitation in a variety of consumer-type applications. Experiments using appropriate pulsed driving conditions have resulted in operation of 665nm VCSELs at a temperature of 85°C whilst still offering powers useable for eye-safe free space and POF communications.
Di Lorenzo, Arianna; Bloise, Nora; Meneghini, Silvia; Sureda, Antoni; Tenore, Gian Carlo; Visai, Livia; Arciola, Carla Renata; Daglia, Maria
2016-01-01
Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral infections and related bone (osteoarthritis, osteomyelitis, periprosthetic joint infections) and cardiovascular diseases. In this study, fifteen red wine samples derived from grapes native to the Oltrepò Pavese region (Italy), obtained from the winemaking processes of “Bonarda dell’Oltrepò Pavese” red wine, were analyzed alongside three samples obtained from marc pressing. Total polyphenol and monomeric anthocyanin contents were determined and metabolite profiling was conducted by means of a chromatographic analysis. Antibacterial activity of wine samples was evaluated against Streptococcus mutans, responsible for dental caries, Streptococcus salivarius, and Streptococcus pyogenes, two oral bacterial pathogens. Results highlighted the winemaking stages in which samples exhibit the highest content of polyphenols and the greatest antibacterial activity. Considering the global need for new weapons against bacterial infections and alternatives to conventional antibiotics, as well as the favorable bioactivities of polyphenols, results point to red wine as a source of antibacterial substances for developing new anti-infective biomaterials and coatings for biomedical devices. PMID:28773444
21 CFR 864.9400 - Stabilized enzyme solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture Blood and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme solution is a reagent intended for medical purposes that is used to enhance the reactivity of red blood...
21 CFR 864.9400 - Stabilized enzyme solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture Blood and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme solution is a reagent intended for medical purposes that is used to enhance the reactivity of red blood...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2011 CFR
2011-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.6600 - Osmotic fragility test.
Code of Federal Regulations, 2010 CFR
2010-04-01
... test. (a) Identification. An osmotic fragility test is a device used to determine the resistance of red blood cells to hemolysis (destruction) in varying concentrations of hypotonic saline solutions. (b) Classification. Class I (general controls). This device is exempt from the premarket notification procedures in...
21 CFR 864.9400 - Stabilized enzyme solution.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture Blood and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme solution is a reagent intended for medical purposes that is used to enhance the reactivity of red blood...
NASA Technical Reports Server (NTRS)
Moore, Cherice; Svetlik, Randall; Williams, Antony
2017-01-01
As spaceflight durations have increased over the last four decades, the effects of microgravity on the human body have become far better understood, as have the exercise countermeasures. Through use of a combination of aerobic and resistive exercise devices, today's astronauts and cosmonauts are able to partially counter the losses in muscle strength, aerobic fitness, and bone strength that otherwise might occur during their missions on the International Space Station (ISS). Since 2000, the ISS has employed a variety of exercise equipment used as countermeasures to these risks. Providing reliable and available exercise systems has presented significant challenges due to the unique environment. In solving these, lessons have been learned that can inform development of future systems.
Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F
2006-03-01
Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.
NASA Astrophysics Data System (ADS)
Janghouri, Mohammad; Amini, Mostafa M.
2018-02-01
Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.
Efficient Red-Emitting Platinum Complex with Long Operational Stability.
Fleetham, Tyler; Li, Guijie; Li, Jian
2015-08-05
A tetradentate cyclometalated Pt(II) complex, PtN3N-ptb, was developed as an emissive dopant for stable and efficient red phosphorescent OLEDs. Devices employing PtN3N-ptb in electrochemically stable device architectures achieved long operational lifetimes with estimated LT97, of over 600 h at luminances of 1000 cd/m(2). Such long operational lifetimes were achieved utilizing only literature reported host, transporting and blocking materials with known molecular structures. Additionally, a thorough study of the effects of various host and transport materials on the efficiency, turn on voltage, and stability of the devices was carried out. Ultimately, maximum forward viewing EQEs as high as 21.5% were achieved, demonstrating that Pt(II) complexes can act as stable and efficient dopants with operational lifetimes comparable or superior to those of the best literature-reported Ir(III) complexes.
