Sample records for exercise preconditioning reduces

  1. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    PubMed Central

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068

  2. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.

    2015-01-01

    Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789

  3. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation.

    PubMed

    Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali

    2016-01-01

    Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.

  4. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment.

    PubMed

    Lambiase, Pier D; Edwards, Richard J; Cusack, Michael R; Bucknall, Clifford A; Redwood, Simon R; Marber, Michael S

    2003-04-02

    This study was designed to examine if exercise-induced ischemia initiated late preconditioning in humans that becomes manifest during subsequent exercise and serial balloon occlusion of the left anterior descending coronary artery (LAD). The existence of late preconditioning in humans is controversial. We therefore compared myocardial responses to exercise-induced and intracoronary balloon inflation-induced ischemia in two groups of patients subjected to different temporal patterns of ischemia. Thirty patients with stable angina secondary to single-vessel LAD disease underwent percutaneous coronary intervention (PCI) after two separate exercise tolerance test (ETT) protocols designed to investigate isolated early preconditioning (IEP) alone or the second window of protection (SWOP). The IEP subjects underwent three sequential ETTs at least two weeks before PCI. The SWOP subjects underwent five sequential ETTs commencing 24 h before PCI. During PCI there was no significant difference in intracoronary pressure-derived collateral flow index (CFI) between groups (IEP = 0.15 +/- 0.13, SWOP = 0.19 +/- 0.15). In SWOP patients, compared with the initial ETT, the ETT performed 24 h later had a 40% (p < 0.001) increase in time to 0.1-mV ST depression and a 60% (p < 0.05) decrease in ventricular ectopic frequency. During the first balloon inflation, peak ST elevation was reduced by 49% (p < 0.05) in the SWOP versus the IEP group, and the dependence on CFI observed in the IEP group was abolished (analysis of covariance, p < 0.05). The significant attenuation of ST elevation (47%, p < 0.005) seen at the time of the second inflation in the IEP patients was not seen in the SWOP patients. Exercise-induced ischemia triggers late preconditioning in humans, which becomes manifest during exercise and PCI. This is the first evidence that ischemia induced by coronary occlusion is attenuated in humans by a late preconditioning effect induced by exercise.

  5. Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.

    PubMed

    Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H

    2014-01-01

    To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).

  6. No influence of ischemic preconditioning on running economy.

    PubMed

    Kaur, Gungeet; Binger, Megan; Evans, Claire; Trachte, Tiffany; Van Guilder, Gary P

    2017-02-01

    Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m 2 ) completed two, incremental submaximal (65-85% VO 2max ) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO 2 /kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO 2 /kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO 2 /kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.

  7. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    PubMed

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P < 0.05) and exercise preconditioning improved it in ischemic animals. In the passive avoidance test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P < 0.001). In the adhesive removal test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P < 0.001) and exercise preconditioning decreased these indices compared to the ischemic group (all P < 0.001). In the ledged beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  8. Exercise and Cardiac Preconditioning Against Ischemia Reperfusion Injury

    PubMed Central

    Quindry, John C; Hamilton, Karyn L

    2013-01-01

    Cardiovascular disease (CVD), including ischemia reperfusion (IR) injury, remains a major cause of morbidity and mortality in industrialized nations. Ongoing research is aimed at uncovering therapeutic interventions against IR injury. Regular exercise participation is recognized as an important lifestyle intervention in the prevention and treatment of CVD and IR injury. More recent understanding reveals that moderate intensity aerobic exercise is also an important experimental model for understanding the cellular mechanisms of cardioprotection against IR injury. An important discovery in this regard was the observation that one-to-several days of exercise will attenuate IR injury. This phenomenon has been observed in young and old hearts of both sexes. Due to the short time course of exercise induced protection, IR injury prevention must be mediated by acute biochemical alterations within the myocardium. Research over the last decade reveals that redundant mechanisms account for exercise induced cardioprotection against IR. While much is now known about exercise preconditioning against IR injury, many questions remain. Perhaps most pressing, is what mechanisms mediate cardioprotection in aged hearts and what sex-dependent differences exist. Given that that exercise preconditioning is a polygenic effect, it is likely that multiple mediators of exercise induced cardioprotection have yet to be uncovered. Also unknown, is whether post translational modifications due to exercise are responsible for IR injury prevention. This review will provide an overview the major mechanisms of IR injury and exercise preconditioning. The discussion highlights many promising avenues for further research and describes how exercise preconditioning may continue to be an important scientific paradigm in the translation of cardioprotection research to the clinic. PMID:23909636

  9. A Randomized Pilot Trial of Remote Ischemic Preconditioning in Heart Failure with Reduced Ejection Fraction

    PubMed Central

    McDonald, Michael A.; Braga, Juarez R.; Li, Jing; Manlhiot, Cedric; Ross, Heather J.; Redington, Andrew N.

    2014-01-01

    Background Remote ischemic preconditioning (RIPC) induced by transient limb ischemia confers multi-organ protection and improves exercise performance in the setting of tissue hypoxia. We aimed to evaluate the effect of RIPC on exercise capacity in heart failure patients. Methods We performed a randomized crossover trial of RIPC (4×5-minutes limb ischemia) compared to sham control in heart failure patients undergoing exercise testing. Patients were randomly allocated to either RIPC or sham prior to exercise, then crossed over and completed the alternate intervention with repeat testing. The primary outcome was peak VO2, RIPC versus sham. A mechanistic substudy was performed using dialysate from study patient blood samples obtained after sham and RIPC. This dialysate was used to test for a protective effect of RIPC in a mouse heart Langendorff model of infarction. Mouse heart infarct size with RIPC or sham dialysate exposure was also compared with historical control data. Results Twenty patients completed the study. RIPC was not associated with improvements in peak VO2 (15.6+/−4.2 vs 15.3+/−4.6 mL/kg/min; p = 0.53, sham and RIPC, respectively). In our Langendorff sub-study, infarct size was similar between RIPC and sham dialysate groups from our study patients, but was smaller than expected compared to healthy controls (29.0%, 27.9% [sham, RIPC] vs 51.2% [controls]. We observed less preconditioning among the subgroup of patients with increased exercise performance following RIPC (p<0.04). Conclusion In this pilot study of RIPC in heart failure patients, RIPC was not associated with improvements in exercise capacity overall. However, the degree of effect of RIPC may be inversely related to the degree of baseline preconditioning. These data provide the basis for a larger randomized trial to test the potential benefits of RIPC in patients with heart failure. Trial Registration ClinicalTrials.gov +++++NCT01128790 PMID:25181050

  10. Combinatorial therapy of exercise-preconditioning and nanocurcumin formulation supplementation improves cardiac adaptation under hypobaric hypoxia.

    PubMed

    Nehra, Sarita; Bhardwaj, Varun; Bansal, Anju; Saraswat, Deepika

    2017-09-26

    Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.

  11. The effectiveness of a preconditioning programme on preventing running-related injuries in novice runners: a randomised controlled trial.

    PubMed

    Bredeweg, Steef W; Zijlstra, Sjouke; Bessem, Bram; Buist, Ida

    2012-09-01

    There is no consensus on the aetiology and prevention of running-related injuries in runners. Preconditioning studies among different athlete populations show positive effects on the incidence of sports injuries. A 4-week preconditioning programme in novice runners will reduce the incidence of running-related injuries. Randomised controlled clinical trial; level of evidence, 1. Novice runners (N=432) prepared for a four-mile recreational running event. Participants were allocated to the 4-week preconditioning (PRECON) group (N=211) or the control group (N=221). The PRECON group started a 4-week training programme, prior to the running programme, with walking and hopping exercises. After the 4-week period both groups started a 9-week running programme. In both groups information was registered on running exposure and running-related injuries (RRIs) using an internet-based running log. Primary outcome measure was RRIs per 100 runners. An RRI was defined as any musculoskeletal complaint of the lower extremity or lower back causing restriction of running for at least a week. The incidence of RRIs was 15.2% in the PRECON group and 16.8% in the control group. The difference in RRIs between the groups was not significant (χ(2)=0.161, df=1, p=0.69). This prospective study demonstrated that a 4-week PRECON programme with walking and hopping exercises had no influence on the incidence of RRIs in novice runners.

  12. Exercise Preconditioning Improves Traumatic Brain Injury Outcomes

    PubMed Central

    Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.

    2015-01-01

    Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153

  13. Exercise preconditioning improves traumatic brain injury outcomes.

    PubMed

    Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J

    2015-10-05

    To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans.

    PubMed

    Crisafulli, Antonio; Tangianu, Flavio; Tocco, Filippo; Concu, Alberto; Mameli, Ombretta; Mulliri, Gabriele; Caria, Marcello A

    2011-08-01

    Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ∼ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.

  15. Antagonistic interaction between cordyceps sinensis and exercise on protection in fulminant hepatic failure.

    PubMed

    Cheng, Yu-Jung; Shyu, Woei-Cherng; Teng, Yi-Hsien; Lan, Yu-Hsuan; Lee, Shin-Da

    2014-01-01

    Herb supplements are widely used by Asian athletes; however, there are no studies evaluated the co-effects of exercise and herb supplements on hepatic failure. In this study, D-GalN/LPS-induced fulminant hepatic failure was used to examine whether there are synergistic or antagonistic effects of exercise and Cordyceps sinensis (CS). Mice were randomly divided into eight groups: control, swimming exercise for four weeks, D-GalN/LPS challenge, swimming exercise plus D-GalN/LPS, 20 mg/kg or 40 mg/kg CS pretreated for four weeks plus D-GalN/LPS, and swimming exercise combined with 20 mg/kg or 40 mg/kg CS pretreatment plus D-GalN/LPS. Either exercise or 40 mg/kg CS pretreatment alone significantly decreased D-GalN/LPS-induced TNF-α, AST, NO, apoptotic-related proteins, and hepatocyte apoptosis. Exercise or 40 mg/kg CS alone increased the IL-10 and D-GalN/LPS-suppressed Superoxide Dismutase (SOD) level. However, no protective or worse effect was observed in the mice treated with exercise preconditioning combined 40 mg/kg CS compared to those receive exercise alone or CS alone. TNF-α, AST, NO level, caspase-3 activity, and hepatocytes apoptosis were not significantly different in the exercise combined with 40 mg/kg CS compared to mice challenged with D-GalN/LPS. The IL-10 level was significantly decreased after D-GalN/LPS stimulation in the mice received exercise combined with 40 mg/kg CS, indicating the combination strongly reduced the anti-inflammatory effect. In summary, preconditioning exercise or CS pretreatment alone can protect mice from septic liver damage, but in contrast, the combination of exercise and CS does not produce any benefit. The antagonistic interactions between exercise and CS imply taking CS is not recommended for people who undertake regular exercise.

  16. Mitochondria in the middle: exercise preconditioning protection of striated muscle

    PubMed Central

    Rodriguez, Dinah A.; Hord, Jeffrey M.

    2016-01-01

    Abstract Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf‐1 and heat shock factor‐1 and up‐regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator‐1 (PGC‐1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia–reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ‐opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin‐1/PGC‐1 signalling) are central to the protective effects of exercise preconditioning. PMID:27060608

  17. Effect of a prior bout of preconditioning exercise on muscle damage from downhill walking.

    PubMed

    Maeo, Sumiaki; Ochi, Yusuke; Yamamoto, Masayoshi; Kanehisa, Hiroaki; Nosaka, Kazunori

    2015-03-01

    This study investigated whether reduced-duration downhill walking (DW) would confer a protective effect against muscle damage induced by a subsequent bout of longer duration DW performed 1 week or 4 weeks later. Healthy young adults were allocated to a control or one of the preconditioning exercise (PRE-1wk or PRE-4wk) groups (10 men and 4 women per group). PRE-1wk and PRE-4wk groups performed 20-min DW (-28% slope, 5 km/h, 10% body mass added to a backpack) 1 week and 4 weeks before 40-min DW, respectively, and the control group performed 40-min DW only. Maximal voluntary contraction (MVC) knee extension torque, plasma creatine kinase (CK) activity, and muscle soreness (100-mm visual analog scale) were measured before, immediately after, and 24, 48, and 72 h after DW, and the changes in these variables were compared among groups. The control group showed symptoms of muscle damage (e.g., prolonged decrease in MVC: -14% ± 10% at 48 h post-DW) after 40-min DW. Changes in all variables after 40-min DW of PRE-1wk and PRE-4wk groups were 54%-61% smaller (P < 0.05) than the control group, without significant differences between PRE-1wk and PRE-4wk groups for MVC and plasma CK activity. Importantly, changes after the preconditioning exercise (20-min DW) were 67%-69% smaller (P < 0.05) than those after the 40-min DW of the control group. These findings suggest that 20-min DW resulting in minor muscle damage conferred a protective effect against subsequent 40-min DW, and its effect could last for more than 4 weeks.

  18. High-altitude headache: the effects of real vs sham oxygen administration.

    PubMed

    Benedetti, Fabrizio; Durando, Jennifer; Giudetti, Lucia; Pampallona, Alan; Vighetti, Sergio

    2015-11-01

    High-altitude, or hypobaric hypoxia, headache has recently emerged as an interesting model to study placebo and nocebo responses, and particularly their peripheral mechanisms. In this study, we analyze the response of this type of headache to either real or sham (placebo) oxygen (O(2)) administration at an altitude of 3500 m, where blood oxygen saturation (SO(2)) drops from the normal value of about 98% to about 85%. In a trial in which a double-blind administration of either 100% O(2) or sham O(2) was administered, we tested pre- and post-exercise headache, along with fatigue, heart rate (HR) responses, and prostaglandin E(2) (PGE(2)) salivary concentration. Although real O(2) breathing increased SO(2) along with a decrease in pre- and post-exercise headache, fatigue, HR, and PGE(2), placebo O(2) changed neither pre-/post-exercise headache nor SO(2)/HR/PGE(2), but it decreased fatigue. However, in another group of subjects, when sham O(2) was delivered after 2 previous exposures to O(2) (O(2) preconditioning), it decreased fatigue, post-exercise headache, HR, and PGE(2), yet without any increase in SO(2). Three main findings emerge from these data. First, placebo O(2) is effective in reducing post-exercise headache, along with HR and PGE(2) decrease, only after O(2) preconditioning. Second, pre-exercise (at rest) headache is not affected by placebo O(2), which emphasizes the limits of a placebo treatment at high altitude. Third, fatigue is affected by placebo O(2) even without prior O(2) conditioning, which suggests the higher placebo sensitivity of fatigue compared with headache pain at high altitude.

  19. Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke.

    PubMed

    Hung, Ching-Hsia; Chang, Nen-Chung; Cheng, Bor-Chih; Lin, Mao-Tsun

    2005-05-01

    Heat shock protein (HSP) 72 expression protects against arterial hypotension in rat heatstroke. HSP72 can also be induced in multiple organs, including hearts from rats with endurance exercise. We validated the hypothesis that progressive exercise preconditioning may confer cardiovascular protection during heatstroke by inducing the overexpression of HSP72 in multiple organs. To deal with the matter, we assessed the effects of heatstroke on mean arterial pressure, heart rate, cardiac output, stroke volume, total peripheral vascular resistance, colonic temperature, blood gases, and serum or tissue levels of tumor necrosis factor-alpha (TNF-alpha) in urethane-anesthetized rats pretreated without or with progressive exercise training for 1, 2, or 3 weeks. In addition, HSP72 expression in multiple organs was determined in different groups of animals. Heatstroke was induced by exposing the rats to a high blanket temperature (43 degrees C); the moment at which mean arterial pressure decreased from the peak value was taken as the time of heatstroke onset. Previous exercise training for 3 weeks, but not 1 or 2 weeks, conferred significant protection against hyperthermia, arterial hypotension, decreased cardiac output, decreased stroke volume, decreased peripheral vascular resistance, and increased levels of serum or tissue TNF-alpha during heatstroke and correlated with overexpression of HSP72 in multiple organs, including heart, liver, and adrenal gland. However, 10 days after 3 weeks of progressive exercise training, when HSP72 expression in multiple organs returned to basal values, the beneficial effects exerted by 3 weeks of exercise training were no longer observed. These results strongly suggest that HSP72 preconditioning with progressive exercise training protects against hyperthermia, circulatory shock, and TNF-alpha overproduction during heatstroke.

  20. 41 CFR 102-72.68 - What preconditions must be satisfied before an Executive agency may exercise the delegated...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What preconditions must... ancillary repair and alteration project? 102-72.68 Section 102-72.68 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL...

  1. 41 CFR 102-72.68 - What preconditions must be satisfied before an Executive agency may exercise the delegated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What preconditions must... ancillary repair and alteration project? 102-72.68 Section 102-72.68 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL...

  2. Exercise training improves free testosterone in lifelong sedentary aging men.

    PubMed

    Hayes, Lawrence D; Herbert, Peter; Sculthorpe, Nicholas F; Grace, Fergal M

    2017-07-01

    As the impact of high-intensity interval training (HIIT) on systemic hormones in aging men is unstudied to date, we investigated whether total testosterone (TT), sex hormone-binding globulin (SHBG), free testosterone (free-T) and cortisol (all in serum) were altered following HIIT in a cohort of 22 lifelong sedentary (62 ± 2 years) older men. As HIIT requires preconditioning exercise in sedentary cohorts, participants were tested at three phases, each separated by six-week training; baseline (phase A), following conditioning exercise (phase B) and post-HIIT (phase C). Each measurement phase used identical methods. TT was significantly increased following HIIT (~17%; P  < 0.001) with most increase occurring during preconditioning (~10%; P  = 0.007). Free-T was unaffected by conditioning exercise ( P  = 0.102) but was significantly higher following HIIT compared to baseline (~4.5%; P  = 0.023). Cortisol remained unchanged from A to C ( P  = 0.138). The present data indicate a combination of preconditioning, and HIIT increases TT and SHBG in sedentary older males, with the HIIT stimulus accounting for a small but statistically significant increase in free-T. Further study is required to determine the biological importance of small improvements in free-T in aging men. © 2017 The authors.

  3. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    PubMed

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lower skin temperature decreases maximal cycling performance.

    PubMed

    Imai, Daiki; Okazaki, Kazunobu; Matsumura, Shinya; Suzuki, Takashi; Miyazawa, Taiki; Suzuki, Akina; Takeda, Ryosuke; Hamamoto, Takeshi; Zako, Tetsuo; Kawabata, Takashi; Miyagawa, Toshiaki

    2011-12-01

    It is known that external cooling of body regions involved in exercise, prior to exercise, decreases anaerobic performance. However, there have been no studies reporting the effects of whole body skin surface cooling before exercise on maximal anaerobic capacity. In order to clarify the effects, we compared power output during the Wingate anaerobic test between preconditioning by exposure to temperature 10 degrees C and 25 degrees C. Eight healthy males carried out the Wingate test for 30 seconds, after pre-conditioning for 60 minutes using a perfusion suit with water at a temperature of 10 degrees C or 25 degrees C. We evaluated the peak power (PP) and peak power slope (PS) of the power output. Mean skin temperature (T(sk)) at 60 minutes of pre-conditioning in the 10 degrees C trial was significantly lower than in the 25 degrees C trial (p < 0.05). PP and also PS were significantly lower in the 10 degrees C trial than in the 25 degrees C trial. Changes (Δ) in PP between the 10 degrees C trial and the 25 degrees C trial were strongly correlated with ΔT(sk) and Δ in thigh and leg skin temperature (ΔT(thigh) and ΔT(leg), respectively), whereas ΔPS was strongly correlated with ΔT(sk), but not with ΔT(thigh) and ΔT(leg). Whole body skin surface cooling prior to exercise restricts anaerobic capacity, especially in the initial phase of exercise.

  5. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.

    PubMed

    Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz

    2018-01-01

    Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion injury during surgery. Because of similarities between the pathophysiological formation of ischemia and reperfusion injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species, and increased proinflammatory signaling, the purpose of the present study was to investigate whether IPC performed before eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric-only (ECC; n = 9) or eccentric proceeded by IPC group (IPC + ECC; n = 10). The exercise protocol consisted of bilateral biceps curls (3 × 10 repetitions at 80% of the concentric one-repetition maximum). In IPC + ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mm Hg) immediately before the exercise (3 × 5 min of occlusion, separated by 5 min of reperfusion). Creatine kinase (CK), arm circumference, subjective pain (visual analog scale score), and radial displacement (tensiomyography, maximal radial displacement) were assessed before IPC, preexercise, postexercise, and 20 min, 2 h, 24 h, 48 h, and 72 h postexercise. CK differed from baseline only in ECC at 48 h (P < 0.001) and 72 h (P < 0.001) postexercise. After 24, 48, and 72 h, CK was increased in ECC compared with IPC + ECC (between groups: 24 h, P = 0.004; 48 h, P < 0.001; 72 h, P < 0.001). The visual analog scale score was significantly higher in ECC at 24-72 h postexercise when compared with IPC + ECC (between groups: all P values < 0.001). The maximal radial displacement was decreased on all postexercise days in ECC (all P values < 0.001) but remained statistically unchanged in IPC + ECC (between groups: P < 0.01). These findings indicate that IPC performed before a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain while maintaining the contractile properties of the muscle.

  6. Exercise Training and Cardiovascular Health in Cancer Patients.

    PubMed

    Squires, Ray W; Shultz, Adam M; Herrmann, Joerg

    2018-03-10

    Cancer patients nearly universally experience a decline in quality of life, with fatigue and reduced exercise tolerance as cardinal reflections. A routine exercise program can improve these signs and symptoms as well as overall outcomes. The review provides an updated overview of the field and its translation to clinical practice. A wealth of clinical studies have documented the safety and benefits of exercise after and during cancer therapy, and pilot and larger-scale studies are currently ongoing to integrate exercise into the treatment program for cancer patients undergoing active therapy (EXACT pilot, OptiTrain, and TITAN study). More recently, efforts have emerged to commence exercise programs before the start of cancer therapy, so-called pre-habilitation. The concept of increasing the cardiovascular reserve beforehand is intuitively attractive. In agreement, preclinical studies support exercise as an effective preventive means before and during cardiotoxic drug exposure. Assuming that a pronounced drop in exercise tolerance will occur during cancer therapy, pre-habilitation can potentially curtail or raise the nadir level of exercise tolerance. Furthermore, such efforts might serve as pre-conditioning efforts in reducing not only the nadir, but even the magnitude of drop in cardiovascular reserve. Initiated beforehand, cancer patients are also more likely to continue these efforts during cancer therapy. Finally, an active exercise routine (≥ 150 min/week moderate intensity or ≥ 75 min/week vigorous intensity or combination) in conjunction with the other six American Heart Association's cardiovascular health metrics (BMI < 25 kg/m 2 , blood pressure < 120/80 mmHg, fasting plasma glucose < 100 mg/dL, total cholesterol < 200 mg/dL, 4-5 component healthy diet, no smoking) reduces not only the cardiovascular but also the cancer disease risk. Exercise can reduce the risks of developing cancer, the detrimental effects of its treatment on the cardiovascular system, and overall morbidity and mortality. Exercise should become an integral part of the care for every cancer patient.

  7. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning

    PubMed Central

    Ren, Chuancheng; Gao, Xuwen; Steinberg, Gary K.; Zhao, Heng

    2009-01-01

    Remote ischemic preconditioning is an emerging concept for stroke treatment, but its protection against focal stroke has not been established. We tested whether remote preconditioning, performed in the ipsilateral hind limb, protects against focal stroke and explored its protective parameters. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery (MCA) combined with a 30 minute occlusion of the bilateral common carotid arteries (CCA) in male rats. Limb preconditioning was generated by 5 or 15 minute occlusion followed with the same period of reperfusion of the left hind femoral artery, and repeated for 2 or 3 cycles. Infarct was measured 2 days later. The results showed that rapid preconditioning with 3 cycles of 15 minutes performed immediately before stroke reduced infarct size from 47.7±7.6% of control ischemia to 9.8±8.6%; at 2 cycles of 15 minutes, infarct was reduced to 24.7±7.3%; at 2 cycles of 5 minutes, infarct was not reduced. Delayed preconditioning with 3 cycles of 15 minutes conducted 2 days before stroke also reduced infarct to 23.0 ±10.9%, but with 2 cycles of 15 minutes it offered no protection. The protective effects at these two therapeutic time windows of remote preconditioning are consistent with those of conventional preconditioning, in which the preconditioning ischemia is induced in the brain itself. Unexpectedly, intermediate preconditioning with 3 cycles of 15 minutes performed 12 hours before stroke also reduced infarct to 24.7±4.7%, which contradicts the current dogma for therapeutic time windows for the conventional preconditioning that has no protection at this time point. In conclusion, remote preconditioning performed in one limb protected against ischemic damage after focal cerebral ischemia. PMID:18201834

  8. Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running.

    PubMed

    Shima, Yosuke; Kitaoka, Katsuhiko; Yoshiki, Yumiko; Maruhashi, Yoshinobu; Tsuyama, Takeshi; Tomita, Katsuro

    2008-10-01

    The mechanisms of the protective effect conferred by heat shock preconditioning (HS) are currently unknown. The purpose of this study was to determine the effect of HS on muscle injury after downhill running and to address the mechanism of the effect. Female Wistar rats were assigned to three groups: HS, downhill running (E), and downhill running after heat shock preconditioning (HS + E). The HS and HS + E rats were placed in a heat chamber for 60 min (ambient temperature 42 +/- 1.0 degrees C) 48 h before downhill running. Reactive oxygen species (ROS) scavenging activity was determined by electron spin resonance (ESR), and heat shock protein 72 (HSP72) mRNA expression was measured in rat quadriceps femoris. Leukocyte infiltration and degenerated muscle fibers were determined histopathologically. ROS scavenging activity significantly increased at 3 days after HS (151 +/- 18%) and HSP72 mRNA expression increased immediately after HS (1750 +/- 1914%). No decrease in ROS scavenging activity was observed in the HS + E rats at 2 days after exercise compared with the E rats (102 +/- 9% vs. 79 +/- 5%). Degenerated muscle fibers in HS + E rats were significantly less than in E rats at 2, 3, and 7 days after exercise (0.8 +/- 1.0 vs. 2.8 +/- 1.6, 0.8 +/- 1.0 vs. 1.8 +/- 1.6, 0 vs. 0.3 +/- 0.6, respectively). These data demonstrated that HS can reduce muscle injury after downhill running, and this effect may be mediated by increased ROS scavenging activity. Furthermore, HS may protect the antioxidant defense system in skeletal muscle by enhancing the adaptive HSP72 mRNA response.

  9. Conduit Artery Diameter During Exercise Is Enhanced After Local, but Not Remote, Ischemic Preconditioning

    PubMed Central

    Cocking, Scott; Cable, N. T.; Wilson, Mathew G.; Green, Daniel J.; Thijssen, Dick H. J.; Jones, Helen

    2018-01-01

    Introduction: The ability of ischemic preconditioning (IPC) to enhance exercise capacity may be mediated through altering exercise-induced blood flow and/or vascular function. This study investigated the hypothesis that (local) IPC enhances exercise-induced blood flow responses and prevents decreases in vascular function following exercise. Methods: Eighteen healthy, recreationally trained, male participants (mean ±SD: age 32 ± 8 years; BMI 24.2 ± 2.3; blood pressure 122 ± 10/72 ± 8 mmHg; resting HR 58 ± 9 beats min-1) received IPC (220 mmHg; 4 × 5-min bilateral arms), REMOTE IPC (220 mmHg; 4 × 5-min bilateral legs), or SHAM (20 mmHg; 4 × 5-min bilateral arms) in a counterbalanced order prior to 30-min of submaximal (25% maximal voluntary contraction) unilateral rhythmic handgrip exercise. Brachial artery diameter and blood flow were assessed every 5-min throughout the 30-min submaximal exercise using high resolution ultrasonography. Pre- and post-exercise vascular function was measured using flow-mediated dilation (FMD). Results: IPC resulted in enlarged brachial artery diameter during exercise [0.016 cm (0.003–0.03 cm), P = 0.015] compared to REMOTE IPC, but blood flow during exercise was similar between conditions (P > 0.05). Blood flow (l/min) increased throughout exercise (time: P < 0.005), but there was no main effect of condition (P = 0.29) or condition ∗ time interaction (P = 0.83). Post-exercise FMD was similar between conditions (P > 0.05). Conclusion: Our data show that local (but not remote) IPC, performed as a strategy prior to exercise, enhanced exercise-induced conduit artery diameter dilation, but these changes do not translate into increased blood flow during exercise nor impact post-exercise vascular function. PMID:29740345

  10. Short-term remote ischemic preconditioning is not associated with improved blood pressure and exercise capacity in young adults.

    PubMed

    Banks, Laura; Wells, Greg D; Clarizia, Nadia A; Jean-St-Michel, Emilie; McKillop, Adam L; Redington, Andrew N; McCrindle, Brian W

    2016-08-01

    We sought to determine whether a 9-day remote ischemic preconditioning (IPC) causes improvements in exercise performance, energetics, and blood pressure. Ten participants (mean age 24 ± 4 years) had no changes in aerobic capacity (preintervention: 38 ± 10 mL/(kg·min)(-1) vs. postintervention: 38 ± 10 mL/(kg·min)(-1)), blood pressure (preintervention: 112 ± 7/66 ± 6 mm Hg vs. postintervention: 112 ± 10/62 ± 5 mm Hg), cardiac phosphocreatinine-to-adenosine-triphosphate ratio (preintervention: 2.1 ± 0.5 vs. postintervention: 2.3 ± 0.4), and postexercise skeletal muscle phosphocreatine recovery (preintervention: 34 ± 11 s vs. postintervention: 31 ± 11 s). Short-term remote IPC may be ineffective in improving these outcomes.

  11. The GRONORUN 2 study: effectiveness of a preconditioning program on preventing running related injuries in novice runners. The design of a randomized controlled trial.

    PubMed

    Bredeweg, Steef W; Zijlstra, Sjouke; Buist, Ida

    2010-09-01

    Distance running is a popular recreational exercise. It is a beneficial activity for health and well being. However, running may also cause injuries, especially of the lower extremities. In literature there is no agreement what intrinsic and extrinsic factors cause running related injuries (RRIs). In theory, most RRIs are elicited by training errors, this too much, too soon. In a preconditioning program runners can adapt more gradually to the high mechanical loads of running and will be less susceptible to RRIs. In this study the effectiveness of a 4-week preconditioning program on the incidence of RRIs in novice runners prior to a training program will be studied. The GRONORUN 2 (Groningen Novice Running) study is a two arm randomized controlled trial studying the effect of a 4-week preconditioning (PRECON) program in a group of novice runners. All participants wanted to train for the recreational Groningen 4-Mile running event. The PRECON group started a 4-week preconditioning program with walking and hopping exercises 4 weeks before the start of the training program. The control (CON) and PRECON group started a frequently used 9-week training program in preparation for the Groningen 4-Mile running event.During the follow up period participants registered their running exposure, other sporting activities and running related injuries in an Internet based running log. The primary outcome measure was the number of RRIs. RRI was defined as a musculoskeletal ailment or complaint of the lower extremities or back causing a restriction on running for at least three training sessions. The GRONORUN 2 study will add important information to the existing running science. The concept of preconditioning is easy to implement in existing training programs and will hopefully prevent RRIs especially in novice runners. The Netherlands National Trial Register NTR1906. The NTR is part of the WHO Primary Registries.

  12. Cyclical blood flow restriction resistance exercise: a potential parallel to remote ischemic preconditioning?

    PubMed

    Sprick, Justin D; Rickards, Caroline A

    2017-11-01

    Remote ischemic preconditioning (RIPC) is characterized by the cyclical application of limb blood flow restriction and reperfusion and has been shown to protect vital organs during a subsequent ischemic insult. Blood flow restriction exercise (BFRE) similarly combines bouts of blood flow restriction with low-intensity exercise and thus could potentially emulate the protection demonstrated by RIPC. One concern with BFRE, however, is the potential for an augmented rise in sympathetic outflow due to greater activation of the exercise pressor reflex. Because of the use of lower workloads, however, we hypothesized that BFRE would elicit an attenuated increase in sympathetic outflow [assessed via plasma norepinephrine (NE) and mean arterial pressure (MAP)] and middle cerebral artery velocity (MCAv) when compared with conventional exercise (CE). Fifteen subjects underwent two leg press exercise interventions: 1 ) BFRE-220 mmHg bilateral thigh occlusion at 20% 1 rep-max (1RM), and 2 ) CE-65% 1RM without occlusion. Each condition consisted of 4 × 5-min cycles of exercise, with 3 × 10-reps in each cycle. Five minutes of rest and reperfusion (for BFRE) followed each cycle. MAP increased with exercise ( P < 0.001) and was 4-5 mmHg higher with CE versus BFRE ( P ≤ 0.09). Mean MCAv also increased with exercise ( P < 0.001) and was higher with CE compared with BFRE during the first bout of exercise only ( P = 0.07). Plasma NE concentration increased with CE only ( P < 0.001) and was higher than BFRE throughout exercise ( P ≤ 0.02). The attenuated sympathetic response, combined with similar cerebrovascular responses, suggest that cyclical BFRE could be explored as an alternative to CE in the clinical setting. Copyright © 2017 the American Physiological Society.

  13. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    PubMed

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-08-01

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men.

    PubMed

    Grace, Fergal; Herbert, Peter; Elliott, Adrian D; Richards, Jo; Beaumont, Alexander; Sculthorpe, Nicholas F

    2017-05-13

    This study examined a programme of pre-conditioning exercise with subsequent high intensity interval training (HIIT) on blood pressure, echocardiography, cardiac strain mechanics and maximal metabolic (MET) capacity in sedentary (SED) aging men compared with age matched masters athletes (LEX). Using a STROBE compliant observational design, 39 aging male participants (SED; n=22, aged 62.7±5.2yrs) (LEX; n=17, aged=61.1±5.4yrs) were recruited to a study that necessitated three distinct assessment phases; enrolment (Phase A), following pre-conditioning exercise in SED (Phase B), then following 6weeks of HIIT performed once every five days by both groups before reassessment (Phase C). Hemodynamic, echocardiographic and cardiac strain mechanics were obtained at rest and maximal cardiorespiratory and chronotropic responses were obtained at each measurement phase. The training intervention improved systolic, mean arterial blood pressure, rate pressure product and heart rate reserve (each P<0.05) in SED and increased MET capacity in both SED and LEX (P<0.01) which was amplified by HIIT. Echocardiography and cardiac strain measures were unremarkable apart from trivial increase to intra-ventricular septum diastole (IVSd) (P<0.05) and decrease to left ventricular internal dimension diastole (LVId) (P<0.05) in LEX following HIIT. A programme of preconditioning exercise with HIIT induces clinically relevant improvements in blood pressure, rate pressure product and encourages recovery of heart rate reserve in SED, while improving maximal MET capacity in both SED and LEX without inducing any pathological cardiovascular remodeling. These data add to the emerging repute of HIIT as a safe and promising exercise prescription to improve cardiovascular function and metabolic capacity in sedentary aging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. 12 CFR 543.11-1 - Grandfathered authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... upon the occurrence of specific preconditions, such as the attainment of a particular future date or... exercise of any particular authority on a more liberal basis than is allowable under the most liberal...

  16. 12 CFR 543.11-1 - Grandfathered authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... upon the occurrence of specific preconditions, such as the attainment of a particular future date or... exercise of any particular authority on a more liberal basis than is allowable under the most liberal...

  17. Isometric pre-conditioning blunts exercise-induced muscle damage but does not attenuate changes in running economy following downhill running.

    PubMed

    Lima, Leonardo C R; Bassan, Natália M; Cardozo, Adalgiso C; Gonçalves, Mauro; Greco, Camila C; Denadai, Benedito S

    2018-05-08

    Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon.

    PubMed

    Ferreira, Beatriz M A; Moffa, Paulo J; Falcão, Andrea; Uchida, Augusto; Camargo, Paulo; Pereyra, Pascual; Soares, Paulo R; Hueb, Whady; Ramires, Jose A F

    2005-07-01

    The warm-up phenomenon observed after the second of two sequential exercise tests is characterized by an increased time to ischemia and ischemic threshold, and the latter is related to ischemic preconditioning. Previous studies have demonstrated that a single dose of glibenclamide, a cardiac ATP-sensitive K (K(ATP)) channel blocker, prevents ischemic preconditioning. This study aimed to investigate the effects of chronic treatment with glibenclamide during two sequential exercise tests. Forty patients with angina pectoris were divided into three groups: 20 nondiabetics (NDM), 10 patients with diabetes in treatment with glibenclamide (DMG) and 10 diabetic patients with other treatments (DMO). All patients underwent two consecutive exercise tests. Heart rate and rate-pressure product at 1.0 mm ST-segment depression significantly increased during the second exercise test in NDM group (121.3+/-16.5 vs 127.3+/-15.3 beats/min, P<0.001, and 216.7+43.1 vs 232.1+/-43.0 beats.min-1.mmHg.10(2), P<0.001), and in DMO group (114.1+/-19.6 vs 119.6+/-18.1 beats/min, P=0.001, and 199.8+/-36.6 vs 222.2+/-29.2 beats.min-1.mmHg.10(2), P=0.019), but it did not change in patients in DMG group (130.7+/-14.5 vs 132.1+/-4.7 beats/min, P=ns, and 251.7+/-47.2 vs 250.3+/-42.8 beats.min-1.mmHg.10(2), P=ns). In the three groups, NDM, DMO, and DMG, the time to 1.0 mm ST-segment depression during the second exercise test was greater than during the first (225.0+/-112.5 vs 267.0+/-122.3 seconds, P=0.006; 187.5+/-54.0 vs 226.5+/-74.6 seconds, P=0.029 and 150.0+/-78.7 vs 186.0+/-81.9 seconds, P<0.001). The chronic use of glibenclamide may have mediated the loss of preconditioning benefits in the warm-up phenomenon, probably through its KATP channel-blocker activity, but without acting upon the tolerance to exercise.

  19. Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise.

    PubMed

    Borges, Juliana Pereira; da Silva Verdoorn, Karine

    2017-01-01

    Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.

  20. High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters' athletes: an observational study.

    PubMed

    Herbert, Peter; Hayes, Lawrence D; Sculthorpe, Nicholas; Grace, Fergal M

    2017-03-01

    The aim of this investigation was to examine the impact high-intensity interval training (HIIT) on serum insulin-like growth factor-I (IGF-I) in active compared with sedentary aging men. 22 lifetime sedentary (SED; 62 ± 2 years) and 17 masters' athletes (LEX; 60 ± 5 years) were recruited to the study. As HIIT requires preconditioning exercise in sedentary cohorts, the study required three assessment phases; enrollment (phase A), following preconditioning exercise (phase B), and post-HIIT (phase C). Serum IGF-I was determined by electrochemiluminescent immunoassay. IGF-I was higher in LEX compared to SED at baseline (p = 0.007, Cohen's d = 0.91), and phase B (p = 0.083, Cohen's d = 0.59), with only a small difference at C (p = 0.291, Cohen's d = 0.35). SED experienced a small increase in IGF-I following preconditioning from 13.1 ± 4.7 to 14.2 ± 6.0 μg·dl -1 (p = 0.376, Cohen's d = 0.22), followed by a larger increase post-HIIT (16.9 ± 4.4 μg·dl -1 ), which was significantly elevated compared with baseline (p = 0.002, Cohen's d = 0.85), and post-preconditioning (p = 0.005, Cohen's d = 0.51). LEX experienced a trivial changes in IGF-I from A to B (18.2 ± 6.4 to 17.2 ± 3.7 μg·dl -1 [p = 0.538, Cohen's d = 0.19]), and a small change post-HIIT (18.4 ± 4.1 μg·dl -1 [p = 0.283, Cohen's d = 0.31]). Small increases were observed in fat-free mass in both groups following HIIT (p < 0.05, Cohen's d = 0.32-0.45). In conclusion, HIIT with preconditioning exercise abrogates the age associated difference in IGF-I between SED and LEX, and induces small improvements in fat-free mass in both SED and LEX.

  1. Combining remote ischemic preconditioning and aerobic exercise: a novel adaptation of blood flow restriction exercise.

    PubMed

    Sprick, Justin D; Rickards, Caroline A

    2017-11-01

    Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65-70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4-5 mmHg lower with BFRE versus CE during the reperfusion periods ( P ≤ 0.05 for reperfusion periods 3 and 4 ). There were no differences in MCAv or PCAv between trials ( P ≥ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC. Copyright © 2017 the American Physiological Society.

  2. Preconditioning, postconditioning and their application to clinical cardiology.

    PubMed

    Kloner, Robert A; Rezkalla, Shereif H

    2006-05-01

    Ischemic preconditioning is a well-established phenomenon first described in experimental preparations in which brief episodes of ischemia/reperfusion applied prior to a longer coronary artery occlusion reduce myocardial infarct size. There are ample correlates of ischemic preconditioning in the clinical realm. Preconditioning mimetic agents that stimulate the biochemical pathways of ischemic preconditioning and protect the heart without inducing ischemia have been examined in numerous experimental studies. However, despite the effectiveness of ischemic preconditioning and preconditioning mimetics for protecting ischemic myocardium, there are no preconditioning-based therapies that are routinely used in clinical medicine at the current time. Part of the problem is the need to administer therapy prior to the known ischemic event. Other issues are that percutaneous coronary intervention technology has advanced so far (with the development of stents and drug-eluting stents) that ischemic preconditioning or preconditioning mimetics have not been needed in most interventional cases. Recent clinical trials such as AMISTAD I and II (Acute Myocardial Infarction STudy of ADenosine) suggest that some preconditioning mimetics may reduce myocardial infarct size when given along with reperfusion or, as in the IONA trial, have benefit on clinical events when administered chronically in patients with known coronary artery disease. It is possible that some of the benefit described for adenosine in the AMISTAD 1 and 2 trials represents a manifestation of the recently described postconditioning phenomenon. It is probable that postconditioning--in which reperfusion is interrupted with brief coronary occlusions and reperfusion sequences--is more likely than preconditioning to be feasible as a clinical application to patients undergoing percutaneous coronary intervention for acute myocardial infarction.

  3. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats.

    PubMed

    de Moraes, Camila; Davel, Ana Paula Couto; Rossoni, Luciana Venturini; Antunes, Edson; Zanesco, Angelina

    2008-05-29

    Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. High caloric diet increased triglycerides concentration (SDD: 216 +/- 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 +/- 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 +/- 0.1 and TRD: 1.24 +/- 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 +/- 0.1 and SDD: 2.57 +/- 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 +/- 6; TR: 140 +/- 8; SDD: 156 +/- 8 and TRD 153 +/- 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 +/- 4; TR: 28 +/- 6; SDD: 27 +/- 3 and TRD: 30 +/- 2 microM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.

  4. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis.

    PubMed

    Tuttle, James A; Chrismas, Bryna C R; Gibson, Oliver R; Barrington, James H; Hughes, David C; Castle, Paul C; Metcalfe, Alan J; Midgley, Adrian W; Pearce, Oliver; Kabir, Chindu; Rayanmarakar, Faizal; Al-Ali, Sami; Lewis, Mark P; Taylor, Lee

    2017-01-01

    The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1 HOTDOWN and HPC2 HOTDOWN ) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1 TEMPFLAT ) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2 HOTDOWN ). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions ( p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2 HOTDOWN compared to HPC1 HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased ( p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship ( p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.

