Sample records for exercise oxygen consumption

  1. Bilateral changes in forearm oxygen consumption at rest and after exercise in patients with unilateral repetitive strain injury: a case-control study.

    PubMed

    Brunnekreef, Jaap J J; Thijssen, Dick H J; Oosterhof, Jan; Hopman, Maria T E

    2012-04-01

    Case-control study. To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper extremity overuse injury. Despite the local presentation of complaints, RSI may be represented by systemic adaptations. Insight into the pathophysiology of RSI is important to better understand the development of RSI complaints and to develop effective treatment and prevention strategies. Twenty patients with unilateral RSI and 20 gender-matched control subjects participated in this study. Forearm muscle blood flow and oxygen consumption were measured using near-infrared spectroscopy at baseline and immediately after isometric handgrip exercises at 10%, 20%, and 40% of the individual maximal voluntary contraction. Unilateral RSI resulted in a lower oxygen consumption and blood flow in the affected forearm at baseline and lower oxygen consumption after incremental handgrip exercises compared to controls (P<.05). In addition, exercise-induced blood flow and oxygen consumption in the nonaffected forearm in patients with RSI were similarly reduced. Blood flow and oxygen consumption after exercise are similarly attenuated in the affected and nonaffected arms of patients with unilateral RSI. Our findings suggest that, despite the unilateral character in clinical symptoms, RSI demonstrates systemic adaptations in forearm blood flow and oxygen consumption at rest and after exercise.

  2. Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.

    PubMed

    Benton, Melissa J; Waggener, Green T; Swan, Pamela D

    2016-03-01

    This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.

  3. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  4. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption

    PubMed Central

    SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696

  5. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.

    PubMed

    Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.

  6. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  7. Determining the Contribution of the Energy Systems During Exercise

    PubMed Central

    Artioli, Guilherme G.; Bertuzzi, Rômulo C.; Roschel, Hamilton; Mendes, Sandro H.; Lancha, Antonio H.; Franchini, Emerson

    2012-01-01

    One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study. PMID:22453254

  8. Determining the contribution of the energy systems during exercise.

    PubMed

    Artioli, Guilherme G; Bertuzzi, Rômulo C; Roschel, Hamilton; Mendes, Sandro H; Lancha, Antonio H; Franchini, Emerson

    2012-03-20

    One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A(1;) (mL . s(-1)) x t(1;) (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete's body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.

  9. Objective and subjective measures of exercise intensity during thermo-neutral and hot yoga.

    PubMed

    Boyd, Corinne N; Lannan, Stephanie M; Zuhl, Micah N; Mora-Rodriguez, Ricardo; Nelson, Rachael K

    2018-04-01

    While hot yoga has gained enormous popularity in recent years, owing in part to increased environmental challenge associated with exercise in the heat, it is not clear whether hot yoga is more vigorous than thermo-neutral yoga. Therefore, the aim of this study was to determine objective and subjective measures of exercise intensity during constant intensity yoga in a hot and thermo-neutral environment. Using a randomized, crossover design, 14 participants completed 2 identical ∼20-min yoga sessions in a hot (35.3 ± 0.8 °C; humidity: 20.5% ± 1.4%) and thermo-neutral (22.1 ± 0.2 °C; humidity: 27.8% ± 1.6%) environment. Oxygen consumption and heart rate (HR) were recorded as objective measures (percentage of maximal oxygen consumption and percentage of maximal HR (%HRmax)) and rating of perceived exertion (RPE) was recorded as a subjective measure of exercise intensity. There was no difference in exercise intensity based on percentage of maximal oxygen consumption during hot versus thermo-neutral yoga (30.9% ± 2.3% vs. 30.5% ± 1.8%, p = 0.68). However, exercise intensity was significantly higher during hot versus thermo-neutral yoga based on %HRmax (67.0% ± 2.3% vs. 60.8% ± 1.9%, p = 0.01) and RPE (12 ± 1 vs. 11 ± 1, p = 0.04). According to established exercise intensities, hot yoga was classified as light-intensity exercise based on percentage of maximal oxygen consumption but moderate-intensity exercise based on %HRmax and RPE while thermo-neutral yoga was classified as light-intensity exercise based on percentage of maximal oxygen uptake, %HRmax, and RPE. Despite the added hemodynamic stress and perception that yoga is more strenuous in a hot environment, we observed similar oxygen consumption during hot versus thermo-neutral yoga, classifying both exercise modalities as light-intensity exercise.

  10. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly.

    PubMed

    Avelar, Núbia Cp; Simão, Adriano P; Tossige-Gomes, Rosalina; Neves, Camila Dc; Mezencio, Bruno; Szmuchrowski, Leszek; Coimbra, Cândido C; Lacerda, Ana Cr

    2011-12-01

    Avelar, NCP, Simão, AP, Tossige-Gomes, R, Neves, CDC, Mezencio, B, Szmuchrowski, L, Coimbra, CC, and Lacerda, ACR. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res 25(12): 3495-3500, 2011-The aim of this study was to investigate whether vibration plus squatting would increase cardiovascular demand to the optimal exercise limits needed for the prescription of cardiovascular training. Oxygen consumption, measured breath by breath by a portable gas analysis system, and heart rate (HR), measured using an HR monitor, were evaluated in 18 elderly individuals, 15 women and 3 men with a mean age of 72 ± 6 years. These variables were measured simultaneously and at the same time points in each subject during rest and randomly during the performance of squatting exercises (8 series of 40 seconds, with 40 seconds of rest between series of performing squats in 3-second cycles with 10-60° of flexion, a total of 5 repetitions for 40 seconds) with or without vibration at a frequency of 40 Hz and amplitude of 4 mm, separated by at least 1 day. Associating whole-body vibration with squatting exercise resulted in an additional increase of around 20% in oxygen consumption and 7.5% in the HR recorded during exercise. However, during squatting exercise with vibration, the increase achieved in oxygen consumption was limited to around 2 metabolic equivalents, and mean HR represented around 56% of the predicted maximum HR for age. The results of this study show that, despite the fact that vibration increased oxygen consumption and HR during the performance of squatting exercise, the minimum standards of intensity for the prescription of physical exercise with the specific objective of improving cardiorespiratory fitness were not achieved. Therefore, a protocol such as that used in the study does not meet the threshold for cardiovascular training prescription.

  11. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    PubMed

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.

    PubMed

    Chan, Huan Hao; Burns, Stephen Francis

    2013-02-01

    This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.

  13. CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

    EPA Science Inventory

    The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...

  14. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    PubMed

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  15. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  16. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  17. Exercise capacity in young adults with hypertension and systolic blood pressure difference between right arm and leg after repair of coarctation of the aorta.

    PubMed

    Instebø, Arne; Norgård, Gunnar; Helgheim, Vegard; Røksund, Ola Drange; Segadal, Leidulf; Greve, Gottfried

    2004-10-01

    Coarctation of the aorta represents 5-7% of congenital heart defects. Symptoms and prognosis depend on the degree of stenosis, age at surgery, surgical method and the presence of other heart defects. Postoperative complications are hypertension, restenosis and an abnormal blood pressure response during exercise. This study includes 41 patients, 15-40 years old, operated in the period 1975-1996. All were exercised on a treadmill until maximal oxygen consumption was achieved. Blood pressure was measured in the right arm and leg before and immediately after exercise, and in the right arm during exercise. Oxygen consumption was monitored and we defined an aerobic phase, an isocapnic buffering phase and a hypocapnic hyperventilation phase. The resting systolic blood pressure correlates with the resting systolic blood pressure difference between right arm and leg. A resting systolic blood pressure difference between the right arm and leg of 0.13 kPa (1 mmHg) to 2.67 kPa (20 mmHg) corresponds with a slight increase in resting systolic blood pressure. This rise in blood pressure increases the aerobic phase of the exercise test, helping the patients to achieve higher maximal oxygen consumption. A resting systolic blood pressure difference of more than 2.67 kPa (20 mmHg) corresponds with severe hypertension and causes reduction in the aerobic phase and maximal oxygen consumption. Resting systolic blood pressure and resting systolic blood pressure difference between the right arm and leg are not indicators for blood pressure response during exercise. Exercise testing is important to reveal exercise-induced hypertension and to monitor changes in transition from aerobic to anaerobic exercise and limitation to exercise capacity.

  18. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.

  19. Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding

    Treesearch

    Elizabeth A. Flaherty; Merav Ben-David; Winston P. Smith

    2010-01-01

    Gliding allows mammals to exploit canopy habitats of old-growth forests possibly as a means to save energy. To assess costs of quadrupedal locomotion for a gliding arboreal mammal, we used open-flow respirometry and a variable-speed treadmill to measure oxygen consumption and to calculate cost of transport, excess exercise oxygen consumption, and excess post-exercise...

  20. Guided inquiry lab exercises in development and oxygen consumption using zebrafish.

    PubMed

    Bagatto, Brian

    2009-06-01

    Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.

  1. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.

    PubMed

    Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I

    2014-09-01

    There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.

  2. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men.

    PubMed

    Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W

    2017-09-01

    Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.

  3. Correlation of Gerkin, Queen's College, George, and Jackson methods in estimating maximal oxygen consumption.

    PubMed

    Heydari, Payam; Varmazyar, Sakineh; Variani, Ali Safari; Hashemi, Fariba; Ataei, Seyed Sajad

    2017-10-01

    Test of maximal oxygen consumption is the gold standard for measuring cardio-pulmonary fitness. This study aimed to determine correlation of Gerkin, Queen's College, George, and Jackson methods in estimating maximal oxygen consumption, and demographic factors affecting maximal oxygen consumption. This descriptive cross-sectional study was conducted in a census of medical emergency students (n=57) in Qazvin University of Medical Sciences in 2016. The subjects firstly completed the General Health Questionnaire (PAR-Q) and demographic characteristics. Then eligible subjects were assessed using exercise tests of Gerkin treadmill, Queen's College steps and non-exercise George, and Jackson. Data analysis was carried out using independent t-test, one way analysis of variance and Pearson correlation in the SPSS software. The mean age of participants was 21.69±4.99 years. The mean of maximal oxygen consumption using Gerkin, Queen's College, George, and Jackson tests was 4.17, 3.36, 3.64, 3.63 liters per minute, respectively. Pearson statistical test showed a significant correlation among fours tests. George and Jackson tests had the greatest correlation (r=0.85, p>0.001). Results of tests of one-way analysis of variance and t-test showed a significant relationship between independent variable of weight and height in four tests, and dependent variable of maximal oxygen consumption. Also, there was a significant relationship between variable of body mass index in two tests of Gerkin and Queen's College and variable of exercise hours per week with the George and Jackson tests (p>0.001). Given the obtained correlation, these tests have the potential to replace each other as necessary, so that the non-exercise Jackson test can be used instead of the Gerkin test.

  4. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.

    PubMed

    Tune, J D; Richmond, K N; Gorman, M W; Feigl, E O

    2000-06-27

    Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased approximately 3.7-fold, and coronary blood flow increased approximately 3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.

  5. Cardiorespiratory function associated with dietary nitrate supplementation

    PubMed Central

    Bond, Vernon; Curry, Bryan H.; Adams, Richard G.; Millis, Richard M.; Haddad, Georges E.

    2014-01-01

    The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg−1·min−1. The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system. PMID:24476472

  6. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. Copyright © 2015 the American Physiological Society.

  7. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes.

    PubMed

    Karstoft, Kristian; Wallis, Gareth A; Pedersen, Bente K; Solomon, Thomas P J

    2016-09-01

    For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC), substrate oxidation rates and lipid metabolism in the hours following exercise in subjects with type 2 diabetes (T2D). Following an overnight fast, ten T2D subjects (M/F: 7/3; age=60.3±2.3years; body mass index (BMI)=28.3±1.1kg/m(2)) completed three 60-min interventions in a counterbalanced, randomized order: 1) control (CON), 2) continuous walking (CW), 3) interval-walking (IW - repeated cycles of 3min of fast and 3min of slow walking). Indirect calorimetry was applied during each intervention and repeatedly for 30min per hour during the following 5h. A liquid mixed meal tolerance test (MMTT, 450kcal) was consumed by the subjects 45min after completion of the intervention with blood samples taken regularly. Exercise interventions were successfully matched for total oxygen consumption (CW=1641±133mL/min; IW=1634±126mL/min, P>0.05). EPOC was higher after IW (8.4±1.3l) compared to CW (3.7±1.4l, P<0.05). Lipid oxidation rates were increased during the MMTT in IW (1.03±0.12mg/kg per min) and CW (0.87±0.04mg/kg per min) compared with CON (0.73±0.04mg/kg per min, P<0.01 and P<0.05, respectively), with no difference between IW and CW. Moreover, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas effects on substrate oxidation and lipid metabolism are comparable. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mode of exercise and sex are not important for oxygen consumption during and in recovery from sprint interval training.

    PubMed

    Townsend, Logan K; Couture, Katie M; Hazell, Tom J

    2014-12-01

    Most sprint interval training (SIT) research involves cycling as the mode of exercise and whether running SIT elicits a similar excess postexercise oxygen consumption (EPOC) response to cycling SIT is unknown. As running is a more whole-body-natured exercise, the potential EPOC response could be greater when using a running session compared with a cycling session. The purpose of the current study was to determine the acute effects of a running versus cycling SIT session on EPOC and whether potential sex differences exist. Sixteen healthy recreationally active individuals (8 males and 8 females) had their gas exchange measured over ∼2.5 h under 3 experimental sessions: (i) a cycle SIT session, (ii) a run SIT session, and (iii) a control (CTRL; no exercise) session. Diet was controlled. During exercise, both SIT modes increased oxygen consumption (cycle: male, 1.967 ± 0.343; female, 1.739 ± 0.296 L·min(-1); run: male, 2.169 ± 0.369; female, 1.791 ± 0.481 L·min(-1)) versus CTRL (male, 0.425 ± 0.065 L·min(-1); female, 0.357 ± 0.067; P < 0.001), but not compared with each other (P = 0.234). In the first hour postexercise, oxygen consumption was still increased following both run (male, 0.590 ± 0.065; female, 0.449 ± 0.084) and cycle SIT (male, 0.556 ± 0.069; female, 0.481 ± 0.110 L·min(-1)) versus CTRL and oxygen consumption was maintained through the second hour postexercise (CTRL: male, 0.410 ± 0.048; female, 0.332 ± 0.062; cycle: male, 0.430 ± 0.047; female, 0.395 ± 0.087; run: male, 0.463 ± 0.051; female, 0.374 ± 0.087 L·min(-1)). The total EPOC was not significantly different between modes of exercise or males and females (P > 0.05). Our data demonstrate that the mode of exercise during SIT (cycling or running) is not important to O2 consumption and that males and females respond similarly.

  9. Controlled exercise effects on chromium excretion of trained and untrained runners consuming a constant diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.A.; Bryden, N.A.; Polansky, M.M.

    1986-03-05

    To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less

  10. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  11. Neither Hematocrit Normalization nor Exercise Training Restores Oxygen Consumption to Normal Levels in Hemodialysis Patients

    PubMed Central

    Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.

    2016-01-01

    Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927

  12. Effects of an Aerobic Exercise Program on Community-Based Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Pommering, Thomas L.; And Others

    1994-01-01

    Evaluation of a 10-week aerobic exercise program on 14 community-based adults with mental retardation found a 91.3% attendance rate and significant increases in maximal oxygen consumption, oxygen pulse, maximum ventilation, exercise stress test duration, and flexibility. However, no significant changes were observed in weight or body composition.…

  13. Nitrate-containing beetroot juice reduces oxygen consumption during submaximal exercise in low but not high aerobically fit male runners

    PubMed Central

    Carriker, Colin R.; Vaughan, Roger A.; VanDusseldorp, Trisha A.; Johnson, Kelly E.; Beltz, Nicholas M.; McCormick, James J.; Cole, Nathan H.; Gibson, Ann L.

    2016-01-01

    [Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max. PMID:28150476

  14. Exercise Heart Rate as a Predictor of Oxygen Consumption During Decompression from Saturation Diving

    DTIC Science & Technology

    2002-11-01

    Swimming," nt. J. Sports Med., Vol. 18, (1997), pp. 347-353 3. L. B. Rowell, Human Circulation: Regulation during Physical Stress (New York: Oxford...University Press, 1986). 4. American College of Sports Medicine; B. A. Franklin, W. H. Whaley, and E. T. Howley, eds., ACSM’s Guidelines for Exercise...function of oxygen consumption (VO 2)(L/min). Averages of regression parameters for individual subjects. IMMERSED HRvs . V0 2 Depth Slope Min Max Incpt, Min

  15. Aircraft Oxygen Generation

    DTIC Science & Technology

    2012-02-01

    a slight increase in oxygen consumption during exercise, without a decrement in capillary hemoglobin oxygen saturation compared to exercise on 85...must be provided.  HSI education and training for program managers and acquisition professionals are required.  Meaningful, quantifiable...positions were transferred to the 711th HPW at WPAFB. Only two of the analysts moved to WPAFB, creating a major shortfall in HSI education , training, and

  16. Physiologic responses to a thermogenic nutritional supplement at rest, during low-intensity exercise, and during recovery from exercise in college-aged women.

    PubMed

    Bergstrom, Haley C; Housh, Terry J; Traylor, Daniel A; Lewis, Robert W; Jenkins, Nathaniel D M; Cochrane, Kristen C; Schmidt, Richard J; Johnson, Glen O; Housh, Dona J

    2013-09-01

    This study examined acute physiologic responses to a thermogenic nutritional supplement at rest, during exercise, and during recovery from exercise in women. Twelve women (mean ± SD age, 22.9 ± 3.1 years) were recruited for this randomized, double-blinded, placebo-controlled, crossover study. Each testing session consisted of 4 phases: 30 min of presupplementation resting, followed by the ingestion of the placebo or thermogenic nutritional supplement; 50 min of postsupplementation resting; 60 min of walking (at 3.2-4.8 km·h(-1)); and 50 min of postexercise resting. Energy expenditure (EE), oxygen consumption, respiratory exchange ratio (RER), oxygen (O2) pulse, and heart rate (HR) values were recorded during all 4 phases. Systolic (SBP) and diastolic (DBP) blood pressure were recorded during the rest, postsupplementation, and postexercise recovery phases; ratings of perceived exertion (RPE) were recorded only during exercise. There were no significant differences for EE, oxygen consumption, O2 pulse, HR, SBP, or DBP between the supplement and placebo during the presupplementation resting or postsupplementation phases. The RER, however, was higher with the supplement at 30 min postsupplementation. During exercise, EE and O2 pulse were 3%-6% greater with the supplement than placebo; there were no significant differences in RPE. Postexercise, EE, oxygen consumption, and DBP were 3%-7% greater with the supplement than placebo. These findings suggest that a thermogenic nutritional supplement, when combined with exercise, increases metabolic rate but has no effect on the perception of effort and results in only minimal changes in cardiovascular function.

  17. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.

    PubMed

    Lucero, Adam A; Addae, Gifty; Lawrence, Wayne; Neway, Beemnet; Credeur, Daniel P; Faulkner, James; Rowlands, David; Stoner, Lee

    2018-01-01

    What is the central question of this study? Continuous-wave near-infrared spectroscopy, coupled with venous and arterial occlusions, offers an economical, non-invasive alternative to measuring skeletal muscle blood flow and oxygen consumption, but its reliability during exercise has not been established. What is the main finding and its importance? Continuous-wave near-infrared spectroscopy devices can reliably assess local skeletal muscle blood flow and oxygen consumption from the vastus lateralis in healthy, physically active adults. The patterns of response exhibited during exercise of varying intensity agree with other published results using similar methodologies, meriting potential applications in clinical diagnosis and therapeutic assessment. Near-infrared spectroscopy (NIRS), coupled with rapid venous and arterial occlusions, can be used for the non-invasive estimation of resting local skeletal muscle blood flow (mBF) and oxygen consumption (mV̇O2), respectively. However, the day-to-day reliability of mBF and mV̇O2 responses to stressors such as incremental dynamic exercise has not been established. The aim of this study was to determine the reliability of NIRS-derived mBF and mV̇O2 responses from incremental dynamic exercise. Measurements of mBF and mV̇O2 were collected in the vastus lateralis of 12 healthy, physically active adults [seven men and five women; 25 (SD 6) years old] during three non-consecutive visits within 10 days. After 10 min rest, participants performed 3 min of rhythmic isotonic knee extension (one extension every 4 s) at 5, 10, 15, 20, 25 and 30% of maximal voluntary contraction (MVC), before four venous occlusions and then two arterial occlusions. The mBF and mV̇O2 increased proportionally with intensity [from 0.55 to 7.68 ml min -1  (100 ml) -1 and from 0.05 to 1.86 ml O 2  min -1  (100 g) -1 , respectively] up to 25% MVC, where they began to plateau at 30% MVC. Moreover, an mBF/mV̇O2 muscle oxygen consumption ratio of ∼5 was consistent for all exercise stages. The intraclass correlation coefficient for mBF indicated high to very high reliability for 10-30% MVC (0.82-0.9). There was very high reliability for mV̇O2 across all exercise stages (intraclass correlation coefficient 0.91-0.96). In conclusion, NIRS can reliably assess muscle blood flow and oxygen consumption responses to low- to moderate-intensity exercise, meriting potential applications in clinical diagnosis and therapeutic assessment. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  18. Oxygen consumption during exercise in a heated pool.

    PubMed

    Kirby, R L; Sacamano, J T; Balch, D E; Kriellaars, D J

    1984-01-01

    The heated hydrotherapy pool is a common exercise site for patients with painful musculoskeletal conditions. Oxygen consumption of swimming is 87 to 89% of maximum in postmyocardial infarction patients according to one recent investigation. We studied 13 able-bodied subjects to test the hypothesis that enough energy could be expended during various forms of hydrotherapy to produce both an aerobic training effect and a risk to patients with coronary artery disease. Oxygen consumption (VO2) was measured in six settings: resting supine; resting seated shoulder deep in the pool (36C); walking at comfortable speed in chest-deep water; running at the fastest speed possible in chest-deep water; using hand paddles; and running in place at shoulder depth. The mean VO2 expressed in ml/kg/min (and metabolic equivalents) were 4.91 (1.00), 4.93 (1.02), 9.34 (2.01), 27.79 (6.23), 18.25 (4.30) and 29.11 (7.09) respectively, suggesting that the more vigorous exercises stress aerobic capacity heavily but not excessively.

  19. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment.

    PubMed

    Edwards, Thomas; Motl, Robert W; Pilutti, Lara A

    2018-01-01

    Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.

  20. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  1. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  2. Nitrate-Containing Beetroot Juice Reduces Oxygen Consumption During Submaximal Exercise in Low but Not High Aerobically Fit Male Runners.

    PubMed

    Carriker, Colin R; Vaughan, Roger A; VanDusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; McCormick, James J; Cole, Nathan H; Gibson, Ann L

    2016-12-31

    to examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group; double-blind, placebo-controlled, crossover. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR; final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively). No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.

  3. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  4. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.

    PubMed

    Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V

    2016-02-01

    The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Specificity of a Maximal Step Exercise Test

    ERIC Educational Resources Information Center

    Darby, Lynn A.; Marsh, Jennifer L.; Shewokis, Patricia A.; Pohlman, Roberta L.

    2007-01-01

    To adhere to the principle of "exercise specificity" exercise testing should be completed using the same physical activity that is performed during exercise training. The present study was designed to assess whether aerobic step exercisers have a greater maximal oxygen consumption (max VO sub 2) when tested using an activity specific, maximal step…

  6. Comparison of V-4 and V-5 Exercise/Oxygen Prebreathe Protocols to Support Extravehicular Activity in Microgravity

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Vann, R. D.; Gernhardt, M. L.; Conkin, Johnny

    2007-01-01

    The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO2 peak] followed by 40 min intermittent light exercise [ILE] [approx. 5.8 mL-per kilogram- per minute], then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise. Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression. The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact p=0.029). The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.

  7. Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Ishibashi, Aya; Takenaka, Saki; Tanaka, Daichi; Hirano, Yoshitaka; Hamaoka, Takafumi; Goto, Kazushige; Ebi, Kumiko; Isaka, Tadao; Hashimoto, Takeshi

    2018-02-01

    Aerobic exercise is known to acutely improve cognitive functions, such as executive function (EF) and memory function (MF). Additionally, consumption of flavanol-rich cocoa has been reported to acutely improve cognitive function. The aim of this study was to determine whether high cocoa flavanol (CF; HCF) consumption would enhance exercise-induced improvement in cognitive function. To test this hypothesis, we examined the combined effects of HCF consumption and moderate-intensity exercise on EF and MF during postexercise recovery. Ten healthy young men received either an HCF (563 mg of CF) or energy-matched low CF (LCF; 38 mg of CF) beverage 70 min before exercise in a single-blind counterbalanced manner. The men then performed moderate-intensity cycling exercise at 60% of peak oxygen uptake for 30 min. The participants performed a color-word Stroop task and face-name matching task to evaluate EF and MF, respectively, during six time periods throughout the experimental session. EF significantly improved immediately after exercise compared with before exercise in both conditions. However, EF was higher after HCF consumption than after LCF consumption during all time periods because HCF consumption improved EF before exercise. In contrast, HCF consumption and moderate-intensity exercise did not improve MF throughout the experiment. The present findings demonstrated that HCF consumption before moderate-intensity exercise could enhance exercise-induced improvement in EF, but not in MF. Therefore, we suggest that the combination of HCF consumption and aerobic exercise may be beneficial for improving EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An Exercise Protocol Designed to control Energy Expenditure and to have a Positive Impact on Maximal Oxygen Consumption for Long-Term Space Missions

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki

    2013-02-01

    Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.

  9. Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude.

    PubMed

    Caravita, Sergio; Faini, Andrea; Baratto, Claudia; Bilo, Grzegorz; Macarlupu, Josè Luis; Lang, Morin; Revera, Miriam; Lombardi, Carolina; Villafuerte, Francisco C; Agostoni, Piergiuseppe; Parati, Gianfranco

    2018-06-09

    Acute exposure to high-altitude hypobaric hypoxia induces a blood pressure rise in hypertensive humans, both at rest and during exercise. It is unclear whether this phenomenon reflects specific blood pressure hyperreactivity or rather an upward shift of blood pressure levels. We aimed at evaluating the extent and rate of blood pressure rise during exercise in hypertensive subjects acutely exposed to high altitude, and how these alterations can be counterbalanced by antihypertensive treatment. Fifty-five subjects with mild hypertension, double-blindly randomized to placebo or to a fixed-dose combination of an angiotensin-receptor blocker (telmisartan 80 mg) and a calcium-channel blocker (nifedipine slow release 30 mg), performed a cardiopulmonary exercise test at sea level and after the first night's stay at 3260 m altitude. High-altitude exposure caused both an 8 mm Hg upward shift ( P <0.01) and a 0.4 mm Hg/mL/kg per minute steepening ( P <0.05) of the systolic blood pressure/oxygen consumption relationship during exercise, independent of treatment. Telmisartan/nifedipine did not modify blood pressure reactivity to exercise (blood pressure/oxygen consumption slope), but downward shifted ( P <0.001) the relationship between systolic blood pressure and oxygen consumption by 26 mm Hg, both at sea level and at altitude. Muscle oxygen delivery was not influenced by altitude exposure but was higher on telmisartan/nifedipine than on placebo ( P <0.01). In hypertensive subjects exposed to high altitude, we observed a hypoxia-driven upward shift and steepening of the blood pressure response to exercise. The effect of the combination of telmisartan/nifedipine slow release outweighed these changes and was associated with better muscle oxygen delivery. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01830530. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Oxygen consumption of animals under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Loginova, Y. N.; Volozhin, A. I.; Krasnyku, I. G.; Stroganova, Y. A.

    1980-01-01

    The influence of hypokinesia on the oxygen consumption of rats, dog, and squirrels was investigated. Three periods of gaseous exchange were revealed in rats under conditions of a limited motor activity. During the first 10-15 days O2 consumption displayed a sharp elevation; on the 20th-30th day, it became stabilized at a higher level (in comparison with control) and it sharply rose again on the 40th-100th day. In dogs, hypokinesia produced a reduction of O2 consumption and then a tendency to its elevation was seen. A short period of physical exercises in squirrels after hypokinesia led to increased oxygen consumption at rest.

  11. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  12. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  13. Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia

    PubMed Central

    Castro, R R T; Porphirio, G; Serra, S M; Nóbrega, A C L

    2004-01-01

    Objective: To determine the acute effects of pyridostigmine bromide, a reversible cholinesterase inhibitor, during exercise in patients with coronary artery disease. Design: Double blind, randomised, placebo controlled, crossover study. Setting: Outpatients evaluated in an exercise test laboratory. Patients: 15 patients with exercise induced myocardial ischaemia. Interventions: Maximal cardiopulmonary exercise test on a treadmill according to an individualised ramp protocol on three days. The first day was used for adaptation to the equipment and to determine exercise tolerance and the presence of exercise induced ischaemia. On the other two days, the cardiopulmonary exercise test was performed two hours after oral administration of pyridostigmine (45 mg) or placebo. All patients were taking their usual medication during the experiments. Main outcome measures: Rate–pressure product and oxygen uptake during exercise. Results: Pyridostigmine inhibited the submaximum chronotropic response (p  =  0.001), delaying the onset of myocardial ischaemia, which occurred at a similar rate–pressure product (mean (SE) placebo 20.55 (1.08) mm Hg × beats/min 103; pyridostigmine 19.75 (1.28) mm Hg × beats/min 103; p  =  0.27) but at a higher exercise intensity (oxygen consumption: placebo 18.6 (1.7) ml/kg/min; pyridostigmine 19.6 (1.8) ml/kg/min; p  =  0.03). Also, pyridostigmine increased peak oxygen consumption (placebo 23.6 (2) ml/kg/min; pyridostigmine 24.8 (2) ml/kg/min; p  =  0.01) and peak oxygen pulse (placebo 12.9 (1) ml/beat; pyridostigmine 13.6 (1) ml/beat; p  =  0.02). Conclusions: Pyridostigmine improved peak exercise tolerance and inhibited the chronotropic response to submaximum exercise, increasing the intensity at which myocardial ischaemia occurred. These results suggest that pyridostigmine can protect against exercise induced myocardial ischaemia. PMID:15367503

  14. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  15. Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.; Sawin, C. F.

    1975-01-01

    The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.

  16. Cardiorespiratory response to exercise testing in individuals with Alzheimer's disease.

    PubMed

    Billinger, Sandra A; Vidoni, Eric D; Honea, Robyn A; Burns, Jeffrey M

    2011-12-01

    To examine exercise testing response in Alzheimer's disease (AD) and possible disease-related change over time. Retrospective assessment of a 2-year observational study. University medical center. Individuals without dementia (n=50) and with AD (n=31). Not applicable. Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a 2-year follow-up. We examined oxygen consumption, minute ventilation, heart rate, and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine whether the measures were different between groups or over time. Participants with AD and those without dementia performed similarly at submaximal effort, and both groups showed similar changes in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (P≤.02) and minute ventilation at peak effort at baseline (P=.003). Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Validation of a dual-cycle ergometer for exercise during 100 percent oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Wiegman, Janet F.; Ohlhausen, John H.; Webb, James T.; Pilmanis, Andrew A.

    1992-01-01

    A study has been designed to determine if exercise, while prebreathing 100 percent oxygen prior to decompression, can reduce the current resting-prebreathe time requirements for extravehicular activity and high altitude reconnaissance flight. For that study, a suitable exercise mode was required. Design considerations included space limitations, cost, pressure suit compatibility, ease and maintenance of calibration, accuracy of work output, and assurance that no significant mechanical advantage or disadvantage would be introduced into the system. In addition, the exercise device must enhance denitrogenation by incorporation of both upper and lower body musculature at high levels of oxygen consumption. The purpose of this paper is to describe the specially constructed, dual-cycle ergometer developed for simultaneous arm and leg exercise during prebreathing, and to compare maximal oxygen uptake obtained on the device to that obtained during leg-only cycle ergometry and treadmill testing. Results demonstrate the suitability of the dual-cycle ergometer as an appropriate tool for exercise research during 100 percent oxygen prebreathing.

  18. Body cooling in human males by cold-water immersion after vigorous exercise.

    PubMed

    McDonald, A; Goode, R C; Livingstone, S D; Duffin, J

    1984-03-01

    Five male subjects were immersed to neck level in a whole-body water calorimeter (water temperature 19 degrees C) on two occasions. One immersion was preceded by 30 min of exercise on a treadmill at 80% of the subjects' maximum heart rate, while the other was preceded by no exercise (control). Ventilation, oxygen consumption, hand-grip strength, and heat loss (measured by calorimetry) results showed no significant differences between resting and exercise trials. Minute ventilation and oxygen consumption increased during the immersion but the magnitude of the increase varied among subjects. There was a significant decrease is isometric hand-grip strength after 30 min of immersion. Rectal temperatures fell faster (0.031 degree C +/- 0.004 degree C/min) for exercised subjects than for controls (0.019 degree C +/- 0.005 degree C/min) between 10 and 45 min of immersion (P less than 0.01). It appears that vigorous preimmersion exercise may shorten survival time in cold water due to an increase in cooling rate.

  19. Cooling System to Treat Exercise-Induced Hyperthermia

    DTIC Science & Technology

    2016-06-01

    temperatures . Additionally, individual variations in sweat rates, ventilation rates, fitness levels, and oxygen consumption were not...gastrointestinal MHR maximum heart rate NASA National Aeronautics and Space Administration Tc core temperature UCHS uncompensated heat stress VO2peak peak oxygen consumption ...the effectiveness of a cooling pump based patient thermal management system supplied by Aspen Systems on lowering core body temperature

  20. Cardiorespiratory response to exercise testing in individuals with Alzheimer’s disease

    PubMed Central

    Billinger, Sandra A.; Vidoni, Eric D.; Honea, Robyn A.; Burns, Jeffrey M.

    2011-01-01

    Objective To exercise testing in AD and possible disease-related change over time. Though physical activity and fitness are receiving increased attention as a possible adjunct treatment for Alzheimer’s disease (AD), relatively little work has been done characterizing their physiologic response to exercise Design Retrospective assessment of a 2-year, observational study Setting University medical center Participants 50 nondemented individuals and 31 with AD Interventions None Main Outcome Measures Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a two year follow-up. We examined oxygen consumption, minute ventilation, heart rate and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine if the measures were different between groups or over time. Results AD and nondemented participants performed similarly at submaximal effort and both groups showed similar change in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (p≤0.02) and minute ventilation at peak effort at baseline (p=0.003). Conclusions Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. PMID:22133248

  1. Changes in oxygen consumption of human muscle and tendon following repeat muscle contractions.

    PubMed

    Kubo, Keitaro; Ikebukuro, Toshihiro; Tsunoda, Naoya; Kanehisa, Hiroaki

    2008-11-01

    The purpose of this study was to investigate changes in the oxygen consumption (VO(2)) of muscle and tendon following repeat muscle contractions. During endurance tests (50 repetitions at 70% of the maximum voluntary contraction with 5-s contractions and 5-s rest) and the recovery period (0-10 min), we measured the blood volume and oxygen saturation (StO(2)) of the medial gastrocnemius muscle and Achilles tendon using near infrared spectroscopy and red laser light. Nine male subjects performed the endurance tests three times on separate days (tests-1, 2, and 3). Before and after (test-1: immediately after, test-2: at the 5-min recovery point, test-3: at the 10-min recovery point) the endurance tests, the rate of StO(2) during 8-min period of arterial occlusion was measured to estimate the VO(2) of muscle and tendon. In test-3, after the end of exercise, the THb and StO(2) of the Achilles tendon increased gradually, and these values were higher than the pre-exercise levels until the end of the recovery period. The VO(2) of tendon as well as muscle increased significantly after the repeat muscle contractions. Furthermore, the VO(2) of tendon returned to the pre-exercise level at the 10-min point of recovery, although that of muscle was significantly higher compared to the pre-exercise level until the end of the recovery period. These results indicate that the difference between oxygen supply and consumption within tendon was greater after compared to before exercise.

  2. Air-breathing during activity in the fishes amia calva and lepisosteus oculatus

    PubMed

    Farmer; d

    1998-04-01

    Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva).

  3. Estimation of oxygen consumption during cycling and rowing.

    PubMed

    Baig, Dur-e-Zehra; Savkin, Andrey V; Celler, Branko G

    2012-01-01

    The aim of this paper is to develop estimator that can predict oxygen consumption (V(O2)) during cycling and rowing exercises, by using non-invasive and easily measurable quantities such as heart rate (HR), respiratory rate (RespR) and frequency of exercising activity. The frequency of exercise is quantified as a universal measure of exercise intensity and is known as Exercise Rate (ER). This ER is responsible for deviation in V(O2) (ΔV(O2)), HR (ΔHR), and RespR (ΔRespR) from their respective baseline measurements during exercise. Therefore, ΔV(O2) can be estimated from Δ, ΔRespR and ER. The resting measured of V(O2) is referred as V(O(2rest)); this is computed from the physical fitness of an individual. The Hammerstein model is adopted for the estimation of ΔV(O2). Results in this study demonstrate that the developed estimators for each type of exercise are capable of estimating V(O2) by adding up V(O(2rest)) and ΔV(O2) at various intensities during cycling and rowing.

  4. VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise

    ERIC Educational Resources Information Center

    Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.

    2011-01-01

    We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…

  5. Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; Fellingham, Gilbert W.

    2006-01-01

    The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…

  6. Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise.

    PubMed

    Bonjour, Julien; Bringard, Aurélien; Antonutto, Guglielmo; Capelli, Carlo; Linnarsson, Dag; Pendergast, David R; Ferretti, Guido

    2011-12-01

    The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.

  7. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  8. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling.

    PubMed

    Patel, Rishikesh Kankesh; Brouner, James; Spendiff, Owen

    2015-01-01

    Dark chocolate (DC) is abundant in flavanols which have been reported to increase the bioavailability and bioactivity of nitric oxide (NO). Increasing NO bioavailability has often demonstrated reduced oxygen cost and performance enhancement during submaximal exercise. Nine moderately-trained male participants volunteered to undertake baseline (BL) measurements that comprised a cycle V̇O(2max) test followed by cycling at 80% of their established gas exchange threshold (GET) for 20-min and then immediately followed by a two-minute time-trial (TT). Using a randomised crossover design participants performed two further trials, two weeks apart, with either 40 g of DC or white chocolate (WC) being consumed daily. Oxygen consumption, RER, heart rate and blood lactate (BLa) were measured during each trial. DC consumption increased GET and TT performance compared to both BL and WC (P < 0.05). DC consumption increased V̇O(2max) by 6% compared to BL (P < 0.05), but did not reach statistical significance compared to WC. There were no differences in the moderate-intensity cycling for V̇O₂, RER, BLa and heart rate between conditions, although, V̇O₂ and RER exhibited consistently lower trends following DC consumption compared to BL and WC, these did not reach statistical significance. Chronic supplementation with DC resulted in a higher GET and enhanced TT performance. Consequently, ingestion of DC reduced the oxygen cost of moderate intensity exercise and may be an effective ergogenic aid for short-duration moderate intensity exercise.

  9. Comparison of energy expenditure on a treadmill vs. an elliptical device at a self-selected exercise intensity.

    PubMed

    Brown, Gregory A; Cook, Chad M; Krueger, Ryan D; Heelan, Kate A

    2010-06-01

    Treadmills (TM) and elliptical devices (EL) are popular forms of exercise equipment. The differences in the training stimulus presented by TM or EL are unknown. The purpose of this investigation was to evaluate oxygen consumption, energy expenditure, and heart rate on a TM or EL when persons exercise at the same perceived level of exertion. After measuring peak oxygen uptake (VO2peak) in 9 male and 9 female untrained college-aged participants, the subjects performed 2 separate 15-minute submaximal exercise tests on the TM and EL at a rating of perceived exertion (RPE) of 12-13. VO2peak was higher (p<0.05) in the males (48.6+/-1.5 vs. 45.2+/-1.6 ml/kg/min) than the females (41.7+/-1.8 vs. 38.8+/-2.2 ml/kg/min) for both TM and EL (means+/-standard error of the mean; for TM vs. EL respectively), but there were no differences in the measured VO2peak between TM or EL. During submaximal exercise there were no differences in RPE between TM and EL. Total oxygen consumption was higher (p<0.05) in males (30.8+/-2.2 vs. 34.9+/-2.2 L) than females (24.1+/-1.8 vs. 26.9+/-1.7 L) but did not differ between TM and EL. Energy expenditure was not different between TM (569+/-110 J) or EL (636+/-120 kJ). Heart rate was higher (p<0.05) on the EL (164+/-16 beats/min) compared to the TM (145+/-15 beats/min). When subjects exercise at the same RPE on TM or EL, oxygen consumption and energy expenditure are similar in spite of a higher heart rate on the EL. These data indicate that during cross training or noncompetition-specific exercise, an elliptical device is an acceptable alternative to a treadmill.

  10. Oxygen Consumption in the First Stages of Strenuous Work as a Function of Prior Exercise.

    ERIC Educational Resources Information Center

    Gutin, Bernard; And Others

    This study examined the extent to which 10 minutes of prior exercise (PE) at a workload adjusted to maintain a heart rate (HR) of 140 beats per minute could facilitate the mobilization of the oxygen transport system in a strenuous criterion task (CT). The control treatment involved completion of the CT following 10 minutes of rest on the…

  11. Poor glycaemic control is associated with reduced exercise performance and oxygen economy during cardio-pulmonary exercise testing in people with type 1 diabetes.

    PubMed

    Moser, Othmar; Eckstein, Max L; McCarthy, Olivia; Deere, Rachel; Bain, Stephen C; Haahr, Hanne L; Zijlstra, Eric; Bracken, Richard M

    2017-01-01

    To explore the impact of glycaemic control (HbA 1c ) on functional capacity during cardio-pulmonary exercise testing in people with type 1 diabetes. Sixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA 1c : 7.8 ± 1% (62 ± 13 mmol/mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional exhaustion. Stepwise linear regression was used to explore relationships between HbA 1c and cardio-respiratory data with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA 1c levels and cardio-respiratory data were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder. HbA 1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-maximal threshold of the heart rate turn point (r = 0.47, R 2  = 0.22, p = 0.03). Significant differences were found at time to exhaustion between Q I vs. Q IV and at oxygen consumption at the power output elicited at the heart rate turn point between Q I vs. Q II and Q I vs. Q IV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consumption at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the variance in time to exhaustion ( r  = 0.74, R 2  = 0.55, p < 0.01). Poor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same potential to counteract the influence of poor glycaemic control on functional capacity. Trial registration NCT01704417. Date of registration: October 11, 2012.

  12. Respiratory weight losses during exercise.

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Nadel, E. R.; Stolwijk, J. A. J.

    1972-01-01

    Evaporative water loss from the respiratory tract was determined over a wide range of exercise. The absolute humidity of the expired air was the same at all levels of exercise and equal to that measured at rest. The rate of respiratory water loss during exercise was found to be 0.019 of the oxygen uptake times (44 minus water vapor pressure). The rate of weight loss during exercise due to CO2-O2 exchange was calculated. For exercise at oxygen consumption rates exceeding 1.5 L/min in a dry environment with a water vapor pressure of 10 mm Hg, the total rate of weight loss via the respiratory tract is on the order of 2-5 g/min.

  13. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    PubMed

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  14. Training effects on ROS production determined by electron paramagnetic resonance in master swimmers.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra

    2015-01-01

    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min(-1)) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg(-1)·min(-1) PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (-20%) and after IE (-25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function.

  15. [Age-related dynamics of the maximum oxygen consumption associated with different regimens of locomotor activity].

    PubMed

    Miakotnykh, V V; Khodasevich, L S; Ermakov, B A

    2011-01-01

    This study included a total of 234 practically healthy men at the age from 40 to 69 years differing in the regimen of daily locomotor activity. They were divided into 4 groups, each comprised of subjects ranged by age with a ten-year interval. Group 1 included former high-level athletes continuing active physical training, group 2 was comprised of former high-level athletes living a sedentary life style, group 3 consisted of subjects regularly engaged in health-giving physical exercises, and group 4 included subjects who were never engaged in physical exercises. The energy consumption by the members of all four groups was estimated when they were undergoing a stepwise increasing workload on the veloergometer measured with the help of a computerized diagnostic system. The results of the study indicate that the high oxygen consumption at a limiting load in the former high-level athletes is associated with the significant economization of basal metabolism and the reduction of oxygen consumption at rest. This mechanism accounts for the possibility to retain adequate physical activity of the organism up to the age of 70 years.

  16. Effects of Different Exercise Intensities with Isoenergetic Expenditures on C-Reactive Protein and Blood Lipid Levels

    ERIC Educational Resources Information Center

    Tsao, Te Hung; Yang, Chang Bin; Hsu, Chin Hsing

    2012-01-01

    We investigated the effects of different exercise intensities on C-reactive protein (CRP), and whether changes in CRP levels correlated with blood lipid levels. Ten men exercised at 25%, 65%, and 85% of their maximum oxygen consumption rates. Participants' blood was analyzed for CRP and blood lipid levels before and after the exercise sessions.…

  17. Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart.

    PubMed

    Heinonen, Ilkka; Kudomi, Nobuyuki; Kemppainen, Jukka; Kiviniemi, Antti; Noponen, Tommi; Luotolahti, Matti; Luoto, Pauliina; Oikonen, Vesa; Sipilä, Hannu T; Kopra, Jaakko; Mononen, Ilkka; Duncker, Dirk J; Knuuti, Juhani; Kalliokoski, Kari K

    2014-07-01

    Highly endurance-trained athlete's heart represents the most extreme form of cardiac adaptation to physical stress, but its circulatory alterations remain obscure. In the present study, myocardial blood flow (MBF), blood mean transit time (MTT), oxygen extraction fraction (OEF) and consumption (MVO2), and efficiency of cardiac work were quantified in highly trained male endurance athletes and control subjects at rest and during supine cycling exercise using [(15)O]-labeled radiotracers and positron emission tomography. Heart rate and MBF were lower in athletes both at rest and during exercise. OEF increased in response to exercise in both groups, but was higher in athletes (70 ± 21 vs. 63 ± 11 % at rest and 86 ± 13 vs. 73 ± 10 % during exercise). MTT was longer and vascular resistance higher in athletes both at rest and during exercise, but arterial content of 2,3-diphosphoglycerate (oxygen affinity) was unchanged. MVO2 per gram of myocardium trended (p = 0.08) lower in athletes both at rest and during exercise, while myocardial efficiency of work and MVO2 per beat were not different between groups. Arterial levels of free fatty acids were ~twofold higher in athletes likely leading to higher myocardial fatty acid oxidation and hence oxygen cost, which may have blunted the bradycardia-induced decrease in MVO2. Finally, the observed group differences in MBF, OEF, MTT and vascular resistance remained significant also after they were controlled for differences in MVO2. In conclusion, in highly endurance-trained human heart, increased myocardial blood transition time enables higher oxygen extraction levels with a lower myocardial blood flow and higher vascular resistance. These physiological adaptations to exercise training occur independently of the level of oxygen consumption and together with training-induced bradycardia may serve as mechanisms to increase functional reserve of the human heart.

  18. Effect of Moderate-Intensity Exercise Training on Peak Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy: A Randomized Clinical Trial.

    PubMed

    Saberi, Sara; Wheeler, Matthew; Bragg-Gresham, Jennifer; Hornsby, Whitney; Agarwal, Prachi P; Attili, Anil; Concannon, Maryann; Dries, Annika M; Shmargad, Yael; Salisbury, Heidi; Kumar, Suwen; Herrera, Jonathan J; Myers, Jonathan; Helms, Adam S; Ashley, Euan A; Day, Sharlene M

    2017-04-04

    Formulating exercise recommendations for patients with hypertrophic cardiomyopathy is challenging because of concern about triggering ventricular arrhythmias and because a clinical benefit has not been previously established in this population. To determine whether moderate-intensity exercise training improves exercise capacity in adults with hypertrophic cardiomyopathy. A randomized clinical trial involving 136 patients with hypertrophic cardiomyopathy was conducted between April 2010 and October 2015 at 2 academic medical centers in the United States (University of Michigan Health System and Stanford University Medical Center). Date of last follow-up was November 2016. Participants were randomly assigned to 16 weeks of moderate-intensity exercise training (n = 67) or usual activity (n = 69). The primary outcome measure was change in peak oxygen consumption from baseline to 16 weeks. Among the 136 randomized participants (mean age, 50.4 [SD, 13.3] years; 42% women), 113 (83%) completed the study. At 16 weeks, the change in mean peak oxygen consumption was +1.35 (95% CI, 0.50 to 2.21) mL/kg/min among participants in the exercise training group and +0.08 (95% CI, -0.62 to 0.79) mL/kg/min among participants in the usual-activity group (between-group difference, 1.27 [95% CI, 0.17 to 2.37]; P = .02). There were no occurrences of sustained ventricular arrhythmia, sudden cardiac arrest, appropriate defibrillator shock, or death in either group. In this preliminary study involving patients with hypertrophic cardiomyopathy, moderate-intensity exercise compared with usual activity resulted in a statistically significant but small increase in exercise capacity at 16 weeks. Further research is needed to understand the clinical importance of this finding in patients with hypertrophic cardiomyopathy, as well as the long-term safety of exercise at moderate and higher levels of intensity. clinicaltrials.gov Identifier: NCT01127061.

  19. Oxygen consumption, heart rate and oxygen pulse associated with selected exercise-to-muscle class elements.

    PubMed Central

    Abernethy, P; Batman, P

    1994-01-01

    The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493

  20. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle.

    PubMed

    Whitfield, J; Ludzki, A; Heigenhauser, G J F; Senden, J M G; Verdijk, L B; van Loon, L J C; Spriet, L L; Holloway, G P

    2016-01-15

    Oral consumption of nitrate (NO3(-)) in beetroot juice has been shown to decrease the oxygen cost of submaximal exercise; however, the mechanism of action remains unresolved. We supplemented recreationally active males with beetroot juice to determine if this altered mitochondrial bioenergetics. Despite reduced submaximal exercise oxygen consumption, measures of mitochondrial coupling and respiratory efficiency were not altered in muscle. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased in the absence of markers of lipid or protein oxidative damage. These results suggest that improvements in mitochondrial oxidative metabolism are not the cause of beetroot juice-mediated improvements in whole body oxygen consumption. Ingestion of sodium nitrate (NO3(-)) simultaneously reduces whole body oxygen consumption (V̇O2) during submaximal exercise while improving mitochondrial efficiency, suggesting a causal link. Consumption of beetroot juice (BRJ) elicits similar decreases in V̇O2 but potential effects on the mitochondria remain unknown. Therefore we examined the effects of 7-day supplementation with BRJ (280 ml day(-1), ∼26 mmol NO3(-)) in young active males (n = 10) who had muscle biopsies taken before and after supplementation for assessments of mitochondrial bioenergetics. Subjects performed 20 min of cycling (10 min at 50% and 70% V̇O2 peak) 48 h before 'Pre' (baseline) and 'Post' (day 5 of supplementation) biopsies. Whole body V̇O2 decreased (P < 0.05) by ∼3% at 70% V̇O2 peak following supplementation. Mitochondrial respiration in permeabilized muscle fibres showed no change in leak respiration, the content of proteins associated with uncoupling (UCP3, ANT1, ANT2), maximal substrate-supported respiration, or ADP sensitivity (apparent Km). In addition, isolated subsarcolemmal and intermyofibrillar mitochondria showed unaltered assessments of mitochondrial efficiency, including ADP consumed/oxygen consumed (P/O ratio), respiratory control ratios and membrane potential determined fluorometrically using Safranine-O. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased following BRJ. Therefore, in contrast to sodium nitrate, BRJ supplementation does not alter key parameters of mitochondrial efficiency. This occurred despite a decrease in exercise V̇O2, suggesting that the ergogenic effects of BRJ ingestion are not due to a change in mitochondrial coupling or efficiency. It remains to be determined if increased mitochondrial H2O2 contributes to this response. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Effects of N2O narcosis on the contraction and repayment of an oxygen debt

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Hall, P.; Fitch, J. W.; Loader, J. E.

    1974-01-01

    The oxygen deficit, oxygen debt, and the difference between them were measured in five male and three female subjects during and after exercise while breathing either air or a normoxic mixture containing 33% N2O and nitrogen. With the exception of a higher respiratory quotient at rest in N2O, there were no statistically significant differences for oxygen consumption, carbon dioxide production, expired gas volume, heart rate or blood lactate while breathing N2O during rest, exercise, or recovery. An appreciably, but not statistically, greater mean oxygen deficit was found in N2O along with a significantly greater mean oxygen debt; deficit-debt difference was unaffected by N2O. It was speculated that N2O narcosis did not affect the ability to utilize oxygen but that the response to the greater oxygen need of exercise may have been slowed with perhaps a concomitant greater depletion of stored high energy compounds.

  2. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  3. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  4. Drug abusers have impaired cerebral oxygenation and cognition during exercise

    PubMed Central

    Soares Rachetti, Vanessa; Quirino Alves da Silva, Weslley; Aranha Rego Cabral, Daniel; Gomes da Silva Machado, Daniel; Caldas Costa, Eduardo; Forti, Rodrigo Menezes; Mesquita, Rickson Coelho; Elsangedy, Hassan Mohamed; Hideki Okano, Alexandre; Bodnariuc Fontes, Eduardo

    2017-01-01

    Background Individuals with Substance Use Disorder (SUD) have lower baseline metabolic activity of the prefrontal cortex (PFC) associated with impairment of cognitive functions in decision-making and inhibitory control. Aerobic exercise has shown to improve PFC function and cognitive performance, however, its effects on SUD individuals remain unclear. Purpose To verify the cognitive performance and oxygenation of the PFC during an incremental exercise in SUD individuals. Methods Fourteen individuals under SUD treatment performed a maximum graded exercise test on a cycle ergometer with continuous measurements of oxygen consumption, PFC oxygenation, and inhibitory control (Stroop test) every two minutes of exercise at different intensities. Fifteen non-SUD individuals performed the same protocol and were used as control group. Results Exercise increased oxyhemoglobin (O2Hb) and total hemoglobin (tHb) by 9% and 7%, respectively. However, when compared to a non-SUD group, this increase was lower at high intensities (p<0.001), and the inhibitory cognitive control was lower at rest and during exercise (p<0.007). In addition, PFC hemodynamics during exercise was inversely correlated with inhibitory cognitive performance (reaction time) (r = -0.62, p = 0.001), and a lower craving perception for the specific abused substance (p = 0.0189) was reported immediately after exercise. Conclusion Despite SUD individuals having their PFC cerebral oxygenation increased during exercise, they presented lower cognition and oxygenation when compared to controls, especially at elevated intensities. These results may reinforce the role of exercise as an adjuvant treatment to improve PFC function and cognitive control in individuals with SUD. PMID:29125875

  5. Fat-free mass and excess post-exercise oxygen consumption in the 40 minutes after short-duration exhaustive exercise in young male Japanese athletes.

    PubMed

    Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas

    2008-05-01

    The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.

  6. Additive Effects of Intermittent Hypobaric Hypoxia and Endurance Training on Bodyweight, Food Intake, and Oxygen Consumption in Rats.

    PubMed

    Cabrera-Aguilera, Ignacio; Rizo-Roca, David; Marques, Elisa A; Santocildes, Garoa; Pagès, Teresa; Viscor, Gines; Ascensão, António A; Magalhães, José; Torrella, Joan Ramon

    2018-06-29

    Cabrera-Aguilera, Ignacio, David Rizo-Roca, Elisa A. Marques, Garoa Santocildes, Teresa Pagès, Gines Viscor, António A. Ascensão, José Magalhães, and Joan Ramon Torrella. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats. High Alt Med Biol 00:000-000, 2018.-We used an animal model to elucidate the effects of an intermittent hypobaric hypoxia (IHH) and endurance exercise training (EET) protocol on bodyweight (BW), food and water intake, and oxygen consumption. Twenty-eight young adult male rats were divided into four groups: normoxic sedentary (NS), normoxic exercised (NE), hypoxic sedentary (HS), and hypoxic exercised (HE). Normoxic groups were maintained at an atmospheric pressure equivalent to sea level, whereas the IHH protocol consisted of 5 hours per day for 33 days at a simulated altitude of 6000 m. Exercised groups ran in normobaric conditions on a treadmill for 1 hour/day for 5 weeks at a speed of 25 m/min. At the end of the protocol, both hypoxic groups showed significant decreases in BW from the ninth day of exposure, reaching final 10% (HS) to 14.5% (HE) differences when compared with NS. NE rats also showed a significant weight reduction after the 19th day, with a decrease of 7.4%. The BW of hypoxic animals was related to significant hypophagia elicited by IHH exposure (from 8% to 12%). In contrast, EET had no effect on food ingestion. Total water intake was not affected by hypoxia but was significantly increased by exercise. An analysis of oxygen consumption at rest (mL O 2 /[kg·min]) revealed two findings: a significant decrease in both hypoxic groups after the protocol (HS, 21.7 ± 0.70 vs. 19.1 ± 0.78 and HE, 22.8 ± 0.80 vs. 17.1 ± 0.90) and a significant difference at the end of the protocol between NE (21.3 ± 0.77) and HE (17.1 ± 0.90). These results demonstrate that IHH and EET had an additive effect on BW loss, providing evidence that rats underwent a metabolic adaptation through a reduction in oxygen consumption measured under normoxic conditions. These data suggest that the combination of IHH and EET could serve as an alternative treatment for the management of overweight and obesity.

  7. Clinical correlation between the 6-min walk test andcardiopulmonary exercise testing in patients with pulmonary arterial hypertension.