ERIC Educational Resources Information Center
Bigelow, Cale A.; Walker, Kristina S.
2007-01-01
Putting greens are the most important golf course use area and regularly draw comments regarding their appearance and playing condition. This field laboratory exercise taught students how to properly measure putting green speed, an important functional characteristic, using a Stimpmeter device that measures golf ball roll distance (BRD).…
Mission Specialist (MS) Bluford exercises on middeck treadmill
1983-09-05
STS008-13-0361 (30 Aug.-5 Sept. 1983) --- Astronaut Guion S. Bluford, STS-8 mission specialist, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor. This frame was shot with a 35mm camera. Photo credit: NASA
Keyboard Success. Computer Flip Book. MECC Version.
ERIC Educational Resources Information Center
Fidanque, Ann; And Others
Designed for use by elementary and middle school students, this computer flip book contains the exercises for each lesson in a 30-lesson keyboarding program, a brief outline of the development of writing devices, and exercises for 25 bonus lessons. For each lesson, the flip book provides a keyboard diagram with the keys that have been introduced…
Keyboard Success! Microtype "PAWS" Version. Computer Flip Book.
ERIC Educational Resources Information Center
Fidanque, Ann; And Others
Designed for use by elementary and middle school students, this computer flip book contains the exercises for each lesson in a 30-lesson keyboarding program, a brief outline of the development of writing devices, and exercises for 25 bonus lessons. For each lesson, the flip book provides a keyboard diagram with the keys that have been introduced…
Santos, Thalita Vilaboim; Ruas, Gualberto; Sande de Souza, Luciane Aparecida Pascucci; Volpe, Marcia Souza
2012-12-01
Breathing exercises (BE), incentive spirometry and positioning are considered treatment modalities to achieve lung re-expansion. This study evaluated the influence of incentive spirometry and forward leaning on inspired tidal volumes (V(T)) and electromyographic activity of inspiratory muscles during BE. Four modalities of exercises were investigated: deep breathing, spirometry using both flow and volume-oriented devices, and volume-oriented spirometry after modified verbal instruction. Twelve healthy subjects aged 22.7 ± 2.1 years were studied. Surface electromyography activity of diaphragm, external intercostals, sternocleidomastoid and scalenes was recorded. Comparisons among the three types of exercises, without considering spirometry after modified instruction, showed that electromyographic activity and V(T) were lower during volume-oriented spirometry (p = 0.000, p = 0.054, respectively). Forward leaning resulted in a lower V(T) when compared to upright sitting (p = 0.000), but electromyographic activity was not different (p = 0.606). Inspired V(T) and electromyographic activity were higher during volume-oriented spirometry performed after modified instruction when compared with the flow-oriented device (p = 0.027, p = 0.052, respectively). In conclusion BE using volume-oriented spirometry before modified instruction resulted in a lower work of breathing as a result of a lower V(T) and was not a consequence of the device type used. Forward leaning might not be assumed by healthy subjects during situations of augmented respiratory demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hawkins, Jemma L; Oliver, Emily J; Wyatt-Williams, Jeannie; Scale, Elaine; van Woerden, Hugo C
2014-10-01
Exercise referral schemes are established within community-based health care; however, they have been criticized for failing to evidence long-term behavior change relative to usual care. As such, recent reviews have called for refinement of their delivery with a focus on embedded strategies targeting client motivation. This research letter presents findings from an initial pilot trial conducted within Wales' National Exercise Referral Scheme (NERS), examining the feasibility of using validated physical activity monitoring devices and an accompanying online platform within standard scheme delivery. 30 individuals referred to generic or cardiovascular pathways were offered the system; of these 17 agreed to participate. Common reasons for declining were clustered into lack of technology literacy or access, condition severity, or fear of costs associated with losing the device. Analysis of follow-up interviews after 4 weeks of use indicated that while participants found the monitoring devices practical and informative, only a minority (n = 4) were using the system in full. Crucially, the system element most aligned with contemporary theories of motivation (the online portal) was not used as expected. In addition, feedback from exercise referral professionals indicated that there were demands for support from clients, which might be mitigated by more effective independent system use. Recommendations for larger scale trials using similar systems include consideration of targeted patient groups, equity of access, and providing adequate technological support that is currently beyond the capacity of the NERS system. © The Author(s) 2014.