  5. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  6. Matrix preconditioning: a robust operation for optical linear algebra processors.

    PubMed

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.

  7. Effects of photobiomodulation therapy (pulsed LASER 904 nm) on muscle oxygenation and performance in exercise-induced skeletal muscle fatigue in young women: a pilot study

    NASA Astrophysics Data System (ADS)

    Oliveira, Murilo X.; Toma, Renata L.; Jones, Brett J. L.; Cyprien, Thomas P.; Tier, Matthew R.; Wallace, Cameron A.; Renno, Ana C. M.; Sabapathy, Surendran; Laakso, E.-Liisa

    2017-02-01

    Photobiomodulation therapy (PBMt) has been used to increase muscle performance and improve recovery when applied before exercise. We aimed to evaluate the effects of PBMt using LASER on muscle oxygenation and performance. The study was a randomized, participant and assessor-blinded, within-subject crossover trial with placebo control to test the viability of the methods. Five physically active young women were randomly assigned to either placebo, or active PBMt (12 diode cluster probe; 904 nm; 60 mW; 250 Hz; 43.2 J per site, 129.6 J total) in contact over rectus femoris (RF) muscle of the dominant limb immediately before an isokinetic fatigue protocol. A one-week wash-out period preceded cross-over. Electromyography and isokinetic performance measures were evaluated. Absolute concentrations of deoxygenated haemoglobin and myoglobin (deoxy[Hb + Mb]) of the RF, an index of local microvascular fractional O2 extraction, was monitored continuously by near-infrared spectroscopy (NIRS). Total haemoglobin concentration as an indicator of microvascular haematocrit was calculated as the sum of the deoxy[Hb + Mb] and oxy[Hb + Mb] signals. PBMt pre-conditioning reduced time to peak torque when compared to placebo (P<0.05). PBMt resulted in a noticeably reduced trend in deoxy[Hb + Mb] during exercise compared to placebo (P>0.05). PBMt before exercise improves indicators of muscle performance, potentially by increasing local matching of bulk and microvascular O2 delivery relative to skeletal muscle O2 utilisation. Further work is required to understand the effect of PBMt on haemodynamic and metabolic characteristics of muscle.

  8. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongyi; Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai; Zhang, Ben

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction.more » Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression of NF-κB p65 and nuclear translocation.« less

  9. The effect of brain death in rat steatotic and non-steatotic liver transplantation with previous ischemic preconditioning.

    PubMed

    Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen

    2015-01-01

    Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Effects and interaction, of cariporide and preconditioning on cardiac arrhythmias and infarction in rat in vivo

    PubMed Central

    Aye, Nu Nu; Komori, Sadayoshi; Hashimoto, Keitaro

    1999-01-01

    Although Na+-H+ exchange (NHE) inhibitors are reported to protect the myocardium against ischaemic injury, NHE activation has also been proposed as a potential mechanism of ischaemic preconditioning-induced protection. This study was performed to test any modifiable effect of cariporide, an NHE inhibitor, on cardioprotective effects of preconditioning.Anaesthetized rats were subjected to 30 min of coronary artery occlusion and 150 min of reperfusion. The preconditioning (PC) was induced by 3 min of ischaemia and 10 min of reperfusion (1PC) or three episodes of 3 min ischaemia and 5 min reperfusion (3PC). Cariporide (0.3 mg kg−1) an NHE inhibitor, was administered 30 min (cari(30)) or 45 min (cari(45)) before coronary ligation (n=8–11 for each group).Ventricular arrhythmias during 30 min ischaemia and infarct size (measured by triphenyltetrazolium (TTC) and expressed as a per cent area at risk (%AAR)) were determined. Cari(30) reduced ventricular fibrillation (VF) incidence and infarct size (from 45 to 0% and 34±4 to 9±2%; each P<0.05), whereas cari(45) did not. Likewise, 3PC reduced these variables (to 0% and 10±2%; P<0.05 in each case) whereas 1PC did not. Moreover, subthreshold preconditioning (1PC) and cariporide (cari(45)), when combined, reduced VF incidence and infarct size (to 0% and 15+3%; each P<0.05).In conclusion, changes in NHE activity do not seem to be responsible for the cardioprotective action of ischaemic preconditioning. Protective effects of NHE inhibition and subthreshold preconditioning appear to act additively. PMID:10433514

  11. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    PubMed

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  12. Laparoscopic ischemic conditioning of the stomach increases neovascularization of the gastric conduit in patients undergoing esophagectomy for cancer.

    PubMed

    Pham, Thai H; Melton, Shelby D; McLaren, Patrick J; Mokdad, Ali A; Huerta, Sergio; Wang, David H; Perry, Kyle A; Hardaker, Hope L; Dolan, James P

    2017-09-01

    Gastric ischemic preconditioning has been proposed to improve blood flow and reduce the incidence of anastomotic complications following esophagectomy with gastric pull-up. This study aimed to evaluate the effect of prolonged ischemic preconditioning on the degree of neovascularization in the distal gastric conduit at the time of esophagectomy. A retrospective review of a prospectively maintained database identified 30 patients who underwent esophagectomy. The patients were divided into three groups: control (no preconditioning, n = 9), partial (short gastric vessel ligation only, n = 8), and complete ischemic preconditioning (left and short gastric vessel ligation, n = 13). Microvessel counts were assessed, using immunohistologic analysis to determine the degree of neovascularization at the distal gastric margin. The groups did not differ in age, gender, BMI, pathologic stage, or cancer subtype. Ischemic preconditioning durations were 163 ± 156 days for partial ischemic preconditioning, compared to 95 ± 50 days for complete ischemic preconditioning (P = 0.2). Immunohistologic analysis demonstrated an increase in microvessel counts of 29% following partial ischemic preconditioning (P = 0.3) and 67% after complete ischemic preconditioning (P < 0.0001), compared to controls. Our study indicates that prolonged ischemic preconditioning is safe and does not interfere with subsequent esophagectomy. Complete ischemic preconditioning increased neovascularization in the distal gastric conduit. © 2017 Wiley Periodicals, Inc.

  13. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    PubMed Central

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  14. The mechanism of protection from 5 (N-ethyl-N-isopropyl)amiloride differs from that of ischemic preconditioning in rabbit heart.

    PubMed

    Sato, H; Miki, T; Vallabhapurapu, R P; Wang, P; Liu, G S; Cohen, M V; Downey, J M

    1997-10-01

    We investigated the effects of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) on infarction in isolated rabbit hearts and cardiomyocytes. Thirty min of regional ischemia caused 29.6 +/- 2.8% of the risk zone to infarct in untreated Krebs buffer-perfused hearts. Treatment with EIPA (1 microM) for 20 min starting either 15 min before ischemia or 15 min after the onset of ischemia significantly reduced infarction to 5.4 +/- 2.0% and 7.0 +/- 1.0%, respectively (p < 0.01 versus untreated hearts). In both cases salvage was very similar to that seen with ischemic preconditioning (PC) (7.1 +/- 1.5% infarction). Unlike the case with ischemic preconditioning, however, protection from EIPA was not blocked by 50 microM polymyxin B, a PKC inhibitor, or 1 microM glibenclamide, a KATP channel blocker. Forty-five min of regional ischemia caused 51.0 +/- 2.9% infarction in untreated hearts. Ischemic preconditioning reduced infarction to 23.4 +/- 3.1% (p < 0.001 versus untreated hearts). In these hearts with longer periods of ischemia pretreatment with EIPA reduced infarction similarly to 28.8 +/- 2.1% (p < 0.01 versus untreated hearts). However, when EIPA was combined with ischemic PC, no further reduction in infarction was seen (23.8 +/- 3.5% infarction). To further elucidate the mechanism of EIPA's cardioprotective effect, this agent was also examined in isolated rabbit cardiomyocytes. Preconditioning caused a delay of about 30 min in the progressive increase in osmotic fragility that occurs during simulated ischemia. In contrast, EIPA had no effect on the time course of ischemia-induced osmotic fragility. Furthermore, EIPA treatment did not alter the salutary effect of ischemic preconditioning when the two were combined in this model. We conclude that Na+/H+ exchange inhibition limits myocardial infarction in the isolated rabbit heart by a mechanism which is quite different from that of ischemic preconditioning. Despite the apparently divergent mechanisms, EIPA's cardioprotective effect could not be added to that of ischemic or metabolic preconditioning in these models.

  15. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  16. Analysis of physics-based preconditioning for single-phase subchannel equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansel, J. E.; Ragusa, J. C.; Allu, S.

    2013-07-01

    The (single-phase) subchannel approximations are used throughout nuclear engineering to provide an efficient flow simulation because the computational burden is much smaller than for computational fluid dynamics (CFD) simulations, and empirical relations have been developed and validated to provide accurate solutions in appropriate flow regimes. Here, the subchannel equations have been recast in a residual form suitable for a multi-physics framework. The Eigen spectrum of the Jacobian matrix, along with several potential physics-based preconditioning approaches, are evaluated, and the the potential for improved convergence from preconditioning is assessed. The physics-based preconditioner options include several forms of reduced equations that decouplemore » the subchannels by neglecting crossflow, conduction, and/or both turbulent momentum and energy exchange between subchannels. Eigen-scopy analysis shows that preconditioning moves clusters of eigenvalues away from zero and toward one. A test problem is run with and without preconditioning. Without preconditioning, the solution failed to converge using GMRES, but application of any of the preconditioners allowed the solution to converge. (authors)« less

  17. Exercise training prevents skeletal muscle damage in an experimental sepsis model

    PubMed Central

    Coelho, Carla Werlang; Jannig, Paulo R; de Souza, Arlete B; Fronza, Hercilio; Westphal, Glauco A; Petronilho, Fabricia; Constantino, Larissa; Dal-Pizzol, Felipe; Ferreira, Gabriela K; Streck, Emilio E; Silva, Eliezer

    2013-01-01

    OBJECTIVE: Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS: Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS: The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION: In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats. PMID:23420166

  18. Neuroprotective Effects of Peptides during Ischemic Preconditioning.

    PubMed

    Zarubina, I V; Shabanov, P D

    2016-02-01

    Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.

  19. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  20. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane.

    PubMed

    Szobi, Adrián; Farkašová-Ledvényiová, Veronika; Lichý, Martin; Muráriková, Martina; Čarnická, Slávka; Ravingerová, Tatiana; Adameová, Adriana

    2018-06-19

    Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects. © 2018 Comenius University in Bratislava, Faculty of Pharmacy. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Age-related reduction of cerebral ischemic preconditioning: myth or reality?

    PubMed Central

    Della-Morte, David; Cacciatore, Francesco; Salsano, Elisa; Pirozzi, Gilda; Genio, Maria Teresa Del; D’Antonio, Iole; Gargiulo, Gaetano; Palmirotta, Raffaele; Guadagni, Fiorella; Rundek, Tatjana; Abete, Pasquale

    2013-01-01

    Stroke is one of the leading causes of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. The “cerebral” ischemic preconditioning mechanism is characterized by a brief episode of ischemia that renders the brain more resistant against subsequent longer ischemic events. This ischemic tolerance has been shown in numerous experimental models of cerebral ischemia. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators released and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Agents able to mimic the “cerebral” preconditioning effect may represent a new powerful tool for the treatment of acute ischemic stroke in the elderly. In this article, animal and human cerebral ischemic preconditioning, its age-related difference, and its potential therapeutical applications are discussed. PMID:24204128

  2. Preconditioning to Reduce Decompression Stress in Scuba Divers.

    PubMed

    Germonpré, Peter; Balestra, Costantino

    2017-02-01

    Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.

  3. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    PubMed

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells. Our results suggest that preconditioning stem cells with the mood stabilizers lithium and VPA before transplantation may serve as an effective strategy for enhancing the therapeutic efficacy of stem cell-based therapies. Copyright © 2016. Published by Elsevier Inc.

  4. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia

    PubMed Central

    Kim, In Hye; Jeon, Yong Hwan; Lee, Tae-Kyeong; Cho, Jeong Hwi; Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich-Na; Kim, Yang Hee; Hong, Seongkweon; Yan, Bing Chun; Won, Moo-Ho; Lee, Yun Lyul

    2017-01-01

    Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity. PMID:28761424

  5. Muscle damage and repeated bout effect following blood flow restricted exercise.

    PubMed

    Sieljacks, Peter; Matzon, Andreas; Wernbom, Mathias; Ringgaard, Steffen; Vissing, Kristian; Overgaard, Kristian

    2016-03-01

    Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.

  6. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus.

    PubMed

    Mosher, P E; Nash, M S; Perry, A C; LaPerriere, A R; Goldberg, R B

    1998-06-01

    To test the safety and effects of exercise conditioning on cardiorespiratory fitness, body composition, muscle strength, glucose regulation, and lipid/cholesterol levels. Ten male adolescents with insulin-dependent diabetes mellitus (IDDM) and 10 adolescent nondiabetic (ND) subjects. Pretest, posttest intervention trial with control group. University-based human performance laboratory. Mixed endurance and calisthenic/strength activities performed at a rapid pace three times weekly for 12 weeks. Only one subject with IDDM experienced hypoglycemia after a single exercise session. Both subject groups improved their cardiorespiratory endurance (p < .05). Lean body mass of IDDM subjects increased by 3.5% (p < .05). Subjects with and without IDDM lowered their percent body fat (p < .05 and .001, respectively). Strength improvement of IDDM subjects ranged from 13.7% (p < .001) to 44.4% (p < .01), depending upon the maneuver. Fasting blood plasma glucose for all subjects was unchanged by training, but glycosylated hemoglobin A1c of IDDM subjects was reduced by .96 percentage point (p < .05). Reductions of HbA1c benefitted subjects exhibiting poor preconditioning glycemic control. Low-density lipoprotein cholesterol was decreased in subjects with IDDM (p < .05), but not total cholesterol or triglycerides. Adolescents with IDDM undergoing aerobic circuit training improve their cardiorespiratory endurance, muscle strength, lipid profile, and glucose regulation. Aerobic circuit training is safe for properly trained and monitored adolescent diabetics.

  7. Signal transduction of flumazenil-induced preconditioning in myocytes.

    PubMed

    Yao, Z; McPherson, B C; Liu, H; Shao, Z; Li, C; Qin, Y; Vanden Hoek, T L; Becker, L B; Schumacker, P T

    2001-03-01

    The objective of this study was to examine the role of oxygen radicals, protein kinase C (PKC), and ATP-sensitive K(+) (K(ATP)) channels in mediating flumazenil-produced preconditioning. Chick cardiomyocyte death was quantified using propidium iodide, and oxygen radical generation was assessed using 2',7'-dichlorofluorescin oxidation. Preconditioning was initiated with 10 min of ischemia followed by 10 min of reoxygenation. Alternatively, flumazenil was infused for 10 min and removed 10 min before ischemia. Flumazenil (10 microM) and preconditioning increased oxygen radicals [1,693 +/- 101 (n = 3) and 1,567 +/- 98 (n = 3), respectively, vs. 345 +/- 53 (n = 3) in control] and reduced cell death similarly [22 +/- 3% (n = 5) and 18 +/- 2% (n = 6), respectively, vs. controls 49 +/- 5% (n = 8)]. Protection and increased oxygen radicals by flumazenil were abolished by pretreatment with the antioxidant thiol reductant 2-mercaptopropionyl glycine (800 microM; 52 +/- 10%, n = 6). Specific PKC inhibitors Go-6976 (0.1 microM) and chelerythrine (2 microM), given during ischemia and reoxygenation, blocked flumazenil-produced protection (47 +/- 5%, n = 6). The PKC activator phorbol 12-myristate 13-acetate (0.2 microM), given during ischemia and reoxygenation, reduced cell death similarly to that with flumazenil [17 +/- 4% (n = 6) and 22 +/- 3% (n = 5)]. Finally, 5-hydroxydecanoate (1 mM), a selective mitochondrial K(ATP) channel antagonist given during ischemia and reoxygenation, abolished the protection of flumazenil and phorbol 12-myristate 13-acetate. Thus flumazenil mimics preconditioning to reduce cell death in cardiomyocytes. Oxygen radicals activate mitochondrial K(ATP) channels via PKC during the process.

  8. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion.

    PubMed

    Xue, Yuquan; Xu, Zhibin; Chen, Haiwen; Gan, Weimin; Chong, Tie

    2017-07-01

    To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.

  9. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  10. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE PAGES

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    2016-10-27

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  11. AMP-activated protein kinase (AMPK)-induced preconditioning in primary cortical neurons involves activation of MCL-1.

    PubMed

    Anilkumar, Ujval; Weisová, Petronela; Düssmann, Heiko; Concannon, Caoimhín G; König, Hans-Georg; Prehn, Jochen H M

    2013-03-01

    Neuronal preconditioning is a phenomenon where a previous exposure to a sub-lethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP-activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischaemic and mitochondrial uncoupling-induced preconditioning in neurons, however, the molecular basis of AMPK-mediated preconditioning has been less well characterized. We investigated the effect of AMPK preconditioning using 5-aminoimidazole-4-carboxamide riboside (AICAR) in a model of NMDA-mediated excitotoxic injury in primary mouse cortical neurons. Activation of AMPK with low concentrations of AICAR (0.1 mM for 2 h) induced a transient increase in AMPK phosphorylation, protecting neurons against NMDA-induced excitotoxicity. Analysing potential targets of AMPK activation, demonstrated a marked increase in mRNA expression and protein levels of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) in AICAR-preconditioned neurons. Interestingly, over-expression of MCL-1 protected neurons against NMDA-induced excitotoxicity while MCL-1 gene silencing abolished the effect of AICAR preconditioning. Monitored intracellular Ca²⁺ levels during NMDA excitation revealed that MCL-1 over-expressing neurons exhibited improved bioenergetics and markedly reduced Ca²⁺ elevations, suggesting a potential mechanism through which MCL-1 confers neuroprotection. This study identifies MCL-1 as a key effector of AMPK-induced preconditioning in neurons. © 2012 International Society for Neurochemistry.

  12. High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation.

    PubMed

    Madden, Dennis; Thom, Stephen R; Yang, Ming; Bhopale, Veena M; Ljubkovic, Marko; Dujic, Zeljko

    2014-09-01

    Venous gas emboli (VGE) have traditionally served as a marker for decompression stress after SCUBA diving and a reduction in bubble loads is a target for precondition procedures. However, VGE can be observed in large quantities with no negative clinical consequences. The effect of exercise before diving on VGE has been evaluated with mixed results. Microparticle (MP) counts and sub-type expression serve as indicators of vascular inflammation and DCS in mice. The goal of the present study is to evaluate the effect of anaerobic cycling (AC) on VGE and MP following SCUBA diving. Ten male divers performed two dives to 18 m for 41 min, one dive (AC) was preceded by a repeated-Wingate cycling protocol; a control dive (CON) was completed without exercise. VGE were analyzed at 15, 40, 80, and 120 min post-diving. Blood for MP analysis was collected before exercise (AC only), before diving, 15 and 120 min after surfacing. VGE were significantly lower 15 min post-diving in the AC group, with no difference in the remaining measurements. MPs were elevated by exercise and diving, however, post-diving elevations were attenuated in the AC dive. Some markers of neutrophil elevation (CD18, CD41) were increased in the CON compared to the AC dive. The repeated-Wingate protocol resulted in an attenuation of MP counts and sub-types that have been related to vascular injury and DCS-like symptoms in mice. Further studies are needed to determine if MPs represent a risk factor or marker for DCS in humans.

  13. Neuroprotective Effect of Antioxidants and Moderate Hypoxia as Combined Preconditioning in Cerebral Ischemia.

    PubMed

    Levchenkova, O S; Novikov, V E; Parfenov, E A; Kulagin, K N

    2016-12-01

    We studied combined effect of moderate hypoxia and compounds pQ-4, pQ-915, pQ-1032, and pQ-1104 on neurological deficit and survival of rats after bilateral ligation of common carotid arteries. Preconditioning including moderate hypoxia and treatment with compound pQ-4 produced a neuroprotective effect and increased animal survival during the early (by 51%) and late (by 33.5%) periods of modeled ischemia and reduced neurological deficit (by 50% and 41%, respectively). Moreover, this combination of preconditioning factors prevented postischemic excessive activation of free radical oxidation in brain hemispheres and blood serum.

  14. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.

  15. Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.

    PubMed

    Xing, Dongmei; Bonanno, Joseph A

    2009-05-18

    Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.

  16. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-08-01

    Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.

  17. Cardioprotective Effects of Transfusion of Late-Phase Preconditioned Plasma May Be Induced by Activating the Reperfusion Injury Salvage Kinase Pathway but Not the Survivor Activating Factor Enhancement Pathway in Rats.

    PubMed

    Zhao, Yang; Zheng, Zhi-Nan; Pi, Yan-Na; Liang, Xue; Jin, San-Qing

    2017-01-01

    A previous study in our laboratory demonstrated that transfusion of plasma collected at the late phase of remote ischemic preconditioning (RIPC) could reduce myocardial infarct size. Here, we tested whether the reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways are involved in transferring protection. In a two-part study, donor rats ( n = 3) donated plasma 48 hours after RIPC (preconditioned plasma) or control (nonpreconditioned plasma). Normal (part 1) or ischemic (part 2) myocardia were collected from recipients ( n = 6) 24 hours after receiving normal saline, nonpreconditioned plasma, and preconditioned plasma or after further suffering ischemia reperfusion. Western blot was performed to analyze STAT3, Akt, and Erk1/2 phosphorylation in normal and ischemic myocardium (central area and border area). In normal myocardia, preconditioned plasma increased Akt and Erk1/2 phosphorylation significantly compared to nonpreconditioned plasma and normal saline; no STAT3 phosphorylation was detected. In ischemic myocardia, preconditioned plasma increased Akt and Erk1/2 phosphorylation significantly in both central and border areas compared to other fluids; no significant difference in STAT3 phosphorylation occurred among groups. Transfusion of preconditioned plasma collected at the late phase of RIPC could activate the RISK but not SAFE pathway, suggesting that RISK pathway may be involved in transferring protection.

  18. The role of adenosine in preconditioning by brief pressure overload in rats.

    PubMed

    Huang, Cheng-Hsiung; Tsai, Shen-Kou; Chiang, Shu-Chiung; Lai, Chang-Chi; Weng, Zen-Chung

    2015-08-01

    Brief pressure overload of the left ventricle reduced myocardial infarct (MI) size in rabbits has been previously reported. Its effects in other species are not known. This study investigates effects of pressure overload and the role of adenosine in rats in this study. MI was induced by 40-minute occlusion of the left anterior descending coronary artery followed by 3-hour reperfusion. MI size was determined by triphenyl tetrazolium chloride staining. Brief pressure overload was induced by two 10-minute episodes of partial snaring of the ascending aorta. Systolic left ventricular pressure was raised 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions. The MI size (mean ± standard deviation), expressed as percentage of area at risk, was significantly reduced in the pressure overload group as well as in the ischemic preconditioning group (17.4 ± 3.0% and 18.2 ± 1.5% vs. 26.6 ± 2.4% in the control group, p < 0.001). Pretreatment with 8-(p-sulfophenyl)-theophylline (SPT), an inhibitor of adenosine receptors, did not significantly limit the protection by pressure overload and ischemic preconditioning (18.3 ± 1.5% and 18.2 ± 2.0%, respectively, p < 0.001). SPT itself did not affect the extent of infarct (25.4 ± 2.0%). The hemodynamics, area at risk and mortality were not significantly different among all groups of animals. Brief pressure overload of the left ventricle preconditioned rat myocardium against infarction. Because SPT did not significantly alter MI size reduction, our results did not support a role of adenosine in preconditioning by pressure overload in rats. Copyright © 2013. Published by Elsevier B.V.

  19. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  20. Co-Leadership - A Management Solution for Integrated Health and Social Care.

    PubMed

    Klinga, Charlotte; Hansson, Johan; Hasson, Henna; Sachs, Magna Andreen

    2016-05-23

    Co-leadership has been identified as one approach to meet the managerial challenges of integrated services, but research on the topic is limited. In the present study, co-leadership, practised by pairs of managers - each manager representing one of the two principal organizations in integrated health and social care services - was explored. To investigate co-leadership in integrated health and social care, identify essential preconditions in fulfilling the management assignment, its operationalization and impact on provision of sustainable integration of health and social care. Interviews with eight managers exercising co-leadership were analysed using directed content analysis. Respondent validation was conducted through additional interviews with the same managers. Key contextual preconditions were an organization-wide model supporting co-leadership and co-location of services. Perception of the management role as a collective activity, continuous communication and lack of prestige were essential personal and interpersonal preconditions. In daily practice, office sharing, being able to give and take and support each other contributed to provision of sustainable integration of health and social care. Co-leadership promoted robust management by providing broader competence, continuous learning and joint responsibility for services. Integrated health and social care services should consider employing co-leadership as a managerial solution to achieve sustainability.

  1. Co-Leadership – A Management Solution for Integrated Health and Social Care

    PubMed Central

    Hansson, Johan; Hasson, Henna; Sachs, Magna Andreen

    2016-01-01

    Introduction: Co-leadership has been identified as one approach to meet the managerial challenges of integrated services, but research on the topic is limited. In the present study, co-leadership, practised by pairs of managers – each manager representing one of the two principal organizations in integrated health and social care services – was explored. Aim: To investigate co-leadership in integrated health and social care, identify essential preconditions in fulfilling the management assignment, its operationalization and impact on provision of sustainable integration of health and social care. Method: Interviews with eight managers exercising co-leadership were analysed using directed content analysis. Respondent validation was conducted through additional interviews with the same managers. Results: Key contextual preconditions were an organization-wide model supporting co-leadership and co-location of services. Perception of the management role as a collective activity, continuous communication and lack of prestige were essential personal and interpersonal preconditions. In daily practice, office sharing, being able to give and take and support each other contributed to provision of sustainable integration of health and social care. Conclusion and discussion: Co-leadership promoted robust management by providing broader competence, continuous learning and joint responsibility for services. Integrated health and social care services should consider employing co-leadership as a managerial solution to achieve sustainability. PMID:27616963

  2. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality.

    PubMed

    Chen, Keqiang; Geng, Shuo; Yuan, Ruoxi; Diao, Na; Upchurch, Zachary; Li, Liwu

    2015-04-01

    Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditionings with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in opposite to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a novel mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.

  3. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  4. Chronic active Epstein-Barr virus infection with mosquito allergy successfully treated with reduced-intensity unrelated allogeneic bone marrow transplantation in a boy.

    PubMed

    Matsunaga, Takayuki; Kurosawa, Hidemitsu; Okuya, Mayuko; Nakajima, Daisuke; Hagisawa, Susumu; Sato, Yuya; Fukushima, Keitaro; Sugita, Kenichi; Arisaka, Osamu

    2009-03-01

    EBV-infected T-/NK cells play an important role in the pathogenesis of mosquito allergy, and the prognosis of most patients with mosquito allergy is poor without proper treatment. We describe a 13-yr-old boy who had CAEBV with mosquito allergy and was successfully treated with BMT from an unrelated donor after reduced-intensity preconditioning. Because combination chemotherapy failed to achieve CR, we performed unrelated BMT to reconstitute normal immunity and eradicate any residual EBV-infected cells. To reduce complications after BMT, we selected a reduced-intensity preconditioning regimen consisting of fludarabine, l-phenylalanine mustard, and antithymocyte Ig instead of a conventional myeloablative preconditioning. Although grade II acute GVHD developed, it was successfully controlled with immunosuppressive therapy. After 27 months, the patient has been well without any signs of CAEBV, and the EBV DNA has been undetectable with real-time PCR analysis. We conclude that RIST from the bone marrow of an unrelated donor is indicated for some patients who have CAEBV that is refractory to chemotherapy and who have no HLA-matched related donors or cord blood as a source of stem cells.

  5. Ischemic Preconditioning Enhances Performance and Erythrocyte Deformability of Responders.

    PubMed

    Tomschi, Fabian; Niemann, David; Bloch, Wilhelm; Predel, Hans-Georg; Grau, Marijke

    2018-06-08

    This pilot study aimed to evaluate the differential effects of a remote ischemic preconditioning (rIPC) manoeuvre on performance and red blood cell (RBC) deformability compared to a sham control and a placebo setting. Ten male subjects performed three test settings in a single-blind, crossover, and randomized control design. All settings started with 20 min of rest and were followed by 4 cycles of occlusion/reperfusion consisting of 5 min each. During rIPC and placebo, the cuff pressure was inflated to 200 mmHg and 120 mmHg, respectively. During the sham control setting, 10 mmHg pressure was applied. All tests were followed by a cycle exercise with lactate diagnostics. Power at 2 and 4 mmol/l lactate thresholds were calculated. RBC deformability was measured before and after the respective manoeuvre. Results showed that no effect resulted from any manoeuvre on performance values or RBC deformability. But 6 subjects showed a higher power at the 2 mmol/l threshold, and 5 subjects exerted higher power at the 4 mmol/l threshold when the rIPC manoeuvre preceded the exercise. In these responsive subjects, RBC deformability also improved. Hence, rIPC effects are much influenced by the subjects' responsiveness, and improved RBC deformability might contribute to enhanced performance in responsive subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Role of calcitonin gene-related peptide in cardioprotection of short-term and long-term exercise preconditioning.

    PubMed

    Sun, Xiao-Juan; Pan, Shan-Shan

    2014-07-01

    To examine the role of calcitonin gene-related peptide (CGRP) in cardioprotection of short-term and long-term exercise preconditioning (EP). Male Sprague-Dawley rats were, respectively, subjected to continuous intermittent treadmill training 3 days or 3 weeks as short-term or long-term EP protocols. The myocardial injury induced by isoproterenol (ISO) was performed 24 hours after short-term and long-term EP. The myocardial injury was evaluated in terms of the serum cardiac troponin levels and the hematoxylin-basic fuchsin-picric acid staining. Additionally, serum CGRP levels, CGRP expression in the dorsal root ganglion (DRG), and heart were analyzed as possible mechanisms to explain short-term and long-term EP-induced cardioprotection. Both short-term and long-term EP markedly attenuated the isoproterenol-induced myocardial ischemia with lower serum cardiac troponin levels. Short-term EP does not alter serum CGRP levels and CGRP expression in the DRG and heart. Long-term EP significantly increases serum CGRP levels and CGRP expression in the DRG and heart. The results indicate that short-term EP does not increase the synthesis and release of CGRP. Therefore, the cardioprotective effect of short-term EP does not involve CGRP adaptation. Furthermore, long-term EP increases CGRP synthesis in the DRG and promotes CGRP release in the blood and heart. Hence, CGRP may play an important role in the cardioprotective effect of long-term EP.

  7. Influence of physical preconditioning on the responsiveness of rat pulmonary artery after pulmonary ischemia/reperfusion.

    PubMed

    Delbin, Maria Andréia; Moraes, Camila; Camargo, Enilton; Mussi, Ricardo K; Antunes, Edson; de Nucci, Gilberto; Zanesco, Angelina

    2007-07-01

    The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (-log EC(50)) nor maximal responses (E(max)) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23+/-0.06) compared to SD/IR group (7.85+/-0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75+/-0.06 and TR/IR: 6.62+/-0.04) compared to SD/SHAM (7.33+/-0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place.

  8. Acidic preconditioning of endothelial colony-forming cells (ECFC) promote vasculogenesis under proinflammatory and high glucose conditions in vitro and in vivo.

    PubMed

    Mena, Hebe Agustina; Zubiry, Paula Romina; Dizier, Blandine; Schattner, Mirta; Boisson-Vidal, Catherine; Negrotto, Soledad

    2018-05-02

    We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. Cord blood-derived CD34 + cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14-21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced signs of inflammation in the animals receiving preconditioned ECFC. Acidic preconditioning improved ECFC survival and angiogenic activity in the presence of proinflammatory and damage signals present in the ischemic milieu, even under high glucose conditions, and increased their therapeutic potential for postischemia tissue regeneration in a murine model of type 2 diabetes. Collectively, our data suggest that acidic preconditioning of ECFC is a simple and inexpensive strategy to improve the effectiveness of cell transplantation in diabetes, where tissue repair is highly compromised.

  9. Remote ischemic preconditioning and endothelial function in patients with acute myocardial infarction and primary PCI.

    PubMed

    Manchurov, Vladimir; Ryazankina, Nadezda; Khmara, Tatyana; Skrypnik, Dmitry; Reztsov, Roman; Vasilieva, Elena; Shpektor, Alexander

    2014-07-01

    Remote ischemic preconditioning by transient limb ischemia reduces myocardial ischemia-reperfusion injury in patients undergoing percutaneous coronary intervention. The aim of the study we report here was to assess the effect of remote ischemic preconditioning on endothelial function in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. Forty-eight patients with acute myocardial infarction were enrolled. All participants were randomly divided into 2 groups. In Group I (n = 23), remote ischemic preconditioning was performed before primary percutaneous coronary intervention (intermittent arm ischemia-reperfusion through 4 cycles of 5-minute inflation and 5-minute deflation of a blood-pressure cuff to 200 mm Hg). In Group II (n = 25), standard percutaneous coronary intervention without preconditioning was performed. We assessed endothelial function using the flow-mediated dilation test on baseline, then within 1-3 hours after percutaneous coronary intervention, and again on days 2 and 7 after percutaneous coronary intervention. The brachial artery flow-mediated dilation results were significantly higher on the first day after primary percutaneous coronary intervention in the preconditioning group (Group I) than in the control group (Group II) (12.1% vs 0.0%, P = .03, and 11.1% vs 6.3%, P = .016, respectively), and this difference remained on the seventh day (12.3% vs 7.4%, P = .0005, respectively). We demonstrated for the first time that remote ischemic preconditioning before primary percutaneous coronary intervention significantly improves endothelial function in patients with acute myocardial infarction, and this effect remains constant for at least a week. We suppose that the improvement of endothelial function may be one of the possible explanations of the effect of remote ischemic preconditioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Preconditioning with the traditional Chinese medicine Huang-Lian-Jie-Du-Tang initiates HIF-1α-dependent neuroprotection against cerebral ischemia in rats.

    PubMed

    Zhang, Qichun; Bian, Huimin; Li, Yu; Guo, Liwei; Tang, Yuping; Zhu, Huaxu

    2014-06-11

    Huang-Lian-Jie-Du-Tang (HLJDT) is a classical heat-clearing and detoxicating formula of traditional Chinese medicine that is widely used to treat stroke. The present study was designed to investigate the effects of HLJDT preconditioning on neurons under oxygen and glucose deprivation (OGD) and rats subjected to middle cerebral artery occlusion (MCAO). A stroke model of rats was obtained through MCAO. Following HLJDT preconditioning, the cerebral infarction volume, cerebral water content, and neurological deficient score were determined. Cerebral cortical neurons cultured in vitro were preconditioned with HLJDT and then subjected to OGD treatment. The release of lactate dehydrogenase (LDH) from neurons was detected. The levels of hypoxia-inducible factor-1α (HIF-1α) and PI3K/Akt signaling were analyzed by western blotting, and the levels of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in the supernatant of the neurons and the plasma of MCAO rats were measured through a radioimmunological assay. The apoptosis and proliferation of neurons were analyzed by immunohistochemistry. HLJDT preconditioning significantly reduced the cerebral infarction volume and cerebral water content and ameliorated the neurological deficient score of MCAO rats. In addition, HLJDT preconditioning protected neurons against OGD. Increased HIF-1α, EPO, and VEGF levels and the activation of PI3K/Akt signaling were observed as a result of HLJDT preconditioning. Furthermore, HLJDT preconditioning was found to inhibit ischemia-induced neuron apoptosis and to promote neuron proliferation under conditions of ischemia/reperfusion. Both rats and neurons subjected to HLJDT preconditioning were able to resist ischemia/reperfusion or hypoxia injury through the inhibition of apoptosis and the enhancement of proliferation, and these effects were primarily dependent on the activation of the PI3K/Akt signaling pathway and HIF-1α. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart.

    PubMed

    Liu, G S; Richards, S C; Olsson, R A; Mullane, K; Walsh, R S; Downey, J M

    1994-07-01

    Agonists selective for the A1 adenosine receptor mimic the protective effect of ischaemic preconditioning against infarction in the rabbit heart. Unselective adenosine antagonists block this protection but, paradoxically, the A1 adenosine receptor selective antagonist 8-cyclopentyl- 1,3-dipropylxanthine (DPCPX) does not. The aim of this study was to test the hypothesis that the newly described A3 adenosine receptor, which has an agonist profile similar to the A1 receptor but is insensitive to DPCPX, might mediate preconditioning. Isolated rabbit hearts perfused with Krebs buffer experienced 30 min of regional ischaemia followed by 120 min of reperfusion. Infarct size was measured by tetrazolium staining. In control hearts infarction was 32.2(SEM 1.5)% of the risk zone. Preconditioning by 5 min ischaemia and 10 min reperfusion reduced infarct size to 8.8(2.3)%. Replacing the regional ischaemia with 5 min perfusion with 10 microM adenosine or 65 nM N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA), an adenosine A3 receptor agonist, was equally protective. The unselective antagonist 8-p-sulphophenyl theophylline at 100 microM abolished protection by preconditioning, adenosine, and APNEA, but 200 nM DPCPX did not block protection by any of the interventions. Likewise the potent but unselective A3 receptor antagonist 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine (BW A1433) completely blocked protection from ischaemic preconditioning. Because protection against infarction afforded by ischaemic preconditioning, adenosine, or the A3 receptor agonist APNEA could not be blocked by DPCPX and because the potent A3 receptor antagonist BW A1433 blocked protection from ischaemic preconditioning, these data indicate that the protection of preconditioning is not exclusively mediated by the adenosine A1 receptor in rabbit heart and could involve the A3 receptor.

  12. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs.

    PubMed

    Andreka, Gyorgy; Vertesaljai, Marton; Szantho, Gergely; Font, Gusztav; Piroth, Zsolt; Fontos, Geza; Juhasz, Eszter D; Szekely, Laszlo; Szelid, Zsolt; Turner, Mark S; Ashrafian, Houman; Frenneaux, Michael P; Andreka, Peter

    2007-06-01

    Ischaemic preconditioning results in a reduction in ischaemic-reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non-vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p<0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p<0.05) and a 47.52% (p<0.01) relative reduction in the infarct size, respectively. Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential.

  13. A multilevel preconditioner for domain decomposition boundary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1991-12-11

    In this note, we consider multilevel preconditioning of the reduced boundary systems which arise in non-overlapping domain decomposition methods. It will be shown that the resulting preconditioned systems have condition numbers which be bounded in the case of multilevel spaces on the whole domain and grow at most proportional to the number of levels in the case of multilevel boundary spaces without multilevel extensions into the interior.

  14. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  15. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    PubMed Central

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  16. Acidic pre-conditioning suppresses apoptosis and increases expression of Bcl-xL in coronary endothelial cells under simulated ischaemia.

    PubMed

    Kumar, S; Reusch, H P; Ladilov, Y

    2008-01-01

    Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important feature of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activity Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 +/- 1.3%versus 3.9 +/- 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 +/- 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.

  17. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.

    PubMed

    Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W

    2015-09-01

    We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. © 2015 International Society for Neurochemistry.

  18. Silymarin and its constituents in cardiac preconditioning.

    PubMed

    Zholobenko, A; Modriansky, M

    2014-09-01

    Silymarin, a standardised extract of Silybum marianum (milk thistle), comprises mainly of silybin, with dehydrosilybin (DHSB), quercetin, taxifolin, silychristin and a number of other compounds which are known to possess a range of salutary effects. Indeed, there is evidence for their role in reducing tumour growth, preventing liver toxicity, and protecting a number of organs against ischemic damage. The hepatoprotective effects of silymarin, especially in preventing Amanita and alcohol intoxication induced damage to the liver, are a well established fact. Likewise, there is weighty evidence that silymarin possesses antimicrobial and anticancer activities. Additionally, it has emerged that in animal models, silymarin can protect the heart, brain, liver and kidneys against ischemia reperfusion injury, probably by preconditioning. The mechanisms of preconditioning are, in general, well studied, especially in the heart. On the other hand, the mechanism by which silymarin protects the heart from ischemia remains largely unexplored. This review, therefore, focuses on evaluating existing studies on silymarin induced cardioprotection in the context of the established mechanisms of preconditioning. Copyright © 2014. Published by Elsevier B.V.

  19. Peri-operative anaesthetic myocardial preconditioning and protection – cellular mechanisms and clinical relevance in cardiac anaesthesia

    PubMed Central

    Kunst, G; Klein, A A

    2015-01-01

    Preconditioning has been shown to reduce myocardial damage caused by ischaemia–reperfusion injury peri-operatively. Volatile anaesthetic agents have the potential to provide myocardial protection by anaesthetic preconditioning and, in addition, they also mediate renal and cerebral protection. A number of proof-of-concept trials have confirmed that the experimental evidence can be translated into clinical practice with regard to postoperative markers of myocardial injury; however, this effect has not been ubiquitous. The clinical trials published to date have also been too small to investigate clinical outcome and mortality. Data from recent meta-analyses in cardiac anaesthesia are also not conclusive regarding intra-operative volatile anaesthesia. These inconclusive clinical results have led to great variability currently in the type of anaesthetic agent used during cardiac surgery. This review summarises experimentally proposed mechanisms of anaesthetic preconditioning, and assesses randomised controlled clinical trials in cardiac anaesthesia that have been aimed at translating experimental results into the clinical setting. PMID:25764404

  20. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    PubMed Central

    2015-01-01

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726

  1. Improvements in world-wide intercomparison of PV module calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salis, E.; Pavanello, D.; Field, M.

    The calibration of the electrical performance of seven photovoltaic (PV) modules was compared between four reference laboratories on three continents. The devices included two samples in standard and two in high-efficiency crystalline silicon technology, two CI(G)S and one CdTe module. The reference value for each PV module parameter was calculated from the average of the results of all four laboratories, weighted by the respective measurement uncertainties. All single results were then analysed with respect to this reference value using the E n number approach. For the four modules in crystalline silicon technology, the results agreed in general within +/-0.5%, withmore » all values within +/-1% and all E n numbers well within [-1, 1], indicating further scope for reducing quoted measurement uncertainty. Regarding the three thin-film modules, deviations were on average roughly twice as large, i.e. in general from +/-1% to +/-2%. A number of inconsistent results were observable, although within the 5% that can be statistically expected on the basis of the E n number approach. Most inconsistencies can be traced to the preconditioning procedure of one participant, although contribution of other factors cannot be ruled out. After removing these obvious inconsistent results, only two real outliers remained, representing less than 2% of the total number of measurands. The results presented show improved agreement for the calibration of PV modules with respect to previous international exercises. For thin-film PV modules, the preconditioning of the devices prior to calibration measurements is the most critical factor for obtaining consistent results, while the measurement processes seem consistent and repeatable.« less

  2. Improvements in world-wide intercomparison of PV module calibration

    DOE PAGES

    Salis, E.; Pavanello, D.; Field, M.; ...