    PubMed

    Acar, Serap; Savcı, Sema; Kardibak, Didem; Özcan Kahraman, Buse; Akdeniz, Bahri; Özpelit, Ebru; Sevinç, Can

    2016-12-20

    The aims of the present study were to assess the relationship between the distance walked during the 6-min walk test (6MWT) and exercise capacity as determined by cardiopulmonary exercise testing (CPET) in patients with pulmonary arterial hypertension (PAH) and to investigate the prognostic value of the 6MWT in comparison to clinical parameters of CPET and echocardiography findings. Thirty PAH patients participated in the study. Subject characteristics and New York Heart Association (NYHA) classifications were recorded. All subjects completed the 6MWT and CPET. Relationships among the variables were analyzed by the Pearson correlation test. Correlation coefficients between 6MWT distance and other variables were determined by linear regression analysis. Distance walked in the 6MWT was significantly correlated with the following exercise parameters: peak oxygen consumption, work load, and metabolic equivalents. Additionally, cardiac index was correlated with peak oxygen consumption and metabolic equivalents. We also showed that cardiac index and age were two significant determinants for exercise performance, accounting for 35.4% of the variance in the 6MWT. The 6MWT provides information that may be a better index for the patient's NYHA functional class determination than maximal exercise testing.

  8. Heat Production During Countermeasure Exercises Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rapley, Michael G.; Lee, Stuart M. C.; Guilliams, Mark E.; Greenisen, Michael C.; Schneider, Suzanne M.

    2004-01-01

    This investigation's purpose was to determine the amount of heat produced when performing aerobic and resistance exercises planned as part of the exercise countermeasures prescription for the ISS. These data will be used to determine thermal control requirements of the Node 1 and other modules where exercise hardware might reside. To determine heat production during resistive exercise, 6 subjects using the iRED performed 5 resistance exercises which form the core exercises of the current ISS resistive exercise countermeasures. Each exerciser performed a warm-up set at 50% effort, then 3 sets of increasing resistance. We measured oxygen consumption and work during each exercise. Heat loss was calculated as the difference between the gross energy expenditure (minus resting metabolism) and the work performed. To determine heat production during aerobic exercise, 14 subjects performed an interval, cycle exercise protocol and 7 subjects performed a continuous, treadmill protocol. Each 30-min. exercise is similar to exercises planned for ISS. Oxygen consumption monitored continuously during the exercises was used to calculate the gross energy expenditure. For cycle exercise, work performed was calculated based on the ergometer's resistance setting and pedaling frequency. For treadmill, total work was estimated by assuming 25% work efficiency and subtracting the calculated heat production and resting metabolic rate from the gross energy expenditure. This heat production needs to be considered when determining the location of exercise hardware on ISS and designing environmental control systems. These values reflect only the human subject s produced heat; heat produced by the exercise hardware also will contribute to the heat load.

  9. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  10. Effect of water-based recovery on blood lactate removal after high-intensity exercise.

    PubMed

    Lucertini, Francesco; Gervasi, Marco; D'Amen, Giancarlo; Sisti, Davide; Rocchi, Marco Bruno Luigi; Stocchi, Vilberto; Benelli, Piero

    2017-01-01

    This study assessed the effectiveness of water immersion to the shoulders in enhancing blood lactate removal during active and passive recovery after short-duration high-intensity exercise. Seventeen cyclists underwent active water- and land-based recoveries and passive water and land-based recoveries. The recovery conditions lasted 31 minutes each and started after the identification of each cyclist's blood lactate accumulation peak, induced by a 30-second all-out sprint on a cycle ergometer. Active recoveries were performed on a cycle ergometer at 70% of the oxygen consumption corresponding to the lactate threshold (the control for the intensity was oxygen consumption), while passive recoveries were performed with subjects at rest and seated on the cycle ergometer. Blood lactate concentration was measured 8 times during each recovery condition and lactate clearance was modeled over a negative exponential function using non-linear regression. Actual active recovery intensity was compared to the target intensity (one sample t-test) and passive recovery intensities were compared between environments (paired sample t-tests). Non-linear regression parameters (coefficients of the exponential decay of lactate; predicted resting lactates; predicted delta decreases in lactate) were compared between environments (linear mixed model analyses for repeated measures) separately for the active and passive recovery modes. Active recovery intensities did not differ significantly from the target oxygen consumption, whereas passive recovery resulted in a slightly lower oxygen consumption when performed while immersed in water rather than on land. The exponential decay of blood lactate was not significantly different in water- or land-based recoveries in either active or passive recovery conditions. In conclusion, water immersion at 29°C would not appear to be an effective practice for improving post-exercise lactate removal in either the active or passive recovery modes.

  11. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.

  12. Promoting Exercise and Physical Fitness in the Medical School Curriculum.

    ERIC Educational Resources Information Center

    Cohen, Jerome D.; And Others

    1988-01-01

    An elective course focusing on exercise physiology and cardiovascular fitness offered at the Saint Louis University School of Medicine consists of weekly lectures and student self-designed fitness programs. Student participation correlates with significantly increased levels of student maximum oxygen consumption, a moderate training effect.…

  13. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    PubMed

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p < 0.01) compared to the baseline. The (NONEX)V(O)(2mus) at each work rate was not significantly increased. In contrast, (NONEX)FBF was significantly increased at 120 W (p < 0.05) and 160 W (p < 0.01) compared to the baseline. These results suggest that the O(2) supply to the non-exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  14. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P < 0.05) among mild workloads, whereas this was not the case for moderate-intensity exercise. In protocol 2 (n = 13), subjects performed rhythmic dynamic hand-grip exercise at mild and moderate intensities in conditions of matched total work, but muscle fibre recruitment was manipulated. In this protocol, greater muscle fibre recruitment led to significantly greater FBF (152 ± 15 versus 127 ± 13 ml min(-1)) and (20 ± 2 versus 17 ± 2 ml min(-1); both P < 0.05) at mild workloads, and there was a trend for similar responses at the moderate intensity but this was not statistically significant. In both protocols, the ratio of the change in FBF to change in was similar across all exercise intensities and manipulations, and the strongest correlation among all variables was between and blood flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  15. Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.

  16. Changes in Oxygen Consumption and Heart Rate After Acute Myocardial Infarction During 6-Month Follow-up.

    PubMed

    Choe, Yuri; Han, Jae-Young; Choi, In-Sung; Park, Hyeng-Kyu

    2018-06-01

    Exercise intensity is a particularly important determinant of physiological responses to exercise training in patients with acute myocardial infarction. Heart rate (HR) is commonly used as a practical way of prescribing and monitoring exercise as specific intensities based on a linear relationship between the percentage of maximum HR (%HR max ) and the percentage of maximum oxygen consumption (%VO 2max ) regardless of age, gender, or exercise mode. To examine the change in variability in the correlation between %HR max and %VO 2max after acute myocardial infarction. Retrospective study. Regional cardio-cerebrovascular center at a tertiary hospital. A total of 66 patients were enrolled who were referred for cardiac rehabilitation (CR) after percutaneous intervention, and who had reached stage 3 of the modified Bruce Protocol (mBP) on an exercise tolerance test (ETT). There were 54 men and 12 women with an average age of 56.7 ± 9.48 years, ejection fraction (EF) of 56.4% ± 8.89%, and body mass index (BMI) of 24.73 ± 2.86 kg/m 2 . All patients participated in a 4-week outpatient CR program and underwent ETT with a gas analyzer to determine maximal heart rate and maximal oxygen consumption before CR and 1 month, 3 months, and 6 months after CR. VO 2max and HR max were defined as the highest values attained during the ETT. The HR and VO 2 values at each stage of the mBP were expressed as percentages of their maximum. %HR max and %VO 2max were calculated at each stage of the mBP. The maximum METs and VO 2max significantly improved at 1 month after CR, but not significantly at 3 and 6 months after CR. The correlation between VO 2max and HR max progressively changed in a favorable manner during CR. The relationship between %HR max and %VO 2max indicated a coefficient of variation before and 1, 3, and 6 months after of 0.800, 0.826, 0.832, and 0.880, respectively. This study showed that the %HR max correlates better with the %VO 2max in the late-stage post-AMI than in the initial stage. We should therefore set and monitor the exercise intensity using maximal oxygen consumption in the early stage of exercise training after onset of acute myocardial infarction. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  18. Laboratory Experiences in Marine Biology for Upper Elementary and Secondary School Grades, Teachers Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    Designed to assist the teacher who wishes to use marine organisms for biological laboratory investigations, this manual includes general information on maintaining marine aquaria and collecting marine organisms as well as five tested laboratory exercises. The exercises deal with the measurement of oxygen consumption (giving techniques for…

  19. Comparison of two progressive treadmill tests in patients with peripheral arterial disease.

    PubMed

    Riebe, D; Patterson, R B; Braun, C M

    2001-11-01

    In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.

  20. Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.

    PubMed

    Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J

    2016-09-01

    This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J

    2017-05-01

    Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.

  2. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude. Copyright © 2016 the American Physiological Society.

  3. Effects of daily activity recorded by pedometer on peak oxygen consumption (VO2peak), ventilatory threshold and leg extension power in 30- to 69-year-old Japanese without exercise habit.

    PubMed

    Zhang, Jian-Guo; Ohta, Toshiki; Ishikawa-Takata, Kazuko; Tabata, Izumi; Miyashita, Mitsumasa

    2003-09-01

    The relationships among walk steps, exercise habits and peak oxygen consumption (VO2peak), ventilatory threshold (VT) and leg extension power (LEP) were examined in 709 apparently healthy Japanese subjects (male 372, female 337) aged 30-69 years. Walk steps were evaluated using a pedometer. VO2peak and VT were assessed by a cycle ergometer test, while LEP was measured with an isokinetic leg extension system (Combi, Anaero Press 3500, Japan). Subjects who participated in exercise three times or more a week demonstrated significantly greater VO2peak and VT when compared with subjects without exercise habits. When a separate analysis was conducted on subjects who exercised fewer than three times per week, we found that the subgroup with the highest number of walk steps showed significantly greater VT in all male subjects and female subjects aged 30-49 years, but a significantly greater VO2peak only in females aged 30-49 years, when compared to the subgroup with the fewest walk steps. These results suggest that although some people exercise less than three times a week, if they are quite active in daily life, such activities might also confer benefits upon their fitness.

  4. Effects of a 6-month exercise program pilot study on walking economy, peak physiological characteristics, and walking performance in patients with peripheral arterial disease.

    PubMed

    Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan

    2012-01-01

    The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.

  5. Diastolic stress echocardiography in the young: a study in nonathletic and endurance-trained healthy subjects.

    PubMed

    Studer Bruengger, Annina A; Kaufmann, Beat A; Buser, Marc; Hoffmann, Mario; Bader, Franziska; Bernheim, Alain M

    2014-10-01

    The response of diastolic Doppler indices to exercise is not well defined for young subjects. The aims of this study were to evaluate this in nonathletic and endurance-trained probands and to correlate echocardiographic data with maximal oxygen consumption. In this prospective study, Doppler echocardiography was performed at rest and after exercise in 40 nonathletes (NAs) and 20 endurance-trained athletes (ETs) aged < 40 years, matched for age and gender. Diastolic function was assessed by mitral inflow and early diastolic velocities of the septal (e' septal) and lateral (e' lateral) mitral annulus. Maximal oxygen consumption quantification was performed simultaneously. All cardiac chambers were larger in ETs than NAs. ETs had higher e' lateral at rest (18.1 ± 2.7 vs 16.3 ± 3.3 cm/sec, P = .02) and higher mitral E (141 ± 15 vs 132 ± 15 cm/sec, P = .02) and e' lateral (23.5 ± 2.5 vs 21.4 ± 3.0 cm/sec, P = .01) with exercise than NAs. There was a slight increase in E/e' septal (overall, from 6.8 ± 1.3 to 7.2 ± 1.2; P = .02) and E/e' lateral (overall, from 5.0 ± 0.8 to 6.2 ± 0.9; P < .0001) with exercise. Changes in diastolic parameters with exercise were similar in ETs and NAs. Percentage of predicted maximal oxygen consumption was correlated with exertional E (r = 0.28, P = .03) and e' lateral (r = 0.32, P = .01), but the strongest predictor was indexed left ventricular end-diastolic volume (r = 0.66, P < .0001). During exercise, E/e' increases but remains within normal ranges in healthy young subjects, and the response to exercise does not differ between ETs and NAs. These data help define the normal diastolic stress echocardiographic response in the young. Exercise capacity shows a correlation with enhanced exertional early diastolic velocities but is more closely related to cardiac structural adaption to endurance training. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  6. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy.

    PubMed

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S; Madsen, Karen L; Hansen, Jonas B; Madsen, Mads; Vissing, John

    2013-12-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage. Copyright © 2013 Wiley Periodicals, Inc.

  7. The influence of age, gender, and training on exercise efficiency.

    PubMed

    Woo, J Susie; Derleth, Christina; Stratton, John R; Levy, Wayne C

    2006-03-07

    The aim of this study was to determine whether changes in oxygen efficiency occur with aging or exercise training in healthy young and older subjects. Exercise capacity declines with age and improves with exercise training. Whether changes in oxygen efficiency, defined as the oxygen cost per unit work, contributes to the effects of aging or training has not yet been defined. Sixty-one healthy subjects were recruited into four groups of younger women (ages 20 to 33 years, n = 15), younger men (ages 20 to 30 years, n = 12), older women (ages 65 to 79 years, n = 16), and older men (ages 65 to 77 years, n = 18). All subjects underwent cardiopulmonary exercise testing to analyze aerobic parameters before and after three to six months of supervised aerobic exercise training. Before training, younger subjects had a much higher exercise capacity, as shown by a 42% higher peak oxygen consumption (VO2) (ml/kg/min, p < 0.0001). This was associated with an 11% lower work VO2/W (p = 0.02) and an 8% higher efficiency than older subjects (p = 0.03). With training, older subjects displayed a larger increase in peak W/kg (+29% vs. +12%, p = 0.001), a larger decrease in work VO2/W (-24% vs. -2%, p < 0.0001), and a greater improvement in exercise efficiency (+30% vs. 2%, p < 0.0001) compared to the young. Older age is associated with a decreased exercise efficiency and an increase in the oxygen cost of exercise, which contribute to a decreased exercise capacity. These age-related changes are reversed with exercise training, which improves efficiency to a greater degree in the elderly than in the young.

  8. Divergent outcomes of fructose consumption on exercise capacity of rats: friend or foe.

    PubMed

    Sun, Angela; Huang, An; Kertowidjojo, Elizabeth; Song, Su; Hintze, Thomas H; Sun, Dong

    2017-02-01

    To test the hypothesis that high fructose (HF) consumption divergently affects exercise capability as a function of feeding duration, rats were fed a normal (as control) diet or a normal caloric diet with HF for 3, 6, 10, and 30 days, respectively, and then were run on a treadmill. Results show that running distance and work were significantly increased, which was associated with greater exercise oxygen consumption in rats fed HF for 3 (HF-3D) and 6 days, but were decreased in rats fed HF for 30 days (HF-30D) compared with rats in their respective control groups. Shear stress-induced vasodilation (SSID) in isolated plantaris muscle arterioles was significantly greater in the HF-3D group than the control group. The difference in SSID between the two groups was abolished by N ω -nitro-l-arginine methyl ester (L-NAME), suggesting a nitric oxide (NO)-mediated response. Expression of phosphorylated/activated endothelial NO synthase (eNOS) and release of nitrite/NO were significantly increased in vessels of animals in the HF-3D group than controls. In contrast, arterioles isolated from the hypertensive rats in the HF-30D group displayed significantly attenuated NO-mediated SSID accompanied with greater production of superoxide compared with vessels of control animals. Additionally, the NO-dependent modulation of myocardial oxygen consumption (MV̇o 2 ) was also impaired in the HF-30D group, and was prevented by blocking superoxide production with apocynin, an inhibitor that also normalized the reduced SSID in the HF-30D group. In conclusion, short-term (3-6 days) HF feeding enhances exercise potential via an increase in endothelial sensitivity to shear stress, which stimulates eNOS to release NO, leading to better tissue perfusion and utilization of oxygen. However, long-term (30 days) HF feeding initiates endothelial dysfunction by superoxide-dependent mechanisms to compromise exercise performance. NEW & NOTEWORTHY The evidence that short-term fructose intake potentiates exercise capacity by nitric oxide-mediated mechanisms yields an optimal fructose feeding frame in which beneficial effects of fructose have been acquired while detrimental effects have not yet been manifested. This highlights the significance of exercise physiology in providing constructive regimens to improve physical performance. Copyright © 2017 the American Physiological Society.

  9. Effect of supplemental oxygen on post-exercise inflammatory response and oxidative stress.

    PubMed

    White, Jodii; Dawson, Brian; Landers, Grant; Croft, Kevin; Peeling, Peter

    2013-04-01

    This investigation explored the influence of supplemental oxygen administered during the recovery periods of an interval-based running session on the post-exercise markers of reactive oxygen species (ROS) and inflammation. Ten well-trained male endurance athletes completed two sessions of 10 × 3 min running intervals at 85 % of the maximal oxygen consumption velocity (vVO(2)peak) on a motorised treadmill. A 90-s recovery period was given between each interval, during which time the participants were administered either a hyperoxic (HYP) (Fraction of Inspired Oxygen (FIO2) 99.5 %) or normoxic (NORM) (FIO2 21 %) gas, in a randomized, single-blind fashion. Pulse oximetry (SpO(2)), heart rate (HR), blood lactate (BLa), perceived exertion (RPE), and perceived recovery (TQRper) were recorded during each trial. Venous blood samples were taken pre-exercise, post-exercise and 1 h post-exercise to measure Interleukin-6 (IL-6) and Isoprostanes (F2-IsoP). The S(p)O(2) was significantly lower than baseline following all interval repetitions in both experimental trials (p < 0.05). The S(p)O(2) recovery time was significantly quicker in the HYP when compared to the NORM (p < 0.05), with a trend for improved perceptual recovery. The IL-6 and F2-IsoP were significantly elevated immediately post-exercise, but had significantly decreased by 1 h post-exercise in both trials (p < 0.05). There were no differences in IL-6 or F2-IsoP levels between trials. Supplemental oxygen provided during the recovery periods of interval based exercise improves the recovery time of SPO(2) but has no effect on post-exercise ROS or inflammatory responses.

  10. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  11. Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity.

    PubMed

    Torma, Ferenc; Koltai, Erika; Nagy, Enikő; Ziaaldini, Mohammad Mosaferi; Posa, Aniko; Koch, Lauren G; Britton, Steven L; Boldogh, Istvan; Radak, Zsolt

    2014-01-01

    The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.

  12. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics and blood lactate.

    PubMed

    Smilios, Ilias; Myrkos, Aristides; Zafeiridis, Andreas; Toubekis, Argyris; Spassis, Apostolos; Tokmakidis, Savas P

    2017-03-13

    The recovery duration and the work to recovery ratio are important aspects to consider when designing a high-intensity aerobic interval exercise (HIIE). This study examined the effects of recovery duration on total exercise time performed above 80, 90 and 95% of maximum oxygen consumption (VO2max) and heart rate (HRmax) during a single-bout HIIE. We also evaluated the effects on VO2 and HR kinetics, blood lactate concentration and rating of perceived exertion (RPE). Eleven moderately trained males (22.1±1 yrs.) executed, on three separate sessions, 4×4-min runs at 90% of maximal aerobic velocity (MAV) with 2-min, 3-min and 4-min of active recovery. Recovery duration did not affect the percentage of VO2max attained and the total exercise time above 80, 90 and 95% of VO2max. Exercise time above 80 and 90% of HRmax was longer with 2 and 3 min (p<0.05) as compared with the 4-min recovery. Oxygen uptake and HR amplitude were lower, mean response time slower (p<0.05), and blood lactate and RPE higher with 2-min compared to 4-min recovery (p<0.05). In conclusion, aerobic metabolism attains its upper functional limits with either 2, or 3 or 4 min of recovery during the 4×4 min HIIE; thus, all rest durations could be used for the enhancement of aerobic capacity in sports, fitness, and clinical settings. The short (2 min) compared to longer (4 min) recovery, however, evokes greater cardiovascular and metabolic stress, and activates to a greater extent anaerobic glycolysis, and hence, could be used by athletes to induce greater overall physiological challenge.

  13. Recovery Responses to Maximal Exercise in Healthy-Weight Children and Children with Obesity

    ERIC Educational Resources Information Center

    Easley, Elizabeth A.; Black, W. Scott; Bailey, Alison L.; Lennie, Terry A.; Sims, Wilma J.; Clasey, Jody L.

    2018-01-01

    Purpose: The purpose of this study was to examine differences in heart rate recovery (HRRec) and oxygen consumption recovery (VO2 recovery) between young healthy-weight children and children with obesity following a maximal volitional graded exercise test (GXTmax). Method: Twenty healthy-weight children and 13 children with obesity completed body…

  14. Attentional bias to emotional stimuli is altered during moderate- but not high-intensity exercise.

    PubMed

    Tian, Qu; Smith, J Carson

    2011-12-01

    Little is known regarding how attention to emotional stimuli is affected during simultaneously performed exercise. Attentional biases to emotional face stimuli were assessed in 34 college students (17 women) using the dot-probe task during counterbalanced conditions of moderate- (heart rate at 45% peak oxygen consumption) and high-intensity exercise (heart rate at 80% peak oxygen consumption) compared with seated rest. The dot-probe task consisted of 1 emotional face (pleasant or unpleasant) paired with a neutral face for 1,000 ms; 256 trials (128 trials for each valence) were presented during each condition. Each condition lasted approximately 10 min. Participants were instructed to perform each trial of the dot-probe task as quickly and accurately as possible during the exercise and rest conditions. During moderate-intensity exercise, participants exhibited significantly greater attentional bias scores to pleasant compared with unpleasant faces (p < .01), whereas attentional bias scores to emotional faces did not differ at rest or during high-intensity exercise (p > .05). In addition, the attentional bias to unpleasant faces was significantly reduced during moderate-intensity exercise compared with that during rest (p < .05). These results provide behavioral evidence that during exercise at a moderate intensity, there is a shift in attention allocation toward pleasant emotional stimuli and away from unpleasant emotional stimuli. Future work is needed to determine whether acute exercise may be an effective treatment approach to reduce negative bias or enhance positive bias in individuals diagnosed with mood or anxiety disorders, or whether attentional bias during exercise predicts adherence to exercise. (c) 2011 APA, all rights reserved.

  15. Regulation of coronary resistance vessel tone in response to exercise.

    PubMed

    Duncker, Dirk J; Bache, Robert J; Merkus, Daphne

    2012-04-01

    Exercise is a primary stimulus for increased myocardial oxygen demand. The ~6-fold increase in oxygen demand of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already ~70% at rest) increase only modestly in most species. As a result, coronary blood flow is tightly coupled to myocardial oxygen consumption over a wide range of physical activity. This tight coupling has been proposed to depend on periarteriolar oxygen tension, signals released from cardiomyocytes and the endothelium as well as neurohumoral influences, but the contribution of each of these regulatory pathways, and their interactions, to exercise hyperemia in the heart remain incompletely understood. In humans, nitric oxide, adenosine and K(ATP) channels each appear to contribute to resting coronary resistance vessel tone, but evidence for a critical contribution to exercise hyperemia is lacking. In dogs K(ATP)-channel activation together with adenosine and nitric oxide contribute to exercise hyperemia in a non-linear redundant fashion. In contrast, in swine nitric oxide, adenosine and K(ATP) channels contribute to resting coronary resistance vessel tone control in a linear additive manner, but do not appear to be mandatory for exercise hyperemia. Rather, exercise hyperemia in swine appears to involve β-adrenergic activation in conjunction with exercise-induced blunting of an endothelin-mediated vasoconstrictor influence. In view of these remarkable species differences in coronary vasomotor control during exercise, future studies are required to determine the system of vasodilator components that mediate exercise hyperemia in humans. This article is part of a Special Issue entitled "Coronary Blood Flow". Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  17. Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V

    2016-02-01

    The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.

  18. EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS

    PubMed Central

    Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.

    2016-01-01

    Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464

  19. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    PubMed

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P < 0.001) between 4-AIT, CME, and 1-AIT. Total EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effect of music-movement synchrony on exercise oxygen consumption.

    PubMed

    Bacon, C J; Myers, T R; Karageorghis, C I

    2012-08-01

    Past research indicates that endurance is improved when exercise movements are synchronised with a musical beat, however it is unclear whether such benefits are associated with reduced metabolic cost. We compared oxygen consumption (.VO2) and related physiological effects of exercise conducted synchronously and asynchronously with music. Three music tracks, each recorded at three different tempi (123, 130, and 137 beats.min-1), accompanied cycle ergometry at 65 pedal revolutions.min-1. Thus three randomly-assigned experimental conditions were administered: slow tempo asynchronous, synchronous, and fast tempo asynchronous. Exercise response of .VO2, HR, and ratings of perceived exertion (RPE), to each condition was monitored in 10 untrained male participants aged 21.7±0.8 years (mean±SD) who cycled for 12 min at 70% maximal heart rate (HR). Mean .VO2 differed among conditions (P=0.008), being lower in the synchronous (1.80±0.22 L.min-1) compared to the slow tempo asynchronous condition (1.94±0.21 L.min-1; P<0.05). There was no difference in HR or RPE among conditions, although HR showed a similar trend to .VO2. The present results indicate that exercise is more efficient when performed synchronously with music than when musical tempo is slightly slower than the rate of cyclical movement.

  1. Effects of Aerobic Exercise and Resistance Training on Stage I and II Breast Cancer Survivors: A Pilot Study

    ERIC Educational Resources Information Center

    Garner, Dena; Erck, Elizabeth G.

    2008-01-01

    Background: Lack of physical activity has been noted in breast cancer survivors and been attributed to decreased physical function. Purpose: This study assessed the effects of a moderate-to-vigorous physical exercise program on body fat percentage, maximal oxygen consumption (VO[subscript 2] max), body mass index, and bone mineral density (BMD) of…

  2. VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.

    ERIC Educational Resources Information Center

    Seals, Douglas R.; Mullin, John P.

    1982-01-01

    The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…

  3. Increased Skin Blood Flow and Enhanced Heat Loss in Humans after Niacin Ingestion

    DTIC Science & Technology

    1994-06-01

    vessels near the skin through a prostaglandin-mediated mechanism, as the flush can be inhibited by pre -treatment with sodium salicylate or other inhibitors...as the change in body weight from pre - to post-exercise. Heart rate (HR) was measured from the EKG record. Upright Exercise and Clothing Study Four...sweating was determined as the change in body weight from pre - to post-exercise. Oxygen consumption was measured by an automated method (SensorMedics

  4. The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise.

    PubMed

    Stellingwerff, Trent; Godin, Jean-Philippe; Chou, Chieh J; Grathwohl, Dominik; Ross, Alastair B; Cooper, Karen A; Williamson, Gary; Actis-Goretta, Lucas

    2014-02-01

    Consumption of cocoa-enriched dark chocolate (DC) has been shown to alter glucose and insulin concentration during rest and exercise compared with cocoa-depleted control (CON). However, the impact of DC consumption on exercise metabolism and performance is uncertain. Therefore, we investigated carbohydrate metabolism via stable isotope tracer techniques during exercise after subjects ingested either DC or CON. Sixteen overnight-fasted male cyclists performed a single-blinded, randomized, crossover design trial, after consuming either DC or CON at 2 h prior to 2.5 h of steady-state (SS) exercise (∼45% peak oxygen uptake). This was followed by an ∼15-min time-trial (TT) and 60 min of recovery. [6,6-(2)H2]Glucose and [U-(13)C]glucose were infused during SS to assess glucose rate of appearance (Ra) and disappearance (Rd). After DC consumption, plasma (-)-glucose and insulin concentrations were significantly (p < 0.001) elevated throughout vs. CON. During SS, there was no difference in [6,6-(2)H2]glucose Ra between treatments, but towards the end of SS (last 60 min) there was a ∼16% decrease in Rd in DC vs. CON (p < 0.05). Accordingly, after DC there was an ∼18% significant decrease in plasma glucose oxidation (trial effect; p = 0.032), and an ∼15% increase in tracer-derived muscle glycogen utilization (p = 0.045) late during SS exercise. The higher blood glucose concentrations during exercise and recovery after DC consumption coincided with high concentrations of epicatechin and (or) theobromine. In summary, DC consumption altered muscle carbohydrate partitioning, between muscle glucose uptake and glycogen oxidation, but did not effect cycling TT performance.

  5. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p

  6. The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes.

    PubMed

    Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon

    2018-03-30

    The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. ©2018 The Korean Society for Exercise Nutrition.

  7. Combination of aerobic exercise and an arginine, alanine, and phenylalanine mixture increases fat mobilization and ketone body synthesis.

    PubMed

    Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi

    2017-07-01

    During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.

  8. Does cerebral oxygen delivery limit incremental exercise performance?

    PubMed Central

    Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.

    2011-01-01

    Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244

  9. EPOC Comparison between Isocaloric Bouts of Steady-State Aerobic, Intermittent Aerobic, and Resistance Training

    ERIC Educational Resources Information Center

    Greer, Beau Kjerulf; Sirithienthad, Prawee; Moffatt, Robert J.; Marcello, Richard T.; Panton, Lynn B.

    2015-01-01

    Purpose: Excess postexercise oxygen consumption (EPOC) is dependent on intensity, duration, and mode of exercise. The purpose of this study was to compare the effect of both exercise mode and intensity on EPOC while controlling for caloric expenditure and duration. Method: Ten low to moderately physically active men (22 ± 2 yrs) performed 3…

  10. Exercise Prescription Using a Group-Normalized Rating of Perceived Exertion in Adolescents and Adults With Spina Bifida.

    PubMed

    Crytzer, Theresa M; Keramati, Mariam; Anthony, Steven J; Cheng, Yu-Ting; Robertson, Robert J; Dicianno, Brad E

    2018-02-03

    People with spina bifida (SB) face personal and environmental barriers to exercise that contribute to physical inactivity, obesity, risk of cardiovascular disease, and poor aerobic fitness. The WHEEL rating of perceived exertion (RPE) Scale was validated in people with SB to monitor exercise intensity. However, the psycho-physiological link between RPE and ventilatory breakpoint (Vpt), the group-normalized perceptual response, has not been determined and would provide a starting point for aerobic exercise in this cohort. The primary objectives were to determine the group-normalized RPE equivalent to Vpt based on WHEEL and Borg Scale ratings and to develop a regression model to predict Borg Scale (conditional metric) from WHEEL Scale (criterion metric). The secondary objective was to create a table of interchangeable values between WHEEL and Borg Scale RPE for people with SB performing a load incremental stress test. Cross-sectional observational. University laboratory. Twenty-nine participants with SB. Participants completed a load incremented arm ergometer exercise stress test. WHEEL and Borg Scale ratings were recorded the last 15 seconds of each 1-minute test phase. WHEEL and Borg Scale ratings, metabolic measures (eg, oxygen consumption, carbon dioxide production). Determined Vpt via plots of oxygen consumption and carbon dioxide production against time. Nineteen of 29 participants achieved Vpt (Group A). The mean ± standard deviation peak oxygen consumption at Vpt for Group A was 61.76 ± 16.26. The WHEEL and Borg Scale RPE at Vpt were 5.74 ± 2.58 (range 0-10) and 13.95 ± 3.50 (range 6-19), respectively. A significant linear regression model was developed (Borg Scale rating = 1.22 × WHEEL Scale rating + 7.14) and used to create a WHEEL-to-Borg Scale RPE conversion table. A significant linear regression model and table of interchangeable values was developed for participants with SB. The group-normalized RPE (WHEEL, 5.74; Borg, 13.95) can be used to prescribe and self-regulate arm ergometer exercise intensity approximating the Vpt. II. Copyright © 2018. Published by Elsevier Inc.

  11. Effects of the different frequencies of whole-body vibration during the recovery phase after exhaustive exercise.

    PubMed

    Cheng, C F; Hsu, W C; Lee, C L; Chung, P K

    2010-12-01

    This study was to investigate the effects of vibration exercise on the oxygen consumption (VO2) and heart rate variability (HRV) during the recovery phase after exhaustive exercise. Twenty male college students volunteered as subjects to participate in the study. The subjects were randomly crossover assigned to perform three 10 min vibration exercises, namely non-vibration (CON, 0 Hz, 0 mm), low-frequency (LFT, 20 Hz, 0.4 mm) and high-frequency (HFT, 36 Hz, 0.4 mm) treatments immediately after an incremental exhaustive cycling exercise in separated days. The beat-to-beat HRV, blood lactate concentration and VO2 were measured during the 1-hour recovery phase. The time- and frequency-domain indices of HRV were analyzed to confirm the effects of vibration exercises on the cardiac autonomic modulation. There were no significant differences on the VO2, HRV and blood lactate concentrations at 30th minute (post-30 min) or 60th minute (post-60 min) during the recovery phase among the three treatments. There were also no significant differences on the excess post-exercise oxygen consumption (EPOC) during the recovery phase among the treatments. However, the VO2 at post-30 min in CON and LFT were significantly higher than the baseline values, whereas the VO2 in HFT returned to resting condition at the post-30 min. The results indicate that both low and high frequency vibration exercises could not improve the physiological recovery after exhaustive cycling exercise. However, the high frequency vibration exercise probably has a potential to facilitate the VO2 to return to the resting level during the recovery phase.

  12. The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes

    PubMed Central

    Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon

    2018-01-01

    [Purpose] The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. [Methods] Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. [Results] There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. [Conclusion] These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. PMID:29673243

  13. Aerobic exercise increases resistance to oxidative stress in sedentary older middle-aged adults. A pilot study.

    PubMed

    Done, Aaron J; Traustadóttir, Tinna

    2016-12-01

    Older individuals who exercise regularly exhibit greater resistance to oxidative stress than their sedentary peers, suggesting that exercise can modify age-associated loss of resistance to oxidative stress. However, we recently demonstrated that a single bout of exercise confers protection against a subsequent oxidative challenge in young, but not older adults. We therefore hypothesized that repeated bouts of exercise would be needed to increase resistance to an oxidative challenge in sedentary older middle-aged adults. Sedentary older middle-aged men and women (50-63 years, n = 11) participated in an 8-week exercise intervention. Maximal oxygen consumption was measured before and after the intervention. The exercise intervention consisted of three sessions per week, for 45 min at an intensity corresponding to 70-85 % maximal heart rate (HR max ). Resistance to oxidative stress was measured by F 2 -isoprostane response to a forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial before and after the exercise intervention. The intervention elicited a significant increase in maximal oxygen consumption (VO 2max ) (P < 0.0001). Baseline levels of F 2 -isoprostanes pre- and post-intervention did not differ, but the F 2 -isoprostane response to the I/R trial was significantly lower following the exercise intervention (time-by-trial interaction, P = 0.043). Individual improvements in aerobic fitness were associated with greater improvements in the F 2 -isoprostane response (r = -0.761, P = 0.011), further supporting the role of aerobic fitness in resistance to oxidative stress. These data demonstrate that regular exercise with improved fitness leads to increased resistance to oxidative stress in older middle-aged adults and that this measure is modifiable in previously sedentary individuals.

  14. Is cardiorespiratory fitness impaired in PCOS women? A review of the literature.

    PubMed

    Donà, S; Bacchi, E; Moghetti, P

    2017-05-01

    Polycystic ovary syndrome (PCOS) is a common and heterogeneous endocrine disorder, affecting 8-12% of reproductive-aged women. Insulin resistance and body fat excess are common features in these subjects. Increased physical activity and diet modifications are the first recommended approach in the management of these women, at least in overweight/obese subjects. Evaluation of cardiorespiratory fitness (CRF) is important in assessing exercise performance and in monitoring the effects of physical exercise interventions. Several studies have shown that CRF may be impaired in metabolic and endocrine disorders. However, there are little data on this issue in PCOS women. The aim of this narrative review is to critically evaluate whether aerobic capacity is altered in PCOS women, focusing on maximal oxygen uptake. An updated search of the literature was performed, identifying papers with maximal oxygen consumption measurements in women with PCOS compared to healthy controls. We have identified six studies on this specific topic: four of them showed an alteration of maximal oxygen consumption in PCOS women, whereas two did not. However, taken together these studies suggest that CRF may be strikingly impaired in both normal-weight and overweight/obese subjects with this condition. Women with PCOS appear to be characterized by a reduced cardiopulmonary fitness. However, further research on this topic is needed. This information may hopefully help clinicians and exercise specialist in planning individualized exercise programs aimed at improving the metabolic and endocrine outcomes in these women.

  15. The rate of lactate removal after maximal exercise: the effect of intensity during active recovery.

    PubMed

    Riganas, C S; Papadopoulou, Z; Psichas, N; Skoufas, D; Gissis, I; Sampanis, M; Paschalis, V; Vrabas, I S

    2015-10-01

    The aim of the present investigation was to determine the greater rate of lactate removal after a maximal rowing test using different intensities during active recovery. Thirty elite male rowers performed a simulated incremental exercise protocol on rowing ergometer to determine their maximal oxygen uptake and they divided into three equal sized group according to the type of the recovery that followed the assessment. The first group (N.=10) subjected to 20 min of passive recovery, while the second (N.=10) and the third (N.=10) groups performed 20 min of active recovery using the 25% and the 50% of each individual’s maximal power output, respectively. During the recovery period, every two min were performed measurements for the assessment of blood lactate, oxygen consumption and heart rate (HR). It was found that after 10 min of active recovery at 50% and 25% of maximal power output lactate concentration reduced by 43% and 15%, respectively, while during passive recovery lactate concentration found to be slightly elevated by 1%. It was also found that during recovery period, HR, oxygen consumption and pulmonary ventilation was significant elevated at higher exercise intensity compared to lower exercise intensity and passive recovery. It is concluded that in elite male rowers the active recovery provided higher rate of lactate removal compared to passive recovery. Moreover, active recovery at 50% of maximal power output had better results in lactate clearance compared to the active recovery of lower intensity (25% of maximal power output).

  16. Loading and concurrent synchronous whole-body vibration interaction increases oxygen consumption during resistance exercise.

    PubMed

    Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F

    2013-01-01

    Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat.While the application of synchronous whole body vibration had no effect on recovery oxygen, under bot vibratory and non-vibratory conditions, the heavier the external load the greater the recovery oxygen consumption levels.Regardless of vibratory condition, during the squatting exercise bout 40% BW produced higher heart rates than 20%BW or 0% BW, and 20% BW produced higher heart rates than 0% BW.There were strong trends toward higher heart rates in both vibratory conditions (50 Hz, 5-6mm; 35 Hz, 2-3 mm) than in the non-vibratory condition regardless of external loading.

  17. Effects of different duration exercise programs in children with severe burns.

    PubMed

    Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E

    2017-06-01

    Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  18. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.

    PubMed

    Joyner, Michael J; Casey, Darren P

    2015-04-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.

  19. Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs

    PubMed Central

    Joyner, Michael J.; Casey, Darren P.

    2015-01-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. PMID:25834232

  20. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot.

    PubMed

    Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long

    2016-07-01

    Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.

  1. Feasibility of a 12-month-exercise intervention during and after radiation and chemotherapy in cancer patients: impact on quality of life, peak oxygen consumption, and body composition.

    PubMed

    Grabenbauer, Alexander; Grabenbauer, Andrea J; Lengenfelder, Rosa; Grabenbauer, Gerhard G; Distel, Luitpold V

    2016-03-16

    Accumulating evidence suggests that exercise is effective in treating many of the acute and chronic side effects of anti-cancer therapy. A recent meta-analysis supported the use of exercise to prevent or treat fatigue and lymphoedema and to improve functional status in breast cancer patients. This trial was intended as a controlled, prospective feasibility study evaluating the impact of physical exercise (PE) in cancer patients during and after treatment with radio- and chemotherapy. Inclusion criteria were previous or ongoing treatment for cancer, motivation for PE of 0.5-1hour duration at least twice weekly for at least 3 months. Continuation of PE was encouraged thereafter. Every three months the following endpoints were assessed: Peak oxygen consumption as measured by supervised cardiopulmonary exercise test, body composition and quality of life. A total of 45 patients were included with a median age of 49 years. Forty were female and five male. Cancer types were: Breast cancer (n = 30/67 %), gastrointestinal cancer (n = 5/12 %), other types (n = 10/22 %). Thirty-eight (84 %) of the patients were included during curative treatment of their disease. Seven (16 %) were considered palliative. Adherence to the PE-programme longer than 6 months was noted for 41/45 (91 %) of the patients. Intensity of PE was thrice weekly in 32/45 (71 %), twice weekly in 11/45 (24 %). Two of 45 patients (5 %) had no PE. Mean peak oxygen consumption increased from 18.8 ± 5.6 ml/min/kg to 20.5 ± 3 ml/min/kg and 19.9 ± 4.7 ml/min/kg at 3 months (p = 0.005) and 12 months (p = 0.003), respectively. Median fat mass decreased from 30.7 ± 15 kg to 28.9 ± 15 kg and 29.5 ± 13 kg at 3 months (p = 0.001) and 12 months (p = 0.017), respectively. Global health status scores increased from a median baseline value of 54.9 ± 16.3 to 66.4 ± 14 % and 68.0 ± 20.3 % at 3 months (p = 0.001) and 12 months (p = 0.002), respectively. This exercise programme in cancer patients with 2-3 weekly supervised sessions over three months was well feasible and demonstrated measurable improvement of oxygen consumption, body composition and quality of life. In addition, a 90 %-adherence rate to the PE-programme beyond 6 months was encouraging. Further randomized prospective data in a larger patient population will be collected comparing the impact of two versus four months supervision.

  2. [The effect of prescribing an unsupervised exercise program on the fitness profile of university students participating in an emergency response brigade].

    PubMed

    León-Rodríguez, Julie C; Cañón-Betancourt, Lorena A

    2013-01-01

    Determining the effect of a prescribed unsupervised exercise and counseling program on the physical activity and fitness levels of university students volunteering for an emergency response brigade. Forty-two brigade volunteers engaged in a 12-week prescribed non-supervised exercise program. Body weight, body mass index (BMI), percentage body fat, waist circumference, oxygen consumption, flexibility and arms and abdomen strength endurance were assessed before and after performing the exercise program. The other variables measured concerned the level of physical activity during leisure time (days and minutes per week) and/or the use of alternative means of transport. Exercise was prescribed according to international standards. The activities, commitment and health-nutritional recommendations were controlled every two weeks. The study reported a statistically significant increase regarding the following variables: O2 consumption (from 46.41 ± 6.65 ml/Kg/min to 47.70 ± 6.27 ml/Kg/min; p<0.01), increased arm strength endurance (from 11.82 ± 9.97 to 14.74 ± 12.74 repetitions; p<0.01) and an increase in the number of abdominal exercises (crunches) (from 21.16 ± 11.91 to 26.64 ± 17.03 repeats; p<0.01). The real accomplishment regarding commitment by the time of the second measurement concerned 2.54 ± 2.07 days/week and 144.16 ± 238.89 minutes/week of physical activity. These levels were significantly lower than those established at the beginning of the program (4 ± 1.05 days/week and 239.52 ± 73.01 minutes/week; p<0.01). The prescribed unsupervised exercise and counseling program led to increases in oxygen consumption, arm strength endurance and the number of repeat abdominal crunches. Real fulfilment of the proposed activities was lower than planned original commitment.

  3. Power of resting echocardiographic measurements to classify pulmonary hypertension patients according to European society of cardiology exercise testing risk stratification cut-offs.

    PubMed

    Rehman, Michaela B; Garcia, Rodrigue; Christiaens, Luc; Larrieu-Ardilouze, Elisa; Howard, Luke S; Nihoyannopoulos, Petros

    2018-04-15

    Right ventricular function is the major determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). The ESC risk assessment strategy for PAH is based on clinical status, exercise testing, NTproBNP, imaging and haemodynamics but does not include right ventricular function. Our aims were to test the power of resting echocardiographic measurements to classify PAH patients according to ESC exercise testing risk stratification cut-offs and to determine if the classification power of echocardiographic parameters varied in chronic thrombo-embolic pulmonary hypertension (CTEPH). We prospectively and consecutively recruited 46 PAH patients and 42 CTEPH patients referred for cardio-pulmonary exercise testing and comprehensive transthoracic echocardiography. Exercise testing parameters analyzed were peak oxygen consumption, percentage of predicted maximal oxygen consumption and the slope of ventilation against carbon dioxide production. Receiver operator characteristic curves were used to determine the optimal diagnostic cut-off values of echocardiographic parameters for classifying the patients in intermediate or high risk category according to exercise testing. Measurements of right ventricular systolic function were the best for classifying in PAH (area under the curve 0.815 to 0.935). Measurements of right ventricular pressure overload (0.810 to 0.909) were optimal for classifying according to exercise testing in CTEPH. Measurements of left ventricular function were of no use in either group. Measurements of right ventricular systolic function can classify according to exercise testing risk stratification cut-offs in PAH. However, this is not the case in CTEPH where pressure overload, rather than right ventricular function seems to be linked to exercise performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of Cooper 12-minute walk/run test as a marker of cardiorespiratory fitness in young urban children with persistent asthma.

    PubMed

    Weisgerber, Michael; Danduran, Michael; Meurer, John; Hartmann, Kathryn; Berger, Stuart; Flores, Glenn

    2009-07-01

    To evaluate Cooper 12-minute run/walk test (CT12) as a one-time estimate of cardiorespiratory fitness and marker of fitness change compared with treadmill fitness testing in young children with persistent asthma. A cohort of urban children with asthma participated in the asthma and exercise program and a subset completed pre- and postintervention fitness testing. Treadmill fitness testing was conducted by an exercise physiologist in the fitness laboratory at an academic children's hospital. CT12 was conducted in a college recreation center gymnasium. Forty-five urban children with persistent asthma aged 7 to 14 years participated in exercise interventions. A subset of 19 children completed pre- and postintervention exercise testing. Participants completed a 9-week exercise program where they participated in either swimming or golf 3 days a week for 1 hour. A subset of participants completed fitness testing by 2 methods before and after program completion. CT12 results (meters), maximal oxygen consumption ((.)Vo2max) (mL x kg(-1) x min(-1)), and treadmill exercise time (minutes). CT12 and maximal oxygen consumption were moderately correlated (preintervention: 0.55, P = 0.003; postintervention: 0.48, P = 0.04) as one-time measures of fitness. Correlations of the tests as markers of change over time were poor and nonsignificant. In children with asthma, CT12 is a reasonable one-time estimate of fitness but a poor marker of fitness change over time.

  5. Effects of acute caffeine supplementation on reducing exercise-associated hypoglycaemia in individuals with Type 1 diabetes mellitus.

    PubMed

    Zaharieva, D P; Miadovnik, L A; Rowan, C P; Gumieniak, R J; Jamnik, V K; Riddell, M C

    2016-04-01

    To determine the effects of acute caffeine ingestion on glycaemia during moderate to vigorous intensity aerobic exercise and in recovery in individuals with Type 1 diabetes. A total of 13 patients with Type 1 diabetes [eight women, five men: mean ± sd age 25.9 ± 8.8 years, BMI 71.9 ± 11.0 kg, maximal oxygen consumption 46.6 ± 12.7 ml/kg/min, body fat 19.9 ± 7.2%, duration of diabetes 14.4 ± 10.1 years and HbA1c 55 ± 8 mmol/mol (7.4 ± 0.8%)] were recruited. Participants ingested capsules that contained gelatin or pure caffeine (6.0 mg/kg body mass) and performed afternoon exercise for 45 min at 60% maximal oxygen consumption on two separate visits with only circulating basal insulin levels. The main finding was that a single caffeine dose attenuates the drop in glycaemia by 1.8 ± 2.8 mmol/l compared with placebo intake during exercise (P=0.056). Continuous glucose monitoring data, however, showed that caffeine was associated with elevated glycaemia at bedtime after exercise, compared with placebo, but lower glucose concentrations in the early morning the next day. Caffeine intake should be considered as another strategy that may modestly attenuate hypoglycaemia in individuals with Type 1 diabetes during exercise, but should be taken with precautionary measures as it may increase the risk of late-onset hypoglycaemia. © 2015 Diabetes UK.

  6. Clinically Relevant Physical Benefits of Exercise Interventions in Breast Cancer Survivors.

    PubMed

    Kirkham, Amy A; Bland, Kelcey A; Sayyari, Sarah; Campbell, Kristin L; Davis, Margot K

    2016-02-01

    Evidence is currently limited for the effect of exercise on breast cancer clinical outcomes. However, several of the reported physical benefits of exercise, including peak oxygen consumption, functional capacity, muscle strength and lean mass, cardiovascular risk factors, and bone health, have established associations with disability, cardiovascular disease risk, morbidity, and mortality. This review will summarize the clinically relevant physical benefits of exercise interventions in breast cancer survivors and discuss recommendations for achieving these benefits. It will also describe potential differences in intervention delivery that may impact outcomes and, lastly, describe current physical activity guidelines for cancer survivors.

  7. Decreased peak arteriovenous oxygen difference during treadmill exercise testing in individuals infected with the human immunodeficiency virus.

    PubMed

    Cade, W Todd; Fantry, Lori E; Nabar, Sharmila R; Keyser, Randall E

    2003-11-01

    To determine if arteriovenous oxygen difference was lower in asymptomatic individuals with human immunodeficiency virus (HIV) infection than in sedentary but otherwise healthy controls. Quasi-experimental cross-sectional. Clinical exercise laboratory. Fifteen subjects (10 men, 5 women) with HIV and 15 healthy gender- and activity level-matched controls (total N=30). Participants performed an incremental maximal exercise treadmill test to exhaustion. Electrocardiogram, metabolic, and noninvasive cardiac output measurements were evaluated at rest and throughout the tests. Data were analyzed by using analysis of covariance. Peak oxygen consumption (Vo(2)), cardiac output, stroke volume, and arteriovenous oxygen difference. The arteriovenous oxygen difference was determined indirectly using the Fick equation. Peak VO(2) was significantly lower (P<.0005) in participants with HIV (24.6+/-1.2mL.kg(-1).min(-1)) compared with controls (32.0+/-1.2mL.kg(-1).min(-1)). There were no significant intergroup differences in cardiac output or stroke volume at peak exercise. Peak arteriovenous oxygen difference was significantly lower (P<.04) in those infected with HIV (10.8+/-0.5 volume %) than in controls (12.4+/-0.5 volume %). The observed deficit in aerobic capacity in the participants with HIV appeared to be the result of a peripheral tissue oxygen extraction or utilization limitation. In addition to deconditioning, potential mechanisms for this significant attenuation may include HIV infection and inflammation, highly active antiretroviral therapy medication regimens, or a combination of these factors.

  8. Electrostimulation improves muscle perfusion but does not affect either muscle deoxygenation or pulmonary oxygen consumption kinetics during a heavy constant-load exercise.

    PubMed

    Layec, Gwenael; Millet, Grégoire P; Jougla, Aurélie; Micallef, Jean-Paul; Bendahan, David

    2008-02-01

    Electromyostimulation (EMS) is commonly used as part of training programs. However, the exact effects at the muscle level are largely unknown and it has been recently hypothesized that the beneficial effect of EMS could be mediated by an improved muscle perfusion. In the present study, we investigated rates of changes in pulmonary oxygen consumption (VO(2p)) and muscle deoxygenation during a standardized exercise performed after an EMS warm-up session. We aimed at determining whether EMS could modify pulmonary O(2) uptake and muscle deoxygenation as a result of improved oxygen delivery. Nine subjects performed a 6-min heavy constant load cycling exercise bout preceded either by an EMS session (EMS) or under control conditions (CONT). VO(2p) and heart rate (HR) were measured while deoxy-(HHb), oxy-(HbO(2)) and total haemoglobin/myoglobin (Hb(tot)) relative contents were measured using near infrared spectroscopy. EMS significantly increased (P < 0.05) the Hb(tot) resting level illustrating a residual hyperaemia. The EMS priming exercise did not affect either the HHb time constant (17.7 +/- 14.2 s vs. 13.1 +/- 2.3 s under control conditions) or the VO(2p) kinetics (time-constant = 18.2 +/- 5.2 s vs. 15.4 +/- 4.6 s under control conditions). Likewise, the other VO(2p) parameters were unchanged. Our results further indicated that EMS warm-up improved muscle perfusion through a residual hyperaemia. However, neither VO(2p) nor [HHb] kinetics were modified accordingly. These results suggest that improved O(2) delivery by residual hyperaemia induced by EMS does not accelerate the rate of aerobic metabolism during heavy exercise at least in trained subjects.

  9. Effects of group exercise on functional abilities: Differences between physically active and physically inactive women.

    PubMed

    Cokorilo, Nebojsa; Mikalacki, Milena; Satara, Goran; Cvetkovic, Milan; Marinkovic, Dragan; Zvekic-Svorcan, Jelena; Obradovic, Borislav

    2018-03-30

    Aerobic exercises to music can have a positive effect on functional and motor skills of an exerciser, their health, as well as an aesthetic and socio-psychological component. The objective of this study was to determine the effects of reactive exercising in a group on functional capabilities in physically active and physically inactive women. A prospective study included 64 healthy women aged 40-60 years. The sample was divided into the experimental group (n= 36), i.e. physically active women who have been engaged in recreational group exercises at the Faculty of Sport and Physical Education, University of Novi Sad, Serbia, and the control group (n= 28), which consisted of physically inactive women. All the participants were monitored using the same protocol before and after the implementation of the research. All women had their height, weight, body mass index measured as well as spiroergometric parameters determined according to the Bruce protocol. A univariate analysis of variance has shown that there is a statistically significant difference between the experimental group and the control group in maximum speed, the total duration of the test, relative oxygen consumption, absolute oxygen consumption and ventilation during the final measurement. After the training intervention, the experimental group showed improvements in all the parameters analyzed compared with pretest values. The recreational group exercise model significantly improves aerobic capacity and functioning of the cardiovascular system. Therefore, it is essential for women to be involved more in any form of recreational group exercising in order to improve functional capacity and health.

  10. Energy expenditure and EPOC between water-based high-intensity interval training and moderate-intensity continuous training sessions in healthy women.

    PubMed

    Schaun, Gustavo Zaccaria; Pinto, Stephanie Santana; Praia, Aline Borges de Carvalho; Alberton, Cristine Lima

    2018-02-05

    The present study compared the energy expenditure (EE) during and after two water aerobics protocols, high-intensity interval training (HIIT) and moderate continuous training (CONT). A crossover randomized design was employed comprising 11 healthy young women. HIIT consisted of eight 20s bouts at 130% of the cadence associated with the maximal oxygen consumption (measured in the aquatic environment) with 10s passive rest. CONT corresponded to 30 min at a heart rate equivalent to 90-95% of the second ventilatory threshold. EE was measured during and 30 min before and after the protocols and excess post-exercise oxygen consumption (EPOC) was calculated. Total EE during session was higher in CONT (227.62 ± 31.69 kcal) compared to HIIT (39.91 ± 4.24 kcal), while EE per minute was greater in HIIT (9.98 ± 1.06 kcal) than in CONT (7.58 ± 1.07 kcal). Post-exercise EE (64.48 ± 3.50 vs. 63.65 ± 10.39 kcal) and EPOC (22.53 ± 4.98 vs.22.10 ± 8.00 kcal) were not different between HIIT and CONT, respectively. Additionally, oxygen uptake had already returned to baseline fifteen minutes post-exercise. These suggest that a water aerobics CONT session results in post-exercise EE and EPOC comparable to HIIT despite the latter supramaximal nature. Still, CONT results in higher total EE.

  11. The Relationship Between Heart Rate Reserve and Oxygen Uptake Reserve in Heart Failure Patients on Optimized and Non-Optimized Beta-Blocker Therapy

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients either on non-optimized or off beta-blocker therapy is known to be unreliable. The aim of this study was to evaluate the relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients receiving optimized and non-optimized beta-blocker treatment during a treadmill cardiopulmonary exercise test. METHODS A total of 27 sedentary heart failure patients (86% male, 50±12 years) on optimized beta-blocker therapy with a left ventricle ejection fraction of 33±8% and 35 sedentary non-optimized heart failure patients (75% male, 47±10 years) with a left ventricle ejection fraction of 30±10% underwent the treadmill cardiopulmonary exercise test (Naughton protocol). Resting and peak effort values of both the percentage of oxygen consumption reserve and percentage of heart rate reserve were, by definition, 0 and 100, respectively. RESULTS The heart rate slope for the non-optimized group was derived from the points 0.949±0.088 (0 intercept) and 1.055±0.128 (1 intercept), p<0.0001. The heart rate slope for the optimized group was derived from the points 1.026±0.108 (0 intercept) and 1.012±0.108 (1 intercept), p=0.47. Regression linear plots for the heart rate slope for each patient in the non-optimized and optimized groups revealed a slope of 0.986 (almost perfect) for the optimized group, but the regression analysis for the non-optimized group was 0.030 (far from perfect, which occurs at 1). CONCLUSION The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in patients on optimized beta-blocker therapy was reliable, but this relationship was unreliable in non-optimized heart failure patients. PMID:19060991

  12. Prediction of VO[subscript 2]max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data

    ERIC Educational Resources Information Center

    Black, Nate E.; Vehrs, Pat R.; Fellingham, Gilbert W.; George, James D.; Hager, Ron

    2016-01-01

    Purpose: The purpose of this study was to evaluate the use of a treadmill walk-jog-run exercise test previously validated in adults and physical activity questionnaire data to estimate maximum oxygen consumption (VO[subscript 2]max) in boys (n = 62) and girls (n = 66) aged 12 to 17 years old. Methods: Data were collected from Physical Activity…

  13. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope.

    PubMed

    Brennan, Reid S; Hwang, Ruth; Tse, Michelle; Fangue, Nann A; Whitehead, Andrew

    2016-06-01

    Regulation of internal ion homeostasis is essential for fishes inhabiting environments where salinities differ from their internal concentrations. It is hypothesized that selection will reduce energetic costs of osmoregulation in a population's native osmotic habitat, producing patterns of local adaptation. Killifish, Fundulus heteroclitus, occupy estuarine habitats where salinities range from fresh to seawater. Populations inhabiting an environmental salinity gradient differ in physiological traits associated with acclimation to acute salinity stress, consistent with local adaptation. Similarly, metabolic rates differ in populations adapted to different temperatures, but have not been studied in regard to salinity. We investigated evidence for local adaptation between populations of killifish native to fresh and brackish water habitats. Aerobic scope (the difference between minimum and maximum metabolic rates), excess post-exercise oxygen consumption, and swimming performance (time and distance to reach exhaustion) were used as proxies for fitness in fresh and brackish water treatments. Swimming performance results supported local adaptation; fish native to brackish water habitats performed significantly better than freshwater-native fish at high salinity while low salinity performance was similar between populations. However, results from metabolic measures did not support this conclusion; both populations showed an increase in resting metabolic rate and a decrease of aerobic scope in fresh water. Similarly, excess post-exercise oxygen consumption was higher for both populations in fresh than in brackish water. While swimming results suggest that environmentally dependent performance differences may be a result of selection in divergent osmotic environments, the differences between populations are not coupled with divergence in metabolic performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Job demand and cardiovascular disease risk factor in white-collar workers.