LeToquin, Ronan P; Tong, Tao; Glass, Robert C
2014-12-30
Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.
NASA Astrophysics Data System (ADS)
Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2010-11-01
The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.
Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.
Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less
Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes
Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; ...
2017-09-11
Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less
"Social Networkout": Connecting Social Features of Wearable Fitness Trackers with Physical Exercise.
Zhu, Yaguang; Dailey, Stephanie L; Kreitzberg, Daniel; Bernhardt, Jay
2017-12-01
Despite widespread understanding of the benefits of physical activity, many adults in the United States do not meet recommended exercise guidelines. Burgeoning technologies, including wearable fitness trackers (e.g., Fitbit, Apple watch), bring new opportunities to influence physical activity by encouraging users to track and share physical activity data and compete against their peers. However, research has not explored the social processes that mediate the relationship between the use of wearable fitness trackers and intention to exercise. In this study, we applied the Theory of Planned Behavior (Ajzen, 1991) to explore the effects of two communicative features of wearable fitness devices-social sharing and social competing-on individuals' intention to exercise. Drawing upon surveys from 238 wearable fitness tracker users, we found that the relationship between the two communication features (social sharing and competing) and exercise intention was mediated by attitudes, subjective norms, and perceived behavioral control. The results suggest that the ways in which exercise data are shared significantly influence the exercise intentions, and these intentions are mediated by individuals' evaluation of exercise, belief about important others' approval of exercise, and perceived control upon exercise.
Phytochromes A and B mediate red-light-induced positive phototropism in roots
NASA Technical Reports Server (NTRS)
Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.
2003-01-01
The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.
Phytochromes A and B mediate red-light-induced positive phototropism in roots.
Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P
2003-03-01
The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.
ERIC Educational Resources Information Center
Corle, Clyde G.
This guide is to assist teachers with motivational ideas for teaching elementary school mathematics. The items included are a wide variety of games (paper and pencil, verbal, and physical), jingles, contests, teaching devices, and thought provoking exercises. Suggestions for selection of mathematical games are offered. The devices are used to…
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1999-01-01
It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive exercise machine called the Interim Resistive Exercise Device (IRED). New load cells and encoders should be mounted in these devices to obtain more complete kineto-dynamic information. This report includes a description of the instrumentation that was built to perform measurements in the HEM and the IRED, along with the software that was developed to collect the measurements. It also includes examples of measurements taken in the HEM. Finally, a plan is laid out that describes how these measurements may be used to determine forces exerted by muscles for each exercise.
The Hopper: A Wearable Robotic Device Testbed for Micro-Gravity Bone-Loading Proof-of-Concept
NASA Technical Reports Server (NTRS)
Beck, C. E.; Rovekamp, R. N.; Neuhaus, P. D.