    2017-09-14

    The calibration of the electrical performance of seven photovoltaic (PV) modules was compared between four reference laboratories on three continents. The devices included two samples in standard and two in high-efficiency crystalline silicon technology, two CI(G)S and one CdTe module. The reference value for each PV module parameter was calculated from the average of the results of all four laboratories, weighted by the respective measurement uncertainties. All single results were then analysed with respect to this reference value using the E n number approach. For the four modules in crystalline silicon technology, the results agreed in general within +/-0.5%, withmore » all values within +/-1% and all E n numbers well within [-1, 1], indicating further scope for reducing quoted measurement uncertainty. Regarding the three thin-film modules, deviations were on average roughly twice as large, i.e. in general from +/-1% to +/-2%. A number of inconsistent results were observable, although within the 5% that can be statistically expected on the basis of the E n number approach. Most inconsistencies can be traced to the preconditioning procedure of one participant, although contribution of other factors cannot be ruled out. After removing these obvious inconsistent results, only two real outliers remained, representing less than 2% of the total number of measurands. The results presented show improved agreement for the calibration of PV modules with respect to previous international exercises. For thin-film PV modules, the preconditioning of the devices prior to calibration measurements is the most critical factor for obtaining consistent results, while the measurement processes seem consistent and repeatable.« less

  3. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  4. Proper Heat Shock Pretreatment Reduces Acute Liver Injury Induced by Carbon Tetrachloride and Accelerates Liver Repair in Mice

    PubMed Central

    Li, San-Qiang; Wang, Dong-Mei; Shu, You-Ju; Wan, Xue-Dong; Xu, Zheng-Shun; Li, En-Zhong

    2013-01-01

    Whether proper heat shock preconditioning can reduce liver injury and accelerate liver repair after acute liver injury is worth study. So mice received heat shock preconditioning at 40°C for 10 minutes (min), 20 min or 30 min and recovered at room temperature for 8 hours (h) under normal feeding conditions. Then acute liver injury was induced in the heat shock-pretreated mice and unheated control mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl4). Hematoxylin and eosin (H&E) staining, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and the expression levels of heat shock protein 70 (HSP70), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the unheated control mice and heat shock-pretreated mice after CCl4 administration. Our results showed that heat shock preconditioning at 40°C for 20 min remarkably improved the mice’s survival rate (P<0.05), lowered the levels of serum AST and ALT (P<0.05), induced HSP70 (P<0.01), CYP1A2 (P<0.01) and PCNA (P<0.05) expression, effectively reduced liver injury (P<0.05) and accelerated the liver repair (P<0.05) compared with heat shock preconditioning at 40°C for 10 min or 30 min in the mice after acute liver injury induced by CCl4 when compared with the control mice. Our results may be helpful in further investigation of heat shock pretreatment as a potential clinical approach to target liver injury PMID:24526809

  5. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs

    PubMed Central

    Andreka, Gyorgy; Vertesaljai, Marton; Szantho, Gergely; Font, Gusztav; Piroth, Zsolt; Fontos, Geza; Juhasz, Eszter D; Szekely, Laszlo; Szelid, Zsolt; Turner, Mark S; Ashrafian, Houman; Frenneaux, Michael P

    2007-01-01

    Background Ischaemic preconditioning results in a reduction in ischaemic‐reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non‐vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. Objective To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Methods Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Results Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p<0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p<0.05) and a 47.52% (p<0.01) relative reduction in the infarct size, respectively. Conclusion Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential. PMID:17449499

  6. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes.

    PubMed

    Diaz, Roberto J; Armstrong, Stephen C; Batthish, Michelle; Backx, Peter H; Ganote, Charles E; Wilson, Gregory J

    2003-01-01

    Accumulation of osmotically active metabolites, which create an osmotic gradient estimated at ~60 mOsM, and cell swelling are prominent features of ischemic myocardial cell death. This study tests the hypothesis that reduction of ischemic swelling by enhanced cell volume regulation is a key mechanism in the delay of ischemic myocardial cell death by ischemic preconditioning (IPC). Experimental protocols address whether: (i) IPC triggers a cell volume regulation mechanism that reduces cardiomyocyte swelling during subsequent index ischemia; (ii) this reduction in ischemic cell swelling is sufficient in magnitude to account for the IPC protection; (iii) the molecular mechanism that mediates IPC also mediates cell volume regulation. Two experimental models with rabbit ventricular myocytes were studied: freshly isolated pelleted myocytes and 48-h cultured myocytes. Myocytes were preconditioned either by distinct short simulated ischemia (SI)/simulated reperfusion protocols (IPC), or by subjecting myocytes to a pharmacological preconditioning (PPC) protocol (1 microM calyculin A, or 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA), prior to subjecting them to either different durations of long SI or 30 min hypo-osmotic stress. Cell death (percent blue square myocytes) was monitored by trypan blue staining. Cell swelling was determined by either the bromododecane cell flotation assay (qualitative) or video/confocal microscopy (quantitative). Simulated ischemia induced myocyte swelling in both the models. In pelleted myocytes, IPC or PPC with either calyculin A or APNEA produced a marked reduction of ischemic cell swelling as determined by the cell floatation assay. In cultured myocytes, IPC substantially reduced ischemic cell swelling (P < 0.001). This IPC effect on ischemic cell swelling was related to an IPC and PPC (with APNEA) mediated triggering of cell volume regulatory decrease (RVD). IPC and APNEA also significantly (P < 0.001) reduced hypo-osmotic cell swelling. This IPC and APNEA effect was blocked by either adenosine receptor, PKC or Cl(-) channel inhibition. The osmolar equivalent for IPC protection approximated 50-60 mOsM, an osmotic gradient similar to the estimated ischemic osmotic load for preconditioned and non-preconditioned myocytes. The results suggest that cell volume regulation is a key mechanism that accounts for most of the IPC protection in cardiomyocytes.

  7. Effects of ischemic preconditioning and iloprost on myocardial ischemia-reperfusion damage in rats.

    PubMed

    Ay, Yasin; Kara, Ibrahim; Aydin, Cemalettin; Ay, Nuray Kahraman; Teker, Melike Elif; Senol, Serkan; Inan, Bekir; Basel, Halil; Uysal, Omer; Zeybek, Rahmi

    2013-01-01

    This study investigates the effects of cardiac ischemic preconditioning and iloprost on reperfusion damage in rats with myocardial ischemia/reperfusion. 38 male Wistar Albino rats used in this study were divided into 5 groups. The control group (Group 1) (n=6), ischemia/reperfusion (IR) group (Group 2) (n=8), cardiac ischemic preconditioning (CIP) group (Group 3) (n=8), iloprost (ILO) group (Group 4) (n=8), and cardiac ischemic preconditioning + iloprost (CIP+ILO) group (Group 5) (n=8). Pre-ischemia, 15 minutes post-ischemia, 45 minutes post-reperfusion, mean blood pressure (MBP), and heart rates (HR) were recorded. The rate-pressure product (RPP) was calculated. Post-reperfusion plasma creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin (cTn) vlaues, and infarct size/area at risk (IS/AAR) were calculated from myocardial tissue samples. Arrhythmia and ST segment elevations were evaluated during the ischemia and reperfusion stages. Although the MBP, HR, RPP values, biochemical parameters of CK-MB and LDH levels, IS/AAR rates, ST segment elevation values were found to be similar in CIP and CIP+ILO groups and the IR and ILO groups (p>0.05), CIP-containing group values had a positively meaningful difference (p<0.05) compared with the IR and ILO group. While mild-moderate findings of damage were observed in Group 3 and Group 5, severely findings of damage were releaved in Group 2 and Group 4. The arrhythmia score of the ILO group was meaningfully lower (F: 41.4, p<0.001) than the IR group. We can conclude that the effects of myocardial reperfusion damage can be reduced by cardiac ischemic preconditioning, intravenous iloprost reduced the incidence of ventricular arrhythmia associated with reperfusion, and its use with CIP caused no additional changes.

  8. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.

    1993-01-01

    The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.

  9. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    PubMed

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  10. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    PubMed

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  11. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    DOE PAGES

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; ...

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less

  12. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise.

    PubMed

    Nosaka, K; Muthalib, M; Lavender, A; Laursen, P B

    2007-01-01

    This study investigated the hypothesis that muscle damage would be attenuated in muscles subjected to passive hyperthermia 1 day prior to exercise. Fifteen male students performed 24 maximal eccentric actions of the elbow flexors with one arm; the opposite arm performed the same exercise 2-4 weeks later. The elbow flexors of one arm received a microwave diathermy treatment that increased muscle temperature to over 40 degrees C, 16-20 h prior to the exercise. The contralateral arm acted as an untreated control. Maximal voluntary isometric contraction strength (MVC), range of motion (ROM), upper arm circumference, muscle soreness, plasma creatine kinase activity and myoglobin concentration were measured 1 day prior to exercise, immediately before and after exercise, and daily for 4 days following exercise. Changes in the criterion measures were compared between conditions (treatment vs. control) using a two-way repeated measures ANOVA with a significance level of P < 0.05. All measures changed significantly following exercise, but the treatment arm showed a significantly faster recovery of MVC, a smaller change in ROM, and less muscle soreness compared with the control arm. However, the protective effect conferred by the diathermy treatment was significantly less effective compared with that seen in the second bout performed 4-6 weeks after the initial bout by a subgroup of the subjects (n = 11) using the control arm. These results suggest that passive hyperthermia treatment 1 day prior to eccentric exercise-induced muscle damage has a prophylactic effect, but the effect is not as strong as the repeated bout effect.

  13. Myocardial protection using diadenosine tetraphosphate with pharmacological preconditioning.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Yamaguchi, T; Kitakaze, M; Matsuda, H

    2000-09-01

    We have reported a similar cardioprotective effect and mechanism of diadenosine tetraphosphate (AP4A) and ischemic preconditioning in rat hearts. In this study, the applicability of AP4A administration to cardiac surgery was tested by using a canine cardiopulmonary bypass model. Hearts underwent 60 minutes of cardioplegic arrest (34 degrees C) by a single dose of cardioplegia. Cardioplegia contained either AP4A (40 micromol/L; n = 6) or saline (n = 6). Beagles were weaned from cardiopulmonary bypass 30 minutes after reperfusion, and left ventricular function was evaluated after another 30 minutes by using the cardiac loop analysis system. Administration of AP4A significantly improved the postischemic recovery of cardiac function and reduced the leakage of serum creatine kinase compared with saline. Systemic vascular resistance, mean aortic blood pressure, and the electrocardiographic indices were not significantly altered by AP4A administration. Administration of AP4A was cardioprotective without apparent adverse effects. Because the cardioprotective mechanism may be similar to that of ischemic preconditioning, the addition of AP4A into cardioplegia may be a novel safe method for clinical application of preconditioning cardioprotection.

  14. Metformin Preconditioning of Human induced Pluripotent Stem Cell-derived Neural Stem Cells Promotes Their Engraftment and Improves Post-Stroke Regeneration and Recovery.

    PubMed

    Ould-Brahim, Fares; Sarma, Sailendra Nath; Syal, Charvi; Lu, Kevin Jiaqi; Seegobin, Matthew; Carter, Anthony; Jeffers, Matthew S; Doré, Carole; Stanford, William; Corbett, Dale; Wang, Jing

    2018-06-12

    While transplantation of hiPSC-derived neural stem cells (hiPSC-NSCs) shows therapeutic potential in animal stroke models, major concerns for translating hiPSC therapy to the clinic are efficacy and safety. Therefore, there is a demand to develop an optimal strategy to enhance the engraftment and regenerative capacity of transplanted hiPSC-NSCs in order to produce fully differentiated neural cells to replace lost brain tissues. Metformin, an FDA approved drug, is an optimal neuroregenerative agent that not only promotes NSC proliferation but also drives NSC towards differentiation. In this regard, we hypothesize that preconditioning of hiPSC-NSCs with metformin before transplantation into the stroke-damaged brain will improve engraftment and regenerative capabilities of hiPSC-NSCs, ultimately enhancing functional recovery. Here we show that pretreatment of hiPSC-NSCs with metformin enhances the proliferation and differentiation of hiPSC-NSCs in culture. Furthermore, metformin-preconditioned hiPSC-NSCs show increased engraftment 1-week post-transplant in a rat endothelin-1 focal ischemic stroke model. In addition, metformin preconditioned cell grafts exhibit increased survival compared to naïve cell grafts at 7-week post-transplant. Analysis of the grafts demonstrates that metformin preconditioning enhances the differentiation of hiPSC-NSCs. As an outcome, rats receiving metformin preconditioned cells display accelerated gross motor recovery and reduced infarct volume. These studies represent a vital step forward in the optimization of hiPSC-NSC based transplantation to promote post-stroke recovery.

  15. Pneumoperitoneum induced ischemia-reperfusion injury of the peritoneum-Preconditioning may reduce the negative side-effects caused by carbon-dioxide pneumoperitoneum-Pilot study.

    PubMed

    Veres, Tünde Gyöngyvér; Takács, Ildikó; Nagy, Tibor; Jancsó, Gábor; Kondor, Ariella; Pótó, László; Vereczkei, András

    2018-04-13

    Laparoscopy is more beneficial than the conventional open technique, however the pneumoperitoneum created may have an ischemic side effect. Our aim was to evaluate the protective effects of preconditioning during laparoscopic cholecystectomies (LC). 30 patients were randomized into 2 groups: I. PreC (preconditioning: 5 min. inflation, 5 min. deflation, followed by conventional LC), II: LC (conventional LC). Blood samples were taken before hospitalization (C = control), before surgery, after anaesthesia (B.S.), after surgery (A.S.) and 24 hours after the procedure (24 h). Measured parameters were: malondialdehyde (MDA), reduced glutathione (GSH), sulfhydril groups (-SH), superoxide-dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), length of hospitalization and pain (VAS = visual analogue scale). Compared to the BS levels, no significant changes were detected in SOD's activity and MDA levels. GSH concentrations were significantly increased in the PreC group after operation. SH-, MPO, CAT and liver function enzymes were not significantly different. Hospitalization was shorter in the PreC group. Based on the VAS score patients had less pain in the PreC group. Significant differences concerning PreC group were found in GSH values. In the PreC group pain decreased by 2-2.5 units following the procedure, 24 h after surgery, and hospitalisation was also significantly shorter. In our pilot study the potential protective effect of preconditioning could be defined.

  16. Pharmacokinetics of detomidine administered to horses at rest and after maximal exercise.

    PubMed

    Hubbell, J A E; Sams, R A; Schmall, L M; Robertson, J T; Hinchcliff, K W; Muir, W W

    2009-05-01

    Increased doses of detomidine are required to produce sedation in horses after maximal exercise compared to calm or resting horses. To determine if the pharmacokinetics of detomidine in Thoroughbred horses are different when the drug is given during recuperation from a brief period of maximal exercise compared to administration at rest. Six Thoroughbred horses were preconditioned by exercising them on a treadmill. Each horse ran a simulated race at a treadmill speed that caused it to exercise at 120% of its maximal oxygen consumption. One minute after the end of exercise, horses were treated with detomidine. Each horse was treated with the same dose of detomidine on a second occasion a minimum of 14 days later while standing in a stocks. Samples of heparinised blood were obtained at various time points on both occasions. Plasma detomidine concentrations were determined by liquid chromatography-mass spectrometry. The plasma concentration vs. time data were analysed by nonlinear regression analysis. Median back-extrapolated time zero plasma concentration was significantly lower and median plasma half-life and median mean residence time were significantly longer when detomidine was administered after exercise compared to administration at rest. Median volume of distribution was significantly higher after exercise but median plasma clearance was not different between the 2 administrations. Detomidine i.v. is more widely distributed when administered to horses immediately after exercise compared to administration at rest resulting in lower peak plasma concentrations and a slower rate of elimination. The dose requirement to produce an equivalent effect may be higher in horses after exercise than in resting horses and less frequent subsequent doses may be required to produce a sustained effect.

  17. The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes

    PubMed Central

    Goetzenich, Andreas; Hatam, Nima; Preuss, Stephanie; Moza, Ajay; Bleilevens, Christian; Roehl, Anna B.; Autschbach, Rüdiger; Bernhagen, Jürgen; Stoppe, Christian

    2014-01-01

    OBJECTIVES The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning. METHODS Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining. RESULTS Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P < 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival. CONCLUSIONS We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF. PMID:24351506

  18. The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes.

    PubMed

    Goetzenich, Andreas; Hatam, Nima; Preuss, Stephanie; Moza, Ajay; Bleilevens, Christian; Roehl, Anna B; Autschbach, Rüdiger; Bernhagen, Jürgen; Stoppe, Christian

    2014-03-01

    The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning. Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining. Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P < 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival. We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF.

  19. Moderate Treadmill Exercise Protects Synaptic Plasticity of the Dentate Gyrus and Related Signaling Cascade in a Rat Model of Alzheimer's Disease.

    PubMed

    Dao, An T; Zagaar, Munder A; Alkadhi, Karim A

    2015-12-01

    The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.

  20. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    PubMed

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment.

  1. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy

    PubMed Central

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment. PMID:28542352

  2. Effect of Hypoglycemic Agents on Ischemic Preconditioning in Patients With Type 2 Diabetes and Symptomatic Coronary Artery Disease

    PubMed Central

    Rahmi, Rosa Maria; Uchida, Augusto Hiroshi; Rezende, Paulo Cury; Lima, Eduardo Gomes; Garzillo, Cibele Larrosa; Favarato, Desiderio; Strunz, Celia M.C.; Takiuti, Myrthes; Girardi, Priscyla; Hueb, Whady; Kalil Filho, Roberto; Ramires, José A.F.

    2013-01-01

    OBJECTIVE To assess the effect of two hypoglycemic drugs on ischemic preconditioning (IPC) patients with type 2 diabetes and coronary artery disease (CAD). RESEARCH DESIGN AND METHODS We performed a prospective study of 96 consecutive patients allocated into two groups: 42 to group repaglinide (R) and 54 to group vildagliptin (V). All patients underwent two consecutive exercise tests (ET1 and ET2) in phase 1 without drugs. In phase 2, 1 day after ET1 and -2, 2 mg repaglinide three times daily or 50 mg vildagliptin twice daily was given orally to patients in the respective group for 6 days. On the seventh day, 60 min after 6 mg repaglinide or 100 mg vildagliptin, all patients underwent two consecutive exercise tests (ET3 and ET4). RESULTS In phase 1, IPC was demonstrated by improvement in the time to 1.0 mm ST-segment depression and rate pressure product (RPP). All patients developed ischemia in ET3; however, 83.3% of patients in group R experienced ischemia earlier in ET4, without significant improvement in RPP, indicating the cessation of IPC (P < 0.0001). In group V, only 28% of patients demonstrated IPC cessation, with 72% still having the protective effect (P < 0.0069). CONCLUSIONS Repaglinide eliminated myocardial IPC, probably by its effect on the KATP channel. Vildagliptin did not damage this protective mechanism in a relevant way in patients with type 2 diabetes and CAD, suggesting a good alternative treatment in this population. PMID:23250803

  3. Fatigue in healthy and diseased individuals.

    PubMed

    Finsterer, Josef; Mahjoub, Sinda Zarrouk

    2014-08-01

    Although fatigue is experienced by everyone, its definition and classification remains under debate. A review of the previously published data on fatigue. Fatigue is influenced by age, gender, physical condition, type of food, latency to last meal, mental status, psychological conditions, personality type, life experience, and the health status of an individual. Fatigue may not only be a symptom but also a measurable and quantifiable dimension, also known as fatigability. Additionally, it may be classified as a condition occurring at rest or under exercise or stress, as physiologic reaction or pathologic condition, as spontaneous phenomenon or triggerable state, as resistant or irresistant to preconditioning, training, or attitude, as prominent or collateral experience, and as accessible or inaccessible to any type of treatment or intervention. Fatigue may be the sole symptom of a disease or one among others. It may be also classified as acute or chronic. Quantification of fatigability is achievable by fatigue scores, force measurement, electromyography, or other means. Fatigue and fatigability need to be delineated from conditions such as sleepiness, apathy, exhaustion, exercise intolerance, lack of vigor, weakness, inertia, or tiredness. Among neurological disorders, the prevalence of fatigue is particularly increased in multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease, traumatic brain injury, stroke, and bleeding and also in neuromuscular disorders. Fatigue may be influenced by training, mental preconditioning, or drugs. Fatigue needs to be recognized as an important condition that is not only a symptom but may also be quantified and can be modified by various measures depending on the underlying cause. © The Author(s) 2013.

  4. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans.

    PubMed

    Afoakwa, Emmanuel Ohene; Quao, Jennifer; Budu, Agnes Simpson; Takrama, Jemmy; Saalia, Firibu Kwesi

    2011-11-01

    Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p < 0.05) during fermentation, whereas reducing sugars and FFA increased. PS increased the FFA levels, reduced the protein content but did not have any effect on the sugars. The rate of total and non-reducing sugars degeneration with concomitant generation of reducing sugars in the cocoa beans was largely affected by fermentation than by PS.

  5. Randomized clinical trial of remote ischaemic preconditioning versus no preconditioning in the prevention of perioperative myocardial infarction during open surgery for ruptured abdominal aortic aneurysm.

    PubMed

    Pedersen, T F; Budtz-Lilly, J; Petersen, C N; Hyldgaard, J; Schmidt, J-O; Kroijer, R; Grønholdt, M-L; Eldrup, N

    2018-06-01

    Remote ischaemic preconditioning (RIPC) has been suggested as a means of protecting vital organs from reperfusion injury during major vascular surgery. This study was designed to determine whether RIPC could reduce the incidence of perioperative myocardial infarction (MI) during open surgery for ruptured abdominal aortic aneurysm (AAA). Secondary aims were to see if RIPC could reduce 30-day mortality, multiple organ failure, acute intestinal ischaemia, acute kidney injury and ischaemic stroke. This randomized, non-blinded clinical trial was undertaken at three vascular surgery centres in Denmark. Patients who had open surgery for ruptured AAA were randomized to intervention with RIPC or control in a 1 : 1 ratio. Postoperative complications and deaths were registered, and ECG and blood samples were obtained daily during the hospital stay. Of 200 patients randomized, 142 (72 RIPC, 70 controls) were included. There was no difference in rates of perioperative MI between the RIPC and control groups (36 versus 43 per cent respectively), or in rates of organ failure. However, in the per-protocol analysis 30-day mortality was significantly reduced in the RIPC group (odds ratio 0·46, 95 per cent c.i. 0·22 to 0·99; P = 0·048). RIPC did not reduce the incidence of perioperative MI in patients undergoing open surgery for ruptured AAA. Registration number: NCT00883363 ( http://www.clinicaltrials.gov).

  6. Measuring skin necrosis in a randomised controlled feasibility trial of heat preconditioning on wound healing after reconstructive breast surgery: study protocol and statistical analysis plan for the PREHEAT trial.

    PubMed

    Cro, Suzie; Mehta, Saahil; Farhadi, Jian; Coomber, Billie; Cornelius, Victoria

    2018-01-01

    Essential strategies are needed to help reduce the number of post-operative complications and associated costs for breast cancer patients undergoing reconstructive breast surgery. Evidence suggests that local heat preconditioning could help improve the provision of this procedure by reducing skin necrosis. Before testing the effectiveness of heat preconditioning in a definitive randomised controlled trial (RCT), we must first establish the best way to measure skin necrosis and estimate the event rate using this definition. PREHEAT is a single-blind randomised controlled feasibility trial comparing local heat preconditioning, using a hot water bottle, against standard care on skin necrosis among breast cancer patients undergoing reconstructive breast surgery. The primary objective of this study is to determine the best way to measure skin necrosis and to estimate the event rate using this definition in each trial arm. Secondary feasibility objectives include estimating recruitment and 30 day follow-up retention rates, levels of compliance with the heating protocol, length of stay in hospital and the rates of surgical versus conservative management of skin necrosis. The information from these objectives will inform the design of a larger definitive effectiveness and cost-effectiveness RCT. This article describes the PREHEAT trial protocol and detailed statistical analysis plan, which includes the pre-specified criteria and process for establishing the best way to measure necrosis. This study will provide the evidence needed to establish the best way to measure skin necrosis, to use as the primary outcome in a future RCT to definitively test the effectiveness of local heat preconditioning. The pre-specified statistical analysis plan, developed prior to unblinded data extraction, sets out the analysis strategy and a comparative framework to support a committee evaluation of skin necrosis measurements. It will increase the transparency of the data analysis for the PREHEAT trial. ISRCTN ISRCTN15744669. Registered 25 February 2015.

  7. Hydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition

    PubMed Central

    Zhang, Hao; Xu, Fengying; Zou, Zui; Liu, Meng; Wang, Quanxing; Miao, Mingyong; Shi, Xueyin

    2013-01-01

    Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmental (70%) warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg) did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP) opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury. PMID:24058562

  8. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    PubMed

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  9. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    PubMed

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  10. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...

  11. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...

  12. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...

  13. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...

  14. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...

  15. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats

    PubMed Central

    XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA

    2016-01-01

    The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057

  16. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure.

    PubMed

    Foster, Gary P; Westerdahl, Daniel E; Foster, Laura A; Hsu, Jeffrey V; Anholm, James D

    2011-12-15

    Ischemic pre-condition of an extremity (IPC) induces effects on local and remote tissues that are protective against ischemic injury. To test the effects of IPC on the normal hypoxic increase in pulmonary pressures and exercise performance, 8 amateur cyclists were evaluated under normoxia and hypoxia (13% F(I)O(2)) in a randomized cross-over trial. IPC was induced using an arterial occlusive cuff to one thigh for 5 min followed by deflation for 5 min for 4 cycles. In the control condition, the resting pulmonary artery systolic pressure (PASP) increased from a normoxic value of 25.6±2.3 mmHg to 41.8±7.2 mmHg following 90 min of hypoxia. In the IPC condition, the PASP increased to only 32.4±3.1 mmHg following hypoxia, representing a 72.8% attenuation (p=0.003). No significant difference was detected in cycle ergometer time trial duration between control and IPC conditions with either normoxia or hypoxia. IPC administered prior to hypoxic exposure was associated with profound attenuation of the normal hypoxic increase of pulmonary artery systolic pressure. Published by Elsevier B.V.

  17. Remote preconditioning and major clinical complications following adult cardiovascular surgery: systematic review and meta-analysis.

    PubMed

    Healy, D A; Khan, W A; Wong, C S; Moloney, M Clarke; Grace, P A; Coffey, J C; Dunne, C; Walsh, S R; Sadat, U; Gaunt, M E; Chen, S; Tehrani, S; Hausenloy, D J; Yellon, D M; Kramer, R S; Zimmerman, R F; Lomivorotov, V V; Shmyrev, V A; Ponomarev, D N; Rahman, I A; Mascaro, J G; Bonser, R S; Jeon, Y; Hong, D M; Wagner, R; Thielmann, M; Heusch, G; Zacharowski, K; Meybohm, P; Bein, B; Tang, T Y

    2014-09-01

    A number of 'proof-of-concept' trials suggest that remote ischaemic preconditioning (RIPC) reduces surrogate markers of end-organ injury in patients undergoing major cardiovascular surgery. To date, few studies have involved hard clinical outcomes as primary end-points. Randomised clinical trials of RIPC in major adult cardiovascular surgery were identified by a systematic review of electronic abstract databases, conference proceedings and article reference lists. Clinical end-points were extracted from trial reports. In addition, trial principal investigators provided unpublished clinical outcome data. In total, 23 trials of RIPC in 2200 patients undergoing major adult cardiovascular surgery were identified. RIPC did not have a significant effect on clinical end-points (death, peri-operative myocardial infarction (MI), renal failure, stroke, mesenteric ischaemia, hospital or critical care length of stay). Pooled data from pilot trials cannot confirm that RIPC has any significant effect on clinically relevant end-points. Heterogeneity in study inclusion and exclusion criteria and in the type of preconditioning stimulus limits the potential for extrapolation at present. An effort must be made to clarify the optimal preconditioning stimulus. Following this, large-scale trials in a range of patient populations are required to ascertain the role of this simple, cost-effective intervention in routine practice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    PubMed Central

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  19. Preconditioning 2D Integer Data for Fast Convex Hull Computations

    PubMed Central

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  20. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  1. Leg ischaemia before circulatory arrest alters brain leucocyte count and respiratory chain redox state.

    PubMed

    Yannopoulos, Fredrik S; Arvola, Oiva; Haapanen, Henri; Herajärvi, Johanna; Miinalainen, Ilkka; Jensen, Hanna; Kiviluoma, Kai; Juvonen, Tatu

    2014-03-01

    Remote ischaemic preconditioning and its neuroprotective abilities are currently under investigation and the method has shown significant effects in several small and large animal studies. In our previous studies, leucocyte filtration during cardiopulmonary bypass reduced cerebrocortical adherent leucocyte count and mitigated cerebral damage after hypothermic circulatory arrest (HCA) in piglets. This study aimed to obtain and assess direct visual data of leucocyte behaviour in cerebral vessels after hypothermic circulatory arrest following remote ischaemic preconditioning. Twelve native stock piglets were randomized into a remote ischaemic preconditioning group (n = 6) and a control group (n = 6). The intervention group underwent hind-leg ischaemia, whereas the control group received a sham-treatment before a 60-min period of hypothermic circulatory arrest. An intravital microscope was used to obtain measurements from the cerebrocortical vessel in vivo. It included three sets of filters: a violet filter to visualize microvascular perfusion and vessel diameter, a green filter for visualization of rhodamine-labelled leucocytes and an ultraviolet filter for reduced nicotinamide adenine dinucleotide (NADH) analysis. The final magnification on the microscope was 400. After the experiment, cerebral and cerebellar biopsies were collected and analysed with transmission electron microscope by a blinded analyst. In the transmission electron microscope analysis, the entire intervention group had normal, unaffected rough endoplasmic reticulum's in their cerebellar tissue, whereas the control group had a mean score of 1.06 (standard deviation 0.41) (P = 0.026). The measured amount of adherent leucocytes was lower in the remote ischaemic preconditioning group. The difference was statistically significant at 5, 15 and 45 min after circulatory arrest. Statistically significant differences were seen also in the recovery phase at 90 and 120 min after reperfusion. Nicotinamide adenine dinucleotide autofluorescence had statistically significant differences at 10 min after cooling and at 120 and 180 min after hypothermic circulatory arrest. Remote ischaemic preconditioning seems to provide better mitochondrial respiratory chain function as indicated by the higher NADH content. It simultaneously provides a reduction of adherent leucocytes in cerebral vessels after hypothermic circulatory arrest. Additionally, it might provide some degree of cellular organ preservation as implied by the electron microscopy results.

  2. Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion.

    PubMed

    Fan, Jin; Zhang, Zitao; Chao, Xie; Gu, Jun; Cai, Weihua; Zhou, Wei; Yin, Guoyong; Li, Qingqing

    2014-05-08

    Autophagy serves to eliminate damaged proteins and organelles under normal physiological conditions and can be accelerated by pathological stress, possibly as a cytoprotective mechanism. Brief periods of ischemia (ischemic preconditioning or IPC) can reduce neuronal death in response to subsequent severe ischemic insults. Ischemic preconditioning also induces autophagy, but the contribution of autophagy to IPC-associated neuroprotection remains unclear. We investigated the contribution of autophagy to IPC-mediated neuroprotection in rats subjected to ischemic spinal cord injury. Fifty adult rats were randomly assigned to either (1) a sham group receiving anesthesia and surgical preparation (n=5), (2) an ischemia/reperfusion (I/R) group (n=20) subjected to 0.5 h ischemia followed by 3, 6, 12, or 24 h reperfusion, (3) an IPC group receiving three cycles of 5 min ischemia followed by 5 min of reperfusion (n=5), or (4) an IPC+I/R group (n=20). Hematoxylin-eosin (HE) and immunohistochemical staining were performed to evaluate spinal neuron survival in the four treatment groups. Autophagic activity was investigated by electron microscopy and by immunohistochemical and Western blot analyses of the autophagosome marker LC3-II and the autophagy-associated BH3 protein Beclin-1. Changes in Bcl-2/Beclin-1 complex association and Bcl-2 phosphorylation (p-Bcl-2) were examined by co-immunoprecipitation and Western blot analyses. In the I/R group, LC3-II was significantly elevated after 3h of reperfusion, but declined significantly by 24 h. At 24 h, I/R rats exhibited extensive spinal damage and decreased neuronal survival. In the IPC+IR group, neuronal death was reduced and expression of LC3-II sustained throughout the 24 h reperfusion period. In the I/R group, expression of (inactive) p-Bcl-2(Ser70) was increased significantly during reperfusion and was accompanied by dissociation of the Bcl-2/Beclin-1 complex and increased Beclin-1 expression. Preconditioning inhibited these changes in p-Bcl-2, Beclin-1, and Bcl-2/Beclin-1 complex expression. Ischemic preconditioning appears to sustain the beneficial effects of autophagic lysosomal degradation during I/R while inhibiting autophagic cell death. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct sizemore » and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.« less

  4. Loss of glycogen during preconditioning is not a prerequisite for protection of the rabbit heart.

    PubMed

    Weinbrenner, C; Wang, P; Downey, J M

    1996-01-01

    Depletion of glycogen has been proposed as the mechanism of protection from ischemic preconditioning. The hypothesis was tested by seeing whether pharmacological manipulation of preconditioning causes parallel changes in cardiac glycogen content. Five groups of isolated rabbit hearts were studied. Group 1 experienced 30 min of ischemia only. Group 2 (PC) was preconditioned with 5 min of global ischemia followed by 10 min of reperfusion. Group 3 was preconditioned with 5 min exposure to 400 nM bradykinin followed by a 10 min washout period. Group 4 experienced exposure to 10 microM adenosine followed by a 10 min washout period, and the fifth group was also preconditioned with 5 min ischemia and 10 min reperfusion but 100 microM 8-(p-sulfophenyl)theophylline (SPT), which blocks adenosine receptors, was included in the buffer to block preconditioning's protection. Transmural biopsies were taken before treatment, just prior to the 30 min period of global ischemia, and after 30 min of global ischemia. Glycogen in the samples was digested with amyloglucosidase and the resulting glucose was assayed. Baseline glycogen averaged 17.3 +/- 0.6 mumol glucose/g wet weight. After preconditioning glycogen decreased to 13.3 +/- 1.3 mumol glucose/g wet weight (p < 0.005 vs. baseline). Glycogen was similarly depleted after pharmacological preconditioning with adenosine (14.0 +/- 1.0 mumol glucose/g wet weight, p < 0.05 vs. baseline) suggesting a correlation. However, when preconditioning was performed in the presence of SPT, which blocks protection, glycogen was also depleted by the same amount (13.3 +/- 0.7 mumol glucose/g wet weight, p = ns vs. PC). Bradykinin, which also mimics preconditioning, caused no depletion of glycogen (16.3 +/- 0.8 mumol glucose/g wet weight, p = ns vs. baseline). Because preconditioning with bradykinin did not deplete glycogen and because glycogen continued to be low when protection from preconditioning was blocked with SPT, we conclude that loss of glycogen per se does not cause the protection of preconditioning.

  5. Brief pressure overload of the left ventricle reduces myocardial infarct size via activation of protein kinase C.

    PubMed

    Tang, Chia-Yu; Lai, Chang-Chi; Chiang, Shu-Chiung; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2015-09-01

    We have previously reported that brief pressure overload of the left ventricle reduced myocardial infarct (MI) size. However, the role of protein kinase C (PKC) remains uncertain. In this study, we investigated whether pressure overload reduces MI size by activating PKC. MI was induced by a 40-minute occlusion of the left anterior descending coronary artery and a 3-hour reperfusion in anesthetized Sprague-Dawley rats. MI size was determined using triphenyl tetrazolium chloride staining. Brief pressure overload was achieved by two 10-minute partial snarings of the ascending aorta, raising the systolic left ventricular pressure 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions and 10-minute reperfusions. Dimethyl sulfoxide (vehicle) or calphostin C (0.1 mg/kg, a specific inhibitor of PKC) was administered intravenously as pretreatment. The MI size, expressed as the percentage of the area at risk, was significantly reduced in the pressure overload group and the ischemic preconditioning group (19.0 ± 2.9% and 18.7 ± 3.0% vs. 26.1 ± 2.6% in the control group, where p < 0.001). Pretreatment with calphostin C significantly limited the protection by pressure overload and ischemic preconditioning (25.2 ± 2.4% and 25.0 ± 2.3%, where p < 0.001). Calphostin C itself did not significantly affect MI size (25.5 ± 2.4%). Additionally, the hemodynamics, area at risk, and mortality were not significantly different. Brief pressure overload of the left ventricle reduced MI size. Since calphostin C significantly limited the decrease of MI size, our results suggested that brief pressure overload reduces MI size via activation of PKC. Copyright © 2015. Published by Elsevier Taiwan.

  6. Isoflurane preconditioning protects neurons from male and female mice against oxygen and glucose deprivation and is modulated by estradiol only in neurons from female mice.

    PubMed

    Johnsen, D; Murphy, S J

    2011-12-29

    The volatile anesthetic, isoflurane, can protect the brain if administered before an insult such as an ischemic stroke. However, this protective "preconditioning" response to isoflurane is specific to males, with females showing an increase in brain damage following isoflurane preconditioning and subsequent focal cerebral ischemia. Innate cell sex is emerging as an important player in neuronal cell death, but its role in the sexually dimorphic response to isoflurane preconditioning has not been investigated. We used an in vitro model of isoflurane preconditioning and ischemia (oxygen and glucose deprivation, OGD) to test the hypotheses that innate cell sex dictates the response to isoflurane preconditioning and that 17β-estradiol attenuates any protective effect from isoflurane preconditioning in neurons via nuclear estrogen receptors. Sex-segregated neuron cultures derived from postnatal day 0-1 mice were exposed to either 0% or 3% isoflurane preconditioning for 1 h. In separate experiments, 17β-estradiol and the non-selective estrogen receptor antagonist ICI 182,780 were added 24 h before preconditioning and then removed at the end of the preconditioning period. Twenty-three hours after preconditioning, all cultures underwent 2 h of OGD. Twenty-four hours following OGD, cell viability was quantified using calcein-AM fluorescence. We observed that isoflurane preconditioning increased cell survival following subsequent OGD regardless of innate cell sex, but that the presence of 17β-estradiol before and during isoflurane preconditioning attenuated this protection only in female neurons independent of nuclear estrogen receptors. We also found that independent of preconditioning treatment, female neurons were less sensitive to OGD compared with male neurons and that transient treatment with 17β-estradiol protected both male and female neurons from subsequent OGD. More studies are needed to determine how cell type, cell sex, and sex steroids like 17β-estradiol may impact on anesthetic preconditioning and subsequent ischemic outcomes in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Cardioprotection by remote ischaemic preconditioning.

    PubMed

    Walsh, S R; Tang, T; Sadat, U; Dutka, D P; Gaunt, M E

    2007-11-01

    Perioperative myocardial infarction is a leading cause of morbidity and mortality after major non-cardiac surgery. Pharmacological agents such as beta-blockers may reduce the risk but are associated with side-effects and may be contra-indicated in some patients. Basic scientific experiments and preliminary clinical trials in humans suggest that remote ischaemic preconditioning (RIPC), where brief ischaemia in one tissue confers resistance to subsequent sustained ischaemic insults in another tissue, may provide a simple, cost-effective means of reducing the risk of perioperative myocardial ischaemia. The Medline and Pubmed databases were searched for articles concerning RIPC. The mechanism may be humoral, neural, or a combination of both, and involves adenosine, opioids, bradykinins, protein kinase C, and K-ATP channels, although the precise end-effector remains unclear. Small randomized trials in humans undergoing major surgery suggest that RIPC induced by brief lower limb ischaemia significantly reduces myocardial injury. It may also reduce other ischaemic complications of surgery and anaesthesia. Small studies provide some evidence that RIPC could reduce myocardial injury and other ischaemic complications of surgery. However, large-scale clinical trials to assess the effect of RIPC on mortality and morbidity are required before RIPC can be recommended for routine clinical use.

  8. Implicit preconditioned WENO scheme for steady viscous flow computation

    NASA Astrophysics Data System (ADS)

    Huang, Juan-Chen; Lin, Herng; Yang, Jaw-Yen

    2009-02-01

    A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier-Stokes equations of primitive variables with Spalart-Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.

  9. Ethanol preconditioning of rat cerebellar cultures targets NMDA receptors to the synapse and enhances peroxiredoxin 2 expression.

    PubMed

    Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A

    2016-07-01

    Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    PubMed

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    PubMed

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.

  12. Preconditioning Triggered by Carbon Monoxide (CO) Provides Neuronal Protection Following Perinatal Hypoxia-Ischemia

    PubMed Central

    Widerøe, Marius; Alves, Paula M.; Vercelli, Alessandro; Vieira, Helena L. A.

    2012-01-01

    Perinatal hypoxia-ischemia is a major cause of acute mortality in newborns and cognitive and motor impairments in children. Cerebral hypoxia-ischemia leads to excitotoxicity and necrotic and apoptotic cell death, in which mitochondria play a major role. Increased resistance against major damage can be achieved by preconditioning triggered by subtle insults. CO, a toxic molecule that is also generated endogenously, may have a role in preconditioning as low doses can protect against inflammation and apoptosis. In this study, the role of CO-induced preconditioning on neurons was addressed in vitro and in vivo. The effect of 1 h of CO treatment on neuronal death (plasmatic membrane permeabilization and chromatin condensation) and bcl-2 expression was studied in cerebellar granule cells undergoing to glutamate-induced apoptosis. CO's role was studied in vivo in the Rice-Vannucci model of neonatal hypoxia-ischemia (common carotid artery ligature +75 min at 8% oxygen). Apoptotic cells, assessed by Nissl staining were counted with a stereological approach and cleaved caspase 3-positive profiles in the hippocampus were assessed. Apoptotic hallmarks were analyzed in hippocampal extracts by Western Blot. CO inhibited excitotoxicity-induced cell death and increased Bcl-2 mRNA in primary cultures of neurons. In vivo, CO prevented hypoxia-ischemia induced apoptosis in the hippocampus, limited cytochrome c released from mitochondria and reduced activation of caspase-3. Still, Bcl-2 protein levels were higher in hippocampus of CO pre-treated rat pups. Our results show that CO preconditioning elicits a molecular cascade that limits neuronal apoptosis. This could represent an innovative therapeutic strategy for high-risk cerebral hypoxia-ischemia patients, in particular neonates. PMID:22952602

  13. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species.

    PubMed

    Jeong, Yun-Mi; Sung, Young Kwan; Kim, Wang-Kyun; Kim, Ji Hye; Kwack, Mi Hee; Yoon, Insoo; Kim, Dae-Duk; Sung, Jong-Hyuk

    2013-01-01

    Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.