    PubMed

    Song, Young Kyu; Lee, Kang Koo; Kim, Hyoung Ryoul; Koo, Jung-Wan

    2010-01-01

    This study was conducted to determine whether job demand played a role as a risk factor of cardiovascular diseases by comparing changes of blood pressure, heart rate and rate pressure product (RPP) showing myocardial oxygen consumption (MVO2) according to levels of job demand. This cross-sectional study divided 177 male white-collar workers without a cardiovascular or metabolic disease according to their job demand and analyzed their body composition and results of graded exercise testing. There was no significant difference in height, body weight, body mass index (BMI), waist to hip ratio (WHR) and body fat percentage according to job demand. Maximal oxygen consumption (VO2max) and anaerobic threshold (AT) also did not show a significant difference. However, systolic blood pressures at the seventh and eighth stages over AT during exercise were significantly different and RPP was found to have a significant difference overall according to the job demand (p<0.05). These results meant that job demand affected systolic pressure in physical activities or at exercise intensity over AT and reduced energy efficiency of myocardium during physical activities. The results suggest that high job demand may be a risk factor of cardiovascular diseases.

  15. Conventional testing methods produce submaximal values of maximum oxygen consumption.

    PubMed

    Beltrami, Fernando G; Froyd, Christian; Mauger, Alexis R; Metcalfe, Alan J; Marino, Frank; Noakes, Timothy D

    2012-01-01

    This study used a novel protocol to test the hypothesis that a plateau in oxygen consumption (VO(2 max)) during incremental exercise testing to exhaustion represents the maximal capacity of the cardiovascular system to transport oxygen. Twenty-six subjects were randomly divided into two groups matched by their initial VO(2 max). On separate days, the reverse group performed (i) an incremental uphill running test on a treadmill (INC(1)) plus verification test (VER) at a constant workload 1 km h(-1) higher than the last completed stage in INC(1); (ii) a decremental test (DEC) in which speed started as same as the VER but was reduced progressively and (iii) a final incremental test (INC(F)). The control group performed only INC on the same days that the reverse group was tested. VO(2 max) remained within 0.6 ml kg(-1) min(-1) across the three trials for the control group (p=0.93) but was 4.4% higher during DEC compared with INC(1) (63.9 ± 3.8 vs 61.2 ± 4.8 ml kg(-1) min(-1), respectively, p=0.004) in the reverse group, even though speed at VO(2 max) was lower (14.3 ± 1.1 vs 16.2 ± 0.7 km h(-1) for DEC and INC(1), respectively, p=0.0001). VO(2 max) remained significantly higher during INC(F) (63.6 ± 3.68 ml kg(-1) min(-1), p=0.01), despite an unchanged exercise time between INC(1) and INC(F). These findings go against the concept that a plateau in oxygen consumption measured during the classically described INC and VER represents a systemic limitation to oxygen use. The reasons for a higher VO(2) during INC(F) following the DEC test are unclear.

  16. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis.

    PubMed

    Nery, Cybelle; Moraes, Silvia Regina Arruda De; Novaes, Karyne Albino; Bezerra, Márcio Almeida; Silveira, Patrícia Verçoza De Castro; Lemos, Andrea

    Physical exercise has been used to mitigate the metabolic effects of diabetes mellitus. To evaluate the effect of resistance exercise when compared to aerobic exercise without insulin therapy on metabolic and clinical outcomes in patients with type 2 diabetes mellitus. Papers were searched on the databases MEDLINE/PubMed, CINAHL, SPORTDiscus, LILACS, and SCIELO, without language or date of publication limits. Clinical trials that compared resistance exercise to aerobic exercise in adults with type 2 diabetes mellitus who did not use insulin therapy were included. The quality of evidence and risk of bias were assessed using the GRADE system and the Cochrane Risk of Bias tool, respectively. Meta-analysis was also used, whenever possible. Two reviewers extracted the data independently. Eight eligible articles were included in this study, with a total of 336 individuals, with a mean age of 48-58 years. The protocols of aerobic and resistance exercise varied in duration from eight to 22 weeks, 30-60min/day, three to five times/week. Overall the available evidence came from a very low quality of evidence and there was an increase in Maximal oxygen consumption (mean difference: -2.86; 95% CI: -3.90 to -1.81; random effect) for the resistance exercise and no difference was found in Glycated hemoglobin, Body mass index, High-density lipoprotein cholesterol, Low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Resistance exercise appears to be more effective in promoting an increase in Maximal oxygen consumption in protocols longer than 12 weeks and there is no difference in the control of glycemic and lipid levels between the two types of exercise. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Effect of Endurance Training on the Determinants of Peak Exercise Oxygen Consumption in Elderly Patients with Stable Compensated Heart Failure and Preserved Ejection Fraction

    PubMed Central

    Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.

    2012-01-01

    Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338

  18. Tricuspid annular plane systolic excursion in the assessment of right ventricular function in children and adolescents after repair of tetralogy of Fallot.

    PubMed

    Mercer-Rosa, Laura; Parnell, Aimee; Forfia, Paul R; Yang, Wei; Goldmuntz, Elizabeth; Kawut, Steven M

    2013-11-01

    Assessing right ventricular (RV) performance is essential for patients with tetralogy of Fallot (TOF). The aim of this study was to investigate the reliability and validity of tricuspid annular plane systolic excursion (TAPSE) against cardiac magnetic resonance imaging measures and cardiopulmonary exercise testing. A retrospective study was performed in 125 outpatients with repaired TOF with available protocol-driven echocardiography, cardiac magnetic resonance imaging, and exercise stress testing obtained as part of a cross-sectional study. TAPSE was measured on the two-dimensional apical four-chamber view on echocardiography by two readers. Multivariate linear regression was used to examine the association between TAPSE and measures of RV function and exercise capacity. The mean age was 12.6 ± 3.3 years, 41 patients (33%) were female, and 104 (83%) were white. TAPSE averaged 1.6 ± 0.37 cm, with an interreader intraclass correlation coefficient of 0.78 (n = 18). TAPSE was significantly associated with cardiac magnetic resonance-based RV stroke volume after adjustment for gender and body surface area (β = 13.8; 95% confidence interval, 2.25-25.30; P = .02). TAPSE was not associated with cardiac magnetic resonance-based RV ejection fraction (P = .77). On exercise testing, TAPSE was not associated with peak oxygen consumption, percentage of predicted oxygen consumption, oxygen pulse, or the ventilatory equivalent for carbon dioxide in patients with maximal exercise stress testing (n = 73 [58%]). TAPSE is reproducibly measured by echocardiography in patients with TOF. It is not associated with RV ejection fraction or exercise performance, and its association with RV stroke volume may be confounded by body size. On the basis of these results, TAPSE is not representative of global RV performance in patients with TOF. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  19. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans.

    PubMed

    Sugita, Masaaki; Kapoor, Mahendra P; Nishimura, Akinobu; Okubo, Tsutomu

    2016-03-01

    The aim of this study was to investigate the effects of green tea catechins (GTC) on oxidative stress metabolites in healthy individuals while at rest and during exercise. The effects investigated included response to fat metabolism, blood lactate concentrations, and rating of perceived exertion. In a paralleled, crossover, randomized controlled study, 16 trained male gymnastic students were randomly divided into two groups. The rest group (n = 8; GTC-NEX) received a single dose of 780 mg GTC with water but no exercise; the exercise group (n = 8; GTC-EX) received a similar dose of GTC but were instructed to exercise. This was followed by a crossover study with similar exercise regime as a placebo group (PL-EX) that received water only. Blood samples were collected at baseline and after 60 and 120 min of GTC intake. Oxidative stress blood biomarkers using the diacron reactive oxygen metabolite (d-ROMs) and biological antioxidant potential (BAP) tests; urinary 8-hydroxydeoxyguanosine (8-OHdG); 8-OHdG/creatinine; and blood lactate concentrations were analyzed. During the cycle ergometer exercise, volume of maximal oxygen uptake, volume of oxygen consumption, volume of carbon dioxide, and respiratory exchange ratio were measured from a sample of respiratory breath gas collected during low, moderate, and high intensity exercising, and the amount of fat burning and sugar consumption were calculated. Analysis of variance was used to determine statistical significance (P < 0.05) between and among the groups. Levels of postexercise oxidative stress metabolites BAP and d-ROMs were found significant (P < 0.0001) in the PL-EX and GTC-EX groups, and returned to pre-exercise levels after the recovery period. Levels of d-ROMs showed no significant difference from baseline upon GTC intake followed by resting and a resting recovery period in the GTC-NEX group. BAP levels were significant upon GTC intake followed by resting (P = 0.04), and after a resting recovery period (P = 0.0006) in the GTC-NEX group. Urinary 8-OHdG levels were significant (P < 0.005) for all groups after the recovery period. A significant difference was noticed between the ratios of resting BAP to d-ROMs and exercise-induced BAP to d-ROMs (P = 0.022) after 60 min of GTC intake, as well as resting 8-OHdG and exercise-induced 8-OHdG levels (P = 0.004) after the recovery period. Oxidative potentials were higher when exercise was performed at low to moderate intensity, accompanied by lower blood lactate concentration and higher amounts of fat oxidation. The results of the present study indicate that single-dose consumption of GTC influences oxidative stress biomarkers when compared between the GTC-NEX and GTC-EX groups, which could be beneficial for oxidative metabolism at rest and during exercise, possibly through the catechol-O-methyltransferase mechanism that is most often cited in previous studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Are the oxygen uptake and heart rate off-kinetics influenced by the intensity of prior exercise?

    PubMed

    do Nascimento Salvador, Paulo Cesar; de Aguiar, Rafael Alves; Teixeira, Anderson Santiago; Souza, Kristopher Mendes de; de Lucas, Ricardo Dantas; Denadai, Benedito Sérgio; Guglielmo, Luiz Guilherme Antonacci

    2016-08-01

    The aim of this study was to investigate the effect of prior exercise on the heart rate (HR) and oxygen uptake (VO2) off-kinetics after a subsequent high-intensity running exercise. Thirteen male futsal players (age 22.8±6.1years) performed a series of high-intensity bouts without prior exercise (control), preceded by a prior same intensity continuous exercise (CE+CE) and a prior sprint exercise (SE+CE). The magnitude of excess post-exercise oxygen consumption (EPOCm-4.25±0.19 vs. 3.69±0.20Lmin(-1) in CE+CE and 3.62±0.18Lmin(-1) in control; p<0.05) and the parasympathetic reactivation (HRR60s-33±3 vs. 37±3bpm in CE+CE and 42±3 bpm in control; p<0.05) in the SE+CE were higher and slower, compared with another two conditions. The EPOCτ (time to attain 63% of total response; 53±2s) and the heart rate time-course (HRτ-86±5s) were significantly longer after the SE+CE condition than control transition (48±2s and 69±5s, respectively; p<0.05). The SE+CE induce greater stress on the metabolic function, respiratory system and autonomic nervous system regulation during post-exercise recovery than CE, highlighting that the inclusion of sprint-based exercises can be an effective strategy to increase the total energy expenditure following an exercise session. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of sleep disturbances on subsequent physical performance.

    PubMed

    Mougin, F; Simon-Rigaud, M L; Davenne, D; Renaud, A; Garnier, A; Kantelip, J P; Magnin, P

    1991-01-01

    The purpose of the study was to compare the cardiovascular, respiratory and metabolic responses to exercise of highly endurance trained subjects after 3 different nights i.e. a baseline night, a partial sleep deprivation of 3 h in the middle of the night and a 0.25-mg triazolam-induced sleep. Sleep-waking chronobiology and endurance performance capacity were taken into account in the choice of the subjects. Seven subjects exercised on a cycle ergometer for a 10-min warm-up, then for 20 min at a steady exercise intensity (equal to the intensity corresponding to 75% of the predetermined maximal oxygen consumption) followed by an increased intensity until exhaustion. The night with 3 h sleep loss was accompanied by a greater number of periods of wakefulness (P less than 0.01) and fewer periods of stage 2 sleep (P less than 0.05) compared with the results recorded during the baseline night. Triazolam-induced sleep led to an increase in stage 2 sleep (P less than 0.05), a decrease in wakefulness (P less than 0.05) and in stage 3 sleep (P less than 0.05). After partial sleep deprivation, there were statistically significant increases in heart rate (P less than 0.05) and ventilation (P less than 0.05) at submaximal exercise compared with results obtained after the baseline night. Both variables were also significantly enhanced at maximal exercise, while the peak oxygen consumption (VO2) dropped (P less than 0.05) even though the maximal sustained exercise intensity was not different.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Modeling static and dynamic human cardiovascular responses to exercise.

    PubMed

    Stremel, R W; Bernauer, E M; Harter, L W; Schultz, R A; Walters, R F

    1975-08-01

    A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.

  3. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure and Preserved Ejection Fraction A Randomized, Controlled Trial

    PubMed Central

    Kitzman, Dalane W.; Brubaker, Peter; Morgan, Timothy; Haykowsky, Mark; Hundley, Gregory; Kraus, William E.; Eggebeen, Joel; Nicklas, Barbara J.

    2016-01-01

    Importance More than 80% of patients with heart failure with preserved ejection fraction (HFPEF), the most common form of HF among older persons, are overweight/obese. Exercise intolerance is the primary symptom of chronic HFPEF and a major determinant of reduced quality-of-life (QOL). Objective To determine whether caloric restriction (Diet), or aerobic exercise training (Exercise), improves exercise capacity and QOL in obese older HFPEF patients. Design Randomized, attention-controlled, 2x2 factorial trial conducted from February 2009 November 2014. Setting Urban academic medical center. Participants 100 older (67±5 years) obese (BMI=39.3±5.6kg/m2) women (n=81) and men (n=19) with chronic, stable HFPEF enrolled from 577 patients initially screened (366 excluded by inclusion / exclusion criteria, 31 for other reasons, 80 declined participation). Twenty-six participants were randomized to Exercise alone, 24 to Diet alone, 25 to Diet+Exercise, and 25 to Control; 92 completed the trial. Interventions 20 weeks of Diet and/or Exercise; Attention Control consisted of telephone calls every 2 weeks. Main Outcomes and Measures Exercise capacity measured as peak oxygen consumption (VO2, ml/kg/min; primary outcome) and QOL measured by the Minnesota Living with HF Questionnaire (MLHF) total score (co-primary outcome; score range: 0–105, higher scores indicate worse HF-related QOL). Results By main effects analysis, peak VO2 was increased significantly by both interventions: Exercise main effect 1.2 ml/kg/min (95%CI: 0.7,1.7; p<0.001); Diet main effect 1.3 ml/kg/min (95%CI: 0.8,1.8; p<0.001). The combination of Exercise+Diet was additive (complementary) for peak VO2 (joint effect 2.5 ml/kg/min). The change in MLHF total score was non-significant with Exercise (main effect −1 unit; 95%CI: −8,5; p=0.70) and with Diet (main effect −6 units; 95%CI: −12,1; p=0.078). The change in peak VO2 was positively correlated with the change in percent lean body mass (r=0.32; p=0.003) and the change in thigh muscle/intermuscular fat ratio (r=0.27; p=0.02). There were no study-related serious adverse events. Exercise attendance was 84±14%; Diet compliance was 99±1%. Body weight decreased by 7±1 kg (7%) in Diet, 4±1 kg (3%) in Exercise, 11±1 kg (10%) in Exercise+Diet, and 1±1 kg (1%) in Control. Conclusion and Relevance Among obese older patients with clinically stable heart failure and preserved ejection fraction, caloric restriction diet or aerobic exercise training increased peak oxygen consumption, and the effects may be additive. Neither intervention had a significant effect on quality of life as measured by the Minnesota Living with Heart Failure Questionnaire, Clinical Trial Registration Clinicaltrials.gov, NCT00959660; https://clinicaltrials.gov/ct2/show/NCT00959660 PMID:26746456

  4. The health effects of exercising in air pollution.

    PubMed

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  5. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    PubMed

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.

  6. Effect of energy drink intake before exercise on indices of physical performance in untrained females

    PubMed Central

    Al-Fares, Maiadah N.; Alsunni, Ahmed A.; Majeed, Farrukh; Badar, Ahmed

    2015-01-01

    Objectives: To determine the effect of energy drink consumption before exercise on indices of physical performance in untrained females. Methods: This single blind placebo controlled experimental study was carried out at the Physiology Department, University of Dammam, Dammam, Kingdom of Saudi Arabia from September 2011 to May 2012, on 32 healthy female students, in a crossover design. They were given either a standardized energy drink or the placebo 45 minutes before the exercise. Time to exhaustion and the stages of Bruce protocol achieved were noted. Heart rate, blood pressure, peripheral capillary oxygen saturation, and blood lactate were recorded before and after the exercise. Maximum oxygen consumption (VO2max) was calculated by formula. Paired sample t-test was used for statistics. Results: The mean age was 19.93±0.8 years, mean height 156.40±3.83 cm, and the mean weight 51.73±3.65 kg. Time to exhaustion in the placebo group was 11.67±1.51 minutes and 11.41±1.56 in the energy drink group (p<0.157). The VO2max in the placebo group was 34.06±6.62, while it was 32.89±6.83 in the energy drink group (p<0.154). There were no significant differences between the placebo and the energy drinks groups in regards to heart rate, blood pressure, and blood lactate levels, before or after the exercise. However, there were significant differences before, immediately, and 30 minutes post exercise for all parameters between each group. Conclusion: The effects of energy drinks intake on physical performance during the exercise in our small sample does not significantly differ from placebo. PMID:25935179

  7. Effect of energy drink intake before exercise on indices of physical performance in untrained females.

    PubMed

    Al-Fares, Maiadah N; Alsunni, Ahmed A; Majeed, Farrukh; Badar, Ahmed

    2015-05-01

    To determine the effect of energy drink consumption before exercise on indices of physical performance in untrained females. This single blind placebo controlled experimental study was carried out at the Physiology Department, University of Dammam, Dammam, Kingdom of Saudi Arabia from September 2011 to May 2012, on 32 healthy female students, in a crossover design. They were given either a standardized energy drink or the placebo 45 minutes before the exercise. Time to exhaustion and the stages of Bruce protocol achieved were noted. Heart rate, blood pressure, peripheral capillary oxygen saturation, and blood lactate were recorded before and after the exercise. Maximum oxygen consumption (VO2max) was calculated by formula. Paired sample t-test was used for statistics. The mean age was 19.93±0.8 years, mean height 156.40±3.83 cm, and the mean weight 51.73±3.65 kg. Time to exhaustion in the placebo group was 11.67±1.51 minutes and 11.41±1.56 in the energy drink group (p less than 0.157). The VO2max in the placebo group was 34.06±6.62, while it was 32.89±6.83 in the energy drink group (p less than 0.154). There were no significant differences between the placebo and the energy drinks groups in regards to heart rate, blood pressure, and blood lactate levels, before or after the exercise. However, there were significant differences before, immediately, and 30 minutes post exercise for all parameters between each group. The effects of energy drinks intake on physical performance during the exercise in our small sample does not significantly differ from placebo.

  8. The importance of daily physical activity for improved exercise tolerance in heart failure patients with limited access to centre-based cardiac rehabilitation.

    PubMed

    Sato, Noriaki; Origuchi, Hideki; Yamamoto, Umpei; Takanaga, Yasuhiro; Mohri, Masahiro

    2012-09-01

    Supervised cardiac rehabilitation provided at dedicated centres ameliorates exercise intolerance in patients with chronic heart failure. To correlate the amount of physical activity outside the hospital with improved exercise tolerance in patients with limited access to centre-based programs. Forty patients (median age 69 years) with stable heart failure due to systolic left ventricular dysfunction participated in cardiac rehabilitation once per week for five months. Using a validated single-axial accelerometer, the number of steps and physical activity-related energy expenditures on nonrehabilitation days were determined. Median (interquartile range) peak oxygen consumption was increased from 14.4 mL/kg/min (range 12.9 mL/kg/min to 17.8 mL/kg/min) to 16.4 mL/kg/min (range 13.9 mL/kg/min to 19.1 mL/kg/min); P<0.0001, in association with a decreased slope of the minute ventilation to carbon dioxide production plot (34.2 [range 31.3 to 38.1] versus 32.7 [range 30.3 to 36.5]; P<0.0001). Changes in peak oxygen consumption were correlated with the daily number of steps (P<0.01) and physical activity-related energy expenditures (P<0.05). Furthermore, these changes were significantly correlated with total exercise time per day and time spent for light (≤3 metabolic equivalents) exercise, but not with time spent for moderate/vigorous (>3 metabolic equivalents) exercise. The number of steps and energy expenditures outside the hospital were correlated with improved exercise capacity. An accelerometer may be useful for guiding home-based cardiac rehabilitation.

  9. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    PubMed

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  10. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students

    PubMed Central

    SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA

    2014-01-01

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a “physically active” home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system. PMID:27182399

  11. Validation of the Omni Scale of Perceived Exertion in a sample of Spanish-speaking youth from the USA.

    PubMed

    Suminski, Richard R; Robertson, Robert J; Goss, Fredric L; Olvera, Norma

    2008-08-01

    Whether the translation of verbal descriptors from English to Spanish affects the validity of the Children's OMNI Scale of Perceived Exertion is not known, so the validity of a Spanish version of the OMNI was examined with 32 boys and 36 girls (9 to 12 years old) for whom Spanish was the primary language. Oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and ratings of perceived exertion for the overall body (RPE-O) were measured during an incremental treadmill test. All response values displayed significant linear increases across test stages. The linear regression analyses indicated RPE-O values were distributed as positive linear functions of oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and percent of maximal oxygen consumption. All regression models were statistically significant. The Spanish OMNI Scale is valid for estimating exercise effort during walking and running amongst Hispanic youth whose primary language is Spanish.

  12. Exercise effect with the wheelchair aerobic fitness trainer on conditioning and metabolic function in disabled persons: a pilot study.

    PubMed

    Midha, M; Schmitt, J K; Sclater, M

    1999-03-01

    To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.

  13. (−)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats

    PubMed Central

    Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.

    2013-01-01

    Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  14. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    PubMed

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  15. The effect of temperature on the resting and post-exercise metabolic rates and aerobic metabolic scope in shortnose sturgeon Acipenser brevirostrum.

    PubMed

    Zhang, Yueyang; Kieffer, James D

    2017-10-01

    The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO 2 ) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO 2 of shortnose sturgeon increased significantly from 126.75 mg O 2  h -1  kg -1 at 15 °C to 253.13 mg O 2  h -1  kg -1 at 25 °C. The temperature coefficient (Q 10 ) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO 2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO 2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO 2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO 2 -routine MO 2 ) increased to a maximum value ∼156 mg O 2  h -1  kg -1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.

  16. Exercise duration and peak systolic blood pressure are predictive of mortality in ambulatory patients with mild-moderate chronic heart failure.

    PubMed

    Williams, Simon G; Jackson, Mark; Ng, Leong L; Barker, Diane; Patwala, Ashish; Tan, Lip-Bun

    2005-01-01

    It is a prevailing concept in chronic heart failure (CHF) that ventricular remodelling (evaluated via imaging) and neurohormonal activation (via biomarkers) exert major influences, such that the need to subject patients to haemodynamic evaluations and exercise testing has been questioned. We sought to investigate whether exercise and haemodynamic parameters lack independent prognostic value in a cohort of unselected ambulatory patients with mild-moderate CHF. Eighty-five consecutive patients with stable CHF in New York Heart Association functional classes I-IV, aged 55 +/- 12 years, 84% males, left ventricular ejection fraction (LVEF) 37 +/- 15%, participated in this study. Survivors were followed for a median of 5.08 years. All subjects underwent cardiopulmonary exercise testing to measure standard parameters including peak oxygen consumption, exercise duration and blood pressure. A sample of venous blood was taken to determine the N-terminal pro-brain natriuretic peptide (N-BNP) level. Echocardiography was performed at rest to measure LVEF. Predictors of mortality were sought using the Cox proportional hazards model. All-cause mortality was 19% (16 deaths, 95% CI 11-29%). Age and LVEF did not independently predict mortality. Although various parameters including New York Heart Association class, peak oxygen consumption and N-BNP level were all predictive of outcome on univariate analysis, multivariate analysis identified reduced exercise duration and peak systolic blood pressure (SBP) to be the only independent predictors of all-cause mortality. Hazard ratios of 0.78 (95% CI 0.65-0.93, p = 0.007) and 0.79 (95% CI 0.66-0.95, p = 0.01) were associated with an increase in exercise duration of 1 min and 10 mm Hg peak SBP, respectively. Two simple parameters (exercise duration and peak SBP) that are easily measured by standard exercise testing are the strongest independent predictors of mortality which outperform LVEF and N-BNP in ambulatory patients with mild-moderate CHF. Copyright (c) 2005 S. Karger AG, Basel.

  17. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Pang, Xu; Yuan, Xing-Zhong; Cao, Zhen-Dong; Fu, Shi-Jian

    2013-01-01

    To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate (MO(2rest)), critical swimming speed (U(crit)) and active oxygen consumption rate (MO(2active)) of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the MO(2rest), U(crit) and MO(2active) of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U(crit) and temperature (T) approximately followed a bell-shaped curve as temperature increased: U(crit) = 8.21/{1 + [(T - 27.2)/17.0]²} (R² = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U(crit) (8.21 BL s(-1)) in juvenile qingbo was 27.2 °C. Both the MO(2active) and the metabolic scope (MS, MO(2active) - MO(2rest)) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between MO(2active) or MS and temperature were described as MO(2active) = 1,214.29 /{1 + [(T - 28.8)/10.6]²} (R² = 0.911, P < 0.001, N = 40) and MS = 972.67/{1 + [(T - 28.0)/9.34]²} (R² = 0.878, P < 0.001, N = 40). The optimal temperatures for MO(2active) and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U(crit) and MO(2active) at a low temperature (P < 0.05), but training exhibited no significant effect on either U(crit) or MO(2active) at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.

  18. Efficacy of treadmill exercises on arterial blood oxygenation, oxygen consumption and walking distance in healthy elderly people: a controlled trial.

    PubMed

    Bichay, Ashraf Adel Fahmy; Ramírez, Juan M; Núñez, Víctor M; Lancho, Carolina; Poblador, María S; Lancho, José L

    2016-05-25

    Regular physical exercise and healthy lifestyle can improve aerobic power of the elderly, although lung capacity gradually deteriorates with age. The aims of the study are: a) to evaluate the therapeutic effect of a treadmill exercise program on arterial blood oxygenation (SaO2), maximum oxygen consumption (VO2max) and maximum walking distance (MWD) in healthy elderly people; b) to examine the outcome of the program at a supervised short-term and at an unsupervised long-term. A prospective, not-randomized controlled intervention trial (NRCT) was conducted. Eighty participants were allocated into two homogeneous groups (training group, TG, n = 40; control group, CG, n = 40). Each group consisted of 20 men and 20 women. Pre-intervention measures of SaO2, VO2max and MWD were taken of each participant 1-week before the training program to establish the baseline. Also, during the training program, the participants were followed up at the 12, 30 and 48th week. The exercise program consisted of walking on a treadmill with fixed 0 % grade of inclination 3 times weekly for 48 weeks; the first 12 weeks were supervised and the remaining 36 weeks of the program were unsupervised. Participants in the control group were encouraged to walk twice a week during 45 min, and received standard recommendations for proper health. Related to the baseline, the SaO2, VO2max, and MWD is greater in the intervention group at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Compared with the control group, there was also a significant improvement of SaO2, VO2max, and MWD valuesin the intervention group (p <.001) at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Supervised intervention shows greater improvement of SaO2, VO2max, and MWD values than in the unsupervised one. These results show that performing moderate exercise, specifically walking 3 days a week, is highly recommended for healthy older people, improving aerobic power. Current Controlled Trials ISRCTN12621097 .

  19. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise

    PubMed Central

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A.; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E.; Goldman, Alfredo

    2016-01-01

    Purpose The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Methods Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V˙O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V˙O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. Results All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). Conclusion These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research. PMID:26727499

  20. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise.

    PubMed

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E; Goldman, Alfredo

    2016-01-01

    The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research.

  1. Improvement in exercise performance by inhalation of methoxamine in patients with impaired left ventricular function.

    PubMed

    Cabanes, L; Costes, F; Weber, S; Regnard, J; Benvenuti, C; Castaigne, A; Guerin, F; Lockhart, A

    1992-06-18

    Bronchial hyperresponsiveness to cholinergic stimuli such as the inhalation of methacholine is common in patients with impaired left ventricular function. Such hyperresponsiveness is best explained by cholinergic vasodilation of blood vessels in the small airways, with extravasation of plasma due to high left ventricular filling pressure. Because this vasodilation may be prevented by the inhalation of the vasoconstrictor agent methoxamine, we studied the effect of methoxamine on exercise performance in patients with chronic left ventricular dysfunction. We studied 19 patients with a mean left ventricular ejection fraction of 22 +/- 4 percent and moderate exertional dyspnea. In the first part of the study, we performed treadmill exercise tests in 10 patients (group 1) at a constant maximal workload to assess the effects of 10 mg of inhaled methoxamine on the duration of exercise (a measure of endurance). In the second part of the study, we used a graded exercise protocol in nine additional patients (group 2) to assess the effects of inhaled methoxamine on maximal exercise capacity and oxygen consumption. Both studies were carried out after the patients inhaled methoxamine or placebo given according to a randomized, double-blind, crossover design. In group 1, the mean (+/- SD) duration of exercise increased from 293 +/- 136 seconds after the inhalation of placebo to 612 +/- 257 seconds after the inhalation of methoxamine (P = 0.001). In group 2, exercise time (a measure of maximal exercise capacity) increased from 526 +/- 236 seconds after placebo administration to 578 +/- 255 seconds after methoxamine (P = 0.006), and peak oxygen consumption increased from 18.5 +/- 6.0 to 20.0 +/- 6.0 ml per minute per kilogram of body weight (P = 0.03). The inhalation of methoxamine enhanced exercise performance in patients with chronic left ventricular dysfunction. However, the improvement in the duration of exercise at a constant workload (endurance) was much more than the improvement in maximal exercise capacity assessed with a progressive workload. These data suggest that exercise-induced vasodilation of airway vessels may contribute to exertional dyspnea in such patients. Whether or not inhaled methoxamine can provide long-term benefit in patients with heart failure will require further study.

  2. The influence of grip on oxygen consumption and leg forces when using classical style roller skis.

    PubMed

    Ainegren, M; Carlsson, P; Laaksonen, M S; Tinnsten, M

    2014-04-01

    The purpose of this study was to investigate the influence of classical style roller skis' grip (static friction coefficients, μS) on cross-country skiers' oxygen consumption and leg forces during treadmill roller skiing, when using the diagonal stride and kick double poling techniques. The study used ratcheted wheel roller skis from the open market and a uniquely designed roller ski with an adjustable camber and grip function. The results showed significantly (P ≤ 0.05) higher oxygen consumption (∼ 14%), heart rate (∼ 7%), and lower propulsive forces from the legs during submaximal exercise and a shorter time to exhaustion (∼ 30%) in incremental maximal tests when using roller skis with a μS similar to on-snow skiing, while there was no difference between tests when using different pairs of roller skis with a similar, higher μS. Thus, we concluded that oxygen consumption (skiing economy), propulsive leg forces, and performance time are highly changed for the worse when using roller skis with a lower μS, such as for on-snow skiing with grip-waxed cross-country skis, in comparison to ratcheted wheel roller skis with several times higher μS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2016-01-01

    temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221: 427-431, 1971. 33. Brouns I, De Proost I, Pintelon I, Timmermans JP...lactic acid production (Fig. 8). The lack of effect is not unexpected because the increase in arterial O2 content by oxygen ventilation is limited to the...triggering the bronchospasm; 2) whether this effect is heightened by acute airway inflammation; and 3) the temperature thresholds of thermal stress in

  4. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.

    PubMed

    Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2018-02-01

    To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O 2 /min/100 g or 6.0 ± 1.9 mL O 2 /min/100 g, respectively. vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. A three-phase excess post-exercise oxygen consumption in Atlantic salmon Salmo salar and its response to exercise training.

    PubMed

    Zhang, Y; Claireaux, G; Takle, H; Jørgensen, S M; Farrell, A P

    2018-03-09

    The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post-exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise-trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v. 629·2 ± 53·4 mg O 2 kg -1 , d.f. = 9, P < 0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v. 3·4 ± 0·16 h, d.f. = 9, P < 0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v. 312·5 ± 50·4 mg O 2 kg -1 , d.f. = 9, P < 0·05). As a result, the combination of the plateau and slow phases of exercise-trained fish increased by 47% compared with control fish (756·6 ± 71·4 v. 513·6 ± 43·1 mg O 2 kg -1 ; d.f. = 9, P = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time-course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes. © 2018 The Fisheries Society of the British Isles.

  6. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  7. [Effects of exercise therapy at the intensity of anaerobic threshold for exercise tolerance in patients with chronic stable coronary artery disease].

    PubMed

    Che, Lin; Gong, Zhu; Jiang, Jin-fa; Xu, Wen-jun; Deng, Bing; Xu, Jia-hong; Yan, Wen-wen; Zhang, Qi-ping; Wang, Le-min

    2011-06-28

    To investigate the effects of exercise therapy at the intensity of anaerobic threshold (AT) for exercise tolerance in patients with chronic stable coronary artery disease. Forty-three patients with chronic stable coronary artery disease (3 patients after coronary arterial bypass graft (CABG) surgery, 22 patients with old myocardial infarction and 18 unstable angina pectoris undergoing successful percutaneous coronary intervention (PCI) finished twice cardiopulmonary exercise test (CPET) and followed their rehabilitation program for 3 months. Thirty-two patients finished their aerobic exercise therapy based on their individual anaerobic thresholds while 11 patients had no exercise therapy. The heart rate at AT intensity (97 ± 9/min) was lower than their traditional minimal target heart rate (112 ± 7/min) and lower than heart rate (115 ± 11/min) at ischemic threshold post-CPET. The O(2) consumption (10.7 ± 2.4 to 12.6 ± 2.9 ml×min(-1)×kg(-1)) (P = 0.04) and workload (37 ± 18 to 47 ± 13 J/s) (P = 0.04) at AT level and the O(2) consumption (15.3 ± 3.1 to 20.6 ± 4.2 ml×min(-1)×kg(-1), P = 0.02) and workload(68 ± 12 and 87 ± 14 J/s, P = 0.01) at peak level markedly increased after 3 months in the exercise group. And the O(2) consumption (15.3 ± 2.9 to 16.2 ± 3.1 ml×min(-1)×kg(-1)) and workload (65 ± 13 to 73 ± 16 J/s) at peak level mild increased after 3 months in the non-exercise group, but their O(2) consumption (11.0 ± 2.7 to 11.3 ± 2.8 ml×min(-1)×kg(-1)) and workload (38 ± 11 to 37 ± 9 J/s) at AT level had no obvious change. AT exercise intensity was lower than ischemic threshold post-CPET. Exercise therapy at the intensity of anaerobic threshold can improve oxygen capacity and exercise tolerance.

  8. [Exercise in haemodyalisis patients: a literature systematic review].

    PubMed

    Segura-Ortí, Eva

    2010-01-01

    Exercise as a therapeutic tool used in End-stage renal disease patients (ESRD) in hemodialysis (HD) is not routinately applied, as it occurs with cardiac or respiratory patients. Lack of awareness of research in this field may contribute to the current situation. Thus, the aims of this review are: 1) to systematically review the literature of exercise training on adult HD patients or patients at a pre-HD stage; 2) to show the evidence on the benefits of exercise for counteracting physiological, functional and psychological impairments found even in older ESRD patients; 3) to recommend requirements of future research in order to include exercise prescription in the HD patients treatment. The Data bases reviewed from 2005 to 2009 were: MEDLINE (Ovid), CINAHL (EBSCOHost), SportDicus (EBSCOHost), Academic Search Complete (EBSCOHost), Fuente Académica (EBSCOHost), MedicLatina (EBSCOHost), PEDro y PubMed. Additionally, references from identified articles, several reviews on ESRD and abstracts to Nephrology Congresses were also reviewed. Randomized Controlled Trials on aerobic, strength and combined programs for HD patients were selected. Data from the studies was compiled and Van Tulder criteria were used for methodological quality assessment. Metanalysis included 6 studies on aerobic exercise, 2 on strength exercise and 5 on combined exercise programs. 640 patients were included in 16 included studies. Effects on physical function, health related quality of life and other secondary measurements were summarized by the Standardized Mean Difference (SMD) Moderate evidence exists on positive effects of aerobic training on peak oxygen consumption at the graded exercise test (SMD 6.55; CI 95%: 4.31-8.78). There is high evidence on positive effects of strength training on health related quality of life (SMD 11.03; CI 95%: 5.63-16.43). Finally, moderate evidence exists on positive effects of combined exercise on peak oxygen consumption at the graded exercise test (SMD 5.57; CI 95%: 2.52-8.61). Summarizing, moderate evidence exists on the improvement on exercise capacity of aerobic training, isolated or combined with strength training. Strength training improves health related quality of life, functional capacity and lower limbs strength. Future studies should clarify which out of the three modalities results in higher benefits for HD patients.

  9. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat.

    PubMed

    James, Carl A; Richardson, Alan J; Watt, Peter W; Willmott, Ashley G B; Gibson, Oliver R; Maxwell, Neil S

    2017-03-01

    This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W·kg -1 ), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV̇O 2max ; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, -6.2(5.5)%; CON, -0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL·kg -1 ·min -1 (7.3(4.0)%) and CON +1.9(3.7) mL·kg -1 ·min -1 (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV̇O 2max ). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.

  10. Long-term effects of cardiac rehabilitation in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Stevens, Emily; Hodge, Claire; Brown, Casey; Walker, Robert; Body, Dianne; Barclay, Leanne; Nye, Edwin R; Williams, Michael J A

    2016-01-01

    To compare exercise capacity and cardiovascular response to exercise in elderly individuals with coronary artery disease (CAD) who attend ongoing community-based maintenance cardiac rehabilitation (CR) versus age- and gender-matched healthy "very active" (HVA; ≥ 2000 kcal/week) and healthy "less active" (HLA; <2000 kcal/week) individuals. Sixty-three participants (age: 72.3 ± 5.1 years; 62% men; n = 21 per group) completed the following assessments: (1) symptom-limited graded exercise test with expired gas analysis and bioimpedance assessment of cardiovascular function during exercise; (2) walking tests; (3) physical function; (4) anthropometry and (5) 12-month physical activity recall. The CR group achieved 98% (range: 73-154%) of age- and gender-predicted peak oxygen consumption for healthy individuals. Peak oxygen consumption was lower in CR compared to HVA but not HLA group (VO2peak: CR: 19.0 ± 4.5, HVA: 23.7 ± 2.9, HLA: 20.7 ± 4.7 ml ·kg(-1)ċmin(-1), p = 0.001 versus HVA; p = 0.390 versus HLA). Peak heart rate was lower in CR compared to both HVA and HLA. Walking test results and cardiovascular and physical function were not different between the groups. Elderly individuals with CAD participating in maintenance CR have similar exercise capacity and cardiorespiratory response to exercise compared to their age- and gender-matched less active healthy peers. The findings support referral of elderly patients to community-based CR. Fitness benefits of long-term maintenance cardiac rehabilitation (CR) programs remain unknown. Elderly individuals with coronary artery disease participating in maintenance CR have exercise capacity and cardiorespiratory response to exercise similar to their less active healthy peers. Maintenance CR may play an important role prolonging independent living in elderly individuals.

  11. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    PubMed

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p < 0.05). VO2 responses were as follows: pliés (17.6 ± 1.6 ml·kg(-1)·min(-1)); tendus and adage were not significantly greater than VT1; rond de jambes (21.8 ± 3.1 ml·kg(-1) ·min(-1)); fondus and jetés were higher than VT1 and the previous exercises; grand battements (25.8 ± 2.9 ml·kg(-1)·min(-1)) was greater than all the other exercises and VT1; and VT2 was significantly higher than all ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and VT2. However, ballet set workloads may be higher when based on HR responses, due to the intermittent and isometric components of dance.

  12. Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.

    PubMed

    Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy

    2007-01-01

    This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.

  13. Impact of melatonin supplementation in the rat spermatogenesis subjected to forced swimming exercise.

    PubMed

    Moayeri, A; Mokhtari, T; Hedayatpour, A; Abbaszadeh, H-A; Mohammadpour, S; Ramezanikhah, H; Shokri, S

    2018-04-01

    Oxygen consumption increases many times during exercise, which can increase reactive oxygen species. It negatively affects fertility in male athletes. Melatonin is exerting a regulatory role at different levels of the hypothalamic-pituitary-gonadal axis. However, there is no evidence that the protective effects of melatonin persist after long duration exercise on the spermatogenesis. Therefore, this study was conducted to examine the impacts of melatonin on the testis following the administration of swimming exercise. Rats were separated into five different groups, including Control, sham M: received the solvent of melatonin, M: received melatonin, S: the exercise protocol, MS: received melatonin and the exercise protocol. After 8 weeks, animals were scarified and antioxidant enzymes levels of testes, spermatogenic cells apoptosis and sperm quality were measured. Swimming decreased all parameters of spermatozoa. Nevertheless, melatonin could significantly improve the progressive motility of spermatozoa in MS rats. Swimming caused an increased apoptosis of S group and decreased all antioxidant enzymes. Melatonin could drastically reduce apoptosis and increased these enzymes. Therefore, melatonin seems to induce the production of antioxidant enzymes of testicular tissues and diminish the extent of apoptotic changes caused by forced exercise on the testis, which can, in turn, ameliorate the sperm parameters. © 2017 Blackwell Verlag GmbH.

  14. Muscle glycogen depletion and subsequent replenishment affect anaerobic capacity of horses.

    PubMed

    Lacombe, V A; Hinchcliff, K W; Geor, R J; Baskin, C R

    2001-10-01

    The purpose of this study was to determine the effect of muscle glycogen depletion and subsequent replenishment on anaerobic capacity of horses. In a blinded crossover study, seven fit horses performed glycogen-depleting exercise on two occasions. Horses were infused after glycogen-depleting exercise with either 6 g/kg body wt of glucose as a 13.5% solution in 0.9% NaCl (Glu) or with 0.9% NaCl (Sal) of equivalent volume. Subsequently, horses performed a high-speed exercise test (120% of maximal rate of oxygen consumption) to estimate maximum accumulated oxygen deficit. Replenishment of muscle glycogen was greater (P < 0.05) in Glu [from 24.7 +/- 7.2 (SE) to 116.5 +/- 7 mmol/kg wet wt before and after infusion, respectively] than in Sal (from 23.4 +/- 7.2 to 47.8 +/- 5.7 mmol/kg wet wt before and after infusion, respectively). Run time to fatigue during the high-speed exercise test (97.3 +/- 8.2 and 70.8 +/- 8.3 s, P < 0.05), maximal accumulated oxygen deficit (105.7 +/- 9.3 and 82.4 +/- 10.3 ml O(2) equivalent/kg, P < 0.05), and blood lactate concentration at the end of the high-speed exercise test (11.1 +/- 1.4 and 9.2 +/- 3.7 mmol/l, P < 0.05) were greater for Glu than for Sal, respectively. We concluded that decreased availability of skeletal muscle glycogen stores diminishes anaerobic power generation and capacity for high-intensity exercise in horses.

  15. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®

    PubMed Central

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-01-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308

  16. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).

    PubMed

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-09-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.

  17. Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking

    PubMed Central

    Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E

    2012-01-01

    Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941

  18. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    PubMed Central

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  19. Effects of warm-up intensity on oxygen transport during supramaximal exercise in horses.

    PubMed

    Mukai, Kazutaka; Hiraga, Atsushi; Eto, Daisuke; Takahashi, Toshiyuki; Hada, Tetsuro; Tsubone, Hirokazu; Jones, James H

    2008-05-01

    To determine whether warm-up exercise at different intensities alters kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal exercise in horses. 11 horses. Horses ran at a sprint until fatigued at 115% of maximal oxygen consumption rate (VO(2max)), beginning at 10 minutes following each of 3 warm-up protocols: no warmup (NoWU), 1 minute at 70% VO(2max) (moderate-intensity warm-up [MoWU]), or 1 minute at 115% VO(2max) (high-intensity warm-up [HiWU]). Cardiopulmonary and blood gas variables were measured during exercise. The VO(2) was significantly higher in HiWU and MoWU than in NoWU throughout the sprint exercise period. Blood lactate accumulation rate in the first 60 seconds was significantly lower in MoWU and HiWU than in NoWU. Specific cardiac output after 60 seconds of sprint exercise was not significantly different among the 3 protocols; however, the arterial mixed-venous oxygen concentration difference was significantly higher in HiWU than in NoWU primarily because of decreased mixed-venous saturation and tension. Run time to fatigue following MoWU was significantly greater than that with NoWU, and there was no difference in time to fatigue between MoWU and HiWU. HiWU and MoWU increased peak values for VO(2) and decreased blood lactate accumulation rate during the first minute of intense exercise, suggesting a greater use of aerobic than net anaerobic power during this period.

  20. Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises.

    PubMed

    Denis, Romain; Wilkinson, Jennifer; De Vito, Giuseppe

    2011-09-01

    The purpose of this study was to investigate whether changes in angular velocity would alter vastus lateralis (VL) and rectus femoris (RF) oxygenation status during maximal isokinetic knee extension exercises. Eleven recreationally active male participants randomly performed ten maximal knee extensions at 30, 60, 120 and 240° s(-1). Tissue oxygenation index (TOI) and total haemoglobin concentration ([tHb]) were acquired from the VL and RF muscles by means of near-infrared spectroscopy (NIRS). Breath-by-breath pulmonary oxygen consumption (VO(2p)) was recorded throughout the tests. Peak torque and VO(2p) significantly decreased as a function of velocity (P<0·05). Interestingly, RF and VL TOI significantly increased as a function of velocity (P<0·05), whereas [tHb] significantly decreased as a function of velocity (P<0·05). A greater number of muscle fibre recruited at slow velocity, where the torque and VO(2p) were the highest, might explain the lower VL and RF TOI observed herein. Furthermore, the increase in local blood flow (suggested by [tHb] changes) during isokinetic knee extension exercises performed at slow angular velocity might have been induced by a higher intramuscular pressure during the contraction phases as well as a greater microcirculatory vasodilatation during relaxation phases. Implementing slow-velocity isokinetic exercises in rehabilitation or other training programmes could delay the short-term anoxia generated by such exercises and result in muscle metabolism enhancement. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  1. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed Central

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-01-01

    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  2. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-02-01

    Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.

  3. Impaired Right Ventricular-Pulmonary Arterial Coupling and Effect of Sildenafil in Heart Failure With Preserved Ejection Fraction: An Ancillary Analysis From the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) Trial.

    PubMed

    Hussain, Imad; Mohammed, Selma F; Forfia, Paul R; Lewis, Gregory D; Borlaug, Barry A; Gallup, Dianne S; Redfield, Margaret M

    2016-04-01

    Right ventricular (RV) dysfunction (RVD) is a poor prognostic factor in heart failure with preserved ejection fraction (HFpEF). The physiological perturbations associated with RVD or RV function indexed to load (RV-pulmonary arterial [PA] coupling) in HFpEF have not been defined. HFpEF patients with marked impairment in RV-PA coupling may be uniquely sensitive to sildenafil. In a subset of HFpEF patients enrolled in the Phosphodiesteas-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) trial, physiological variables and therapeutic effect of sildenafil were examined relative to the severity of RVD (tricuspid annular plane systolic excursion [TAPSE]) and according to impairment in RV-PA coupling (TAPSE/pulmonary artery systolic pressure) ratio. The prevalence of atrial fibrillation and diuretic use, n-terminal probrain natriuretic peptide levels, renal dysfunction, neurohumoral activation, myocardial necrosis and fibrosis biomarkers, and the severity of diastolic dysfunction all increased with severity of RVD. Peak oxygen consumption decreased and ventilatory inefficiency (VE/VCO2 slope) increased with increasing severity of RVD. Many but not all physiological derangements were more closely associated with the TAPSE/pulmonary artery systolic pressure ratio. Compared with placebo, at 24 weeks, TAPSE decreased, and peak oxygen consumption and VE/CO2 slope were unchanged with sildenafil. There was no interaction between RV-PA coupling and treatment effect, and sildenafil did not improve TAPSE, peak oxygen consumption, or VE/VCO2 in patients with pulmonary hypertension and RVD. HFpEF patients with RVD and impaired RV-PA coupling have more advanced heart failure. In RELAX patients with RVD and impaired RV-PA coupling, sildenafil did not improve RV function, exercise capacity, or ventilatory efficiency. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867. © 2016 American Heart Association, Inc.

  4. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  5. Alcohol consumption and cardiorespiratory fitness in five population-based studies.

    PubMed

    Baumeister, Sebastian E; Finger, Jonas D; Gläser, Sven; Dörr, Marcus; Markus, Marcello Rp; Ewert, Ralf; Felix, Stephan B; Grabe, Hans-Jörgen; Bahls, Martin; Mensink, Gert Bm; Völzke, Henry; Piontek, Katharina; Leitzmann, Michael F

    2018-01-01

    Background Poor cardiorespiratory fitness is a risk factor for cardiovascular morbidity. Alcohol consumption contributes substantially to the burden of disease, but its association with cardiorespiratory fitness is not well described. We examined associations between average alcohol consumption, heavy episodic drinking and cardiorespiratory fitness. Design The design of this study was as a cross-sectional population-based random sample. Methods We analysed data from five independent population-based studies (Study of Health in Pomerania (2008-2012); German Health Interview and Examination Survey (2008-2011); US National Health and Nutrition Examination Survey (NHANES) 1999-2000; NHANES 2001-2002; NHANES 2003-2004) including 7358 men and women aged 20-85 years, free of lung disease or asthma. Cardiorespiratory fitness, quantified by peak oxygen uptake, was assessed using exercise testing. Information regarding average alcohol consumption (ethanol in grams per day (g/d)) and heavy episodic drinking (5+ or 6+ drinks/occasion) was obtained from self-reports. Fractional polynomial regression models were used to determine the best-fitting dose-response relationship. Results Average alcohol consumption displayed an inverted U-type relation with peak oxygen uptake ( p-value<0.0001), after adjustment for age, sex, education, smoking and physical activity. Compared to individuals consuming 10 g/d (moderate consumption), current abstainers and individuals consuming 50 and 60 g/d had significantly lower peak oxygen uptake values (ml/kg/min) (β coefficients = -1.90, β = -0.06, β = -0.31, respectively). Heavy episodic drinking was not associated with peak oxygen uptake. Conclusions Across multiple adult population-based samples, moderate drinkers displayed better fitness than current abstainers and individuals with higher average alcohol consumption.

  6. Cardio-respiratory function during exercise in the cobia, Rachycentron canadum: The impact of crude oil exposure.

    PubMed

    Nelson, Derek; Stieglitz, John D; Cox, Georgina K; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin; Crossley, Dane A

    2017-10-01

    Aerobic exercise capacity is dependent on the cardiorespiratory system's ability to supply oxygen at a rate that meets energetic demands. In teleost fish crude oil exposure, with the associated polycyclic aromatic hydrocarbons (PAH's), reduces exercise performance and this has been hypothesized to be due to compromised cardiovascular function. In this study, we test this hypothesis by simultaneously measuring cardiovascular performance, oxygen consumption, and swim performance in a pelagic teleost, the cobia (Rachycentron canadum). Metabolic rate increased over 300% in both groups during the swim trial but as the fish approached the critical swim speed (U crit ) MO 2 was 12% lower in the oil exposed fish. Further, stroke volume was initially 35% lower while heart rate was 15% higher in the oil exposed compared to control fish. Our findings suggested, while aspects of cardiovascular and metabolic function are altered by oil exposure, additional studies are needed to further understand the homeostatic mechanisms that may sustain cardiovascular function at higher exercise intensities in cobia. Copyright © 2017. Published by Elsevier Inc.

  7. Cardiopulmonary functional capacity and the role of exercise in improving maximal oxygen consumption in women with PCOS.

    PubMed

    Lenarcik, Agnieszka; Bidzińska-Speichert, Bozena

    2010-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common reproductive disorder in premenopausal women and is frequently accompanied by the presence of cardiovascular risk factors. It has also been recognized that PCOS women are characterized by cardiopulmonary impairment. Reduced cardiopulmonary functional capacity and the autonomic dysfunction associated with abnormal heart rate recovery might be responsible for the increased cardiovascular risk in patients with PCOS. Exercise training has beneficial effects on cardiopulmonary functional capacity and reduces the risk of cardiovascular disease in PCOS women.

  8. Characterization of Cardiopulmonary Exercise Testing Variables in Patients with Endomyocardial Fibrosis after Endocardial Resection

    PubMed Central

    Sayegh, Ana Luiza C.; dos Santos, Marcelo R.; de Oliveira, Patricia; Fernandes, Fábio; Rondon, Eduardo; de Souza, Francis R.; Salemi, Vera M. C.; Alves, Maria Janieire de N. N.; Mady, Charles

    2017-01-01

    Background Endomyocardial fibrosis (EMF) is a rare disease, characterized by diastolic dysfunction which leads to reduced peak oxygen consumption (VO2). Cardiopulmonary exercise testing (CPET) has been proved to be a fundamental tool to identify central and peripheral alterations. However, most studies prioritize peak VO2 as the main variable, leaving aside other important CPET variables that can specify the severity of the disease and guide the clinical treatment. Objective The aim of this study was to evaluate central and peripheral limitations in symptomatic patients with EMF by different CPET variables. Methods Twenty-six EMF patients (functional class III, NYHA) were compared with 15 healthy subjects (HS). Functional capacity was evaluated using CPET and diastolic and systolic functions were evaluated by echocardiography. Results Age and gender were similar between EMF patients and HS. Left ventricular ejection fraction was normal in EMF patients, but decreased compared to HS. Peak heart rate, peak workload, peak VO2, peak oxygen (O2) pulse and peak pulmonary ventilation (VE) were decreased in EMF compared to HS. Also, EMF patients showed increased Δ heart rate /Δ oxygen uptake and Δ oxygen uptake /Δ work rate compared to HS. Conclusion Determination of the aerobic capacity by noninvasive respiratory gas exchange during incremental exercise provides additional information about the exercise tolerance in patients with EMF. The analysis of different CPET variables is necessary to help us understand more about the central and peripheral alterations cause by both diastolic dysfunction and restrictive pattern. PMID:29364349

  9. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women

    PubMed Central

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0°C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  10. Exercise Tolerance Testing in a Prospective Cohort of Adolescents with Chronic Fatigue Syndrome and Recovered Controls Following Infectious Mononucleosis

    PubMed Central

    Katz, Ben Z.; Boas, Steven; Shiraishi, Yukiko; Mears, Cynthia J.; Taylor, Renee

    2010-01-01

    Objective Six months following acute infectious mononucleosis (IM), 13%, of adolescents meet criteria for chronic fatigue syndrome (CFS). We measured exercise tolerance in adolescents with CFS and controls 6 months following IM. Study design 21 adolescents with CFS 6 months following IM and 21 recovered controls performed a maximal incremental exercise tolerance test with breath-by-breath gas analysis. Values expressed are mean ± standard deviation. Results The adolescents diagnosed with CFS and controls did not differ in age, weight, body-mass index or peak work capacity. Lower VO2 (oxygen consumption) peak percent of predicted was seen in adolescents with CFS compared with controls (CFS 99.3 ± 16.6 vs control 110.7 ± 19.9, p = 0.05). Peak oxygen pulse also was lower in adolescents with CFS compared with recovered controls (CFS 12.4 ± 2.9 vs controls 14.9 ± 4.3, p = 0.03). Conclusions Adolescents with CFS 6 months following IM have a lower degree of fitness and efficiency of exercise than recovered adolescents. Whether these abnormal exercise findings are a cause or effect of CFS is unknown. IM can lead to both fatigue and measurable changes in exercise testing in a subset of adolescents. PMID:20447647

  11. Influence of eccentric actions on the metabolic cost of resistance exercise

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Golden, Catherine L.; Tesch, Per A.; Harris, Robert T.; Buchanan, Paul

    1991-01-01

    The contributions of concentric (con) and eccentric (ecc) muscle actions are evaluated with respect to increasing the metabolic cost of resistance exercise. Male subjects perform leg exercise with either con and ecc actions or only con actions while the net energy cost of the exercise is measured by oxygen consumption data. In both groups, the con actions require 290 J/kg body weight of total work, with an energy cost of 0.003 cal/J. The energy costs for the con/ecc actions of the second group is increased by 14 percent. The metabolic cost of leg exercise is concluded to be primarily generated by the con leg actions, and ecc leg actions increase the resistance with only a slight increase in required energy. The findings are significant for practical applications that emphasize the conservation of energy expenditure during exercise in spacecraft environments.

  12. A structure-function analysis of the left ventricle

    PubMed Central

    Meyer, Leith C. R.; Fuller, Andrea; Haw, Anna; Mitchell, Duncan; Farrell, Anthony P.; Costello, Mary-Ann; Izwan, Adian; Badenhorst, Margaret; Maloney, Shane K.