2015-01-01
Wearable robotic systems are showing increased potential for addressing crew countermeasures needs. Wearable robots offer a compactness, programmability, and eccentric loading capability not present in more conventional exercise equipment. Correspondingly, advancements in the man to machine interface has progressed, allowing for higher loads to be applied directly to the person in new and novel ways. Recently, the X1 exoskeleton, a lower extremity wearable robot originally designed for mobility assistance and rehabilitation, underwent human subject testing to assess its potential as a knee dynamometer. This was of interest to NASA physiologists because currently strength is not assessed in flight due to hardware limitations, and thus there is a poor understanding of the time course of in-flight changes to muscle strength. The study concluded that the X1 compared well with the Biodex, the "gold standard" in terrestrial dynamometry, with coefficients of variation less than 6.0%. In a following study, the X1 powered ankle was evaluated for its efficacy in exercising calf muscles. Current on-orbit countermeasures equipment does not adequately protect the calf from atrophy. The results of this study were also positive (targeted muscle activity demonstrated via comparing pre- and post-exercise magnetic resonance imaging T2 measurements), again showing the efficacy of wearable robotic devices for addressing the countermeasure needs of our astronauts. Based on these successes and lessons learned, the Grasshopper was co-developed between IHMC (Florida Institute for Human and Machine Cognition) and NASA. The Grasshopper, or the Hopper for short, is a wearable robotic device designed to address muscle and bone density loss for astronauts spending extended periods of time in micro-gravity. The Grasshopper connects to the user's torso like a hiking backpack, over the shoulders and around the waist. At the feet are footplates that strap to the user. There are two actuators, one at each "knee" joint, which are capable of high fidelity torque control. Because the Hopper uses motors instead of gravity to create the load on the user, the device is suited for use on space missions. Exercise in zero-gravity conditions is critical to maintain muscle strength and bone mass. In operation, the actuators try to fold up, or collapse, the device, putting a compressive load between the user's feet and torso. This force is similar to carrying a heavy backpack. The user then bends and extends his or her knees, replicating a weightlifting squat exercise. The applied load is precisely controlled by a computer, and can be programmed to simulate gravitation loads or any desired load prescription, such as free-weight squat exercise. It is even possible to perform eccentric exercises, or negatives, without the need for a spotter. Because the hip joints, as well as the spine and long leg bones, are in the applied load path, there is the potential to stimulate bone growth, countering the typical bone loss when astronauts return from extended duration space travel.
Work, exercise, and space flight. 3: Exercise devices and protocols
NASA Technical Reports Server (NTRS)
Thornton, William
1989-01-01
Preservation of locomotor capacity by earth equivalent, exercise in space is the crucial component of inflight exercise. At this time the treadmill appears to be the only way possible to do this. Work is underway on appropriate hardware but this and a proposed protocol to reduce exercise time must be tested. Such exercise will preserve muscle, bone Ca(++) and cardiovascular-respiratory capacity. In addition, reasonable upper body exercise can be supplied by a new force generator/measurement system-optional exercise might include a rowing machine and bicycle ergometer. A subject centered monitoring-evaluation program will allow real time adjustments as required. Absolute protection for any astronaut will not be possible and those with hypertrophied capacities such as marathoners or weight lifters will suffer significant loss. However, the program described should return the crew to earth with adequate capacity of typical activity on earth including immediate ambulation and minimal recovery time and without permanent change. An understanding of the practical mechanics and biomechanics involved is essential to a solution of the problem.
Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes
Gifford, Sean C.; Frank, Michael G.; Derganc, Jure; Gabel, Christopher; Austin, Robert H.; Yoshida, Tatsuro; Bitensky, Mark W.
2003-01-01
We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed. PMID:12524315
Red-light-emitting laser diodes operating CW at room temperature
NASA Technical Reports Server (NTRS)
Kressel, H.; Hawrylo, F. Z.
1976-01-01
Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.
21 CFR 862.1720 - Triose phosphate isomerase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...
21 CFR 862.1720 - Triose phosphate isomerase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 862.1650 - Pyruvate kinase test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...
21 CFR 862.1650 - Pyruvate kinase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...
21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-lipoprotein), malnutrition, iron deficiency anemia, red blood cell disorders, and kidney disease. (b) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in... test system is a device that consists of or measures that fraction of plasma proteins, predominantly...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-lipoprotein), malnutrition, iron deficiency anemia, red blood cell disorders, and kidney disease. (b) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in... test system is a device that consists of or measures that fraction of plasma proteins, predominantly...