  14. Preconditioning methods influence tumor property in an orthotopic bladder urothelial carcinoma rat model

    PubMed Central

    MIYAZAKI, KOZO; MORIMOTO, YUJI; NISHIYAMA, NOBUHIRO; SATOH, HIROYUKI; TANAKA, MASAMITSU; SHINOMIYA, NARIYOSHI; ITO, KEIICHI

    2014-01-01

    Urothelial carcinoma (UC) is an extremely common type of cancer that occurs in the bladder. It has a particularly high rate of recurrence. Therefore, preclinical studies using animal models are essential to determine effective forms of treatment. In the present study, in order to establish an orthotopic bladder UC animal model with clinical relevance, the effects of preconditioning methods on properties of the developed tumor were evaluated. The bladder cavity was pretreated with phosphate-buffered saline (PBS), acid-base, trypsin (TRY) or poly (L-lysine) (PLL) and then rat UC cells (AY-27) (4×106 cells) were inoculated. The results demonstrated that, two weeks later, the tumorigenic rate (88%) and tumor count (2.3 per rat) were not significantly different among the preconditioning methods, whereas tumor volume and invasion depth into bladder tissue were significantly different. Average tumor volumes were >50 mm3 in the PBS and acid-base-treated groups and <10 mm3 in the TRY- and PLL-treated groups. The percentage of invasive tumors (T2 or more advanced stage) was ∼75% of total tumors in the PBS- and acid-base-treated groups, whereas the percentages were reduced in the TRY- and PLL-treated groups (58 and 32%, respectively). Non-invasive tumors (Ta or T1) accounted for 54% of tumors in the PLL-treated group, which was 2-5-fold higher than the percentages in the remaining groups. Properties of the developed tumor in the rat orthotopic UC model were different depending on preconditioning methods. Therefore, different animal models suitable for a discrete preclinical examination may be established by using the appropriate preconditioning condition. PMID:24649309

  15. Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments.

    PubMed

    Peng, Yan; Huang, Sha; Wu, Yan; Cheng, Biao; Nie, Xiaohu; Liu, Hongwei; Ma, Kui; Zhou, Jiping; Gao, Dongyun; Feng, Changjiang; Yang, Siming; Fu, Xiaobing

    2013-12-15

    Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.

  16. Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma.

    PubMed

    Loza-Correa, M; Kalab, M; Yi, Q-L; Eltringham-Smith, L J; Sheffield, W P; Ramirez-Arcos, S

    2017-07-01

    Canadian Blood Services produces apheresis and buffy coat pooled platelet concentrates (PCs) stored in bags produced by two different manufacturers (A and B, respectively), both made of polyvinyl chloride-butyryl trihexyl citrate. This study was aimed at comparing Staphylococcus epidermidis adhesion to the inner surface of both bag types in the presence or absence of plasma factors. Sets (N = 2-6) of bags type A and B were left non-coated (control) or preconditioned with platelet-rich, platelet-poor or defibrinated plasma (PRP, PPP and DefibPPP, respectively). Each bag was inoculated with a 200-ml S. epidermidis culture adjusted to 0·5 colony-forming units/ml. Bags were incubated under platelet storage conditions for 7 days. After culture removal, bacteria attached to the plastic surface were either dislodged by sonication for bacterial quantification or examined in situ by scanning electron microscopy (SEM). Higher bacterial adhesion was observed to preconditioned PC bags than control containers for both bag types (P < 0·0001). Bacterial attachment to preconditioned bags was confirmed by SEM. Bacteria adhered equally to both types of containers in the presence of PRP, PPP and DefibPPP residues (P > 0·05). By contrast, a significant increase in bacterial adherence was observed to type A bags compared with type B bags in the absence of plasma (P < 0·05) [Correction added on 16 June 2017, after first online publication: this sentence has been corrected]. The ability of S. epidermidis to adhere to preconditioned platelet collection bags depends on the presence of plasma factors. Future efforts should be focused on reducing plasma proteins' attachment to platelet storage containers to decrease subsequent bacterial adhesion. © 2017 International Society of Blood Transfusion.

  17. Why don't patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee

    PubMed Central

    Campbell, R; Evans, M; Tucker, M; Quilty, B; Dieppe, P; Donovan, J

    2001-01-01

    STUDY OBJECTIVES—To understand reasons for compliance and non-compliance with a home based exercise regimen by patients with osteoarthritis of the knee.
DESIGN—A qualitative study, nested within a randomised controlled trial, examining the effectiveness of physiotherapy in reducing pain and increasing mobility in knee osteoarthritis. In the intervention arm, participants undertook a series of simple exercises and repositioning of the kneecap using tape. In depth interviews were conducted with a subset of participants in the intervention arm using open ended questions, guided by a topic schedule, to encourage patients to describe their experiences and reflect on why they did or did not comply with the physiotherapy. Interviews were audiotaped, fully transcribed and analysed thematically according to the method of constant comparison. A model explaining factors influencing compliance was developed.
SETTING—Patients were interviewed at home. The study was nested within a pragmatic randomised controlled trial.
PARTICIPANTS—Twenty participants in the intervention arm of the randomised trial were interviewed three months after they had completed the physiotherapy programme. Eight were interviewed again one year later.
MAIN RESULTS—Initial compliance was high because of loyalty to the physiotherapist. Reasoning underpinning continued compliance was more complex, involving willingness and ability to accommodate exercises within everyday life, the perceived severity of symptoms, attitudes towards arthritis and comorbidity and previous experiences of osteoarthritis. A necessary precondition for continued compliance was the perception that the physiotherapy was effective in ameliorating unpleasant symptoms.
CONCLUSIONS—Non-compliance with physiotherapy, as with drug therapies, is common. From the patient's perspective, decisions about whether or not to comply are rational but often cannot be predicted by therapists or researchers. Ultimately, this study suggests that health professionals need to understand reasons for non-compliance if they are to provide supportive care and trialists should include qualitative research within trials whenever levels of compliance may have an impact on the effectiveness of the intervention.


Keywords: compliance; physiotherapy; qualitative research PMID:11154253

  18. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    PubMed

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  19. Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis.

    PubMed

    Wu, Xiaomei; Qian, Zhongming; Ke, Ya; Du, Fang; Zhu, Li

    2009-01-01

    Ischaemic preconditioning (IP) has been reported to protect the brain against subsequent lethal ischaemia, but it has not been used clinically to prevent ischaemic injury because of safety concerns. The aim of the present study was to see whether Ginkgolide B (GB) is capable of preconditioning as IP to protect neurons against ischaemic injury; if so, which mechanism is involved. Cultured mouse cortical neurons at day 8 were pre-treated with GB (120 micromol/l) for 24 hrs or exposed to short-term ischaemia (1 hr) followed by 24-hr normal culture to induce IP before being treated with severe ischaemia (5 hrs). GB and IP significantly increased cell viability, expression of hypoxia-inducible factor-1 alpha (HIF-1alpha), erythropoietin (EPO), phosphorylated Bad at serine 136 (136p-Bad) and phosphorylated glycogen synthase kinase- 3beta at serine 9 (p-GSK-3beta), and decreased the percentage of apoptotic cells and the level of active caspase-3 in severely ischaemic neurons. Moreover, LY294002 that is a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) significantly reduced the enhanced expression of HIF-1alpha, EPO and 136p-Bad induced by GB and IP. These results suggest that GB, like IP in neurons, is capable of preconditioning against ischaemia-induced apoptosis, the mechanism of which may involve the PI3K signalling pathway.

  20. Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis

    PubMed Central

    Wu, Xiaomei; Qian, Zhongming; Ke, Ya; Du, Fang; Zhu, Li

    2009-01-01

    Ischaemic preconditioning (IP) has been reported to protect the brain against subsequent lethal ischaemia, but it has not been used clinically to prevent ischaemic injury because of safety concerns. The aim of the present study was to see whether Ginkgolide B (GB) is capable of preconditioning as IP to protect neurons against ischaemic injury; if so, which mechanism is involved. Cultured mouse cortical neurons at day 8 were pre-treated with GB (120 μmol/l) for 24 hrs or exposed to short-term ischaemia (1 hr) followed by 24-hr normal culture to induce IP before being treated with severe ischaemia (5 hrs). GB and IP significantly increased cell viability, expression of hypoxia-inducible factor-1 alpha (HIF-1α), erythropoietin (EPO), phosphorylated Bad at serine 136 (136p-Bad) and phosphorylated glycogen synthase kinase- 3β at serine 9 (p-GSK-3β), and decreased the percentage of apoptotic cells and the level of active caspase-3 in severely ischaemic neurons. Moreover, LY294002 that is a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) significantly reduced the enhanced expression of HIF-1α, EPO and 136p-Bad induced by GB and IP. These results suggest that GB, like IP in neurons, is capable of preconditioning against ischaemia-induced apoptosis, the mechanism of which may involve the PI3K signalling pathway. PMID:19602048

  1. Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage.

    PubMed

    Nieuwenhuijs, Vincent B; De Bruijn, Menno T; Padbury, Robert T A; Barritt, Gregory J

    2006-06-01

    Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.

  2. [The relationship between ischemic preconditioning-induced infarction size limitation and duration of test myocardial ischemia].

    PubMed

    Blokhin, I O; Galagudza, M M; Vlasov, T D; Nifontov, E M; Petrishchev, N N

    2008-07-01

    Traditionally infarction size reduction by ischemic preconditioning is estimated in duration of test ischemia. This approach limits the understanding of real antiischemic efficacy of ischemic preconditioning. Present study was performed in the in vivo rat model of regional myocardial ischemia-reperfusion and showed that protective effect afforded by ischemic preconditioning progressively decreased with prolongation of test ischemia. There were no statistically significant differences in infarction size between control and preconditioned animals when the duration of test ischemia was increased up to 1 hour. Preconditioning ensured maximal infarction-limiting effect in duration of test ischemia varying from 20 to 40 minutes.

  3. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    PubMed Central

    Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2016-01-01

    A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299

  4. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    PubMed

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  5. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    PubMed Central

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816

  6. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury.

    PubMed

    Kim, Jin Yong; Lee, Dong Yun; Kang, Sukmo; Miao, Wenjun; Kim, Hyungjun; Lee, Yonghyun; Jon, Sangyong

    2017-07-01

    Hepatic ischemia-reperfusion injury (IRI) remains a major concern in liver transplantation and resection, despite continuing efforts to prevent it. Accumulating evidence suggests that bilirubin possesses antioxidant, anti-inflammatory and anti-apoptotic properties. However, despite obvious potential health benefits of bilirubin, its clinical applications are limited by its poor solubility. We recently developed bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol (PEG)-conjugated bilirubin. Here, we sought to investigate whether BRNPs protect against IRI in the liver by preventing oxidative stress. BRNPs exerted potent antioxidant and anti-apoptotic activity in primary hepatocytes exposed to hydrogen peroxide, a precursor of reactive oxygen species (ROS). In a model of hepatic IRI in mice, BRNP preconditioning exerted profound protective effects against hepatocellular injury by reducing oxidative stress, pro-inflammatory cytokine production, and recruitment of neutrophils. They also preferentially accumulated in IRI-induced inflammatory lesions. Collectively, our findings indicate that BRNP preconditioning provides a simple and safe approach that can be easily monitored in the blood like endogenous bilirubin, and could be a promising strategy to protect against IRI in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interactions of GSK-3β with mitochondrial permeability transition pore modulators during preconditioning: age-associated differences.

    PubMed

    Zhu, Jiang; Rebecchi, Mario J; Glass, Peter S A; Brink, Peter R; Liu, Lixin

    2013-04-01

    Anesthetic preconditioning (APC) and ischemic preconditioning (IPC) are lost with normal aging. Here, we investigated age-related difference between phosphoglycogen synthase kinase-3beta (pGSK-3β) and pGSK-3β with modulators of mitochondrial permeability transition pore, including adenine nucleotide translocase (ANT), cyclophilin-D, or voltage-dependent anion channel. APC or IPC significantly increased pGSK-3β in the young groups in both the cytosol and the mitochondria and also significantly increased pGSK-3β in co-immunoprecipitates with ANT. Importantly, the level of cyclophilin-D in co-immunoprecipitates with ANT was significantly decreased in the young APC and IPC groups, but not in old rats. We also found that APC or IPC significantly prolonged mitochondrial permeability transition pore opening time in the young cardiomyocytes under oxidative stress, but not in the elderly. Attenuation of APC or IPC protection in the aging heart is associated with failure to reduce ANT-cyclophilin-D interactions and to decreased pGSK-3β responsiveness of ANT, critical modulators of mitochondrial permeability transition pore.

  8. Application of model abstraction techniques to simulate transport in soils

    USDA-ARS?s Scientific Manuscript database

    Successful understanding and modeling of contaminant transport in soils is the precondition of risk-informed predictions of the subsurface contaminant transport. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing th...

  9. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling.

    PubMed

    Rong, Bing; Xie, Fei; Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-10-25

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.

  10. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  11. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  12. Parallel Preconditioning for CFD Problems on the CM-5

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.

  13. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

  14. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    PubMed Central

    Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355

  15. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiueh, C.C.; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation.more » Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against MPTP/MPP{sup +}.« less

  16. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    PubMed

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  17. Preventive Strategies for Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Procedures: Evidence From a Hierarchical Bayesian Network Meta-Analysis of 124 Trials and 28 240 Patients.

    PubMed

    Giacoppo, Daniele; Gargiulo, Giuseppe; Buccheri, Sergio; Aruta, Patrizia; Byrne, Robert A; Cassese, Salvatore; Dangas, George; Kastrati, Adnan; Mehran, Roxana; Tamburino, Corrado; Capodanno, Davide

    2017-05-01

    The effectiveness of currently available effective preventive strategies for contrast-induced acute kidney injury (CIAKI) is a matter of debate. We performed a Bayesian random-effects network meta-analysis of 124 trials (28 240 patients) comparing a total of 10 strategies: saline, statin, N-acetylcysteine (NAC), sodium bicarbonate (NaHCO 3 ), NAC+NaHCO 3 , ascorbic acid, xanthine, dopaminergic agent, peripheral ischemic preconditioning, and natriuretic peptide. Compared with saline, the risk of CIAKI was reduced by using statin (odds ratio [OR], 0.42; 95% credible interval [CrI], 0.26-0.67), xanthine (OR, 0.32; 95% CrI, 0.17-0.57), ischemic preconditioning (OR, 0.48; 95% CrI, 0.26-0.87), NAC+NaHCO 3 (OR, 0.50; 95% CrI, 0.33-0.76), NAC (OR, 0.68; 95% CrI, 0.55-0.84), and NaHCO 3 (OR, 0.66; 95% CrI, 0.47-0.90). The benefit of statin therapy was consistent across multiple sensitivity analyses, whereas the efficacy of all the other strategies was questioned by restricting the analysis to high-quality trials. Overall, high heterogeneity was observed for comparisons involving xanthine and ischemic preconditioning, although the impact of NAC and xanthine was probably influenced by publication bias/small-study effect. Hydration alone was the least effective preventive strategy for CIAKI. Meta-regressions did not reveal significant associations with baseline creatinine and contrast volume. In patients with diabetes mellitus, no strategy was found to reduce the incidence of CIAKI. In patients undergoing percutaneous coronary procedures, statin administration is associated with a marked and consistent reduction in the risk of CIAKI compared with saline. Although xanthine, NAC, NaHCO 3 , NAC+NaHCO 3 , ischemic preconditioning, and natriuretic peptide may have nephroprotective effects, these results were not consistent across multiple sensitivity analyses. © 2017 American Heart Association, Inc.

  18. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    PubMed

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  19. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  20. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the parallel context.

  1. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro.

    PubMed

    Butt, Hira; Mehmood, Azra; Ali, Muhammad; Tasneem, Saba; Anjum, Muhammad Sohail; Tarar, Moazzam N; Khan, Shaheen N; Riazuddin, Sheikh

    2017-09-01

    Oxidative microenvironment of burnt skin restricts the outcome of cell based therapies of thermal skin injuries. The aim of this study was to precondition human dermal fibroblasts with an antioxidant such as vitamin E to improve their survival and therapeutic abilities in heat induced oxidative in vitro environment. Fibroblasts were treated with 100μM vitamin E for 24h at 37°C followed by heat shock for 10min at 51°C in fresh serum free medium. Preconditioning with vitamin E reduced cell injury as demonstrated by decreased expression of annexin-V, cytochrome p450 (CYP450) mediated oxidative reactions, senescence and release of lactate dehydrogenase (LDH) accomplished by down-regulated expression of pro-apoptotic BAX gene. Vitamin E preconditioned cells exhibited remarkable improvement in cell viability, release of paracrine factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), stromal derived factor-1alpha (SDF-1α) and also showed significantly up-regulated levels of PCNA, VEGF, BCL-XL, FGF7, FGF23, FLNβ and Col7α genes presumably through activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The results suggest that pretreatment of fibroblasts with vitamin E prior to transplantation in burnt skin speeds up the wound healing process by improving the antioxidant scavenging responses in oxidative environment of transplanted burn wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    PubMed

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  3. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning.

    PubMed

    Hentia, Ciprian; Rizzato, Alex; Camporesi, Enrico; Yang, Zhongjin; Muntean, Danina M; Săndesc, Dorel; Bosco, Gerardo

    2018-05-01

    Ischemia/reperfusion (I/R) injury, such as myocardial infarction, stroke, and peripheral vascular disease, has been recognized as the most frequent causes of devastating disorders and death currently. Protective effect of various preconditioning stimuli, including hyperbaric oxygen (HBO), has been proposed in the management of I/R. In this study, we searched and reviewed up-to-date published papers to explore the pathophysiology of I/R injury and to understand the mechanisms underlying the protective effect of HBO as conditioning strategy. Animal study and clinic observation support the notion that HBO therapy and conditioning provide beneficial effect against the deleterious effects of postischemic reperfusion. Several explanations have been proposed. The first likely mechanism may be that HBO counteracts hypoxia and reduces I/R injury by improving oxygen delivery to an area with diminished blood flow. Secondly, by reducing hypoxia-ischemia, HBO reduces all the pathological events as a consequence of hypoxia, including tissue edema, increased affective area permeability, postischemia derangement of tissue metabolism, and inflammation. Thirdly, HBO may directly affect cell apoptosis, signal transduction, and gene expression in those that are sensitive to oxygen or hypoxia. HBO provides a reservoir of oxygen at cellular level not only carried by blood, but also by diffusion from the interstitial tissue where it reaches high concentration that may last for several hours, improves endothelial function and rheology, and decreases local inflammation and edema. Evidence suggests the benefits of HBO when used as a preconditioning stimulus in the setting of I/R injury. Translating the beneficial effects of HBO into current practice requires, as for the "conditioning strategies", a thorough consideration of risk factors, comorbidities, and comedications that could interfere with HBO-related protection.

  4. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model.

    PubMed

    Tilkorn, Daniel J; Davies, E Michele; Keramidaris, Effie; Dingle, Aaron M; Gerrand, Yi-Wen; Taylor, Caroline J; Han, Xiao Lian; Palmer, Jason A; Penington, Anthony J; Mitchell, Christina A; Morrison, Wayne A; Dusting, Gregory J; Mitchell, Geraldine M

    2012-05-01

    The effects of in vitro preconditioning protocols on the ultimate survival of myoblasts implanted in an in vivo tissue engineering chamber were examined. In vitro testing: L6 myoblasts were preconditioned by heat (42 °C; 1.5 h); hypoxia (<8% O(2); 1.5 h); or nitric oxide donors: S-nitroso-N-acetylpenicillamine (SNAP, 200 μM, 1.5 h) or 1-[N-(2-aminoethyl)-N-(2-aminoethyl)amino]-diazen-1-ium-1,2-diolate (DETA-NONOate, 500 μM, 7 h). Following a rest phase preconditioned cells were exposed to 24 h hypoxia, and demonstrated minimal overall cell loss, whilst controls (not preconditioned, but exposed to 24 h hypoxia) demonstrated a 44% cell loss. Phosphoimmunoblot analysis of pro-survival signaling pathways revealed significant activation of serine threonine kinase Akt with DETA-NONOate (p < 0.01) and heat preconditioning (p < 0.05). DETA-NONOate also activated ERK 1/2 signaling (p < 0.05). In vivo implantation: 100,000 preconditioned (heat, hypoxia, or DETA-NONOate) myoblasts were implanted in SCID mouse tissue engineering chambers. 100,000 (not preconditioned) myoblasts were implanted in control chambers. At 3 weeks, morphometric assessment of surviving myoblasts indicated myoblast percent volume (p = 0.012) and myoblasts/mm(2) (p = 0.0005) overall significantly increased in preconditioned myoblast chambers compared to control, with DETA-NONOate-preconditioned myoblasts demonstrating the greatest increase in survival (p = 0.007 and p = 0.001 respectively). DETA-NONOate therefore has potential therapeutic benefits to significantly improve survival of transplanted cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Exploring the Role of TRPV and CGRP in Adenosine Preconditioning and Remote Hind Limb Preconditioning-Induced Cardioprotection in Rats.

    PubMed

    Singh, Amritpal; Randhawa, Puneet Kaur; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2017-04-01

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well known, but mechanisms by which protection occurs still remain to be explored. Therefore, the present study was designed to investigate the role of TRPV and CGRP in adenosine and remote preconditioning-induced cardioprotection, using sumatriptan, a CGRP release inhibitor and ruthenium red, a TRPV inhibitor, in rats. For remote preconditioning, a pressure cuff was tied around the hind limb of the rat and was inflated with air up to 150 mmHg to produce ischemia in the hind limb and during reperfusion pressure was released. Four cycles of ischemia and reperfusion, each consisting of 5 min of inflation and 5 min of deflation of pressure cuff were used to produce remote limb preconditioning. An ex vivo Langendorff's isolated rat heart model was used to induce ischemia reperfusion injury by 30 min of global ischemia followed by 120 min of reperfusion. RIPC demonstrated a significant decrease in ischemia reperfusion-induced significant myocardial injury in terms of increase in LDH, CK, infarct size and decrease in LVDP, +dp/dt max and -dp/dt min . Moreover, pharmacological preconditioning with adenosine produced cardioprotective effects in a similar manner to RIPC. Pretreatment with sumatriptan, a CGRP release blocker, abolished RIPC and adenosine preconditioning-induced cardioprotective effects. Administration of ruthenium red, a TRPV inhibitor, also abolished adenosine preconditioning-induced cardioprotection. It may be proposed that the cardioprotective effects of adenosine and remote preconditioning are possibly mediated through activation of a TRPV channels and consequent, release of CGRP.

  6. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway. PMID:26968004

  7. miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132

    PubMed Central

    Jimenez-Mateos, Eva M.; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C.; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A.; Simon, Roger P.; Stallings, Raymond L.; Henshall, David C.

    2011-01-01

    When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. PMID:21945804

  8. Efficient geostatistical inversion of transient groundwater flow using preconditioned nonlinear conjugate gradients

    NASA Astrophysics Data System (ADS)

    Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf

    2017-04-01

    In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.

  9. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  10. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    PubMed

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  11. Role of Phosphatidylinositol-3 Kinase Pathway in NMDA Preconditioning: Different Mechanisms for Seizures and Hippocampal Neuronal Degeneration Induced by Quinolinic Acid.

    PubMed

    Constantino, Leandra C; Binder, Luisa B; Vandresen-Filho, Samuel; Viola, Giordano G; Ludka, Fabiana K; Lopes, Mark W; Leal, Rodrigo B; Tasca, Carla I

    2018-04-20

    N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38 MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38 MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38 MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.

  12. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.

    PubMed

    Tsuruta, S; Misztal, I; Strandén, I

    2001-05-01

    Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.

  13. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide

    PubMed Central

    Nanchal, Rahul; Audi, Said; Konduri, G. Ganesh; Medhora, Meetha

    2013-01-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo. PMID:24618542

  14. Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization.

    PubMed

    Milly, Hussam; Festy, Frederic; Andiappan, Manoharan; Watson, Timothy F; Thompson, Ian; Banerjee, Avijit

    2015-05-01

    To evaluate the effect of pre-conditioning enamel white spot lesion (WSL) surfaces using bioactive glass (BAG) air-abrasion prior to remineralization therapy. Ninety human enamel samples with artificial WSLs were assigned to three WSL surface pre-conditioning groups (n=30): (a) air-abrasion with BAG-polyacrylic acid (PAA-BAG) powder, (b) acid-etching using 37% phosphoric acid gel (positive control) and (c) unconditioned (negative control). Each group was further divided into three subgroups according to the following remineralization therapy (n=10): (I) BAG paste (36 wt.% BAG), (II) BAG slurry (100 wt.% BAG) and (III) de-ionized water (negative control). The average surface roughness and the lesion step height compared to intra-specimen sound enamel reference points were analyzed using non-contact profilometry. Optical changes within the lesion subsurface compared to baseline scans were assessed using optical coherence tomography (OCT). Knoop microhardness evaluated the WSLs' mechanical properties. Raman micro-spectroscopy measured the v-(CO3)(2-)/v1-(PO4)(3-) ratio. Structural changes in the lesion were observed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). All comparisons were considered statistically significant if p<0.05. PAA-BAG air-abrasion removed 5.1 ± 0.6 μm from the lesion surface, increasing the WSL surface roughness. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion reduced subsurface light scattering, increased the Knoop microhardness and the mineral content of the remineralized lesions (p<0.05). SEM-EDX revealed mineral depositions covering the lesion surface. BAG slurry resulted in a superior remineralization outcome, when compared to BAG paste. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion modified the lesion surface physically and enhanced remineralization using BAG 45S5 therapy. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.« less

  16. The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

    PubMed Central

    Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.

    2013-01-01

    ➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204

  17. [Brief on the standardization of the practitioner's posture in acupuncture operation].

    PubMed

    Lu, Yonghui

    2015-07-01

    To discuss the standardization of the practitioner's posture in acupuncture operation. Based on the relevant discussion on 'way to holding needle' recorded in Lingshu (Miraculous Pivot) and in association with the clinical acupuncture practice, it was required to standardize the practitioner's posture in acupuncture operation in reference to Lingshu (Miraculous Pivot). The standard standing posture of the practitioner is the precondition of acupuncture operation; the standard holding needle with the puncture hand is the key to the exercise of acupuncture technique and the regular standing orientation is the need of acupuncture operation. The three aspects are complemented each other, which is the coordinative procedure in acupuncture operation and enable the practitioner's high concentration with the body, qi and mind involved.

  18. Equivalent cardioprotection induced by ischemic and hypoxic preconditioning.

    PubMed

    Xiang, Xujin; Lin, Haixia; Liu, Jin; Duan, Zeyan

    2013-04-01

    We aimed to compare cardioprotection induced by various hypoxic preconditioning (HPC) and ischemic preconditioning (IPC) protocols. Isolated rat hearts were randomly divided into 7 groups (n = 7 per group) and received 3 or 5 cycles of 3-minute ischemia or hypoxia followed by 3-minute reperfusion (IPC33 or HPC33 or IPC53 or HPC53 group), 3 cycles of 5-minute ischemia or hypoxia followed by 5-minute reperfusion (IPC35 group or HPC35 group), or 30-minute perfusion (ischemic/reperfusion group), respectively. Then all the hearts were subjected to 50-minute ischemia and 120-minute reperfusion. Cardiac function, infarct size, and coronary flow rate (CFR) were evaluated. Recovery of cardiac function and CFR in IPC35, HPC35, and HPC53 groups was significantly improved as compared with I/R group (p < 0.01). There were no significant differences in cardiac function parameters between IPC35 and HPC35 groups. Consistently, infarct size was significantly reduced in IPC35, HPC35, and HPC53 groups compared with ischemic/reperfusion group. Multiple-cycle short duration HPC exerted cardioprotection, which was as powerful as that of IPC. Georg Thieme Verlag KG Stuttgart · New York.

  19. Moving force identification based on modified preconditioned conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Chan, Tommy H. T.; Nguyen, Andy

    2018-06-01

    This paper develops a modified preconditioned conjugate gradient (M-PCG) method for moving force identification (MFI) by improving the conjugate gradient (CG) and preconditioned conjugate gradient (PCG) methods with a modified Gram-Schmidt algorithm. The method aims to obtain more accurate and more efficient identification results from the responses of bridge deck caused by vehicles passing by, which are known to be sensitive to ill-posed problems that exist in the inverse problem. A simply supported beam model with biaxial time-varying forces is used to generate numerical simulations with various analysis scenarios to assess the effectiveness of the method. Evaluation results show that regularization matrix L and number of iterations j are very important influence factors to identification accuracy and noise immunity of M-PCG. Compared with the conventional counterpart SVD embedded in the time domain method (TDM) and the standard form of CG, the M-PCG with proper regularization matrix has many advantages such as better adaptability and more robust to ill-posed problems. More importantly, it is shown that the average optimal numbers of iterations of M-PCG can be reduced by more than 70% compared with PCG and this apparently makes M-PCG a preferred choice for field MFI applications.

  20. Molecular mechanisms of liver preconditioning

    PubMed Central

    Alchera, Elisa; Dal Ponte, Caterina; Imarisio, Chiara; Albano, Emanuele; Carini, Rita

    2010-01-01

    Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery. PMID:21182220

  1. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

    PubMed Central

    Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-01-01

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling. PMID:27655723

  2. Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development

    DTIC Science & Technology

    2016-01-09

    symmetrizing the higher- order PDE with a preconditioning matrix. Rowley et al. also pointed out that defining a proper inner product can be important when...equations. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases...employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases. Possible solutions of the ROM stability

  3. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  4. Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  5. Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  6. Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection.

    PubMed

    Cabrera, Jesús A; Butterick, Tammy A; Long, Eric K; Ziemba, Elizabeth A; Anderson, Lorraine B; Duffy, Cayla M; Sluiter, Willem; Duncker, Dirk J; Zhang, Jianyi; Chen, Yingjie; Ward, Herbert B; Kelly, Rosemary F; McFalls, Edward O

    2013-07-01

    Although protection against necrosis has been observed in both hibernating (HIB) and ischemic preconditioned hearts in the second window of protection (SWOP), a comparison of the mitochondrial proteome between the two entities has not been previously performed. Anesthetized swine underwent instrumentation with a fixed constrictor around the LAD artery and were followed for 12 weeks (HIB; N=7). A second group of anesthetized swine underwent ischemic preconditioning by inflating a balloon within the LAD artery 10 times for 2 min, each separated by 2 min reperfusion and were sacrificed 24h later (SWOP; N=7). Myocardial blood flow and high-energy nucleotides were obtained in the LAD region and normalized to remote regions. Post-sacrifice, protein content as measured with iTRAQ was compared in isolated mitochondria from the LAD area of a Sham heart. Basal regional blood flow in the LAD region when normalized to the remote region was 0.86±0.04 in HIB and 1.02±0.02 in SWOP tissue (P<0.05). Despite reduced regional blood flows in HIB hearts, ATP content in the LAD region, when normalized to the remote region was similar in HIB versus SWOP (1.06±0.06 and 1.02±0.05 respectively; NS) as was the transmural phosphocreatine (PCr) to ATP ratio (2.1±0.2 and 2.2±0.2 respectively; NS). Using iTRAQ, 64 common proteins were identified in HIB and SWOP hearts. Compared with SWOP, the relative abundance of mitochondrial proteins involved with electron transport chain (ETC) were reduced in HIB including NADH dehydrogenase, Cytochrome c reductase and oxidase, ATP synthase, and nicotinamide nucleotide transhydrogenase. Within chronically HIB heart tissue with reduced blood flow, the relative abundance of mitochondrial ETC proteins is decreased when compared with SWOP tissue. These data support the concept that HIB heart tissue subjected to chronically reduced blood flow is associated with a down-regulation in the expression of key mitochondrial proteins involved in electron transport. Published by Elsevier Ltd.

  7. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan N.

    2018-05-01

    Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.

  8. Anti-Apoptotic Effects of 3,3',5-Triiodo-L-Thyronine in the Liver of Brain-Dead Rats.

    PubMed

    Rebolledo, Rolando A; Van Erp, Anne C; Ottens, Petra J; Wiersema-Buist, Janneke; Leuvenink, Henri G D; Romanque, Pamela

    2015-01-01

    Thyroid hormone treatment in brain-dead organ donors has been extensively studied and applied in the clinical setting. However, its clinical applicability remains controversial due to a varying degree of success and a lack of mechanistic understanding about the therapeutic effects of 3,3',5-Triiodo-L-thyronine (T3). T3 pre-conditioning leads to anti-apoptotic and pro-mitotic effects in liver tissue following ischemia/reperfusion injury. Therefore, we aimed to study the effects of T3 pre-conditioning in the liver of brain-dead rats. Brain death (BD) was induced in mechanically ventilated rats by inflation of a Fogarty catheter in the epidural space. T3 (0.1 mg/kg) or vehicle was administered intraperitoneally 2 h prior to BD induction. After 4 h of BD, serum and liver tissue were collected. RT-qPCR, routine biochemistry, and immunohistochemistry were performed. Brain-dead animals treated with T3 had lower plasma levels of AST and ALT, reduced Bax gene expression, and less hepatic cleaved Caspase-3 activation compared to brain-dead animals treated with vehicle. Interestingly, no differences in the expression of inflammatory genes (IL-6, MCP-1, IL-1β) or the presence of pro-mitotic markers (Cyclin-D and Ki-67) were found in brain-dead animals treated with T3 compared to vehicle-treated animals. T3 pre-conditioning leads to beneficial effects in the liver of brain-dead rats as seen by lower cellular injury and reduced apoptosis, and supports the suggested role of T3 hormone therapy in the management of brain-dead donors.

  9. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats.

    PubMed

    Hu, Zhaoyang; Chen, Mou; Zhang, Ping; Liu, Jin; Abbott, Geoffrey W

    2017-04-26

    Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L.

  10. miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132.

    PubMed

    Jimenez-Mateos, Eva M; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A; Simon, Roger P; Stallings, Raymond L; Henshall, David C

    2011-11-01

    When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Methods for ensuring compliance in an international greenhouse gas trading system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargrave, T.; Helme, E.A.

    1998-12-31

    At the third Conference of the Parties to the UN Framework Convention on Climate Change held in December, 1997, the international community established binding greenhouse gas (GHG) emissions obligations for industrialized countries. The Parties to the new Kyoto Protocol also agreed on the use of a number of market-based mechanisms, including international GHG emissions trading. These market mechanisms were of critical to the importance because they have the potential to significantly reduce the costs of treaty compliance. In principle, an international cap-and-trade system appears to be one of the most cost-effective means of reducing GHG emissions. Maintaining the integrity ofmore » the trading system is of primary importance in ensuring that trading helps countries to meet their GHG commitments. This paper explores methods for ensuring compliance in an international greenhouse gas trading system, starting with a discussion of preconditions for participation in trading and then moving to features of an international compliance system. Achieving maximum compliance with international requirements may best be accomplished by limiting participation in trading to Annex I countries that maintain strong domestic compliance systems. Prior to the climate negotiations in Kyoto in December 1997, the US Administration proposed a number of preconditions for participation in trading, including the adoption of international measurement standards and the establishment of domestic compliance and enforcement programs. This paper explores these and other preconditions, including the establishment of tough domestic financial penalties on companies that exceed allowed emissions and seller responsibility for the delivery of real reductions. The paper also discusses several necessary features of the international compliance system.« less

  12. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  13. Patient information in orthopedic and trauma surgery. Fundamental knowledge, legal aspects and practical recommendations.

    PubMed

    Gleyze, P; Coudane, H

    2016-02-01

    Providing information to surgery patients is a form of health-care governed by clearly defined therapeutic and medicolegal rules, and in particular in France by the Act of March 4, 2002 and the Code of Good Practice. The patient's right to information is implemented in a face-to-face consultation, which should be fully codified, and in a specific clinical examination, followed by information regarding the affected organ, pathology, treatment options, possible surgery, and the preconditions, risks and results associated with the procedure. Information should be personalized and as complete as possible, communicating the state of knowledge as validated by scientific societies and medical institutions. State of the art technology (dedicated website, on-line information suites, etc.) is indispensable but needs to be mastered and to adhere to the guidelines of the Council of the National Order of Medicine. Information traceability, the retraction period and proof of content of the information are essential. A signed document delivered in an informative atmosphere optimizes the exercise. Patient information is an ethical and medicolegal obligation, but above all is the expression and demonstration of the health-care potential of the practitioner and our contribution to reducing the information gap, reinforcing the cement holding our society together. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. 40 CFR 1065.518 - Engine preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine preconditioning. 1065.518... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.518 Engine preconditioning. (a) This section applies for engines where measured emissions are affected by prior operation...

  15. GENE EXPRESSION CHANGES AFTER SEIZURE PRECONDITIONING IN THE THREE MAJOR HIPPOCAMPAL CELL LAYERS

    PubMed Central

    Borges, Karin; Shaw, Renee; Dingledine, Raymond

    2008-01-01

    Rodents experience hippocampal damage after status epilepticus (SE) mainly in pyramidal cells while sparing the dentate granule cell layer (DGCL). Hippocampal damage was prevented in rats that had been preconditioned by brief seizures on two consecutive days before SE. To identify neuroprotective genes and biochemical pathways changed after preconditioning we compared the effect of preconditioning on gene expression in the CA1 and CA3 pyramidal and DGCLs, harvested by laser capture microscopy. In the DGCL the expression of 632 genes was altered, compared to only 151 and 58 genes in CA1 and CA3 pyramidal cell layers. Most of the differentially expressed genes regulate tissue structure and intra- and extracellular signaling, including neurotransmission. A selective upregulation of energy metabolism transcripts occurred in CA1 pyramidal cells relative to the DGCL. These results reveal a broad transcriptional response of the DGCL to preconditioning, and suggest several mechanisms underlying the neuroprotective effect of preconditioning seizures. PMID:17239605

  16. Optimal preconditioning of lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Izquierdo, Salvador; Fueyo, Norberto

    2009-09-01

    A preconditioning technique to accelerate the simulation of steady-state problems using the single-relaxation-time (SRT) lattice Boltzmann (LB) method was first proposed by Guo et al. [Z. Guo, T. Zhao, Y. Shi, Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E 70 (2004) 066706-1]. The key idea in this preconditioner is to modify the equilibrium distribution function in such a way that, by means of a Chapman-Enskog expansion, a time-derivative preconditioner of the Navier-Stokes (NS) equations is obtained. In the present contribution, the optimal values for the free parameter γ of this preconditioner are searched both numerically and theoretically; the later with the aid of linear-stability analysis and with the condition number of the system of NS equations. The influence of the collision operator, single- versus multiple-relaxation-times (MRT), is also studied. Three steady-state laminar test cases are used for validation, namely: the two-dimensional lid-driven cavity, a two-dimensional microchannel and the three-dimensional backward-facing step. Finally, guidelines are suggested for an a priori definition of optimal preconditioning parameters as a function of the Reynolds and Mach numbers. The new optimally preconditioned MRT method derived is shown to improve, simultaneously, the rate of convergence, the stability and the accuracy of the lattice Boltzmann simulations, when compared to the non-preconditioned methods and to the optimally preconditioned SRT one. Additionally, direct time-derivative preconditioning of the LB equation is also studied.

  17. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    PubMed Central

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972

  18. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures and preconditioning... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  19. Working Economics: Labor Policy and Conducive Economy in the Netherlands

    ERIC Educational Resources Information Center

    Korver, Ton

    2004-01-01

    The conducive economy challenges both the conceptual foundations and the practices of present-day economies. In the Netherlands, a few initiatives during the 1980s and early 1990s looked promising, in particular, as these initiatives focused on work quality as one major precondition for reducing disability and enhancing labor participation.…

  20. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Preconditioned idle test-EPA 91. 85.2218 Section 85.2218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Tests § 85.2218 Preconditioned idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling...

  1. 40 CFR 86.1232-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... awaiting testing, to prevent unusual loading of the canisters. During this time care must be taken to... vehicles with multiple canisters in a series configuration, the set of canisters must be preconditioned as... designed for vapor load or purge steps, the service port shall be used during testing to precondition the...

  2. 40 CFR 86.1232-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Vehicle preconditioning. 86.1232-96... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative... Methanol-Fueled Heavy-Duty Vehicles § 86.1232-96 Vehicle preconditioning. (a) Fuel tank cap(s) of gasoline...

  3. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Preconditioned idle test-EPA 91. 85... Tests § 85.2218 Preconditioned idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling algorithm. The analysis of exhaust gas concentrations begins ten seconds after the applicable test mode...

  4. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  5. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

    PubMed Central

    Guo, Xiaowei; Jiang, Xupin; Ren, Xi; Sun, Huanbo; Zhang, Dongxia; Zhang, Qiong; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing. PMID:25988491

  6. Reduced exercise capacity in persons with Down syndrome: cause, effect, and management

    PubMed Central

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2010-01-01

    Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759

  7. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  8. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  9. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms.

    PubMed

    Collins, Michael A; Neafsey, Edward J; Wang, Kewei; Achille, Nicholas J; Mitchell, Robert M; Sivaswamy, Sreevidya

    2010-06-01

    There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning-like suppression of ongoing neuroinflammation related to amyloidogenic protein accumulation.

  10. The peptide NDP-MSH induces phenotype changes in the heart that resemble ischemic preconditioning.

    PubMed

    Catania, Anna; Lonati, Caterina; Sordi, Andrea; Leonardi, Patrizia; Carlin, Andrea; Gatti, Stefano

    2010-01-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) is a pro-opiomelanocortin (POMC)-derived peptide that exerts multiple protective effects on host cells. Previous investigations showed that treatment with alpha-MSH or synthetic melanocortin agonists reduces heart damage in reperfusion injury and transplantation. The aim of this preclinical research was to determine whether melanocortin treatment induces preconditioning-like cardioprotection. In particular, the plan was to assess whether melanocortin administration causes phenotype changes similar to those induced by repetitive ischemic events. The idea was conceived because both ischemic preconditioning and melanocortin signaling largely depend on cAMP response element binding protein (CREB) phosphorylation. Rats received single i.v. injections of 750microg/kg of the alpha-MSH analogue Nle(4),DPhe(7)-alpha-MSH (NDP-MSH) or saline and were sacrificed at 0.5, 1, 3, or 5h. Western blot analysis showed that rat hearts expressed melanocortin 1 receptor (MC1R) protein. Treatment with NDP-MSH was associated with early and marked increase in interleukin 6 (IL-6) mRNA. This was followed by signal transducer and activator of transcription 3 (STAT3) phosphorylation and induction of suppressor of cytokine signaling 3 (SOCS3). There were no changes in expression of other cytokines of the IL-6 family. Expression of IL-10, IL-1beta, and TNF-alpha was likewise unaltered. In hearts of rats treated with NDP-MSH there was increased expression of the orphan nuclear receptor Nur77. The data indicate that NDP-MSH induces phenotype changes that closely resemble ischemic preconditioning and likely contribute to its established protection against reperfusion injury. In addition, the increased expression of Nur77 and SOCS3 could be part of a broader anti-inflammatory effect.

  11. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt.

    PubMed

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G; Wong, Tak-Ming; Zhang, Ye

    2015-11-01

    Preconditioning against myocardial ischemia-reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of Ozone Oxidative Preconditioning on TNF-α Release and Antioxidant-Prooxidant Intracellular Balance in Mice During Endotoxic Shock

    PubMed Central

    Zamora, Zullyt B.; Borrego, Aluet; López, Orlay Y.; Delgado, René; González, Ricardo; Menéndez, Silvia; Hernández, Frank; Schulz, Siegfried

    2005-01-01

    Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-α levels and as a modulator of oxidative stress on hepatic tissue in endotoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2, 0.4, and 1.2 mg/kg) once daily for five days before LPS (0.1 mg/kg, intraperitoneal). TNF-α was measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-α levels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-α levels in a dose-dependent manner. Statistically significant decreases in TNF-α levels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at 0.2 (78%), 0.4 (98%), and 1.2 (99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-α production and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems. PMID:15770062

  13. Metformin preconditioned adipose derived mesenchymal stem cells is a better option for the reversal of diabetes upon transplantation.