    2016-01-01

    This study presents a structure-function analysis of the mammalian left ventricle and examines the performance of the cardiac capillary network, mitochondria, and myofibrils at rest and during simulated heavy exercise. Left ventricular external mechanical work rate was calculated from cardiac output and systemic mean arterial blood pressure in resting sheep (Ovis aries; n = 4) and goats (Capra hircus; n = 4) under mild sedation, followed by perfusion-fixation of the left ventricle and quantification of the cardiac capillary-tissue geometry and cardiomyocyte ultrastructure. The investigation was then extended to heavy exercise by increasing cardiac work according to published hemodynamics of sheep and goats performing sustained treadmill exercise. Left ventricular work rate averaged 0.017 W/cm3 of tissue at rest and was estimated to increase to ∼0.060 W/cm3 during heavy exercise. According to an oxygen transport model we applied to the left ventricular tissue, we predicted that oxygen consumption increases from 195 nmol O2·s−1·cm−3 of tissue at rest to ∼600 nmol O2·s−1·cm−3 during heavy exercise, which is within 90% of the oxygen demand rate and consistent with work remaining predominantly aerobic. Mitochondria represent 21-22% of cardiomyocyte volume and consume oxygen at a rate of 1,150 nmol O2·s−1·cm−3 of mitochondria at rest and ∼3,600 nmol O2·s−1·cm−3 during heavy exercise, which is within 80% of maximum in vitro rates and consistent with mitochondria operating near their functional limits. Myofibrils represent 65–66% of cardiomyocyte volume, and according to a Laplacian model of the left ventricular chamber, generate peak fiber tensions in the range of 50 to 70 kPa at rest and during heavy exercise, which is less than maximum tension of isolated cardiac tissue (120–140 kPa) and is explained by an apparent reserve capacity for tension development built into the left ventricle. PMID:27586835

  13. Relationship between blood oxygenation and lactate in human skeletal muscle revealed by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Luo, Qingming; Ge, Xinfa; Gong, Hui; Zeng, Shaoqun

    2002-04-01

    Near-infrared spectroscopy (NIRS) is a focus of attention in the research field of biomedical photonics. The concentration of HbO2 in human skeletal muscle has been measured noninvasive NIRS using a portable tissue oximeter continuously when the subjects did incremental exercises on a power bicycle. Blood lactate is one of traditional physical research subjects which is applied most widely. We study blood volume in the tissue of sportsmen when they are subjected by the incremental physical load, simultaneously detecting some parameters such as the heart rate, maximal oxygen absorption and the concentration of blood lactate. As the intensity of exercises was heightened, the concentration of blood lactate and blood volume in tissue increased, while the concentration of HbO2 decreased. Thus the rudimental characteristics of energy consumption and supply during hypoxia and aerobic exercises are investigated. By discovering the relationship between blood lactate in human skeletal muscle and blood oxygenation, a novel approach for measuring blood lactate noninvasively and assessing the sports ability could be provided. Furthermore, it is possible to assess the fatigue state with tissue oximeter to monitor the human sports intensity noninvasively and dynamically.

  14. Relationship between perceived exertion during exercise and subsequent recovery measurements.

    PubMed

    Mann, T N; Lamberts, R P; Nummela, A; Lambert, M I

    2017-03-01

    The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg's Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOC MAG ), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR 60s ) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR 60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOC MAG . This finding suggests that, of the 4 recovery measurements under investigation, HRR 60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels.

  15. Relationship between perceived exertion during exercise and subsequent recovery measurements

    PubMed Central

    Lamberts, RP; Nummela, A; Lambert, MI

    2016-01-01

    The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg’s Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR60s) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOCMAG. This finding suggests that, of the 4 recovery measurements under investigation, HRR60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels. PMID:28416890

  16. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer

    PubMed Central

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-01-01

    Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230

  17. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Dual-cycle ergometry as an exercise modality during prebreathe with 100 percent oxygen

    NASA Technical Reports Server (NTRS)

    Heaps, Cristine L.; Fischer, Michele D.; Webb, James T.

    1994-01-01

    In an effort to reduce prebreathe time requirements prior to extravehicular activities and high-altitude flights, a combined arm and leg exercise task proposes to enhance denitrogenation by incorporation of both upper and lower body musculature at a moderately high work intensity during prebreathe with 100% oxygen. Preliminary findings indicated peak oxygen consumption (VO2peak) levels attained on the dual-cycle ergometer do not differ significantly from those levels attained on the treadmill. Eight male subjects were exercised to VO2peak using leg-only cycle ergometry and dual-cycle ergometry on separate days. Preliminary data during dual-cycle ergometry showed arm work equaling 30% of the leg workrate at each stage of the incremental test resulted in arm fatigue in several subjects and a reduced VO2peak compared to dual-cycle ergometry with arm work at 20%. Thus, the 20% workrate was used during the dual-cycle VO2peak trial. On a third experimental day, subjects performed a 10 minute exercise test at a workrate required to elicit 75% of VO2peak for each subject on the dual-cycle ergometer. Blood lactate response to the exercise was monitored as an objective measure of fatigue. Peak VO2 levels attained on the leg-only and the dual-cycle ergometry tasks were not significantly different. Blood lactate levels were significantly elevated following the dual-cycle ergometry at 75% VO2peak. However, lactate levels show the expected rate of decline during recovery and, as demonstrated in the literature, should return to baseline levels within 30 minutes following exercise cessation. Thus, dual-cycle ergometry at 75% VO2peak appears to be a valid exercise for use during prebreathe and should not contribute to fatigue during subsequent EVA's.

  19. Pyruvate ingestion for 7 days does not improve aerobic performance in well-trained individuals

    NASA Technical Reports Server (NTRS)

    Morrison, M. A.; Spriet, L. L.; Dyck, D. J.

    2000-01-01

    The purposes of the present studies were to test the hypotheses that lower dosages of oral pyruvate ingestion would increase blood pyruvate concentration and that the ingestion of a commonly recommended dosage of pyruvate (7 g) for 7 days would enhance performance during intense aerobic exercise in well-trained individuals. Nine recreationally active subjects (8 women, 1 man) consumed 7, 15, and 25 g of pyruvate and were monitored for a 4-h period to determine whether blood metabolites were altered. Pyruvate consumption failed to significantly elevate blood pyruvate, and it had no effect on indexes of carbohydrate (blood glucose, lactate) or lipid metabolism (blood glycerol, plasma free fatty acids). As a follow-up, we administered 7 g/day of either placebo or pyruvate, for a 1-wk period to seven, well-trained male cyclists (maximal oxygen consumption, 62.3 +/- 3.0 ml. kg(-1). min(-1)) in a randomized, double-blind, crossover trial. Subjects cycled at 74-80% of their maximal oxygen consumption until exhaustion. There was no difference in performance times between the two trials (placebo, 91 +/- 9 min; pyruvate, 88 +/- 8 min). Measured blood parameters (insulin, peptide C, glucose, lactate, glycerol, free fatty acids) were also unaffected. Our results indicate that oral pyruvate supplementation does not increase blood pyruvate content and does not enhance performance during intense exercise in well-trained cyclists.

  20. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.

    PubMed

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.

  1. Deoxygenation and the blood volume signals in the flexor carpi ulnaris and radialis muscles obtained during the execution of the Mirallas's test of judo athletes

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan; Mirallas, Jaume A.

    1996-12-01

    The technique of execution of any movement in Judo is extremely important. The coaches want tests and tools easy to use and cheaper, to evaluate the progress of a judoist in the tatame. In this paper we present a test developed by Mirallas, which has his name 'Test of Mirallas' to evaluate the maximal power capacity of the judoist. The near infrared spectroscopy (NIRS) signals were obtained to have a measurement of the metabolic work of the flexor carpi ulnaris and radialis muscles, during the execution of the ippon-seoi-nage movement, allowing this measurement to assess by NIRS the maximal oxygen uptake. Also obtained were tympanic, skin forehead, and biceps brachii temperatures during the test time and recovery phase to study the effects of ambient conditions and the post-exercise oxygen consumption. The deoxygenation and blood volume signals obtained gave different results, demonstrating the hypothesis of the coaches that some judoist do the execution of the ippon-seoi-nage movement correctly and the rest didn't. The heart rate frequency obtained in the group of judoist was between 190-207 bpm, and in the minute five of post-exercise was 114-137 bpm; the time employed in the MIrallas's test were from 7 feet 14 inches to 13 feet 49 inches, and the total of movements were from 199 to 409. The data obtained in the skin forehead, and skin biceps brachii confirms previous works that the oxygen consumption remains after exercise in the muscle studied. According to the results, the test developed by Mirallas is a good tool to evaluate the performance of judoist any time, giving better results compared with standard tests.

  2. Acute effects of physical exercise in type 2 diabetes: A review

    PubMed Central

    Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Moraes, José Fernando Vila Nova; Coelho Júnior, Hélio José; Moraes, Milton Rocha; Simões, Herbert Gustavo

    2014-01-01

    The literature has shown the efficiency of exercise in the control of type 2 diabetes (T2D), being suggested as one of the best kinds of non-pharmacological treatments for its population. Thus, the scientific production related to this phenomenon has growing exponentially. However, despite its advances, still there is a lack of studies that have carried out a review on the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in individuals with T2D, not to mention that in a related way, these themes have been very little studied today. Therefore, the aim of this study was to organize and analyze the current scientific production about the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in T2D individuals. For such, a research with the following keywords was performed: -exercise; diabetes and post-exercise hypotension; diabetes and excess post-exercise oxygen consumption; diabetes and acute effects in PUBMED, SCIELO and HIGHWIRE databases. From the analyzed studies, it is possible to conclude that, a single exercise session can promote an increase in the bioavailability of nitric oxide and elicit decreases in postexercise blood pressure. Furthermore, the metabolic stress from physical exercise can increase the oxidation of carbohydrate during the exercise and keep it, in high levels, the post exercise consumption of O², this phenomenon increases the rate of fat oxidation during recovery periods after exercise, improves glucose tolerance and insulin sensitivity and reduces glycemia between 2-72 h, which seems to be dependent on the exercise intensity and duration of the effort. PMID:25317243

  3. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women

    PubMed Central

    Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women. PMID:28384329

  4. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women.

    PubMed

    Onofre, Tatiana; Oliver, Nicole; Carlos, Renata; Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane; Bruno, Selma

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.

  5. Effect of Beta-Hydroxy Beta-Methylbutyrate on the Onset of Blood Lactate Accumulation and VO2peak in Endurance-Trained Cyclists.

    ERIC Educational Resources Information Center

    Vukovich, Matthew D.; Dreifort, Geri D.

    2001-01-01

    Examined the effect of beta-hydroxy beta-methylbutyrate (HMB) supplementation on maximal oxygen consumption (VO2peak) and onset of blood lactate accumulation (OBLA) in endurance-trained cyclists. Acute exercise did not affect plasma HMB concentrations. OBLA increased with HMB and leucine, with blood glucose significantly greater during the HMB…

  6. Lower Limb Kinematics and Metabolic Cost During Elliptical Exercises and Treadmill Running.

    PubMed

    Chester, Stephanie; Zucker-Levin, Audrey; Melcher, Daniel A; Peel, Shelby A; Bloomer, Richard J; Paquette, Max R

    2016-04-01

    The purpose of this study was to compare knee and hip joint kinematics previously associated with anterior knee pain and metabolic cost among conditions including treadmill running (TR), standard elliptical (SE), and lateral elliptical (LE) in healthy runners. Joint kinematics and metabolic parameters of 16 runners were collected during all 3 modalities using motion capture and a metabolic system, respectively. Sagittal knee range of motion (ROM) was greater in LE (P < .001) and SE (P < .001) compared with TR. Frontal and transverse plane hip ROM were greater in LE compared with SE (P < .001) and TR (P < .001). Contralateral pelvic drop ROM was smaller in SE compared with TR (P = .002) and LE (P = .005). Similar oxygen consumption was found during LE and TR (P = .39), but LE (P < .001) and TR (P < .001) required greater oxygen consumption than SE. Although LE yields similar metabolic cost to TR and produces hip kinematics that may help strengthen hip abductors, greater knee flexion and abduction during LE may increase symptoms in runners with anterior knee pain. The findings suggest that research on the implications of elliptical exercise for injured runners is needed.

  7. South Asians have elevated postexercise blood pressure and myocardial oxygen consumption compared to Europeans despite equivalent resting pressure.

    PubMed

    Chaturvedi, Nish; Bathula, Rajaram; Shore, Angela C; Panerai, Ronney; Potter, John; Kooner, Jaspal; Chambers, John; Hughes, Alun D

    2012-10-01

    Stroke mortality rate is higher in South Asians than in Europeans, despite equivalent or lower resting blood pressure (BP). Elevated recovery BP after exercise predicts stroke, independently of resting values. We hypothesized that South Asians would have adverse postexercise hemodynamics and sought explanations for this. A population-based sample of 147 European and 145 South Asian middle-aged men and women performed the Dundee 3-minute step test. Cardiovascular risk factors were measured. BP, heart rate, and rate-pressure product, a measure of myocardial oxygen consumption, were compared. With 90% power and 5% significance, we could detect a difference of 0.38 of a standard deviation in any outcome measure. Resting systolic BP was similar in South Asians (144 mm Hg) and Europeans (142 mm Hg) (P=0.2), as was exercise BP (P=0.4). However, recovery systolic BP at 3 minutes after exercise was higher in South Asians by 4.3 mm Hg (95% confidence interval [CI], 0.2 to 8.3 mm Hg; P=0.04). This effect persisted when adjusted for exercise BP and work effort (5.4 mm Hg [95% CI, 2.2 to 8.7 mm Hg; P=0.001]). Adjustment for baroreflex insensitivity and greater aortic stiffness in South Asians contributes greatly to attenuating this ethnic difference (1.9 mm Hg [95% CI, -0.9 to 4.6 mm Hg; P=0.4]). Similarly, rate-pressure product recovery after exercise was impaired in South Asians by 735 mm Hg/min (95% CI, 137 to 1334 mm Hg/min; P=0.02); again, adjustment for baroreflex insensitivity and aortic stiffness attenuated this difference (261 mm Hg/min [95% CI, -39 to 561 mm Hg/min; P=0.3]). Postexercise recovery of BP and rate-pressure product is impaired in South Asians compared to Europeans even though resting and exercise BP are similar. This is associated with the autonomic dysfunction and aortic stiffness in South Asians.

  8. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting.

    PubMed

    Uc, Ergun Y; Doerschug, Kevin C; Magnotta, Vincent; Dawson, Jeffrey D; Thomsen, Teri R; Kline, Joel N; Rizzo, Matthew; Newman, Sara R; Mehta, Sonya; Grabowski, Thomas J; Bruss, Joel; Blanchette, Derek R; Anderson, Steven W; Voss, Michelle W; Kramer, Arthur F; Darling, Warren G

    2014-07-29

    To (1) investigate effects of aerobic walking on motor function, cognition, and quality of life in Parkinson disease (PD), and (2) compare safety, tolerability, and fitness benefits of different forms of exercise intervention: continuous/moderate intensity vs interval/alternating between low and vigorous intensity, and individual/neighborhood vs group/facility setting. Initial design was a 6-month, 2 × 2 randomized trial of different exercise regimens in independently ambulatory patients with PD. All arms were required to exercise 3 times per week, 45 minutes per session. Randomization to group/facility setting was not feasible because of logistical factors. Over the first 2 years, we randomized 43 participants to continuous or interval training. Because preliminary analyses suggested higher musculoskeletal adverse events in the interval group and lack of difference between training methods in improving fitness, the next 17 participants were allocated only to continuous training. Eighty-one percent of 60 participants completed the study with a mean attendance of 83.3% (95% confidence interval: 77.5%-89.0%), exercising at 46.8% (44.0%-49.7%) of their heart rate reserve. There were no serious adverse events. Across all completers, we observed improvements in maximum oxygen consumption, gait speed, Unified Parkinson's Disease Rating Scale sections I and III scores (particularly axial functions and rigidity), fatigue, depression, quality of life (e.g., psychological outlook), and flanker task scores (p < 0.05 to p < 0.001). Increase in maximum oxygen consumption correlated with improvements on the flanker task and quality of life (p < 0.05). Our preliminary study suggests that aerobic walking in a community setting is safe, well tolerated, and improves aerobic fitness, motor function, fatigue, mood, executive control, and quality of life in mild to moderate PD. This study provides Class IV evidence that in patients with PD, an aerobic exercise program improves aerobic fitness, motor function, fatigue, mood, and cognition. © 2014 American Academy of Neurology.

  9. The study of synchronization of rhythms of microvascular blood flow and oxygen saturation during adaptive changes

    NASA Astrophysics Data System (ADS)

    Dunaev, Andrey V.; Sidorov, Victor V.; Krupatkin, Alexander I.; Rafailov, Ilya E.; Palmer, Scott G.; Sokolovski, Sergei G.; Stewart, Neil A.; Rafailov, Edik U.

    2014-02-01

    Multi-functional laser non-invasive diagnostic systems, such as "LAKK-M", allow the study of a number of microcirculatory parameters, including blood microcirculatory index (Im) (by laser Doppler flowmetry, LDF) and oxygen saturation (StO2) of skin tissue (by tissue reflectance oximetry, TRO). Such systems may provide significant information relevant to physiology and clinical medicine. The aim of this research was to use such a system to study the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted with 8 healthy volunteers - 3 females and 5 males of 21-49 years. Each volunteer was subjected to basic 3 minute tests. The volunteers were observed for between 1-4 months each, totalling 422 basic tests. Measurements were performed on the palmar surface of the right middle finger and the forearm medial surface. Wavelet analysis was used to study rhythmic oscillations in LDF- and TRO-data. Tissue oxygen consumption (from arterial and venal blood oxygen saturation and nutritive flux volume) was calculated for all volunteers during "adaptive changes" as (617+/-123 AU) and (102+/-38 AU) with and without arteriovenous anastomoses (AVAs) respectively. This demonstrates increased consumption compared to normal (495+/-170 AU) and (69+/-40 AU) with and without AVAs respectively. Data analysis demonstrated the emergence of resonance and synchronization of rhythms of microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and potentially from psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes suggest increased oxygen consumption resulting from increased microvascular blood flow velocity.

  10. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart-lung transplantation.

    PubMed Central

    Banner, N; Guz, A; Heaton, R; Innes, J A; Murphy, K; Yacoub, M

    1988-01-01

    1. Ventilatory and cardiovascular responses to the onset of voluntary and electrically induced leg exercise were studied in six patients following heart transplantation and five following heart-lung transplantation; the results were compared between the patient groups and also with responses from a group of normal subjects. 2. Oxygen consumption, carbon dioxide production and ventilation and its components were measured over two 30 s periods prior to, and two 30 s periods following, the onset of exercise. Relative changes in stroke volume and cardiac output were derived from ensemble-averaged Doppler measurements of ascending aortic blood velocity over the same 30 s periods. 3. None of the groups of subjects showed any significant differences in responses to voluntary exercise compared to electrically induced exercise of similar work pattern and intensity. 4. Compared to normal controls, the transplanted subjects showed higher resting heart rates which did not increase at the onset of exercise; stroke volume increased, but less than in the normal subjects. The resulting cardiac output increases in the transplanted subjects were minimal compared to the normal subjects. 5. Ventilation and oxygen uptake increased immediately and with similar magnitude in all three groups. 6. These results show that in the same individual it is possible to have an appropriate ventilatory response to the onset of exercise in the presumed absence of a normal corticospinal input to the exercising muscles (electrically induced exercise) and afferent neural information from the lungs and heart, and in the absence of a normal circulatory response to exercise. The mechanisms underlying this ventilatory response remain undetermined. PMID:3136247

  11. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  12. Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Harbaum, Lars; Renk, Emilia; Yousef, Sara; Glatzel, Antonia; Lüneburg, Nicole; Hennigs, Jan K; Oqueka, Tim; Baumann, Hans J; Atanackovic, Djordje; Grünig, Ekkehard; Böger, Rainer H; Bokemeyer, Carsten; Klose, Hans

    2016-11-11

    Exercise training positively influences exercise tolerance and functional capacity of patients with idiopathic pulmonary arterial hypertension (IPAH). However, the underlying mechanisms are unclear. We hypothesized that exercise modulates the activated inflammatory state found in IPAH patients. Single cardiopulmonary exercise testing was performed in 16 IPAH patients and 10 healthy subjects. Phenotypic characterization of peripheral blood mononuclear cells and circulating cytokines were assessed before, directly after and 1 h after exercise. Before exercise testing, IPAH patients showed elevated Th2 lymphocytes, regulatory T lymphocytes, IL-6, and TNF-alpha, whilst Th1/Th17 lymphocytes and IL-4 were reduced. In IPAH patients but not in healthy subject, exercise caused an immediate relative decrease of Th17 lymphocytes and a sustained reduction of IL-1-beta and IL-6. The higher the decrease of IL-6 the higher was the peak oxygen consumption of IPAH patients. Exercise seems to be safe from an immune and inflammatory point of view in IPAH patients. Our results demonstrate that exercise does not aggravate the inflammatory state and seems to elicit an immune-modulating effect in IPAH patients.

  13. The effect of vocal and instrumental music on cardio respiratory variables, energy expenditure and exertion levels during sub maximal treadmill exercise.

    PubMed

    Savitha, D; Sejil, T V; Rao, Shwetha; Roshan, C J; Roshan, C J

    2013-01-01

    The purpose of the study was to investigate the effect of vocal and instrumental music on various physiological parameters during submaximal exercise. Each subject underwent three sessions of exercise protocol without music, with vocal music, and instrumental versions of same piece of music. The protocol consisted of 10 min treadmill exercise at 70% HR(max) and 20 min of recovery. Minute to minute heart rate and breath by breath recording of respiratory parameters, rate of energy expenditure and perceived exertion levels were measured. Music, irrespective of the presence or absence of lyrics, enabled the subjects to exercise at a significantly lower heart rate and oxygen consumption, reduced the metabolic cost and perceived exertion levels of exercise (P < 0.05). There was faster recovery of systolic and diastolic blood pressures and exertion levels during the post exercise period. Music having a relaxant effect could have probably increased the parasympathetic activation leading to these effects.

  14. Integrating Water Flow, Locomotor Performance and Respiration of Chinese Sturgeon during Multiple Fatigue-Recovery Cycles

    PubMed Central

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in U crit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  15. Amphetamine enhances endurance by increasing heat dissipation.

    PubMed

    Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav

    2016-09-01

    Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  16. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health.

    PubMed

    Hettinga, Dries M; Andrews, Brian J

    2008-01-01

    A lesion in the spinal cord leads in most cases to a significant reduction in active muscle mass, whereby the paralysed muscles cannot contribute to oxygen consumption (VO2) during exercise. Consequently, persons with spinal cord injury (SCI) can only achieve high VO2 values by excessively stressing the upper body musculature, which might increase the risk of musculoskeletal overuse injury. Alternatively, the muscle mass involved may be increased by using functional electrical stimulation (FES). FES-assisted cycling, FES-cycling combined with arm cranking (FES-hybrid exercise) and FES-rowing have all been suggested as candidates for cardiovascular training in SCI. In this article, we review the levels of VO2 (peak [VO2peak] and sub-peak [VO2sub-peak]) that have been reported for SCI subjects using these FES exercise modalities. A systematic literature search in MEDLINE, EMBASE, AMED, CINAHL, SportDiscus and the authors' own files revealed 35 studies that reported on 499 observations of VO2 levels achieved during FES-exercise in SCI. The results show that VO2peak during FES-rowing (1.98 L/min, n = 17; 24.1 mL/kg/min, n = 11) and FES-hybrid exercise (1.78 L/min, n = 67; 26.5 mL/kg/min, n = 35) is considerably higher than during FES-cycling (1.05 L/min, n = 264; 14.3 mL/kg/min, n = 171). VO2sub-peak values during FES-hybrid exercise were higher than during FES-cycling. FES-exercise training can produce large increases in VO2peak; the included studies report average increases of +11% after FES-rowing training, +12% after FES-hybrid exercise training and +28% after FES-cycling training. This review shows that VO2 during FES-rowing or FES-hybrid exercise is considerably higher than during FES-cycling. These observations are confirmed by a limited number of direct comparisons; larger studies to test the differences in effectiveness of the various types of FES-exercise as cardiovascular exercise are needed. The results to date suggest that FES-rowing and FES-hybrid are more suited for high-intensity, high-volume exercise training than FES-cycling. In able-bodied people, such exercise programmes have shown to result in superior health and fitness benefits. Future research should examine whether similar high-intensity and high-volume exercise programmes also give persons with SCI superior fitness and health benefits. This kind of research is very timely given the high incidence of physical inactivity-related health conditions in the aging SCI population.

  17. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise.

    PubMed

    Davison, Glen; Callister, Robin; Williamson, Gary; Cooper, Karen A; Gleeson, Michael

    2012-02-01

    Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.

  18. Does arterial health affect VO2peak and muscle oxygenation in a sedentary cohort?

    PubMed

    Lizamore, Catherine Anne; Stoner, Lee; Lucas, Samuel John Edwin; Lucero, Adam; Hamlin, Michael John

    2015-02-01

    An association between arterial health and peak oxygen consumption (VO2peak) has been demonstrated; however, little is known about how arterial health influences muscular oxygenation during exercise. The aim of this study was to gain insight into the relations between arterial health, VO2peak, and muscle oxygenation in a middle-age sedentary population. Radial augmentation index (AIx) (via pulse wave analysis) of 21 sedentary middle-age participants (15 females and six males; age, 54.7 ± 5.4; body mass index, 29.0 ± 4.7 kg·m; mean ± SD) was assessed, and on another day ( < 7 d), participants completed a modified Bruce protocol (MBP). Using near-infrared spectroscopy, total oxygenation index (TOI) of the left flexor carpi ulnaris and the left vastus lateralis were monitored throughout the MBP. Independent and average (arm + leg) percentage decrease in TOI between stage 1 of the MBP and maximal exertion (TOIdiff) during MBP was calculated. Changes between dependent variables were correlated using Pearson product-moment correlations and were interpreted as follows: r > 0.5, strong; 0.5 > r > 0.3, moderate; and r < 0.3, weak. We observed moderate negative correlation between AIx and VO2peak (r = -0.34, -0.63 to -0.03; Pearson correlation, 90% confidence limits) and strong negative correlation between AIx and average TOIdiff (r = -0.58, -0.78 to -0.27). The VO2peak and average TOIdiff were strongly correlated (r = 0.55, 0.23-0.77). Arterial health seems to be an important determinant of muscle oxygenation during exercise. In turn, muscle oxygenation during exercise is strongly related to VO2peak. Developing training modalities to prioritize arterial health outcomes may be a useful way of improving VO2peak in this population.

  19. Effects of fat adaptation on glucose kinetics and substrate oxidation during low-intensity exercise.

    PubMed

    Pagan, J D; Geor, R J; Harris, P A; Hoekstra, K; Gardner, S; Hudson, C; Prince, A

    2002-09-01

    This study was designed to determine the effects of fat adaptation on carbohydrate and fat oxidation in conditioned horses during low-intensity exercise. Five mature Arabians were studied. The study was conducted as a crossover design with 2 dietary periods, each of 10 week's duration: a) a control (CON) diet, and b) a fat-supplemented (FAT) diet. The total amount of digestible energy (DE) supplied by the fat in the CON and FAT diets was 7% and 29%, respectively. During each period, the horses completed exercise tests at the beginning of the period (Week 0) and after 5 and 10 weeks on the diet. Tests consisted of 90 min of exercise at a speed calculated to elicit 35% VO2max on a treadmill inclined to 3 degrees. Oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured at 15-min intervals. For determination of glucose kinetics, a stable isotope ([6-6-d2] glucose) technique was used. Compared to the CON diet, FAT diet consumption for 5-10 weeks was associated with an altered metabolic response to low-intensity exercise, as evidenced by a more than 30% reduction in the production and utilisation of glucose; a decrease in RER; a decrease in the estimated rate of whole-body carbohydrate utilisation; and an increase in the whole-body rate of lipid oxidation during exercise.

  20. Providing Choice in Exercise Influences Food Intake at the Subsequent Meal.

    PubMed

    Beer, Natalya J; Dimmock, James A; Jackson, Ben; Guelfi, Kym J

    2017-10-01

    The benefits of regular exercise for health are well established; however, certain behaviors after exercise, such as unhealthy or excessive food consumption, can counteract some of these benefits. To investigate the effect of autonomy support (through the provision of choice) in exercise-relative to a no-choice condition with matched energy expenditure-on appetite and subsequent energy intake. Fifty-eight men and women (body mass index, 22.9 ± 2.3 kg·m; peak oxygen consumption, 52.7 ± 6.4 mL·kg·min) completed one familiarization session and one experimental trial, in which they were randomized to either a choice or no-choice exercise condition using a between-subjects yoked design. Ad libitum energy intake from a laboratory test meal was assessed after exercise, together with perceptions of mood, perceived choice, enjoyment, and value. Despite similar ratings of perceived appetite across conditions (P > 0.05), energy intake was significantly higher after exercise performed under the no-choice condition (2456 ± 1410 kJ) compared with the choice condition (1668 ± 1215 kJ; P = 0.026; d = 0.60). In particular, the proportion of energy intake from unhealthy foods was significantly greater after exercise in the no-choice condition (1412 ± 1304 kJ) compared with the choice condition (790 ± 861 kJ; P = 0.037, d = 0.56). Participants in the choice condition also reported higher perceptions of choice (P < 0.001), enjoyment (P = 0.008), and value (P = 0.009) relating to the exercise session, whereas there were no between-condition differences in mood (P > 0.05). A lack of choice in exercise is associated with greater energy intake from "unhealthy" foods in recovery. This finding highlights the importance of facilitating an autonomy supportive environment during exercise prescription and instruction.

  1. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest

    PubMed Central

    2017-01-01

    A computer model was used to simulate the dependence of protonmotive force (Δp), proton leak and phenomenological (involving proton leak) ATP/O2 ratio on work intensity in skeletal muscle. Δp, NADH and proton leak decreased with work intensity. The contribution of proton leak to oxygen consumption (V˙O2) decreased from about 60% at rest to about 3 and 1% at moderate and heavy/severe exercise, respectively, while the ATP/O2 ratio increased from 2.1 to 5.5 and 5.7. A two-fold increase in proton leak activity or its decrease to zero decreased/increased the ATP/O2 ratio by only about 3 and 1% during moderate and heavy/severe exercise, respectively. The low contribution of proton leak to V˙O2 in intensively working skeletal muscle was mostly caused by a huge increase in ATP usage intensity during rest-to-work transition, while OXPHOS, and thus oxidative ATP supply and V˙O2 related to it, was mostly stimulated by high each-step activation (ESA) of OXPHOS complexes. The contribution of proton leak to V˙O2 and ATP/O2 ratio in isolated mitochondria should not be directly extrapolated to working muscle, as mitochondria lack ESA, at least in the absence of Ca2+, and therefore V˙O2 cannot be elevated as much as in intact muscle. PMID:29045413

  2. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.

    PubMed

    Korzeniewski, Bernard

    2017-01-01

    A computer model was used to simulate the dependence of protonmotive force (Δp), proton leak and phenomenological (involving proton leak) ATP/O2 ratio on work intensity in skeletal muscle. Δp, NADH and proton leak decreased with work intensity. The contribution of proton leak to oxygen consumption ([Formula: see text]) decreased from about 60% at rest to about 3 and 1% at moderate and heavy/severe exercise, respectively, while the ATP/O2 ratio increased from 2.1 to 5.5 and 5.7. A two-fold increase in proton leak activity or its decrease to zero decreased/increased the ATP/O2 ratio by only about 3 and 1% during moderate and heavy/severe exercise, respectively. The low contribution of proton leak to [Formula: see text] in intensively working skeletal muscle was mostly caused by a huge increase in ATP usage intensity during rest-to-work transition, while OXPHOS, and thus oxidative ATP supply and [Formula: see text] related to it, was mostly stimulated by high each-step activation (ESA) of OXPHOS complexes. The contribution of proton leak to [Formula: see text] and ATP/O2 ratio in isolated mitochondria should not be directly extrapolated to working muscle, as mitochondria lack ESA, at least in the absence of Ca2+, and therefore [Formula: see text] cannot be elevated as much as in intact muscle.

  3. Factorial aerobic scope is independent of temperature and primarily modulated by heart rate in exercising Murray cod (Maccullochella peelii peelii).

    PubMed

    Clark, T D; Ryan, T; Ingram, B A; Woakes, A J; Butler, P J; Frappell, P B

    2005-01-01

    Several previous reports, often from studies utilising heavily instrumented animals, have indicated that for teleosts, the increase in cardiac output (Vb) during exercise is mainly the result of an increase in cardiac stroke volume (V(S)) rather than in heart rate (fH). More recently, this contention has been questioned following studies on animals carrying less instrumentation, though the debate continues. In an attempt to shed more light on the situation, we examined the heart rates and oxygen consumption rates (Mo2; normalised to a mass of 1 kg, given as Mo2kg) of six Murray cod (Maccullochella peelii peelii; mean mass+/-SE = 1.81+/-0.14 kg) equipped with implanted fH and body temperature data loggers. Data were determined during exposure to varying temperatures and swimming speeds to encompass the majority of the biological scope of this species. An increase in body temperature (Tb) from 14 degrees C to 29 degrees C resulted in linear increases in Mo2kg (26.67-41.78 micromol min(-1) kg(-1)) and fH (22.3-60.8 beats min(-1)) during routine exercise but a decrease in the oxygen pulse (the amount of oxygen extracted per heartbeat; 1.28-0.74 micromol beat(-1) kg(-1)). During maximum exercise, the factorial increase in Mo2kg was calculated to be 3.7 at all temperatures and was the result of temperature-independent 2.2- and 1.7-fold increases in fH and oxygen pulse, respectively. The constant factorial increases in fH and oxygen pulse suggest that the cardiovascular variables of the Murray cod have temperature-independent maximum gains that contribute to maximal oxygen transport during exercise. At the expense of a larger factorial aerobic scope at an optimal temperature, as has been reported for species of salmon and trout, it is possible that the Murray cod has evolved a lower, but temperature-independent, factorial aerobic scope as an adaptation to the largely fluctuating and unpredictable thermal climate of southeastern Australia.

  4. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged. Taken together, these data suggest that longer duration BR induces a number of changes that result in peripheral adaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  5. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18–30-year-old sedentary men

    PubMed Central

    Solomon, Colin

    2018-01-01

    Background High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. Methods A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO2), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. Results There was a higher HHb in the LVL (p = 0.001) and RVL (p = 0.002) sites and a higher VO2 (p = 0.017) and HR (p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher (p < 0.001) and PACES lower (p = 0.032) during HIITCYC compared to HIITRUN. Discussion In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  6. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18-30-year-old sedentary men.

    PubMed

    Kriel, Yuri; Askew, Christopher D; Solomon, Colin

    2018-01-01

    High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO 2 ), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. There was a higher HHb in the LVL ( p = 0.001) and RVL ( p = 0.002) sites and a higher VO 2 ( p = 0.017) and HR ( p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher ( p < 0.001) and PACES lower ( p = 0.032) during HIITCYC compared to HIITRUN. In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  7. Physical and physiological performances in 10-year-old obese boys.

    PubMed

    Osváth, P; Mészáros, Zs; Tóth, Sz; Kiss, K; Mavroudes, M; Ng, N; Mészáros, J

    2009-12-01

    Fatness generally has a negative influence on the performance of a variety of motor and cardiorespiratory fitness tests. The aim of this comparison was to analyse the effects of three grades of obesity on somatic growth, physical performance and oxygen consumption during exercise. Volunteer boys with definitely different grades of obesity were recruited for the comparison. In the group of mildly obese children (G1; n=23) BMI ranged between 24 kg.m -2 and 26 kg.m -2 ; and individual percent body fat was between 33% and 33.5%. In the case of moderate obesity (G2; n=23) BMI ranged between 26.5 kg.m -2 and 28.5 kg.m -2 ; and percent body fat was between 35% and 36%. In the extremely obese group (G3; n=20) BMI was greater than 31 kg.m -2 ; percent body fat was greater than 37.5%. Oxygen consumption during the 1,200 m run-test was measured by VIMEX-ST-type (USA) telemetric equipment.The greatest absolute aerobic power referred to the G3 boys, and the lowest oxygen consumption was characteristic of the mildly obese group. The very high differences between the body mass means resulted in a more marked inter-group variability in mean relative oxygen uptake.The predicted relative fat and high body fat content observed on the trunk, and the elevated level of resting blood pressure may indicate serious risks for the development of cardio-respiratory and metabolic disease. The very low oxygen consumption relative to body mass and poor physical performance are expected consequences of physiologic and environmental influences on the obese population.

  8. Exercise Tolerance in Children With Early Onset Scoliosis: Growing Rod Treatment "Graduates".

    PubMed

    Jeans, Kelly A; Johnston, Charles E; Stevens, Wilshaw R; Tran, Dong-Phuong

    2016-11-01

    Prospectively enrolled early-onset scoliosis (EOS) patients undergoing growing rod treatment, who have had no surgery for >1 year and/or have received definitive fusion (growing rod "graduates"). To assess oxygen consumption during exercise and determine if a diminished conventional pulmonary function test (PFT) correlates with metabolic, pulmonary, and cardiovascular measures during exercise. Based on clinical impression and sequential PFT values, EOS patients who have undergone extensive treatment are thought to have limited capacity during exercise. The use of PFTs in this population has been a primary outcome measure of respiratory capacity; however, PFTs are dependent on effort, and thus subjective. This led us to find a new assessment of outcome, to better understand their pulmonary capacity. Patients underwent oxygen consumption (VO 2 ) testing while walking at self-selected speed over-ground and during a graded exercise test. Maximal VO 2 was predicted in those who completed the test to 85% of maximal heart rate (HR). Statistical analysis included Mann-Whitney U test and Spearman correlation coefficient (α = 0.05). 12 patients participated. Over-ground walking showed that EOS graduates chose to walk at the same speed, but at a higher VO 2 Cost (0.28 mL/kg/m) than controls (0.22 mL/kg/m; p < .001). Treadmill exercise testing showed 9 of 12 subjects able to complete the 85% of predicted maximum protocol. The EOS group had lower VO 2 during the final stage (27.9 mL/kg/min) compared to controls (34.2 mL/kg/min; p = .021); however, their heart rate reached the same values. Subjects completing the protocol had lower predicted VO 2 max (38.5 mL/kg/min) compared with controls (45.0 mL/kg/min), but this was not significant. Although PFT data suggest clinically relevant pulmonary compromise in EOS patients, the current study shows that these children are able to keep up with their peers in daily activities and also have the capacity to exercise. Level II, therapeutic. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  9. l-Carnitine Supplementation in Recovery after Exercise.

    PubMed

    Fielding, Roger; Riede, Linda; Lugo, James P; Bellamine, Aouatef

    2018-03-13

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested.

  10. l-Carnitine Supplementation in Recovery after Exercise

    PubMed Central

    Fielding, Roger; Riede, Linda; Lugo, James P.; Bellamine, Aouatef

    2018-01-01

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested. PMID:29534031

  11. A comparative study of the aerobic fitness of 421 healthy adult males in Singapore.

    PubMed

    Ong, T C

    1993-02-01

    The maximum oxygen consumption (VO2 max) of 421 healthy adult males from three ethnic groups (Chinese, Malay and Indian), aged 25-54 years, was assessed from direct analyses of their expired respiratory gases during all-out runs on a treadmill as a measure of aerobic fitness. The subjects were divided into three age groups: group 1, 25-34 years; group 2, 35-44 years; group 3, 45-54 years. Each group was further subdivided into non-exercisers (NE), non-regular exercisers (NRE) and regular exercisers (RE). Consistently within each age group, regular exercisers produced significantly higher VO2 max values compared to non-regular exercisers and non-exercisers. They also met the VO2 max requirements for heavy physical work and compared favourably with the standards of the National Physical Fitness Award of Singapore and Cooper's aerobic fitness classification standards based on North American males. Non-regular exercisers and non-exercisers only met the VO2 max requirements for moderate physical work and compared poorly in both of the aerobic fitness standards.

  12. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques.

    PubMed

    Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-08-01

    To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.

  13. Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard, Varanus rosenbergi.

    PubMed

    Clark, T D; Wang, T; Butler, P J; Frappell, P B

    2005-04-01

    The majority of information concerning the cardio-metabolic performance of varanids during exercise is limited to a few species at their preferred body temperature (T(b)) even though, being ectotherms, varanids naturally experience rather large changes in T(b). Although it is well established that absolute aerobic scope declines with decreasing T(b), it is not known whether changes in cardiac output (V(b)) and/or tissue oxygen extraction, (Ca(O2) - Cv(O2)), are in proportion to the rate of oxygen consumption (Vo(2)). To test this, we studied six Rosenberg's goannas (Varanus rosenbergi) while at rest and while maximally exercising on a treadmill both at 25 and 36 degrees C. During maximum exercise both at 25 and 36 degrees C, mass-specific rate of oxygen consumption (Vo(2kg)) increased with an absolute scope of 8.5 ml min(-1) kg(-1) and 15.7 ml min(-1) kg(-1), respectively. Interestingly, the factorial aerobic scope was temperature-independent and remained at 7.0 which, at each T(b), was primarily the result of an increase in V(bkg), governed by approximate twofold increases both in heart rate (f(H)) and cardiac stroke volume (V(Skg)). Both at 25 degrees C and 36 degrees C, the increase in V(bkg) alone was not sufficient to provide all of the additional oxygen required to attain maximal Vo(2kg), as indicated by a decrease in the blood convection requirement V(bkg)/Vo(2kg); hence, there was a compensatory twofold increase in (Ca(O2) - Cv(O2)). Although associated with an increase in hemoglobin-oxygen affinity, a decrease in T(b) did not impair unloading of oxygen at the tissues and act to reduce (Ca(O2) - Cv(O2)); both Ca(O2)) and Cv(O2)) were maintained across T(b). The change in Vo(2kg) with T(b), therefore, is solely reliant on the thermal dependence of V(bkg). Maintaining a high factorial aerobic scope across a range of T(b) confers an advantage in that cooler animals can achieve higher absolute aerobic scopes and presumably improved aerobic performance than would otherwise be achievable.

  14. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax)

    PubMed Central

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  15. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    PubMed

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.

  16. Prevention of bedrest-induced physical deconditioning by daily dobutamine infusions. Implications for drug-induced physical conditioning.

    PubMed Central

    Sullivan, M J; Binkley, P F; Unverferth, D V; Ren, J H; Boudoulas, H; Bashore, T M; Merola, A J; Leier, C V

    1985-01-01

    The effects of intermittent infusions of dobutamine were studied in young normal male subjects during a period of bedrest deconditioning to determine whether this synthetic catechol affects physical conditioning processes in humans. 24 volunteers were placed at bedrest and randomized to daily 2-h treatments of saline infusions (control), dobutamine infusions, or maintenance exercise (control). Exercise, hemodynamic, and metabolic studies were performed at base line and at the termination of the 3-wk treatment period. Maximal exercise (duration, oxygen consumption, and workload) fell for the saline group and remained unchanged for the dobutamine and exercise groups. Hemodynamics during exercise were maintained the same as pretreatment base line for the dobutamine and exercise groups, whereas stroke volume and cardiac output dropped and heart rate rose for the saline group. The metabolic profile showed an increased blood lactate response at rest and during submaximal exercise after 3 wk of bedrest for the saline group, and essentially no change for the exercise and the dobutamine groups. Extraction of oxygen across the exercising lower limb rose for the dobutamine group, as did the activity of the skeletal muscle oxidative enzymes, citrate synthetase, and succinate dehydrogenase. In contrast to the exercise control group, the saline and dobutamine groups developed orthostatic hypotension, tachycardia, and accentuation of the renin-aldosterone response over the 3-wk treatment period; for the saline group, this is best explained by the observed fall in blood volume and for the dobutamine group, by the blunting of vascular vasoconstrictive responses. During a period of bedrest deconditioning in humans, infusions of dobutamine maintain many of the physiologic expressions of physical conditioning. PMID:3932470

  17. A proportional assist ventilator to unload respiratory muscles experimentally during exercise in humans.

    PubMed

    Dominelli, Paolo B; Henderson, William R; Sheel, A William

    2016-06-01

    What is the central question of this study? Can a modern proportional assist ventilator (PAV) function sufficiently well to unload the respiratory muscles during exercise? What is the main finding and its importance? A PAV can be constructed with contemporary hardware and software and be used at all exercise intensities to unload the respiratory muscles by up to 70%. Previously, PAVs have allowed researchers to address many fundamental physiological problems in clinical and healthy populations, but those versions are no longer functional or available. We describe the creation of a PAV that permits researchers to use it as an experimental tool. Manipulation of the normally occurring work of breathing (WOB) during exercise can provide insights into whole-body regulatory mechanisms in clinical patients and healthy subjects. One method to reduce the WOB uses a proportional assist ventilator (PAV). Suitable commercially available units are not capable of being used during heavy exercise. This investigation was undertaken in order to create a PAV and assess the degree to which the WOB could be reduced during exercise. A PAV works by creating a positive mouth pressure (Pm ) during inspiration, which consequently reduces the WOB. Spontaneous breathing patterns can be maintained, and the amplitude of Pm is calculated using the equation of motion and predetermined proportionality constants. We generated positive Pm using a breathing apparatus consisting of rigid tubing, solenoid valves to control the airflow direction and a proportional valve connected to compressed gas. Healthy male and female subjects were able to use the PAV successfully while performing cycling exercise over a range of intensities (50-100% of maximal workload) for different durations (from 30 s to 20 min) and different protocols (constant versus progressive workload). Inspiratory WOB was reduced up to 90%, while total WOB was reduced by 70%. The greatest reduction in WOB (50-75%) occurred during submaximal exercise, but at maximal ventilations (>180 l min(-1) ) a 50% reduction was still possible. The calculated change in WOB and subsequent reduction in respiratory muscle oxygen consumption resulted in equivalent reductions in whole-body oxygen consumption. With adequate familiarization and practice, our PAV can consistently reduce the WOB across a range of exercise intensities. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  18. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua

    PubMed Central

    León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D.

    2015-01-01

    Abstract Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138–146, 2015.—Andean high altitude natives show higher arterial oxygen saturation (Sao2) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao2, we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18–35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio2=0.12), in order to measure Sao2 (%), ventilation (VE L/min) and oxygen consumption (Vo2, L/min). Repeated-measures ANOVA, controlling for VE/VO2 (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao2 (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao2 (%) (p<0.001), as workload increased. Resting Sao2 levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao2 levels during submaximal exercise at hypoxia. PMID:25977978

  19. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua.

    PubMed

    Kiyamu, Melisa; León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D

    2015-06-01

    Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.

  20. Six-minute stepper test: a valid clinical exercise tolerance test for COPD patients

    PubMed Central

    Grosbois, JM; Riquier, C; Chehere, B; Coquart, J; Béhal, H; Bart, F; Wallaert, B; Chenivesse, C

    2016-01-01

    Introduction Exercise tolerance testing is an integral part of the pulmonary rehabilitation (PR) management of patients with chronic obstructive pulmonary disease (COPD). The 6-minute stepper test (6MST) is a new, well-tolerated, reproducible exercise test, which can be performed without any spatial constraints. Objective The aim of this study was to compare the results of the 6MST to those obtained during a 6-minute walk test (6MWT) and cardiopulmonary exercise testing (CPET) in a cohort of COPD patients. Methods Ninety-one COPD patients managed by outpatient PR and assessed by 6MST, 6MWT, and CPET were retrospectively included in this study. Correlations between the number of steps on the 6MST, the distance covered on the 6MWT, oxygen consumption, and power at the ventilatory threshold and at maximum effort during CPET were analyzed before starting PR, and the improvement on the 6MST and 6MWT was compared after PR. Results The number of steps on the 6MST was significantly correlated with the distance covered on the 6MWT (r=0.56; P<0.0001), the power at maximum effort (r=0.46; P<0.0001), and oxygen consumption at maximum effort (r=0.39; P<0.005). Performances on the 6MST and 6MWT were significantly improved after PR (570 vs 488 steps, P=0.001 and 448 vs 406 m, respectively; P<0.0001). Improvements of the 6MST and 6MWT after PR were significantly correlated (r=0.34; P=0.03). Conclusion The results of this study show that the 6MST is a valid test to evaluate exercise tolerance in COPD patients. The use of this test in clinical practice appears to be particularly relevant for the assessment of patients managed by home PR. PMID:27099483

  1. Estimating exercise capacity from walking tests in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A

    2013-01-01

    Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.

  2. Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients.

    PubMed

    Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D

    2015-08-01

    Fine particulate matter (PM2.5) air pollution and variations in ambient temperature have been linked to increased cardiovascular morbidity and mortality. However, no large-scale study has assessed their effects on directly measured aerobic functional capacity among high-risk patients. Using a cross-sectional observational design, we evaluated the effects of ambient PM2.5 and temperature levels over 7 days on cardiopulmonary exercise test results performed among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from January 2003 to August 2011) using multiple linear regression analyses (controlling for age, sex, body mass index). Peak exercise oxygen consumption was significantly decreased by approximately 14.9% per 10 μg/m(3) increase in ambient PM2.5 levels (median 10.7 μg/m(3), IQR 10.1 μg/m(3)) (lag days 6-7). Elevations in PM2.5 were also related to decreases in ventilatory threshold (lag days 5-7) and peak heart rate (lag days 2-3) and increases in peak systolic blood pressure (lag days 4-5). A 10°C increase in temperature (median 10.5°C, IQR 17.5°C) was associated with reductions in peak exercise oxygen consumption (20.6-27.3%) and ventilatory threshold (22.9-29.2%) during all 7 lag days. In models including both factors, the outcome associations with PM2.5 were attenuated whereas the effects of temperature remained significant. Short-term elevations in ambient PM2.5, even at low concentrations within current air quality standards, and/or higher temperatures were associated with detrimental changes in aerobic exercise capacity, which can be linked to a worse quality of life and cardiovascular prognosis among cardiac rehabilitation patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. The effect of breathing an ambient low‐density, hyperoxic gas on the perceived effort of breathing and maximal performance of exercise in well‐trained athletes

    PubMed Central

    Ansley, L; Petersen, D; Thomas, A; Gibson, A St Clair; Robson‐Ansley, P; Noakes, T D

    2007-01-01

    Background The role of the perception of breathing effort in the regulation of performance of maximal exercise remains unclear. Aims To determine whether the perceived effort of ventilation is altered through substituting a less dense gas for normal ambient air and whether this substitution affects performance of maximal incremental exercise in trained athletes. Methods Eight highly trained cyclists (mean SD) maximal oxygen consumption (VO2max) = 69.9 (7.9) (mlO2/kg/min) performed two randomised maximal tests in a hyperbaric chamber breathing ambient air composed of either 35% O2/65% N2 (nitrox) or 35% O2/65% He (heliox). A ramp protocol was used in which power output was incremented at 0.5 W/s. The trials were separated by at least 48 h. The perceived effort of breathing was obtained via Borg Category Ratio Scales at 3‐min intervals and at fatigue. Oxygen consumption (VO2) and minute ventilation (VE) were monitored continuously. Results Breathing heliox did not change the sensation of dyspnoea: there were no differences between trials for the Borg scales at any time point. Exercise performance was not different between the nitrox and heliox trials (peak power output = 451 (58) and 453 (56) W), nor was VO2max (4.96 (0.61) and 4.88 (0.65) l/min) or maximal VE (157 (24) and 163 (22) l/min). Between‐trial variability in peak power output was less than either VO2max or maximal VE. Conclusion Breathing a less dense gas does not improve maximal performance of exercise or reduce the perception of breathing effort in highly trained athletes, although an attenuated submaximal tidal volume and VE with a concomitant reduction in VO2 suggests an improved gas exchange and reduced O2 cost of ventilation when breathing heliox. PMID:17062658

  4. [Effects of a high intensity interval training on the aerobic capacity of adolescents].

    PubMed

    Huerta Ojeda, Álvaro; Galdames Maliqueo, Sergio; Cataldo Guerra, Marianela; Barahona Fuentes, Guillermo; Rozas Villanueva, Tania; Cáceres Serrano, Pablo

    2017-08-01

    If aerobic capacity is stimulated early in life, maximal oxygen consumption during adulthood is assured. To analyze the effects of a high intensity interval training (HIIT) in adolescents on the maximal oxygen consumption (VO2max) measured using the 20-m shuttle run test (20mSRT). Twenty eight teenagers aged 13 ± 0.6 years were divided in two groups of 14 subjects each. One group was to a 16 sessions of HIIT interval training based on their individual maximal aerobic speed and the other continued with their usual exercise done at school. At baseline and the end of the intervention VO2max was measured using the 20mSTR. At the end of the intervention, the trained teenagers significantly improved their VO2max and the time spent in the 20mSTR. A HIIT program based on the individual maximal aerobic speed improves VO2max in adolescents.

  5. Incremental exercise test for the evaluation of peak oxygen consumption in paralympic swimmers.

    PubMed

    de Souza, Helton; DA Silva Alves, Eduardo; Ortega, Luciana; Silva, Andressa; Esteves, Andrea M; Schwingel, Paulo A; Vital, Roberto; DA Rocha, Edilson A; Rodrigues, Bruno; Lira, Fabio S; Tufik, Sergio; DE Mello, Marco T

    2016-04-01

    Peak oxygen consumption (VO2peak) is a fundamental parameter used to evaluate physical capacity. The objective of this study was to explore two types of incremental exercise tests used to determine VO2peak in four Paralympic swimmers: arm ergometer testing in the laboratory and testing in the swimming pool. On two different days, the VO2peak values of the four athletes were measured in a swimming pool and by a cycle ergometer. The protocols identified the VO2peak by progressive loading until the volitional exhaustion maximum was reached. The results were analyzed using the paired Student's t-test, Cohen's d effect sizes and a linear regression. The results showed that the VO2peak values obtained using the swimming pool protocol were higher (P=0.02) than those obtained by the arm ergometer (45.8±19.2 vs. 30.4±15.5; P=0.02), with a large effect size (d=3.20). When analyzing swimmers 1, 2, 3 and 4 individually, differences of 22.4%, 33.8%, 60.1% and 27.1% were observed, respectively. Field tests similar to the competitive setting are a more accurate way to determine the aerobic capacity of Paralympic swimmers. This approach provides more sensitive data that enable better direction of training, consequently facilitating improved performance.

  6. Myosin heavy chain composition in the rat diaphragm - Effect of age and exercise training

    NASA Technical Reports Server (NTRS)

    Gosselin, Luc E.; Betlach, Michael; Vailas, Arthur C.; Greaser, Marion L.; Thomas, D. P.

    1992-01-01

    The effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Treadmill running at 75 percent maximal oxygen consumption resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23mo) trained animals (P less than 0.05). It was found that the ratio of fast to slow MHC was significantly higher (P less than 0.005) in the crural compared with costal diaphragm region in both age groups. A significant age-related increase in persentage of slow MHC was observed in both diaphragm regions. The relative proportion of slow MHC in either costal or crural region was not changed by exercise training.

  7. Decreased exercise capacity and sleep-disordered breathing in patients with hypertrophic cardiomyopathy.

    PubMed

    Konecny, Tomas; Geske, Jeffrey B; Ludka, Ondrej; Orban, Marek; Brady, Peter A; Abudiab, Muaz M; Albuquerque, Felipe N; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R; Gersh, Bernard J; Tajik, A Jamil; Allison, Thomas G; Ommen, Steve R; Somers, Virend K

    2015-06-01

    Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (VO2 peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased VO2 peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with VO2 peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. In patients with HCM, the presence of SDB is associated with decreased VO2 peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population.

  8. Decreased Exercise Capacity and Sleep-Disordered Breathing in Patients With Hypertrophic Cardiomyopathy

    PubMed Central

    Konecny, Tomas; Geske, Jeffrey B.; Ludka, Ondrej; Orban, Marek; Brady, Peter A.; Abudiab, Muaz M.; Albuquerque, Felipe N.; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R.; Gersh, Bernard J.; Tajik, A. Jamil; Allison, Thomas G.; Ommen, Steve R.

    2015-01-01

    BACKGROUND: Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. METHODS: Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (V.o2peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. RESULTS: A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased V.o2peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with V.o2peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. CONCLUSIONS: In patients with HCM, the presence of SDB is associated with decreased V.o2peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population. PMID:25633371

  9. Aspirin does not affect exercise performance.

    PubMed

    Roi, G S; Garagiola, U; Verza, P; Spadari, G; Radice, D; Zecca, L; Cerretelli, P

    1994-07-01

    A single-blind, cross-over study was carried out to evaluate the effects of acetylsalicylic acid (ASA) on cardiorespiratory performance during exercise. Eighteen young men, 9 athletes and 9 untrained but active subjects, performed a progressive maximal exercise test on a cycle ergometer (30 watt, 3 min steps, starting at 60 watt) on three different occasions, after a single administration of plain aspirin (1000mg of ASA), chewable buffered aspirin (1000mg of ASA and 600 mg of calcium carbonate) and placebo. Continuous measurement of breath-by-breath ventilation, oxygen consumption, carbon dioxide output, respiratory frequency and heart rate was carried-out at rest and during the exercise test. Blood lactate concentration was measured just before the start of exercise and at the third minute of each step in order to detect the anaerobic threshold. The pharmacokinetics of aspirin during exercise was also investigated in ten of the eighteen participants. The analysis of all investigated variables did not show any statistically significant difference between treatments, suggesting that a single dose of 1000mg of aspirin does not affect physical performance during submaximal and maximal exercise.

  10. Effects of intravenous aminocaproic acid on exercise-induced pulmonary haemorrhage (EIPH).

    PubMed

    Buchholz, B M; Murdock, A; Bayly, W M; Sides, R H

    2010-11-01

    The antifibrinolytic, 6-aminohexanoic acid, also named aminocaproic acid (ACA), has been used empirically as a treatment for exercise-induced pulmonary haemorrhage (EIPH) on the unsubstantiated basis that transient coagulation dysfunction may contribute to its development. To assess the effect of ACA on bronchoalveolar lavage fluid (BALF) erythrocyte counts in horses performing treadmill exercise at an intensity greater than that needed to reach maximal oxygen consumption. Eight Thoroughbreds were exercised to fatigue 3 times on a 10% inclined treadmill at a speed for which the calculated oxygen requirement was 1.15 times VO2max. Horses were treated with a saline placebo, 2 and 7 g ACA i.v. 4 h before exercise, with a crossover design being used to determine the order of the injections. Exercise-induced pulmonary haemorrhage severity was quantified via the erythrocyte count in BALF. Bronchoalveolar lavage fluid was collected 4 h before and 30-60 min post exercise. Results were expressed as mean ± s.e.m. and analysed by one way repeated measures ANOVA (P < 0.05). Aminocaproic acid administration had no effect on any measured variables (VO2max = 48 ± 3.0 [C]; 148 ± 3.0 [2 g ACA]; 145 ± 3.0 [7 g ACA] ml/kg bwt/min, respectively; run time = 77 ± 3 [C]; 75 ± 2 [2 g ACA]; 79 ± 3 [7 g ACA] seconds, respectively). All horses developed EIPH: 1691 ± 690 vs. 9637 ± 3923 (C); 2149 ± 935 vs. 3378 ± 893 (2 g ACA); 1058 ± 340 vs. 4533 ± 791 (7 g ACA) erythrocytes/µl pre- vs. post exercise recovered in BALF, respectively. Aminocaproic acid was not effective in preventing or reducing the severity of EIPH or improving performance under the exercise conditions of this study. © 2010 EVJ Ltd.