21 CFR 862.1650 - Pyruvate kinase test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...
21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-lipoprotein), malnutrition, iron deficiency anemia, red blood cell disorders, and kidney disease. (b) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in... test system is a device that consists of or measures that fraction of plasma proteins, predominantly...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 862.1650 - Pyruvate kinase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...
21 CFR 862.1650 - Pyruvate kinase test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...
21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-lipoprotein), malnutrition, iron deficiency anemia, red blood cell disorders, and kidney disease. (b) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in... test system is a device that consists of or measures that fraction of plasma proteins, predominantly...
Dedova, Irina V
2016-01-01
Background Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. Objectives The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. Methods MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δt°). Since Δt° correlated with the intensity and duration of exercise, this parameter was used to characterize participants’ leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δt° in 7 healthy volunteers. Results Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δt° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8.1°C (SD 1.5°C, N=7). These Δt° values were applied as the thresholds for sending automatic notifications upon taking the personalized LWO doses by self-control training at home. While the mean time of taking LWO doses was 30.3 (SD 4.1) minutes (n=25), analysis of times required to reach the same Δt° by the same participant revealed that longer durations were due to fatigability, manifesting as reduced LWO at the later stages of training bouts. Typically, exercising in the afternoons associated with no fatigue, although longer durations of evening sessions suggested a diurnal fatigability pattern. Conclusions This pilot study demonstrated the feasibility of objective monitoring of fatigue development in real-time and online as well as retrospective fatigability quantification by the duration of training bouts to reach the same exercise dose. This simple method of leg training at home accompanied by routine fatigue monitoring might be useful for the optimization of exercise interventions in primary care and special populations. PMID:27549345
Karvinen, Kristina H; Esposito, David; Raedeke, Thomas D; Vick, Joshua; Walker, Paul R
2014-01-01
Chemotherapy for lung cancer can have a detrimental effect on white blood cell (WBC) and red blood cell (RBC) counts. Physical exercise may have a role in improving WBCs and RBCs, although few studies have examined cancer patients receiving adjuvant therapies. The purpose of this pilot trial was to examine the effects of an exercise intervention utilizing resistance bands on WBCs and RBCs in lung cancer patients receiving curative intent chemotherapy. A sample of lung cancer patients scheduled for curative intent chemotherapy was randomly assigned to the exercise intervention (EX) condition or usual care (UC) condition. The EX condition participated in a three times weekly exercise program using resistance bands for the duration of chemotherapy. A total of 14 lung cancer patients completed the trial. EX condition participants completed 79% of planned exercise sessions. The EX condition was able to maintain WBCs over the course of the intervention compared to declines in the UC condition (p = .008; d = 1.68). There were no significant differences in change scores in RBCs. Exercise with resistance bands may help attenuate declines in WBCs in lung cancer patients receiving curative intent chemotherapy. Larger trials are warranted to validate these findings. Ultimately these findings could be informative for the development of supportive care strategies for lung cancer patients receiving chemotherapy. Clinical Trials Registration #: NCT01130714.
Damirchi, Arsalan; Farjaminezhad, Manoochehr
2016-01-01
Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342
Yeh, Shu-Hui; Lai, Hsiu-Ling; Hsiao, Chiu-Yueh; Lin, Li-Wei; Chuang, Yu-Kuan; Yang, Yu-Yeng; Yang, Kuender D
2014-09-01
Moderate physical activity has been shown to promote immunity. Different moderate physical activities may have different effects on immunity. This study investigated the impacts of a 12-week regular music aerobic exercise (MAE) program on leukocyte distribution, lymphocyte subsets, and lymphocyte polarization. The study used a case-control design with pretest and posttest. Forty-seven middle-age women were recruited for this study. Three participants dropped out, 22 completed the 12-week MAE program, and the other 22 participants who had heat-intolerance or limited schedule eligibility were enrolled as the control group without the MAE exercise. Results showed that the MAE exercise for 12 weeks didn't change red blood cells or total leukocytes but increased lymphocyte counts. The women in MAE group revealed significant increases (P ≤ 0.01) of CD3CD4, CD3CD8, and CD4CD25 cells, associated with Treg polarization showing enhanced FoxP3 but not T-bet, Gata-3, or RORγT expression (P < .01). The control group without exercise revealed insignificant change of lymphocyte subsets or lymphocyte polarization. This study shows that MAE increases specific lymphocyte subsets and enhances Treg cell differentiation. It is suggested to encourage moderate physical activity of music aerobic exercise to enhance lymphocyte function of middle-aged women.