    PubMed

    Shree, Nitya; Bhonde, Ramesh R

    2016-12-01

    Metformin is used worldwide as an insulin sensitizer. Adipose derived mesenchymal stem cells have shown promising results in the reducing hyperglycemia. We examined whether preconditioning of adipose derived mesenchymal stem cells (ASCs) with metformin could have a better therapeutic value for the reversal of type 2 diabetes. We compared the effect of metformin, ASCs and metformin preconditioned ASCs (MetASCs) in high fat diet induced C57BL/6 mice by injecting the cells intramuscularly only once where as metformin was given at a concentration of 300mg per kg body weight orally daily. Fasting glucose was measured every week for 4 weeks. At the end of the study insulin, triglycerides, IL6 and oxidised LDL were evaluated from the serum. Gene expression studies were performed for muscle (GLUT4) and liver tissues (IL6 and PAI1).There was a remarkable decrease in hyperglycemia within two weeks of injection by MetASCs as compared to metformin and ASCs alone. A significant decrement of hyperinsulinemia, triglyceridemia, serum IL6 and oxidised LDL were observed at the end of the study. Gene expression studies for muscle tissue revealed the drastic upregulation of GLUT4 gene levels in the MetASCs group indicating enhanced glucose uptake in muscle. Liver tissue analysed for the genes involved in inflammation viz. IL6 and PAI1 showed significant downregulation in the MetASCs group as compared to the other groups. This is a first report demonstrating the synergistic effect of metformin preconditioning of ASCs leading to reversal of hyperglycemia, hyperinsulinemia and triglyceridemia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta.

    PubMed

    Nishihara, Masahiro; Miura, Tetsuji; Miki, Takayuki; Sakamoto, Jun; Tanno, Masaya; Kobayashi, Hironori; Ikeda, Yoshihiro; Ohori, Katsuhiko; Takahashi, Akari; Shimamoto, Kazuaki

    2006-08-01

    The aim of this study was to determine whether erythropoietin (EPO) affords additional cardioprotection to the preconditioned myocardium by enhanced phosphorylation of Akt, STAT3, or glycogen synthase kinase-3beta (GSK-3 beta). Preconditioning (PC) with 5-min ischemia/5-min reperfusion and EPO (5,000 U/kg iv) reduced infarct size (as % of area at risk, %IS/AR) after 20-min ischemia in rat hearts in situ from 56.5 +/- 1.8% to 25.2 +/- 2.1% and to 36.2 +/- 2.8%, respectively. PC-induced protection was significantly inhibited by a protein kinase C inhibitor, chelerythrine (5 mg/kg), and slightly blunted by a phosphatidylinositol-3-kinase inhibitor, wortmannin (15 microg/kg). The opposite pattern of inhibition was observed for EPO-induced protection. The combination of PC and EPO further reduced %IS/AR to 8.9 +/- 1.9%, and this protection was inhibited by chelerythrine and wortmannin. The additive effects of PC and EPO on infarct size were mirrored by their effects on the level of phosphorylated GSK-3 beta at 5 min after reperfusion but not their effects on the level of phospho-Akt or phospho-STAT3. To mimic phosphorylation-induced inhibition of GSK-3 beta activity, SB-216763 (SB), a GSK-3 beta inhibitor, was administered before ischemia or 5 min before reperfusion. Infarct size was significantly reduced by preischemic injection (%IS/AR = 40.4 +/- 2.2% by 0.6 mg/kg SB and 34.0 +/- 1.8% by 1.2 mg/kg SB) and also by prereperfusion injection (%IS/AR = 32.0 +/- 2.0% by 1.2 mg/kg SB). These results suggest that EPO and PC afford additive infarct size-limiting effects by additive phosphorylation of GSK-3beta at the time of reperfusion by Akt-dependent and -independent mechanisms.

  15. Human Adipose-Derived Mesenchymal Stem Cells Respond to Short-Term Hypoxia by Secreting Factors Beneficial for Human Islets In Vitro and Potentiate Antidiabetic Effect In Vivo

    PubMed Central

    Schive, Simen W.; Mirlashari, Mohammad Reza; Hasvold, Grete; Wang, Mengyu; Josefsen, Dag; Gullestad, Hans Petter; Korsgren, Olle; Foss, Aksel; Kvalheim, Gunnar; Scholz, Hanne

    2017-01-01

    Adipose-derived mesenchymal stem cells (ASCs) release factors beneficial for islets in vitro and protect against hyperglycemia in rodent models of diabetes. Oxygen tension has been shown to induce metabolic changes and alter ASCs’ release of soluble factors. The effects of hypoxia on the antidiabetic properties of ASCs have not been explored. To investigate this, we incubated human ASCs for 48 h in 21% (normoxia) or 1% O2 (hypoxia) and compared viability, cell growth, surface markers, differentiation capability, and soluble factors in the conditioned media (CM). Human islets were exposed to CM from ASCs incubated in either normoxia or hypoxia, and islet function and apoptosis after culture with or without proinflammatory cytokines were measured. To test hypoxic preconditioned ASCs’ islet protective effects in vivo, ASCs were incubated for 48 h in normoxia or hypoxia before being injected into Balb/c Rag 1–/– immunodeficient mice with streptozotocin-induced insulitis. Progression of diabetes and insulin content of pancreas were measured. We found that incubation in hypoxia was well tolerated by ASCs and that levels of VEGF-A, FGF-2, and bNGF were elevated in CM from ASCs incubated in hypoxia compared to normoxia, while levels of HGF, IL-8, and CXCL1 were reduced. CM from ASCs incubated in hypoxia significantly improved human islet function and reduced apoptosis after culture, and reduced cytokine-induced apoptosis. In our mouse model, pancreas insulin content was higher in both groups receiving ASCs compared to control, but the mice receiving preconditioned ASCs had lower random and fasting blood glucose, as well as improved oral glucose tolerance compared to untreated mice. In conclusion, our in vitro results indicate that the islet protective potential of ASCs improves in hypoxia, and we give insight into factors involved in this. Finally we show that hypoxic preconditioning potentiates ASCs’ antidiabetic effect in vivo. PMID:28713640

  16. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model

    PubMed Central

    Sudres, Muriel; Maurer, Marie; Robinet, Marieke; Bismuth, Jacky; Truffault, Frédérique; Girard, Diane; Dragin, Nadine; Attia, Mohamed; Fadel, Elie; Santelmo, Nicola; Sicsic, Camille; Brenner, Talma

    2017-01-01

    Myasthenia gravis (MG) with anti–acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro–preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model). Ninety percent of the animals displayed human anti-AChR Abs in the serum, and 50% of the animals displayed MG-like symptoms that correlated with the loss of AChR at the muscle endplates. Interestingly, each mouse experiment recapitulated the MG features of each patient. We next demonstrated that cMSCs markedly improved MG, reducing the level of anti-AChR Abs in the serum and restoring AChR expression at the muscle endplate. Resting MSCs had a smaller effect. Finally, we showed that the underlying mechanisms involved (a) the inhibition of cell proliferation, (b) the inhibition of B cell–related and costimulatory molecules, and (c) the activation of the complement regulator DAF/CD55. In conclusion, this study shows that a preconditioning step promotes the therapeutic effects of MSCs via combined mechanisms, making cMSCs a promising strategy for treating MG and potentially other autoimmune diseases. PMID:28405609

  17. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Peng, Pingan; Ma, Qian; Wang, Le; Zhang, Ou; Han, Hongya; Liu, Xiaoli; Zhou, Yujie; Zhao, Yingxin

    2015-11-01

    To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 (P = .005), ATF4 (P = .01), and caspase 12 (P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups (P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS. © The Author(s) 2015.

  18. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    PubMed

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  19. Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation.

    PubMed

    Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine

    2017-06-01

    Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.

  20. Sensory Preconditioning in Newborn Rabbits: From Common to Distinct Odor Memories

    ERIC Educational Resources Information Center

    Coureaud, Gerard; Tourat, Audrey; Ferreira, Guillaume

    2013-01-01

    This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional…

  1. 40 CFR 85.2220 - Preconditioned two speed idle test-EPA 91.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Preconditioned two speed idle test-EPA... Warranty Short Tests § 85.2220 Preconditioned two speed idle test—EPA 91. (a) General requirements—(1...-speed mode followed immediately by a first-chance idle mode. (ii) The second-chance test as described...

  2. 40 CFR 85.2220 - Preconditioned two speed idle test-EPA 91.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Preconditioned two speed idle test-EPA... Warranty Short Tests § 85.2220 Preconditioned two speed idle test—EPA 91. (a) General requirements—(1...-speed mode followed immediately by a first-chance idle mode. (ii) The second-chance test as described...

  3. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  4. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less

  5. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium-induced colitis model.

    PubMed

    Fuenzalida, Patricia; Kurte, Mónica; Fernández-O'ryan, Catalina; Ibañez, Cristina; Gauthier-Abeliuk, Melanie; Vega-Letter, Ana María; Gonzalez, Paz; Irarrázabal, Carlos; Quezada, Nataly; Figueroa, Fernando; Carrión, Flavio

    2016-05-01

    Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    PubMed

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.

  7. Effect of micronisation of pre-conditioned cowpeas on cooking time and sensory properties of cooked cowpeas.

    PubMed

    Kayitesi, Eugénie; Duodu, Kwaku Gyebi; Minnaar, Amanda; de Kock, Henriette L

    2013-03-15

    Cowpea is mostly utilised as cooked whole seeds. This is often achieved only after boiling for up to 2 h, resulting in high energy consumption and a long time for food preparation. Micronisation of pre-conditioned cowpeas reduces their cooking time. Micronisation changes the physicochemical properties of cowpea seeds, which may affect the sensory properties of cooked cowpeas. Consumer acceptance and utilisation of micronised cowpeas depend on their sensory properties. Micronised and unmicronised samples of Blackeye, Bechuana white, Glenda and Dr Saunders cowpeas were subjected to cooking time, descriptive sensory and colour analyses. Micronisation significantly reduced cowpea cooking time by 28-49%. There were significant (P < 0.05) increases in roasted aroma and flavour, mushy texture and splitting in all micronised samples. Bechuana white was more mushy and split than others. There were significant decreases in firmness, mealiness and coarseness after micronisation for all cowpea types. Micronised cowpeas were darker (lower L* values) than unmicronised cooked cowpeas. Darkening was more evident in light-coloured than dark-coloured cowpeas. Micronisation reduces cowpea cooking time but also affects sensory properties of cowpeas such as introducing roasted flavours that may not be familiar to consumers. This might have an influence on consumer acceptance of micronised cowpeas. © 2012 Society of Chemical Industry.

  8. Hormesis does not make sense except in the light of TOR-driven aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2011-01-01

    Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. “Hormesis A” inhibits the TOR pathway. “Hormesis B” increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions. PMID:22166724

  9. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    NASA Astrophysics Data System (ADS)

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  10. 40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...

  11. 40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...

  12. 40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...

  13. 40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...

  14. 40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...

  15. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test.

    PubMed

    Griffin, Patrick J; Ferguson, Richard A; Gissane, Conor; Bailey, Stephen J; Patterson, Stephen D

    2018-05-01

    This study tested the hypothesis that ischemic preconditioning (IPC) would increase critical power (CP) during a 3 minute all-out cycling test. Twelve males completed two 3 minute all-out cycling tests, in a crossover design, separated by 7 days. These tests were preceded by IPC (4 x 5 minute intervals at 220 mmHg bilateral leg occlusion) or SHAM treatment (4 x 5 minute intervals at 20 mmHg bilateral leg occlusion). CP was calculated as the mean power output during the final 30 s of the 3 minute test with W' taken as the total work done above CP. Muscle oxygenation was measured throughout the exercise period. There was a 15.3 ± 0.3% decrease in muscle oxygenation (TSI; [Tissue saturation index]) during the IPC stimulus, relative to SHAM. CP was significantly increased (241 ± 65 W vs. 234 ± 67 W), whereas W' (18.4 ± 3.8 vs 17.9 ± 3.7 kJ) and total work done (TWD) were not different (61.1 ± 12.7 vs 60.8 ± 12.7 kJ), between the IPC and SHAM trials. IPC enhanced CP during a 3 minute all-out cycling test without impacting W' or TWD. The improved CP after IPC might contribute towards the effect of IPC on endurance performance.

  16. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia.

    PubMed

    Cox-Limpens, Kimberly E M; Vles, Johan S H; LA van den Hove, Daniel; Zimmermann, Luc J I; Gavilanes, Antonio W D

    2014-05-29

    Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates.Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection.

  17. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection. PMID:24885038

  18. Morphine Preconditioning Downregulates MicroRNA-134 Expression Against Oxygen-Glucose Deprivation Injuries in Cultured Neurons of Mice.

    PubMed

    Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa

    2016-07-01

    Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.

  19. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance.

    PubMed

    Lisbôa, Felipe D; Turnes, Tiago; Cruz, Rogério S O; Raimundo, João A G; Pereira, Gustavo S; Caputo, Fabrizio

    2017-05-01

    The present study aimed to determine the effects of ischemic preconditioning on performance in three successive 50-m swimming trials and to measure stroke rate, stroke length and blood lactate accumulation. Counterbalanced, repeated-measures cross-over study. On two separate days, eleven competitive male swimmers (20±3 years, 182±5cm, 77±5kg) performed three successive 50-m trials in a 50-m swimming pool, preceded by intermittent bilateral cuff inflation (4× 5-min of blood flow restriction+5-min of cuff deflation) at either 220 for thighs and 180mmHg for arms (ischemic preconditioning) or 20mmHg for both limbs (control-treatment). The 50-m trials were conducted 1-, 2-, and 8-h after the procedure. While no ergogenic effect of ischemic preconditioning was observed for 1-h (0.4%, 95% confidence limits of ±0.6%, p=0.215), there were clear beneficial effects of ischemic preconditioning on 2- and 8-h (1.0% and 1.2%, respectively; 95% confidence limits of ±0.6% in both cases, p≤0.002). Furthermore, ischemic preconditioning increased blood lactate accumulation in 2-(p<0.001) and 8-h (p=0.010) and stroke rate for 2- and 8-h in specific 10-m segments (p<0.05). These findings suggest a time-dependent effect of ischemic preconditioning on 50-m swimming performance for competitive athletes, with the time window of the beneficial effect starting after about 2-h and lasting for at least 8-h after ischemic preconditioning. This change in performance was accompanied by an increase in blood lactate accumulation and faster strokes in front crawl. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2), a computer program for solving ground-water flow equations

    USGS Publications Warehouse

    Hill, Mary C.

    1990-01-01

    This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.

  1. Preconditioned alternating direction method of multipliers for inverse problems with constraints

    NASA Astrophysics Data System (ADS)

    Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie

    2017-02-01

    We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.

  2. Preconditioning for Numerical Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli

    1997-01-01

    A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.

  3. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice.

    PubMed

    Yin, Lele; Ye, Shasha; Chen, Zhen; Zeng, Yaoying

    2012-12-01

    Rapamycin, an mTOR inhibitor and immunosuppressive agent in clinic, has protective effects on traumatic brain injury and neurodegenerative diseases. But, its effects on transient focal ischemia/reperfusion disease are not very clear. In this study, we examined the effects of rapamycin preconditioning on mice treated with middle cerebral artery occlusion/reperfusion operation (MCAO/R). We found that the rapamycin preconditioning by intrahippocampal injection 20 hr before MCAO/R significantly improved the survival rate and longevity of mice. It also decreased the neurological deficit score, infracted areas and brain edema. In addition, rapamycin preconditioning decreased the production of NF-κB, TNF-α, and Bax, but not Bcl-2, an antiapoptotic protein in the ischemic area. From these results, we may conclude that rapamycin preconditioning attenuate transient focal cerebral ischemia/reperfusion injury and inhibits apoptosis induced by MCAO/R in mice.

  4. Exercise adherence, cardiopulmonary fitness and anthropometric changes improve exercise self-efficacy and health-related quality of life.

    PubMed

    Imayama, Ikuyo; Alfano, Catherine M; Mason, Caitlin E; Wang, Chiachi; Xiao, Liren; Duggan, Catherine; Campbell, Kristin L; Foster-Schubert, Karen E; Wang, Ching-Yun; McTiernan, Anne

    2013-07-01

    Regular exercise increases exercise self-efficacy and health-related quality of life (HRQOL); however, the mechanisms are unknown. We examined the associations of exercise adherence and physiological improvements with changes in exercise self-efficacy and HRQOL. Middle-aged adults (N = 202) were randomized to 12 months aerobic exercise (360 minutes/week) or control. Weight, waist circumference, percent body fat, cardiopulmonary fitness, HRQOL (SF-36), and exercise self-efficacy were assessed at baseline and 12 months. Adherence was measured in minutes/day from activity logs. Exercise adherence was associated with reduced bodily pain, improved general health and vitality, and reduced role-emotional scores (P(trend) ≤ 0.05). Increased fitness was associated with improved physical functioning, bodily pain and general health scores (P(trend) ≤ 0.04). Reduced weight and percent body fat were associated with improved physical functioning, general health, and bodily pain scores (P(trend) < 0.05). Decreased waist circumference was associated with improved bodily pain and general health but with reduced role-emotional scores (P(trend) ≤ 0.05). High exercise adherence, increased cardiopulmonary fitness and reduced weight, waist circumference and percent body fat were associated with increased exercise self-efficacy (P(trend) < 0.02). Monitoring adherence and tailoring exercise programs to induce changes in cardiopulmonary fitness and body composition may lead to greater improvements in HRQOL and self-efficacy that could promote exercise maintenance.

  5. Exercise adherence, cardiopulmonary fitness and anthropometric changes improve exercise self-efficacy and health-related quality of life

    PubMed Central

    Imayama, Ikuyo; Alfano, Catherine M.; Mason, Caitlin E.; Wang, Chiachi; Xiao, Liren; Duggan, Catherine; Campbell, Kristin L.; Foster-Schubert, Karen E.; McTiernan, Anne

    2014-01-01

    Background Regular exercise increases exercise self-efficacy and health-related quality of life (HRQOL); however, the mechanisms are unknown. We examined the associations of exercise adherence and physiological improvements with changes in exercise self-efficacy and HRQOL. Methods Middle-aged adults (N=202) were randomized to 12 months aerobic exercise (360 minutes/week) or control. Weight, waist circumference, percent body fat, cardiopulmonary fitness, HRQOL (SF-36), and exercise self-efficacy were assessed at baseline and 12 months. Adherence was measured in minutes/day from activity logs. Results Exercise adherence was associated with reduced bodily pain, improved general health and vitality, and reduced role-emotional scores (Ptrend≤0.05). Increased fitness was associated with improved physical functioning, bodily pain and general health scores (Ptrend≤0.04). Reduced weight and percent body fat were associated with improved physical functioning, general health, and bodily pain scores (Ptrend<0.05). Decreased waist circumference was associated with improved bodily pain and general health but with reduced role-emotional scores (Ptrend≤0.05). High exercise adherence, increased cardiopulmonary fitness and reduced weight, waist circumference and percent body fat were associated with increased exercise self-efficacy (Ptrend<0.02). Conclusions Monitoring adherence and tailoring exercise programs to induce changes in cardiopulmonary fitness and body composition may lead to greater improvements in HRQOL and self-efficacy that could promote exercise maintenance. PMID:23036856

  6. D4Z - a new renumbering for iterative solution of ground-water flow and solute- transport equations

    USGS Publications Warehouse

    Kipp, K.L.; Russell, T.F.; Otto, J.S.

    1992-01-01

    D4 zig-zag (D4Z) is a new renumbering scheme for producing a reduced matrix to be solved by an incomplete LU preconditioned, restarted conjugate-gradient iterative solver. By renumbering alternate diagonals in a zig-zag fashion, a very low sensitivity of convergence rate to renumbering direction is obtained. For two demonstration problems involving groundwater flow and solute transport, iteration counts are related to condition numbers and spectra of the reduced matrices.

  7. Physical activity and exercise dependence during inpatient treatment of longstanding eating disorders: an exploratory study of excessive and non-excessive exercisers.

    PubMed

    Bratland-Sanda, Solfrid; Sundgot-Borgen, Jorunn; Rø, Øyvind; Rosenvinge, Jan H; Hoffart, Asle; Martinsen, Egil W

    2010-04-01

    To describe changes in physical activity (PA) and exercise dependence score during treatment of eating disorders (ED), and to explore correlations among changes in PA, exercise motivation, exercise dependence score and ED psychopathology in excessive and non-excessive exercisers. Thirty-eight adult females receiving inpatient treatment for anorexia nervosa, bulimia nervosa or ED not otherwise specified participated in this prospective study. Assessments included accelerometer assessed PA, Exercise Dependence Scale, Reasons for Exercise Inventory, ED Examination, and ED Inventory. Amount of PA was significantly reduced in non-excessive exercisers during treatment, in excessive exercisers there was a trend towards reduced amount of PA from admission to discharge. In excessive exercisers, reduced ED psychopathology was correlated with reduction in exercise dependence score and perceived importance of exercise to regulate negative affects, but not with importance of exercise for weight/appearance. These associations were not found in non-excessive exercisers. Excessive exercise is an important issue in longstanding ED, and the excessive exercising patients need help to develop alternative strategies to regulate negative affects.

  8. A frequency dependent preconditioned wavelet method for atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2013-12-01

    Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.

  9. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  10. A preconditioned formulation of the Cauchy-Riemann equations

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    A preconditioning of the Cauchy-Riemann equations which results in a second-order system is described. This system is shown to have a unique solution if the boundary conditions are chosen carefully. This choice of boundary condition enables the solution of the first-order system to be retrieved. A numerical solution of the preconditioned equations is obtained by the multigrid method.

  11. Preconditioning principles for preventing sports injuries in adolescents and children.

    PubMed

    Dollard, Mark D; Pontell, David; Hallivis, Robert

    2006-01-01

    Preseason preconditioning can be accomplished well over a 4-week period with a mandatory period of rest as we have discussed. Athletic participation must be guided by a gradual increase of skills performance in the child assessed after a responsible preconditioning program applying physiologic parameters as outlined. Clearly, designing a preconditioning program is a dynamic process when accounting for all the variables in training discussed so far. Despite the physiologic demands of sport and training, we still need to acknowledge the psychologic maturity and welfare of the child so as to ensure that the sport environment is a wholesome and emotionally rewarding experience.

  12. Implementation of Preconditioned Dual-Time Procedures in OVERFLOW

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Venkateswaran, Sankaran; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    Preconditioning methods have become the method of choice for the solution of flowfields involving the simultaneous presence of low Mach and transonic regions. It is well known that these methods are important for insuring accurate numerical discretization as well as convergence efficiency over various operating conditions such as low Mach number, low Reynolds number and high Strouhal numbers. For unsteady problems, the preconditioning is introduced within a dual-time framework wherein the physical time-derivatives are used to march the unsteady equations and the preconditioned time-derivatives are used for purposes of numerical discretization and iterative solution. In this paper, we describe the implementation of the preconditioned dual-time methodology in the OVERFLOW code. To demonstrate the performance of the method, we employ both simple and practical unsteady flowfields, including vortex propagation in a low Mach number flow, flowfield of an impulsively started plate (Stokes' first problem) arid a cylindrical jet in a low Mach number crossflow with ground effect. All the results demonstrate that the preconditioning algorithm is responsible for improvements to both numerical accuracy and convergence efficiency and, thereby, enables low Mach number unsteady computations to be performed at a fraction of the cost of traditional time-marching methods.

  13. [Psychomotor re-education--movement as therapeutic method].

    PubMed

    Golubović, Spela; Tubić, Tatjana; Marković, Slavica

    2011-01-01

    Psychomotor re-education represents a multidimensional therapeutic approach in dealing with children and adults with psychomotor disorders. Therapeutic programs should be based on individual differences, abilities and capabilities, relationships, feelings and individual developmental needs as well as emotional condition of a child. BODY AND MOVEMENT AS THE Bases OF THE TREATMENT: A movement, glance, touch, voice and word, all being an integral part of a process of psychomotor re-education, are used with a purpose of helping children to discover their own body, their feelings, needs, behaviour. When moving, children discover the space of their own bodily nature, and, subsequently, gestural space and objective space. The body represents a source of pleasure and the freedom of movement, as well as one's own existence, are soon to be discovered. An adequate assessment is a precondition to design a work plan, select the best exercises for each child individually and direct the course of therapy. This is the most suitable method for treating children with slow or disharmonious development, mentally challenged children, children with speech and behaviour disorders. It is also used in the treatment of children with dyspraxic difficulties, difficulties in practognostic and gnostic development, pervasive developmental disorder and children with lateral dominance problems. Therefore, a systematic observation seems to be necessary as well as an increased number of research projects aimed at assessing results obtained by exercises in order to get a more precise insight into the process of re-education, selection of exercises, duration period and possible outcomes.

  14. The Efficacy of Exercise in Reducing Depressive Symptoms among Cancer Survivors: A Meta-Analysis

    PubMed Central

    Brown, Justin C.; Huedo-Medina, Tania B.; Pescatello, Linda S.; Ryan, Stacey M.; Pescatello, Shannon M.; Moker, Emily; LaCroix, Jessica M.; Ferrer, Rebecca A.; Johnson, Blair T.

    2012-01-01

    Introduction The purpose of this meta-analysis was to examine the efficacy of exercise to reduce depressive symptoms among cancer survivors. In addition, we examined the extent to which exercise dose and clinical characteristics of cancer survivors influence the relationship between exercise and reductions in depressive symptoms. Methods We conducted a systematic search identifying randomized controlled trials of exercise interventions among adult cancer survivors, examining depressive symptoms as an outcome. We calculated effect sizes for each study and performed weighted multiple regression moderator analysis. Results We identified 40 exercise interventions including 2,929 cancer survivors. Diverse groups of cancer survivors were examined in seven exercise interventions; breast cancer survivors were examined in 26; prostate cancer, leukemia, and lymphoma were examined in two; and colorectal cancer in one. Cancer survivors who completed an exercise intervention reduced depression more than controls, d + = −0.13 (95% CI: −0.26, −0.01). Increases in weekly volume of aerobic exercise reduced depressive symptoms in dose-response fashion (β = −0.24, p = 0.03), a pattern evident only in higher quality trials. Exercise reduced depressive symptoms most when exercise sessions were supervised (β = −0.26, p = 0.01) and when cancer survivors were between 47–62 yr (β = 0.27, p = 0.01). Conclusion Exercise training provides a small overall reduction in depressive symptoms among cancer survivors but one that increased in dose-response fashion with weekly volume of aerobic exercise in high quality trials. Depressive symptoms were reduced to the greatest degree among breast cancer survivors, among cancer survivors aged between 47–62 yr, or when exercise sessions were supervised. PMID:22303474

  15. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.

    PubMed

    Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn

    2010-11-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  17. Nutritional concerns in the diabetic athlete.

    PubMed

    Jensen, Jørgen

    2004-08-01

    The etiology of type I and type II diabetes differs and so do the nutritional challenges during and after exercise. For type I diabetics, exercise may cause hypoglycemia. To avoid hypoglycemia, a carbohydrate-rich meal should be eaten 1 to 3 hours prior to exercise and the insulin dose reduced. During exercise, at least 40 g glucose per hour should be ingested; more if the insulin dose is not reduced. After exercise, it is important to rebuild the glycogen stores to reduce the risk for hypoglycemia. Carbohydrates should always be available during training and in the recovery period. Despite these difficulties, exercise is recommended for type I diabetics and competition at high level is possible. Exercise prevents development of type II diabetes and improves metabolic regulation. For type II diabetics, exercise is normally performed to improve insulin sensitivity and to reduce body weight. Carbohydrates should only be supplied to prevent hypoglycemia.

  18. [Effect of electroacupuncture and moxibustion preconditioning on blood endothelin and creatine kinase contents and myocardial HSP 70 expression in rabbits with myocardial ischemia-reperfusion injury].

    PubMed

    Wang, Chao; Xie, Wen-juan; Liu, Mi; Yan, Jie; Zhang, Jia-li; Liu, Zhao; Guo, Li-na

    2014-10-01

    To observe the effect of electroacupuncture (EA) and moxibustion (Moxi) preconditioning of bi- lateral "Neiguan" (PC 6) on plasma endothelin (ET) and serum creatine kinase (CK) contents and myocardial hot shock protein 70 (HSP 70) expression in myocardial ischemia-reperfusion injury (MIRI) rabbits, so as to revel their mechanisms underlying prevention of myocardial ischemia. A total of 72 New Zealand rabbits were randomly divided into sham operation, MIRI model, EA preconditioning and Moxi preconditioning groups (n = 18/group). Each group was further divided into 0 h, 24 h and 48 h (time-point) subgroups (n=6 in each subgroup). The MIRI model was established by occlusion of the anterior descending branch of the left coronary artery for 40 min and reperfusion for 60 min. The contents of plasma ET and serum CK were detected by ELISA, and myocardial HSP 70 expression was detected by immunohistochemistry. EA and Moxi preconditioning were respectively applied to bilateral PC 6 for 20 min, once daily for 5 days. Following MIRI, contents of plasma ET and serum CK contents were significantly increased at 0 h, 24 h and 48 h in comparison with the sham group (P<0.01, P<0.05), while myo- cardial HSP 70 expression at the 3 time-points was moderately increased (P>0.05). Compared with the model groups, plasma ET contents at both 24 h and 48 h in the EA preconditioning group and at 48 h in the Moxi preconditioning group, CK contents at both 24 h and 48 h only in the EA preconditioning group were significantly down-regulated (P<0.01, P<0.05). Myocardial HSP 70 expression levels in the EA and Moxi preconditioning groups were considerably up-regulated at the three time-points in comparison with the model group(P<0.05, P<0.01). Acupuncture and moxibustion pretreatment may suppress MIRI-induced increase of plasma ET and serum CK and up-regulate myocardial HSP 70 protein expression in MIRI rabbits, suggesting a preventive protection action on ischemic myocardium.

  19. JPRS Report, East Europe

    DTIC Science & Technology

    1988-12-14

    situation in the world healthier, particularly for the program to liquidate nuclear arms and other types of weapons of mass destruction. During the...make preparations for extensive discussions with the aim of radically reducing tactical nuclear weapons, armed forces, and conventional weap- ons...liquidat- ing two classes of nuclear arms as a historic step which will create preconditions for limiting the feverish arms race and for better

  20. OSO-8 soft X-ray experiment (Wisconsin)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Information for operating and reducing data from the experiment which was designed to map low energy X-ray background emissions from 130 eV to 35 keV is presented. The detectors, counters, data system, and the gas system are discussed along with the functional operation of the subsystems. A command list indicating preconditions and resulting telemetry response for each command is included.

  1. Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs.

    PubMed

    Waldow, Thomas; Witt, Wolfgang; Ulmer, André; Janke, Andreas; Alexiou, Konstantin; Matschke, Klaus

    2008-01-01

    Since the generation of nitric oxide (NO) is an essential step in the trigger phase of ischemic preconditioning, short-term inhalation of NO before ischemia should ameliorate ischemia/reperfusion (I/R) injury of the lung. We tested this hypothesis in high oxygen (>99%) ventilated rats in order to additionally evaluate compatibility of NO and exposure to hyperoxia. Male adult Sprague-Dawley rats inhaled NO (15 ppm, 10 min) before the left lung hilum was clamped for 1 h, and the reperfusion phase was observed for 4 h (NO group). Animals in the I/R group underwent the same treatment, but without NO inhalation. A third group without I/R served as time-matched controls. Animals in the I/R group showed severe I/R injury in terms of arterial pO2 (apO2), which was reduced to 22% of surgical controls (SCs) at time point 30 min reperfusion, and increased endothelial permeability (Evans blue procedure). The pretreatment with NO attenuated these effects. The pO2 after 4 h reperfusion was still 3.0-fold higher in the NO group compared to I/R. In contrast, the I/R- and hyperoxia-induced invasion of leukocytes, as determined by measuring myeloperoxidase (MPO) activity, was not affected by NO. These data were correlated with the activity of major cellular signaling pathways by measuring the phosphorylation at activating and inhibitory sites of extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, protein kinase B (AKT), and glycogen synthase kinase 3beta (GSK-3beta), and by determination of cGMP in plasma and lung tissue. Inhalation of NO partly prevented the loss of activation by I/R and hyperoxic ventilation of ERK, JNK, and AKT, and it reduced the I/R-induced activation of GSK-3beta. The level of cGMP in plasma and lung tissue was increased in the NO group after 4 h reperfusion. In conclusion, application of inhaled NO in the preconditioning mode prevented I/R injury in the rat lung without interfering effects of hyperoxic ventilation. The effects of NO on cellular signaling pathways resemble mechanisms of ischemic preconditioning, but further studies have to evaluate the physiological relevance of these results.

  2. [Limb remote ischemic preconditioning attenuates liver ischemia reperfusion injury by activating autophagy via modulating PPAR-γ pathway].

    PubMed

    Ruan, Wei; Liu, Qing; Chen, Chan; Li, Suobei; Xu, Junmei

    2016-09-28

    To investigate the effect of limb remote ischemic preconditioning (RIPC) on hepatic ischemia/reperfusion (IR) injury and the underlying mechanisms.
 Rats were subjected to partial hepatic IR (60 min ischemia followed by 24 hours reperfusion) with or without RIPC, which was achieved by 3 cycles of 10 min-occlusion and 10 min-
reperfusion at the bilateral femoral arteries interval 30 min before ischemia. Some rats were treated with a new PPAR-γ inhibitor, T0070907, before RIPC.
 At the end of reperfusion, liver injury was significantly increased (increases in Suzike's injury score, AST and ALT release), concomitant with elevated oxidative stress (increases in MDA formation, MPO activity, as well as the decrease in SOD activity) and inflammation (increases in TNF-α and IL-6 levels, decrease in IL-10 content). RIPC improved liver function and reduced histologic damage, accompanied by the increased PPAR-γ activation and autophagosome formation as well as the reduced autophagosome clearance. The beneficial effects of RIPC were markedly attenuated by T0070907, an inhibitor of PPAR-γ.
 RIPC exerts the protective effects on liver by activation of autophagy via PPAR-γ.

  3. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists.

    PubMed

    Maslov, Leonid N; Khaliulin, Igor; Zhang, Yi; Krylatov, Andrey V; Naryzhnaya, Natalia V; Mechoulam, Raphael; De Petrocellis, Luciano; Downey, James M

    2016-05-01

    Cannabinoids can mimic the infarct-reducing effect of early ischemic preconditioning, delayed ischemic preconditioning, and ischemic postconditioning against myocardial ischemia/reperfusion. They do this primarily through both CB1 and CB2 receptors. Cannabinoids are also involved in remote preconditioning of the heart. The cannabinoid receptor ligands also exhibit an antiapoptotic effect during ischemia/reperfusion of the heart. The acute cardioprotective effect of cannabinoids is mediated by activation of protein kinase C, extracellular signal-regulated kinase, and p38 kinase. The delayed cardioprotective effect of cannabinoid anandamide is mediated via stimulation of phosphatidylinositol-3-kinase-Akt signaling pathway and enhancement of heat shock protein 72 expression. The delayed cardioprotective effect of another cannabinoid, Δ9-tetrahydrocannabinol, is associated with augmentation of nitric oxide (NO) synthase expression, but data on the involvement of NO synthase in the acute cardioprotective effect of cannabinoids are contradictory. The adenosine triphosphate-sensitive K(+)channel is involved in the synthetic cannabinoid HU-210-induced cardiac resistance to ischemia/reperfusion injury. Cannabinoids inhibit Na(+)/Ca(2+)exchange via peripheral cannabinoid receptor (CB2) activation that may also be related to the antiapoptotic and cardioprotective effects of cannabinoids. The cannabinoid receptor agonists should be considered as prospective group of compounds for creation of drugs that are able to protect the heart against ischemia-reperfusion injury in the clinical setting. © The Author(s) 2015.

  5. Pharmacological preconditioning for short-term ex vivo expansion of human umbilical cord blood hematopoietic stem cells by filgrastim

    PubMed Central

    Grigoriadis, Nikolaos G; Grigoriadis, Ioannis G; Markoula, Sofia; Paschopoulos, Minas; Zikopoulos, Konstantinos; Apostolakopoulos, Panagiotis Gr; Vizirianakis, Ioannis S; Georgiou, Ioannis

    2016-01-01

    Although umbilical cord blood (UCB) hematopoietic stem cell transplantation (UCBT) has emerged as a promising haematological reconstitution therapy for leukemias and other related disorders, the insufficient UCB stem cell dosage still hinders better clinical outcomes. Previous research efforts, by focusing on ex vivo UCB expansion capabilities have sought to benefit from well-known mechanisms of self-renewal characteristics of UCB stem cells. However, the long-term (> 21 days) in vitro culture period and the low neutrophil recovery significantly reduce the transplantability of such ex vivo expanded UCB stem cells. To overcome the latter hurdles in this study, a post-thaw, short-term ex vivo expansion methodology of UCB mononuclear (UCB-MN) and CD34+ cells has been established. Notably, such effort was achieved through pharmacological preconditioned of UCB cultures by filgrastim agent already used in the clinical setting. In crucial cell populations implicated in the promotion of functional engraftment, the progression of free survival rates (PFS), a marked increase of 6.65 to 9.34 fold for UCB-MN and 35 to 49 fold for CD34+ cells has been noticed. Overall, these results indicate that transplantation of pharmacologically-preconditioned ex vivo expansion of UCB stem and progenitor cells keep high promise upon transplantation to enhance therapeutic potential in everyday clinical practice. PMID:27335700

  6. The U.S. Geological Survey Modular Ground-Water Model - PCGN: A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

    USGS Publications Warehouse

    Naff, Richard L.; Banta, Edward R.

    2008-01-01

    The preconditioned conjugate gradient with improved nonlinear control (PCGN) package provides addi-tional means by which the solution of nonlinear ground-water flow problems can be controlled as compared to existing solver packages for MODFLOW. Picard iteration is used to solve nonlinear ground-water flow equations by iteratively solving a linear approximation of the nonlinear equations. The linear solution is provided by means of the preconditioned conjugate gradient algorithm where preconditioning is provided by the modi-fied incomplete Cholesky algorithm. The incomplete Cholesky scheme incorporates two levels of fill, 0 and 1, in which the pivots can be modified so that the row sums of the preconditioning matrix and the original matrix are approximately equal. A relaxation factor is used to implement the modified pivots, which determines the degree of modification allowed. The effects of fill level and degree of pivot modification are briefly explored by means of a synthetic, heterogeneous finite-difference matrix; results are reported in the final section of this report. The preconditioned conjugate gradient method is coupled with Picard iteration so as to efficiently solve the nonlinear equations associated with many ground-water flow problems. The description of this coupling of the linear solver with Picard iteration is a primary concern of this document.

  7. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  8. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    PubMed Central

    Regnier-Golanov, Angelique S.; Britz, Gavin W.

    2017-01-01

    Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN) renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO) global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1) hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS)-injected) animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”. PMID:28934119

  9. Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans.

    PubMed

    Townsley, C C; Atkins, A S; Davis, A J

    1987-07-01

    Environmental concern about sulphur dioxide emissions has led to the examination of the possibility of removing pyritic sulphur from coal prior to combustion during froth flotation, a routine method for coal cleaning at the pit-head. The bacterium Thiobacillus ferrooxidans was effective in leaching 80% and 63% -53 mum pyrite at 2% and 6% pulp density in shake flasks in 240 and 340 h, respectively.The natural floatability of pyrite was significantly reduced in the Hallimond tube following 2.5 min of conditioning in membrane-filtered bacterial liquor prior to flotation. The suppression effect was greatly enhanced in the presence of Thiobacillus ferrooxidans. A bacterial suspension in pH 2.0 distilled water showed 85% suppression, whereas in spent growth liquor this value was 95%. The optimum bacterial density was 3.25 x 10(10) cells/g pyrite in 230-ml distilled water (2% pulp density) in the Hallimond tube. The degree of suppression by the cells was related to particle size but not to pH or temperature. The sulphur content of a synthetic coal/pyrite mixture was reduced from 10.9 to 2.1% by flotation after bacterial preconditioning. It is postulated that pyrite removal in coals which are cleaned by froth flotation could be significantly reduced using a bacterial preconditioning stage with a short residence time of 2.5 min.

  10. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    PubMed

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  11. Reduced Tic Symptomatology in Tourette Syndrome After an Acute Bout of Exercise: An Observational Study.

    PubMed

    Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M

    2014-03-01

    In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications. © The Author(s) 2014.

  12. Exercise for anxiety disorders: systematic review.

    PubMed

    Jayakody, Kaushadh; Gunadasa, Shalmini; Hosker, Christian

    2014-02-01

    Anxiety disorders are commonly treated with antidepressants and psychological treatments. Some patients may prefer alternative approaches such as exercise. To investigate the treatment effects of exercise compared with other treatments for anxiety disorders. Randomised controlled trials (RCTs) of exercise interventions for anxiety disorders were identified by searching six online databases (July 2011). A number of journals were also hand searched. Eight RCTs were included. For panic disorder: exercise appears to reduce anxiety symptoms but it is less effective than antidepressant medication (1 RCT); exercise combined with antidepressant medication improves the Clinical Global Impression outcomes (1 RCT, p<0.05); exercise combined with occupational therapy and lifestyle changes reduces Beck Anxiety Inventory outcomes (1 RCT, p=0.0002). For social phobias, added benefits of exercise when combined with group cognitive behavioural therapy (CBT) were shown (p<0.05). There was no significant difference between aerobic and anaerobic exercise groups (1 RCT, p>0.1) with both seeming to reduce anxiety symptoms (1 RCT, p<0.001). It remains unclear as to which type of exercise; moderate to hard or very light to light, is more effective in anxiety reduction (2 RCTs). Exercise seems to be effective as an adjunctive treatment for anxiety disorders but it is less effective compared with antidepressant treatment. Both aerobic and non-aerobic exercise seems to reduce anxiety symptoms. Social phobics may benefit from exercise when combined with group CBT. Further well-conducted RCTs are needed.

  13. Incomplete Sparse Approximate Inverses for Parallel Preconditioning

    DOE PAGES

    Anzt, Hartwig; Huckle, Thomas K.; Bräckle, Jürgen; ...

    2017-10-28

    In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as anmore » attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.« less

  14. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Walters, Robert W.; Van Leer, Bram

    1993-01-01

    The preconditioning procedure for generalized finite-rate chemistry and the proper preconditioning for the one-dimensional Navier-Stokes equations are presented. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from the incompressible to the hypersonic. Specific benefits are realized at low and transonic flow speeds. The extended preconditioning matrix accounts for thermal and chemical non-equilibrium and its implementation is explained for both explicit and implicit time marching. The effect of higher-order spatial accuracy and various flux splittings is investigated. Numerical analysis reveals the possible theoretical improvements from using proconditioning at all Mach numbers. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number regions.

  15. The Effect of Different Doses of Aerobic Exercise Training on Exercise Blood Pressure in Overweight and Obese Postmenopausal Women

    PubMed Central

    Swift, Damon L.; Earnest, Conrad P.; Katzmarzyk, Peter T.; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.