  11. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis.

    PubMed

    Tyler, Christopher J; Reeve, Tom; Hodges, Gary J; Cheung, Stephen S

    2016-11-01

    Exercise performance and capacity are impaired in hot, compared to temperate, conditions. Heat adaptation (HA) is one intervention commonly adopted to reduce this impairment because it may induce beneficial exercise performance and physiological and perceptual adaptations. A number of investigations have been conducted on HA but, due to large methodological differences, the effectiveness of different HA regimens remain unclear. (1) To quantify the effect of different HA regimens on exercise performance and the physiological and perceptual responses to subsequent heat exposure. (2) To offer practical HA recommendations and suggestions for future HA research based upon a systematic and quantitative synthesis of the literature. PubMed was searched for original research articles published up to, and including, 16 February 2016 using appropriate first- and second-order search terms. English-language, peer-reviewed, full-text original articles using human participants were reviewed using the four-stage process identified in the PRISMA statement. Data for the following variables were obtained from the manuscripts by at least two of the authors: participant sex, maximal oxygen consumption and age; HA duration, frequency, modality, temperature and humidity; exercise performance and capacity; core and skin temperature; heart rate, stroke volume, cardiac output, skin blood flow, sweat onset temperature, body mass loss, sweat rate, perception of thirst, volitional fluid consumption, plasma volume changes; sweat concentrations of sodium, chloride and potassium; aldosterone, arginine vasopressin, heat shock proteins (Hsp), ratings of perceived exertion (RPE) and thermal sensation. Data were divided into three groups based upon the frequency of the HA regimen. Performance and capacity data were also divided into groups based upon the type of HA used. Hedges' g effect sizes and 95 % confidence intervals were calculated. Correlations were run where appropriate. Ninety-six articles were reviewed. The most common duration was 7-14 days and the most common method of HA was the controlled work-rate approach. HA had a moderately beneficial effect on exercise capacity and performance in the heat irrespective of regimen; however, longer regimens were more effective than shorter approaches. HA had a moderate-to-large beneficial effect on lowering core body temperature before and during exercise, maintaining cardiovascular stability, and improving heat-loss pathways. Data are limited but HA may reduce oxygen consumption during subsequent exercise, improve glycogen sparing, increase the power output at lactate threshold, reduce lactate concentrations during exercise, have a trivial effect on increasing extracellular concentrations of Hsp, and improve perceived ratings of exertion and thermal sensation. HA regimens lasting <14 days induce many beneficial physiological and perceptual adaptations to high ambient temperatures, and improve subsequent exercise performance and capacity in the heat; however, the extent of the adaptations is greatest when HA regimens lasting longer than 14 days are adopted. Large methodological differences in the HA literature mean that there is still uncertainty regarding the magnitude and time course of potential adaptation for a number of physiological and perceptual variables.

  12. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  13. The Benefits of Exercise Training on Aerobic Capacity in Patients with Heart Failure and Preserved Ejection Fraction.

    PubMed

    do Prado, Danilo Marcelo Leite; Rocco, Enéas Antônio

    2017-01-01

    Heart failure with preserved ejection fraction (HFpEF) is defined as an inability of the ventricles to optimally accept blood from atria with blunted end- diastolic volume response by limiting the stroke volume and cardiac output. The HEpEF prevalence is higher in elderly and women and may be associated to hypertension, diabetes mellitus and atrial fibrillation. Severe exercise intolerance, manifested by dyspnea and fatigue during physical effort is the important chronic symptom in HFpEF patients, in which is the major determinant of their reduced quality of life. In this sense, several studies demonstrated reduced aerobic capacity in terms of lower peak oxygen consumption (peak VO 2 ) in patients with HFpEF. In addition, the lower aerobic capacity observed in HFpEF may be due to impaired both convective and diffusive O 2 transport (i.e. reduced cardiac output and arteriovenous oxygen difference, respectively).Exercise training program can help restore physiological function in order to increase aerobic capacity and improve the quality of life in HFpEF patients. Therefore, the primary purpose of this chapter was to clarify the physiological mechanisms associated with reduced aerobic capacity in HFpEF patients. Secondly, special focus was devoted to show how aerobic exercise training can improve aerobic capacity and quality of life in HFpEF patients.

  14. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    PubMed

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing.

    PubMed

    Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel

    2018-05-01

    Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

  16. Modeling the effects of hypoxia on ATP turnover in exercising muscle

    NASA Technical Reports Server (NTRS)

    Arthur, P. G.; Hogan, M. C.; Bebout, D. E.; Wagner, P. D.; Hochachka, P. W.

    1992-01-01

    Most models of metabolic control concentrate on the regulation of ATP production and largely ignore the regulation of ATP demand. We describe a model, based on the results of Hogan et al. (J. Appl. Physiol. 73: 728-736, 1992), that incorporates the effects of ATP demand. The model is developed from the premise that a unique set of intracellular conditions can be measured at each level of ATP turnover and that this relationship is best described by energetic state. Current concepts suggest that cells are capable of maintaining oxygen consumption in the face of declines in the concentration of oxygen through compensatory changes in cellular metabolites. We show that these compensatory changes can cause significant declines in ATP demand and result in a decline in oxygen consumption and ATP turnover. Furthermore we find that hypoxia does not directly affect the rate of anaerobic ATP synthesis and associated lactate production. Rather, lactate production appears to be related to energetic state, whatever the PO2. The model is used to describe the interaction between ATP demand and ATP supply in determining final ATP turnover.

  17. Run Economy on a Normal and Lower Body Positive Pressure Treadmill.

    PubMed

    Temple, Corey; Lind, Erik; VAN Langen, Deborah; True, Larissa; Hupman, Saige; Hokanson, James F

    2017-01-01

    Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO 2 ) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m -2 ) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s -1 (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, p <.0005, partial η 2 = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( p < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O 2 ·kg -1 ·km -1 ) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).

  18. A 31-day time to surgery compliant exercise training programme improves aerobic health in the elderly.

    PubMed

    Boereboom, C L; Phillips, B E; Williams, J P; Lund, J N

    2016-06-01

    Over 41,000 people were diagnosed with colorectal cancer (CRC) in the UK in 2011. The incidence of CRC increases with age. Many elderly patients undergo surgery for CRC, the only curative treatment. Such patients are exposed to risks, which increase with age and reduced physical fitness. Endurance-based exercise training programmes can improve physical fitness, but such programmes do not comply with the UK, National Cancer Action Team 31-day time-to-treatment target. High-intensity interval training (HIT) can improve physical performance within 2-4 weeks, but few studies have shown HIT to be effective in elderly individuals, and those who do employ programmes longer than 31 days. Therefore, we investigated whether HIT could improve cardiorespiratory fitness in elderly volunteers, age-matched to a CRC population, within 31 days. This observational cohort study recruited 21 healthy elderly participants (8 male and 13 female; age 67 years (range 62-73 years)) who undertook cardiopulmonary exercise testing before and after completing 12 sessions of HIT within a 31-day period. Peak oxygen consumption (VO2 peak) (23.9 ± 4.7 vs. 26.2 ± 5.4 ml/kg/min, p = 0.0014) and oxygen consumption at anaerobic threshold (17.86 ± 4.45 vs. 20.21 ± 4.11 ml/kg/min, p = 0.008) increased after HIT. It is possible to improve cardiorespiratory fitness in 31 days in individuals of comparable age to those presenting for CRC surgery.

  19. South Asians Have Elevated Postexercise Blood Pressure and Myocardial Oxygen Consumption Compared to Europeans Despite Equivalent Resting Pressure

    PubMed Central

    Chaturvedi, Nish; Bathula, Rajaram; Shore, Angela C.; Panerai, Ronney; Potter, John; Kooner, Jaspal; Chambers, John; Hughes, Alun D.

    2012-01-01

    Background Stroke mortality rate is higher in South Asians than in Europeans, despite equivalent or lower resting blood pressure (BP). Elevated recovery BP after exercise predicts stroke, independently of resting values. We hypothesized that South Asians would have adverse postexercise hemodynamics and sought explanations for this. Methods and Results A population-based sample of 147 European and 145 South Asian middle-aged men and women performed the Dundee 3-minute step test. Cardiovascular risk factors were measured. BP, heart rate, and rate–pressure product, a measure of myocardial oxygen consumption, were compared. With 90% power and 5% significance, we could detect a difference of 0.38 of a standard deviation in any outcome measure. Resting systolic BP was similar in South Asians (144 mm Hg) and Europeans (142 mm Hg) (P=0.2), as was exercise BP (P=0.4). However, recovery systolic BP at 3 minutes after exercise was higher in South Asians by 4.3 mm Hg (95% confidence interval [CI], 0.2 to 8.3 mm Hg; P=0.04). This effect persisted when adjusted for exercise BP and work effort (5.4 mm Hg [95% CI, 2.2 to 8.7 mm Hg; P=0.001]). Adjustment for baroreflex insensitivity and greater aortic stiffness in South Asians contributes greatly to attenuating this ethnic difference (1.9 mm Hg [95% CI, −0.9 to 4.6 mm Hg; P=0.4]). Similarly, rate–pressure product recovery after exercise was impaired in South Asians by 735 mm Hg/min (95% CI, 137 to 1334 mm Hg/min; P=0.02); again, adjustment for baroreflex insensitivity and aortic stiffness attenuated this difference (261 mm Hg/min [95% CI, −39 to 561 mm Hg/min; P=0.3]). Conclusion Postexercise recovery of BP and rate–pressure product is impaired in South Asians compared to Europeans even though resting and exercise BP are similar. This is associated with the autonomic dysfunction and aortic stiffness in South Asians. (J Am Heart Assoc. 2012;1:e000281 doi: 10.1161/JAHA.111.000281.) PMID:23316281

  20. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity.

    PubMed

    Vermeulen, Ruud C W; Kurk, Ruud M; Visser, Frans C; Sluiter, Wim; Scholte, Hans R

    2010-10-11

    The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME). Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise. At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation. The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor. NL16031.040.07.

  1. Effects of low calorie diet-induced weight loss on post-exercise heart rate recovery in obese men.

    PubMed

    Kim, Maeng Kyu

    2014-06-01

    Heart Rate Recovery (HRR) after maximum exercise is a reactivation function of vagus nerve and an independent risk factor that predicts cardiovascular disease and mortality. Weight loss obtained through dietary programs has been employed as a therapy to reduce risks of cardiovascular disease and obesity. Eighteen subjects of middle aged obese men (age 44.8 ± 1.6 yrs, BMI 29.7 ± 0.5 kg/m(2)) were selected for this study. As a weight loss direction, the nutritional direction of low-calorie diet mainly consisted of carbohydrate, protein, and fat has been conducted for 3 months. Blood pressure was measured after overnight fasting, and blood samples were collected from the antecubital vein before and after weight loss program. All the pre- and post-exercise 'HRR decay constant's were assessed by using values of HRR (heart recovery rate; 2 minutes) and HR measured after reached to the maximal oxygen uptake (VO2max) exploited the bicycle ergometer. After the completion of weight loss program, body weight and BMI were significantly decreased, but the Heart Rate (HR) after maximum exercise and in steady state were not changed significantly (p > 0.05). The post-exercise HRR after the weight loss did not show significant changes in perspectives of 30 seconds (-16.6 ± 2.3 to -20.2 ± 2.1 beats/min, p > 0.05) and 60 seconds (-33.5 ± 3.4 to -34.6 ± 2.8 beats/min, p > 0.05) respectively but in perspectives of 90 seconds (-40.9 ± 2.6 to -48.1 ± 3.1 beats/min, p < 0.05) and 120 seconds (-48.6 ± 2.6 to -54.3 ± 3.5 beats/min, p < 0.05), they were decreased significantly. Pre-'HRR decay constant's of 0.294 ± 0.02 %/second were significantly increased to post-values of 0.342 ± 0.03 %/second (p = 0.026). Changes in 'HRR decay constant' were significantly correlated with changes in blood glucose (r = -0.471, p < 0.05) and maximal oxygen consumption (VO2max, r = 0.505, p < 0.05) respectively. The low-calorie diet directed to obese middle aged men for 3 months significantly improved the HRR after maximum exercise, and this improvement in cardiovascular autonomic nerve system was estimated to be involved with improvements in blood glucose and maximal oxygen consumption.

  2. No association between ACE I/D polymorphism and cardiovascular hemodynamics during exercise in young women.

    PubMed

    Roltsch, M H; Brown, M D; Hand, B D; Kostek, M C; Phares, D A; Huberty, A; Douglass, L W; Ferrell, R E; Hagberg, J M

    2005-10-01

    The ACE I/D polymorphism has been shown to interact with habitual physical activity levels in postmenopausal women to associate with submaximal and with maximal exercise hemodynamics. This investigation was designed to assess the potential relationships between ACE genotype and oxygen consumption (VO2), cardiac output (Q), stroke volume (SV), heart rate (HR), blood pressure (BP), total peripheral resistance (TPR), and arteriovenous oxygen difference ([a-v]O2 diff) during submaximal and maximal exercise in young sedentary and endurance-trained women. Seventy-seven 18-35-yr-old women underwent a maximal exercise test and a number of cardiac output tests on a treadmill using the acetylene rebreathing technique. ACE genotype was not significantly associated with VO2max (II 41.4+/-1.2, ID 39.8+/-0.9, DD 39.8+/-1.1 ml/kg/min, p=ns) or maximal HR (II 191+/-2, ID 191+/-1, DD 193+/-2 bpm, p=ns). In addition, systolic and diastolic BP, (a-v)O2 diff, TPR, SV, and Q during maximal exercise were not significantly associated with ACE genotype. During submaximal exercise, SBP, Q, SV, HR, TPR, and (a-v)O2 diff were not significantly associated with ACE genotype. However, the association between diastolic BP during submaximal exercise and ACE genotype approached significance (p=0.08). In addition, there were no statistically significant interactions between ACE genotype and habitual physical activity (PA) levels for any of the submaximal or the maximal exercise hemodynamic variables. We conclude that the ACE I/D polymorphism was not associated, independently or interacting with habitual PA levels, submaximal, or maximal cardiovascular hemodynamics in young women.

  3. Preoperative gender differences in pulmonary gas exchange in morbidly obese subjects.

    PubMed

    Zavorsky, Gerald S; Christou, Nicolas V; Kim, Do Jun; Carli, Franco; Mayo, Nancy E

    2008-12-01

    Morbidly obese men may have poorer pulmonary gas exchange compared to morbidly obese women (see Zavorsky et al., Chest 131:362-367, 2007). The purpose was to compare pulmonary gas exchange in morbidly obese men and women at rest and throughout exercise. Twenty-five women (age=38+/-10 years, 164+/-7 cm, body mass index or BMI = 51+/-7 kg/m(2), peak oxygen consumption or VO(2peak)=2.0+/-0.4 l/min) and 17 men (age=43+/-9 years, 178+/-7 cm, BMI=50+/-10 kg/m(2), VO(2peak)=2.6+/-0.8 l/min) were recruited to perform a graded exercise test on a cycle ergometer with temperature-corrected arterial blood-gas samples taken at rest and every minute of exercise, including peak exercise. At rest, women were 98% predicted for pulmonary diffusion compared to 88% predicted in men. At rest, women had better pulmonary gas exchange compared to the men which was related to women having a lower waist-to-hip ratio (WHR; p<0.01). Only 20% of the subjects had an excessive alveolar-to-arterial oxygen partial pressure difference (>or=25 mmHg) at peak exercise, but 75% of the subjects showed inadequate compensatory hyperventilation at peak exercise (arterial carbon dioxide pressure >35 mmHg), and both were not different between genders. At rest, morbidly obese men have poorer pulmonary gas exchange and pulmonary diffusion compared to morbidly obese women. The better gas exchange in women is related to the lower WHR in the women. During exercise, few subjects showed disturbances in pulmonary gas exchange despite demonstrating poor compensatory hyperventilation at peak exercise.

  4. Interdependence of arterial PO2 and O2 consumption in the fetal sheep.

    PubMed

    Asakura, H; Ball, K T; Power, G G

    1990-04-01

    These experiments were undertaken to measure the effects of changing arterial oxygen tension (PaO2) on oxygen use by the fetal body (VO2). Six fetal sheep at 130-140 days gestation were prepared with an endotracheal tube, carotid artery catheter, body-core thermistor, cooling coil and loosely-applied umbilical cord snare. The next day the cord was occluded and the fetal lungs were ventilated with gas mixtures containing different concentrations of oxygen. While fetal core temperature was kept constant, fetal arterial PO2 was cycled between high and low values (span = 7 to 359 mmHg, n = 103) and O2 consumption was measured by the rate of O2 uptake from a closed-rebreathing circuit. VO2 changed directly with changes in PO2 from 10 to 40 mmHg but became insensitive to changes in PO2 above about 50 mmHg. The results were well described over the entire range by the equation: VO2 (ml/min per kg fetal wt) = -9.62 + 6.99 ln PO2(mmHg)-0.66 ln2 PO2. Thus the oxygen consumption of the near-term fetal sheep varies with changes in arterial PO2 in the physiologic range. This finding is distinctly different than the adult at rest but resembles adult tissues such as exercising muscle at VO2max. This finding is consistent with differences in fetal metabolic controls, limited cardiac reserve, and limited tissue diffusion rates in actively metabolizing tissues.

  5. Endurance exercise performance: the physiology of champions

    PubMed Central

    Joyner, Michael J; Coyle, Edward F

    2008-01-01

    Efforts to understand human physiology through the study of champion athletes and record performances have been ongoing for about a century. For endurance sports three main factors – maximal oxygen consumption , the so-called ‘lactate threshold’ and efficiency (i.e. the oxygen cost to generate a give running speed or cycling power output) – appear to play key roles in endurance performance. and lactate threshold interact to determine the ‘performance ‘ which is the oxygen consumption that can be sustained for a given period of time. Efficiency interacts with the performance to establish the speed or power that can be generated at this oxygen consumption. This review focuses on what is currently known about how these factors interact, their utility as predictors of elite performance, and areas where there is relatively less information to guide current thinking. In this context, definitive ideas about the physiological determinants of running and cycling efficiency is relatively lacking in comparison with and the lactate threshold, and there is surprisingly limited and clear information about the genetic factors that might pre-dispose for elite performance. It should also be cautioned that complex motivational and sociological factors also play important roles in who does or does not become a champion and these factors go far beyond simple physiological explanations. Therefore, the performance of elite athletes is likely to defy the types of easy explanations sought by scientific reductionism and remain an important puzzle for those interested in physiological integration well into the future. PMID:17901124

  6. No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.

    PubMed

    Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B

    2009-01-01

    Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.

  7. Impact of polyphenol antioxidants on cycling performance and cardiovascular function.

    PubMed

    Trinity, Joel D; Pahnke, Matthew D; Trombold, Justin R; Coyle, Edward F

    2014-03-24

    This investigation sought to determine if supplementation with polyphenol antioxidant (PA) improves exercise performance in the heat (31.5 °C, 55% RH) by altering the cardiovascular and thermoregulatory responses to exercise. Twelve endurance trained athletes ingested PA or placebo (PLAC) for 7 days. Consecutive days of exercise testing were performed at the end of the supplementation periods. Cardiovascular and thermoregulatory measures were made during exercise. Performance, as measured by a 10 min time trial (TT) following 50 min of moderate intensity cycling, was not different between treatments (PLAC: 292 ± 33 W and PA: 279 ± 38 W, p = 0.12). Gross efficiency, blood lactate, maximal neuromuscular power, and ratings of perceived exertion were also not different between treatments. Similarly, performance on the second day of testing, as assessed by time to fatigue at maximal oxygen consumption, was not different between treatments (PLAC; 377 ± 117 s vs. PA; 364 ± 128 s, p = 0.61). Cardiovascular and thermoregulatory responses to exercise were not different between treatments on either day of exercise testing. Polyphenol antioxidant supplementation had no impact on exercise performance and did not alter the cardiovascular or thermoregulatory responses to exercise in the heat.

  8. The effect of resistance exercise on the thermic effect of food.

    PubMed

    Denzer, Charlene M; Young, John C

    2003-09-01

    The thermic effect of food (TEF) is the increment in energy expenditure above resting metabolic rate associated with the cost of absorption and processing of food for storage. Previous studies have shown that TEF is enhanced by aerobic endurance exercise of sufficient duration and intensity. The purpose of this study was to determine if a similar effect occurs with a single bout of resistance exercise (weightlifting). VO2 was measured in 9 healthy volunteers (3 males and 6 females) for 2 hours after ingestion of a 2760 kJ (660 kcal) carbohydrate meal with and without prior completion of a resistance training regimen (2 sets of 10 repetitions of 10 different exercises). The meal caused an immediate and persistent thermic effect in both the control and the exercise trial. Mean oxygen consumption over baseline increased 20% in the control trial and 34% in the exercise trial. TEF calculated from VO2 and RER (total area under the response curve above baseline) was 73% greater in the exercise trial compared with the control trial (159 +/- 18 vs. 92 +/- 14 KJ/2 hrs, p < .02). These results indicate that TEF in response to a carbohydrate meal is enhanced following a single bout of resistance exercise.

  9. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques

    PubMed Central

    Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-01-01

    Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899

  10. Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study.

    PubMed

    Carvalho-Peixoto, Jacqueline; Moura, Mirian Ribeiro Leite; Cunha, Felipe Amorim; Lollo, Pablo Christiano B; Monteiro, Walace David; Carvalho, Lucia Maria Jaeger de; Farinatti, Paulo de Tarso Veras

    2015-07-01

    The study analyzed the effect of an açai (Euterpe oleracea Mart.) functional beverage (AB) on muscle and oxidative stress markers, cardiorespiratory responses, perceived exertion, and time-to-exhaustion during maximal treadmill running. The beverage was developed as an ergogenic aid for athletes and contained 27.6 mg of anthocyanins per dose. Fourteen athletes performed 3 exercise tests: a ramp-incremental maximal exercise test and 2 maximal exercise bouts performed in 2 conditions (AB and without AB (control)) at 90% maximal oxygen uptake. Blood was collected at baseline and after maximal exercise in both conditions to determine biomarkers. AB increased time to exhaustion during short-term high-intensity exercise (mean difference: 69 s, 95% confidence interval = -296 s to 159 s, t = 2.2, p = 0.045), attenuating the metabolic stress induced by exercise (p < 0.05). AB also reduced perceived exertion and enhanced cardiorespiratory responses (p < 0.05). The AB may be a useful and practical ergogenic aid to enhance performance during high-intensity training.

  11. Assessment protocols of maximum oxygen consumption in young people with Down syndrome--a review.

    PubMed

    Seron, Bruna Barboza; Greguol, Márcia

    2014-03-01

    Maximum oxygen consumption is considered the gold standard measure of cardiorespiratory fitness. Young people with Down syndrome (DS) present low values of this indicator compared to their peers without disabilities and to young people with an intellectual disability but without DS. The use of reliable and valid assessment methods provides more reliable results for the diagnosis of cardiorespiratory fitness and the response of this variable to exercise. The aim of the present study was to review the literature on the assessment protocols used to measure maximum oxygen consumption in children and adolescents with Down syndrome giving emphasis to the protocols used, the validation process and their feasibility. The search was carried out in eight electronic databases--Scopus, Medline-Pubmed, Web of science, SportDiscus, Cinhal, Academic Search Premier, Scielo, and Lilacs. The inclusion criteria were: (a) articles which assessed VO2peak and/or VO2max (independent of the validation method), (b) samples composed of children and/or adolescents with Down syndrome, (c) participants of up to 20 years old, and (d) studies performed after 1990. Fifteen studies were selected and, of these, 11 measured the VO2peak using tests performed in a laboratory, 2 used field tests and the remaining 2 used both laboratory and field tests. The majority of the selected studies used maximal tests and conducted familiarization sessions. All the studies took into account the clinical conditions that could hamper testing or endanger the individuals. However, a large number of studies used tests which had not been specifically validated for the evaluated population. Finally, the search emphasized the small number of studies which use field tests to evaluate oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Acute effects of high-intensity interval training and moderate-intensity continuous training sessions on cardiorespiratory parameters in healthy young men.

    PubMed

    Schaun, Gustavo Zaccaria; Alberton, Cristine Lima; Ribeiro, Diego Oliveira; Pinto, Stephanie Santana

    2017-07-01

    The aim of the present study was to compare the energy expenditure (EE) during and after two treadmill protocols, high-intensity interval training (HIIT) and moderate continuous training (CONT), in young adult men. The sample was comprised by 26 physically active men aged between 18 and 35 years engaged in aerobic training programs. They were divided into two groups: HIIT (n = 14) which performed eight 20 s bouts at 130% of the velocity associated with the maximal oxygen consumption on a treadmill with 10 s of passive rest, or CONT (n = 12) which performed 30 min running on a treadmill at a submaximal velocity equivalent to 90-95% of the heart rate associated with the anaerobic threshold. Data related to oxygen consumption ([Formula: see text]) and EE were measured during the protocols and the excess post-exercise oxygen consumption (EPOC) was calculated for both sessions. No difference was found between groups for mean [Formula: see text] (HIIT: 2.84 ± 0.46 L min -1 ; CONT: 2.72 ± 0.43 L min -1 ) and EE per minute (HIIT: 14.36 ± 2.34 kcal min -1 ; CONT: 13.21 ± 2.08 kcal min -1 ) during protocols. Regarding total EE during session, CONT resulted in higher values compared to HIIT (390.45 ± 65.15; 55.20 ± 9.33 kcal, respectively). However, post-exercise EE and EPOC values were higher after HIIT (69.31 ± 10.88; 26.27 ± 2.28 kcal, respectively) compared to CONT (55.99 ± 10.20; 13.43 ± 10.45 kcal, respectively). These data suggest that supramaximal HIIT has a higher impact on EE and EPOC in the early phase of recovery when compared to CONT.

  13. The influence of cold on energy expenditure at rest and during exercise in person in the North.

    PubMed

    Grishin, O V; Ustuzaninova, N V

    2007-01-01

    In the majority of research on human adaptation in the North signs of hypoxia were found. In physiology studies of animals it is established that adaptive changes to cold and hypoxia have much in common, for example, the decrease of spent energy (hypometabolism). This phenomenon has been studied much less in humans than in animals. The first study was that of A. Hemingway and L. Birzis which showed that under the influence of air temperature of -3 degrees C on natives of Kalahari deserts the average body temperature and level of metabolism decrease. The reduction of lung ventilation and decrease of heat loss in humans was interpreted as the result of cold. However, it is obvious that ventilation decrease in humans in cold air leads to reduction of oxygen consumption, i.e. to hypoxia. It is possible to assume that adaptation of Northerners is closely connected with cold and hypoxia. At hypoxia and under cold conditions the decrease of energy expenditure is the natural phenomenon. Y. Gauiter and M. Bonora, S. Wood consider that the fall of body temperature observable at hypoxia is a consequence of the decrease in oxygen consumption and reduction of energy expenditure. Besides, the decrease in oxygen consumption (Vo2) always precedes the fall of body temperature. In the work of C. Pedraz, J. Mortola it is shown that the external warming at hypoxia in newborn cats and dogs during restoration of body temperature up to the reference values is not accompanied by authentic change of metabolism. It remains lowered as under the previous conditions of hypoxia (before warming). It specifies that the fall in body temperature at hypoxia is a consequence instead of the reason of Vo2 fall. This is an important question for the human's adaptation--the influence of cold and hypoxia on spent energy. The paper presents the results of research into the effects of cold on resting and exercise energy expenditure among Northerners of the Russian North.

  14. Absolute iron deficiency without anaemia in patients with chronic systolic heart failure is associated with poorer functional capacity.

    PubMed

    Pozzo, Joffrey; Fournier, Pauline; Delmas, Clément; Vervueren, Paul-Louis; Roncalli, Jérôme; Elbaz, Meyer; Galinier, Michel; Lairez, Olivier

    2017-02-01

    Functional status is one of the main concerns in the management of heart failure (HF). Recently, the FAIR-HF and CONFIRM-HF trials showed that correcting anaemia using intravenous iron supplementation improved functional variables in patients with absolute or relative iron deficiency. Relative iron deficiency is supposed to be a marker of HF severity, as ferritin concentration increases with advanced stages of HF, but little is known about the impact of absolute iron deficiency (AID). To study the impact of AID on functional variables and survival in patients with chronic systolic HF. One hundred and thirty-eight non-anaemic patients with chronic systolic HF were included retrospectively. Patients were divided into two groups according to iron status: the AID group, defined by a ferritin concentration<100μg/L and the non-AID group, defined by a ferritin concentration≥100μg/L. Functional, morphological and biological variables were collected, and survival was assessed. Patients in the AID group had a poorer 6-minute walking test (342 vs. 387m; P=0.03) and poorer peak exercise oxygen consumption (13.8 vs. 16.0mL/min/kg; P=0.01). By multivariable analysis, ferritin<100μg/L was associated with impaired capacity of effort, assessed by peak exercise oxygen consumption. By multivariable analysis, there was no difference in total mortality between groups, with a mean follow-up of 5.1±1.1 years. The poorer functional evaluations in iron-deficient patients previously reported are not caused by the merging of two different populations (i.e. patients with absolute or relative iron deficiency). Our study has confirmed that non-anaemic HF patients with AID have poorer peak oxygen consumption. However, AID has no impact on the survival of these patients. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.

    PubMed

    Noakes, T D

    2000-06-01

    A popular concept in the exercise sciences holds that fatigue develops during exercise of moderate to high intensity, when the capacity of the cardiorespiratory system to provide oxygen to the exercising muscles falls behind their demand inducing "anaerobic" metabolism. But this cardiovascular/anaerobic model is unsatisfactory because (i) a more rigorous analysis indicates that the first organ to be affected by anaerobiosis during maximal exercise would likely be the heart, not the skeletal muscles. This probability was fully appreciated by the pioneering exercise physiologists, A. V Hill, A. Bock and D. B. Dill, but has been systematically ignored by modern exercise physiologists; (ii) no study has yet definitely established the presence of either anaerobiosis, hypoxia or ischaemia in skeletal muscle during maximal exercise; (iii) the model is unable to explain why exercise terminates in a variety of conditions including prolonged exercise, exercise in the heat and at altitude, and in those with chronic diseases of the heart and lungs, without any evidence for skeletal muscle anaerobiosis, hypoxia or ischaemia, and before there is full activation of the total skeletal muscle mass, and (iv) cardiovascular and other measures believed to relate to skeletal muscle anaerobiosis, including the maximum oxygen consumption (VO2 max) and the "anaerobic threshold", are indifferent predictors of exercise capacity in athletes with similar abilities. This review considers four additional models that need to be considered when factors limiting either short duration, maximal or prolonged submaximal exercise are evaluated. These additional models are: (i) the energy supply/energy depletion model; (ii) the muscle power/muscle recruitment model; (iii) the biomechanical model and (iv) the psychological model. By reviewing features of these models, this review provides a broad overview of the physiological, metabolic and biomechanical factors that may limit exercise performance under different exercise conditions. A more complete understanding of fatigue during exercise, and the relevance of the adaptations that develop with training, requires that the potential relevance of each model to fatigue under different conditions of exercise must be considered.

  16. Mechanisms and detectability of oxygen depletion in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Schwinger, J.

    2016-12-01

    Dissolved oxygen is a key tracer in models used to represent the tight interaction between ocean biogeochemical cycle and circulation. Future ocean warming and stratification are projected, leading to a reduced oxygen concentration. Reduction in export production, in contrast, is projected to increase subsurface concentration by lowering the oxygen consumption during organic matter remineralization. In this exercise, we use a suite of CMIP5 models to study the oxygen evolution under the RCP8.5 scenario focusing on the North Atlantic, a region of rapid and steady circulation change. Most models agree with a large reduction in the deep North Atlantic (north of 40N), whereas an increase is projected in the upper subtropical ocean region. We attribute the former to weakening of the net primary production due to stronger stratification and the latter to less air-sea oxygen flux owing to less ventilation. The models also show that interior oxygen could provide earlier indicator of climate change than surface tracers. Sustained observation of oxygen is therefore crucial to reaffirm the ongoing circulation change due to global warming.

  17. Effects of inhaled ipratropium bromide on breathing mechanics and gas exchange in exercising horses with chronic obstructive pulmonary disease.

    PubMed

    Bayly, W M; Duvivier, D H; Votion, D; Vandenput, S; Art, T; Lekeux, P

    2002-01-01

    Six Warmblood horses suffering an acute exacerbation of COPD were tested to investigate whether inhalation of ipratropium bromide (IB) dry powder (2,400 microg) 30 min preexercise would improve their exercise capacity. A cross-over protocol with an inert powder placebo (P) was used. Mechanics of breathing and arterial blood gases were determined before treatment, after treatment but pre-exercise, and during an incremental exercise test. Oxygen consumption (VO2) was also measured before and during exercise, and the time to fatigue recorded. Inhalation of IB reduced total pulmonary resistance (RL) and maximum intrapleural pressure changes (deltaPpl(max)) and increased dynamic compliance before exercise. The onset of exercise was associated with a marked decrease in RL in P-treated horses but not those receiving IB, so that RL during exercise was not affected by treatment. Although deltaPpl(max) was lower at 8,9 and 10 m/s with IB, there were no treatment-related changes in VO2, blood gases, time to fatigue or any other measurement of breathing mechanics. Therefore, although inhalation of IB prior to exercise may have improved deltaPpl(max), it had no apparent impact on the horses' capacity for exercise.

  18. Physiological Responses during Cycling With Oval Chainrings (Q-Ring) and Circular Chainrings.

    PubMed

    Cordova, Alfredo; Latasa, Iban; Seco, Jesus; Villa, Gerardo; Rodriguez-Falces, Javier

    2014-05-01

    The aim of this study was to compare the physiological responses of cyclists using round (C-ring) or oval (Q-ring) chainrings during an incremental test until exhaustion. Following a randomized design, twelve male elite cyclists [age (mean ± SD): 21.1 ± 2.1 yr; VO2max: 78.1 ± 5.3 mL·kg(-1)min(-1)] performed two incremental maximal tests separated by 48 h (one with C-rings, the other with Q-rings). Starting at 100 W, the workload was increased by 25 W every 3 min until volitional exhaustion. Maximal heart rate, power output and oxygen consumption were compared. Blood lactate was monitored throughout the test. After the incremental test, 4 intermittent 20-s maximal sprints with a 60-s recovery period in between were performed. Maximal isometric voluntary contractions were performed at rest and immediately after each 20-s maximal sprint, and the force and EMG RMS amplitude were recorded from the vastus medialis and vastus lateralis muscles. For the incremental exercise test, no significant differences were found in the maximal power output (P=0.12), oxygen consumption (P=0.39), and heart rate (P=0.32) between Q-rings and C-rings. Throughout the incremental test, lactate levels were comparable when using both the C-rings and Q-rings (P=0.47). During the short sprints, power output was 2.5-6.5% greater for Q-rings than for C-rings (P=0.22). The decline in EMG RMS amplitude observed during the incremental tests was comparable for Q-rings and C-rings (0.42). These findings indicate that the oval chainring design, presented here as "Q-rings", did not significantly influence the physiological response to an incremental exercise test as compared to a conventional chainring. Key pointsDuring the incremental exercise test, no significant differences were found in power output, oxygen consumption or heart rate between oval "Q-rings" and conventional chainrings.Over the course of the incremental test, blood lactate levels were comparable for the oval "Q-rings" and conventional chainrings.During the short sprints performed after the incremental test, there were no statistical differences in power production between oval "Q-rings" and conventional chainrings.

  19. Genetic polymorphisms of beta1 adrenergic receptor and their influence on the cardiovascular responses to metoprolol in a South Indian population.

    PubMed

    Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran

    2008-11-01

    Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.

  20. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  1. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?

    PubMed

    Poitras, Veronica J; Hudson, Robert W; Tschakovsky, Michael E

    2018-05-01

    Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.

  2. The effects of hyperthermia and hypoxia on ventilation during low-intensity steady-state exercise.

    PubMed

    Chu, Aaron L; Jay, Ollie; White, Matthew D

    2007-01-01

    This study assessed whether the elevated sensitivity of ventilation to hypoxia during exercise is accounted for by an elevation of esophageal temperature (T(es)). Eleven males volunteered for two exercise sessions on an underwater, head-out cycle ergometer at a steady-state rate of oxygen consumption (V(.)(O(2))) of approximately 0.87 l/min (SD 0.07). In one exercise session, 31.5 degrees C (SD 1.4) water held T(es) at a normothermic level of approximately 37.1 degrees C, and in the other exercise session, water at 38.2 degrees C (SD 0.1) maintained a hyperthermic T(es) of approximately 38.5 degrees C. After a 30-min rest and 20-min warm-up, exercising participants inhaled air for 10 min [Euoxia 1 (E1)], an isocapnic hypoxic gas mixture with 12% O(2) in N(2) (H1) for the next 10 min and air again [Euoxia 2 (E2)] for the last 10 min. A significant increase in V(.)(E) during all hyperthermia conditions (0.01< P < 0.048) was evident; however, during hyperthermic hypoxia, there was a disproportionate and significant (P = 0.017) increase in V(.)(E) relative to normothermic hypoxia. This was the main explanation for a significant esophageal temperature and gas type interaction (P = 0.012) for V(.)(E). Significant effects of hyperthermia, isocapnic hypoxia, and their positive interaction remained evident after removing the influence of (V(.)(O(2))) on V(.)(E). Serum lactate and potassium concentrations, as well as hemoglobin oxygen saturation, were each not significantly different between normothermic and hyperthermic-hypoxic conditions. In conclusion, the elevated sensitivity of exercise ventilation to hypoxia during exertion appears to be modulated by elevations in esophageal temperature, potentially because of a temperature-mediated stimulation of the peripheral chemoreceptors.

  3. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  4. Physical Exercise as Therapy for Frailty.

    PubMed

    Aguirre, Lina E; Villareal, Dennis T

    2015-01-01

    Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.

  5. The metabolic cost of an integrated exercise program performed during 14 days of bed rest.

    PubMed

    Scott, Jessica M; Hackney, Kyle; Downs, Meghan; Guined, Jamie; Ploutz-Snyder, Robert; Fiedler, James; Cunningham, David; Ploutz-Snyder, Lori

    2014-06-01

    Exercise countermeasures designed to mitigate muscle atrophy during long-duration spaceflight may not be as effective if crewmembers are in negative energy balance (energy output > energy input). This study determined the energy cost of supine exercise (resistance, interval, aerobic) during the spaceflight analogue of bed rest. Nine subjects (eight men and one woman; 34.5 +/- 8.2 yr) completed 14 d of bed rest and concomitant exercise countermeasures. Body mass and basal metabolic rate (BMR) were assessed before and during bed rest. Exercise energy expenditure was measured during and immediately after [excess post-exercise oxygen consumption (EPOC)] each of five different exercise protocols (30-s, 2-min, and 4-min intervals, continuous aerobic, and a variety of resistance exercises) during bed rest. On days when resistance and continuous aerobic exercise were performed daily, energy expenditure was significantly greater (2879 +/- 280 kcal) than 2-min (2390 +/- 237 kcal), 30-s (2501 +/- 264 kcal), or 4-min (2546 +/- 264 kcal) exercise. There were no significant differences in BMR (pre-bed rest: 1649 +/- 216 kcal; week 1: 1632 +/- 174 kcal; week 2:1657 +/- 176 kcal) or body mass (pre-bed rest: 75.2 +/- 10.1 kg; post-bed rest: 75.2 +/- 9.6 kg). These findings highlight the importance of energy balance for long-duration crewmembers completing a high-intensity exercise program with multiple exercise sessions daily.

  6. Recovery after aerobic exercise is manipulated by tempo change in a rhythmic sound pattern, as indicated by autonomic reaction on heart functioning

    PubMed Central

    Wallert, John; Madison, Guy

    2014-01-01

    Physical prowess is associated with rapid recovery from exhaustion. Here we examined whether recovery from aerobic exercise could be manipulated with a rhythmic sound pattern that either decreased or increased in tempo. Six men and six women exercised repeatedly for six minutes on a cycle ergometer at 60 percent of their individual maximal oxygen consumption, and then relaxed for six minutes while listening to one of two sound pattern conditions, which seemed to infinitely either decrease or increase in tempo, during which heart and breathing activity was measured. Participants exhibited more high-frequent heart rate variability when listening to decreasing tempo than when listening to increasing tempo, accompanied by a non-significant trend towards lower heart rate. The results show that neuropsychological entrainment to a sound pattern may directly affect the autonomic nervous system, which in turn may facilitate physiological recovery after exercise. Applications using rhythmic entrainment to aid physical recovery are discussed. PMID:25285076

  7. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    PubMed Central

    Ferguson-Stegall, Lisa; McCleave, Erin; Ding, Zhenping; Doerner III, Phillip G.; Liu, Yang; Wang, Bei; Healy, Marin; Kleinert, Maximilian; Dessard, Benjamin; Lassiter, David G.; Kammer, Lynne; Ivy, John L.

    2011-01-01

    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone. PMID:21773022

  8. Exercise intensities of gardening tasks within older adult allotment gardeners in Wales.

    PubMed

    Hawkins, Jemma L; Smith, Alexander; Backx, Karianne; Clayton, Deborah A

    2015-04-01

    Previous research has suggested that gardening activity could be an effective form of regular exercise for improving physical and psychological health in later life. However, there is a lack of data regarding the exercise intensities of various gardening tasks across different types of gardening and different populations. The purpose of this study was to examine the exercise intensity of gardening activity for older adult allotment gardeners in Wales, United Kingdom following a similar procedure used in previous studies conducted in the United States and South Korea by Park and colleagues (2008a; 2011). Oxygen consumption (VO2) and energy expenditure for six gardening tasks were measured via indirect calorimetery using the portable Oxycon mobile device. From these measures, estimated metabolic equivalent units (METs) were calculated. Consistent with Park et al. (2008a; 2011) the six gardening tasks were classified as low to moderate-high intensity physical activities based on their metabolic values (1.9-5.7 METs).

  9. Usefulness of peak exercise oxygen consumption and the heart failure survival score to predict survival in patients >65 years of age with heart failure.

    PubMed

    Parikh, Mona N; Lund, Lars H; Goda, Ayumi; Mancini, Donna

    2009-04-01

    Peak exercise oxygen consumption (Vo(2)) and the Heart Failure (HF) Survival Score (HFSS) were developed in middle-aged patient cohorts referred for heart transplantation with HF. The prognostic value of Vo(2) in patients >65 years has not been well studied. Accordingly, the prognostic value of peak Vo(2) was evaluated in these patients with HF. A retrospective analysis of 396 patients with HF >65 years with cardiopulmonary exercise testing was performed. Peak Vo(2) and components of the HFSS (presence of coronary artery disease, left ventricular ejection fraction, heart rate, mean arterial blood pressure, presence of intraventricular conduction defects, and serum sodium) were collected. Follow-up averaged 1,038 +/- 983 days. Outcome events were defined as death, implantation of a left ventricular assist device, or urgent transplantation. Patients were divided into risk strata for peak Vo(2) and HFSS based on previous cut-off points. Survival curves were derived using Kaplan-Meier analysis and compared using log-rank analysis. Survival differed markedly by Vo(2) stratum (p <0.0001), with significantly better survival rates for the low- (>14 ml/kg/min) versus medium- (10 to 14 ml/kg/min), low- versus high- (<10 ml/kg/min), and medium- versus high-risk strata (all p <0.05). Survival also differed markedly by HFSS stratum (p <0.0001), with significantly better survival rates for the low- (> or =8.10) versus medium- (7.20 to 8.09), low- versus high- (< or =7.19), and medium- versus high-risk strata (all p <0.0001). In conclusion, peak Vo(2) and the HFSS were both excellent parameters to predict survival in patients >65 years with HF.

  10. The Effects of Exercise on Food Intake and Hunger: Relationship with Acylated Ghrelin and Leptin

    PubMed Central

    Vatansever-Ozen, Serife; Tiryaki-Sonmez, Gul; Bugdayci, Guler; Ozen, Guclu

    2011-01-01

    This study investigated the effects of a long bout of aerobic exercise on hunger and energy intake and circulating levels of leptin and acylated ghrelin. Ten healthy male subjects undertook two, 4 h trials in a randomized crossover design. In the exercise trial subjects ran for 105 min at 50% of maximal oxygen uptake and the last 15 min at 70% of maximal oxygen uptake followed by a 120 min rest period. In the control trial, subjects rested for 4 h. Subjects consumed a buffet test meal at 180 min during each trial. Hunger ratings, acylated ghrelin, leptin, glucose and insulin concentrations were measured at 0, 1, 2, 3 and 4 h. No differences were found at baseline values for hunger, acylated ghrelin, leptin, insulin and glucose for both trials (p > 0.05). The estimated energy expenditure of the exercise trial was 1550 ± 136 kcal. Exercise did not change subsequent absolute energy intake, but produced a significant decrease (p < 0.05) in relative energy intake. A two-way ANOVA revealed a significant (p < 0. 05) interaction effect for hunger and acylated ghrelin. In conclusion, this exercise regimen had a positive effect on reducing appetite which is related to reduced acylated ghrelin responses over time. This finding lends support for a role of exercise in weight management. Key points Physical exercise is a strategy used to counteract obesity, since it lowers the energetic balance by increasing energy expenditure. However, because any energy expended in exercise elevates the intensity of hunger and drives food consumption, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. The effects of exercise on hunger sensations and food intake are fairly controversial and depend on the intensity and duration of exercise. 120 min prolonged treadmill exercise with mix intensity, temporarily decreased hunger sensations, acylated ghrelin and relative energy intake. Variations in exercise intensity should theoretically be a useful means of weight loss. PMID:24149873

  11. Acute effects of high- and low-intensity exercise bouts on leukocyte counts.

    PubMed

    Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz

    2015-06-01

    It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p  < 0.01) and low-intensity exercise ( p  < 0.01). This effect was still present 2 hours after passive recovery ( p  < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).

  12. Counseling and exercise intervention for smoking reduction in patients with schizophrenia: a feasibility study.

    PubMed

    Bernard, Paquito Philippe Noel; Esseul, Elodie Christine; Raymond, Laurent; Dandonneau, Loic; Xambo, Jean-Jacques; Carayol, Marion Sara; Ninot, Gregory Jean-Marie Guilyn

    2013-02-01

    Smoking cessation is possible for individuals with schizophrenia but the relapse rate is high. It is necessary to develop more flexible approaches to help these patients. The aim of this study was to examine the feasibility of an intervention approach that integrates counseling and exercise for participants with schizophrenia or schizoaffective disorder. A single group prospective design was used in this study. A sample of inpatients with schizophrenia or schizoaffective disorder participated in a program called "oxygen group", a program combining five sessions of smoking reduction counseling and three sessions of moderate intensity exercise over an 8-week period. Tobacco consumption, motivation, carbon monoxide level, anxiety and depression, smoking self-efficacy, nicotine dependence and waist circumference were measured pre- and post-intervention. Participants reported their satisfaction with the study characteristics after completion of the intervention. Smoking consumption and CO level were assessed at 6-week post-intervention follow-up. Twelve individuals (mean age 45.7±10.8years) were recruited. Participant attendance was 81.3%. There were no dropouts. Significant decreases were found for tobacco consumption (P=.04) and CO rate (P=.003) at the end of the intervention and were maintained at 6-week follow-up. Compared to baseline levels, there were no changes in depression and anxiety. Smoking cessation motivation increased significantly. This intervention appears feasible and acceptable to patients with schizophrenia and there were promising findings regarding smoking reduction. Larger trials to test the intervention are warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. From rest to stressed: endothelin-1 levels in young healthy smokers and non-smokers.

    PubMed

    Cooke, Alexandra B; Toli, Eirini; Gomez, Yessica-Haydee; Mutter, Andrew F; Eisenberg, Mark J; Mantzoros, Christos S; Daskalopoulou, Stella S

    2015-09-01

    Endothelin-1 (ET-1) is a potent vasoconstrictor produced by vascular endothelial cells, and a known marker of endothelial dysfunction. However, the acute and chronic effects of smoking and nicotine gum on the ET-1 response to acute physical stress in young healthy smokers have not been investigated. Healthy smokers (n=35) and non-smokers (n=35) underwent an exercise test to exhaustion (maximal oxygen consumption) on a treadmill. Smokers were assessed a) after 12h smoking abstinence (termed chronic smoking), b) immediately after smoking one cigarette (termed acute smoking), and c) immediately after chewing nicotine gum. Blood was drawn immediately pre-exercise, and 3 minutes post-exercise. During exercise, cardiorespiratory parameters were obtained breath-by-breath using an automated metabolic cart. Plasma ET-1 levels were quantified using enzyme-linked immunosorbent-assay. The above protocol was designed to incorporate exercise as a vascular stressor to reveal changes that would not be detected at rest. Mean age was 28.6±7.2 years and body mass index (BMI) was 23.6±3.2 kg/m(2). Post-exercise ET-1 levels were significantly lower than pre-exercise levels in non-smokers (P<0.001) and smokers under all three conditions (P=0.005, P<0.001, P=0.001, respectively). There were no differences in post-exercise ET-1 levels between non-smokers and smokers under all three conditions, however the absolute and relative decrease in ET-1 levels was significantly smaller in chronic smokers compared with non-smokers (P=0.007 and P=0.004). Chronic smokers had a significantly lower exercise-induced change in tidal volume (P=0.050), fraction of expired CO2 (P=0.021), oxygen consumption (P=0.005), carbon dioxide elimination (P=0.004) and peak expiratory flow (P=0.003) compared with non-smokers. Furthermore, the decrease in ET-1 observed in non-smokers in response to exercise was significantly associated with exercise induced-changes in inspiratory time, time for a tidal volume cycle, respiratory frequency, inspired minute ventilation and peak inspiratory flow. An acute decrease of circulating ET-1 in response to acute maximal exercise in young healthy individuals was noted. Chronic smokers had a significantly diminished decrease in ET-1 compared with non-smokers, however there were no significant differences in the ET-1 response between smokers under the three smoking conditions. Smokers were not able to achieve the same exercise-induced changes in cardiorespiratory parameters as non-smokers. By incorporating exercise as a vascular stressor in our study, we have taken a novel approach to provide evidence of an altered ET-1 and cardiorespiratory response that would not otherwise be observed at rest in young active healthy smokers. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hatha Yoga Practices: Energy Expenditure, Respiratory Changes and Intensity of Exercise

    PubMed Central

    Ray, Uday Sankar; Pathak, Anjana; Tomer, Omveer Singh

    2011-01-01

    The aim of this study was to critically observe the energy expenditure, exercise intensity and respiratory changes during a full yoga practice session. Oxygen consumption (V˙O2), carbon dioxide output (V˙CO2), pulmonary ventilation (V˙E), respiratory rate (Fr) and tidal volume (VT), were measured in 16 physical posture (asanas), five yoga breathing maneuvers (BM) and two types of meditation. Twenty male (age 27.3 ± 3.5 years, height 166.6 ± 5.4 cm and body weight 58.8 ± 9.6 kg) yoga instructors were studied. Their maximal oxygen consumption (V˙O2max) was recorded. The exercise intensity in asanas was expressed in percentage V˙O2max . In asanas, exercise intensity varied from 9.9 to 26.5% of V˙O2max . Highest energy cost was 3.02 kcal min−1. In BM highest V˙E was 53.7 ± 15.5 l min−1. VT was 0.97 ± 0.59, 1.41 ± 1.27 and 1.28 ± l/breath with corresponding Fr of 14.0 ± 5.3, 10.0 ± 6.35, 10.0 ± 5.8 breaths/min. Average energy expenditure in asanas, BM and meditation were 2.29, 1.91 and 1.37 kcal min−1, respectively. Metabolic rate was generally in the range of 1-2 metabolic equivalents (MET) except in three asanas where it was >2 MET. V˙O2 was 0.27 ± 0.05 and 0.24 ± 0.04 l min−1 in meditation and Shavasana, respectively. Although yogic practices are low intensity exercises within lactate threshold, physical performance improvement is possible owing to both better economy of breathing by BM and also by improvement in cardiovascular reserve. Other factors such as psycho-physiological and better relaxation may contribute to it. PMID:21799675

  15. Extensive Functional Evaluations to Monitor Aerobic Training in Becker Muscular Dystrophy: A Case Report.

    PubMed

    Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo

    2016-06-13

    Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease's rehabilitative treatment.

  16. Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    PubMed Central

    Clark, Timothy D.; Donaldson, Michael R.; Pieperhoff, Sebastian; Drenner, S. Matthew; Lotto, Andrew; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time. PMID:22720035

  17. Physiological demands of running during long distance runs and triathlons.

    PubMed

    Hausswirth, C; Lehénaff, D

    2001-01-01

    The aim of this review article is to identify the main metabolic factors which have an influence on the energy cost of running (Cr) during prolonged exercise runs and triathlons. This article proposes a physiological comparison of these 2 exercises and the relationship between running economy and performance. Many terms are used as the equivalent of 'running economy' such as 'oxygen cost', 'metabolic cost', 'energy cost of running', and 'oxygen consumption'. It has been suggested that these expressions may be defined by the rate of oxygen uptake (VO2) at a steady state (i.e. between 60 to 90% of maximal VO2) at a submaximal running speed. Endurance events such as triathlon or marathon running are known to modify biological constants of athletes and should have an influence on their running efficiency. The Cr appears to contribute to the variation found in distance running performance among runners of homogeneous level. This has been shown to be important in sports performance, especially in events like long distance running. In addition, many factors are known or hypothesised to influence Cr such as environmental conditions, participant specificity, and metabolic modifications (e.g. training status, fatigue). The decrease in running economy during a triathlon and/or a marathon could be largely linked to physiological factors such as the enhancement of core temperature and a lack of fluid balance. Moreover, the increase in circulating free fatty acids and glycerol at the end of these long exercise durations bear witness to the decrease in Cr values. The combination of these factors alters the Cr during exercise and hence could modify the athlete's performance in triathlons or a prolonged run.

  18. Cardiovascular Response to Recreational Hockey in Middle-Aged Men.

    PubMed

    Goodman, Zack A; Thomas, Scott G; Wald, Robert C; Goodman, Jack M

    2017-06-15

    The present study examined the hemodynamic response to recreational pick-up hockey relative to maximal exercise testing in middle-aged men. A total of 23 men with a mean age of 53 ± 7 years were studied. Graded exercise testing on a cycle ergometer determined maximal oxygen consumption, blood pressure (BP), and heart rate (HR). Ambulatory BP and Holter electrocardiographic monitoring was performed during one of their weekly hockey games (mean duration = 45 ± 7.2 minutes): for "On-Ice" responses (PLAY; data recorded while standing immediately after a shift; 8.0 ± 1.4 shifts per game) and during seated recovery (BENCH), 15 minutes after the game. On-Ice HRs and BPs were significantly higher than values obtained during maximal cycle exercise, respectively (HR 174 ± 8.9 vs 163 ± 11.0 beats/min) (systolic blood pressure 202 ± 20 vs 173 ± 31 mm Hg; p <0.05). Both systolic and diastolic blood pressures decreased significantly throughout the duration of the game, whereas HR increased from 139 ± 20 to 155 ± 16 beats/min during the game. The myocardial oxygen demand (myocardial time tension index) increased significantly during PLAY concurrent with a decrease in estimated myocardial oxygen supply (diastolic pressure time index), with the endocardial viability ratio during PLAY demonstrating a significant decrease during the third quarter of the game (1.25 ± 0.24) versus the first quarter (1.56 ± 0.30), which remained depressed 15 minutes post-game (p <0.05). In conclusion, recreational pick-up hockey in middle-aged men is an extremely vigorous interval exercise with increasing relative intensity as the game progresses. Hockey elicits peak BPs and HRs that can exceed values observed during maximal exercise testing and is characterized by progressive increases in myocardial oxygen demand and lowered supply during PLAY and BENCH time. Given the progressive and high cardiovascular demands, caution is warranted when estimating the cardiovascular demands of hockey from clinical stress testing, particularly in those whom coronary reserve may be compromised. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    PubMed

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  20. The leveling-off of oxygen uptake is related to blood lactate accumulation. Retrospective study of 94 elite rowers.

    PubMed

    Lacour, Jean-René; Messonnier, Laurent; Bourdin, Muriel

    2007-09-01

    To assess whether the ability to demonstrate a plateau in oxygen consumption VO2 could be related to adaptation to exercise, the data obtained over a period of 10 years on 94 elite oarsmen who had participated in annual testing were re-evaluated. The test consisted in an incremental step protocol until volitional exhaustion. VO2, heart rate (HR), blood lactate ([La]b) and respiratory exchange ratio (RER) were measured at each step. The maximal oxygen consumption (VO2max), the power corresponding to VO2maxPamax and the maximal power achieved (Ppeak) were recorded. Thirty-eight oarsmen achieved a VO2 plateau and were designated as Pla; 56 did not and were designed as N-Pla. The Pla and N-Pla VO2max, Pamax and maximal HR values were similar. In comparison with N-Pla, the Pla group displayed a rightward shift of the [La]b versus power curve, accounted for by both the increased percentage of VO2max corresponding to 4 mmol l(-1) and the decreased value of [La]b corresponding to Pamax (P<0.05). Pla oarsmen attained a higher Ppeak expressed as % of Pamax (P<0.05) and also showed better ergometer performance (P<0.05). In a sub-group of 53 oarsmen constituted on the basis of Pamax values close to 400 W, for a given power output, the Pla subjects had significantly lower HR, RER, and [La]b values at each sub-maximal stage of the test. These results suggest that achieving a [Formula: see text] plateau during completion of an incremental step protocol accounts for greater muscle ability to maintain homeostasis during exercise. These differences give the oarsmen an advantage in rowing competitions.