Pyridostigmine bromide does not alter thermoregulation during exercise in cold air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.E.; Sawka, M.N.; Young, A.J.
1994-12-31
This study examined the effects of acute and chronic pyridostigmine bromide (PB) administration on thermoregulatory and metabolic responses to exercise in cold air (5 C). Seven healthy men completed two 7-day trials in a double-blind, crossover experimental design: during one trial they received PB (30 mg three times daily) and during the other trial they received placebo. For each trial, subjects attempted four (3 h) exercise tests: low-intensity exercise (25% Vo2max) and moderate- intensity exercise (-50% Vo2max), on days 2 and 3 and again on days 6 and 7. Metabolic rate, body temperatures, and venous blood samples were obtained beforemore » and during exercise. Red blood cell acerylcholinesterase inhibition induced by PB increased (p < 0.05) from 34% on day I to 43% on days 3-7 Metabolic rate, body temperatures, and regional heat conductance responses were not different between trials. Plasma glucose, glycerol, free fatty acid, lactate, sodium, and potassium concentrations were not different between trials. In addition. differences were not found between acute and chronic experiments for any thermoregulatory or metabolic responses. These findings demonstrate that the PB dosage used by military personnel, as a pharmacological defense against nerve-agent poisoning. should not cause any adverse thermoregulatory or metabolic effects during moderate activity in cold climates.« less
Enhancing Field Research Methods with Mobile Survey Technology
ERIC Educational Resources Information Center
Glass, Michael R.
2015-01-01
This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…
Human Research Program Advanced Exercise Concepts (AEC) Overview
NASA Technical Reports Server (NTRS)
Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David
2015-01-01
Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise countermeasures systems. Numerous technologies have been considered and evaluated against HRP-approved functional device requirements for these extreme mission profiles, and include wearable sensors, exoskeletons, flywheel, pneumatic, and closed-loop microprocessor controlled motor driven systems. Each technology has unique advantages and disadvantages. The Advanced Exercise Concepts project oversees development of candidate next generation exercise countermeasures hardware, performs trade studies of current and state of the art exercise technologies, manages and supports candidate systems physiological evaluations with human test subjects on the ground, in flight analogs and flight. The near term goal is evaluation of candidate systems in flight, culminating in an integrated candidate next generation exercise countermeasures suite on the ISS which coalesces research findings from HRP disciplines in the areas of exercise performance for muscle, bone, cardiovascular, sensorimotor, behavioral health, and nutrition for optimal benefit to the crew.
Diagnosis and treatment of acute low back pain.
Casazza, Brian A
2012-02-15
Acute low back pain is one of the most common reasons for adults to see a family physician. Although most patients recover quickly with minimal treatment, proper evaluation is imperative to identify rare cases of serious underlying pathology. Certain red flags should prompt aggressive treatment or referral to a spine specialist, whereas others are less concerning. Serious red flags include significant trauma related to age (i.e., injury related to a fall from a height or motor vehicle crash in a young patient, or from a minor fall or heavy lifting in a patient with osteoporosis or possible osteoporosis), major or progressive motor or sensory deficit, new-onset bowel or bladder incontinence or urinary retention, loss of anal sphincter tone, saddle anesthesia, history of cancer metastatic to bone, and suspected spinal infection. Without clinical signs of serious pathology, diagnostic imaging and laboratory testing often are not required. Although there are numerous treatments for nonspecific acute low back pain, most have little evidence of benefit. Patient education and medications such as nonsteroidal anti-inflammatory drugs, acetaminophen, and muscle relaxants are beneficial. Bed rest should be avoided if possible. Exercises directed by a physical therapist, such as the McKenzie method and spine stabilization exercises, may decrease recurrent pain and need for health care services. Spinal manipulation and chiropractic techniques are no more effective than established medical treatments, and adding them to established treatments does not improve outcomes. No substantial benefit has been shown with oral steroids, acupuncture, massage, traction, lumbar supports, or regular exercise programs.