    2011-01-01

    Objective Abnormally elevated exercise blood pressure is associated with increased risk of cardiovascular disease. Aerobic exercise training has been shown to reduce exercise blood pressure. However, it is unknown if these improvements occur in a dose dependent manner. The purpose of the present study is to determine the effect of different doses of aerobic exercise training on exercise blood pressure in obese postmenopausal women. Methods Participants (n=404) were randomized to one of 4 groups: 4, 8, or 12 kilocalories per kilogram of energy expenditure per week (kcal/kg/week) or the non-exercise control group for 6 months. Exercise blood pressure was obtained during the 50 watts stage of a cycle ergometer maximal exercise test. Results There was a significant reduction in systolic blood pressure at 50 watts in the 4 kcal/kg/week (−10.9 mmHg, p< 0.001), 8 kcal/kg/week (−9.9 mmHg, p= 0.022), and 12 kcal/kg/week (−13.7 mmHg, p<0.001) compared to control (−4.2 mmHg). Only the highest exercise training dose significantly reduced diastolic blood pressure (−4.3 mmHg, p= 0.033) compared to control. Additionally, resting blood pressure was not altered following exercise training (p>0.05) compared to control, and was not associated with changes in exercise systolic (r=0.09, p=0.09) or diastolic (r=0.10, p=0.08) blood pressure. Conclusions Aerobic exercise training reduces exercise blood pressure and may be more modifiable than changes in resting blood pressure. A high dose of aerobic exercise is recommended to successfully reduce both exercise systolic and diastolic blood pressure, and therefore may attenuate the CVD risk associated with abnormally elevated exercise blood pressure. PMID:22547251

  16. Effect of exercise intensity on postprandial lipemia, markers of oxidative stress, and endothelial function after a high-fat meal.

    PubMed

    Lopes Krüger, Renata; Costa Teixeira, Bruno; Boufleur Farinha, Juliano; Cauduro Oliveira Macedo, Rodrigo; Pinto Boeno, Francesco; Rech, Anderson; Lopez, Pedro; Silveira Pinto, Ronei; Reischak-Oliveira, Alvaro

    2016-12-01

    The aim of this study was to compare the effects of 2 different exercise intensities on postprandial lipemia, oxidative stress markers, and endothelial function after a high-fat meal (HFM). Eleven young men completed 2-day trials in 3 conditions: rest, moderate-intensity exercise (MI-Exercise) and heavy-intensity exercise (HI-Exercise). Subjects performed an exercise bout or no exercise (Rest) on the evening of day 1. On the morning of day 2, an HFM was provided. Blood was sampled at fasting (0 h) and every hour from 1 to 5 h during the postprandial period for triacylglycerol (TAG), thiobarbituric acid reactive substance (TBARS), and nitrite/nitrate (NOx) concentrations. Flow-mediated dilatation (FMD) was also analyzed. TAG concentrations were reduced in exercise conditions compared with Rest during the postprandial period (P < 0.004). TAG incremental area under the curve (iAUC) was smaller after HI-Exercise compared with Rest (P = 0.012). TBARS concentrations were reduced in MI-Exercise compared with Rest (P < 0.041). FMD was higher in exercise conditions than Rest at 0 h (P < 0.02) and NOx concentrations were enhanced in MI-Exercise compared with Rest at 0 h (P < 0.01). These results suggest that acute exercise can reduce lipemia after an HFM. However, HI-Exercise showed to be more effective in reducing iAUC TAG, which might suggest higher protection against postprandial TAG enhancement. Conversely, MI-Exercise can be beneficial to attenuate the susceptibility of oxidative damage induced by an HFM and to increase endothelial function in the fasted state compared with Rest.

  17. Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction

    PubMed Central

    Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L

    2015-01-01

    Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883

  18. Transfusion of Plasma Collected at Late Phase after Preconditioning Reduces Myocardial Infarct Size Induced by Ischemia-reperfusion in Rats In vivo.

    PubMed

    Zhao, Yang; Zheng, Zhi-Nan; Cheung, Chi-Wai; Zuo, Zhi-Yi; Jin, San-Qing

    2017-02-05

    Plasma transfusion is a common clinical practice. Remote ischemic preconditioning (RIPC) protects organs against ischemia-reperfusion (IR) injury. Whether preconditioned plasma (PP), collected at late phase after RIPC, could protect organs against IR injury in vivo is unknown. This study explored whether transfusion of PP could reduce myocardial infarct size (IS) after IR in rat in vivo. Eighty Lewis rats were randomized to eight groups (n = 10 for each group). Two groups of plasma donor rats donated plasma at 48 h after transient limb ischemia (PP) or control protocol (nonpreconditioned plasma [NPP]). Six groups of recipient rats received normal saline (NS; NS-IR 1, and NS-IR 24 groups), NPP (NPP-IR 1 and NPP-IR 24 groups), or PP (PP-IR 1 and PP-IR 24 groups) at one or 24 h before myocardial IR. Myocardial IR consisted of 30-min left anterior descending (LAD) coronary artery occlusion and 180-min reperfusion. The area at risk (AAR) and infarct area were determined by double-staining with Evans blue and triphenyltetrazolium chloride. IS was calculated by infarct area divided by AAR. This was a 3 × 2 factorial design study, and factorial analysis was used to evaluate the data. If an interaction between the fluid and transfusion time existed, one-way analysis of variance with Bonferroni correction for multiple comparisons was used to analyze the single effects of fluid type when the transfusion time was fixed. IS in the NPP-IR 1 and PP-IR 1 groups was smaller than in the NS-IR 1 group (F = 6.838, P = 0.005; NPP-IR 1: 57 ± 8% vs. NS-IR1: 68 ± 6%, t = 2.843, P = 0.020; PP-IR 1: 56 ± 8% vs. NS-IR 1: 68 ± 6%, t = 3.102, P = 0.009), but no significant difference was detected between the NPP-IR 1 and PP-IR 1 groups (57 ± 8% vs. 56 ± 8%, t = 0.069, P = 1.000). IS in the NPP-IR 24 and PP-IR 24 groups was smaller than in the NS-IR 24 group (F = 24.796, P< 0.001; NPP-IR 24: 56% ± 7% vs. NS-IR 24: 68 ± 7%, t = 3.102, P = 0.026; PP-IR 24: 40 ± 9% vs. NS-IR 24: 68 ± 7%, t = 7.237, P< 0.001); IS in the PP-IR 24 group was smaller than in the NPP-IR 24 group (40 ± 9% vs. 56 ± 7%, t = 4.135, P = 0.002). Transfusion of PP collected at late phase after remote ischemic preconditioning could reduce IS, suggesting that late-phase cardioprotection was transferable in vivo.

  19. Air Force Fitness Program. Case Studies on the Impact on Aircraft Maintenance

    DTIC Science & Technology

    2009-04-01

    reduced or avoided pain after childbirth if one is muscularly fit. Also, in menopausal women, exercise reduces the effects of osteoporosis. Post ...workforce, show that exercise and increased productivity are directly linked. The first case, covered in the New Zealand Dominion Post , directly...menopausal depression has shown to greatly reduce with participation in a regular exercise program.20 While benefits of regular exercise and healthy

  20. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms.

    PubMed

    Thijssen, Dick H J; Maxwell, Joseph; Green, Daniel J; Cable, N Timothy; Jones, Helen

    2016-06-01

    What is the topic of this review? This review discusses the effects of repeated exposure of tissue to ischaemic preconditioning on cardiovascular function, the attendant adaptations and their potential clinical relevance. What advances does it highlight? We discuss the effects of episodic exposure to ischaemic preconditioning to prevent and/or attenuate ischaemic injury and summarize evidence pertaining to improvements in cardiovascular function and structure. Discussion is provided regarding the potential mechanisms that contribute to both local and systemic adaptation. Findings suggest that clinical benefits result from both the prevention of ischaemic events and the attenuation of their consequences. Ischaemic preconditioning (IPC) refers to the phenomenon whereby short periods of cyclical tissue ischaemia confer subsequent protection against ischaemia-induced injury. As a consequence, IPC can ameliorate the myocardial damage following infarction and can reduce infarct size. The ability of IPC to confer remote protection makes IPC a potentially feasible cardioprotective strategy. In this review, we discuss the concept that repeated exposure of tissue to IPC may increase the 'dose' of protection and subsequently lead to enhanced protection against ischaemia-induced myocardial injury. This may be relevant for clinical populations, who demonstrate attenuated efficacy of IPC to prevent or attenuate ischaemic injury (and therefore myocardial infarct size). Furthermore, episodic IPC facilitates repeated exposure to local (e.g. shear stress) and systemic stimuli (e.g. hormones, cytokines, blood-borne substances), which may induce improvement in vascular function and health. Such adaptation may contribute to prevention of cardio- and cerebrovascular events. The clinical benefits of repeated IPC may, therefore, result from both the prevention of ischaemic events and the attenuation of their consequences. We provide an overview of the literature pertaining to the impact of repeated IPC on cardiovascular function, related to both local and remote adaptation, as well as potential clinical implications. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  1. [Comparison of pharmacological renal preconditioning with dalargin and lithium ions in the model of gentamycin-induced acute renal failure].

    PubMed

    Cherpakov, R A; Grebenchikov, O A; Plotnikov, E Ju; Likhvantsev, V V

    2015-01-01

    To examine the efficacy of renal preconditioning effect of dalargin and lithium ions by observing the model of gentamycin-induced acute renalfailure. The experiments were performed on white rats, male. The influence of dalargin and lithium ions on the development of gentamycin-induced acute renalfailure was studied in vivo. On the first 24 hours after dalargin injections were terminated, the rats were euthanized humanly. After this we took the blood for a biochemistry study and a renal culture for biochemical test and also for the test of gsk-3β activity. Concentrations of creatinine and urea were studied in serum. The culture samples of renal tubular epithelium before insertion of gentamycin were incubated in dalargin or lithium ions in different concentrations. After that the substratum was immediately changed to gentamycin in different concentrations also and the incubated for 24 hours. After all the standards MTT-test was performed (based on the ability of living cells to reduce the unpainted form by 3-4,5-dimethylthiazol-2-yl-2,5-difenilterarazola to blue crystalline farmazan). Lithium precondition leads to the 250% increase of gsk-3β concentration (p = 0.035). The same results were observed after injection of dalargin in 50 mcg/kg concentration. Concentration of creatinine was 44% lower in the dalargin group than in the control group (p = 0.022). Concentration of creatinine was 32% lower in the lithium group than in the control group (p = 0.030). Concentration of urea was 27% lower in the lithium group than in the control group (p = 0.049). Morphological inflammatory changes in the control group were more significant also. In vitro studies showed the maximum efficacy in the lithium group. The most effective dalargin concentration was 5 mg/ml. Lithium and dalargine preconditioning lowers the signs of gentamycine induced acute renal failure and damage rate of renal parenchyma in vivo and in vitro.

  2. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium.

    PubMed

    Chiari, Pascal C; Bienengraeber, Martin W; Weihrauch, Dorothee; Krolikowski, John G; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-07-01

    Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.

  3. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan; Park, Jun-Ik

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-cateninmore » expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia-exposed or hypoxic preconditioned cells. ► SIRT1 deacetylates c-Myc and β-catenin ► HIF-1α is up-regulated by down-regulation of c-Myc and β-catenin expression. ► Polyphenolic SIRT1 activators mimics hypoxic preconditioning.« less

  4. Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR-3/CCR7 activation.

    PubMed

    Huang, Xin; Su, Kunkai; Zhou, Limin; Shen, Guofang; Dong, Qi; Lou, Yijia; Zheng, Shu

    2013-12-01

    Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches. © 2013 Wiley Periodicals, Inc.

  5. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  6. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium

    PubMed Central

    Treskes, Philipp; Cowan, Douglas B.; Stamm, Christof; Rubach, Martin; Adelmann, Roland; Wittwer, Thorsten; Wahlers, Thorsten

    2015-01-01

    Objective The effect of mechanical preconditioning on skeletal myoblasts in engineered tissue constructs was investigated to resolve issues associated with conduction block between skeletal myoblast cells and cardiomyocytes. Methods Murine skeletal myoblasts were used to generate engineered tissue constructs with or without application of mechanical strain. After in vitro myotube formation, engineered tissue constructs were co-cultured for 6 days with viable embryonic heart slices. With the use of sharp electrodes, electrical coupling between engineered tissue constructs and embryonic heart slices was assessed in the presence or absence of pharmacologic agents. Results The isolation and expansion procedure for skeletal myoblasts resulted in high yields of homogeneously desmin-positive (97.1% ± 0.1%) cells. Mechanical strain was exerted on myotubes within engineered tissue constructs during gelation of the matrix, generating preconditioned engineered tissue constructs. Electrical coupling between preconditioned engineered tissue constructs and embryonic heart slices was observed; however, no coupling was apparent when engineered tissue constructs were not subjected to mechanical strain. Coupling of cells from engineered tissue constructs to cells in embryonic heart slices showed slower conduction velocities than myocardial cells with the embryonic heart slices (preconditioned engineered tissue constructs vs embryonic heart slices: 0.04 ± 0.02 ms vs 0.10 ± 0.05 ms, P = .011), lower stimulation frequencies (preconditioned engineered tissue constructs vs maximum embryonic heart slices: 4.82 ± 1.42 Hz vs 10.58 ± 1.56 Hz; P = .0009), and higher sensitivities to the gap junction inhibitor (preconditioned engineered tissue constructs vs embryonic heart slices: 0.22 ± 0.07 mmol/L vs 0.93 ± 0.15 mmol/L; P = .0004). Conclusions We have generated skeletal myoblast–based transplantable grafts that electrically couple to myocardium. PMID:22980065

  7. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    PubMed Central

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R.

    2016-01-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to vstimulate, heal, and regenerate damaged tissue. Both pre-conditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n=1045 participants). Studies used single laser probes, cluster of laser-diodes, LED-clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. PMID:27874264

  8. Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers.

    PubMed

    Robert, René; Vinet, Mathieu; Jamet, Angéline; Coudroy, Rémi

    2017-06-01

    Remote ischemic preconditioning may attenuate renal injury and protect the kidney during subsequent inflammatory or ischemic stress. However, the mechanism of such a protection is not well understood. The aim of this study was to investigate the impact of remote ischemic preconditioning on renal resistivity index (RRI) in nine healthy volunteers. In six volunteers, four cycles of 4-min inflation of a blood pressure cuff were applied to one upper arm, followed by 4-min reperfusion with the cuff deflated. RRI was determined using Doppler echography during each cuff deflated period. Measures were also performed in three volunteers without preconditioning. The median value of RRI significantly decreased progressively from 0.59 [0.53-0.62] before the remote conditioning (baseline) to 0.49 [0.46-0.53] at the end of the experiment (p < 0.001) whereas there was no change in controls. In this study, for the first time, we have clearly shown in a small group of subjects that remote ischemic preconditioning can induce a significantly decrease in RRI through increased intra-renal perfusion.

  9. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  10. A Block Preconditioned Conjugate Gradient-type Iterative Solver for Linear Systems in Thermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Betté, Srinivas; Diaz, Julio C.; Jines, William R.; Steihaug, Trond

    1986-11-01

    A preconditioned residual-norm-reducing iterative solver is described. Based on a truncated form of the generalized-conjugate-gradient method for nonsymmetric systems of linear equations, the iterative scheme is very effective for linear systems generated in reservoir simulation of thermal oil recovery processes. As a consequence of employing an adaptive implicit finite-difference scheme to solve the model equations, the number of variables per cell-block varies dynamically over the grid. The data structure allows for 5- and 9-point operators in the areal model, 5-point in the cross-sectional model, and 7- and 11-point operators in the three-dimensional model. Block-diagonal-scaling of the linear system, done prior to iteration, is found to have a significant effect on the rate of convergence. Block-incomplete-LU-decomposition (BILU) and block-symmetric-Gauss-Seidel (BSGS) methods, which result in no fill-in, are used as preconditioning procedures. A full factorization is done on the well terms, and the cells are ordered in a manner which minimizes the fill-in in the well-column due to this factorization. The convergence criterion for the linear (inner) iteration is linked to that of the nonlinear (Newton) iteration, thereby enhancing the efficiency of the computation. The algorithm, with both BILU and BSGS preconditioners, is evaluated in the context of a variety of thermal simulation problems. The solver is robust and can be used with little or no user intervention.

  11. Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP-sensitive potassium channels.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H

    2000-01-15

    The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.

  12. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  13. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells

    PubMed Central

    Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  14. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffmann, Florian; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filteringmore » small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.« less

  15. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by meansmore » of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.« less

  16. The Role of Exercise in Reducing Childhood and Adolescent PTSD, Anxiety, and Depression

    ERIC Educational Resources Information Center

    Motta, Robert W.; McWilliams, Meredith E.; Schwartz, Jennifer T.; Cavera, Robert S.

    2012-01-01

    The authors review the role of physical exercise in reducing childhood and adolescent posttraumatic stress disorder, anxiety, and depression. A good deal of the existing research on the influence of exercise in reducing negative emotional states and enhancing perceptions of self-efficacy has been conducted with adult samples. Comparatively few…

  17. Delayed Onset and Reduced Cognitive Deficits through Pre-Conditioning with 3-Nitropropionic Acid is Dependent on Sex and CAG Repeat Length in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    Skillings, Elizabeth A; Morton, A Jennifer

    2016-01-01

    Impairments in energy metabolism are implicated in Huntington's disease (HD) pathogenesis. Reduced levels of the mitochondrial enzyme succinate dehydrogenase (SDH), the main element of complex II, are observed post mortem in the brains of HD patients, and energy metabolism defects have been identified in both presymptomatic and symptomatic HD patients. Chemical preconditioning with 3-nitropropionic acid (3-NP), an irreversible inhibitor of SDH, has been shown to increase tolerance against experimental hypoxia in both heart and brain. Here we studied the effect of chronic preconditioning in the R6/2 mouse model of HD using mice carrying CAG repeat lengths of either 250 or 400 repeats. Both are transgenic fragment models, with 250CAG mice having a more rapid disease progression than 400CAG mice. Low doses of 3-NP (24 mg/kg) were administered via the drinking water and the effect on phenotype progression and cognition function assessed. After 3-NP treatment there were significant improvements in all aspects of the behavioural phenotype, apart from body weight, with timing and magnitude of improvements dependent on both CAG repeat length and sex. Specifically, a delay in the deterioration of general health (as shown by delayed onset of glycosuria and increased survival) was seen in both male and female 400CAG mice and in female 250CAG mice and was consistent with improved appearance of 3-NP treated R6/2 mice. Male 250CAG mice showed improvements but these were short term, and 3-NP treatment eventually had deleterious effects on their survival rate. When cognitive performance of 250CAG mice was assessed using a two-choice discrimination touchscreen task, we found that female mice showed significant improvements. Together, our results support the idea that energy metabolism contributes to the pathogenesis of HD, and suggest that improving energy deficits might be a therapeutically useful target.

  18. The paradigm of postconditioning to protect the heart

    PubMed Central

    Penna, C; Mancardi, D; Raimondo, S; Geuna, S; Pagliaro, P

    2008-01-01

    Abstract Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10–30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including A t and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5′ -triphosphate (ATP)-sensitive K+ and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3β (GSK-3β). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators which will in concert lead to protection against reperfusion injury. Pharmacological PostC and possibly remote PostC may have a promising future in clinical scenario. PMID:18182064

  19. Activation of Nrf2/HO-1 Pathway by Glycogen Synthase Kinase-3β Inhibition Attenuates Renal Ischemia/Reperfusion Injury in Diabetic Rats.

    PubMed

    Shen, Xiaohua; Hu, Bo; Xu, Guangtao; Chen, Fengjuan; Ma, Ruifen; Zhang, Nenghua; Liu, Jie; Ma, Xiaoqin; Zhu, Jia; Wu, Yuhong; Shen, Ruilin

    2017-01-01

    Diabetes mellitus can exacerbate renal ischemia-reperfusion (I/R) injury (RI/RI). The aim of the present study was to evaluate the protective effect of GSK-3β inhibition (TDZD-8) on I/R-induced renal injury through the Nrf2/HO-1 pathway in a streptozocin (STZ)-induced diabetic rat model. STZ-induced diabetic rats preconditioned with TDZD-8 and ZnPP were subjected to renal I/R. The extent of renal morphologic lesions. Renal function was assessed from blood urea nitrogen (BUN) and serum creatinine (Scr), as determined utlizing commercial kits. Oxidative stress and inflammatory activity in the kidney tissue was estimated from levels of malondialdehyde (MDA), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the activities of superoxide dismutase (SOD) and glutathione (GSH) using qRT-PCR and ELISA. The expressions of Nrf2, HO-1, Bcl-2 and NF-κB in the renal tissue were measured by qRT-PCR and western blotting. I/R-induced renal inflammation was reduced significantly by TDZD-8 pretreatment. Preconditioning with TDZD-8 suppressed NF-κB expression and enhanced Bcl-2 expression in the renal tissue. The upregulated level of malondialdehyde (MDA), and reduced activities of superoxide dismutase (SOD) and glutathione (GSH) in I/R-shocked rats were markedly restored by TDZD-8 pretreatment. Furthermore, pretreatment with TDZD-8 enhanced activation of the Nrf2/HO-1 pathway in the renal tissue of diabetic RI/RI rats. These findings suggest that preconditioning with TDZD-8 may protect the kidney from I/R-induced damage via the activation of the Nrf2/HO-1 pathway in STZ-induced diabetic rats. Further detailed studies are needed to further clarify the underlying mechanisms. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats.

    PubMed

    Li, Lin; Chu, Lisheng; Fang, Yan; Yang, Yan; Qu, Tiebing; Zhang, Jianping; Yin, Yuanjun; Gu, Jingjing

    2017-05-12

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is one of the new therapeutic strategies for treating ischemic stroke. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limited the therapeutic potential of this approach. Pharmacological preconditioning can increase the expression of CXC chemokine receptor 4 (CXCR4) in BMSCs and enhance cell migration toward the injury site. In the present study, we investigated whether tetramethylpyrazine (TMP) preconditioning could enhance BMSCs migration to the ischemic brain and improve functional recovery through upregulating CXCR4 expression. BMSCs were identified by flow cytometry analysis. BMSCs migration was evaluated in vitro by transwell migration assay, and CXCR4 expression was measured by quantitative reverse transcription-polymerase chain reaction and western blot analysis. In rats with focal cerebral ischemia, the neurological function was evaluated by the modified neurological severity score, the adhesive removal test and the corner test. The homing BMSCs and angiogenesis were detected by immunofluorescence, and expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 was measured by western blot analysis. Flow cytometry analysis demonstrated that BMSCs expressed CD29 and CD90, but not CD34 and CD45. TMP pretreatment dose-dependently induced BMSCs migration and CXCR4 expression in vitro, which was significantly inhibited by AMD3100, a CXCR4 antagonist. In rat stroke models, we found more TMP-preconditioned BMSCs homing toward the infarcted regions than nonpreconditioned cells, leading to improved neurological performance and enhanced angiogenesis. Moreover, TMP-preconditioned BMSCs significantly upregulated the protein expression of SDF-1 and CXCR4 in the ischemic boundary regions. These beneficial effects of TMP preconditioning were blocked by AMD3100. TMP preconditioning enhances the migration and homing ability of BMSCs, increases CXCR4 expression, promotes angiogenesis, and improves neurological performance. Therefore, TMP preconditioning may be an effective strategy to improve the therapeutic potency of BMSCs for ischemic stroke due to enhanced BMSCs migration to ischemic regions.

  1. TLR4 preconditioning is associated with low success of OK-432 treatment for lymphatic malformations in children.

    PubMed

    Reismann, Marc; Ghaffarpour, Nader; Luvall, Ethel; Jirmo, Adan; Radtke, Josephine; Claesson, Gösta; Wester, Tomas

    2016-05-01

    We have recently shown that the relative TLR4 expression on monocytes of low responding pediatric patients after OK-432 treatment is significantly reduced after stimulation with lipopolysaccharide (LPS) compared with high responding children. The aim of this study was to perform further analysis to explain this observation. Monocytes from children with high (HR, n = 5) and low response (LR, n = 6) after previous OK-432 treatment were stimulated with LPS for 20 h and analyzed with fluorescence-activated cell sorting (mean fluorescence intensity, MFI; level of significance P ≤ 0.05). Mean MFI after LPS stimulation was comparable in both groups (HR 1142 ± 652 units, LR 839 ± 427 units, P = 0.85). Significant changes after LPS stimulation are explained by higher pre-stimulation values in the LR group compared with the HR group (950 ± 718 vs. 477 ± 341, P = 0.25) with considerable differences of the mean expression changes after LPS stimulation (HR 665 ± 683 vs. LR -111 ± 605, P = 0.08). The previously shown reduced TLR4 upregulation on monocytes after LPS stimulation in the LR group compared with the HR group can be primarily explained by TLR preconditioning. This observation implies the use of absolute values with definite thresholds.

  2. Prolonged preconditioning with natural honey against myocardial infarction injuries.

    PubMed

    Eteraf-Oskouei, Tahereh; Shaseb, Elnaz; Ghaffary, Saba; Najafi, Moslem

    2013-07-01

    Potential protective effects of prolonged preconditioning with natural honey against myocardial infarction were investigated. Male Wistar rats were pre-treated with honey (1%, 2% and 4%) for 45 days then their hearts were isolated and mounted on a Langendorff apparatus and perfused with a modified Krebs-Henseleit solution during 30 min regional ischemia fallowed by 120 min reperfusion. Two important indexes of ischemia-induced damage (infarction size and arrhythmias) were determined by computerized planimetry and ECG analysis, respectively. Honey (1% and 2%) reduced infarct size from 23±3.1% (control) to 9.7±2.4 and 9.5±2.3%, respectively (P<0.001). At the ischemia, honey (1%) significantly reduced (P<0.05) the number and duration of ventricular tachycardia (VT). Honey (1% and 2%) also significantly decreased number of ventricular ectopic beats (VEBs). In addition, incidence and duration of reversible ventricular fibrillation (Rev VF) were lowered by honey 2% (P<0.05). During reperfusion, honey produced significant reduction in the incidences of VT, total and Rev VF, duration and number of VT. The results showed cardioprotective effects of prolonged pre-treatment of rats with honey following myocardial infarction. Maybe, the existence of antioxidants and energy sources (glucose and fructose) in honey composition and improvement of hemodynamic functions may involve in those protective effects.

  3. Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.

    PubMed

    Skariah, Deepak G; Arigovindan, Muthuvel

    2017-06-19

    We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.

  4. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  5. Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats.

    PubMed

    Rybnikova, Elena; Mironova, Vera; Pivina, Svetlana; Tulkova, Ekaterina; Ordyan, Natalia; Vataeva, Ludmila; Vershinina, Elena; Abritalin, Eugeny; Kolchev, Alexandr; Nalivaeva, Natalia; Turner, Anthony J; Samoilov, Michail

    2007-05-07

    The effects of preconditioning using mild repetitive hypobaric hypoxia (360 Torr for 2 h each of 3 days) have been studied in the learned helplessness model of depression in rats. Male Wistar rats displayed persistent depressive symptoms (depressive-like behaviour in open field, increased anxiety levels in elevated plus maze, ahedonia, elevated plasma glucocorticoids and impaired dexamethasone test) following the exposure to unpredictable and inescapable footshock in the learned helplessness paradigm. Antidepressant treatment (ludiomil, 5 mg/kg i.p.) augmented the development of the depressive state. The hypoxic preconditioning had a clear antidepressive action returning the behavioural and hormonal parameters to the control values and was equally effective in terms of our study as the antidepressant. The findings suggest hypoxic preconditioning as an effective tool for the prophylaxis of post-stress affective pathologies in humans.

  6. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  7. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  8. Major role of the PI3K/Akt pathway in ischemic tolerance induced by sublethal oxygen-glucose deprivation in cortical neurons in vitro.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae

    2011-06-01

    Ischemic preconditioning can provide protection to neurons from subsequent lethal ischemia. The molecular mechanisms of neuronal ischemic tolerance, however, are still not well-known. The present study, therefore, examined the role of MAPK and PI3K/Akt pathways in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation (OGD) in cultured rat cortical neurons. Ischemic tolerance was simulated by preconditioning of the neurons with sublethal 1-h OGD imposed 12 h before lethal 3-h OGD. The time-course studies of relative phosphorylation and expression levels of ERK1/2, JNK and p38 MAPK showed lack of their involvement in ischemic tolerance. However, there were significant increases in Akt phosphorylation levels during the reperfusion period following preconditioned lethal OGD. In addition, Bcl-2 associated death promoter (Bad) and GSK-3β were also found to be inactivated during that reperfusion period. Finally, treatment with an inhibitor of PI3K, wortmannin, applied from 15 min before and during lethal OGD abolished not only the preconditioning-induced neuroprotection but also the Akt activation. Concomitant with blockade of the Akt activation, PI3K inhibition also resulted in activation of Bad and GSK-3β. The results suggest that ischemic tolerance induced by sublethal OGD preconditioning is primarily mediated through activation of the PI3K/Akt pathway, but not the MAPK pathway, in rat cortical neurons.

  9. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion.

    PubMed

    Barrington, James H; Chrismas, Bryna C R; Gibson, Oliver R; Tuttle, James; Pegrum, J; Govilkar, S; Kabir, Chindu; Giannakakis, N; Rayan, F; Okasheh, Z; Sanaullah, A; Ng Man Sun, S; Pearce, Oliver; Taylor, Lee

    2017-01-01

    Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO 2 = 0.143; no ischemia. N = 6), (2) IPC (FiO 2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO 2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (-1.93-fold; p = 0.007) and IPC (-1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers ( p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress.

  10. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion

    PubMed Central

    Barrington, James H.; Chrismas, Bryna C. R.; Gibson, Oliver R.; Tuttle, James; Pegrum, J.; Govilkar, S.; Kabir, Chindu; Giannakakis, N.; Rayan, F.; Okasheh, Z.; Sanaullah, A.; Ng Man Sun, S; Pearce, Oliver; Taylor, Lee

    2017-01-01

    Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6), (2) IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007) and IPC (−1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress. PMID:28824456

  11. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    PubMed

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  12. The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes

    PubMed Central

    Wang, Jiang; Maimaitili, YiLiyaer; Yu, Jin; Guo, Hai; Ma, Hai-Ping; Chen, Chun-ling

    2016-01-01

    Introduction The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. Material and methods Primary cardiomyocytes were isolated from rat pups and underwent rapamycin and/or HPC, followed by hypoxia/re-oxygenation (H/R) injury. Cell viability and cell injury were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and qRT-PCR was used to measure HIF-1α and mTOR mRNA expression. A Langendorff heart perfusion model was conducted to observe the effect of rapamycin. Results Rapamycin treatment nearly abolished the cardioprotective effect of HPC in cardiomyocytes, reduced cell viability (p = 0.007) and increased cell damage (p = 0.032). HIF-1α and mTOR mRNA expression increased in cardiomyocytes undergoing I/R injury within 2 h after HPC. After rapamycin treatment, mTOR mRNA expression and HPC-induced HIF-1α mRNA expression were both reduced (p < 0.001). A Langendorff heart perfusion model in rat hearts showed that rapamycin greatly attenuated the cardioprotective effect of HPC in terms of heart rate, LVDP, and dp/dtmax (all, p < 0.029). Conclusions Rapamycin, through inhibition of mTOR, reduces the elevated HIF-1α expression at an early stage of HPC, and attenuates the early cardioprotective effect of HPC. PMID:28721162

  13. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling.

    PubMed

    Frey, Erin; Karney-Grobe, Scott; Krolak, Trevor; Milbrandt, Jeff; DiAntonio, Aaron

    2018-01-01

    Preconditioning nerve injuries activate a pro-regenerative program that enhances axon regeneration for most classes of sensory neurons. However, nociceptive sensory neurons and central nervous system neurons regenerate poorly. In hopes of identifying novel mechanisms that promote regeneration, we screened for drugs that mimicked the preconditioning response and identified a nociceptive ligand that activates a preconditioning-like response to promote axon outgrowth. We show that activating the ion channel TRPV1 with capsaicin induces axon outgrowth of cultured dorsal root ganglion (DRG) sensory neurons, and that this effect is blocked in TRPV1 knockout neurons. Regeneration occurs only in NF200-negative nociceptive neurons, consistent with a cell-autonomous mechanism. Moreover, we identify a signaling pathway in which TRPV1 activation leads to calcium influx and protein kinase A (PKA) activation to induce a preconditioning-like response. Finally, capsaicin administration to the mouse sciatic nerve activates a similar preconditioning-like response and induces enhanced axonal outgrowth, indicating that this pathway can be induced in vivo . These findings highlight the use of local ligands to induce regeneration and suggest that it may be possible to target selective neuronal populations for repair, including cell types that often fail to regenerate.

  14. Impact of remote ischemic preconditioning on wound healing in small bowel anastomoses

    PubMed Central

    Holzner, Philipp Anton; Kulemann, Birte; Kuesters, Simon; Timme, Sylvia; Hoeppner, Jens; Hopt, Ulrich Theodor; Marjanovic, Goran

    2011-01-01

    AIM: To investigate the influence of remote ischemic preconditioning (RIPC) on anastomotic integrity. METHODS: Sixty male Wistar rats were randomized to six groups. The control group (n = 10) had an end-to-end ileal anastomosis without RIPC. The preconditioned groups (n = 34) varied in time of ischemia and time of reperfusion. One group received the amino acid L-arginine before constructing the anastomosis (n = 9). On postoperative day 4, the rats were re-laparotomized, and bursting pressure, hydroxyproline concentration, intra-abdominal adhesions, and a histological score concerning the mucosal ischemic injury were collected. The data are given as median (range). RESULTS: On postoperative day 4, median bursting pressure was 124 mmHg (60-146 mmHg) in the control group. The experimental groups did not show a statistically significant difference (P > 0.05). Regarding the hydroxyproline concentration, we did not find any significant variation in the experimental groups. We detected significantly less mucosal injury in the RIPC groups. Furthermore, we assessed more extensive intra-abdominal adhesions in the preconditioned groups than in the control group. CONCLUSION: RIPC directly before performing small bowel anastomosis does not affect anastomotic stability in the early period, as seen in ischemic preconditioning. PMID:21455330

  15. Beneficial effects of remote organ ischemic preconditioning on micro-rheological parameters during liver ischemia-reperfusion in the rat.

    PubMed

    Magyar, Zsuzsanna; Mester, Anita; Nadubinszky, Gabor; Varga, Gabor; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Oltean, Mihai; Peto, Katalin; Nemeth, Norbert

    2018-04-14

    Remote ischemic preconditioning (RIPC) can be protective against the damage. However, there is no consensus on the optimal amount of tissue, the number and duration of the ischemic cycles, and the timing of the preconditioning. The hemorheological background of the process is also unknown. To investigate the effects of remote organ ischemic preconditioning on micro-rheological parameters during liver ischemia-reperfusion in rats. In anesthetized rats 60-minute partial liver ischemia was induced with 120-minute reperfusion (Control, n = 7). In the preconditioned groups a tourniquet was applied on the left thigh for 3×10 minutes 1 hour (RIPC-1, n = 7) or 24 hours (RIPC-24, n = 7) prior to the liver ischemia. Blood samples were taken before the operation and during the reperfusion. Acid-base, hematological parameters, erythrocyte aggregation and deformability were tested. Lactate concentration significantly increased by the end of the reperfusion. Erythrocyte deformability was improved in the RIPC-1 group, erythrocyte aggregation increased during the reperfusion, particularly in the RIPC-24 group. RIPC alleviated several hemorheological changes caused by the liver I/R. However, the optimal timing of the RIPC cannot be defined based on these results.

  16. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  17. Exercise (and Estrogen) Make Fat Cells “Fit”

    PubMed Central

    Vieira-Potter, Victoria J.; Zidon, Terese M.; Padilla, Jaume

    2016-01-01

    Adipose tissue inflammation links obesity and metabolic disease. Both exercise and estrogen improve metabolic health, enhance mitochondrial function, and have anti-inflammatory effects. We hypothesize that there is an inverse relationship between mitochondrial function and inflammation in adipose tissue and that exercise acts as an estrogen “mimetic”. Explicitly, exercise may improve adipose tissue “immunometabolism” by improving mitochondrial function and reducing inflammation. Summary Exercise improves adipose tissue metabolic health by reducing inflammation and improving mitochondrial function. PMID:25906425

  18. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms

    PubMed Central

    Warren, Kristi J.; Olson, Molly M.; Thompson, Nicholas J.; Cahill, Mackenzie L.; Wyatt, Todd A.; Yoon, Kyoungjin J.; Loiacono, Christina M.; Kohut, Marian L.

    2015-01-01

    Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise “restores” the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response. PMID:26110868

  19. The Link between Reduced Inspiratory Capacity and Exercise Intolerance in Chronic Obstructive Pulmonary Disease.

    PubMed

    O'Donnell, Denis E; Elbehairy, Amany F; Webb, Katherine A; Neder, J Alberto

    2017-07-01

    Low inspiratory capacity (IC), chronic dyspnea, and reduced exercise capacity are inextricably linked and are independent predictors of increased mortality in chronic obstructive pulmonary disease. It is no surprise, therefore, that a major goal of management is to improve IC by reducing lung hyperinflation to improve respiratory symptoms and health-related quality of life. The negative effects of lung hyperinflation on respiratory muscle and cardiocirculatory function during exercise are now well established. Moreover, there is growing appreciation that a key mechanism of exertional dyspnea in chronic obstructive pulmonary disease is critical mechanical constraints on tidal volume expansion during exercise when resting IC is reduced. Further evidence for the importance of lung hyperinflation comes from multiple studies, which have reported the clinical benefits of therapeutic interventions that reduce lung hyperinflation and increase IC. A reduced IC in obstructive pulmonary disease is further eroded by exercise and contributes to ventilatory limitation and dyspnea. It is an important outcome for both clinical and research studies.

  20. Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.

    1990-01-01

    A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.

  1. Fourier analysis of finite element preconditioned collocation schemes

    NASA Technical Reports Server (NTRS)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  2. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  3. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  4. Colitis-induced oxidative damage of the colon and skeletal muscle is ameliorated by regular exercise in rats: the anxiolytic role of exercise.

    PubMed

    Kasimay, Ozgür; Güzel, Esra; Gemici, Ali; Abdyli, Asead; Sulovari, Admir; Ercan, Feriha; Yeğen, Berrak C

    2006-09-01

    Epidemiological studies have shown that exercise protects the gastrointestinal tract, reducing the risk of diverticulosis, gastrointestinal haemorrhage and inflammatory bowel disease, while many digestive complaints occurring during exercise are attributed to the adverse effects of exercise on the colon. In order to assess the effects of regular exercise on the pathogenesis of colitis, Sprague-Dawley rats of both sexes were either kept sedentary or given exercise on a running wheel (0.4 km h(-1), 30 min for 3 days week(-1)). At the end of 6 weeks, under anaesthesia, either saline or acetic acid (4%, 1 ml) was given intracolonically. Holeboard tests were performed for the evaluation of anxiety at 24 h before and 48 h after induction of colitis. Increased 'freezing time' in the colitis-induced sedentary group, representing increased anxiety, was reduced in the exercised colitis group (P < 0.05). On the third day following the colonic instillation, the rats were decapitated under brief ether anesthesia and the distal 8 cm of the colons were removed. In the sedentary colitis group, macroscopic and microscopic damage scores, malondialdehyde level and myeloperoxidase activity were increased when compared to the control group (P < 0.01-0.001), while exercise prior to colitis reduced all the measurements with respect to sedentary colitis group (P < 0.05-0.001). The results demonstrate that low-intensity, repetitive exercise protects against oxidative colonic injury, and that this appears to involve the anxiolytic effect of exercise, suggesting that exercise may have a therapeutic value in reducing stress-related exacerbation of colitis.

  5. The impact of exercise on suicide risk: examining pathways through depression, PTSD, and sleep in an inpatient sample of veterans.

    PubMed

    Davidson, Collin L; Babson, Kimberly A; Bonn-Miller, Marcel O; Souter, Tasha; Vannoy, Steven

    2013-06-01

    Suicide has a large public health impact. Although effective interventions exist, the many people at risk for suicide cannot access these interventions. Exercise interventions hold promise in terms of reducing suicide because of their ease of implementation. While exercise reduces depression, and reductions in depressive symptoms are linked to reduced suicidal ideation, no studies have directly linked exercise and suicide risk. The current study examined this association, including potential mediators (i.e., sleep disturbance, posttraumatic stress symptoms, and depression), in a sample of Veterans. SEM analyses revealed that exercise was directly and indirectly associated with suicide risk. Additionally, exercise was associated with fewer depressive symptoms and better sleep patterns, each of which was, in turn, related to lower suicide risk.

  6. Effects of exercise on c-reactive protein in healthy patients and in patients with heart disease: A meta-analysis.

    PubMed

    Hammonds, Tracy L; Gathright, Emily C; Goldstein, Carly M; Penn, Marc S; Hughes, Joel W

    2016-01-01

    Decreases in circulating hsCRP have been associated with increased physical activity and exercise training, although the ability of exercise interventions to reduce hsCRP and which individuals benefit the most remains unclear. This meta-analysis evaluates the ability of exercise to reduce hsCRP levels in healthy individuals and in individuals with heart disease. A systematic review and meta-analysis was conducted that included exercise interventions trials from 1995 to 2012. Forty-three studies were included in the final analysis for a total of 3575 participants. Exercise interventions significantly reduced hsCRP (standardized mean difference -0.53 mg/L; 95% CI, -0.74 to -0.33). Results of sub-analysis revealed no significant difference in reductions in hsCRP between healthy adults and those with heart disease (p = .20). Heterogeneity between studies could not be attributed to age, gender, intervention length, intervention type, or inclusion of diet modification. Exercise interventions reduced hsCRP levels in adults irrespective of the presence of heart disease.​. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric outflow greatly influences the geoeffectiveness of magnetospheric storms.

  8. Flap preconditioning by pressure-controlled cupping in a rat model.

    PubMed

    Koh, Kyung S; Park, Sung Woo; Oh, Tae Suk; Choi, Jong Woo

    2016-08-01

    Flap survival is essential for the success of soft-tissue reconstruction. Accordingly, various surgical and medical methods aim to increase flap survival. Because flap survival is affected by the innate vascular supply, traditional preconditioning methods mainly target vasodilatation or vascular reorientation to increase blood flow to the tissue. External stress on the skin, such as an external volume expander or cupping, induces vascular remodeling, and these approaches have been used in the fat grafting field and in traditional Asian medicine. In the present study, we used a rat random-pattern dorsal flap model to study the effectiveness of preconditioning with an externally applied device (cupping) at the flap site that directly applied negative pressure to the skin. The device, the pressure-controlled cupping, is connected to negative pressure vacuum device providing accurate pressure control from 0 mm Hg to -200 mm Hg. Flap surgery was performed after preconditioning under -25 mm Hg suction pressure for 30 min a day for 5 d, followed by 9 d of postoperative observation. Flap survival was assessed as the area of viable tissue and was compared between the preconditioned group and a control group. The preconditioned group showed absolute percentage increase of flap viability relative to the entire flap by 19.0± 7.6% (average 70.1% versus 51.0%). Tissue perfusion of entire flap, evaluated by laser Doppler imaging system, was improved with absolute percentage increase by 24.2± 10.4% (average 77.4% versus 53.1%). Histologic analysis of hematoxylin and eosin, CD31, and Masson-trichrome staining showed increased vascular density in the subdermal plexus and more organized collagen production with hypertrophy of the attached muscle. Our study suggests that flap preconditioning caused by controlled noninvasive suction induces vascular remodeling that increases tissue perfusion and improves flap survival in a rat model. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.