  1. The effects of exercise under hypoxia on cognitive function.

    PubMed

    Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2013-01-01

    Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  2. Effect of exercise intensity on albuminuria in adolescents with Type 1 diabetes mellitus.

    PubMed

    Kornhauser, C; Malacara, J-M; Macías-Cervantes, M-H; Rivera-Cisneros, A-E

    2012-01-01

    Exercise may be useful to detect patients with diabetes prone to develop persistent microalbuminuria. We studied the relationship between exercise intensity, measured as maximal oxygen consumption (VO(2)max), and microalbuminuria in patients with Type 1 diabetes mellitus patients. We studied 10 patients, age range 10-18 years, with Type 1 diabetes who were normotensive and normoalbuminuric, with less than 10 years since diagnosis. Patients had normal renal function, without infections or clinical evidence of complications. Metabolic control was intensively adjusted in all patients. They underwent three consecutive physical exercise tests, reaching 100, 80 and 60% of the maximal cardiac frequency response. Eight patients had adequate to regular metabolic control. All patients had lower than predicted VO(2)max values. At 60%, only three patients showed microalbuminuria in excess of 20 μg/min, two of them had inadequate metabolic control. Post-exercise microalbuminuria exceeded normal values in nine, seven and three patients when submitted to 100, 80 and 60% of exercise intensity, respectively. Microalbuminuria increased with exercise intensity. Sex, body composition and VO(2)max were the main factors associated with microalbuminuria. The prognostic significance of albuminuria induced by intense exercise in these subjects with Type 1 diabetes is not yet known. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  3. Association of osteoporotic fracture with smoking, alcohol consumption, tea consumption and exercise among Chinese nonagenarians/centenarians.

    PubMed

    Du, F; Birong, D; Changquan, H; Hongmei, W; Yanling, Z; Wen, Z; Li, L

    2011-05-01

    To observe the association of osteoporotic fracture with habits of smoking, alcohol consumption, tea consumption and exercise among very old people. A cross-sectional study conducted in Dujiangyan Sichuan China. 703 unrelated Chinese nonagenarians and centenarians (67.76% women, mean age 93.48 years) resident in Dujiangyan. Medical history of osteoporosis and the statement of fracture and habits (current and former) of smoking, alcohol consumption, tea consumption and exercise were collected. In women, subjects with current or former habit of alcohol consumption had significantly higher prevalence osteoporotic fracture than those without this habit; but subjects with former habit of exercise had significantly lower prevalence osteoporotic fracture than those without this habit. However, in men, there was no significant difference in prevalence of these habits between subjects with and without osteoporotic fracture. After adjust for age, gender, sleep habits educational levels, religion habits and temperament, we found that former habit of alcohol consumption had a significant odds ratio (OR=2.473 95% CI (1.074, 5.526)) for osteoporotic fracture. In summary, among nonagenarians and centenarians, among habits (current and former) of smoking, alcohol consumption, tea consumption and exercise, there seems to be significant association of osteoporotic fracture only with current or former habits of alcohol consumption, former habit of exercise. The habit of alcohol consumption might be associated with a greater risk of osteoporotic fracture, but the former habit of exercise might be associated with a lower risk of osteoporotic fracture.

  4. Temporal Aspects of the V[o.sub.2] Response at the Power Output Associated with V[o.sub.2]peak in Well Trained Cyclists-Implications for Interval Training Prescription

    ERIC Educational Resources Information Center

    Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.

    2004-01-01

    The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…

  5. [Free from stress by autogenic therapy. Relaxation technique yielding peace of mind and self-insight].

    PubMed

    Broms, C

    1999-02-10

    The utilisation of self-regulatory capacity is one of the purposes of autogenic therapy, a method consisting of exercises focused on the limbs, lungs, heart, diaphragm and head. The physiological response is muscle relaxation, increased peripheral blood flow, lower heart rate and blood pressure, slower and deeper breathing, and reduced oxygen consumption. Autogenic training is applicable in most pathological conditions associated with stress, and can be used preventively or as a complement to conventional treatment.

  6. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: a pilot study.

    PubMed

    Zaenker, Pierre; Favret, Fabrice; Lonsdorfer, Evelyne; Muff, Guillaume; de Seze, Jérôme; Isner-Horobeti, Marie-Eve

    2018-02-01

    Numerous studies have shown that mild-to-moderate intensity or resistance exercise training improves physical capacities such as, peak oxygen consumption, maximal tolerated power and strength in multiple sclerosis patients. However, few studies have evaluated the effects of high-intensity interval training (HIIT) associated to with resistance training. Only few studies have analyzed difference between men and women before and after combined training. Moreover, the evaluation of exercise between ambulatory multiple sclerosis patients without disability (Expanded Disability Status Score [EDSS] 0-3) and patients with disabilities (EDSS 3.5-5) was not largely published. The main objective of our study was to determine if HIIT combined with resistance training improved aerobic and strength capacities as well as quality of life in multiple sclerosis patients and if gender and disabilities play a role in these changes. This study was an open-label uncontrolled study. The study was performed outside from conventional care facilities and including homebased training. Twenty-six multiple sclerosis patients have completed the program (19 women, 7 men; mean age 44.6±7.9 years, EDSS 2 [0-5]). We conducted a 12-week program of high-intensity interval training combined with resistance training at body weight. Peak oxygen consumption, maximal tolerated power, lactates, isokinetic strength of quadriceps and hamstrings (at 90°/s, 180°/s, and 240°/s) and quality of life were evaluated before and after the program. Peak oxygen consumption and maximum tolerated power improved by 13.5% and 9.4%, respectively. Isokinetic muscle strength increased in both quadriceps and hamstrings at each speed, with a rebalancing of strength between the two legs in quadriceps. Quality of life was also enhanced in three domains. Women showed better improvements than men in V̇O2peak, maximal tolerated power, lactates at the end of test, and heart rate peak, strength in both quadriceps and hamstrings mostly at low speed, and quality of life. The two EDSS groups increased V̇O2peak and strength. Our study has shown that HIIT combined with resistance exercise training induced an improvement in physical capacity and quality of life. Moreover, this study allowed patients, irrespective of their sex or EDSS score, to resume exercise autonomously. The results of the study showed that aerobic training at moderate intensity is not the single type of training tolerated by multiple sclerosis patients. High-intensity interval training is well tolerated too and can be used in clinical rehabilitation with resistance training, in both men and women with and without disabilities.

  7. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis.

    PubMed

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi; Zhou, Hao

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO 2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits.

  8. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis

    PubMed Central

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits. PMID:28316986

  9. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism.

    PubMed

    Venditti, P; De Rosa, R; Caldarone, G; Di Meo, S

    2005-10-15

    We investigated effects of prolonged aerobic exercise and severe hyperthyroidism on indices of oxidative damage, susceptibility to oxidants, and respiratory capacity of homogenates from rat liver, heart and skeletal muscle. Both treatments induced increases in hydroperoxide and protein-bound carbonyl levels. Moreover, the highest increases were found when hyperthyroid animals were subjected to exercise. These changes, which were associated to reduced exercise endurance capacity, were in part due to higher susceptibility to oxidants of hyperthyroid tissues. Levels of oxidative damage indices were scarcely related to changes in antioxidant enzyme activities and lipid-soluble antioxidant concentrations. However, the finding that, following exercise the scavenger levels generally decreased in liver homogenates and increased in heart and muscles ones, suggested a net shuttle of antioxidants from liver to other tissues under need. Aerobic capacity, evaluated by cytochrome oxidase activity, was not modified by exercise, which, conversely, affected the rates of oxygen consumption of hyperthyroid preparations. These results seem to confirm the higher susceptibility of hyperthyroid tissues to oxidative challenge, because the mechanisms underlying the opposite changes in respiration rates during State 4 and State 3 likely involve oxidative modifications of components of mitochondrial respiratory chain, different from cytochrome aa3.

  10. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    PubMed

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  11. Effects of three warm-up regimens of equal distance on VO2 kinetics during supramaximal exercise in Thoroughbred horses.

    PubMed

    Mukai, K; Hiraga, A; Takahashi, T; Ohmura, H; Jones, J H

    2010-11-01

    Several studies have indicated that even low-intensity warm-up increases O(2) transport kinetics and that high-intensity warm-up may not be needed in horses. However, conventional warm-up exercise for Thoroughbred races is more intense than those utilised in previous studies of equine warm-up responses. To test the hypothesis that warm-up exercise at different intensities alters the kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal (sprint) exercise in Thoroughbred horses. Nine well-trained Thoroughbreds ran until fatigue at 115% of maximal oxygen consumption (VO2max) 10 min after warming-up under each of 3 protocols of equal running distance: 400 s at 30% VO2max (LoWU), 200 s at 60% VO2max (MoWU) and 120 s at 100% VO2max (HiWU). Variables measured during exercise were rates of O(2) and CO(2) consumption/production (VO2,VO2), respiratory exchange ratio (RER), heart rate, blood lactate concentration and accumulation rate and blood gas variables. VO2 was significantly higher in HiWU than in LoWU at the onset of the sprint exercise and HR was significantly higher in HiWU than in LoWU throughout the sprint. Accumulation of blood lactate, RER, P(a)CO(2) and PvCO2 in the first 60 s were significantly lower in HiWU than in LoWU and MoWU. There were no significant differences in stroke volume, run time or arterial-mixed venous O(2) concentration. These results suggest HiWU accelerates kinetics and reduces reliance on net anaerobic power compared with LoWU at the onset of the subsequent sprint. © 2010 EVJ Ltd.

  12. A Preliminary Exercise Study of Japanese Version of High-intensity Interval Aerobic Training (J-HIAT)

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Seino, Satoshi; Ohkawara, Kazunori; Tanaka, Kiyoji; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki

    In a microgravity environment, the volume load on the left ventricle is reduced and the cardiac function deteriorates.Consequently, maximal oxygen consumption (VO2max) decreases during spaceflight. Reduced cardiac function can lead to serious health problems such as cardiac atrophy, diastolic dysfunction, and orthostatic hypotension. An exercise using a bicycle ergometer during spaceflight may help to increase the volume load on the left ventricle. On the other hand, many astronauts also experience weight loss during spaceflight because energy imbalances can occur. Some researchers indicate that excessive exercise may promote the energy deficit and have a negative impact on long-term spaceflight. Therefore, we have been devising an original bicyle erogometer protocol better suited to astronauts experiencing long-term spaceflight.One of our candidate protocols is the 3 × 3 protocol named J-HIAT, i.e., three times 3-min intervals with a 2-min active recovery period between intervals. In response to our preliminary experiments, we concluded that J-HIAT would be a potential protocol to control the increase of energy consumption and to have a significant impact on VO2max and the cardiac function. To further verify this method, we are working on full-scale experiments. In future, we will show the results of these experiments.

  13. β-Adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans

    PubMed Central

    Hopkins, Susan R; Bogaard, Harm J; Niizeki, Kyuichi; Yamaya, Yoshiki; Ziegler, Michael G; Wagner, Peter D

    2003-01-01

    Acute hypoxia increases heart rate (HR) and cardiac output () at a given oxygen consumption () during submaximal exercise. It is widely believed that the underlying mechanism involves increased sympathetic activation and circulating catecholamines acting on cardiac β receptors. Recent evidence indicating a continued role for parasympathetic modulation of HR during moderate exercise suggests that increased parasympathetic withdrawal plays a part in the increase in HR and during hypoxic exercise. To test this, we separately blocked the β-sympathetic and parasympathetic arms of the autonomic nervous system (ANS) in six healthy subjects (five male, one female; mean ± s.e.m. age = 31.7 ± 1.6 years, normoxic maximal () = 3.1 ± 0.3 l min−1) during exercise in conditions of normoxia and acute hypoxia (inspired oxygen fraction = 0.125) to . Data were collected on different days under the following conditions: (1)control, (2) after 8.0 mg propranolol I.V. and (3) after 0.8 mg glycopyrrolate I.V. was measured using open-circuit acetylene uptake. Hypoxia increased venous [adrenaline] and [noradrenaline] but not [dopamine] at a given (P < 0.05, P < 0.01 and P = 0.2, respectively). HR/ and / increased during hypoxia in all three conditions (P < 0.05). Unexpectedly, the effects of hypoxia on HR and were not significantly different from control with either β-sympathetic or parasympathetic inhibition. These data suggest that although acute exposure to hypoxia increases circulating [catecholamines], the effects of hypoxia on HR and do not necessarily require intact cardiac muscarinic and β receptors. It may be that cardiac α receptors play a primary role in elevating HR and during hypoxic exercise, or perhaps offer an alternative mechanism when other ANS pathways are blocked. PMID:12766243

  14. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise.

    PubMed

    Lima-Silva, Adriano E; Pires, Flavio O; Bertuzzi, Romulo; Silva-Cavalcante, Marcos D; Oliveira, Rodrigo S F; Kiss, Maria Augusta; Bishop, David

    2013-09-01

    The purpose of the present study was to examine the effects of a high- or low-carbohydrate (CHO) diet on performance, aerobic and anaerobic contribution, and metabolic responses during supramaximal exercise. Six physically-active men first performed a cycling exercise bout at 115% maximal oxygen uptake to exhaustion after following their normal diet for 48 h (∼50% of CHO, control test). Seventy-two hours after, participants performed a muscle glycogen depletion exercise protocol, followed by either a high- or low-CHO diet (∼70 and 25% of CHO, respectively) for 48 h, in a random, counterbalanced order. After the assigned diet period (48 h), the supramaximal cycling exercise bout (115% maximal oxygen consumption) to exhaustion was repeated. The low-CHO diet reduced time to exhaustion when compared with both the control and the high-CHO diet (-19 and -32%, respectively, p < 0.05). The reduced time to exhaustion following the low-CHO diet was accompanied by a lower total aerobic energy contribution (-39%) compared with the high-CHO diet (p < 0.05). However, the aerobic and anaerobic energy contribution at the shortest time to exhaustion (isotime) was similar among conditions (p > 0.05). The low-CHO diet was associated with a lower blood lactate concentration (p < 0.05), with no effect on the plasma concentration of insulin, glucose and K(+) (p > 0.05). In conclusion, a low-CHO diet reduces both performance and total aerobic energy provision during supramaximal exercise. As peak K(+) concentration was similar, but time to exhaustion shorter, the low-CHO diet was associated with an earlier attainment of peak plasma K(+) concentration.

  15. Maximum Oxygen Uptake During and After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.

    2010-01-01

    Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.

  16. Clinical Effects of a Dietary Antioxidant Silicate Supplement, Microhydrin((R)), on Cardiovascular Responses to Exercise.

    PubMed

    Purdy Lloyd, Kimberly L.; Wasmund, Wendy; Smith, Leonard; Raven, Peter B.

    2001-01-01

    Amorphous silicate minerals, often described as rock flour, were once common in natural water sources and abundant in glacial stream waters. Not only do the silica mineral particles bond water and other elements for transport; they also can be adsorbed with reduced hydrogen, which releases electrons, providing antioxidant or reducing potential to surrounding fluids. The purpose of this investigation was to examine the cardiovascular responses during exercise after consumption of a dietary silicate mineral antioxidant supplement, Microhydrin((R)) (Royal BodyCare, Inc., Irving, TX). A clinical trial incorporating a double-blind, placebo-controlled, crossover experimental design was employed. Subjects received either active agent or placebo, four capsules per day, for 7 days before the trial. The trial evaluated six exercise bicycle-trained subjects performing a 40-km bicycling time trial. Ratings of perceived exertion and measurements of oxygen uptake, heart rate, performance workload, and preexercise and postexercise blood lactate concentrations were obtained. Although there were no differences (P >/=.05) in work performed, heart rate, oxygen uptake, and ratings of perceived exertion during the time trial, the postexercise blood lactate concentrations were significantly lower (P

  17. [Study on Oxygen Consumption, Oxygen Consumption Rate and Asphyxiation Point of Poecilobdella manillensis].

    PubMed

    Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai

    2014-12-01

    To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.

  18. Intraoperative Oxygen Consumption During Liver Transplantation.

    PubMed

    Shibata, M; Matsusaki, T; Kaku, R; Umeda, Y; Yagi, T; Morimatsu, H

    2015-12-01

    The aim of this study was to investigate the changes in oxygen consumption during liver transplantation and to examine the relationship between intraoperatively elevated systemic oxygen consumption and postoperative liver function. This study was performed in 33 adult patients undergoing liver transplantation between September 2011 and March 2014. We measured intraoperative oxygen consumption through the use of indirect calorimetry, preoperative and intraoperative data, liver function tests, and postoperative complications and outcomes. The mean age of patients was 52 ± 9.7 years; 14 (42%) of them were women. Average Model for End-Stage Liver Disease scores were 20 ± 8.9. Oxygen consumption significantly increased after reperfusion from 172 ± 30 mL/min during the anhepatic phase to 209 ± 30 mL/min (P < .0001). We divided patients into 2 groups according to the increase in oxygen consumption after reperfusion (oxygen consumption after reperfusion minus anhepatic phase oxygen consumption: 40 mL/min increase as cutoff). The higher consumption group had a longer cold ischemia time and higher postoperative aspartate aminotransferase and alanine aminotransferase levels as compared with the lower oxygen consumption group. There were no statistically significant differences in major postoperative complications, but the higher oxygen consumption group tended to have shorter hospital stays than the lower consumption group (58 versus 95 days). We have demonstrated that oxygen consumption significantly increased after reperfusion. Furthermore, this increased oxygen consumption was associated with a longer cold ischemia time and shorter hospital stays. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Influences of chemical sympathectomy and simulated weightlessness on male and female rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Sebastian, Lisa A.; Rahman, Z.; Tipton, Charles M.

    1991-01-01

    Consideration is given to a study aimed at determining whether the sympathetic nervous system is associated with the changes in maximum oxygen consumption (VO2max), run time, and mechanical efficiency observed during simulated weightlessness in male and female rats. Female and male rats were compared for food consumption, body mass, and body composition in conditions of simulated weightlessness to provide an insight into how these parameters may influence aerobic capacity and exercise performance. It is concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. It is noted that the mechanisms remain unclear at this time.

  20. Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women.

    PubMed

    Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Szygula, Zbigniew

    2017-07-01

    The aim of this study was to test the hypotheses: (1) there is a negative correlation between protein and lipid oxidative damage following maximal-intensity exercise, and oxygen uptake and work intensity (%VO 2max ) at the respiratory compensation point (RCP) in women and men; (2) nitro-oxidative stress following maximal-intensity exercise results from the intensification of anaerobic processes and muscle fibre micro-damage. Study participants comprised 20 women (21.34±1.57 years) and 20 men (21.97±1.41 years) who performed a treadmill incremental test (IT); VO 2max : 45.08 ± 0.91 and 57.38 ± 1.22 mL kg -1  min -1 for women and men, respectively. The oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine (3-NT) concentration and creatine kinase (CK) as well as lactate dehydrogenase (LDH) activity were measured in the blood serum, and total antioxidative capacity (TAC) and lactate concentration (Lac) were determined in blood plasma before and after IT. After the IT, increases in ox-LDL, 3-NT, CK, and LDH were seen in both groups (P < 0.05). After the IT, an increase in the TAC was only observed in women (P < 0.05). The post-exercise-induced increase in Lac was significantly higher in men than in women. Only in the group of women was a positive correlation (P < 0.05) between the post-exercise increase in TAC and changes in CK activity and LDH found. The gain of ox-LDL and 3-NT following maximal-intensity exercise is independent of VO 2max , oxygen consumption and exercise intensity at RCP. This increase of ox-LDL and 3-NT is indicative of similar lipid and protein damage in women and men. A significant increase in TAC in women following maximal-intensity exercise is the result of muscle fibre micro-injuries.

  1. The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes

    PubMed Central

    Tedjasaputra, Vince; Sá, Rui Carlos; Arai, Tatsuya J.; Holverda, Sebastiaan; Theilmann, Rebecca J.; Chen, William T.; Wagner, Peter D.; Davis, Christopher K.; Kim Prisk, G.

    2013-01-01

    Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg−1·min−1) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels. PMID:23640585

  2. The Metabolic Cost of a High Intensity Exercise Program During Bed Rest

    NASA Technical Reports Server (NTRS)

    Hackney, Kyle; Everett, Meghan; Guined, Jamie; Cunningham, Daid

    2012-01-01

    Background: Given that disuse-related skeletal muscle atrophy may be exacerbated by an imbalance between energy intake and output, the amount of energy required to complete exercise countermeasures is an important consideration in the well being of subject health during bed rest and spaceflight. Objective: To evaluate the energy cost of a high intensity exercise program performed during short duration bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest and exercise countermeasures. Exercise energy expenditure and excess post exercise oxygen consumption (EPOC) were collected once in each of 5 different exercise protocols (30 second, 2 minute and 4 minute intervals, continuous aerobic and a variety of resistance exercises) during bed rest. Body mass, basal metabolic rate (BMR), upper and lower leg muscle, subcutaneous, and intramuscular adipose tissue (IMAT) volumes were assessed before and at the end of bed rest. Results: There were no significant differences in body mass (pre: 75.1 +/- 10.5 kg; post: 75.2 +/- 10.1 kg), BMR (pre: 1649 +/- 216 kcal; post: 1657 +/- 177 kcal), muscle subcutaneous, or IMAT volumes (Table 2) after 14 days of bed rest and exercise. Body mass was maintained with an average daily intake of 2710 +/- 262 kcal (36.2 +/- 2.1 kcal/kg/day), while average daily energy expenditure was 2579 +/-311 kcal (34.5 +/- 3.6 kcal/kg/day). Exercise energy expenditure was significantly greater as a result of continuous aerobic exercise than all other exercise protocols.

  3. Potential neurobiological benefits of exercise in chronic pain and posttraumatic stress disorder: Pilot study.

    PubMed

    Scioli-Salter, Erica; Forman, Daniel E; Otis, John D; Tun, Carlos; Allsup, Kelly; Marx, Christine E; Hauger, Richard L; Shipherd, Jillian C; Higgins, Diana; Tyzik, Anna; Rasmusson, Ann M

    2016-01-01

    This pilot study assessed the effects of cardiopulmonary exercise testing and cardiorespiratory fitness on plasma neuropeptide Y (NPY), allopregnanolone and pregnanolone (ALLO), cortisol, and dehydroepiandrosterone (DHEA), and their association with pain sensitivity. Medication-free trauma-exposed participants were either healthy (n = 7) or experiencing comorbid chronic pain/posttraumatic stress disorder (PTSD) (n = 5). Peak oxygen consumption (VO2) during exercise testing was used to characterize cardiorespiratory fitness. Peak VO2 correlated with baseline and peak NPY levels (r = 0.66, p < 0.05 and r = 0.69, p < 0.05, respectively), as well as exercise-induced changes in ALLO (r = 0.89, p < 0.001) and peak ALLO levels (r = 0.71, p < 0.01). NPY levels at the peak of exercise correlated with pain threshold 30 min after exercise (r = 0.65, p < 0.05), while exercise-induced increases in ALLO correlated with pain tolerance 30 min after exercise (r = 0.64, p < 0.05). In contrast, exercise-induced changes in cortisol and DHEA levels were inversely correlated with pain tolerance after exercise (r = -0.69, p < 0.05 and r = -0.58, p < 0.05, respectively). These data suggest that cardiorespiratory fitness is associated with higher plasma NPY levels and increased ALLO responses to exercise, which in turn relate to pain sensitivity. Future work will examine whether progressive exercise training increases cardiorespiratory fitness in association with increases in NPY and ALLO and reductions in pain sensitivity in chronic pain patients with PTSD.

  4. The Effect of Active versus Passive Recovery Periods during High Intensity Intermittent Exercise on Local Tissue Oxygenation in 18 - 30 Year Old Sedentary Men.

    PubMed

    Kriel, Yuri; Kerhervé, Hugo A; Askew, Christopher D; Solomon, Colin

    High intensity interval training (HIIT) has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods. Twelve sedentary males (mean ± SD; age 23 ± 3 yr) completed three conditions on a cycle ergometer: 1) HIIT with passive recovery periods between four bouts (HIITPASS) 2) HIIT with active recovery periods between four bouts (HIITACT) 3) HIITACT with four HIIT bouts replaced with passive periods (REC). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) and gastrocnemius (GN) muscles and the pre-frontal cortex (FH), oxygen consumption (VO2), power output and heart rate (HR) were measured continuously during the three conditions. There was a significant increase in HHb at VL during bouts 2 (p = 0.017), 3 (p = 0.035) and 4 (p = 0.035) in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001). There was a significant main effect for site in both HIITPASS (p = 0.029) and HIITACT (p = 0.005). There were no significant differences in VO2 and HR between HIITPASS and HIITACT. The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.

  5. Assessment of professional baseball players aerobic exercise performance depending on their positions.

    PubMed

    Yang, Seung-Won

    2014-11-01

    This study reports the average and SD of professional baseball players' cardiorespiratory endurance, maximum oxygen consumption, oxygen consumption during anaerobic threshold, maximum oxygen consumption of anaerobic threshold %, maximum heart rate, and heart rate of anaerobic threshold. We also report the comparison between pitchers and fielders. Considering the total number of results, percentile was used and results were classified into 5 grades. One professional baseball players' organization with more than 14 years of experience participated in this study. First, we observed that the average pitchers' V[Combining Dot Above]O2max was 53.64 ml·kg·min, whereas the average fielders' was 52.30 ml·kg·min. These values were lower than other sports players. Second, in case of the V[Combining Dot Above]O2AT, pitchers showed 39.35 ml·kg·min and fielders showed 39.96 ml·kg·min. %V[Combining Dot Above]O2AT showed a significant difference of 71.13% between pitchers and fielders-pitchers, whereas fielders showed 73.89% (p < 0.01). Third, maximal heart rates were measured at 188.69 b·min (pitchers) and 187.79 b·min (fielders). These were lower than college baseball players and higher than other sports players. In conclusion, both professional baseball pitchers and fielders should be aware of the necessity of systematic cardiorespiratory endurance data analysis. Moreover, baseball teams, athletic trainers, and coaches should also be aware of the importance of cardiorespiratory endurance.

  6. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    PubMed

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p < 0.01) and significant increase in the values of P-R segments (p < 0.01) were detected following exercise post-supplementation in TG rather than in PG. Significantly higher values of taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values <0.01). Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  7. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    PubMed

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Variability of prediction of maximal oxygen concumption on the cycle ergometer using standard equations

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Fortney, Suzanne M.; Lee, Stuart M. C.; Moore, Alan D.; Barrows, Linda H.

    1993-01-01

    Several investigations within the Exercise Countermeasures Project at the NASA Johnson Space Center focused on the assessment of maximum oxygen consumption (VO2(sub max)) within the Astronaut Corps pre- and postspace flight. Investigations during the Apollo era suggested that there was a significant decrease in postflight VO2(sub max) when compared to preflight values, and current studies have documented that this trend continues in the Space Shuttle era. It is generally accepted and was confirmed in our laboratory that VO2(sub max) can be predicted from submaximal measures taken during graded exercise tests on the cycle ergometer with respect to populations. However, previous work had not examined the effect of day-to-day variations in the physiologic responses that might alter these predictions for individuals. Stability of individual submaximal data over serial tests is important so that predicted changes in VO2(sub max) are reflective of actual VO2(sub max) changes. Therefore, the purpose of this investigation was to determine which of the accepted equations to predict VO2(sub max) would be less affected by normal daily physiologic changes.

  9. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects.

    PubMed

    Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B

    1994-10-01

    Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is insufficient to prevent prolonged postexercise hyperglycemia in IDDM subjects, even when provided at a rate sufficient to maintain normal resting glycemia and glucose turnover. The finding that increasing the rate of insulin infusion restored plasma glucose to normal in IDDM subjects suggests that the postexercise increase in insulin levels observed in normal subjects is essential to return plasma glucose to resting levels. Therefore, special strategies, differing from those for less strenuous exercise, are required for the management of insulin therapy in IDDM during and after intense exercise.

  10. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.

    PubMed

    Puente-Maestu, Luis; Tejedor, Alberto; Lázaro, Alberto; de Miguel, Javier; Alvarez-Sala, Luis; González-Aragoneses, Federico; Simón, Carlos; Agustí, Alvar

    2012-09-01

    Exercise triggers skeletal muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD). The objective of this research was to study the specific sites of reactive oxygen species (ROS) production in mitochondria isolated from skeletal muscle of patients with COPD and its relationship with local oxidative stress induced by exercise. Vastus lateralis biopsies were obtained in 16 patients with COPD (66 ± 10 yr; FEV(1), 54 ± 12% ref) and in 14 control subjects with normal lung function who required surgery because of lung cancer (65 ± 7 yr; FEV(1), 91 ± 14% ref) at rest and after exercise. In these biopsies we isolated mitochondria and mitochondrial membrane fragments and determined in vitro mitochondrial oxygen consumption (Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2)) and ROS production before and after inhibition of complex I (rotenone), complex II (stigmatellin), and complex III (antimycin-A). We related the in vitro ROS production during state 3 respiration), which mostly corresponds to the mitochondria respiratory state during exercise, with skeletal muscle oxidative stress after exercise, as measured by thiobarbituric acid reactive substances.State 3 Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2) was similar in patients with COPD and control subjects (191 ± 27 versus 229 ± 46 nmol/min/mg; P = 0.058), whereas H(2)O(2) production was higher in the former (147 ± 39 versus 51 ± 8 pmol/mg/h; P < 0.001). The addition of complexI, II, and III inhibitors identify complex III as the main site of H(2)O(2) release by mitochondria in patients with COPD and in control subjects. The mitochondrial production of H(2)O(2) in state 3 respiration was related (r = 0.69; P < 0.001) to postexercise muscle thiobarbituric acid reactive substance levels. Our results show that complex III is the main site of the enhanced mitochondrial H(2)O(2) production that occurs in skeletal muscle of patients with COPD, and the latter appears to contribute to muscle oxidative damage.

  11. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption.

    PubMed

    Santos, Carla Santana; Kowaltowski, Alicia J; Bertotti, Mauro

    2017-09-12

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.

  12. Effects of dance movement therapy on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients.

    PubMed

    Aweto, H A; Owoeye, O B A; Akinbo, S R A; Onabajo, A A

    2012-01-01

    Objective:Arterial hypertension is a medical condition associated with increased risks of of death, cardiovascular mortality and cardiovascular morbidity including stroke, coronary heart disease, atrial fibrillation and renal insufficiency. Regular physical exercise is considered to be an important part of the non-pharmacologictreatment of hypertension. The purpose of this study was to investigate the effects of dance movement therapy (DMT) on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients. Fifty (50) subjects with hypertension participated in the study. They were randomly assigned to 2 equal groups; A (DMT group) and B (Control group). Group A carried out dance movement therapy 2 times a week for 4 weeks while group B underwent some educational sessions 2 times a week for the same duration. All the subjects were on anti-hypertensive drugs. 38 subjects completed the study with the DMTgroup having a total of 23 subjects (10 males and 13 females) and the control group 15 subjects (6 males and 9 females). Descriptive statistics of mean, standard deviation and inferential statistics of paired and independentt-testwere used for data analysis. Following four weeks of dance movement therapy, paired t-test analysis showed that there was a statistically significant difference in the Resting systolic blood pressure (RSBP) (p < 0.001*), Resting diastolic blood pressure (RDBP) (p < 0.001*), Resting heart rate (RHR) (p = 0.024*), Maximum heart rate (MHR) (p=0.002*) and Estimated oxygen consumption (VO2max) (p = 0.023*) in subjects in group A (p < 0.05) while there was no significant difference observed in outcome variables of subjects in group B (p > 0.05). Independent t-test analysis between the differences in the pre and post intervention scores of groups A and B also showed statistically significant differences in all the outcome variables (p <0.05). DMT was effective in improving cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients.

  13. Effects of obstructive sleep apnea and obesity on exercise function in children.

    PubMed

    Evans, Carla A; Selvadurai, Hiran; Baur, Louise A; Waters, Karen A

    2014-06-01

    Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Tertiary pediatric hospital. Healthy weight and obese children, aged 7-12 y. N/A. Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children.

  14. Exercise training in older adults, what effects on muscle oxygenation? A systematic review.

    PubMed

    Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine

    2017-07-01

    To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial.

    PubMed

    Kitzman, Dalane W; Brubaker, Peter; Morgan, Timothy; Haykowsky, Mark; Hundley, Gregory; Kraus, William E; Eggebeen, Joel; Nicklas, Barbara J

    2016-01-05

    More than 80% of patients with heart failure with preserved ejection fraction (HFPEF), the most common form of heart failure among older persons, are overweight or obese. Exercise intolerance is the primary symptom of chronic HFPEF and a major determinant of reduced quality of life (QOL). To determine whether caloric restriction (diet) or aerobic exercise training (exercise) improves exercise capacity and QOL in obese older patients with HFPEF. Randomized, attention-controlled, 2 × 2 factorial trial conducted from February 2009 through November 2014 in an urban academic medical center. Of 577 initially screened participants, 100 older obese participants (mean [SD]: age, 67 years [5]; body mass index, 39.3 [5.6]) with chronic, stable HFPEF were enrolled (366 excluded by inclusion and exclusion criteria, 31 for other reasons, and 80 declined participation). Twenty weeks of diet, exercise, or both; attention control consisted of telephone calls every 2 weeks. Exercise capacity measured as peak oxygen consumption (V̇O2, mL/kg/min; co-primary outcome) and QOL measured by the Minnesota Living with Heart Failure (MLHF) Questionnaire (score range: 0-105, higher scores indicate worse heart failure-related QOL; co-primary outcome). Of the 100 enrolled participants, 26 participants were randomized to exercise; 24 to diet; 25 to exercise + diet; 25 to control. Of these, 92 participants completed the trial. Exercise attendance was 84% (SD, 14%) and diet adherence was 99% (SD, 1%). By main effects analysis, peak V̇O2 was increased significantly by both interventions: exercise, 1.2 mL/kg body mass/min (95% CI, 0.7 to 1.7), P < .001; diet, 1.3 mL/kg body mass/min (95% CI, 0.8 to 1.8), P < .001. The combination of exercise + diet was additive (complementary) for peak V̇O2 (joint effect, 2.5 mL/kg/min). There was no statistically significant change in MLHF total score with exercise and with diet (main effect: exercise, -1 unit [95% CI, -8 to 5], P = .70; diet, -6 units [95% CI, -12 to 1], P = .08). The change in peak V̇O2 was positively correlated with the change in percent lean body mass (r = 0.32; P = .003) and the change in thigh muscle:intermuscular fat ratio (r = 0.27; P = .02). There were no study-related serious adverse events. Body weight decreased by 7% (7 kg [SD, 1]) in the diet group, 3% (4 kg [SD, 1]) in the exercise group, 10% (11 kg [SD, 1] in the exercise + diet group, and 1% (1 kg [SD, 1]) in the control group. Among obese older patients with clinically stable HFPEF, caloric restriction or aerobic exercise training increased peak V̇O2, and the effects may be additive. Neither intervention had a significant effect on quality of life as measured by the MLHF Questionnaire. clinicaltrials.gov Identifier: NCT00959660.

  16. Exercise deprivation increases negative mood in exercise-addicted subjects and modifies their biochemical markers.

    PubMed

    Antunes, Hanna Karen Moreira; Leite, Geovana Silva Fogaça; Lee, Kil Sun; Barreto, Amaury Tavares; Santos, Ronaldo Vagner Thomatieli Dos; Souza, Helton de Sá; Tufik, Sergio; de Mello, Marco Tulio

    2016-03-15

    The aim of this study was to identify the possible association between biochemical markers of exercise addiction and affective parameters in a sample of athletes during 2weeks of withdrawal exercise. Eighteen male runners were distributed into a control group (n=10) composed of runners without exercise addiction symptoms and an exercise addiction group (n=8) composed of runners with exercise addiction symptoms. The volunteers performed a baseline evaluation that included affective questionnaires, blood samples, body composition and an aerobic test performed at ventilatory threshold I. After the baseline evaluation, the groups started an exercise withdrawal period that was sustained for 2weeks. During exercise withdrawal, an actigraph accelerometer was used to monitor the movement index, and CK and LDH were measured in blood samples to validate the non-exercise practice. At the end of the exercise withdrawal period, a blood collection, aerobic test and mood scale was performed in the re-test. The results showed that at the end of the experimental protocol, when compared with the control group, the exercise addiction group showed an increase in depression, confusion, anger, fatigue and decreased vigor mood that improved post-exercise, along with low levels of anandamide at all time-points evaluated and a modest increase in β-endorphin post-exercise. Moreover, the exercise addiction group showed a decrease in oxygen consumption and respiratory exchange ratio after the exercise withdrawal period, which characterized a detraining phenomenon. Our data suggest that a 2-week withdrawal exercise period resulted in an increase of negative mood in exercise addiction; additionally, exercise addiction showed low levels of anandamide. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow

    PubMed Central

    Berwick, Zachary C.; Dick, Gregory M.; Moberly, Steven P.; Kohr, Meredith C.; Sturek, Michael; Tune, Johnathan D.

    2011-01-01

    The purpose of this investigation was to test the hypothesis that KV channels contribute to metabolic control of coronary blood flow and that decreases in KV channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of KV channels with 4-aminopyridine (4-AP, 0.3 mg/kg, i.v.). In lean-control swine, 4-AP reduced coronary blood flow ~15% at rest and ~20% during exercise. Inhibition of KV channels also increased aortic pressure (P < 0.01) while reducing coronary venous Po2 (P < 0.01) at a given level of myocardial oxygen consumption (MVo2). Administration of 4-AP had no effect on coronary blood flow, aortic pressure, or coronary venous Po2 in swine with MetS. The lack of response to 4-AP in MetS swine was associated with a ~20% reduction in coronary KV current (P < 0.01) and decreased expression of KV1.5 channels in coronary arteries (P < 0.01). Together, these data demonstrate that KV channels play an important role in balancing myocardial oxygen delivery with metabolism at rest and during exercise-induced increases in MVo2. Our findings also indicate that decreases in KV channel current and expression contribute to impaired control of coronary blood flow in the MetS. PMID:21771599

  18. Influence of exercise on oxidative stress in patients with heart failure.

    PubMed

    Sties, Sabrina Weiss; Andreato, Leonardo Vidal; de Carvalho, Tales; Gonzáles, Ana Inês; Angarten, Vitor Giatte; Ulbrich, Anderson Zampier; de Mara, Lourenço Sampaio; Netto, Almir Schmitt; da Silva, Edson Luiz; Andrade, Alexandro

    2018-03-01

    Reactive oxygen species play an important role in the pathophysiology of heart failure (HF). In contrast, regular physical exercise can promote adaptations to reactive oxygen species that are beneficial for patients with HF. We completed a systematic review of randomized controlled trials that evaluate the influence of exercise on oxidative stress in patients with HF. Articles were searched in the PubMed, Cochrane, SciELO, and LILACS databases. The search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The quality of the included studies was assessed using the Physiotherapy Evidence Database scale. We selected 12 studies with a total of 353 participants. The included patients had a left ventricle ejection fraction of < 52% and New York Heart Association functional class II or III disease. A significant increase was observed in peak oxygen consumption (between 10 and 46%) in the group that underwent training (TG). There was an improvement in the oxidative capacity of skeletal muscles in the TG, related to the positive activity of mitochondrial cytochrome c oxidase (between 27 and 41%). An increase in the expression of the enzymes glutathione peroxidase (41%), catalase (between 14 and 42%), and superoxide dismutase (74.5%), and a decrease in lipid peroxidation (between 28.8 and 58.5%) were observed in the TG. Physical training positively influenced the cardiorespiratory capacity and enhanced the benefits of oxidant and antioxidant biomarkers in patients with HF. High-intensity training promoted a 15% increase in the plasma total antioxidant capacity, whereas moderate training had no effect.

  19. Graded Exercise Testing in a Pediatric Weight Management Center: The DeVos Protocol.

    PubMed

    Eisenmann, Joey C; Guseman, Emily Hill; Morrison, Kyle; Tucker, Jared; Smith, Lucie; Stratbucker, William

    2015-12-01

    In this article, we describe a protocol used to test the functional capacity of the obese pediatric patient and describe the peak oxygen consumption (VO2peak) of patients seeking treatment at a pediatric weight management center. One hundred eleven (mean age, 12.5 ± 3.0 years) patients performed a multistage exercise test on a treadmill, of which 90 (81%) met end-test criteria and provided valid VO2peak data. Peak VO2 was expressed: (1) in absolute terms (L·min(-1)); (2) as the ratio of the volume of oxygen consumed per minute relative to total body mass (mL·kg(-1)·min(-1)); and (3) as the ratio of the volume of oxygen consumed per minute relative to fat-free mass (mL·FFM·kg(-1)·min(-1)). Mean BMI z-score was 2.4 ± 0.3 and the mean percent body fat was 36.5 ± 9.7%. Absolute VO2peak (L·min(-1)) was significantly different between sexes; however, relative values were similar between sexes. Mean VO2peak was 25.7 ± 4.8 mL·kg(-1)·min(-1) with a range of 13.5-36.7 mL·kg(-1)·min(-1). Obese youth seeking treatment at a stage 3 pediatric weight management center exhibit low VO2peak. The protocol outlined here should serve as a model for similar programs interested in the submaximal and peak responses to exercise in obese pediatric patients.

  20. Benefits of aerobic exercise after stroke.

    PubMed

    Potempa, K; Braun, L T; Tinknell, T; Popovich, J

    1996-05-01

    The debilitating loss of function after a stroke has both primary and secondary effects on sensorimotor function. Primary effects include paresis, paralysis, spasticity, and sensory-perceptual dysfunction due to upper motor neuron damage. Secondary effects, contractures and disuse muscle atrophy, are also debilitating. This paper presents theoretical and empirical benefits of aerobic exercise after stroke, issues relevant to measuring peak capacity, exercise training protocols, and the clinical use of aerobic exercise in this patient population. A stroke, and resulting hemiparesis, produces physiological changes in muscle fibres and muscle metabolism during exercise. These changes, along with comorbid cardiovascular disease, must be considered when exercising stroke patients. While few studies have measured peak exercise capacity in hemiparetic populations, it has been consistently observed in these studies that stroke patients have a lower functional capacity than healthy populations. Hemiparetic patients have low peak exercise responses probably due to a reduced number of motor units available for recruitment during dynamic exercise, the reduced oxidative capacity of paretic muscle, and decreased overall endurance. Consequently, traditional methods to predict aerobic capacity are not appropriate for use with stroke patients. Endurance exercise training is increasingly recognised as an important component in rehabilitation. An average improvement in maximal oxygen consumption (VO2max) of 13.3% in stroke patients who participated in a 10-week aerobic exercise training programme has been reported compared with controls. This study underscored the potential benefits of aerobic exercise training in stroke patients. In this paper, advantages and disadvantages of exercise modalities are discussed in relation to stroke patients. Recommendations are presented to maximise physical performance and minimise potential cardiac risks during exercise.

  1. Cardiopulmonary exercise testing is well tolerated in people with Alzheimer-related cognitive impairment.

    PubMed

    Billinger, Sandra A; Vidoni, Eric D; Greer, Colby S; Graves, Rasinio S; Mattlage, Anna E; Burns, Jeffrey M

    2014-09-01

    To retrospectively assess whether cardiopulmonary exercise testing would be well tolerated in individuals with Alzheimer disease (AD) compared with a nondemented peer group. We retrospectively reviewed 575 cardiopulmonary exercise tests (CPETs) in individuals with and without cognitive impairment caused by AD. University medical center. Exercise tests (N=575) were reviewed for nondemented individuals (n=340) and those with AD-related cognitive impairment (n=235). Not applicable. The main outcome measure for this study was reporting the reason for CPET termination. The hypothesis reported was formulated after data collection. We found that in cognitively impaired individuals, CPETs were terminated because of fall risk more often, but that overall test termination was infrequent-5.5% versus 2.1% (P=.04) in peers without cognitive impairment. We recorded 6 cardiovascular and 7 fall risk events in those with AD, compared with 7 cardiovascular and 0 fall risk events in those without cognitive impairment. Our findings support using CPETs to assess peak oxygen consumption in older adults with cognitive impairment caused by AD. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial.

    PubMed

    Redfield, Margaret M; Chen, Horng H; Borlaug, Barry A; Semigran, Marc J; Lee, Kerry L; Lewis, Gregory; LeWinter, Martin M; Rouleau, Jean L; Bull, David A; Mann, Douglas L; Deswal, Anita; Stevenson, Lynne W; Givertz, Michael M; Ofili, Elizabeth O; O'Connor, Christopher M; Felker, G Michael; Goldsmith, Steven R; Bart, Bradley A; McNulty, Steven E; Ibarra, Jenny C; Lin, Grace; Oh, Jae K; Patel, Manesh R; Kim, Raymond J; Tracy, Russell P; Velazquez, Eric J; Anstrom, Kevin J; Hernandez, Adrian F; Mascette, Alice M; Braunwald, Eugene

    2013-03-27

    Studies in experimental and human heart failure suggest that phosphodiesterase-5 inhibitors may enhance cardiovascular function and thus exercise capacity in heart failure with preserved ejection fraction (HFPEF). To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. Multicenter, double-blind, placebo-controlled, parallel-group, randomized clinical trial of 216 stable outpatients with HF, ejection fraction ≥50%, elevated N-terminal brain-type natriuretic peptide or elevated invasively measured filling pressures, and reduced exercise capacity. Participants were randomized from October 2008 through February 2012 at 26 centers in North America. Follow-up was through August 30, 2012. Sildenafil (n = 113) or placebo (n = 103) administered orally at 20 mg, 3 times daily for 12 weeks, followed by 60 mg, 3 times daily for 12 weeks. Primary end point was change in peak oxygen consumption after 24 weeks of therapy. Secondary end points included change in 6-minute walk distance and a hierarchical composite clinical status score (range, 1-n, a higher value indicates better status; expected value with no treatment effect, 95) based on time to death, time to cardiovascular or cardiorenal hospitalization, and change in quality of life for participants without cardiovascular or cardiorenal hospitalization at 24 weeks. Median age was 69 years, and 48% of patients were women. At baseline, median peak oxygen consumption (11.7 mL/kg/min) and 6-minute walk distance (308 m) were reduced. The median E/e' (16), left atrial volume index (44 mL/m2), and pulmonary artery systolic pressure (41 mm Hg) were consistent with chronically elevated left ventricular filling pressures. At 24 weeks, median (IQR) changes in peak oxygen consumption (mL/kg/min) in patients who received placebo (-0.20 [IQR, -0.70 to 1.00]) or sildenafil (-0.20 [IQR, -1.70 to 1.11]) were not significantly different (P = .90) in analyses in which patients with missing week-24 data were excluded, and in sensitivity analysis based on intention to treat with multiple imputation for missing values (mean between-group difference, 0.01 mL/kg/min, [95% CI, -0.60 to 0.61]). The mean clinical status rank score was not significantly different at 24 weeks between placebo (95.8) and sildenafil (94.2) (P = .85). Changes in 6-minute walk distance at 24 weeks in patients who received placebo (15.0 m [IQR, -26.0 to 45.0]) or sildenafil (5.0 m [IQR, -37.0 to 55.0]; P = .92) were also not significantly different. Adverse events occurred in 78 placebo patients (76%) and 90 sildenafil patients (80%). Serious adverse events occurred in 16 placebo patients (16%) and 25 sildenafil patients (22%). Among patients with HFPEF, phosphodiesterase-5 inhibition with administration of sildenafil for 24 weeks, compared with placebo, did not result in significant improvement in exercise capacity or clinical status. clinicaltrials.gov Identifier: NCT00763867.

  3. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women.

    PubMed

    Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J

    2011-07-01

    This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Potential benefits of maximal exercise just prior to return from weightlessness

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  5. Effect of continuous negative-pressure breathing on skin blood flow during exercise in a hot environment.

    PubMed

    Nagashima, K; Nose, H; Takamata, A; Morimoto, T

    1998-06-01

    To assess the impact of continuous negative-pressure breathing (CNPB) on the regulation of skin blood flow, we measured forearm blood flow (FBF) by venous-occlusion plethysmography and laser-Doppler flow (LDF) at the anterior chest during exercise in a hot environment (ambient temperature = 30 degreesC, relative humidity = approximately 30%). Seven male subjects exercised in the upright position at an intensity of 60% peak oxygen consumption rate for 40 min with and without CNPB after 20 min of exercise. The esophageal temperature (Tes) in both conditions increased to 38.1 degreesC by the end of exercise, without any significant differences between the two trials. Mean arterial pressure (MAP) increased by approximately 15 mmHg by 8 min of exercise, without any significant difference between the two trials before CNPB. However, CNPB reduced MAP by approximately 10 mmHg after 24 min of exercise (P < 0.05). The increase in FBF and LDF in the control condition leveled off after 18 min of exercise above a Tes of 37.7 degreesC, whereas in the CNPB trial the increase continued, with a rise in Tes despite the decrease in MAP. These results suggest that CNPB enhances vasodilation of skin above a Tes of approximately 38 degrees C by stretching intrathoracic baroreceptors such as cardiopulmonary baroreceptors.

  6. The effects of resistance training on metabolic health with weight regain.

    PubMed

    Warner, Shana O; Linden, Melissa A; Liu, Ying; Harvey, Benjamin R; Thyfault, John P; Whaley-Connell, Adam T; Chockalingam, Anand; Hinton, Pamela S; Dellsperger, Kevin C; Thomas, Tom R

    2010-01-01

    To determine whether resistance training effectively maintains improvements in cardiometabolic syndrome risk factors during weight regain, 9 individuals lost 4% to 6% of their body weight during an 8- to 12-week diet- and aerobic exercise-induced weight loss phase followed by a controlled weight regain phase (8-12 weeks), during which they regained approximately 50% of the lost weight while participating in a supervised resistance training program. Following weight loss (6.0%+/-0.3%), body mass index, body fat percentage, waist circumference, all abdominal adipose tissue depots, total cholesterol, low-density lipoprotein cholesterol, insulin, and homeostasis model assessment (HOMA) were significantly reduced, while quantitative insulin-sensitivity check index (QUICKI) and cardiorespiratory fitness (maximal oxygen consumption) significantly increased. During weight regain (48.3%+/-3.3% of lost weight), body fat percentage, waist circumference, and maximal oxygen consumption were maintained and muscular strength and lean body mass significantly increased. Abdominal adipose tissue depots, insulin, HOMA, and QUICKI did not significantly change after weight regain. Resistance training was effective in maintaining improvements in metabolic health during weight regain.

  7. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  8. Patterning of physiological and affective responses in older active adults during a maximal graded exercise test and self-selected exercise.

    PubMed

    Smith, Ashleigh E; Eston, Roger; Tempest, Gavin D; Norton, Belinda; Parfitt, Gaynor

    2015-09-01

    The American College of Sports Medicine has highlighted the importance of considering the physiological and affective responses to exercise when setting exercise intensity. Here, we examined the relationship between exercise intensity and physiological and affective responses in active older adults. Eighteen participants (60-74 years; 64.4 ± 3.9; 8 women) completed a maximal graded exercise test (GXT) on a treadmill. Since time to exhaustion in the GXT differed between participants, heart rate (HR), oxygen consumption (VO2), affective valence (affect) and rating of perceived exertion (RPE) were expressed relative to the individually determined ventilatory threshold (%atVT). During the GXT, VO2, HR and RPE increased linearly (all P < 0.01). Affect declined initially (but remained positive) (P = 0.03), stabilised around VT (still positive) (P > 0.05) and became negative towards the end of the test (P < 0.01). In a subsequent session, participants completed a 20-min bout of self-selected exercise (at a preferred intensity). Initially, participants chose to exercise below VT (88.2 ± 17.4 %VO2atVT); however, the intensity was adjusted to work at, or above VT (107.7 ± 19.9 %VO2atVT) after 10 min (P < 0.001), whilst affect remained positive. Together, these findings indicate that exercise around VT, whether administered during an exercise test, or self-selected by the participant, is likely to result in positive affective responses in older adults.

  9. Metabolic and cardiovascular responses during aquatic exercise in water at different temperatures in older adults.

    PubMed

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C; Zaccaria, Marco

    2015-06-01

    The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40 metronome beat · min(- 1)) on separate visits. Water temperatures for the visits were 28°C (cold water [CW]) and 36°C (hot water [HW]), and water depth ranged from 1.2 m to 1.4 m. Measurements for heart rate (HR), blood pressure (BP), oxygen consumption (VO2), and rate of perceived exertion (RPE) were compared between the CW and HW conditions. The comparison between temperatures showed a higher HR response during exercise in HW, particularly when participants exercised at the highest intensities. During a 30-min postexercise period in resting conditions, HR was statistically significantly higher for the HW condition compared with the CW condition, with a large effect size (15.9%, d = 1.23). Systolic and diastolic BPs were found to be lower for the HW condition ( - 7.2%, d = - 0.60; - 10.1%, d = - 0.65), while VO2 and RPE showed no differences. The effect size between double products (HR · systolic BP) for the 2 conditions was small (CW = 8,649 ± 1,287, HW = 9,340 ± 1,672; d = 0.36), suggesting similar myocardial oxygen requirements. This study showed that HR response was higher in an HW condition for older men. Warmer environments may add additional stressors to the body, which may impact training strategies and should be considered when estimating the effort of performing aquatic exercise.

  10. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  11. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  12. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  13. Impaired systemic oxygen extraction in treated exercise pulmonary hypertension: a new engine in an old car?

    PubMed

    Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M

    2018-01-01

    Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.

  14. High Mid-Flow to Vital Capacity Ratio and the Response to Exercise in Children With Congenital Heart Disease.

    PubMed

    Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal

    2016-12-01

    Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF 25-75% ) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇ O 2 , V̇ CO 2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.

  15. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults.

    PubMed

    Landers-Ramos, Rian Q; Corrigan, Kelsey J; Guth, Lisa M; Altom, Christine N; Spangenburg, Espen E; Prior, Steven J; Hagberg, James M

    2016-08-01

    Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.

  16. Effect of Selective Heart Rate Slowing in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Pal, Nikhil; Sivaswamy, Nadiya; Mahmod, Masliza; Yavari, Arash; Rudd, Amelia; Singh, Satnam; Dawson, Dana K; Francis, Jane M; Dwight, Jeremy S; Watkins, Hugh; Neubauer, Stefan; Frenneaux, Michael; Ashrafian, Houman

    2015-11-03

    Heart failure with preserved ejection fraction (HFpEF) is associated with significant morbidity and mortality but is currently refractory to therapy. Despite limited evidence, heart rate reduction has been advocated, on the basis of physiological considerations, as a therapeutic strategy in HFpEF. We tested the hypothesis that heart rate reduction improves exercise capacity in HFpEF. We conducted a randomized, crossover study comparing selective heart rate reduction with the If blocker ivabradine at 7.5 mg twice daily versus placebo for 2 weeks each in 22 symptomatic patients with HFpEF who had objective evidence of exercise limitation (peak oxygen consumption at maximal exercise [o2 peak] <80% predicted for age and sex). The result was compared with 22 similarly treated matched asymptomatic hypertensive volunteers. The primary end point was the change in o2 peak. Secondary outcomes included tissue Doppler-derived E/e' at echocardiography, plasma brain natriuretic peptide, and quality-of-life scores. Ivabradine significantly reduced peak heart rate compared with placebo in the HFpEF (107 versus 129 bpm; P<0.0001) and hypertensive (127 versus 145 bpm; P=0.003) cohorts. Ivabradine compared with placebo significantly worsened the change in o2 peak in the HFpEF cohort (-2.1 versus 0.9 mL·kg(-1)·min(-1); P=0.003) and significantly reduced submaximal exercise capacity, as determined by the oxygen uptake efficiency slope. No significant effects on the secondary end points were discernable. Our observations bring into question the value of heart rate reduction with ivabradine for improving symptoms in a HFpEF population characterized by exercise limitation. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02354573. © 2015 The Authors.

  17. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  18. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension.

    PubMed

    Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D

    2015-08-01

    We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations.

    PubMed

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Crossover study. Applied research study. Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg(-1)·min(-1)). Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0-15, 15-30, and 30-45 minutes; second half: 45-60, 60-75, and 75-90 minutes) and 10 minutes into the halftime break. Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise (time-of-sample effect: P < .001) and remained elevated throughout exercise. Supplementation did not influence the pattern of response (time × treatment interaction effect: P = .49). Ingestion of a 6% CHO-electrolyte beverage before and during soccer match play did not benefit blood glucose concentrations throughout the second half of exercise.

  20. Validation of the Pulmonary Function System for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    McCleary, Frank A.; Moore, Alan D., Jr.; Hagan, R. Donald

    2007-01-01

    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method may not be valid during space flight. In addition, the ergometer onboard ISS is vibration-isolated and moves with the astronaut s application of force into the pedals. The effect of this movement on the VO2 of cycle exercise on ISS has not been quantified.

  1. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.

    PubMed

    Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore

    2014-02-01

    What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits, did not systematically alter ventilation across all gas concentrations. As with most human studies, our findings support the idea that endurance training (access to wheel running) attenuates resting ventilation. However, little evidence was found for a correlation at the level of the individual variation between ventilatory chemoreflexes and performance (amount of individual voluntary wheel running). We tentatively conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running.

  2. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease.

    PubMed

    Coeckelberghs, Ellen; Buys, Roselien; Goetschalckx, Kaatje; Cornelissen, Véronique A; Vanhees, Luc

    2016-02-01

    Peak exercise capacity is an independent predictor for mortality in patients with coronary artery disease. However, sometimes cardiopulmonary exercise tests are stopped prematurely. Therefore, submaximal exercise measures such as the oxygen uptake efficiency slope have been introduced. The aim of this study was to assess the prognostic value of the oxygen uptake efficiency slope and other exercise parameters, in patients with coronary artery disease. Between 2000 and 2011, 1409 patients with coronary artery disease (age 60.7 ± 9.9 years; 1205 males) underwent cardiopulmonary exercise tests. A maximal effort was not reached in 161 (11.5%) patients. The oxygen uptake efficiency slope was calculated and information on mortality was obtained. Cox proportional hazards regression analyses were used to assess the relation of oxygen uptake efficiency slope and other gas exchange variables with all-cause and cardiovascular mortality. Receiver operating characteristic curve analyses was performed to define optimal cut-off values. During an average follow-up of 7.45 ± 3.20 years (range 0.16-13.95 years), 158 patients died, among which 68 patients for cardiovascular reasons. The oxygen uptake efficiency slope was related to all-cause (hazard ratio: 0.568, p < 0.001) and cardiovascular (hazard ratio: 0.461, p < 0.001) mortality. When significant covariates were entered in the analysis, oxygen uptake efficiency slope remained related to mortality (p < 0.05). When other submaximal exercise parameters were added to the model, oxygen uptake efficiency slope and minute ventilation/carbon dioxide production slope also remained significantly related to mortality. The oxygen uptake efficiency slope is an independent predictor for all-cause and cardiovascular mortality in patients with coronary artery disease, irrespective of a truly maximal effort during cardiopulmonary exercise tests. Furthermore, the oxygen uptake efficiency slope provides prognostic information, complementary to the minute ventilation/carbon dioxide production slope and peak exercise capacity. © The European Society of Cardiology 2015.