Astronauts Exercising in Space Video
NASA Technical Reports Server (NTRS)
2001-01-01
To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.
Fundamentals of microfluidics for high school students with no prior knowledge of fluid mechanics.
Tandon, Vishal; Peck, Walter
2013-01-01
Three microfluidics-based laboratory exercises were developed and implemented in a high school science classroom setting. The first exercise demonstrated ways in which flows are characterized, including viscosity, turbulence, shear stress, reversibility, compressibility, and hydrodynamic resistance. Students characterized flows in poly(dimethylsiloxane) microfluidic devices in the other two exercises, where they observed the mixing characteristics of laminar flows, and conservation of volumetric flow rate for incompressible flows. In surveys, the students self-reported increased knowledge of microfluidics, and an improved attitude toward science and nanotechnology.
33 CFR 175.130 - Visual distress signals accepted.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... One is required to meet the day only requirement. (3) Pyrotechnics meeting the standards noted in....130—Pyrotechnic Signal Devices Approval number under 46 CFR Device description Meets requirement for....066 Distress Signal for Boats, Red Aerial Pyrotechnic Flare Day and Night 2 3 1 These signals require...
Scieszka's Subversive Little Red Hen: AKA "One Annoying Chicken"
ERIC Educational Resources Information Center
Pantaleo, Sylvia
2007-01-01
During the past three years, the author has been exploring Grade 5 students' processes of reading and understanding contemporary picturebooks with Radical Change characteristics and metafictive devices, and examining how students use their knowledge of these characteristics and devices to create their own texts. "The Stinky Cheese Man and Other…
21 CFR 862.1720 - Triose phosphate isomerase test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... device is exempt from the premarket notification procedures in subpart E of part 807 subject to the...
21 CFR 862.1720 - Triose phosphate isomerase test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... device is exempt from the premarket notification procedures in subpart E of part 807 subject to the...
21 CFR 864.7675 - Leukocyte peroxidase test.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cells of the lymphatic system and erythroid cells of the red blood cell series on the basis of their... peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain... of the leukemias. (b) Classification. Class I (general controls). This device is exempt from the...
21 CFR 864.7675 - Leukocyte peroxidase test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cells of the lymphatic system and erythroid cells of the red blood cell series on the basis of their... peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain... of the leukemias. (b) Classification. Class I (general controls). This device is exempt from the...
21 CFR 864.7675 - Leukocyte peroxidase test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cells of the lymphatic system and erythroid cells of the red blood cell series on the basis of their... peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain... of the leukemias. (b) Classification. Class I (general controls). This device is exempt from the...
21 CFR 864.7675 - Leukocyte peroxidase test.
Code of Federal Regulations, 2010 CFR
2010-04-01
... cells of the lymphatic system and erythroid cells of the red blood cell series on the basis of their... peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain... of the leukemias. (b) Classification. Class I (general controls). This device is exempt from the...
21 CFR 864.7675 - Leukocyte peroxidase test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cells of the lymphatic system and erythroid cells of the red blood cell series on the basis of their... peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain... of the leukemias. (b) Classification. Class I (general controls). This device is exempt from the...
21 CFR 862.1720 - Triose phosphate isomerase test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... device is exempt from the premarket notification procedures in subpart E of part 807 subject to the...