  10. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury.

    PubMed

    Tweedy, Sean M; Beckman, Emma M; Geraghty, Timothy J; Theisen, Daniel; Perret, Claudio; Harvey, Lisa A; Vanlandewijck, Yves C

    2017-02-01

    Traumatic spinal cord injury (SCI) may result in tetraplegia (motor and/or sensory nervous system impairment of the arms, trunk and legs) or paraplegia (motor and/or sensory impairment of the trunk and/or legs only). The adverse effects of SCI on health, fitness and functioning are frequently compounded by profoundly sedentary behaviour. People with paraplegia (PP) and tetraplegia (TP) have reduced exercise capacity due to paralysis/paresis and reduced exercising stroke volume. TP often further reduces exercise capacity due to lower maximum heart-rate and respiratory function. There is strong, consistent evidence that exercise can improve cardiorespiratory fitness and muscular strength in people with SCI. There is emerging evidence for a range of other exercise benefits, including reduced risk of cardio-metabolic disease, depression and shoulder pain, as well as improved respiratory function, quality-of-life and functional independence. Exercise recommendations for people with SCI are: ≥30min of moderate aerobic exercise on ≥5d/week or ≥20min of vigorous aerobic ≥3d/week; strength training on ≥2d/week, including scapula stabilisers and posterior shoulder girdle; and ≥2d/week flexibility training, including shoulder internal and external rotators. These recommendations may be aspirational for profoundly inactive clients and stratification into "beginning", "intermediate" and "advanced" will assist application of the recommendations in clinical practice. Flexibility exercise is recommended to preserve upper limb function but may not prevent contracture. For people with TP, Rating of Perceived Exertion may provide a more valid indication of exercise intensity than heart rate. The safety and effectiveness of exercise interventions can be enhanced by initial screening for autonomic dysreflexia, orthostatic hypotension, exercise-induced hypotension, thermoregulatory dysfunction, pressure sores, spasticity and pain. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Mild peripheral neuropathy prevents both leg muscular ischaemia and activation of exercise-induced coagulation in Type 2 diabetic patients with peripheral artery disease.

    PubMed

    Piarulli, F; Sambataro, M; Minicuci, N; Scarano, L; Laverda, B; Baiocchi, M R; Baldo-Enzi, G; Galasso, S; Bax, G; Fedele, D

    2007-10-01

    To study the influence of peripheral neuropathy on intermittent claudication in patients with Type 2 diabetes (T2DM). Twenty-five patients with T2DM were grouped according to the ankle/brachial index (ABI): 10 with ABI > 0.9 without peripheral artery disease (PAD; group T2DM) and 15 with ABI < 0.9 with PAD (group T2DM + PAD). Twelve individuals without T2DM with PAD (group PAD without T2DM) were also enrolled. Tests for peripheral neuropathy were performed in all patients. ABI, rate pressure product, prothrombin fragments 1 + 2 (F1+2), thrombin-anti-thrombin complex (TAT), and d-dimer were measured before and after a treadmill test. During exercise both initial and absolute claudication distance and electrocardiogram readings were recorded. We found mild peripheral neuropathy in 20% of group T2DM and 46.7% of group T2DM + PAD (P < 0.01). After exercise, the rate pressure product increased in each group; ABI fell in T2DM + PAD (P < 0.0001) and in PAD without T2DM (P = 0.0005); the fall was greater in the latter group. Initial and absolute claudication distances were similar in PAD patients. In group T2DM + PAD, absolute claudication distance was longer in the subgroup without peripheral neuropathy (P < 0.05), whereas ABI and rate pressure products were similar. F1+2 values at rest were higher in group T2DM + PAD. After exercise, F1+2 values and TAT increased only in group PAD without T2DM. Only group PAD without T2DM experienced muscular ischaemia, whereas group T2DM + PAD did not. Mild peripheral neuropathy may have prevented them from reaching the point of muscular ischaemia during the treadmill test, because they stopped exercising with the early onset of pain. Reaching a false absolute claudication distance may induce ischaemic preconditioning. These findings suggest a possible protective role of mild peripheral neuropathy in T2DM patients with intermittent claudication, by preventing further activation of coagulation during treadmill testing.

  12. [The effect of hypoxia preconditioning no binding activity of HIF-1 on the HRE with EPO in the hippocampus of mice].

    PubMed

    Shao, Guo; Zhou, Wei-Hua; Gao, Cui-Ying; Zhang, Ran; Lu, Guo-Wei

    2007-02-01

    To observe change of binding activity of HIF-1 with erythropoietin (EPO) hypoxia response element (HRE) in the hippocampus of mice preconditioned to hypoxia and explore relationship between the changes and the preconditioning. The hippocampus was removed from mice exposed to hypoxia for 0 run (control group), 1 run (H1 group) and 4 runs(H4 group). Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP)and real time PCR were used to detect the change of activity of HIF-1 on HRE of EPO. Both in vitro and in vivo binding tests showed that the HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. The increase of HIF-1 and HRE of EPO binding activities is thought be involved in hypoxic preconditioning.

  13. A Robust Locally Preconditioned Semi-Coarsening Multigrid Algorithm for the 2-D Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Cain, Michael D.

    1999-01-01

    The goal of this thesis is to develop an efficient and robust locally preconditioned semi-coarsening multigrid algorithm for the two-dimensional Navier-Stokes equations. This thesis examines the performance of the multigrid algorithm with local preconditioning for an upwind-discretization of the Navier-Stokes equations. A block Jacobi iterative scheme is used because of its high frequency error mode damping ability. At low Mach numbers, the performance of a flux preconditioner is investigated. The flux preconditioner utilizes a new limiting technique based on local information that was developed by Siu. Full-coarsening and-semi-coarsening are examined as well as the multigrid V-cycle and full multigrid. The numerical tests were performed on a NACA 0012 airfoil at a range of Mach numbers. The tests show that semi-coarsening with flux preconditioning is the most efficient and robust combination of coarsening strategy, and iterative scheme - especially at low Mach numbers.

  14. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  15. Peptide Nanofibers Preconditioned with Stem Cell Secretome Are Renoprotective

    PubMed Central

    Wang, Yin; Bakota, Erica; Chang, Benny H.J.; Entman, Mark; Hartgerink, Jeffrey D.

    2011-01-01

    Stem cells may contribute to renal recovery following acute kidney injury, and this may occur through their secretion of cytokines, chemokines, and growth factors. Here, we developed an acellular, nanofiber-based preparation of self-assembled peptides to deliver the secretome of embryonic stem cells (ESCs). Using an integrated in vitro and in vivo approach, we found that nanofibers preconditioned with ESCs could reverse cell hyperpermeability and apoptosis in vitro and protect against lipopolysaccharide-induced acute kidney injury in vivo. The renoprotective effect of preconditioned nanofibers associated with an attenuation of Rho kinase activation. We also observed that the combined presence of follistatin, adiponectin, and secretory leukoprotease during preconditioning was essential to the renoprotective properties of the nanofibers. In summary, we developed a designer-peptide nanofiber that can serve as a delivery platform for the beneficial effects of stem cells without the problems of teratoma formation or limited cell engraftment and viability. PMID:21415151

  16. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms.

    PubMed

    Singh, Lovedeep; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2017-08-15

    Reactive oxygen species are the reactive molecules that are derived from molecular oxygen and play an important role as redox signaling molecules to confer cardioprotection. Various scientists have demonstrated the key role of redox signaling in cardioprotection by showing a transient increase in their levels during remote ischemic preconditioning (RIPC) phase. The transient increase in reactive oxygen species levels during remote preconditioning phase may take place either through activation of K ATP channels or through increased nitric oxide (NO) production. A transient increase in reactive oxygen species during preconditioning may also increase the expression of heat shock proteins (HSP), the level of antioxidant enzymes and decrease the expression of inflammatory genes (Egr-1) during ischemia-reperfusion phase to confer cardioprotection. The present review describes the role of redox signaling in RIPC-induced cardioprotective effect with possible mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide.

    PubMed

    Ma, Ning; Liu, Hong-Mei; Xia, Ting; Liu, Jian-Dong; Wang, Xiao-Ze

    2018-06-02

    Age-related fibrosis is attenuated by aerobic exercise; however, little is known concerning the underlying molecular mechanism. To address this question, aged rats were given moderate-intensity exercise for 12 weeks. After exercise in aged rats, hydrogen sulfide (H2S) levels in plasma and heart increased 39.8% and 90.9%, respectively. Exercise upregulated expression of cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in heart of aged rats. Furthermore, aged rats were given moderate-intensity exercise for 12 weeks or treated with NaHS (intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS). After exercise in aged rats, Masson-trichrome staining area decreased 34.8% and myocardial hydroxyproline levels decreased 29.6%. Exercise downregulated expression of collagen-I and α-SMA in heart of aged rats. Exercise in aged rats reduced malondialdehyde levels in plasma and heart and 3-nitrotyrosine in heart. Exercise in aged rats reduced mRNA and protein expression of CHOP, GRP78, and XBP1. Exercise also reduced mRNA and protein expression of IL-6 and MCP-1 and suppressed activation of JNK in aging heart. Similar effects were demonstrated in aged rats treated with NaHS. Collectively, exercise restored bioavailability of hydrogen sulfide in the heart of aged rats, which partly explained the benefits of exercise against myocardial fibrosis of aged population.

  18. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    PubMed

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  19. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  20. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels

    PubMed Central

    Abbenhardt, Clare; McTiernan, Anne; Alfano, Catherine M.; Wener, Mark H.; Campbell, Kristin L.; Duggan, Catherine; Foster-Schubert, Karen E.; Kong, Angela; Toriola, Adetunji T; Potter, John D.; Mason, Caitlin; Xiao, Liren; Blackburn, George L.; Bain, Carolyn; Ulrich, Cornelia M.

    2013-01-01

    Background Excess body weight and a sedentary lifestyle are associated with the development of several diseases, including cardiovascular disease, diabetes, and cancer in women. One proposed mechanism linking obesity to chronic diseases is an alteration in adipose-derived adiponectin and leptin levels. We investigated the effects of 12-month reduced calorie, weight loss and exercise interventions on adiponectin and leptin concentrations. Methods Overweight/obese postmenopausal women (n=439) were randomized as follows: 1) a reduced calorie, weight loss diet (diet; N=118); 2) moderate-to-vigorous intensity aerobic exercise (exercise; N=117); 3) a combination of a reduced calorie, weight loss diet and moderate-to-vigorous intensity aerobic exercise (diet+exercise; N=117); or 4) control (N=87). The reduced calorie diet had a 10% weight loss goal. The exercise intervention consisted of 45 minutes of moderate-to-vigorous aerobic activity 5 days/week. Adiponectin and leptin levels were measured at baseline and after 12 months of intervention using a radioimmunoassay. Results Adiponectin increased by 9.5 % in the diet group and 6.6 % in the diet+exercise group (both p≤0.0001 vs. control). Compared with controls, leptin decreased with all interventions (diet+exercise, −40.1%, p<0.0001; diet, −27.1%, p<0.0001; exercise, −12.7%, p=0.005). The results were not influenced by the baseline body mass index (BMI). The degree of weight loss was inversely associated with concentrations of adiponectin (diet, p-trend=0.0002; diet+exercise, p-trend=0.0005) and directly associated with leptin (diet, p-trend<0.0001; diet+exercise, p-trend<0.0001). Conclusion Weight loss through diet or diet+exercise increased adiponectin concentrations. Leptin concentrations decreased in all of the intervention groups, but the greatest reduction occurred with diet+exercise. Weight loss and exercise exerted some beneficial effects on chronic diseases via effects on adiponectin and leptin. PMID:23432360

  1. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  2. Exercise training for managing behavioral and psychological symptoms in people with dementia: A systematic review and meta-analysis.

    PubMed

    Barreto, Philipe de Souto; Demougeot, Laurent; Pillard, Fabien; Lapeyre-Mestre, Maryse; Rolland, Yves

    2015-11-01

    This systematic review and meta-analysis of randomized controlled trials assessed the effects of exercise on behavioral and psychological symptoms of dementia (BPSD, including depression) in people with dementia (PWD). Secondary outcomes for the effects of exercise were mortality and antipsychotic use. Twenty studies were included in this review (n=18 in the meta-analysis). Most studies used a multicomponent exercise training (n=13) as intervention; the control group was often a usual care (n=10) or a socially-active (n=8) group. Exercise did not reduce global levels of BPSD (n=4. Weighted mean difference -3.884; 95% CI -8.969-1.201; I(2)=69.4%). Exercise significantly reduced depression levels in PWD (n=7). Standardized mean difference -0.306; 95% CI -0.571 to -0.041; I(2)=46.8%); similar patterns were obtained in sensitivity analysis performed among studies with: institutionalized people (p=0.038), multicomponent training (p=0.056), social control group (p=0.08), and low risk of attrition bias (p=0.11). Exploratory analysis showed that the principal BPSD (other than depression) positively affected by exercise was aberrant motor behavior. Exercise had no effect on mortality. Data on antipsychotics were scarce. In conclusion, exercise reduces depression levels in PWD. Future studies should examine whether exercise reduces the use (and doses) of antipsychotics and other drugs often used to manage BPSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Individualizing Exercise: Some Biomechanical and Physiological Reminders.

    ERIC Educational Resources Information Center

    Browder, Kathy D.; Darby, Lynn A.

    1998-01-01

    It is important to individualize exercise programs to safely achieve exercise goals. The article reviews several key points to help exercise leaders individualize new exercise programs or rejuvenate routine workouts, focusing on cardiorespiratory and muscular training. The article emphasizes that individualizing exercise programs reduces injury,…

  4. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease

    PubMed Central

    Hou, Lijuan; Chen, Wei; Liu, Xiaoli; Qiao, Decai; Zhou, Fu-Ming

    2017-01-01

    Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients. PMID:29163139

  5. The effects of aerobic exercise for persons with migraine and co-existing tension-type headache and neck pain. A randomized, controlled, clinical trial.

    PubMed

    Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Linde, Mattias; Gard, Gunvor; Jensen, Rigmor Højland

    2018-01-01

    Aim To evaluate aerobic exercise in migraine and co-existing tension-type headache and neck pain. Methods Consecutively recruited persons with migraine and co-existing tension-type headache and neck pain were randomized into an exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 minutes, three times/week. Controls continued usual daily activities. Pain frequency, intensity, and duration; physical fitness, level of physical activity, well-being and ability to engage in daily activities were assessed at baseline, after treatment and at follow-up. Results Fifty-two persons completed the study. Significant between-group improvements for the exercise group were found for physical fitness, level of physical activity, migraine burden and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Within the exercise group, significant reduction was found for migraine frequency, pain intensity and duration, neck pain intensity, and burden of migraine; an increase in physical fitness and well-being. Conclusions Exercise significantly reduced the burden of migraine and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Exercise also reduced migraine frequency, pain intensity and duration, although this was not significant compared to controls. These results emphasize the importance of regular aerobic exercise for reduction of migraine burden.

  6. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  7. The Effects of Resistance Exercise on Cocaine Self-Administration, Muscle Hypertrophy, and BDNF Expression in the Nucleus Accumbens

    PubMed Central

    Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.

    2016-01-01

    Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405

  8. The effects of resistance exercise on cocaine self-administration, muscle hypertrophy, and BDNF expression in the nucleus accumbens.

    PubMed

    Strickland, Justin C; Abel, Jean M; Lacy, Ryan T; Beckmann, Joshua S; Witte, Maryam A; Lynch, Wendy J; Smith, Mark A

    2016-06-01

    Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set "pyramid" in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Sustained ligand-activated preconditioning via δ-opioid receptors.

    PubMed

    Peart, Jason N; Hoe, Louise E See; Gross, Garrett J; Headrick, John P

    2011-01-01

    We have previously described novel cardioprotection in response to sustained morphine exposure, efficacious in young to aged myocardium and mechanistically distinct from conventional opioid or preconditioning (PC) responses. We further investigate opioid-dependent sustained ligand-activated preconditioning (SLP), assessing duration of protection, opioid receptor involvement, additivity with conventional responses, and signaling underlying preischemic induction of the phenotype. Male C57BL/6 mice were treated with morphine (75-mg subcutaneous pellet) for 5 days followed by morphine-free periods (0, 3, 5, or 7 days) before ex vivo assessment of myocardial tolerance to 25-min ischemia/45-min reperfusion. SLP substantially reduced infarction (by ∼50%) and postischemic contractile dysfunction (eliminating contracture, doubling force development). Cardioprotection persisted for 5 to 7 days after treatment. SLP was induced specifically by δ-receptor and not κ- or μ-opioid receptor agonism, was eliminated by δ-receptor and nonselective antagonism, and was additive with adenosinergic but not acute morphine- or PC-triggered protection. Cotreatment during preischemic morphine exposure with the phosphoinositide-3 kinase (PI3K) inhibitor wortmannin, but not the protein kinase A (PKA) inhibitor myristoylated PKI-(14-22)-amide, prevented induction of SLP. This was consistent with shifts in total and phospho-Akt during the induction period. In summary, data reveal that SLP triggers sustained protection from ischemia for up to 7 days after stimulus, is δ-opioid receptor mediated, is induced in a PI3K-dependent/PKA-independent manner, and augments adenosinergic protection. Mechanisms underlying SLP may be useful targets for manipulation of ischemic tolerance in young or aged myocardium.

  10. Remote vs. local ischaemic preconditioning in the rat heart: infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species.

    PubMed

    Galagudza, Michael M; Sonin, Dmitry L; Vlasov, Timur D; Kurapeev, Dmitry I; Shlyakhto, Eugene V

    2016-02-01

    The unmet clinical need for myocardial salvage during ischaemia-reperfusion injury requires the development of new techniques for myocardial protection. In this study the protective effect of different local ischaemic preconditioning (LIPC) and remote ischaemic preconditioning (RIPC) protocols was compared in the rat model of myocardial ischaemia-reperfusion, using infarct size and ischaemic tachyarrhythmias as end-points. In addition, the hypothesis that there is involvement of reactive oxygen species (ROS) in the protective signalling by RIPC was tested, again in comparison with LIPC. The animals were subjected to 30-min coronary occlusion and 90-min reperfusion. RIPC protocol included either transient infrarenal aortic occlusion (for 5, 15 and 30 min followed by 15-min reperfusion) or 15-min mesenteric artery occlusion with 15-min reperfusion. Ventricular tachyarrhythmias during test ischaemia were quantified according to Lambeth Conventions. It was found that the infarct-limiting effect of RIPC critically depends on the duration of a single episode of remote ischaemia, which fails to protect the heart from infarction when it is too short or, instead, too prolonged. It was also shown that RIPC is ineffective in reducing the incidence and severity of ischaemia-induced ventricular tachyarrhythmias. According to our data, the infarct-limiting effect of LIPC could be partially eliminated by the administration of ROS scavenger N-2-mercaptopropionylglycine (90 mg/kg), whereas the same effect of RIPC seems to be independent of ROS signalling. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  11. Effects of exercise on craving and cigarette smoking in the human laboratory.

    PubMed

    Kurti, Allison N; Dallery, Jesse

    2014-06-01

    Exercise is increasingly being pursued as a treatment to reduce cigarette smoking. The efficacy of clinical, exercise-based cessation interventions may be enhanced by conducting laboratory studies to determine maximally effective conditions for reducing smoking, and the mechanisms through which the effects on smoking are achieved. The main purpose of this study was to assess whether the effects of exercise on two components of craving (anticipated reward from smoking, anticipated relief from withdrawal) mediated the relationship between exercise and delay (in min) to ad libitum smoking. Experiment 1 (N=21) assessed the effects of exercise intensity (inactivity, low, moderate) on craving components up to 60 min post-exercise. Because moderate-intensity exercise most effectively reduced craving on the reward component, all participants exercised at a moderate intensity in Experiment 2. Using an ABAB within-subjects design, Experiment 2 (N=20) evaluated whether the effects of moderate-intensity exercise on reward and relief components of craving mediated the relationship between exercise and participants' delays (in min) to ad libitum smoking. Delays were significantly longer after exercise (M=21 min) versus inactivity (M=4 min), and the effects of exercise on delay were mediated through the reward component of craving. Future research should continue to explore the mechanisms through which exercise influences behavioral indices of smoking in the human laboratory. Additionally, given the benefits uniquely afforded by exercise-based cessation interventions (e.g., improving mood and other health outcomes), implementing these interventions in clinical settings may contribute substantially to improving public health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Psychological Responses to Acute Aerobic, Resistance, or Combined Exercise in Healthy and Overweight Individuals: A Systematic Review

    PubMed Central

    Elkington, Thomas J; Cassar, Samantha; Nelson, André R; Levinger, Itamar

    2017-01-01

    Introduction: Psychological distress and depression are risk factors for cardiovascular disease (CVD). As such, a reduction in psychological distress and increase in positive well-being may be important to reduce the risk for future development of CVD. Exercise training may be a good strategy to prevent and assist in the management of psychological disorders. The psychological effects of the initial exercise sessions may be important to increase exercise adherence. The aims of this systematic review were (a) to examine whether acute aerobic, resistance, or a combination of the 2 exercises improves psychological well-being and reduces psychological distress in individuals with healthy weight and those who are overweight/obese but free from psychological disorders, and (b) if so, to examine which form of exercise might yield superior results. Methods: The online database PubMed was searched for articles using the PICO (patient, intervention, comparison, and outcome) framework for finding scientific journals based on key terms. Results: Forty-two exercise studies met the inclusion criteria. A total of 2187 participants were included (age: 18-64 years, body mass index [BMI]: 21-39 kg/m2). Only 6 studies included participants with a BMI in the overweight/obese classification. Thirty-seven studies included aerobic exercise, 2 included resistance exercise, 1 used a combination of aerobic and resistance, and 2 compared the effects of acute aerobic exercise versus the effects of acute resistance exercise. The main findings of the review were that acute aerobic exercise improves positive well-being and have the potential to reduce psychological distress and could help reduce the risks of future CVD. However, due to the limited number of studies, it is still unclear which form of exercise yields superior psychological benefits. Conclusions: Obese, overweight, and healthy weight individuals can exhibit psychological benefits from exercise in a single acute exercise session, and these positive benefits of exercise should be used by health professionals as a tool to increase long-term participation in exercise in these populations. PMID:28469495

  13. "Preconditioning" with latrepirdine, an adenosine 5'-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1(G93A) mice.

    PubMed

    Coughlan, Karen S; Mitchem, Mollie R; Hogg, Marion C; Prehn, Jochen H M

    2015-02-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a master regulator of energy balance. As energy imbalance is documented as a key pathologic feature of amyotrophic lateral sclerosis (ALS), we investigated AMPK as a pharmacologic target in SOD1(G93A) mice. We noted a strong activation of AMPK in lumbar spinal cords of SOD1(G93A) mice. Pharmacologic activation of AMPK has shown protective effects in neuronal "preconditioning" models. We tested the hypothesis that "preconditioning" with a small molecule activator of AMPK, latrepirdine, exerts beneficial effects on disease progression. SOD1(G93A) mice (n = 24 animals per group; sex and litter matched) were treated with latrepirdine (1 μg/kg, intraperitoneal) or vehicle from postnatal day 70 to 120. Treatment with latrepirdine increased AMPK activity in primary mouse motor neuron cultures and in SOD1(G93A) lumbar spinal cords. Mice "preconditioned" with latrepirdine showed a delayed symptom onset and a significant increase in life span (p < 0.01). Our study suggests that "preconditioning" with latrepirdine may represent a possible therapeutic strategy for individuals harboring ALS-associated gene mutations who are at risk for developing ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  15. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection.

    PubMed

    Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun; Xu, Weimin; Witzmann, Frank A; Collett, Jason A; Rhodes, George J; Winfree, Seth; Bready, Devin; Pfeffenberger, Zechariah J; Pomerantz, Jeremy M; Hato, Takashi; Nagami, Glenn T; Molitoris, Bruce A; Basile, David P; Atkinson, Simon J; Bacallao, Robert L

    2018-04-01

    Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine ( P <0.05) observed in controls and increased the mitochondria membrane potential ( P <0.05), maximal respiratory capacity ( P <0.05), and intracellular ATP levels ( P <0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning. Copyright © 2018 by the American Society of Nephrology.

  16. Effect of different blood-guided conditioning programmes on skeletal muscle ultrastructure and histochemistry of sport horses.

    PubMed

    Lindner, A; Dag Erginsoy, S; Kissenbeck, S; Mosen, H; Hetzel, U; Drommer, W; Chamizo, V E; Rivero, J L L

    2013-04-01

    The effects of three different blood-guided conditioning programmes on ultrastructural and histochemical features of the gluteus medius muscle of 2-year-old sport horses were examined. Six non-trained Haflinger horses performed three consecutive conditioning programmes of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 1.5 (v1.5 ), 2.5 (v2.5 ) and 4 (v4 ) mm respectively] and durations (25 and 45 min). Each conditioning programme lasted 6 weeks and was followed by a 5-week resting period. Pre-, post- and deconditioning muscle biopsies were analysed. Although training and detraining adaptations were similar in nature, they varied significantly in magnitude among the three different conditioning programmes. Overall, the adaptations consisted in significant increases in size of mitochondria and myofibrils, as well as a hypertrophy of myofibrillar ATPase type IIA muscle fibres and a reduction in number of type IIx low-oxidative fibres. Together, these changes are compatible with a significant improvement in both muscle aerobic capacity and muscle strength. The use of v1.5 and v2.5 as the exercise intensities for 45 min elicited more significant adaptations in muscle, whereas conditioning horses at v4 for 25 min evoked minimal changes. Most of these muscular adaptations returned towards the pre-conditioning status after 5 weeks of inactivity. It is concluded that exercises of low or moderate intensities (in the range between v1.5 and v2.5 ) and long duration (45 min) are more effective for improving muscle features associated with stamina and power in sport horses than exercises of higher intensity (equivalent to v4 ) and shorter duration (25 min). © 2012 Blackwell Verlag GmbH.

  17. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's Jelly mesenchymal stem cells after myocardial infarction.

    PubMed

    Zhang, Jin; Chen, Guang-Hui; Wang, Yong-Wei; Zhao, Jing; Duan, Hai-Feng; Liao, Lian-Ming; Zhang, Xiao-Zhong; Chen, Yun-Dai; Chen, Hu

    2012-10-01

    Exposure of cells to sublethal concentrations of hydrogen peroxide (H2O2) can alleviate subsequent oxidative stress-induced apoptosis. We assessed the effects of H2O2 preconditioning on the therapeutic potential of human umbilical cord Wharton's Jelly mesenchymal stem cells (WJ-MSCs) in a murine model of myocardial infarction. WJ-MSCs were incubated in the media for 2 hours with or without 200 µmol/L H2O2. Mice underwent left anterior descending coronary artery ligation, and received injection of phosphate buffered saline, 1×10(6) WJ-MSCs, or 1×10(6) H2O2 preconditioned WJ-MSCs 3 hours later via tail vein. Echocardiography was performed 0, 7, 14 and 28 days after surgery, and the mice were euthanized on day 28 for histological analysis. In vitro cytokine concentrations in the WJ-MSC cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The effect of WJ-MSC cell supernatant on the migration and proliferation of endothelial cells were observed by transwell migration and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide (MTT) assays. Echocardiographic measurements revealed a significant improvement in the left ventricular contractility of the WJ-MSCs-H2O2 group compared to the WJ-MSCs group. Histological analysis revealed increased neovascularization and reduced myocardial fibrosis in the WJ-MSCs-H2O2 group compared to the WJ-MSCs group. Pretreatment of WJ-MSCs with H2O2 increased the secretion of interleukin-6 (IL-6) into the cell culture supernatant by approximately 25-fold. The culture supernatant from WJ-MSCs-H2O2 significantly increased the migration and proliferation of endothelial cells; these effects could be blocked using an anti-IL-6 antibody. This study demonstrates that H2O2 preconditioning significantly enhanced the therapeutic potential of WJ-MSCs, possibly by stimulating the production of IL-6 by WJ-MSCs, which may cause migration and proliferation of endothelial cells and increase neovascularization.

  18. Thermal preconditioning of mountain permafrost towards instability

    NASA Astrophysics Data System (ADS)

    Hauck, Christian; Etzelmüller, Bernd; Hilbich, Christin; Isaksen, Ketil; Mollaret, Coline; Pellet, Cécile; Westermann, Sebastian

    2017-04-01

    Warming permafrost has been detected worldwide in recent years and is projected to continue during the next century as shown in many modelling studies from the polar and mountain regions. In mountain regions, this can lead to potentially hazardous impacts on short time-scales by an increased tendency for slope instabilities. However, the time scale of permafrost thaw and the role of the ice content for determining the strength and rate of permafrost warming and degradation (= development of talik) are still unclear, especially in highly heterogeneous terrain. Observations of permafrost temperatures near the freezing point show complex inter-annual responses to climate forcing due to latent heat effects during thawing and the influence of the snow-cover, which is formed and modulated by highly non-linear processes itself. These effects are complicated by 3-dimensional hydrological processes and interactions between snow melt, infiltration and drainage which may also play an important role in the triggering of mass movements in steep permafrost slopes. In this contribution we demonstrate for the first time a preconditioning effect within near-surface layers in mountain permafrost that causes non-linear degradation and accelerates permafrost thaw. We hypothesise that an extreme regional or global temperature anomaly, such as the Central European summers 2003 and 2015 or the Northern European summers 2006 and 2014, will enhance permafrost degradation if the active layer and the top of the permafrost layer are already preconditioned, i.e. have reduced latent heat content. This preconditioning can already be effectuated by a singular warm year, leading to exceptionally strong melting of the ground ice in the near-surface layers. On sloping terrain and in a context of quasi-continuous atmospheric warming, this ice-loss can be considered as irreversible, as a large part of the melted water will drain/evaporate during the process, and the build-up of an equivalent amount of ice in following cold years does not happen on similar time-scales as the melting. Joint thermal and geophysical observations from permafrost sites in the Swiss Alps and Scandinavia suggest that the above process applies mostly to sites with low to intermediate ice contents, where singular anomalies can lead to sustained ice loss even at larger depths.

  19. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    PubMed

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells. The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney.

  20. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  1. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  2. A Single Bout of Aerobic Exercise Reduces Anxiety Sensitivity But Not Intolerance of Uncertainty or Distress Tolerance: A Randomized Controlled Trial.

    PubMed

    LeBouthillier, Daniel M; Asmundson, Gordon J G

    2015-01-01

    Several mechanisms have been posited for the anxiolytic effects of exercise, including reductions in anxiety sensitivity through interoceptive exposure. Studies on aerobic exercise lend support to this hypothesis; however, research investigating aerobic exercise in comparison to placebo, the dose-response relationship between aerobic exercise anxiety sensitivity, the efficacy of aerobic exercise on the spectrum of anxiety sensitivity and the effect of aerobic exercise on other related constructs (e.g. intolerance of uncertainty, distress tolerance) is lacking. We explored reductions in anxiety sensitivity and related constructs following a single session of exercise in a community sample using a randomized controlled trial design. Forty-one participants completed 30 min of aerobic exercise or a placebo stretching control. Anxiety sensitivity, intolerance of uncertainty and distress tolerance were measured at baseline, post-intervention and 3-day and 7-day follow-ups. Individuals in the aerobic exercise group, but not the control group, experienced significant reductions with moderate effect sizes in all dimensions of anxiety sensitivity. Intolerance of uncertainty and distress tolerance remained unchanged in both groups. Our trial supports the efficacy of aerobic exercise in uniquely reducing anxiety sensitivity in individuals with varying levels of the trait and highlights the importance of empirically validating the use of aerobic exercise to address specific mental health vulnerabilities. Aerobic exercise may have potential as a temporary substitute for psychotherapy aimed at reducing anxiety-related psychopathology.

  3. Integrating Pilates Exercise into an Exercise Program for 65+ Year-Old Women to Reduce Falls

    PubMed Central

    Irez, Gonul Babayigit; Ozdemir, Recep Ali; Evin, Ruya; Irez, Salih Gokhan; Korkusuz, Feza

    2011-01-01

    The purpose of this study was to determine if Pilates exercise could improve dynamic balance, flexibility, reaction time and muscle strength in order to reduce the number of falls among older women. 60 female volunteers over the age of 65 from a residential home in Ankara participated in this study. Participants joined a 12-week series of 1-hour Pilates sessions three times per week. Dynamic balance, flexibility, reaction time and muscle strength were measured before and after the program. The number of falls before and during the 12-week period was also recorded. Dynamic balance, flexibility, reaction time and muscle strength improved (p < 0. 05) in the exercise group when compared to the non-exercise group. In conclusion, Pilates exercises are effective in improving dynamic balance, flexibility, reaction time, and muscle strength as well as decreasing the propensity to fall in older women. Key points Pilates-based exercises improve dynamic balance, reaction time and muscle strength in the elderly. Pilates exercise may reduce the number of falls in elderly women by increasing these fitness parameters. PMID:24149302

  4. Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin.

    PubMed

    Jang, Jae-Hwi; Yamada, Yoshito; Janker, Florian; De Meester, Ingrid; Baerts, Lesley; Vliegen, Gwendolyn; Inci, Ilhan; Chatterjee, Shampa; Weder, Walter; Jungraithmayr, Wolfgang

    2017-03-01

    We showed previously that stromal cell-derived factor 1 (SDF-1) is a substrate of cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) and exerts regenerative properties on acute lung ischemia-reperfusion injury on CD26/DPP4 inhibition. Here, we extend our studies to test whether an intermediate recovery of lung transplants from ischemia/reperfusion injury by CD26/DPP4 inhibition can be achieved for up to 14 days. Syngeneic mouse lung transplantation (Tx) was performed in C57BL/6 and in CD26-/- mice by applying 18 hours of cold ischemia. Donor lungs were preconditioned with saline or the CD26/DPP4 inhibitor vildagliptin (1 μg/mL [3 μM]). In vitro, the influence of vildagliptin and SDF-1 on the macrophage cell line RAW 264.7 was tested. Transplants were analyzed up to 14 days after Tx for the expression of SDF-1, tumor necrosis factor-α (TNF-α), interleukin-10, intercellular adhesion molecule-1 (ICAM-1), immune cell infiltration, and oxygenation. Cold ischemic time of 18 hours with vildagliptin preconditioning elevated lung SDF-1 levels (P = .0011) and increased interleukin-10-producing macrophages (P = .0165) compared with the control. SDF-1 reduced macrophage-derived TNF-α (P = .0248) in vitro. Five hours after Tx, vildagliptin significantly reduced macrophages and neutrophils (P = .0306), decreased ICAM-1 expression (P = .002), and improved transplant oxygenation (P = .0181). Seven days after Tx, grafts were preserved on CD26/DPP4-inhibition: perivascular macrophages (P = .0046) and TNF-α (P = .0013) were reduced as well as T and B cells. ICAM-1 was absent in CD26/DPP4-inhibited grafts at all time points. This study proves an intermediate improvement of ischemia/reperfusion-injured lung transplants by the CD26/DPP4-inhibitor vildagliptin up to 14 days. Enhanced levels of SDF-1 induced an anti-inflammatory effect on a cellular and protein level, and render CD26/DPP4 inhibition preconditioning effective for the protection from lung ischemia/reperfusion injury. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Attenuation of neointimal formation with netrin-1 and netrin-1 preconditioned endothelial progenitor cells.

    PubMed

    Liu, Norika Mengchia; Siu, Kin Lung; Youn, Ji Youn; Cai, Hua

    2017-03-01

    Restenosis after angioplasty is a serious clinical problem that can result in re-occlusion of the coronary artery. Although current drug-eluting stents have proved to be more effective in reducing restenosis, they have drawbacks of inhibiting reendothelialization to promote thrombosis. New treatment options are in urgent need. We have shown that netrin-1, an axon-guiding protein, promotes angiogenesis and cardioprotection via production of nitric oxide (NO). The present study examined whether and how netrin-1 attenuates neointimal formation in a femoral wire injury model. Infusion of netrin-1 into C57BL/6 mice markedly attenuated neointimal formation following wire injury of femoral arteries, measured by intimal to media ratio (from 1.94 ± 0.55 to 0.45 ± 0.86 at 4 weeks). Proliferation of VSMC in situ was largely reduced. This protective effect was absent in DCC +/- animals. NO production was increased by netrin-1 in both intact and injured femoral arteries, indicating netrin-1 stimulation of endogenous NO production from intact endothelium and remaining endothelial cells post-injury. VSMC migration was abrogated by netrin-1 via a NO/cGMP/p38 MAPK pathway, while timely EPC homing was induced. Injection of netrin-1 preconditioned wild-type EPCs, but not EPCs of DCC +/- animals, substantially attenuated neointimal formation. EPC proliferation, NO production, and resistance to oxidative stress induced apoptosis were augmented by netrin-1 treatment. In conclusion, our data for the first time demonstrate that netrin-1 is highly effective in reducing neointimal formation following vascular endothelial injury, which is dependent on DCC, and attributed to inhibition of VSMC proliferation and migration, as well as improved EPC function. These data may support usage of netrin-1 and netrin-1 preconditioned EPCs as novel therapies for post angioplasty restenosis. Netrin-1 attenuates neointimal formation following post endothelial injury via DCC and NO. Netrin-1 inhibits VSMC proliferation in situ following endothelial injury. Netrin-1 inhibits VSMC migration via a NO/cGMP/p38 MAPK pathway. Netrin-1 augments proliferation of endothelial progenitor cells (EPCs) and EPC eNOS/NO activation. Netrin-1 enhances resistance of EPCs to oxidative stress, improving re-endothelialization following injury.

  6. Aerobic Exercise Reduces Symptoms of Posttraumatic Stress Disorder: A Randomized Controlled Trial.

    PubMed

    Fetzner, Mathew G; Asmundson, Gordon J G

    2015-01-01

    Evidence suggests aerobic exercise has anxiolytic effects; yet, the treatment potential for posttraumatic stress disorder (PTSD) and responsible anxiolytic mechanisms have received little attention. Emerging evidence indicates that attentional focus during exercise may dictate the extent of therapeutic benefit. Whether benefits are a function of attentional focus toward or away from somatic arousal during exercise remains untested. Thirty-three PTSD-affected participants completed two weeks of stationary biking aerobic exercise (six sessions). To assess the effect of attentional focus, participants were randomized into three exercise groups: group 1 (attention to somatic arousal) received prompts directing their attention to the interoceptive effects of exercise, group 2 (distraction from somatic arousal) watched a nature documentary, and group 3 exercised with no distractions or interoceptive prompts. Hierarchal linear modeling showed all groups reported reduced PTSD and anxiety sensitivity (AS; i.e., fear of arousal-related somatic sensations) during treatment. Interaction effects between group and time were found for PTSD hyperarousal and AS physical and social scores, wherein group 1, receiving interoceptive prompts, experienced significantly less symptom reduction than other groups. Most participants (89%) reported clinically significant reductions in PTSD severity after the two-week intervention. Findings suggest, regardless of attentional focus, aerobic exercise reduces PTSD symptoms.

  7. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    PubMed

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  8. 40 CFR 1066.407 - Vehicle preparation and preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Vehicle preparation and...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Vehicle Preparation and Running a Test § 1066.407 Vehicle preparation and preconditioning. This section describes steps to take before measuring exhaust...

  9. 40 CFR 1066.407 - Vehicle preparation and preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Vehicle preparation and...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Vehicle Preparation and Running a Test § 1066.407 Vehicle preparation and preconditioning. This section describes steps to take before measuring exhaust...

  10. Effects of regular exercise on asthma control in young adults.

    PubMed

    Heikkinen, Sirpa A M; Mäkikyrö, Elina M S; Hugg, Timo T; Jaakkola, Maritta S; Jaakkola, Jouni J K

    2017-08-28

    According to our systematic literature review, no previous study has assessed potential effects of regular exercise on asthma control among young adults. We hypothesized that regular exercise improves asthma control among young adults. We studied 162 subjects with current asthma recruited from a population-based cohort study of 1,623 young adults 20-27 years of age. Asthma control was assessed by the occurrence of asthma-related symptoms, including wheezing, shortness of breath, cough, and phlegm production, during the past 12 months. Asthma symptom score was calculated based on reported frequencies of these symptoms (range: 0-12). Exercise was assessed as hours/week. In Poisson regression, adjusting for gender, age, smoking, environmental tobacco smoke exposure, and education, the asthma symptom score reduced by 0.09 points per 1 hour of exercise/week (95% CI: 0.00 to 0.17). Applying the "Low exercise" quartile as the reference, "Medium exercise" reduced the asthma symptom score by 0.66 (-0.39 to 1.72), and "High exercise" reduced it significantly by 1.13 (0.03 to 2.22). The effect was strongest among overweight subjects. Our results provide new evidence that regular exercising among young adults improves their asthma control. Thus, advising about exercise should be included as an important part of asthma self-management in clinical practice.

  11. Sport therapy for hypertension: why, how, and how much?

    PubMed

    Manfredini, Fabio; Malagoni, Anna M; Mandini, Simona; Boari, Benedetta; Felisatti, Michele; Zamboni, Paolo; Manfredini, Roberto

    2009-01-01

    Exercise may prevent or reduce the effects of metabolic and cardiovascular diseases, including arterial hypertension. Both acute and chronic exercise, alone or combined with lifestyle modifications, decrease blood pressure and avoid or reduce the need for pharmacologic therapy in patients with hypertension. The hypotensive effect of exercise is observed in a large percentage of subjects, with differences due to age, sex, race, health conditions, parental history, and genetic factors. Exercise regulates autonomic nervous system activity, increases shear stress, improves nitric oxide production in endothelial cells and its bioavailability for vascular smooth muscle, up-regulates antioxidant enzymes. Endurance training is primarily effective, and resistance training can be combined with it. Low-to-moderate intensity training in sedentary patients with hypertension is necessary, and tailored programs make exercise safe and effective also in special populations. Supervised or home-based exercise programs allow a nonpharmacological reduction of hypertension and reduce risk factors, with possible beneficial effects on cardiovascular morbidity.

  12. The alpha-adducin Gly460Trp polymorphism and the antihypertensive effects of exercise among men with high blood pressure.