  3. Nitrate supplementation and human exercise performance: too much of a good thing?

    PubMed

    Poortmans, Jacques R; Gualano, Bruno; Carpentier, Alain

    2015-11-01

    Ergogenic supplements in sport events are widely used by popular and competitive athletes to enhance performance and reduce oxygen cost. Beetroot juice and nitrate salts have been increasingly used for the past 5-6 years. The present review discusses the scientific background, the efficiency and potential adverse effects of excessive nitrate supplementation. There is clear evidence that nitrate from different food ingredients (such as beetroot juice and other vegetables) is converted into nitrite and possibly into nitric oxide, which may promote vasodilation, angiogenesis and mitochondrial biogenesis. The high affinity of nitric oxide towards different enzyme pathways inhibits excessive mitochondrial respiration and, therefore, tissue oxygen consumption. In addition, L-arginine supplements are proposed to stimulate nitric oxide synthesis in the endothelium. On the basis of these biochemical properties, nitrate supplementation has been suggested to athletes to enhance exercise performance. The recent publications in human individuals based on L-arginine, beetroot juice or nitrate supplementation revealed either a minor positive effect or no systematic effect on exercise performance, especially in trained athletes. Of note, the sugar content of whole beetroot juice might induce a slightly more pronounced effect. Although reasonable intake of nitrate salts (up to 1 g/day) has no detrimental effect on kidney function, the risk and benefit of higher nitrate intake needs to be evaluated to define the optimal range of supplementation.

  4. Exercise improves adiponectin concentrations irrespective of the adiponectin gene polymorphisms SNP45 and the SNP276 in obese Korean women.

    PubMed

    Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A

    2013-03-10

    The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  5. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  6. High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study.

    PubMed

    Ryerson, Christopher J; Camp, Pat G; Eves, Neil D; Schaeffer, Michele; Syed, Nafeez; Dhillon, Satvir; Jensen, Dennis; Maltais, Francois; O'Donnell, Denis E; Raghavan, Natya; Roman, Michael; Stickland, Michael K; Assayag, Deborah; Bourbeau, Jean; Dion, Genevieve; Fell, Charlene D; Hambly, Nathan; Johannson, Kerri A; Kalluri, Meena; Khalil, Nasreen; Kolb, Martin; Manganas, Helene; Morán-Mendoza, Onofre; Provencher, Steve; Ramesh, Warren; Rolf, J Douglass; Wilcox, Pearce G; Guenette, Jordan A

    2016-09-01

    Pulmonary rehabilitation improves dyspnea and exercise capacity in idiopathic pulmonary fibrosis (IPF); however, it is unknown whether breathing high amounts of oxygen during exercise training leads to further benefits. Herein, we describe the design of the High Oxygen Delivery to Preserve Exercise Capacity in IPF Patients Treated with Nintedanib study (the HOPE-IPF study). The primary objective of this study is to determine the physiological and perceptual impact of breathing high levels of oxygen during exercise training in patients with IPF who are receiving antifibrotic therapy. HOPE-IPF is a two-arm double-blind multicenter randomized placebo-controlled trial of 88 patients with IPF treated with nintedanib. Patients will undergo 8 weeks of three times weekly aerobic cycle exercise training, breathing a hyperoxic gas mixture with a constant fraction of 60% inhaled oxygen, or breathing up to 40% oxygen as required to maintain an oxygen saturation level of at least 88%. End points will be assessed at baseline, postintervention (Week 8), and follow-up (Week 26). The primary analysis will compare the between-group baseline with post-training change in endurance time during constant work rate cycle exercise tests. Additional analyses will evaluate the impact of training with high oxygen delivery on 6-minute walk distance, dyspnea, physical activity, and quality of life. The HOPE-IPF study will lead to a comprehensive understanding of IPF exercise physiology, with the potential to change clinical practice by indicating the need for increased delivery of supplemental oxygen during pulmonary rehabilitation in patients with IPF. Clinical trial registered with www.clinicaltrials.gov (NCT02551068).

  7. A 2-Month Linear Periodized Resistance Exercise Training Improved Musculoskeletal Fitness and Specific Conditioning of Navy Cadets.

    PubMed

    Vantarakis, Antonios; Chatzinikolaou, Athanasios; Avloniti, Alexandra; Vezos, Nikolaos; Douroudos, Ioannis I; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Kambas, Antonis; Kalligeros, Stamatios; Fatouros, Ioannis G

    2017-05-01

    Vantarakis, A, Chatzinikolaou, A, Avloniti, A, Vezos, N, Douroudos, II, Draganidis, D, Jamurtas, AΖ, Kambas, A, Kalligeros, S, and Fatouros, IG. A 2-month linear periodized resistance exercise training improved musculoskeletal fitness and specific conditioning of navy cadets. J Strength Cond Res 31(5): 1362-1370, 2017-Major objectives of army and navy training are the development of readiness, performance, and injury prevention. Numerous studies have examined the effect of specific strength training (ST) programs on performance of Special Forces and military personnel. Although navy personnel have to address on-board conditions that require the development of strength, agility, speed, and task-specific endurance, there is no information regarding the effects of ST on navy-specific performance. Therefore, the purpose of this study was to investigate the effect of an 8-week ST on performance of navy cadets. Thirty-one cadets of the Hellenic Naval Academy volunteered to participate and were randomly assigned in 2 groups. Cadets in the Experimental Group participated in a linear periodized ST program in addition to their daily training schedule. Cadets in the control group participated only in pre- and post-measurements. Anthropometrics, maximal oxygen consumption, oxygen consumption during a Navy Obstacle Course (NOC), maximum strength in bench press and squat exercises, hand grip strength, repetitions in push-ups and abdominal test, time to complete a 30-m sprint, and time to complete NOC were measured before and after the intervention. A 2-way repeated-measures analysis of variance showed that ST induced favorable changes in bench press and squat 1 repetition maximum, push-ups, abdominal crunches, time to complete 30-m distance, and time to complete the NOC. These results indicate that an additional ST may induce positive alterations on readiness and performance of navy cadets. The study has the approval of university's institutional review board and ethical committee.

  8. Physiological responses during graded treadmill exercise in chemical-resistant personal protective equipment.

    PubMed

    Northington, William E; Suyama, Joe; Goss, Fredric L; Randall, Colby; Gallagher, Michael; Hostler, David

    2007-01-01

    As the likelihood of terrorist acts increases, prehospital personnel have been forced to train in the proper use of chemical-resistant personal protective equipment (PPE). This protective ensemble has been reported to be physiologically taxing for the wearer, imposing an additional thermal load resulting in hypohydration, hyperthermia, and reduced work time. Victim extrication, the rescue-the-rescuer role of the rapid intervention team and rapid self-extrication, typically requires high-intensity work that can be maintained only for short time intervals. The additional physiological burden imparted by the level C PPE during high-intensity work is unknown. We hypothesized that the added thermal burden resulting from work in PPE would shorten work time and result in a higher core temperature during incremental treadmill exercise. In this prospective, crossover, laboratory study, EMS providers (n = 8, 5 male) completed a Bruce treadmill test on two occasions: once in a chemical-resistant coverall and air-purifying respirator (PPE) and once in shorts and t-shirt (CON). Oxygen consumption, vital signs, core and skin temperature, and perceptual measures of exertion, thermal sensation, and comfort were monitored throughout the test. Subjects achieved maximal oxygen consumption and more than 90% of age-predicted maximum heart rate in both conditions. Heart rate, skin temperature, and measures of perceived exertion, comfort, and thermal sensation increased during the treadmill exercise but did not differ between the PPE and CON conditions. Core temperature increased in both the CON and PPE conditions (0.8 +/- 0.5 vs. 0.7 +/- 0.3, p = 0.40). High-intensity work in level C PPE is primarily limited by cardiovascular capacity. The thermal burden associated with this short bout of work in PPE (approximately 10 minutes) is not different than high-intensity work in short pants and cotton t-shirt. Consideration should be given to cardiorespiratory fitness when assigning providers to work in chemical-resistant PPE, especially on tasks that require high-intensity work.

  9. Effect of a virtual reality-enhanced exercise protocol after coronary artery bypass grafting.

    PubMed

    Chuang, Tien-Yow; Sung, Wen-Hsu; Chang, Hwa-Ann; Wang, Ray-Yau

    2006-10-01

    Virtual reality (VR) technology has gained importance in many areas of medicine. Knowledge concerning the application and the influence of VR-enhanced exercise programs is limited for patients receiving coronary artery bypass grafting. The purpose of this study was to evaluate the effect of a virtual "country walk" on the number of sessions necessary to reach cardiac rehabilitation goals in patients undergoing coronary artery bypass grafting. Twenty subjects who were seen for cardiac rehabilitation between January and June 2004 comprised the study sample. The protocol for this study included an initial maximum graded exercise tolerance test, given to determine the subsequent training goals for the subject, followed by biweekly submaximal endurance training sessions. All subjects were assigned by lot to 1 of 2 submaximal endurance training programs, one (group 2) with and the other (group 1) without the added VR environment. In all other respects, the 2 programs were identical. Each training session lasted for 30 minutes and was carried out twice per week for about 3 months. The primary outcome measures were maximum load during the work sessions, target oxygen consumption, target heart rate (beats per minute), and number of training sessions required to reach rehabilitation goals. By the end of 20 training sessions, only 4 of the 10 control subjects had reached the heart rate target goal of 85% their maximum heart rate. In contrast, 9 of the 10 subjects in the VR program had attained this goal by 9 or fewer training sessions. When target metabolic cost (75% peak oxygen consumption) was used as the training goal, all 10 subjects in the VR program had reached this target after 2 training sessions (or, in some cases, 1 training session), but not until training session 15 did a cumulative number of 9 control subjects reach this goal. These study outcomes clearly support the notion that incorporating a VR environment into cardiac rehabilitation programs will accelerate maximum recovery of patients' cardiovascular function.

  10. Oxygen consumption and gait variables of Arabian endurance horses measured during a field exercise test.

    PubMed

    Cottin, F; Metayer, N; Goachet, A G; Julliand, V; Slawinski, J; Billat, V; Barrey, E

    2010-11-01

    Arabian horses have morphological, muscular and metabolic features designed for endurance races. Their gas exchange and gait variables were therefore measured during a field exercise test. This study presents original respiratory and locomotor data recorded in endurance horses under field conditions. Respiratory gas exchange ratio (RER) of Arabian horses at the speed required to win endurance races (18 km/h for 120-160 km) are <1 and running economy (RE) is also low in order to maintain exercise intensity using aerobic metabolism for long intervals. The purpose of this study was to measure oxygen consumption and gait variables in Arabian endurance horses running in the field in order to estimate RER and RE. Five Arabian horses trained for endurance racing were test ridden at increasing speeds on the field. Their speed was recorded and controlled by the rider using a GPS logger. Each horse was equipped with a portable respiratory gas analyser, which measured breath-by-breath respiratory variables and heart rate. The gait variables were recorded using tri-axial accelerometer data loggers and software for gait analysis. Descriptive statistics and linear regressions were used to analyse the speed related changes in each variable with P < 0.05 taken as significant. At a canter speed corresponding to endurance race winning speed (18 km/h), horses presented a VO(2) = 42 ± 9 ml/min/kg bwt, RER = 0.96 ± 0.10 and RE (= VO(2) /speed) = 134 ± 27 l/km/kg bwt. Linear relationships were observed between speed and VO(2,) HR and gait variables. Significant correlations were observed between VO(2) and gait variables. The RER of 0.96 at winning endurance speed indicates that Arabian horses mainly use aerobic metabolism based on lipid oxidation and that RER may also be related to a good coordination between running speed, respiratory and gait parameters. © 2010 EVJ Ltd.

  11. Differences in oxygen consumption and external power between male and female speed skaters during supramaximal cycling.

    PubMed

    van Ingen Schenau, G J; de Groot, G

    1983-01-01

    Differences in performance levels between elite male and female endurance athletes are often explained by differences found in VO2 max even when expressed in VO2 max per kilogram lean body mass (VO2/LBM). Such an explanation is only a matter of course when less or no difference exists in mechanical efficiency, anaerobic power and technical variables like friction constants between males and females. Particularly during supramaximal exercises. In this study five elite male speed skaters were compared with five elite female speed skaters with respect to oxygen consumption and external power during a 3 min supramaximal bicycle ergometer test. The training background and training history of both groups were comparable. Although the elite males showed a 20% higher VO2/BW and 8% higher VO2/LBM (71.0 versus 65.01 x min-1 . kg-1) than the females, the female group showed the same mean external power Pc per kilogram body weight, and a surprising 12% higher Pc/LBM than the males (6.47 versus 5.79 W x kg-1). Hence the female group delivered 22% more external power per liter of oxygen consumption. With the help of additional data from 14 male and 11 female sub-elite skaters it is shown that the differences between the elite groups are mainly due to sex differences. In the light of differences between men and women reported in other studies, it seems likely that the differences found in this study are due to a difference in mechanical efficiency which particularly occurs in supramaximal tasks.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Post-exercise hypotension and heart rate variability response after water- and land-ergometry exercise in hypertensive patients.

    PubMed

    Bocalini, Danilo Sales; Bergamin, Marco; Evangelista, Alexandre Lopes; Rica, Roberta Luksevicius; Pontes, Francisco Luciano; Figueira, Aylton; Serra, Andrey Jorge; Rossi, Emilly Martinelli; Tucci, Paulo José Ferreira; Dos Santos, Leonardo

    2017-01-01

    systemic arterial hypertension is the most prevalent cardiovascular disease; physical activity for hypertensive patients is related to several beneficial cardiovascular adaptations. This paper evaluated the effect of water- and land-ergometry exercise sessions on post-exercise hypotension (PEH) of healthy normotensive subjects versus treated or untreated hypertensive patients. Forty-five older women composed three experimental groups: normotensive (N, n = 10), treated hypertensive (TH, n = 15) and untreated hypertensive (UH, n = 20). The physical exercise acute session protocol was performed at 75% of maximum oxygen consumption (VO2max) for 45 minutes; systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were evaluated at rest, peak and at 15, 30, 45, 60, 75 and 90 minutes after exercise cessation. Additionally, the heart rate variability (HRV) was analyzed by R-R intervals in the frequency domain for the assessment of cardiac autonomic function. In both exercise modalities, equivalent increases in SBP were observed from rest to peak exercise for all groups, and during recovery, significant PEH was noted. At 90 minutes after the exercise session, the prevalence of hypotension was significantly higher in water- than in the land-based protocol. Moreover, more pronounced reductions in SBP and DBP were observed in the UH patients compared to TH and N subjects. Finally, exercise in the water was more effective in restoring HRV during recovery, with greater effects in the untreated hypertensive group. Our data demonstrated that water-ergometry exercise was able to induce expressive PEH and improve cardiac autonomic modulation in older normotensive, hypertensive treated or hypertensive untreated subjects when compared to conventional land-ergometry.

  13. Effects of Aerobic Exercise on Anxiety Symptoms and Cortical Activity in Patients with Panic Disorder: A Pilot Study.

    PubMed

    Lattari, Eduardo; Budde, Henning; Paes, Flávia; Neto, Geraldo Albuquerque Maranhão; Appolinario, José Carlos; Nardi, Antônio Egídio; Murillo-Rodriguez, Eric; Machado, Sérgio

    2018-01-01

    The effects of the aerobic exercise on anxiety symptoms in patients with Panic Disorder (PD) remain unclear. Thus, the investigation of possible changes in EEG frontal asymmetry could contribute to understand the relationship among exercise, brain and anxiety. To investigate the acute effects of aerobic exercise on the symptoms of anxiety and the chronic effects of aerobic exercise on severity and symptoms related to PD, besides the changes in EEG frontal asymmetry. Ten PD patients were divided into two groups, Exercise Group (EG; n=5) and Control Group (CG; n=5), in a randomized allocation. At baseline and post-intervention, they submitted the psychological evaluation through Panic Disorder Severity Scale (PDSS), Beck Anxiety Inventory (BAI), Beck Depression Inventory-II (BDI-II), EEG frontal asymmetry, and maximal oxygen consumption (VO 2 max). On the second visit, the patients of EG being submitted to the aerobic exercise (treadmill, 25 minutes, and 50-55% of heart rate reserve) and the CG remained seated for the same period of time. Both groups submitted a psychological evaluation with Subjective Units of Distress Scale (SUDS) at baseline, immediately after (Post-0), and after 10 minutes of the rest pause (Post-10). The patients performed 12 sessions of aerobic exercise with 48-72 hours of interval between sessions. In EG, SUDS increased immediately after exercise practice and showed chronic decrease in BAI and BDI-II as well as increased in VO 2 max (Post-intervention). Aerobic exercise can promote increase in anxiety acutely and regular aerobic exercise promotes reduction in anxiety levels.

  14. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  15. Reactivity of Household Oxygen Bleaches: A Stepwise Laboratory Exercise in High School Chemistry Course

    ERIC Educational Resources Information Center

    Nakano, Masayoshi; Ogasawara, Haruka; Wada, Takeshi; Koga, Nobuyoshi

    2016-01-01

    This paper reports on a learning program designed for high school chemistry classes that involves laboratory exercises using household oxygen bleaches. In this program, students are taught the chemistry of oxygen bleaches through a stepwise inquiry using laboratory exercises organized with different pedagogical intents. Through comparative…

  16. Effect of Exercise Intensity and Duration on Postexercise Executive Function.

    PubMed

    Tsukamoto, Hayato; Takenaka, Saki; Suga, Tadashi; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2017-04-01

    The effect of exercise volume represented by exercise intensity and duration on postexercise executive function (EF) improvement remains unclear. In the present study, involving two volume-controlled evaluations, we aimed to compare acute exercise protocols with differing intensities and durations to establish an effective exercise protocol for improving EF. In study 1, 12 healthy male subjects performed cycle ergometer exercise, based on a low-intensity (LI) protocol for 20 min (LI20), moderate-intensity (MI) protocol for 20 min (MI20), and MI20 volume-matched LI protocol for 40 min (LI40). The exercise intensities for the LI and MI were set at 30% and 60% of peak oxygen consumption, respectively. In study 2, 15 healthy male subjects performed MI exercise for 10 min (MI10), MI20, and 40 min (MI40). To evaluate the EF, the color-word Stroop task was administrated before exercise, immediately after exercise, and during the 30-min postexercise recovery. In study 1, postexercise EF improvement was sustained for a longer duration after MI20 than after LI40 and was sustained for a longer duration after LI40 than after LI20. In study 2, although there was no significant difference in post-MI exercise EF improvement, the magnitude of difference in the EF between preexercise and 30-min postexercise recovery period was moderately larger in MI40, but not in MI10 and MI20, indicating that the EF improvement during postexercise recovery could be sustained after MI40. The present findings showed that postexercise EF improvement could be prolonged after MI exercise with a moderate duration compared with volume-matched LI exercise with a longer duration. In addition, MI exercise with a relatively long duration may slightly prolong the postexercise EF improvement.

  17. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.

    PubMed

    Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.

  18. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    PubMed Central

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  19. Aerobic capacity and skeletal muscle function in children with asthma.

    PubMed

    Villa, Fabiane; Castro, Ana Paula Beltran Moschione; Pastorino, Antonio Carlos; Santarém, José Maria; Martins, Milton Arruda; Jacob, Cristina Miuki Abe; Carvalho, Celso Ricardo

    2011-06-01

    Peripheral muscle strength and endurance are decreased in patients with chronic pulmonary diseases and seem to contribute to patients' exercise intolerance. However, the authors are not aware of any studies evaluating peripheral muscle function in children with asthma. It seems to be implied that children with asthma have lower aerobic fitness, but there are limited studies comparing the aerobic capacity of children with and without asthma. The present study aimed to evaluate muscle strength and endurance in children with persistent asthma and their association with aerobic capacity and inhaled corticosteroid consumption. Forty children with mild persistent asthma (MPA) or severe persistent asthma (SPA) (N=20 each) and 20 children without asthma (control group) were evaluated. Upper (pectoralis and latissimus dorsi) and lower (quadriceps) muscle strength and endurance were assessed, and cardiopulmonary exercise testing was performed. Inhaled corticosteroid consumption during the last 6 and 24 months was also quantified. Children with SPA presented a reduction in peak oxygen consumption (VO(2)) (28.2±8.1 vs 34.7±6.9 ml/kg/min; p<0.01) and quadriceps endurance (43.1±6.7 vs 80.9±11.9 repetitions; p<0.05) compared with the control group, but not the MPA group (31.5±6.1 ml/kg/min and 56.7±47.7 repetitions respectively; p>0.05). Maximal upper and lower muscle strength was preserved in children with both mild and severe asthma (p>0.05). Finally, the authors observed that lower muscle endurance weakness was not associated with reductions in either peak VO(2) (r=0.22, p>0.05) or corticosteroid consumption (r=-0.31, p>0.05) in children with asthma. The findings suggest that cardiopulmonary exercise and lower limb muscle endurance should be a priority during physical training programs for children with severe asthma.

  20. Energy expenditure during rest and treadmill gait training in quadriplegic subjects.

    PubMed

    de Carvalho, D C L; Cliquet, A

    2005-11-01

    The analysis of oxygen uptake (VO(2)) and energy consumption in quadriplegics after 6 months of treadmill gait with neuromuscular electrical stimulation (NMES). To compare metabolic responses in quadriplegics after 6 months of treadmill training, with NMES (30-50% body weight relief), with quadriplegics who did not perform gait. Ambulatory of University Hospital, Brazil. Quadriplegics were separated into gait and control groups (CGs). On inclusion, all subjects performed VO(2) test. In the gait group (GG) (n=11), the protocol consisted of 8 min of rest, 10 min of treadmill walking using NMES and 10 min of recovery. In the CG (n=10), testing consisted of 8 min rest, 15 min of quadriceps endurance exercise in sitting position with NMES and 10 min recovery. VO(2), carbon dioxide production (VCO(2)) and energy consumption were measured. The GG performed 6 months of treadmill training, using NMES, for 20 min, twice a week. The CG did not practice any activity with NMES, performing conventional physiotherapy only; the CG was stimulated only during the cardiorespiratory test. All parameters increased significantly for the GG: 36% for VO(2) (l/min), 43% for VCO(2) (l/min) and 32.5% for energy consumption (J/kg/s). For the CG, during knee extension exercise, VO(2) increased without changes in the energy consumption (P<0.05); smaller values were obtained for all parameters when compared to those obtained during gait. Quadriplegic gait was efficient towards increasing VO(2) and energy consumption, which can decrease the risk of cardiovascular diseases. Spinal Cord (2005) 43, 658-663. doi:10.1038/sj.sc.3101776; published online 21 June 2005.

  1. VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Previous studies have shown that the oxygen uptake kinetics during exercise and recovery may be changed by alterations in work intensity, prior exercise, muscle group involvement, ambient conditions, posture, disease state, and level of physical conditioning. However, the effects of detraining on oxygen uptake kinetics have not been determined. The present investigation has the objective to determine the effects of deconditioning following seven days of continuous head-down bed rest on changes in steady-state oxygen uptake, O2 deficit, and recovery oxygen uptake during the performance of constant-load exercise. The obtained results may provide support for previous proposals that submaximal oxygen uptake was significantly reduced following bed rest. The major finding was that bed-rest deconditioning resulted in a reduction of total O2 transport/utilization capacity during the transient phase of upright but not supine exercise.

  2. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  3. Endurance Training and V˙O2max: Role of Maximal Cardiac Output and Oxygen Extraction.

    PubMed

    Montero, David; Diaz-Cañestro, Candela; Lundby, Carsten

    2015-10-01

    Although endurance training (ET) commonly augments maximal oxygen consumption (V˙O2max), it remains unclear whether such increase is associated with that of maximal cardiac output (Qmax) alone or along with arteriovenous oxygen difference (a-V˙O2diff). Herein, we sought to systematically review and determine the effects of ET on V˙O2max, Qmax, and a-V˙O2diff at maximal exercise, and on their associations, in healthy young subjects. We conducted a systematic search of MEDLINE, Scopus, and Web of Science (from their inception until September 2014) for articles assessing the effects of ET lasting ≥3 wk on V˙O2max and Qmax and/or a-V˙O2diff at maximal exercise in healthy young adults (mean age <40 yr). Meta-analyses were performed to determine standardized mean differences (SMD) in V˙O2max, Qmax, and a-V˙O2diff at maximal exercise between posttraining and pretraining measurements. Subgroup and meta-regression analyses were used to evaluate associations among SMD and potential moderating factors. Thirteen studies were included after systematic review, comprising a total of 130 untrained or moderately trained healthy young subjects (mean age, 22-28 yr). Duration of ET programs ranged from 5 to 12.9 wk. After data pooling, V˙O2max (SMD = 0.75, P < 0.0001) and Qmax (SMD = 0.64, P < 0.0001), but not a-V˙O2diff at maximal exercise (SMD = 0.21, P = 0.23), were increased after ET. No significant heterogeneity was detected. With meta-regression, the SMD in Qmax was positively associated with the SMD in V˙O2max (B = 0.91, P = 0.007). The SMD in a-V˙O2diff at maximal exercise was not associated with the SMD in V˙O2max (B = 0.20, P = 0.40). Based on a relatively small number of studies, improvement in V˙O2max following 5-13 wk of ET is associated with increase in Qmax, but not in a-V˙O2diff, in previously untrained to moderately trained healthy young individuals.

  4. Smokeless tobacco, sport and the heart.

    PubMed

    Chagué, Frédéric; Guenancia, Charles; Gudjoncik, Aurélie; Moreau, Daniel; Cottin, Yves; Zeller, Marianne

    2015-01-01

    Smokeless tobacco (snuff) is a finely ground or shredded tobacco that is sniffed through the nose or placed between the cheek and gum. Chewing tobacco is used by putting a wad of tobacco inside the cheek. Smokeless tobacco is widely used by young athletes to enhance performance because nicotine improves some aspects of physiology. However, smokeless tobacco has harmful health effects, including cardiovascular disorders, linked to nicotine physiological effects, mainly through catecholamine release. Nicotine decreases heart rate variability and the ventricular fibrillation threshold, and promotes the occurrence of various arrhythmias; it also impairs endothelial-dependent vasodilation and could therefore promote premature atherogenesis. At rest, heart rate, blood pressure, inotropism, cardiac output and myocardial oxygen consumption are increased by nicotine, leading to an imbalance between myocardial oxygen demand and supply. The same occurs at submaximal levels of exercise. These increases are accompanied by a rise in systemic resistances. At maximal exercise, heart rate, cardiac output and maximal oxygen uptake (V˙O2max) are unaffected by nicotine. Because endothelial dysfunction is promoted by nicotine, paradoxical coronary vasoconstriction may occur during exercise and recovery. Nicotine induces a decrease in muscular strength and impairs anaerobic performance. However, nicotine is used in sports as it diminishes anxiety, enhances concentration and agility, improves aerobic performance and favours weight control. Importantly, smokeless tobacco, similar to cigarette smoking, leads to nicotine dependence through dopaminergic pathways. Smokeless tobacco has harmful cardiovascular effects and is addictive: it fulfils all the criteria for inclusion in the World Anti-Doping Agency prohibited list as a doping product. Smokeless tobacco use in sporting activities must be discouraged. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    PubMed

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.

  6. Physical activity when riding an electric assisted bicycle.

    PubMed

    Berntsen, Sveinung; Malnes, Lena; Langåker, Aleksander; Bere, Elling

    2017-04-26

    The objectives of the present study were to compare time spent cycling, exercise intensity, and time spent in moderate- (MPA) and vigorous intensity physical activity (VPA) when cycling on an E-bike and a conventional bicycle on two "cycling-to-work" routes with differences in topography, defined as a hilly and a flat route. Eight adults (23-54 years, two women) cycled outdoors on a conventional bicycle and an E-bike, on a flat (8.2 km) and a hilly (7.1 km) route, resulting in 32 journeys. Duration, elevation, and oxygen consumption were recorded using a portable oxygen analyser with GPS. A maximal cardiorespiratory fitness test was performed on a cycle ergometer. Resting metabolic rate was obtained by indirect calorimetry with a canopy hood. The participants spent less time (median (IQR)) cycling on the E-bike compared with the conventional bicycle, on both the hilly (18.8 (4.9) vs. 26.3 (6.4) minutes) and the flat (20.0 (2.9) vs. 23.8 (1.8) minutes) routes. Lower exercise intensity was observed with the E-bike compared with the conventional bicycle, both on the hilly (50 (18) vs. 60 (22) % of maximal oxygen uptake) and the flat (52 (19) vs. 55 (12) % of maximal oxygen uptake) routes. In both cycling modes, most time was spent in MVPA (92-99%). However, fewer minutes were spent in MVPA with the E-bike than the conventional bicycle, for both the hilly (26% lower) and the flat (17% lower) routes. Cycling on the E-bike also resulted in 35 and 15% fewer minutes in vigorous intensity, respectively on the hilly and flat routes. Cycling on the E-bike resulted in lower trip duration and exercise intensity, compared with the conventional bicycle. However, most of the time was spent in MVPA. This suggests that changing the commuting mode from car to E-bike will significantly increase levels of physical activity while commuting.

  7. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    PubMed

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  8. [A possibility of using increased oxygen consumption as a criterion for mechanical respiration weaning in pediatric practice].

    PubMed

    Grigoliia, G N; Chokhonelidze, I K; Gvelesiani, L G; Sulakvelidze, K R; Tutberidze, K N

    2007-01-01

    The body oxygen consumption and the oxygen cost of breathing (which is the difference in oxygen consumption measured during controlled ventilation and again during spontaneous ventilation) were measured in 46 children with congenital heart diseases after open-heart surgery. There was a significant exponential correlation between the body oxygen consumption (ml/m(2)/min) and the oxygen cost of breathing as a percentage of total oxygen consumption during spontaneous ventilation and the duration of weaning in minutes (r=+0,882, p<0,02). Therefore, as the oxygen cost of breathing was correlated with the total weaning time, this may be a useful index on the weaning process (sensitivity 92%, specificity 85%).

  9. Association Between Sarcopenia-Related Phenotypes and Aerobic Capacity Indexes of Older Women

    PubMed Central

    de Oliveira, Ricardo Jacó; Bottaro, Martim; Motta, Antonio Marco; Pitanga, Francisco; Guido, Marcelo; Leite, Tailce Kaley Moura; Bezerra, Lídia Mara Aguiar; Lima, Ricardo Moreno

    2009-01-01

    The purpose of the present study was to examine the association between fat-free mass (FFM), quadriceps strength and sarcopenia with aerobic fitness indexes of elderly women. A total of 189 volunteers (66.7 ± 5.46 years) underwent aerobic capacity measurement through a symptom-limited cardiopulmonary exercise test to determine their individual ventilatory thresholds (VT) and peak oxygen uptake (VO2 peak). Quadriceps muscle strength was assessed using an isokinetic dynamometer. Also, dual energy X-ray absorptiometry was used to assess FFM and cutoff values were used to classify subjects as sarcopenic or nonsarcopenic. Correlations, student t-test and analysis of variance were used to examine the data. Both FFM and quadriceps strength variables were positively and significantly correlated with the measured aerobic capacity indexes. These results were observed for peak exercise as well as for ventilatory thresholds. Individuals classified as sarcopenic presented significantly lower muscle strength and (VO2 peak) when compared to nonsarcopenic. It can be concluded that FFM and quadriceps strength are significantly related to aerobic capacity indexes in older women, and that besides presenting lower quadriceps strength, women classified as sarcopenic have lower peak oxygen consumption. Taken together, the present results indicate that both FFM and strength play a role in the age-related decline of aerobic capacity. Key points Maximal aerobic capacity, generally expressed as peak oxygen consumption (VO2 peak), declines with advancing age and this process is associated with an increased risk for cardiovascular diseases. Also, the aging process is associated with a progressive loss of muscle mass and strength and this phenomenon has been referred to as Sarcopenia. Sarcopenia has been described in both elderly men and women and has been linked to multiple negative clinical outcomes. The present study provide evidence that muscle-related phenotypes are associated with aerobic capacity of older individuals, thus suggesting that sarcopenia explains in part the decline in aerobic fitness observed with advancing age. PMID:24149995

  10. Total haemoglobin mass, but not haemoglobin concentration, is associated with preoperative cardiopulmonary exercise testing-derived oxygen-consumption variables.

    PubMed

    Otto, J M; Plumb, J O M; Wakeham, D; Clissold, E; Loughney, L; Schmidt, W; Montgomery, H E; Grocott, M P W; Richards, T

    2017-05-01

    Cardiopulmonary exercise testing (CPET) measures peak exertional oxygen consumption ( V˙O2peak ) and that at the anaerobic threshold ( V˙O2 at AT, i.e. the point at which anaerobic metabolism contributes substantially to overall metabolism). Lower values are associated with excess postoperative morbidity and mortality. A reduced haemoglobin concentration ([Hb]) results from a reduction in total haemoglobin mass (tHb-mass) or an increase in plasma volume. Thus, tHb-mass might be a more useful measure of oxygen-carrying capacity and might correlate better with CPET-derived fitness measures in preoperative patients than does circulating [Hb]. Before major elective surgery, CPET was performed, and both tHb-mass (optimized carbon monoxide rebreathing method) and circulating [Hb] were determined. In 42 patients (83% male), [Hb] was unrelated to V˙O2 at AT and V˙O2peak ( r =0.02, P =0.89 and r =0.04, P =0.80, respectively) and explained none of the variance in either measure. In contrast, tHb-mass was related to both ( r =0.661, P <0.0001 and r =0.483, P =0.001 for V˙O2 at AT and V˙O2peak , respectively). The tHb-mass explained 44% of variance in V˙O2 at AT ( P <0.0001) and 23% in V˙O2peak ( P =0.001). In contrast to [Hb], tHb-mass is an important determinant of physical fitness before major elective surgery. Further studies should determine whether low tHb-mass is predictive of poor outcome and whether targeted increases in tHb-mass might thus improve outcome. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease.

    PubMed

    Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long

    2014-10-01

    Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.

  12. Breakfast food health and acute exercise: Effects on state body image.

    PubMed

    Hayes, Jacqueline F; Giles, Grace E; Mahoney, Caroline R; Kanarek, Robin B

    2018-05-10

    Food intake and exercise have been shown to alter body satisfaction in a state-dependent manner. One-time consumption of food perceived as unhealthy can be detrimental to body satisfaction, whereas an acute bout of moderate-intensity aerobic exercise can be beneficial. The current study examined the effect of exercise on state body image and appearance-related self-esteem following consumption of isocaloric foods perceived as healthy or unhealthy in 36 female college students (18-30 years old) in the Northeastern United States. Using a randomized-controlled design, participants attended six study sessions with breakfast conditions (healthy, unhealthy, no food) and activity (exercise, quiet rest) as within-participants factors. Body image questionnaires were completed prior to breakfast condition, between breakfast and activity conditions, and following activity condition. Results showed that consumption of an unhealthy breakfast decreased appearance self-esteem and increased body size perception, whereas consumption of a healthy breakfast did not influence appearance self-esteem but increased body size perception. Exercise did not influence state body image attitudes or perceptions following meal consumption. Study findings suggest that morning meal type, but not aerobic exercise, influence body satisfaction in college-aged females. Copyright © 2018. Published by Elsevier Ltd.

  13. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  14. The Effects of Supplementation with a Vitamin and Mineral Complex with Guaraná Prior to Fasted Exercise on Affect, Exertion, Cognitive Performance, and Substrate Metabolism: A Randomized Controlled Trial.

    PubMed

    Veasey, Rachel C; Haskell-Ramsay, Crystal F; Kennedy, David O; Wishart, Karl; Maggini, Silvia; Fuchs, Caspar J; Stevenson, Emma J

    2015-07-27

    Exercise undertaken in a fasted state can lead to higher post-exercise mental fatigue. The administration of a vitamin and mineral complex with guaraná (MVM + G) has been shown to attenuate mental fatigue and improve performance during cognitively demanding tasks. This placebo-controlled, double-blind, randomized, balanced cross-over study examined the effect of MVM + G consumed prior to morning exercise on cognitive performance, affect, exertion, and substrate metabolism. Forty active males (age 21.4 ± 3.0 year; body mass index (BMI) 24.0 ± 2.4 kg/m2; maximal oxygen consumption (V̇O2max) 57.6 ± 7.3 mL/min/kg) completed two main trials, consuming either MVM + G or placebo prior to a 30-min run at 60% V̇O2max. Supplementation prior to exercise led to a small but significant reduction in Rating of Perceived Exertion (RPE) during exercise compared to the placebo. The MVM + G combination also led to significantly increased accuracy of numeric working memory and increased speed of picture recognition, compared to the placebo. There were no significant effects of supplementation on any other cognitive or mood measures or on substrate metabolism during exercise. These findings demonstrate that consuming a vitamin and mineral complex containing guaraná, prior to exercise, can positively impact subsequent memory performance and reduce perceived exertion during a moderate-intensity run in active males.

  15. The Effects of Supplementation with a Vitamin and Mineral Complex with Guaraná Prior to Fasted Exercise on Affect, Exertion, Cognitive Performance, and Substrate Metabolism: A Randomized Controlled Trial

    PubMed Central

    Veasey, Rachel C.; Haskell-Ramsay, Crystal F.; Kennedy, David O.; Wishart, Karl; Maggini, Silvia; Fuchs, Caspar J.; Stevenson, Emma J.

    2015-01-01

    Exercise undertaken in a fasted state can lead to higher post-exercise mental fatigue. The administration of a vitamin and mineral complex with guaraná (MVM + G) has been shown to attenuate mental fatigue and improve performance during cognitively demanding tasks. This placebo-controlled, double-blind, randomized, balanced cross-over study examined the effect of MVM + G consumed prior to morning exercise on cognitive performance, affect, exertion, and substrate metabolism. Forty active males (age 21.4 ± 3.0 year; body mass index (BMI) 24.0 ± 2.4 kg/m2; maximal oxygen consumption (V̇O2max) 57.6 ± 7.3 mL/min/kg) completed two main trials, consuming either MVM + G or placebo prior to a 30-min run at 60% V̇O2max. Supplementation prior to exercise led to a small but significant reduction in Rating of Perceived Exertion (RPE) during exercise compared to the placebo. The MVM + G combination also led to significantly increased accuracy of numeric working memory and increased speed of picture recognition, compared to the placebo. There were no significant effects of supplementation on any other cognitive or mood measures or on substrate metabolism during exercise. These findings demonstrate that consuming a vitamin and mineral complex containing guaraná, prior to exercise, can positively impact subsequent memory performance and reduce perceived exertion during a moderate-intensity run in active males. PMID:26225993

  16. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises.

    PubMed

    Antunes, Amanda H; Alberton, Cristine L; Finatto, Paula; Pinto, Stephanie S; Cadore, Eduardo L; Zaffari, Paula; Kruel, Luiz F M

    2015-01-01

    Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the exercises in the sagittal plane and 3 in the frontal plane. Twelve active female volunteers (aged 24 ± 2 years) performed 6 maximal progressive test sessions. Throughout the exercise tests, we measured heart rate (HR) and oxygen consumption (VO2). We randomized all sessions with a minimum interval of 48 hr between each session. For statistical analysis, we used repeated-measures 1-way analysis of variance. Regarding the maximal responses, for the peak VO2, abductor hop and jumping jacks (JJ) showed significantly lower values than frontal kick and cross-country skiing (CCS; p < .001; partial η(2) = .509), while for the peak HR, JJ showed statistically significantly lower responses compared with stationary running and CCS (p < .001; partial η(2) = .401). At anaerobic threshold intensity expressed as the percentage of the maximum values, no statistically significant differences were found among exercises. Cardiorespiratory responses are directly associated with the muscle mass involved in the exercise. Thus, it is worth emphasizing the importance of performing a maximal test that is specific to the analyzed exercise so the prescription of the intensity can be safer and valid.

  17. Long-term effects of a very low-carbohydrate weight loss diet on exercise capacity and tolerance in overweight and obese adults.

    PubMed

    Wycherley, Thomas P; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M; Brinkworth, Grant D

    2014-01-01

    Compare the long-term effects of an energy-restricted very low-carbohydrate, high-fat (LC) diet with an isocaloric high-carbohydrate, low-fat (HC) diet on exercise tolerance and capacity in overweight and obese adults. Seventy-six adults (25 males; age 49.2 ± 1.1 years; BMI 33.6 ± 0.5 kg/m(2)) were randomized to either a hypocaloric (6-7 MJ/day) LC diet (35% protein, 4% carbohydrate, 61% fat) or isocaloric HC diet (24% protein, 46% carbohydrate, 30% fat) for 52 weeks. Pre- and postintervention, participants' body weight and composition, handgrip, and isometric knee extensor strength were assessed and participants performed an incremental exercise test to exhaustion. Forty-three participants completed the study (LC = 23; HC = 20). Overall, peak relative oxygen uptake increased (+11.3%) and reductions occurred in body weight (-14.6%), body fat percentage (-6.9% [absolute]), isometric knee extensor strength (-12.4%), handgrip strength (-4.5%), and absolute peak oxygen uptake (-5.2%; p ≤ 0.02 time for all) with no diet effect (p ≥ 0.18). During submaximal exercise, rating of perceived exertion did not change in either group (p = 0.16 time, p = 0.59 Time × Group). Compared to the HC diet, the LC diet had greater reductions in respiratory exchange ratio (LC -0.04 ± 0.01, HC -0.00 ± 0.01; p = 0.03), and increased fat oxidation (LC 15.0 ± 5.3% [of energy expenditure], HC 0.5 ± 3.9%; p = 0.04). In overweight and obese patients, an LC diet promoted greater fat utilization during submaximal exercise. Both an LC diet and an HC diet had similar effects on aerobic capacity and muscle strength, suggesting that long-term consumption of an LC weight loss diet does not adversely affect physical function or the ability to perform exercise.

  18. Menstrual Cycle Effects on Perceived Exertion and Pain During Exercise Among Sedentary Women

    PubMed Central

    Bryan, Angela D.; Eaton, Melissa

    2011-01-01

    Abstract Background Increasing cardiovascular fitness through exercise participation among sedentary people is important for decreasing all-cause mortality. From an intervention perspective, identifying modifiable factors that maximize the successful initiation of exercise is of utmost importance. For women, cyclic hormonal variations can influence aspects of health and health behaviors, from smoking cessation efficacy to physiological responses to exercise. The purpose of this study was to examine the influence of menstrual cycle phase and hormonal contraceptive (HC) use on subjective response to an initial bout of moderate intensity exercise among previously sedentary women (n = 117). Methods Women completed a treadmill exercise challenge session at 65% of their previously determined maximum oxygen consumption (Vo2 max) during the early follicular, late follicular, or luteal phase. Participants reported ratings of perceived exertion and pain using Borg's Rating of Perceived Exertion (RPE) and CR10 scales at 10, 20, and 30 minutes during the exercise session. Results There was a significant menstrual phase × birth control interaction on change in RPE [F(2, 111) = 3.75, p < 0.05] and change in perceived pain [F(2, 110) = 3.31, p < 0.05]. Women in the early follicular phase who were not using HCs had significantly greater increases in RPE and increases in pain compared with women in the late follicular and luteal phases. Conclusions Our results indicate that the use of HC and cycle phase influence sedentary women's subjective response to exercise. These results have important implications for the timing of exercise interventions aimed at increasing exercise among sedentary women. PMID:21219246

  19. Menstrual cycle effects on perceived exertion and pain during exercise among sedentary women.

    PubMed

    Hooper, Ann E Caldwell; Bryan, Angela D; Eaton, Melissa

    2011-03-01

    Increasing cardiovascular fitness through exercise participation among sedentary people is important for decreasing all-cause mortality. From an intervention perspective, identifying modifiable factors that maximize the successful initiation of exercise is of utmost importance. For women, cyclic hormonal variations can influence aspects of health and health behaviors, from smoking cessation efficacy to physiological responses to exercise. The purpose of this study was to examine the influence of menstrual cycle phase and hormonal contraceptive (HC) use on subjective response to an initial bout of moderate intensity exercise among previously sedentary women (n = 117). Women completed a treadmill exercise challenge session at 65% of their previously determined maximum oxygen consumption (Vo(2) max) during the early follicular, late follicular, or luteal phase. Participants reported ratings of perceived exertion and pain using Borg's Rating of Perceived Exertion (RPE) and CR10 scales at 10, 20, and 30 minutes during the exercise session. There was a significant menstrual phase x birth control interaction on change in RPE [F(2, 111) = 3.75, p < 0.05] and change in perceived pain [F(2, 110) = 3.31, p < 0.05]. Women in the early follicular phase who were not using HCs had significantly greater increases in RPE and increases in pain compared with women in the late follicular and luteal phases. Our results indicate that the use of HC and cycle phase influence sedentary women's subjective response to exercise. These results have important implications for the timing of exercise interventions aimed at increasing exercise among sedentary women.

  20. Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia.

    PubMed

    Deley, Gaëlle; Denuziller, Jérémy; Babault, Nicolas

    2015-01-01

    Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.

  1. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans.

    PubMed

    Cannon, Daniel T; White, Ailish C; Andriano, Melina F; Kolkhorst, Fred W; Rossiter, Harry B

    2011-02-01

    The mechanisms determining exercise intolerance are poorly understood. A reduction in work efficiency in the form of an additional energy cost and oxygen requirement occurs during high-intensity exercise and contributes to exercise limitation. Muscle fatigue and subsequent recruitment of poorly efficient muscle fibres has been proposed to mediate this decline. These data demonstrate in humans, that muscle fatigue, generated in the initial minutes of exercise, is correlated with the increasing energy demands of high-intensity exercise. Surprisingly, however, while muscle fatigue reached a plateau, oxygen uptake continued to increase throughout 8 min of exercise. This suggests that additional recruitment of inefficient muscle fibres may not be the sole mechanism contributing to the decline in work efficiency during high-intensity exercise.

  2. Within-session responses to high-intensity interval training in spinal cord injury.

    PubMed

    Astorino, Todd Anthony; Thum, Jacob S

    2018-02-01

    Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.

  3. The effect of the menstrual cycle and water consumption on physiological responses during prolonged exercise at moderate intensity in hot conditions.

    PubMed

    Hashimoto, Hideki; Ishijima, Toshimichi; Suzuki, Katsuhiko; Higuchi, Mitsuru

    2016-09-01

    Reproductive hormones are likely to be involved in thermoregulation through body fluid dynamics. In the present study, we aimed to investigate the effect of the menstrual cycle and water consumption on physiological responses to prolonged exercise at moderate intensity in hot conditions. Eight healthy young women with regular menstrual cycles performed cycling exercise for 90 minutes at 50% V̇O2peak intensity during the low progesterone (LP) level phase and high progesterone (HP) level phase, with or without water consumption, under hot conditions (30°C, 50% relative humidity). For the water consumption trials, subjects ingested water equivalent to the loss in body weight that occurred in the earlier non-consumption trial. For all four trials, rectal temperature, cardiorespiratory responses, and ratings of perceived exertion (RPE) were measured. Throughout the 90-minute exercise period, rectal temperatures during HP were higher than during LP by an average of 0.4 °C in the non-consumption trial (P<0.01) and 0.2 °C in the water consumption trial (P<0.05). During exercise, water consumption affected the changes in rectal temperature and heat rate (HR) during HP, but it did not exert these effects during LP. Furthermore, we found a negative correlation between estradiol levels and rectal temperature during LP. During prolonged exercise at moderate intensity under hot conditions, water consumption is likely to be useful for suppressing the associated increase in body temperature and HR, particularly during HP, whereas estradiol appears to be useful for suppressing the increase in rectal temperature during LP.

  4. Acclimatization and tolerance to extreme altitude

    NASA Technical Reports Server (NTRS)

    West, J. B.

    1993-01-01

    During the last ten years, two major experiments have elucidated the factors determining acclimatization and tolerance to extreme altitude (over 7000 m). These were the American Medical Research Expedition to Everest, and the low pressure chamber simulation, Operation Everest II. Extreme hyperventilation is one of the most important responses to extreme altitude. Its chief value is that it allows the climber to maintain an alveolar PO2 which keeps the arterial PO2 above dangerously low levels. Even so, there is evidence of residual impairment of central nervous system function after ascents to extreme altitude, and maximal oxygen consumption falls precipitously above 7000 m. The term 'acclimatization' is probably not appropriate for altitudes above 8000 m, because the body steadily deteriorates at these altitudes. Tolerance to extreme altitude is critically dependent on barometric pressure, and even seasonal changes in pressure probably affect climbing performance near the summit of Mt Everest. Supplementary oxygen always improves exercise tolerance at extreme altitudes, and rescue oxygen should be available on climbing expeditions to 8000 m peaks.

  5. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  6. Parasympathetic reinnervation accompanied by improved post-exercise heart rate recovery and quality of life in heart transplant recipients.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Okada, Ikuko; Kato, Naoko; Fujino, Takeo; Inaba, Toshiro; Maki, Hisataka; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Kyo, Shunei; Ono, Minoru

    2015-01-01

    Although sympathetic reinnervation is accompanied by the improvement of exercise tolerability during the first years after heart transplantation (HTx), little is known about parasympathetic reinnervation and its clinical impact. We enrolled 21 recipients (40 ± 16 years, 71% male) who had received successive cardiopulmonary exercise testing at 6 months, and 1 and 2 years after HTx. Exercise parameters such as peak oxygen consumption or achieved maximum load remained unchanged, whereas recovery parameters including heart rate (HR) recovery during 2 minutes and the delay of peak HR, which are influenced by parasympathetic activity, improved significantly during post-HTx 2 years (P < 0.05 for both). HR variability was analysed at post-HTx 6 months in 18 recipients, and high frequency power, representing parasympathetic activity, was significantly associated with the 2 recovery parameters (P < 0.05 for all). We also assessed quality of life using the Minnesota Living with Heart Failure (HF) Questionnaire at post-HTx 6 months and 2 years in the same 18 recipients, and those with improved recovery parameters enjoyed a better HF-specific quality of life (P < 0.05 for both). In conclusion, parasympathetic reinnervation emerges along with improved post-exercise recovery ability of HR and quality of life during post-HTx 2 years.

  7. Effect of Fontan geometry on exercise haemodynamics and its potential implications.

    PubMed

    Tang, Elaine; Wei, Zhenglun Alan; Whitehead, Kevin K; Khiabani, Reza H; Restrepo, Maria; Mirabella, Lucia; Bethel, James; Paridon, Stephen M; Marino, Bradley S; Fogel, Mark A; Yoganathan, Ajit P

    2017-11-01

    Exercise intolerance afflicts Fontan patients with total cavopulmonary connections (TCPCs) causing a reduction in quality of life. Optimising TCPC design is hypothesised to have a beneficial effect on exercise capacity. This study investigates relationships between TCPC geometries and exercise haemodynamics and performance. This study included 47 patients who completed metabolic exercise stress test with cardiac magnetic resonance (CMR). Phase-contrast CMR images were acquired immediately following supine lower limb exercise. Both anatomies and exercise vessel flow rates at ventilatory anaerobic threshold (VAT) were extracted. The vascular modelling toolkits were used to analyse TCPC geometries. Computational simulations were performed to quantify TCPC indexed power loss (iPL) at VAT. A highly significant inverse correlation was found between the TCPC diameter index, which factors in the narrowing of TCPC vessels, with iPL at VAT (r=-0.723, p<0.001) but positive correlations with exercise performance variables, including minute oxygen consumption (VO 2 ) at VAT (r=0.373, p=0.01), VO 2 at peak exercise (r=0.485, p=0.001) and work at VAT/weight (r=0.368, p=0.01). iPL at VAT was negatively correlated with VO 2 at VAT (r=-0.337, p=0.02), VO 2 at peak exercise (r=-0.394, p=0.007) and work at VAT/weight (r=-0.208, p=0.17). Eliminating vessel narrowing in TCPCs and reducing elevated iPL at VAT could enhance exercise tolerance for patients with TCPCs. These findings could help plan surgical or catheter-based strategies to improve patients' exercise capacity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea.

    PubMed

    Kline, Christopher E; Crowley, E Patrick; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D

    2013-08-20

    Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥ 15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO(2peak)), were obtained. OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5-min post-exercise (P=.03). For OSA participants, exercise training improved VO2 peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5-min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=-.30, P<.05), but no other CPET markers. These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2 peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Blunted Heart Rate Recovery Is Improved Following Exercise Training in Overweight Adults with Obstructive Sleep Apnea

    PubMed Central

    Kline, Christopher E.; Crowley, E. Patrick; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.

    2012-01-01

    Background Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. Methods The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO2peak), were obtained. Results OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5 min post-exercise (P=.03). For OSA participants, exercise training improved VO2peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5 min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=−.30, P<.05), but no other CPET markers. Conclusions These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. PMID:22572632

  10. Effects of Obstructive Sleep Apnea and Obesity on Exercise Function in Children

    PubMed Central

    Evans, Carla A.; Selvadurai, Hiran; Baur, Louise A.; Waters, Karen A.

    2014-01-01

    Study Objectives: Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Design: Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Setting: Tertiary pediatric hospital. Participants: Healthy weight and obese children, aged 7–12 y. Interventions: N/A. Measurements and Results: Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Conclusions: Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children. Citation: Evans CA, Selvadurai H, Baur LA, Waters KA. Effects of obstructive sleep apnea and obesity on exercise function in children. SLEEP 2014;37(6):1103-1110. PMID:24882905

  11. Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.

    PubMed

    Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N

    2014-09-01

    The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

  12. Short-term changes of serum potassium concentration induced by physical exercise in patient with arterial hypertension treated with angiotensin-converting enzyme inhibitor alone or in combination with statin.

    PubMed

    Deska, P; Nowicki, M

    2017-02-01

    Intensive physical exercise may facilitate potassium release from skeletal muscles that may result in hyperkalemia. Commonly used drugs including angiotensin converting enzyme inhibitors (ACEI) and statins increase a risk of hyperkalemia. It is not known whether the effect of these drugs on serum potassium during physical exercise is additive. The study compared the effect of physical exercise on the changes of serum potassium in hypertensive patients receiving ACEI alone or in combination with statin. Eighteen patients with arterial hypertension with normal renal function were included in a prospective placebo-controlled cross-over study. The patients underwent 3 exercise tests on a bicycle ergometer with 55 - 60% of maximum oxygen consumption each lasting 30 minutes, i.e. after being treated with ACEI alone for six months, and then in a random order after the administration of ACEI with statin or ACEI with placebo each time for eight weeks separated by 2-week wash-out. Serum potassium was measured with atomic emission flame spectrometry before and after 15 and 30 minutes exercise and after 30-minute recovery. During the exercise serum potassium concentration increased moderately but significantly during all exercise tests. Mean serum potassium during exercise remained within the normal range. There were no differences in the exercise-induced changes of serum potassium during the exercise tests performed after ACEI combined with statin or with placebo. Addition of statin to ACEI does not increase the risk of hyperkalemia in hypertensive patients with preserved renal function during physical exercise with intensity typical for routine daily activities.

  13. Influence of Exogenous β-Hydroxybutyrate on Walking Economy and Rating of Perceived Exertion.

    PubMed

    James, Shaun; Kjerulf Greer, Beau

    2018-06-28

    This study investigates the effect of a supplementary ketone, β-hydroxybutyrate (BHB), on walking economy and ratings of perceived exertion in apparently healthy individuals. In a repeated-measures, crossover design, ten non-aerobically trained participants (three males; seven females) performed two stages of a duration-modified Bruce treadmill protocol. Participants blindly consumed either 1 ounce of an exogenous BHB solution (KETO) or a noncaloric placebo (CON) 30 minutes prior to exercise testing. Blood ketone and glucose concentrations were measured prior to supplementation (baseline), immediately before exercise, and after exercise. Oxygen consumption (VO 2 ), respiratory exchange ratio (RER), energy expenditure (EE), and rating of perceived exertion (RPE) were recorded during the last two minutes of each stage. Blood BHB concentrations were significantly elevated at the pre-exercise and postexercise time points as compared to the CON condition (p < .001), and blood glucose was significantly elevated postexercise in both conditions as compared to baseline levels (p < .001). No significant between-trial differences (p > .05) were found for VO 2 , RER, EE, or RPE. The intervention of this study did not produce evidence of an ergogenic benefit from BHB supplementation in a healthy subject pool.

  14. Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.

    PubMed

    Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman

    2017-07-01

    Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2  = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.

  15. Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.; Hargens, A. R.

    1997-01-01

    Variations in the levels of muscle hemoglobin and of myoglobin oxygen saturation can be detected non-invasively with near-infrared spectroscopy. This technique could be applied to the diagnosis of chronic compartment syndrome, in which invasive testing has shown increased intramuscular pressure associated with ischemia and pain during exercise. We simulated chronic compartment syndrome in ten healthy subjects (seven men and three women) by applying external compression, through a wide inflatable cuff, to increase the intramuscular pressure in the anterior compartment of the leg. The tissue oxygenation of the tibialis anterior muscle was measured with near-infrared spectroscopy during gradual inflation of the cuff to a pressure of forty millimeters of mercury (5.33 kilopascals) during fourteen minutes of cyclic isokinetic dorsiflexion and plantar flexion of the ankle. The subjects exercised with and without external compression. The data on tissue oxygenation for each subject then were normalized to a scale of 100 per cent (the baseline value, or the value at rest) to 0 per cent (the physiological minimum, or the level of oxygenation achieved by exercise to exhaustion during arterial occlusion of the lower extremity). With external compression, tissue oxygenation declined at a rate of 1.4 +/- 0.3 per cent per minute (mean and standard error) during exercise. After an initial decrease at the onset, tissue oxygenation did not decline during exercise without compression. The recovery of tissue oxygenation after exercise was twice as slow with compression (2.5 +/- 0.6 minutes) than it was without the use of compression (1.3 +/- 0.2 minutes).

  16. Estimation of cerebral metabolic rate of oxygen consumption using combined multiwavelength photoacoustic microscopy and Doppler microultrasound

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Zemp, Roger

    2018-01-01

    The metabolic rate of oxygen consumption is an important metric of tissue oxygen metabolism and is especially critical in the brain, yet few methods are available for measuring it. We use a custom combined photoacoustic-microultrasound system and demonstrate cerebral oxygen consumption estimation in vivo. In particular, the cerebral metabolic rate of oxygen consumption was estimated in a murine model during variation of inhaled oxygen from hypoxia to hyperoxia. The hypothesis of brain autoregulation was confirmed with our method even though oxygen saturation and flow in vessels changed.

  17. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2017-03-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  18. Association of angiotensin-converting-enzyme gene polymorphism with the depressor response to mild exercise therapy in patients with mild to moderate essential hypertension.

    PubMed

    Zhang, B; Sakai, T; Miura, S; Kiyonaga, A; Tanaka, H; Shindo, M; Saku, K

    2002-10-01

    We studied the association of angiotensin I-converting enzyme (ACE) gene polymorphism with the depressor response to exercise therapy in 64 Japanese subjects with mild to moderate essential hypertension. Each subject performed 10 weeks of mild (lactate threshold intensity: approximately 50% maximum oxygen consumption) exercise therapy on a bicycle ergometer. Systolic blood pressure (SPB), diastolic blood pressure (DPB), and mean arterial pressure (MAP) were significantly decreased by exercise therapy in subjects with the ACE-II and ID genotypes but not in DD subjects. The time-by-genotype interaction effects were significant for DBP and MAP. According to a multiple logistic regression analysis, the age- and baseline plasma renin activity-adjusted relative risk (odds ratio) for the lack of a depressor response conferred by the D allele (assuming an additive effect) was 2.72 [95% confidence interval (CI), 1.07-6.91; p = 0.034]; for DD genotypes, as compared with the DI and II genotypes (assuming that the D allele is recessive), it was 11.7 (95% CI, 2.25-60.6; p = 0.003). ACE gene I/D polymorphism is associated with the depressor response of essential hypertensives to mild exercise therapy, which suggests that genetic features may underlie, at least in part, the heterogeneity of the depressor response in essential hypertensives to mild exercise therapy.

  19. Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD

    PubMed Central

    Vivodtzev, Isabelle; Gagnon, Philippe; Pepin, Véronique; Saey, Didier; Laviolette, Louis; Brouillard, Cynthia; Maltais, François

    2011-01-01

    Rationale The endurance time (Tend) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in Tend. Methods Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (Wpeak). Patients were divided into tertiles of Tend [Group 1: <4 min; Group 2: 4–6 min; Group 3: >6 min]. Disease severity (FEV1), aerobic fitness (Wpeak, peak oxygen consumption [ peak], ventilatory threshold [ VT]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HRCET/HRpeak]) were analyzed as potential variables influencing Tend. Results Wpeak, peak, VT, MVC, leg fatigue at end of CET, and HRCET/HRpeak were lower in group 1 than in group 2 or 3 (p≤0.05). VT and leg fatigue at end of CET independently predicted Tend in multiple regression analysis (r = 0.50, p = 0.001). Conclusion Tend was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in Tend was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in Tend among patients with COPD. PMID:21386991

  20. Endurance Exercise in Hypoxia, Hyperoxia and Normoxia: Mitochondrial and Global Adaptations.

    PubMed

    Przyklenk, Axel; Gutmann, Boris; Schiffer, Thorsten; Hollmann, Wildor; Strueder, Heiko K; Bloch, Wilhelm; Mierau, Andreas; Gehlert, Sebastian

    2017-07-01

    We hypothesized short-term endurance exercise (EN) in hypoxia (HY) to exert decreased mitochondrial adaptation, peak oxygen consumption (VO 2peak ) and peak power output (PPO) compared to EN in normoxia (NOR) and hyperoxia (PER). 11 male subjects performed repeated unipedal cycling EN in HY, PER, and NOR over 4 weeks in a cross-over design. VO 2peak , PPO, rate of perceived exertion (RPE) and blood lactate (Bla) were determined pre- and post-intervention to assess physiological demands and adaptation. Skeletal muscle biopsies were collected to determine molecular mitochondrial signaling and adaptation. Despite reduced exercise intensity (P<0.05), increased Bla and RPE levels in HY revealed higher metabolic load compared to PER (P<0.05) and NOR (n.s.). PPO increased in all groups (P<0.05) while VO 2peak and mitochondrial signaling were unchanged (P>0.05). Electron transport chain complexes tended to increase in all groups with the highest increase in HY (n.s.). EN-induced mitochondrial adaptability and exercise capacity neither decreased significantly in HY nor increased in PER compared to NOR. Despite decreased exercise intensity, short term EN under HY may not necessarily impair mitochondrial adaptation and exercise capacity while PER does not augment adaptation. HY might strengthen adaptive responses under circumstances when absolute training intensity has to be reduced. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Adults with initial metabolic syndrome have altered muscle deoxygenation during incremental exercise.

    PubMed

    Machado, Alessandro da Costa; Barbosa, Thales Coelho; Kluser Sales, Allan Robson; de Souza, Marcio Nogueira; da Nóbrega, Antonio Claudio Lucas; Silva, Bruno Moreira

    2017-02-01

    Reduced aerobic power is independently associated with metabolic syndrome (MetS) incidence and prevalence in adults. This study investigated whether muscle deoxygenation (proxy of microvascular O 2 extraction) during incremental exercise is altered in MetS and associated with reduced oxygen consumption ( V˙O 2peak ). Twelve men with initial MetS (no overt diseases and medication-naive; mean ± SD, age 38 ± 7 years) and 12 healthy controls (HCs) (34 ± 7 years) completed an incremental cycling test to exhaustion, in which pulmonary ventilation and gas exchange (metabolic analyzer), as well as vastus lateralis deoxygenation (near infrared spectroscopy), were measured. Subjects with MetS, in contrast to HCs, showed lower V˙O 2peak normalized to total lean mass, similar V˙O 2 response to exercise, and earlier break point (BP) in muscle deoxygenation. Consequently, deoxygenation slope from BP to peak exercise was greater. Furthermore, absolute V˙O 2peak was positively associated with BP in correlations adjusted for total lean mass. MetS, without overt diseases, altered kinetics of muscle deoxygenation during incremental exercise, particularly at high-intensity exercise. Therefore, the balance between utilization and delivery of O 2 within skeletal muscle is impaired early in MetS natural history, which may contribute to the reduction in aerobic power. © 2017 The Obesity Society.

  2. Effects of Buddhist walking meditation on glycemic control and vascular function in patients with type 2 diabetes.

    PubMed

    Gainey, Atikarn; Himathongkam, Thep; Tanaka, Hirofumi; Suksom, Daroonwan

    2016-06-01

    To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (p<0.05). Significant decrease in HbA1c and both systolic and diastolic blood pressure were observed only in the WM group. Flow-mediated dilatation increased significantly (p<0.05) in both exercise groups but arterial stiffness was improved only in the WM group. Blood cortisol level was reduced (p<0.05) only in the WM group. Buddhist walking meditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  4. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  5. Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review.

    PubMed

    Ulrich, Silvia; Schneider, Simon R; Bloch, Konrad E

    2017-12-01

    Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po 2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.

  6. Effects of TFM and Bayer 73 on in vivo oxygen consumption of the aquatic midge Chironomus tentans

    USGS Publications Warehouse

    Kawatski, J.A.; Dawson, V.K.; Reuvers, J.L.

    1974-01-01

    Exposure of fourth instar larvae of Chironomus tentans to 2.0-8.0 mg/liter of TFM (3-trifluormethyl-4-nitrophenol) for 6 hr at 22 A? 0.5 C in soft water resulted in a significantly increased rate of larval oxygen consumption compared to that of control larvae, as measured with the Warburg respirometer. Maximum stimulation of oxygen consumption occurred with 8.0 mg/liter of TFM, and 1.0 mg/liter of TFM had no measurable effect on basal respiration. When hardness of exposure water was progressively increased, the effect of TFM on oxygen consumption was diminished. Bayer 73 (5,2'-dichloro-4'-nitrosalicylanilide) stimulated oxygen consumption at 0.75 and 1.0 mg/liter, had no significant effect at concentrations less that 0.75 mg/liter, and inhibited oxygen consumption at concentrations of 1.20 mg/liter or greater. Mixtures of TFM and Bayer 73, in the ratio of 98:2, had no greater effect on oxygen consumption than TFM alone.

  7. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    PubMed

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  8. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    PubMed

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  9. Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system.

    PubMed

    Yoon, Hyesook; Kleven, Andrew; Paulsen, Alex; Kleppe, Laurel; Wu, Jianmin; Ying, Zhe; Gomez-Pinilla, Fernando; Scarisbrick, Isobel A

    2016-04-01

    Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model.

    PubMed

    Tempest, Gavin D; Parfitt, Gaynor

    2017-07-01

    The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise. © 2017 Society for Psychophysiological Research.

  11. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise.

    PubMed

    Langfort, J; Zarzeczny, R; Pilis, W; Nazar, K; Kaciuba-Uścitko, H

    1997-01-01

    The aim of this study was to find out whether a low-carbohydrate diet (L-CHO) affects: (1) the capacity for all-out anaerobic exercise, and (2) hormonal and metabolic responses to this type of exercise. To this purpose, eight healthy subjects underwent a 30-s bicycle Wingate test preceded by either 3 days of a controlled mixed diet (130 kJ/kg of body mass daily, 50% carbohydrate, 30% fat, 20% protein) or 3 days of an isoenergetic L-CHO diet (up to 5% carbohydrate, 50% fat, 45% protein) in a randomized order. Before and during 1 h after the exercise venous blood samples were taken for measurement of blood lactate (LA), beta-hydroxybutyrate (beta-HB), glucose, adrenaline (A), noradrenaline (NA) and insulin levels. Oxygen consumption (VO2) was also determined. It was found that the L-CHO diet diminished the mean power output during the 30-s exercise bout [533 (7) W vs 581 (7) W, P < 0.05] without changing the maximal power attained during the first or second 5-s interval of the exercise. In comparison with the data obtained after the consumption of a mixed diet, after the consumption of a L-CHO diet resting plasma concentrations of beta-HB [2.38 (0.18) vs 0.23 (0.01) mmol x l(-1), P < 0.001] and NA [4.81 (0.68) vs 2.2 (0.31) nmol x l(-1), P < 0.05] were higher, while glucose [4.6 (0.1) vs 5.7 (0.2) mmol x l(-1), P < 0.05] and insulin concentrations [11.9 (0.9) vs 21.8 (1.8) mU x l(-1)] were lower. The 1-h post-exercise excess of VO2 [9.1 (0.25) vs 10.6 (0.25) 1, P < 0.05], and blood LA measured 3 min after the exercise [9.5 (0.4) vs 10.6 (0.5) mmol x l(-1), P < 0.05] were lower following the L-CHO treatment, whilst plasma NA and A concentrations reached higher values [2.24 (0.40) vs 1.21 (0.13) nmol x l(-1) and 14.30 (1.41) vs 8.20 (1.31) nmol x l(-1), P < 0.01, respectively]. In subjects on the L-CHO diet, the plasma beta-HB concentration decreased quickly after exercise, attaining approximately 30% of the pre-exercise value within 60 min, while insulin and glucose levels were elevated. The main conclusions of this study are: (1) a L-CHO diet is detrimental to anaerobic work capacity, possibly because of a reduced muscle glycogen store and decreased rate of glycolysis; (2) reduced carbohydrate intake for 3 days enhances activity of the sympathoadrenal system at rest and after exercise.

  12. Effects of firefighters' self-contained breathing apparatus' weight and its harness design on the physiological and subjective responses.

    PubMed

    Bakri, Ilham; Lee, Joo-Young; Nakao, Kouhei; Wakabayashi, Hitoshi; Tochihara, Yutaka

    2012-01-01

    To examine the effects of firefighters' self-contained breathing apparatus' (SCBA) weight and its harness design on the physiological and subjective responses, eight male students performed treadmill exercise under four conditions: the 8 kg firefighter protective clothing (PC) (Control), the PC + an 11 kg SCBA with an old harness (Test A), the PC + a 6.4 kg SCBA with an old harness (Test B) and the PC + a 6.4 kg SCBA with a new harness (Test C), at ambient temperatures (T(a)) of 22°C and 32°C. Besides highlighting the fact that a heavy SCBA had a significant effect on the oxygen consumption and metabolic rate, this experiment also found that in a T(a) of 32°C, in particular, the combined effect of 4.7 kg lighter SCBA and new harness design could reduce metabolic rate and improved subjective muscle fatigue and thermal discomfort. An effort to alleviate the physiological and subjective burden of firefighters by reducing the weight of SCBA and by using the new harness design has provided satisfactory results in reduced oxygen consumption and in improved subjective responses in a hot air environment.

  13. The relationship between areca nut usage and heart rate in lactating Bangladeshis.

    PubMed

    Vinoy, S; Mascie-Taylor, C G N; Rosetta, L

    2002-01-01

    The betel-nut quid, a piece of areca nut chewed alone or mixed with tobacco and slaked lime wrapped in betel vine leaf, is widely used in Asian populations as a stimulant (due to the cholinergic agent, arecoline) or as a relaxant (due to arecaidine and guvacine). This study, which formed part of a larger project assessing the effect of energy expenditure on the duration of post-partum amenorrhoea, provided the opportunity to assess the role of chronic areca nut usage on heart rate and oxygen consumption during resting periods and during graded stepping tests. The mothers (n = 47), all of whom were lactating, were aged between 19 and 39, of low nutritional status and anaemic and they all chewed betel quid daily. Moderate users of betel quid (defined as more than 3 times a day) were found, on average, to have a significantly lower heart rate at rest and during exercise than low betel quid users (less than 3 times a day) but there was no modification in oxygen consumption. Chronic betel quid use does not seem to affect the assessment of 24h energy expenditure provided that subjects are denied access to betel nut usage before and during calibration.

  14. Effects of Aerobic Exercise on Anxiety Symptoms and Cortical Activity in Patients with Panic Disorder: A Pilot Study

    PubMed Central

    Lattari, Eduardo; Budde, Henning; Paes, Flávia; Neto, Geraldo Albuquerque Maranhão; Appolinario, José Carlos; Nardi, Antônio Egídio; Murillo-Rodriguez, Eric; Machado, Sérgio

    2018-01-01

    Background: The effects of the aerobic exercise on anxiety symptoms in patients with Panic Disorder (PD) remain unclear. Thus, the investigation of possible changes in EEG frontal asymmetry could contribute to understand the relationship among exercise, brain and anxiety. Objective: To investigate the acute effects of aerobic exercise on the symptoms of anxiety and the chronic effects of aerobic exercise on severity and symptoms related to PD, besides the changes in EEG frontal asymmetry. Methods: Ten PD patients were divided into two groups, Exercise Group (EG; n=5) and Control Group (CG; n=5), in a randomized allocation. At baseline and post-intervention, they submitted the psychological evaluation through Panic Disorder Severity Scale (PDSS), Beck Anxiety Inventory (BAI), Beck Depression Inventory-II (BDI-II), EEG frontal asymmetry, and maximal oxygen consumption (VO2max). On the second visit, the patients of EG being submitted to the aerobic exercise (treadmill, 25 minutes, and 50-55% of heart rate reserve) and the CG remained seated for the same period of time. Both groups submitted a psychological evaluation with Subjective Units of Distress Scale (SUDS) at baseline, immediately after (Post-0), and after 10 minutes of the rest pause (Post-10). The patients performed 12 sessions of aerobic exercise with 48-72 hours of interval between sessions. Results: In EG, SUDS increased immediately after exercise practice and showed chronic decrease in BAI and BDI-II as well as increased in VO2max (Post-intervention). Conclusion: Aerobic exercise can promote increase in anxiety acutely and regular aerobic exercise promotes reduction in anxiety levels. PMID:29515644

  15. Impact of intensive high-fat ingestion in the early stage of recovery from exercise training on substrate metabolism during exercise in humans.

    PubMed

    Ichinose, Takashi; Arai, Natsuko; Nagasaka, Tomoaki; Asano, Masaya; Hashimoto, Kenji

    2012-01-01

    Not only increasing body carbohydrate (CHO) stores before exercise but also suppressing CHO oxidation during exercise is important for improving endurance performance. We tested the hypothesis that intensive high-fat ingestion in the early stage of recovery from exercise training (ET) for 2 d would suppress CHO oxidation during exercise by increasing whole body lipolysis and/or fat oxidation. In a randomized crossover design, on days 1 and 2, six male subjects performed cycle ET at 50% peak oxygen consumption (VO(2 peak)) for 60-90 min, and consumed a control diet (CON: 1,224 kcal, 55% carbohydrate, 30% fat) or the same diet supplemented with high fat (HF: 1,974 kcal, 34% carbohydrate, 56% fat) 1 h after ET, with the diet other than post-ET similar in both trials. On day 3, subjects performed cycle exercise at 65% VO(2 peak) until exhaustion. Exercise time to exhaustion was longer in the HF trial than in the CON trial (CON: 48.9 ± 6.7 vs. HF: 55.8 ± 7.7 min, p<0.05). In the HF trial, total fat oxidation until exhaustion was higher, accompanied by higher post-exercise plasma glycerol concentration, than in the CON trial (CON: 213 ± 54 vs. HF: 286 ± 63 kcal, p<0.05), whereas total carbohydrate oxidation until exhaustion was not different between trials. These results suggest that intensive high-fat ingestion in the early stage of recovery from ET for a few days until the day before exercise was an effective means of eliciting a CHO-sparing effect during exercise by enhancing fat metabolism.

  16. Post-exercise hypotension and heart rate variability response after water- and land-ergometry exercise in hypertensive patients

    PubMed Central

    Bocalini, Danilo Sales; Bergamin, Marco; Evangelista, Alexandre Lopes; Rica, Roberta Luksevicius; Pontes, Francisco Luciano; Figueira, Aylton; Serra, Andrey Jorge; Rossi, Emilly Martinelli; Tucci, Paulo José Ferreira

    2017-01-01

    Background systemic arterial hypertension is the most prevalent cardiovascular disease; physical activity for hypertensive patients is related to several beneficial cardiovascular adaptations. This paper evaluated the effect of water- and land-ergometry exercise sessions on post-exercise hypotension (PEH) of healthy normotensive subjects versus treated or untreated hypertensive patients. Methods Forty-five older women composed three experimental groups: normotensive (N, n = 10), treated hypertensive (TH, n = 15) and untreated hypertensive (UH, n = 20). The physical exercise acute session protocol was performed at 75% of maximum oxygen consumption (VO2max) for 45 minutes; systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were evaluated at rest, peak and at 15, 30, 45, 60, 75 and 90 minutes after exercise cessation. Additionally, the heart rate variability (HRV) was analyzed by R-R intervals in the frequency domain for the assessment of cardiac autonomic function. Results In both exercise modalities, equivalent increases in SBP were observed from rest to peak exercise for all groups, and during recovery, significant PEH was noted. At 90 minutes after the exercise session, the prevalence of hypotension was significantly higher in water- than in the land-based protocol. Moreover, more pronounced reductions in SBP and DBP were observed in the UH patients compared to TH and N subjects. Finally, exercise in the water was more effective in restoring HRV during recovery, with greater effects in the untreated hypertensive group. Conclusion Our data demonstrated that water-ergometry exercise was able to induce expressive PEH and improve cardiac autonomic modulation in older normotensive, hypertensive treated or hypertensive untreated subjects when compared to conventional land-ergometry. PMID:28658266

  17. Physical exercises on a bicycle-ergometer and running track to prevent hypodynamia in workers of intellectual labor

    NASA Technical Reports Server (NTRS)

    Vasilyeva, V. V.; Korableva, Y. N.; Trunin, V. V.

    1980-01-01

    A program of exercises was developed and tested, consisting of a 12 minute session on a variable load bicycle ergometer and a 10-11 min. run with brief stretching and resting sessions between. Physical performance capacity was measured before, during, and after the period of the experiment and physical exams conducted. After a 4 month test period involving 30 men, aged 25-35, the program was found to be successful in increasing physical performance capacity. The PWC170 increased an average of 22 percent and maximum oxygen consumption 14 percent. Arterial pressure dropped (120/75 to 114/68), vital capacity of lungs increased by 6 percent, strength of respiratory muscles by 8.8 percent, duration of respiratory delay by 18 percent. Duration of cardiac cycles increased, stress index decreased. Cardiac contraction rate 2 minutes after work on the ergometer decreased from 118 to 102 bt/min.

  18. VALIDATION OF ADULT OMNI PERCEIVED EXERTION SCALES FOR ELLIPTICAL ERGOMETRY12

    PubMed Central

    MAYS, RYAN J.; GOSS, FREDRIC L.; SCHAFER, MARK A.; KIM, KEVIN H.; NAGLE-STILLEY, ELIZABETH F.; ROBERTSON, ROBERT J.

    2012-01-01

    Summary This investigation examined the validity of newly developed Adult OMNI Elliptical Ergometer Ratings of Perceived Exertion Scales. Sixty men and women performed a graded exercise test on an elliptical ergometer. Oxygen consumption (VO2), heart rate (HR) and ratings of perceived exertion were recorded each stage from the Borg 15 Category Scale and two different OMNI scales. One scale employed an elliptical ergometer format of the OMNI Picture System of Perceived Exertion. The second scale modified verbal, numerical, and pictorial descriptors at the low end of the response range. Concurrent and construct validity were established by the positive relation between ratings of perceived exertion from each OMNI scale with VO2, HR and Borg Scale ratings of perceived exertion (men, r = .94–.97; women, r = .93–.98). Validity was established for both OMNI scales, indicating either metric can be used to estimate ratings of perceived exertion during partial weight bearing exercise. PMID:21319623

  19. Effects of a helium/oxygen mixture on individuals' lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases.

    PubMed

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications.

  20. Oscillation of tissue oxygen index in non-exercising muscle during exercise.

    PubMed

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2015-09-01

    The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

  1. Studies on the exercise physiology of draft horses performed in Japan during the 1950s and 1960s.

    PubMed

    Hiraga, Atsushi; Sugano, Shigeru

    2017-01-01

    Although the total number of horses raised in Japan dramatically decreased after World War II, because draft horses were still used for farm work in paddy fields and on farms during the period of the 1950s and 1960s, a performance test for selecting better draft horses was needed. In order to determine the most suitable size of draft horses for Japanese farm conditions, the working power of horses weighing from 185 to 622 kg was evaluated by performing an endurance test, several kinds of working power tests, and maximum pulling power tests. Oxygen consumption during draft exercise was measured by the Douglas bag method in order to evaluate effects of draft workload under the conditions of different types of work (14- and 18-cm plow depths, cultivator, and tillage), traction methods (shoulder traction, shoulder-trunk traction, and chest-trunk traction), walking speeds (40, 60, 80, 100, and 120 m/min), and depths of water (0, 18, 36, and 54 cm) on energy expenditure. The relationship between energy consumption and pulse rate during exercise was also evaluated. A study of a performance test for draft horses was conducted to establish a new approach for evaluating draft horse performance using heart rate as an index. For this study, a beat meter for measuring heart rate was developed, and experimental protocols were used to evaluate the relationship between heart rate and workload. Although the research results obtained from these studies do not have particular relevance in the current day, these studies are valuable for understanding the history of equine exercise physiology in Japan.

  2. Studies on the exercise physiology of draft horses performed in Japan during the 1950s and 1960s

    PubMed Central

    HIRAGA, Atsushi; SUGANO, Shigeru

    2017-01-01

    ABSTRACT Although the total number of horses raised in Japan dramatically decreased after World War II, because draft horses were still used for farm work in paddy fields and on farms during the period of the 1950s and 1960s, a performance test for selecting better draft horses was needed. In order to determine the most suitable size of draft horses for Japanese farm conditions, the working power of horses weighing from 185 to 622 kg was evaluated by performing an endurance test, several kinds of working power tests, and maximum pulling power tests. Oxygen consumption during draft exercise was measured by the Douglas bag method in order to evaluate effects of draft workload under the conditions of different types of work (14- and 18-cm plow depths, cultivator, and tillage), traction methods (shoulder traction, shoulder-trunk traction, and chest-trunk traction), walking speeds (40, 60, 80, 100, and 120 m/min), and depths of water (0, 18, 36, and 54 cm) on energy expenditure. The relationship between energy consumption and pulse rate during exercise was also evaluated. A study of a performance test for draft horses was conducted to establish a new approach for evaluating draft horse performance using heart rate as an index. For this study, a beat meter for measuring heart rate was developed, and experimental protocols were used to evaluate the relationship between heart rate and workload. Although the research results obtained from these studies do not have particular relevance in the current day, these studies are valuable for understanding the history of equine exercise physiology in Japan. PMID:28400701

  3. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of inspiratory muscle warm-up on submaximal rowing performance.

    PubMed

    Arend, Mati; Mäestu, Jarek; Kivastik, Jana; Rämson, Raul; Jürimäe, Jaak

    2015-01-01

    Performing inspiratory muscle warm-up might increase exercise performance. The aim of this study was to investigate the impact of inspiratory muscle warm-up to submaximal rowing performance and to find if there is an effect on lactic acid accumulation and breathing parameters. Ten competitive male rowers aged between 19 and 27 years (age, 23.1 ± 3.8 years; height, 188.1 ± 6.3 cm; body mass, 85.6 ± 6.6 kg) were tested 3 times. During the first visit, maximal inspiratory pressure (MIP) assessment and the incremental rowing test were performed to measure maximal oxygen consumption and maximal aerobic power (Pamax). A submaximal intensity (90% Pamax) rowing test was performed twice with the standard rowing warm-up as test 1 and with the standard rowing warm-up and specific inspiratory muscle warm-up as test 2. During the 2 experimental tests, distance, duration, heart rate, breathing frequency, ventilation, peak oxygen consumption, and blood lactate concentration were measured. The only value that showed a significant difference between the test 1 and test 2 was breathing frequency (52.2 ± 6.8 vs. 53.1 ± 6.8, respectively). Heart rate and ventilation showed a tendency to decrease and increase, respectively, after the inspiratory muscle warm-up (p < 0.1). Despite some changes in respiratory parameters, the use of 40% MIP intensity warm-up is not suggested if the mean intensity of the competition is at submaximal level (at approximately 90% maximal oxygen consumption). In conclusion, the warm-up protocol of the respiratory muscles used in this study does not have a significant influence on submaximal endurance performance in highly trained male rowers.

  5. Anthropometric and physiological profiles of sepak takraw players

    PubMed Central

    Jawis, M; Singh, R; Singh, H; Yassin, M; Khanna, G

    2005-01-01

    Objectives: Anthropometric and physiological profiles of national sepak takraw players were determined. Methods: Thirty nine players, specialising in the three playing positions (tekong/server, feeder, and killer/spiker) were divided into three age categories of under 15 (U15), under 18 (U18), and under 23 (U23) years of age. Height, weight, percent body fat (%bf), maximum oxygen consumption (Vo2max), range of motion (ROM), back and leg strength, and heart rate, for the estimation of oxygen consumption during matches, were recorded. Statistical analysis was performed using one way ANOVA for independent measurements and data are presented as mean±standard deviation. Results: The U23 players were significantly taller and heavier with significantly better ROM of the neck, trunk, and ankle joints and back and leg strength than the U15 players. No significant difference was found in %bf between the three age categories. Mean maximum heart rate during exercise was significantly higher in the U15 group when compared to the U18 and U23 groups (p<0.05). Mean Vo2max was similar between the three groups. Estimated oxygen consumption during matches was 69.1%, 68.5%, and 56.4% of Vo2max in the killer, tekong, and the feeder groups, respectively. Conclusions: The mean height, body weight, and cardiopulmonary capacities of the players were within the Malaysian population norms, but were somewhat lower than those of players of other court games from other countries. %bf was also lower in these players. This study provides the much needed anthropometric and physiological data of sepak takraw players for further development of this sport. PMID:16244191

  6. Association of Self-Efficacy and Self-Regulation with Nutrition and Exercise Behaviors in a Community Sample of Adults.

    PubMed

    Shieh, Carol; Weaver, Michael T; Hanna, Kathleen M; Newsome, Kathleen; Mogos, Mulubrhan

    2015-01-01

    This study examined the association of self-efficacy and self-regulation with nutrition and exercise behaviors. The study used a cross-sectional design and included 108 participants (54 men, 54 women). Nutrition behaviors (fruit/vegetable consumption, dinner cooking, and restaurant eating) and exercise were measured using total days in last week a behavior was reported. Instruments measuring self-efficacy and self-regulation demonstrated excellent Cronbach's alphas (.93-.95). Path analysis indicated only fruit/vegetable consumption and exercise were associated with self-efficacy and self-regulation. Self-regulation showed direct association with fruit/vegetable consumption and exercise, but self-efficacy had direct association only with exercise. Self-efficacy and self-regulation should be strategically used to promote health behaviors.

  7. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults.

    PubMed

    Mondal, Himel; Mishra, Snigdha Prava

    2017-06-01

    Maximal oxygen consumption (VO 2max ) is an important measure of cardiorespiratory capacity of an individual at a given degree of fitness and oxygen availability. Risk of cardiovascular diseases increases with increasing degree of obesity and a low level of VO 2max has been established as an independent risk factor for cardiovascular mortality. To determine VO 2max in young adults and to find its correlation with Body Mass Index (BMI), Body Fat% and Fat Free Mass (FFM). Fifty four (male=30, female=24) healthy young adults of age group18-25 years after screening by Physical Activity Readiness Questionnaire (PAR-Q) participated in the study. Height was measured by stadiometer. Weight was measured by digital weighing scale with 0.1 kg sensitivity. Body fat% was measured by Bioelectrical Impedance Analysis (BIA) method. FFM was calculated by subtracting fat mass from the body weight. VO 2max (mL.kg -1 .min -1 ) was obtained by Submaximal Exercise Test (SET) by first two stages of Bruce Protocol with the basis of linear relationship between Heart Rate (HR) and oxygen consumption (VO 2 ). Data were analysed statistically in GraphPad Prism software version 6.01 for windows. VO 2max (mL.kg -1 .min -1 ) of male (43.25±7.25) was significantly (p<0.001) higher than female (31.65±2.10). BMI showed weak negative correlation (r= -0.3232, p=0.0171) with VO 2max but Body Fat% showed strong negative correlation (r= -0.7505, p<0.001) with VO 2max . FFM positively correlated (r=0.3727, p=0.0055) with VO 2max . Increased body fat is associated with decreased level of VO 2max in young adults. Obesity in terms of Fat% is a better parameter than BMI for prediction of low VO 2max .

  8. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis.

    PubMed

    Seebacher, Frank; Tallis, Jason A; James, Rob S

    2014-06-01

    Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. © 2014. Published by The Company of Biologists Ltd.

  9. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.

    PubMed

    Thirupathi, Anand; Pinho, Ricardo A

    2018-05-01

    A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.

  10. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    PubMed

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  11. MEDEX2015: Greater Sea-Level Fitness Is Associated with Lower Sense of Effort During Himalayan Trekking Without Worse Acute Mountain Sickness.

    PubMed

    Rossetti, Gabriella M K; Macdonald, Jamie H; Smith, Matthew; Jackson, Anna R; Callender, Nigel; Newcombe, Hannah K; Storey, Heather M; Willis, Sebastian; van den Beukel, Jojanneke; Woodward, Jonathan; Pollard, James; Wood, Benjamin; Newton, Victoria; Virian, Jana; Haswell, Owen; Oliver, Samuel J

    2017-06-01

    Rossetti, Gabriella M.K., Jamie H. Macdonald, Matthew Smith, Anna R. Jackson, Nigel Callender, Hannah K. Newcombe, Heather M. Storey, Sebastian Willis, Jojanneke van den Beukel, Jonathan Woodward, James Pollard, Benjamin Wood, Victoria Newton, Jana Virian, Owen Haswell, and Samuel J. Oliver. MEDEX2015: Greater sea-level fitness is associated with lower sense of effort during Himalayan trekking without worse acute mountain sickness. High Alt Med Biol. 18:152-162, 2017.-This study examined the complex relationships of fitness and hypoxic sensitivity with submaximal exercise responses and acute mountain sickness (AMS) at altitude. Determining these relationships is necessary before fitness or hypoxic sensitivity tests can be recommended to appraise individuals' readiness for altitude. Forty-four trekkers (26 men; 18 women; 20-67 years) completed a loaded walking test and a fitness questionnaire in normoxia to measure and estimate sea-level maximal aerobic capacity (maximum oxygen consumption [[Formula: see text]O 2max ]), respectively. Participants also completed a hypoxic exercise test to determine hypoxic sensitivity (cardiac, ventilatory, and arterial oxygen saturation responses to acute hypoxia, fraction of inspired oxygen [Fio 2 ] = 0.112). One month later, all participants completed a 3-week trek to 5085 m with the same ascent profile. On ascent to 5085 m, ratings of perceived exertion (RPE ascent ), fatigue by Brunel Mood Scale, and AMS were recorded daily. At 5085 m, RPE during a fixed workload step test (RPE fixed ) and step rate during perceptually regulated exercise (STEP RPE35 ) were recorded. Greater sea-level [Formula: see text]O 2max was associated with, and predicted, lower sense of effort (RPE ascent ; r = -0.43; p < 0.001; RPE fixed ; r = -0.69; p < 0.001) and higher step rate (STEP RPE35 ; r = 0.62; p < 0.01), but not worse AMS (r = 0.13; p = 0.4) or arterial oxygen desaturation (r = 0.07; p = 0.7). Lower RPE ascent was also associated with better mood, including less fatigue (r = 0.57; p < 0.001). Hypoxic sensitivity was not associated with, and did not add to the prediction of submaximal exercise responses or AMS. In conclusion, participants with greater sea-level fitness reported less effort during simulated and actual trekking activities, had better mood (less fatigue), and chose a higher step rate during perceptually regulated exercise, but did not suffer from worse AMS or arterial oxygen desaturation. Simple sea-level fitness tests may be used to aid preparation for high-altitude travel.

  12. Effects of high-intensity interval training on central haemodynamics and skeletal muscle oxygenation during exercise in patients with chronic heart failure.

    PubMed

    Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M

    2016-12-01

    Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.

  13. Subclinical cardiopulmonary dysfunction in stage 3 chronic kidney disease.

    PubMed

    Nelson, Alexander; Otto, James; Whittle, John; Stephens, Robert C M; Martin, Daniel S; Prowle, John R; Ackland, Gareth L

    2016-01-01

    Reduced exercise capacity is well documented in end-stage chronic kidney disease (CKD), preceded by changes in cardiac morphology in CKD stage 3. However, it is unknown whether subclinical cardiopulmonary dysfunction occurs in CKD stage 3 independently of heart failure. Prospective observational cross-sectional study of exercise capacity assessed by cardiopulmonary exercise testing in 993 preoperative patients. Primary outcome was peak oxygen consumption (VO2peak). Anaerobic threshold (AT), oxygen pulse and exercise-evoked measures of autonomic function were analysed, controlling for CKD stage 3, age, gender, diabetes mellitus and hypertension. CKD stage 3 was present in 93/993 (9.97%) patients. Diabetes mellitus (RR 2.49 (95% CI 1.59 to 3.89); p<0.001), and hypertension (RR 3.20 (95% CI 2.04 to 5.03); p<0.001)) were more common in CKD stage 3. Cardiac failure (RR 0.83 (95% CI 0.30 to 2.24); p=0.70) and ischaemic heart disease (RR 1.40 (95% CI 0.97 to 2.02); p=0.09) were not more common in CKD stage 3. Patients with CKD stage 3 had lower predicted VO2peak (mean difference: 6% (95% CI 1% to 11%); p=0.02), lower peak heart rate (mean difference:9 bpm (95% CI 3 to 14); p=0.03)), lower AT (mean difference: 1.1 mL/min/kg (95% CI 0.4 to 1.7); p<0.001) and impaired heart rate recovery (mean difference: 4 bpm (95% CI 1 to 7); p<0.001)). Subclinical cardiopulmonary dysfunction in CKD stage 3 is common. This study suggests that maladaptive cardiovascular/autonomic dysfunction may be established in CKD stage 3, preceding pathophysiology reported in end-stage CKD.

  14. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise.

    PubMed

    Thirupathi, Anand; de Souza, Claudio Teodoro

    2017-11-01

    Transcriptional factors are easily susceptible to any stimuli, including exercise. Exercise can significantly influence PGC-1 α and AMPK-SIRT1 pathway, as it is involved in the regulation of energy metabolism and mitochondrial biogenesis. Exercise is a major energy deprivation process by which many of transcription factors get tuned positively. However, how transcription factors help to boost the antioxidant defense system at cellular level is elusive. It is well known that physical exercise can induce reactive oxygen species, but how these reactive oxygen species can help to regulate multiple transcription factors during exercise is an important area to be discussed yet. This review mainly focuses on interconnecting role of PGC-1 α and AMPK-SIRT1 pathway during exercise and how these proteins are getting tuned by reactive oxygen species in exercise condition.

  15. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  16. Active video games as an exercise tool for children with cystic fibrosis.

    PubMed

    O'Donovan, Cuisle; Greally, Peter; Canny, Gerard; McNally, Paul; Hussey, Juliette

    2014-05-01

    Active video games are used in many hospitals as exercise tools for children with cystic fibrosis. However, the exercise intensity associated with playing these games has not been examined in this population. Children with cystic fibrosis [n=30, aged 12.3 (2.6) years, 17 boys, BMI 17.7 (2.8) kg/m(2)] were recruited from outpatient clinics in Dublin hospitals. Age and gender matched control children were recruited from local schools. Oxygen consumption, metabolic equivalents (METs) calculated from resting V˙O2, and heart rate were measured while playing Nintendo Wii™ (Nintendo Co. Ltd., Tokyo, Japan) Sports Boxing and Nintendo Wii Fit Free Jogging using a portable indirect calorimeter (Oxycon Mobile). Playing Wii Boxing resulted in light intensity activity (2.46METs) while playing Wii Fit Free Jogging resulted in moderate intensity physical activity (4.44METs). No significant difference was seen between groups in the energy cost of playing active video games. Active video games are a useful source of light to moderate intensity physical activity in children with cystic fibrosis. © 2013.

  17. Effect of ageing on hypoxic exercise cardiorespiratory, muscle and cerebral oxygenation responses in healthy humans.

    PubMed

    Puthon, Lara; Bouzat, Pierre; Robach, Paul; Favre-Juvin, Anne; Doutreleau, Stéphane; Verges, Samuel

    2017-04-01

    What is the central question of this study? This study aimed to determine the effect of ageing on cardiorespiratory and tissue oxygenation responses to hypoxia during maximal incremental exercise. What is the main finding and its importance? Older healthy subjects had preserved hypoxic cardiorespiratory and tissue oxygenation responses at rest and during moderate exercise. At maximal exercise, they had a reduced hypoxic ventilatory response but similar maximal power output reduction compared with young individuals. This study suggests that until moderate exercise, hypoxic responses are preserved until the age of 70 years and therefore that ageing is not a contraindication for high-altitude sojourn. This study assessed the effects of ageing on cardiorespiratory and tissue oxygenation responses to hypoxia both at rest and during incremental maximal exercise. Sixteen young (20-30 years old) and 15 older healthy subjects (60-70 years old) performed two maximal incremental cycling tests in normoxia and hypoxia (inspiratory oxygen fraction 12%). Cardiorespiratory responses, prefrontal cortex and quadriceps tissue oxygenation (near-infrared spectroscopy) were measured during exercise as well as during hypercapnia at rest. The hypoxic ventilatory response was similar in young compared with older individuals at rest and during moderate-intensity exercise (50% maximal power output: young 0.9 ± 0.2 versus older 1.1 ± 0.8 l min -1  % -1 ; P > 0.05) but larger in young subjects during high-intensity exercise (maximal power output: 2.2 ± 0.8 versus 1.8 ± 1.1 l min -1  % -1 ; P < 0.05). The hypoxic cardiac response did not differ between groups both at rest and during exercise. During exercise in hypoxia, young subjects showed greater deoxygenation than older subjects, at both the prefrontal cortex and quadriceps levels. The hypoxia-induced reduction in maximal power output (young -32 ± 5% versus older -30 ± 6%; P > 0.05) and the hypercapnic responses did not differ between groups. Older healthy and active individuals below the age of 70 years have cardiorespiratory and tissue oxygenation responses to hypoxia similar to young individuals both at rest and during moderate-intensity exercise. Despite a lower hypoxic ventilatory response at maximal exercise, older individuals have similar oxygen desaturation and maximal power output reduction compared with young subjects. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  18. Effects of quercetin supplementation on endurance performance and maximal oxygen consumption: a meta-analysis.

    PubMed

    Pelletier, Denis M; Lacerte, Guillaume; Goulet, Eric D B

    2013-02-01

    Lately, the effect of quercetin supplementation (QS) on endurance performance (EP) and maximal oxygen consumption (VO2max) has been receiving much scientific and media attention. Therefore, a meta-analysis was performed to determine QS's ergogenic value on these variables. Studies were located with database searches (PubMed and SPORTDiscus) and cross-referencing. Outcomes represent mean percentage changes in EP (measured via power output) and VO2max between QS and placebo. Random-effects model meta-regression, mixed-effects model analog to the ANOVA, random-effects weighted mean effect summary, and magnitude-based inferences analyses were used to delineate the effects of QS. Seven research articles (representing 288 subjects) were included, producing 4 VO2max and 10 EP effect estimates. Mean QS daily intake and duration were, respectively, 960 ± 127 mg and 26 ± 24 d for the EP outcome and 1,000 ± 0 mg and 8 ± 23 d for the VO2max outcome. EP was assessed during exercise with a mean duration of 79 ± 82 min. Overall, QS improved EP by 0.74% (95% CI: 0.10-1.39, p = .02) compared with placebo. However, only in untrained individuals (0.83% ± 0.78%, p = .02) did QS significantly improve EP (trained individuals: 0.09% ± 2.15%, p = .92). There was no relationship between QS duration and EP (p = .69). Overall, QS increased VO2max by 1.94% (95% CI: 0.30-3.59, p = .02). Magnitude-based inferences suggest that the effect of QS on EP and VO2max is likely to be trivial for both trained and untrained individuals. In conclusion, this meta-analysis indicates that QS is unlikely to prove ergogenic for aerobic-oriented exercises in trained and untrained individuals.

  19. The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics.

    PubMed

    Hinde, Katrina; Lloyd, Ray; Low, Chris; Cooke, Carlton

    2017-03-01

    The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20, 10, 5, 0, -5, and -10 °C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km · h -1 , on 0 and 10% gradients in 4 min bouts. The change in absolute oxygen consumption (V̇O 2 ) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O 2 at both -5 and -10 °C was greater compared to the first. At -10 °C, V̇O 2 was increased from 1.60 ± 0.30 to 1.89 ± 0.51 L · min -1 . Regardless of temperature, gradient had a greater effect on V̇O 2 and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature, but trunk forward lean was greater during cold exposure. Decreased ambient temperature did not influence the magnitude of change in V̇O 2 from unloaded to loaded walking. However, in cold temperatures, V̇O 2 was significantly higher than in warm conditions. The increased V̇O 2 in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure.

  20. Carbohydrate Ingestion Before and During Soccer Match Play and Blood Glucose and Lactate Concentrations

    PubMed Central

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    Context: The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. Objective: To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Design: Crossover study. Setting: Applied research study. Patients or Other Participants: Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg−1·min−1). Intervention(s): Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0–15, 15–30, and 30–45 minutes; second half: 45–60, 60–75, and 75–90 minutes) and 10 minutes into the halftime break. Main Outcome Measure(s): Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Results: Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise (time-of-sample effect: P < .001) and remained elevated throughout exercise. Supplementation did not influence the pattern of response (time × treatment interaction effect: P = .49). Conclusions: Ingestion of a 6% CHO-electrolyte beverage before and during soccer match play did not benefit blood glucose concentrations throughout the second half of exercise. PMID:24933430

  1. Dietary antioxidants and exercise.

    PubMed

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  2. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  3. Effect of changes in fat availability on exercise capacity in McArdle disease.

    PubMed

    Andersen, Susanne T; Jeppesen, Tina D; Taivassalo, Tanja; Sveen, Marie-Louise; Heinicke, Katja; Haller, Ronald G; Vissing, John

    2009-06-01

    The major fuel for exercising muscle at low exercise intensities is fat. To investigate the role of fat metabolism in McArdle disease (also known as glycogen storage disease type V), an inborn error of muscle glycogenolysis, by manipulating free fatty acid availability for oxidation during exercise. Randomized, placebo-controlled, crossover trial. Hospitalized care. Ten patients (8 men and 2 women) with McArdle disease. Patients cycled at a constant workload corresponding to 70% of their maximum oxygen consumption. In random order and on separate days, patients received nicotinic acid (a known blocker of lipolysis) to decrease the availability of free fatty acids or 20% Intralipid infusion to increase free fatty acid availability during exercise. Results were compared with placebo (isotonic sodium chloride solution infusion) and glucose infusion trials. Exercise tolerance was assessed by heart rate response to exercise during different infusions. Free fatty acid levels more than tripled by Intralipid infusion and were halved by nicotinic acid administration. Heart rate was significantly higher during exercise in the Intralipid infusion and nicotinic acid trials compared with the placebo and glucose infusion trials, an effect that was observed before and after the patients had experienced the second wind phenomenon. Lipids are an important source of fuel for exercising muscle in McArdle disease, but maximal rates of fat oxidation seem limited and cannot be increased above physiologically normal rates during exercise. This limitation is probably caused by a metabolic bottleneck in the tricarboxylic acid cycle due to impaired glycolytic flux in McArdle disease. Therapies aimed at enhancing fat use in McArdle disease should be combined with interventions targeting expansion of the tricarboxylic acid cycle.

  4. Alternatives to the Six-Minute Walk Test in Pulmonary Arterial Hypertension

    PubMed Central

    Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve

    2014-01-01

    Introduction The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Methods Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Results Peak oxygen consumption (VO2peak) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO2peak reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Conclusion Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests. PMID:25111294

  5. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction.

    PubMed

    Borlaug, Barry A; Melenovsky, Vojtech; Russell, Stuart D; Kessler, Kristy; Pacak, Karel; Becker, Lewis C; Kass, David A

    2006-11-14

    Nearly half of patients with heart failure have a preserved ejection fraction (HFpEF). Symptoms of exercise intolerance and dyspnea are most often attributed to diastolic dysfunction; however, impaired systolic and/or arterial vasodilator reserve under stress could also play an important role. Patients with HFpEF (n=17) and control subjects without heart failure (n=19) generally matched for age, gender, hypertension, diabetes mellitus, obesity, and the presence of left ventricular hypertrophy underwent maximal-effort upright cycle ergometry with radionuclide ventriculography to determine rest and exercise cardiovascular function. Resting cardiovascular function was similar between the 2 groups. Both had limited exercise capacity, but this was more profoundly reduced in HFpEF patients (exercise duration 180+/-71 versus 455+/-184 seconds; peak oxygen consumption 9.0+/-3.4 versus 14.4+/-3.4 mL x kg(-1) x min(-1); both P<0.001). At matched low-level workload, HFpEF subjects displayed approximately 40% less of an increase in heart rate and cardiac output and less systemic vasodilation (all P<0.05) despite a similar rise in end-diastolic volume, stroke volume, and contractility. Heart rate recovery after exercise was also significantly delayed in HFpEF patients. Exercise capacity correlated with the change in cardiac output, heart rate, and vascular resistance but not end-diastolic volume or stroke volume. Lung blood volume and plasma norepinephrine levels rose similarly with exercise in both groups. HFpEF patients have reduced chronotropic, vasodilator, and cardiac output reserve during exercise compared with matched subjects with hypertensive cardiac hypertrophy. These limitations cannot be ascribed to diastolic abnormalities per se and may provide novel therapeutic targets for interventions to improve exercise capacity in this disorder.

  6. Pharmacokinetics of detomidine administered to horses at rest and after maximal exercise.

    PubMed

    Hubbell, J A E; Sams, R A; Schmall, L M; Robertson, J T; Hinchcliff, K W; Muir, W W

    2009-05-01

    Increased doses of detomidine are required to produce sedation in horses after maximal exercise compared to calm or resting horses. To determine if the pharmacokinetics of detomidine in Thoroughbred horses are different when the drug is given during recuperation from a brief period of maximal exercise compared to administration at rest. Six Thoroughbred horses were preconditioned by exercising them on a treadmill. Each horse ran a simulated race at a treadmill speed that caused it to exercise at 120% of its maximal oxygen consumption. One minute after the end of exercise, horses were treated with detomidine. Each horse was treated with the same dose of detomidine on a second occasion a minimum of 14 days later while standing in a stocks. Samples of heparinised blood were obtained at various time points on both occasions. Plasma detomidine concentrations were determined by liquid chromatography-mass spectrometry. The plasma concentration vs. time data were analysed by nonlinear regression analysis. Median back-extrapolated time zero plasma concentration was significantly lower and median plasma half-life and median mean residence time were significantly longer when detomidine was administered after exercise compared to administration at rest. Median volume of distribution was significantly higher after exercise but median plasma clearance was not different between the 2 administrations. Detomidine i.v. is more widely distributed when administered to horses immediately after exercise compared to administration at rest resulting in lower peak plasma concentrations and a slower rate of elimination. The dose requirement to produce an equivalent effect may be higher in horses after exercise than in resting horses and less frequent subsequent doses may be required to produce a sustained effect.

  7. Alternatives to the six-minute walk test in pulmonary arterial hypertension.

    PubMed

    Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve

    2014-01-01

    The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Peak oxygen consumption (VO(2peak)) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO(2peak) reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests.

  8. The estimation of recovery time of calf muscle oxygen saturation during exercise by using functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Shojaeifar, M.; Mohajerani, E.

    2014-08-01

    Several methods of near infrared spectroscopy such as functional near infrared spectroscopy (fNIRS) and pulse oximetry have been applied for monitoring of tissue oxygenation or arterial oxygen saturation. Some vascular diseases can be diagnosed through measurements of tissue oxygenation. In this study, the temporal variation of oxygenation of calf muscle after exercise is studied by fNIRS. First, the accuracy of a low-cost fNIRS system is studied by measuring the oxygenation of a lipid phantom. Moreover, in-vivo study is performed to evaluate the precision of this system. Then, the variation of muscle oxygenation of four persons during exercise is measured and also the recovery time after walking/running is measured by this fNIRS system.

  9. Validity of a Newly-Designed Rectilinear Stepping Ergometer Submaximal Exercise Test to Assess Cardiorespiratory Fitness.

    PubMed

    Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining

    2017-09-01

    The maximum oxygen uptake (V̇O 2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O 2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O 2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O 2 ) from power output (W) during the submaximal exercise test (V̇O 2 (mL·min -1 )=12.4 ×W(watts)+3.5 mL·kg -1 ·min -1 ×M+160mL·min -1 , R 2 = 0.91, standard error of the estimate (SEE) = 134.8mL·min -1 ). A high correlation was observed between the RSE YMCA estimated V̇O 2 max and the CE measured V̇O 2 max (r=0.87). The mean difference between estimated and measured V̇O 2 max was 2.5 mL·kg -1 ·min -1 , with an SEE of 3.55 mL·kg -1 ·min -1 . The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O 2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O 2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals.

  10. Integrative Conductance of Oxygen During Exercise at Altitude.

    PubMed

    Calbet, José A L; Lundby, Carsten; Boushel, Robert

    2016-01-01

    In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.

  11. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.

  13. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine

    PubMed Central

    Delp, Michael D; Armstrong, R B; Godfrey, Donald A; Laughlin, M Harold; Ross, C David; Wilkerson, M Keith

    2001-01-01

    The purpose of these experiments was to use radiolabelled microspheres to measure blood flow distribution within the brain, and in particular to areas associated with motor function, maintenance of equilibrium, cardiorespiratory control, vision, hearing and smell, at rest and during exercise in miniature swine. Exercise consisted of steady-state treadmill running at intensities eliciting 70 and 100 % maximal oxygen consumption (). Mean arterial pressure was elevated by 17 and 26 % above that at rest during exercise at 70 and 100 %, respectively. Mean brain blood flow increased 24 and 25 % at 70 and 100 %, respectively. Blood flow was not locally elevated to cortical regions associated with motor and somatosensory functions during exercise, but was increased to several subcortical areas that are involved in the control of locomotion. Exercise elevated perfusion and diminished vascular resistance in several regions of the brain related to the maintenance of equilibrium (vestibular nuclear area, cerebellar ventral vermis and floccular lobe), cardiorespiratory control (medulla and pons), and vision (dorsal occipital cortex, superior colliculi and lateral geniculate body). Conversely, blood flow to regions related to hearing (cochlear nuclei, inferior colliculi and temporal cortex) and smell (olfactory bulbs and rhinencephalon) were unaltered by exercise and associated with increases in vascular resistance. The data indicate that blood flow increases as a function of exercise intensity to several areas of the brain associated with integrating sensory input and motor output (anterior and dorsal cerebellar vermis) and the maintenance of equilibrium (vestibular nuclei). Additionally, there was an intensity-dependent decrease of vascular resistance in the dorsal cerebellar vermis. PMID:11410640

  14. Infant acceptance of breast milk after maternal exercise.

    PubMed

    Wright, Kc S; Quinn, Timothy J; Carey, Gale B

    2002-04-01

    Previous research reported that breast milk lactic acid (LA) levels increase after lactating women complete a bout of exhaustive exercise, resulting in poor infant acceptance of the postexercise breast milk. This highly publicized finding may not apply to more practical, everyday exercise conditions of lactating women. The purpose of the present study was to reexamine the composition and infant acceptance of postexercise breast milk while controlling maternal diet, exercise intensity, and the method, timing, and assessment of infant feeding. Twenty-four women, 2 to 4 months' postpartum, completed 3 test sessions: a maximal oxygen uptake test, a 30-minute bout of moderate exercise, and a resting control session. One hour before and 1 hour after each session, participants fully expressed their milk, placed it in a bottle familiar to the infant, fed their infant, and rated their infant's acceptance of the milk. Each feeding was videotaped and viewed individually by 3 lactation consultants who rated infant acceptance; consultants were blinded to the test sessions. Milk was analyzed for LA and infant milk consumption was measured. There were no differences in presession versus postsession values for maternal skin temperature, breast milk temperature, and infant milk acceptance as judged by either the mothers or lactation consultants. These results prevailed despite a small but significant increase in breast milk LA premaximal versus postmaximal exercise (0.09 vs 0.21 mM, respectively); there was no difference in milk LA premoderate versus postmoderate exercise, or prerest versus postrest. These data support the hypothesis that moderate or even high-intensity exercise during lactation does not impede infant acceptance of breast milk consumed 1 hour postexercise.

  15. [Oxygen consumption rate of Sepia pharaonis embryos.

    PubMed

    Wang, Peng Shuai; Jiang, Xia Min; Ruan, Peng; Peng, Rui Bing; Jiang, Mao Wang; Han, Qing Xi

    2016-07-01

    This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs) -1 ·h -1 during oosperm period, and rose to 0.279 mg·(100 eggs) -1 ·h -1 during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs) -1 ·h -1 during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs) -1 ·h -1 , respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs) -1 ·h -1 , respectively]. The pH had no significant effect on the oxygen consumption rates of four embryonic stages (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of pH. The oxygen consumption rates of gastrula, the formation of organization, endoskeleton reached the according highest values [0.281, 0.799 and 1.130 mg·(100 eggs) -1 ·h -1 ] at pH 8.5, but that during oosperm period occurred at pH 8.0 [0.116 mg·(100 eggs) -1 ·h -1 ].

  16. Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice.

    PubMed

    Manio, Mark Christian; Matsumura, Shigenobu; Inoue, Kazuo

    2018-06-18

    Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.

  17. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects.

    PubMed

    Daskalopoulou, Stella S; Cooke, Alexandra B; Gomez, Yessica-Haydee; Mutter, Andrew F; Filippaios, Andreas; Mesfum, Ertirea T; Mantzoros, Christos S

    2014-09-01

    Irisin, a recently discovered myokine, has been shown to induce browning of white adipose tissue, enhancing energy expenditure and mediating some of the beneficial effects of exercise. We aimed to estimate the time frame of changes in irisin levels after acute exercise and the effect of different exercise workloads and intensities on circulating irisin levels immediately post-exercise. In a pilot study, four healthy subjects (22.5±1.7 years) underwent maximal workload exercise (maximal oxygen consumption, VO2 max) and blood was drawn at prespecified intervals to define the time frame of pre- and post-exercise irisin changes over a 24-h period. In the main study, 35 healthy, non-smoking (23.0±3.3 years) men and women (n=20/15) underwent three exercise protocols ≥48-h apart, in random order: i) maximal workload (VO2 max); ii) relative workload (70% of VO2 max/10 min); and iii) absolute workload (75 W/10 min). Blood was drawn immediately pre-exercise and 3 min post-exercise. In the pilot study, irisin levels increased by 35% 3 min post-exercise, then dropped and remained relatively constant. In the main study, irisin levels post-exercise were significantly higher than those of pre-exercise after all workloads (all, P<0.001). Post-to-pre-exercise differences in irisin levels were significantly different between workloads (P=0.001), with the greatest increase by 34% following maximal workload (P=0.004 vs relative and absolute). Circulating irisin levels were acutely elevated in response to exercise, with a greater increase after maximal workload. These findings suggest that irisin release could be a function of muscle energy demand. Future studies need to determine the underlying mechanisms of irisin release and explore irisin's therapeutic potential. © 2014 European Society of Endocrinology.

  18. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities.

    PubMed

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.

  19. The role of exercise testing in heart failure.

    PubMed

    Swedberg, K; Gundersen, T

    1993-01-01

    The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    PubMed Central

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

Top