    PubMed

    Pescatello, Linda S; Blanchard, Bruce E; Tsongalis, Gregory J; Maresh, Carl M; O'Connell, Ann; Thompson, Paul D

    2007-09-01

    The alpha-adducin Gly460Trp polymorphism alters renal sodium transport and is associated with hypertension. Despite the immediate sodium- and volume-depleting effects of aerobic exercise, the influence of the alpha-adducin Gly460Trp polymorphism on PEH (postexercise hypotension) has not been studied. In the present study we examined the effects of the alpha-adducin Gly460Trp polymorphism on PEH among 48 men (42.6+/-1.6 years; mean+/-S.E.M.) with high BP (blood pressure; 144.0+/-1.7/84.7+/-1.1 mmHg). Subjects completed three experiments: non-exercise control and two cycle exercise sessions at 40% (light exercise) and 60% (moderate exercise) of maximal oxygen consumption. Subjects left the laboratory wearing an ambulatory BP monitor. PCR and restriction enzyme digestion determined the genotypes. No subjects had the Trp460Trp genotype due to the low frequency of 5% in the population. Repeated measure ANCOVA tested whether BP differed over time between experimental conditions and genotypes (Gly460Gly, n=36; Gly460Trp, n=12). Among Gly460Gly genotypes, SBP (systolic BP) was reduced by 5.2+/-1.4 mmHg after moderate exercise compared with non-exercise controls over 9 h (P<0.01). Among Gly460Trp genotypes, SBP was lowered by 7.8+/-2.3 mmHg; after light exercise compared with non-exercise controls over 9 h (P<0.05). The SBP reductions after light exercise (0.6+/-1.3 compared with 7.8+/-2.3 mmHg; P<0.05) but not moderate exercise (5.2+/-1.4 compared with 3.8+/-2.4 mmHg; P> or =0.05) differed between the Gly460Gly and Gly460Trp genotypes respectively. Men with Gly460Gly had a reduced SBP after moderate exercise, whereas men with Gly460Trp had a reduced SBP after light exercise. However, only the SBP reductions after light exercise differed between genotypes. Our findings indicate that the alpha-adducin Gly460Trp genotype may be useful in identifying men who have a reduced BP after lower intensity aerobic exercise.

  13. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot.

    PubMed

    Flück, Martin; Bosshard, Rebekka; Lungarella, Max

    2017-01-01

    Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min -1 ), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise ( p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (-17%), peak ventilation (-23%), peak cardiac output (-16%), and blood lactate (-37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50-70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue.

  14. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot

    PubMed Central

    Flück, Martin; Bosshard, Rebekka; Lungarella, Max

    2017-01-01

    Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min−1), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise (p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (−17%), peak ventilation (−23%), peak cardiac output (−16%), and blood lactate (−37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50–70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue. PMID:28912726

  15. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy

    PubMed Central

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-01-01

    Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: “stem cells,” “hypoxic preconditioning,” “ischemic preconditioning,” and “cell transplantation.” Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications. PMID:28937044

  16. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    PubMed

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  17. Effects of hypoxic preconditioning on expression of transcription factor NGFI-A in the rat brain after unavoidable stress in the "learned helplessness" model.

    PubMed

    Baranova, K A; Rybnikova, E A; Mironova, V I; Samoilov, M O

    2010-07-01

    We report here our immunocytochemical studies establishing that the development of a depression-like state in rats following unavoidable stress in a "learned helplessness" model is accompanied by stable activation of the expression of transcription factor NGFI-A in the dorsal hippocampus (field CA1) and the magnocellular paraventricular nucleus of the hypothalamus, along with an early wave of post-stress expression, which died down rapidly, in the ventral hippocampus (the dentate gyrus) and a long period of up to five days of high-level expression in the neocortex. In rats subjected to three sessions of preconditioning consisting of moderate hypobaric hypoxia (360 mmHg, 2 h, with intervals of 24 h), which did not form depression in these circumstances, there were significant changes in the dynamics of immunoreactive protein content in the hippocampus, with a stable increase in expression in the ventral hippocampus and only transient and delayed (by five days) expression in field CA1. In the neocortex (layer II), preconditioning eliminated the effects of stress, preventing prolongation of the first wave of NGFI-A expression to five days, while in the magnocellular hypothalamus, conversely, preconditioning stimulated a second (delayed) wave of the expression of this transcription factor. The pattern of NGFI-A expression in the hippocampus, neocortex, and hypothalamus seen in non-preconditioned rats appears to reflect the pathological reaction to aversive stress, which, rather than adaptation, produced depressive disorders. Post-stress modification of the expression of the product of the early gene NGFI-A in the brain induced by hypoxic preconditioning probably plays an important role in increased tolerance to severe psychoemotional stresses and is an important component of antidepressant mechanisms.

  18. Systematic review: the impact of exercise on mesenteric blood flow and its implication for preoperative rehabilitation.

    PubMed

    Knight, K A; Moug, S J; West, M A

    2017-03-01

    Exercise in the preoperative period, or prehabilitation, continues to evolve as an important tool in optimising patients awaiting major intra-abdominal surgery. It has been shown to reduce rates of post-operative morbidity and length of hospital stay. The mechanism by which this is achieved remains poorly understood. Adaptations in mesenteric flow in response to exercise may play a role in improving post-operative recovery by reducing rates of ileus and anastomotic leak. To systematically review the existing literature to clarify the impact of exercise on mesenteric arterial blood flow using Doppler ultrasound. PubMed, EMBASE and the Cochrane library were systematically searched to identify clinical trials using Doppler ultrasound to investigate the effect of exercise on flow through the superior mesenteric artery (SMA). Data were extracted including participant characteristics, frequency, intensity, timing and type of exercise and the effect on SMA flow. The quality of each study was assessed using the Downs and Black checklist. Sixteen studies, comprising 305 participants in total, were included. Methodological quality was generally poor. Healthy volunteers were used in twelve studies. SMA flow was found to be reduced in response to exercise in twelve studies, increased in one and unchanged in two studies. Clinical heterogeneity precluded a meta-analysis. The weight of evidence suggests that superior mesenteric arterial flow is reduced immediately following exercise. Differences in frequency, intensity, timing and type of exercise make a consensus difficult. Further studies are warranted to provide a definitive understanding of the impact of exercise on mesenteric flow.

  19. Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. For systems that are ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and ILU(O) preconditioned CG (PCG) using different programming paradigms and architectures. Results show that for this class of applications: ordering significantly improves overall performance on both distributed and distributed shared-memory systems, that cache reuse may be more important than reducing communication, that it is possible to achieve message-passing performance using shared-memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP paradigm increases programming complexity with little performance gains. A implementation of CG on the Cray MTA does not require special ordering or partitioning to obtain high efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows limited scalability for PCG due to a lack of thread level parallelism.

  20. Cross-Jurisdictional Sharing for Emergency Management-Related Public Health: Exploring the Experiences of Tribes and Counties in California

    PubMed Central

    Wimsatt, Maureen A.

    2017-01-01

    Each American Indian tribe is unique in several ways, including in its relationships with local governments and risk for emergencies. Cross-jurisdictional sharing (CJS) arrangements are encouraged between tribes and counties for emergency management-related population health, but researchers have not yet explored CJS experiences of tribes and counties for emergency management. This investigation used collaboration theory and a CJS spectrum framework to assess the scope and prevalence of tribe–county CJS arrangements for emergency management in California as well as preconditions to CJS. Mixed-methods survey results indicate that tribes and counties have varied CJS arrangements, but many are informal or customary. Preconditions to CJS include tribe–county agreement about having CJS, views of the CJS relationship, barriers to CJS, and jurisdictional strengths and weaknesses in developing CJS arrangements. Areas for public health intervention include funding programs that build tribal capacity in emergency management, reduce cross-jurisdictional disagreement, and promote ongoing tribe–county relationships as a precursor to formal CJS arrangements. Study strengths, limitations, and future directions are also discussed. PMID:28983479

  1. The effects of fetal and perinatal asphyxia on neuronal cytokine levels and ceramide metabolism in adulthood.

    PubMed

    Vlassaks, Evi; Gavilanes, Antonio W D; Vles, Johan S H; Deville, Sarah; Kramer, Boris W; Strackx, Eveline; Martinez-Martinez, Pilar

    2013-02-15

    In a rat model of global fetal and perinatal asphyxia, we investigated if asphyxia and long-lasting brain tolerance to asphyxia (preconditioning) are mediated by modifications in inflammatory cytokines and ceramide metabolism genes in prefrontal cortex, hippocampus and caudate-putamen at the age of 8months. Most significant changes were found in prefrontal cortex, with reduced LAG1 homolog ceramide synthase 1 expression after both types of asphyxia. Additionally, sphingosine kinase 1 was upregulated in those animals that experienced the combination of fetal and perinatal asphyxia (preconditioning), suggesting increased cell proliferation. While cytokine levels are normal, levels of ceramide genes were modulated both after fetal and perinatal asphyxia in the adult prefrontal cortex. Moreover, the combination of two subsequent asphyctic insults provides long-lasting neuroprotection in the prefrontal cortex probably by maintaining normal apoptosis and promoting cell proliferation. Better understanding of the effects of asphyxia on ceramide metabolism will help to understand the changes leading to brain tolerance and will open opportunities for the development of new neuroprotective therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Acute alcohol-induced protection against infarction in rabbit hearts: differences from and similarities to ischemic preconditioning.

    PubMed

    Krenz, M; Baines, C P; Heusch, G; Downey, J M; Cohen, M V

    2001-11-01

    Recent studies reveal that brief ethanol exposure induces cardioprotection against simulated ischemia in cardiomyocytes by the activation of protein kinase C- epsilon. The present study tests the ability of ethanol to induce protection in rabbit hearts in which infarct size was the end-point and explores the signal transduction pathways involved. In isolated rabbit hearts, 50 m m ethanol infused for 5 min with 10 min of washout prior to 30 min of regional ischemia reduced infarct size (triphenyltetrazolium chloride staining) by 49%. Neither adenosine receptor blockade with 8-(p -sulfophenyl) theophylline nor the free radical scavenger N-2-mercaptopropionyl glycine inhibited the protection triggered by ethanol. In contrast, protein kinase C inhibition with chelerythrine, protein tyrosine kinase inhibition with genistein, and blockade of ATP-sensitive potassium channels (K(ATP)) with either 5-hydroxydecanoate or glibenclamide did abolish protection. Thus, transient ethanol exposure followed by washout prior to ischemia elicits a preconditioning-like effect involving protein kinase C, at least one protein tyrosine kinase, and K(ATP)channels, but neither adenosine nor free radicals. Copyright 2001 Academic Press.

  3. Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia

    PubMed Central

    Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; van Deel, Elza D; Bowles, Douglas K; Duncker, Dirk J; Laughlin, M Harold; Merkus, Daphne

    2014-01-01

    Vascular dysfunction has been associated with familial hypercholesterolaemia (FH), a severe form of hyperlipidaemia. We recently demonstrated that swine with FH exhibit reduced exercise-induced systemic, but not pulmonary, vasodilatation involving reduced nitric oxide (NO) bioavailability. Since NO normally limits endothelin (ET) action, we examined the hypothesis that reduced systemic vasodilatation during exercise in FH swine results from increased ET-mediated vasoconstriction. Systemic and pulmonary vascular responses to exercise were examined in chronically instrumented normal and FH swine in the absence and presence of the ETA/B receptor antagonist tezosentan. Intrinsic reactivity to ET was further assessed in skeletal muscle arterioles. FH swine exhibited ∼9-fold elevation in total plasma cholesterol versus normal swine. Similar to our recent findings, systemic, not pulmonary, vasodilatation during exercise was reduced in FH swine. Blockade of ET receptors caused marked systemic vasodilatation at rest and during exercise in normal swine that was significantly reduced in FH swine. The reduced role of ET in FH swine in vivo was not the result of decreased arteriolar ET responsiveness, as responsiveness was increased in isolated arterioles. Smooth muscle ET receptor protein content was unaltered by FH. However, circulating plasma ET levels were reduced in FH swine. ET receptor antagonism caused pulmonary vasodilatation at rest and during exercise in normal, but not FH, swine. Therefore, contrary to our hypothesis, FH swine exhibit a generalised reduction in the role of ET in regulating vascular tone in vivo probably resulting from reduced ET production. This may represent a unique vascular consequence of severe familial hypercholesterolaemia. PMID:24421352

  4. The effect of different water immersion temperatures on post-exercise parasympathetic reactivation.

    PubMed

    de Oliveira Ottone, Vinícius; de Castro Magalhães, Flávio; de Paula, Fabrício; Avelar, Núbia Carelli Pereira; Aguiar, Paula Fernandes; da Matta Sampaio, Pâmela Fiche; Duarte, Tamiris Campos; Costa, Karine Beatriz; Araújo, Tatiane Líliam; Coimbra, Cândido Celso; Nakamura, Fábio Yuzo; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel

    2014-01-01

    We evaluated the effect of different water immersion (WI) temperatures on post-exercise cardiac parasympathetic reactivation. Eight young, physically active men participated in four experimental conditions composed of resting (REST), exercise session (resistance and endurance exercises), post-exercise recovery strategies, including 15 min of WI at 15°C (CWI), 28°C (TWI), 38°C (HWI) or control (CTRL, seated at room temperature), followed by passive resting. The following indices were assessed before and during WI, 30 min post-WI and 4 hours post-exercise: mean R-R (mR-R), the natural logarithm (ln) of the square root of the mean of the sum of the squares of differences between adjacent normal R-R (ln rMSSD) and the ln of instantaneous beat-to-beat variability (ln SD1). The results showed that during WI mRR was reduced for CTRL, TWI and HWI versus REST, and ln rMSSD and ln SD1 were reduced for TWI and HWI versus REST. During post-WI, mRR, ln rMSSD and ln SD1 were reduced for HWI versus REST, and mRR values for CWI were higher versus CTRL. Four hours post exercise, mRR was reduced for HWI versus REST, although no difference was observed among conditions. We conclude that CWI accelerates, while HWI blunts post-exercise parasympathetic reactivation, but these recovery strategies are short-lasting and not evident 4 hours after the exercise session.

  5. The Effect of Different Water Immersion Temperatures on Post-Exercise Parasympathetic Reactivation

    PubMed Central

    de Oliveira Ottone, Vinícius; de Castro Magalhães, Flávio; de Paula, Fabrício; Avelar, Núbia Carelli Pereira; Aguiar, Paula Fernandes; da Matta Sampaio, Pâmela Fiche; Duarte, Tamiris Campos; Costa, Karine Beatriz; Araújo, Tatiane Líliam; Coimbra, Cândido Celso; Nakamura, Fábio Yuzo; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel

    2014-01-01

    Purpose We evaluated the effect of different water immersion (WI) temperatures on post-exercise cardiac parasympathetic reactivation. Methods Eight young, physically active men participated in four experimental conditions composed of resting (REST), exercise session (resistance and endurance exercises), post-exercise recovery strategies, including 15 min of WI at 15°C (CWI), 28°C (TWI), 38°C (HWI) or control (CTRL, seated at room temperature), followed by passive resting. The following indices were assessed before and during WI, 30 min post-WI and 4 hours post-exercise: mean R-R (mR-R), the natural logarithm (ln) of the square root of the mean of the sum of the squares of differences between adjacent normal R–R (ln rMSSD) and the ln of instantaneous beat-to-beat variability (ln SD1). Results The results showed that during WI mRR was reduced for CTRL, TWI and HWI versus REST, and ln rMSSD and ln SD1 were reduced for TWI and HWI versus REST. During post-WI, mRR, ln rMSSD and ln SD1 were reduced for HWI versus REST, and mRR values for CWI were higher versus CTRL. Four hours post exercise, mRR was reduced for HWI versus REST, although no difference was observed among conditions. Conclusions We conclude that CWI accelerates, while HWI blunts post-exercise parasympathetic reactivation, but these recovery strategies are short-lasting and not evident 4 hours after the exercise session. PMID:25437181

  6. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females.

  7. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.132-00 Section 86.132-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...] (iii) If a manufacturer has concerns about fuel effects on adaptive memory systems, a manufacturer may...

  8. 40 CFR 86.1232-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... preconditioned separately. If production evaporative canisters are equipped with a functional service port... production evaporative canisters are equipped with a functional service port designed for vapor load or purge... provides at least a 4:1 safety factor against the lean flammability limit. (iii) The FID hydrocarbon...

  9. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  10. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  11. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  12. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  13. Ontario's daily physical activity policy for elementary schools: is everything in place for success?

    PubMed

    Robertson-Wilson, Jennifer E; Lévesque, Lucie

    2009-01-01

    The development, implementation, and evaluation of policies may play an important role in promoting health behaviours such as physical activity. The Ontario Ministry of Education (OME) recently mandated Memorandum No. 138 requiring daily physical activity (DPA) for Ontario elementary students in grades one through eight. The purpose of this paper is to examine implementation strategies. Hogwood and Gunn's 10 preconditions for "perfect implementation" are used to examine publicly available Ministry DPA policy documents to assess whether these implementation strategies have been considered in the policy documents. Several preconditions (e.g., allocation of resources, task specification) appear to have been considered, however a number of preconditions (e.g., the sustainability of resources, extent to which the policy is valued, and evaluation plans) thought to be important require additional attention to ensure optimal DPA implementation. Additional reflection upon Hogwood and Gunn's implementation preconditions would, in our opinion, assist in facilitating optimal DPA implementation as per Memorandum No. 138.

  14. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  15. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  16. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    PubMed

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  17. Brain reactivity to visual food stimuli after moderate-intensity exercise in children.

    PubMed

    Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; Larson, Michael J; Keller, Kathleen L; Fearnbach, S Nicole; Evans, Alyssa; LeCheminant, James D

    2017-09-19

    Exercise may play a role in moderating eating behaviors. The purpose of this study was to examine the effect of an acute bout of exercise on neural responses to visual food stimuli in children ages 8-11 years. We hypothesized that acute exercise would result in reduced activity in reward areas of the brain. Using a randomized cross-over design, 26 healthy weight children completed two separate laboratory conditions (exercise; sedentary). During the exercise condition, each participant completed a 30-min bout of exercise at moderate-intensity (~ 67% HR maximum) on a motor-driven treadmill. During the sedentary session, participants sat continuously for 30 min. Neural responses to high- and low-calorie pictures of food were determined immediately following each condition using functional magnetic resonance imaging. There was a significant exercise condition*stimulus-type (high- vs. low-calorie pictures) interaction in the left hippocampus and right medial temporal lobe (p < 0.05). Main effects of exercise condition were observed in the left posterior central gyrus (reduced activation after exercise) (p < 0.05) and the right anterior insula (greater activation after exercise) (p < 0.05). The left hippocampus, right medial temporal lobe, left posterior central gyrus, and right anterior insula appear to be activated by visual food stimuli differently following an acute bout of exercise compared to a non-exercise sedentary session in 8-11 year-old children. Specifically, an acute bout of exercise results in greater activation to high-calorie and reduced activation to low-calorie pictures of food in both the left hippocampus and right medial temporal lobe. This study shows that response to external food cues can be altered by exercise and understanding this mechanism will inform the development of future interventions aimed at altering energy intake in children.

  18. Remote Ischemic Preconditioning and Outcomes of Cardiac Surgery.

    PubMed

    Hausenloy, Derek J; Candilio, Luciano; Evans, Richard; Ariti, Cono; Jenkins, David P; Kolvekar, Shyam; Knight, Rosemary; Kunst, Gudrun; Laing, Christopher; Nicholas, Jennifer; Pepper, John; Robertson, Steven; Xenou, Maria; Clayton, Tim; Yellon, Derek M

    2015-10-08

    Whether remote ischemic preconditioning (transient ischemia and reperfusion of the arm) can improve clinical outcomes in patients undergoing coronary-artery bypass graft (CABG) surgery is not known. We investigated this question in a randomized trial. We conducted a multicenter, sham-controlled trial involving adults at increased surgical risk who were undergoing on-pump CABG (with or without valve surgery) with blood cardioplegia. After anesthesia induction and before surgical incision, patients were randomly assigned to remote ischemic preconditioning (four 5-minute inflations and deflations of a standard blood-pressure cuff on the upper arm) or sham conditioning (control group). Anesthetic management and perioperative care were not standardized. The combined primary end point was death from cardiovascular causes, nonfatal myocardial infarction, coronary revascularization, or stroke, assessed 12 months after randomization. We enrolled a total of 1612 patients (811 in the control group and 801 in the ischemic-preconditioning group) at 30 cardiac surgery centers in the United Kingdom. There was no significant difference in the cumulative incidence of the primary end point at 12 months between the patients in the remote ischemic preconditioning group and those in the control group (212 patients [26.5%] and 225 patients [27.7%], respectively; hazard ratio with ischemic preconditioning, 0.95; 95% confidence interval, 0.79 to 1.15; P=0.58). Furthermore, there were no significant between-group differences in either adverse events or the secondary end points of perioperative myocardial injury (assessed on the basis of the area under the curve for the high-sensitivity assay of serum troponin T at 72 hours), inotrope score (calculated from the maximum dose of the individual inotropic agents administered in the first 3 days after surgery), acute kidney injury, duration of stay in the intensive care unit and hospital, distance on the 6-minute walk test, and quality of life. Remote ischemic preconditioning did not improve clinical outcomes in patients undergoing elective on-pump CABG with or without valve surgery. (Funded by the Efficacy and Mechanism Evaluation Program [a Medical Research Council and National Institute of Health Research partnership] and the British Heart Foundation; ERICCA ClinicalTrials.gov number, NCT01247545.).

  19. Determinants of Exercise Intolerance in Elderly Heart Failure Patients with Preserved Ejection Fraction

    PubMed Central

    Haykowsky, Mark J.; Brubaker, Peter H.; John, Jerry M.; Stewart, Kathryn P.; Morgan, Timothy M.; Kitzman, Dalane W.

    2011-01-01

    Objectives To determine the mechanisms responsible for reduced aerobic capacity (peak VO2) in heart failure patients with preserved ejection fraction (HFPEF). Background HFPEF is the predominant form of HF in older persons. Exercise intolerance is the primary symptom among patients with HFPEF and a major determinant of reduced quality of life. In contrast to patients with HF and reduced EF, the mechanism of exercise intolerance in HFPEF is less well understood. Methods Left ventricular volumes (2D echocardiography), cardiac output (CO), VO2 and calculated arterial-venous oxygen content difference (A-VO2 Diff) were measured at rest and during incremental, exhaustive upright cycle exercise in 48 HFPEF patients (age 69±6 years) and 25 healthy age-matched controls (HC). Results In HFPEF compared to HC, VO2 was reduced at peak exercise (mean±SE: 14.3±0.5 vs. 20.4±0.6 mL·kg min−1; p<0.0001) and was associated with a reduced peak CO (6.3±0.2 vs. 7.6±0.2 L·min−1, p<0.0001) and A-VO2 Diff (17±0.4 vs. 19±0.4 ml·dl−1, p<0.0007). The strongest independent predictor of peak VO2 was the change in A-VO2 Diff from rest to peak exercise (A-VO2 Diff reserve) for both HFPEF (partial correlant 0.58, standardized β coefficient 0.66; p=0.0002) and HC (partial correlant 0.61, standardized β coefficient 0.41; p=0.005) Conclusions Both reduced CO and A-VO2 Diff contribute significantly to the severe exercise intolerance in elderly HFPEF patients. The finding that A-VO2 Diff reserve is an independent predictor of peak exercise VO2 suggests that peripheral, ‘non-cardiac’ factors are important contributors to exercise intolerance in these patients. PMID:21737017

  20. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  1. Crew Exercise

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  2. [Positive effects of physical exercise on reducing the relationship between subcutaneous abdominal fat and morbility risk].

    PubMed

    González Calvo, G; Hernández Sánchez, S; Pozo Rosado, P; García López, D

    2011-01-01

    The consequences related to the accumulation of abdominal fat above healthy levels create a considerable organic damage. Among the physiological consequences we can highlight heart diseases, hypertension, type-2 diabetes, obesity and metabolic syndrome, which drastically reduce life expectancy and quality. Evidence shows that health improvement is correlated to greater levels of physical activity. However, physical exercise can create oxidative damage on organs and muscular tissue, more relevant in subjects with a high percentage of abdominal fat. This piece of work determines which are the fundamental variables of the exercise program in order to optimize its advantages while minimizing oxidative stress. To know the key variables in the accumulation of abdominal fat above healthy levels, and the role of exercise in prevention and improvement of such issue. SPECIFIC PURPOSES: 1) to identify the key variables in an exercise program aimed at reducing abdominal fat; 2) to understand the relationship between abdominal fat, health and exercise; 3) to review the latest research related to physical exercise and its effect on abdominal adipose tissue. A search and identification of original and reviewed articles will be carried out in indexed impact journals within the main databases. Regular physical exercise, most notably aerobic one, reduces body adipose tissue deposits in general, and abdominal ones in particular, both in obese and overweight subjects.

  3. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats.

    PubMed

    Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S

    2016-09-15

    The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. CoDuSe group exercise programme improves balance and reduces falls in people with multiple sclerosis: A multi-centre, randomized, controlled pilot study.

    PubMed

    Carling, Anna; Forsberg, Anette; Gunnarsson, Martin; Nilsagård, Ylva

    2017-09-01

    Imbalance leading to falls is common in people with multiple sclerosis (PwMS). To evaluate the effects of a balance group exercise programme (CoDuSe) on balance and walking in PwMS (Expanded Disability Status Scale, 4.0-7.5). A multi-centre, randomized, controlled single-blinded pilot study with random allocation to early or late start of exercise, with the latter group serving as control group for the physical function measures. In total, 14 supervised 60-minute exercise sessions were delivered over 7 weeks. Pretest-posttest analyses were conducted for self-reported near falls and falls in the group starting late. Primary outcome was Berg Balance Scale (BBS). A total of 51 participants were initially enrolled; three were lost to follow-up. Post-intervention, the exercise group showed statistically significant improvement ( p = 0.015) in BBS and borderline significant improvement in MS Walking Scale ( p = 0.051), both with large effect sizes (3.66; -2.89). No other significant differences were found between groups. In the group starting late, numbers of falls and near falls were statistically significantly reduced after exercise compared to before ( p < 0.001; p < 0.004). This pilot study suggests that the CoDuSe exercise improved balance and reduced perceived walking limitations, compared to no exercise. The intervention reduced falls and near falls frequency.

  5. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels.

    PubMed

    Abbenhardt, C; McTiernan, A; Alfano, C M; Wener, M H; Campbell, K L; Duggan, C; Foster-Schubert, K E; Kong, A; Toriola, A T; Potter, J D; Mason, C; Xiao, L; Blackburn, G L; Bain, C; Ulrich, C M

    2013-08-01

    Excess body weight and a sedentary lifestyle are associated with the development of several diseases, including cardiovascular disease, diabetes and cancer in women. One proposed mechanism linking obesity to chronic diseases is an alteration in adipose-derived adiponectin and leptin levels. We investigated the effects of 12-month reduced calorie, weight loss and exercise interventions on adiponectin and leptin concentrations. Overweight/obese postmenopausal women (n = 439) were randomized as follows: (i) a reduced calorie, weight-loss diet (diet; N = 118), (ii) moderate-to-vigorous intensity aerobic exercise (exercise; N = 117), (iii) a combination of a reduced calorie, weight-loss diet and moderate-to-vigorous intensity aerobic exercise (diet + exercise; N = 117), and (iv) control (N = 87). The reduced calorie diet had a 10% weight-loss goal. The exercise intervention consisted of 45 min of moderate-to-vigorous aerobic activity 5 days per week. Adiponectin and leptin levels were measured at baseline and after 12 months of intervention using a radioimmunoassay. Adiponectin increased by 9.5% in the diet group and 6.6% in the diet + exercise group (both P ≤ 0.0001 vs. control). Compared with controls, leptin decreased with all interventions (diet + exercise, -40.1%, P < 0.0001; diet, -27.1%, P < 0.0001; exercise, -12.7%, P = 0.005). The results were not influenced by the baseline body mass index (BMI). The degree of weight loss was inversely associated with concentrations of adiponectin (diet, P-trend = 0.0002; diet + exercise, P-trend = 0.0005) and directly associated with leptin (diet, P-trend < 0.0001; diet + exercise, P-trend < 0.0001). Weight loss through diet or diet + exercise increased adiponectin concentrations. Leptin concentrations decreased in all of the intervention groups, but the greatest reduction occurred with diet + exercise. Weight loss and exercise exerted some beneficial effects on chronic diseases via effects on adiponectin and leptin. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  6. Preconditioning electromyographic data for an upper extremity model using neural networks

    NASA Technical Reports Server (NTRS)

    Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.

    1994-01-01

    A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.

  7. Management of Preconditioned Calves and Impacts of Preconditioning.

    PubMed

    Hilton, W Mark

    2015-07-01

    When studying the practice of preconditioning (PC) calves, many factors need to be examined to determine if cow-calf producers should make this investment. Factors such as average daily gain, feed efficiency, available labor, length of the PC period, genetics, and marketing options must be analyzed. The health sales price advantage is an additional benefit in producing and selling PC calves but not the sole determinant of PC's financially feasibility. Studies show that a substantial advantage of PC is the selling of additional pounds at a cost of gain well below the marginal return of producing those additional pounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep-deprived mice.

    PubMed

    Daniele, Thiago Medeiros da Costa; de Bruin, Pedro Felipe Carvalhedo; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Veralice Meireles Sales

    2017-08-14

    Exercise is a promising adjunctive therapy for depressive behavior, sleep/wake abnormalities, cognition and motor dysfunction. Conversely, sleep deprivation impairs mood, cognition and functional performance. The objective of this study is to evaluate the effects of exercise on anxiety and depressive behavior and striatal levels of norepinephrine (NE), serotonin and its metabolites in mice submitted to 6h of total sleep deprivation (6h-TSD) and 72h of Rapid Eye Movement (REM) sleep deprivation (72h-REMSD). Experimental groups were: (1) mice submitted to 6h-TSD by gentle handling; (2) mice submitted to 72h-REMSD by the flower pot method; (3) exercise (treadmill for 8 weeks); (4) exercise followed by 6h-TSD; (5) exercise followed by 72h-REMSD; (6) control (home cage). Behavioral tests included the Elevated Plus Maze and tail-suspension. NE, serotonin and its metabolites were determined in the striatum using high-performance liquid chromatography (HPLC). Sleep deprivation increased depressive behavior (time of immobilization in the tail-suspension test) and previous exercise hindered it. Sleep deprivation increased striatal NE and previous exercise reduced it. Exercise only was associated with higher levels of serotonin. Furthermore, exercise reduced serotonin turnover associated with sleep deprivation. In brief, previous exercise prevented depressive behavior and reduced striatal high NE levels and serotonin turnover. The present findings confirm the effects of exercise on behavior and neurochemical alterations associated with sleep deprivation. These findings provide new avenues for understanding the mechanisms of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The role of exercise in reducing coronary heart disease and associated risk factors.

    PubMed

    Leclerc, K M

    1992-06-01

    Despite public health efforts, heart disease remains a leading cause of death and disease in the United States. There is sufficient evidence to justify the inclusion of regular exercise in efforts to reduce overall coronary heart disease (CHD) morbidity and mortality. This paper reviews the supportive evidence for this stance as well as the role of exercise in managing the major CHD risk factors of atherogenic serum lipids, hypertension, and obesity. Recognition of exercise as a lifestyle behavior is addressed and recommendations for prescribing exercise for adults interested in preventing CHD are presented.

  10. Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance.

    PubMed

    Astokorki, Ali H Y; Mauger, Alexis R

    2017-03-01

    Muscle pain is a natural consequence of intense and prolonged exercise and has been suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been shown to reduce both chronic and acute pain in a variety of conditions. This study sought to ascertain whether TENS and IFC could reduce exercise-induced pain (EIP) and whether this would affect exercise performance. It was hypothesised that TENS and IFC would reduce EIP and result in an improved exercise performance. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC, and a SHAM placebo in a repeated measures, randomised cross-over, and placebo-controlled design. Perceived EIP was recorded in both tasks using a validated subjective scale. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during the isometric contraction (P = 0.006) and significantly improved participants' time to exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) participants' time trial completion time (~2% improvement) through an increased mean power output. These findings demonstrate that TENS can attenuate perceived EIP in a healthy population and that doing so significantly improves endurance performance in both submaximal isometric single limb exercise and whole-body dynamic exercise.

  11. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Preconditioned idle test-EPA 91. 85.2218 Section 85.2218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short...

  12. A Three Year Comparison of Acute Respiratory Disease, Shrink and Weight Gain in Preconditioned and Non-preconditioned Illinois Beef Calves Sold at the Same Auction and Mixed in a Feedlot

    PubMed Central

    Woods, G. T.; Mansfield, M. E.; Webb, R. J.

    1973-01-01

    During 1969 to 1971, 78 preconditioned (PC) and 79 non-preconditioned (NPC) beef calves were purchased at the same auction and mixed in a feedlot. Preconditioned calves were weaned 30 days before the sale, used to drinking from a tank, and vaccinated against blackleg, malignant edema, infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI3) and bovine virus diarrhea (BVD) in 1970 and 1971, and Pasteurella hemolytica and multocida in 1971. All vaccinations were completed two to three weeks before the sale. PC calves were given thiabenzadole. PC calves had significantly less shrink after shipment and in 1971 significantly more rapid daily gain during the first weeks of the feeding period. In 1969 more PC calves were treated for acute respiratory disease than NPC calves during an outbreak of PI3 and BVD infection. In 1970 and 1971 fewer PC than NPC calves were treated for acute respiratory tract disease during outbreaks of PI3 infection. The differences in clinical respiratory disease were significant in 1971. Inclusion of two doses of P. hemolytica and P. multocida bacterin before the sale in 1971 and use of an intranasal PI3 vaccine was considered to improve the PC program. Fecal egg counts for gastrointestinal nematodes were much lower in PC calves treated with thiabenzadole than untreated NPC calves. PMID:4355470

  13. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The role of exercise training in the treatment of hypertension: an update.

    PubMed

    Hagberg, J M; Park, J J; Brown, M D

    2000-09-01

    Hypertension is a very prevalent cardiovascular (CV) disease risk factor in developed countries. All current treatment guidelines emphasise the role of nonpharmacological interventions, including physical activity, in the treatment of hypertension. Since our most recent review of the effects of exercise training on patients with hypertension, 15 studies have been published in the English literature. These results continue to indicate that exercise training decreases blood pressure (BP) in approximately 75% of individuals with hypertension, with systolic and diastolic BP reductions averaging approximately 11 and 8mm Hg, respectively. Women may reduce BP more with exercise training than men, and middle-aged people with hypertension may obtain greater benefits than young or older people. Low to moderate intensity training appears to be as, if not more, beneficial as higher intensity training for reducing BP in individuals with hypertension. BP reductions are rapidly evident although, at least for systolic BP, there is a tendency for greater reductions with more prolonged training. However, sustained BP reductions are evident during the 24 hours following a single bout of exercise in patients with hypertension. Asian and Pacific Island patients with hypertension reduce BP, especially systolic BP, more and more consistently than Caucasian patients. The minimal data also indicate that African-American patients reduce BP with exercise training. Some evidence indicates that common genetic variations may identify individuals with hypertension likely to reduce BP with exercise training. Patients with hypertension also improve plasma lipoprotein-lipid profiles and improve insulin sensitivity to the same degree as normotensive individuals with exercise training. Some evidence also indicates that exercise training in hypertensive patients may result in regression of pathological left ventricular hypertrophy. These results continue to support the recommendation that exercise training is an important initial or adjunctive step that is highly efficacious in the treatment of individuals with mild to moderate elevations in BP.

  15. Female upper body and breast skin temperature and thermal comfort following exercise.

    PubMed

    Ayres, B; White, J; Hedger, W; Scurr, J

    2013-01-01

    Breast support reduces breast pain and movement during exercise, however, an extra layer of clothing may affect thermoregulation. This preliminary study investigated female upper body and breast skin temperature and thermal comfort following short-duration exercise. Eight female participants with C-cup breasts had thermal images (infra-red camera, FLIR systems) of the bare breasts, the breasts in two sports bras (composite and polyester) and the abdomen, taken before and after 20 min of exercise at 28(o)C. Following exercise, bare-breast, bra and abdomen temperatures reduced by 0.61(o)C, 0.92(o)C and 2.06(o)C, respectively. The polyester sports bra demonstrated greater thermal comfort and enabled a greater change in skin temperature than the composite sports bra. It is concluded that following short-duration exercise, sports bras reduced the cooling ability of the breast. Material properties of the bras affect thermal comfort and post-exercise skin temperature; this should be an important consideration for sports bra manufacturers. This study investigates the effect of sports bras on thermal regulation of the breast following exercise. Sports bras negatively affected the cooling ability of the skin on the breast, with the material properties of the bra affecting thermal comfort following exercise. These results present important considerations for sports bra manufacturers.

  16. The acute effects of exercise on cigarette cravings, withdrawal symptoms, affect, and smoking behaviour: systematic review update and meta-analysis.

    PubMed

    Roberts, Vaughan; Maddison, Ralph; Simpson, Caroline; Bullen, Chris; Prapavessis, Harry

    2012-07-01

    Smoking cessation is associated with cigarette cravings and tobacco withdrawal symptoms (TWS), and exercise appears to ameliorate many of these negative effects. A number of studies have examined the relationships between exercise, cigarette cravings, and TWS. The objectives of this study were (a) to review and update the literature examining the effects of short bouts of exercise on cigarette cravings, TWS, affect, and smoking behaviour and (b) to conduct meta-analyses of the effect of exercise on cigarette cravings. A systematic review of all studies published between January 2006 and June 2011 was conducted. Fifteen new studies were identified, 12 of which found a positive effect of exercise on cigarette cravings. The magnitude of statistically significant effect sizes for 'desire to smoke' and 'strength of desire to smoke' ranged from 0.4 to 1.98 in favour of exercise compared to passive control conditions, and peaked either during or soon after treatment. Effects were found up to 30 min post-exercise. Cigarette cravings were reduced following exercise with a wide range of intensities from isometric exercise and yoga to activity as high as 80-85 % heart rate reserve. Meta-analyses revealed weighted mean differences of -1.90 and -2.41 in 'desire to smoke' and 'strength of desire to smoke' outcomes, respectively. Measures of TWS and negative affect were reduced following light-moderate intensity exercise, but increased during vigorous exercise. Exercise can have a positive effect on cigarette cravings and TWS. However, the most effective exercise intensity to reduce cravings and the underlying mechanisms associated with this effect remain unclear.

  17. A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal

    2004-01-01

    Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.

  18. Effects of Moderate and Vigorous Exercise on Nonalcoholic Fatty Liver Disease: A Randomized Clinical Trial.

    PubMed

    Zhang, Hui-Jie; He, Jiang; Pan, Ling-Ling; Ma, Zhi-Min; Han, Cheng-Kun; Chen, Chung-Shiuan; Chen, Zheng; Han, Hai-Wei; Chen, Shi; Sun, Qian; Zhang, Jun-Feng; Li, Zhi-Bin; Yang, Shu-Yu; Li, Xue-Jun; Li, Xiao-Ying

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) is a prevalent risk factor for chronic liver disease and cardiovascular disease. To compare the effects of moderate and vigorous exercise on intrahepatic triglyceride content and metabolic risk factors among patients with NAFLD. In this randomized clinical trial, participants with central obesity and NAFLD were recruited from community-based screening in Xiamen, China, from December 1, 2011, through December 25, 2013. Data analysis was performed from August 28, 2015, through December 15, 2015. Participants were randomly assigned to vigorous-moderate exercise (jogging 150 minutes per week at 65%-80% of maximum heart rate for 6 months and brisk walking 150 minutes per week at 45%-55% of maximum heart rate for another 6 months), moderate exercise (brisk walking 150 minutes per week for 12 months), or no exercise. Primary outcome, change in intrahepatic triglyceride content measured by proton magnetic resonance spectroscopy at 6 and 12 months; secondary outcomes, changes in body weight, waist circumference, body fat, and metabolic risk factors. A total of 220 individuals (mean [SD] age, 53.9 [7.1] years; 149 woman [67.7%]) were randomly assigned to control (n = 74), moderate exercise (n = 73), and vigorous-moderate exercise (n = 73) groups. Of them, 211 (95.9%) completed the 6-month follow-up visit; 208 (94.5%) completed the 12-month follow-up visit. Intrahepatic triglyceride content was reduced by 5.0% (95% CI, -7.2% to 2.8%; P < .001) in the vigorous-moderate exercise group and 4.2% (95% CI, -6.3% to -2.0%; P < .001) in the moderate exercise group compared with the control group at the 6-month assessment. It was reduced by 3.9% (95% CI, -6.0% to -1.7%; P < .001) in the vigorous-moderate exercise group and 3.5% (95% CI, -5.6% to -1.3%; P = .002) in the moderate exercise group compared with the control group at the 12-month assessment. Changes in intrahepatic triglyceride content were not significantly different between vigorous-moderate and moderate exercise at the 6- or 12-month assessment. Body weight, waist circumference, and blood pressure were significantly reduced in the vigorous-moderate exercise group compared with the moderate exercise and control groups at the 6-month assessment and in the vigorous-moderate and moderate exercise groups compared with the control group at the 12-month assessment. In addition, body fat was significantly reduced in the vigorous-moderate exercise group compared with the moderate exercise and control groups at the 12-month assessment. After adjusting for weight loss, the net changes in intrahepatic triglyceride content were diminished and became nonsignificant between the exercise and control groups (except for the moderate exercise group at the 6-month assessment). Vigorous and moderate exercise were equally effective in reducing intrahepatic triglyceride content; the effect appeared to be largely mediated by weight loss. clinicaltrials.gov Identifier: NCT01418027.

  19. Impact of ischemic preconditioning on surgical treatment of brain tumors: a single-center, randomized, double-blind, controlled trial.

    PubMed

    Sales, Arthur H A; Barz, Melanie; Bette, Stefanie; Wiestler, Benedikt; Ryang, Yu-Mi; Meyer, Bernhard; Bretschneider, Martin; Ringel, Florian; Gempt, Jens

    2017-07-25

    Postoperative ischemia is a frequent phenomenon in patients with brain tumors and is associated with postoperative neurological deficits and impaired overall survival. Particularly in the field of cardiac and vascular surgery, the application of a brief ischemic stimulus not only in the target organ but also in remote tissues can prevent subsequent ischemic damage. We hypothesized that remote ischemic preconditioning (rIPC) in patients with brain tumors undergoing elective surgical resection reduces the incidence of postoperative ischemic tissue damage and its consequences. Sixty patients were randomly assigned to two groups, with 1:1 allocation, stratified by tumor type (glioma or metastasis) and previous treatment with radiotherapy. rIPC was induced by inflating a blood pressure cuff placed on the upper arm three times for 5 min at 200 mmHg in the treatment group after induction of anesthesia. Between the cycles, the blood pressure cuff was released to allow reperfusion. In the control group no preconditioning was performed. Early postoperative magnetic resonance images (within 72 h after surgery) were evaluated by a neuroradiologist blinded to randomization for the presence of ischemia and its volume. Fifty-eight of the 60 patients were assessed for occurrence of postoperative ischemia. Of these 58 patients, 44 had new postoperative ischemic lesions. The incidence of new postoperative ischemic lesions was significantly higher in the control group (27/31) than in the rIPC group (17/27) (p = 0.03). The median infarct volume was 0.36 cm 3 (interquartile range (IR): 0.0-2.35) in the rIPC group compared with 1.30 cm 3 (IR: 0.29-3.66) in the control group (p = 0.09). Application of rIPC was associated with reduced incidence of postoperative ischemic tissue damage in patients undergoing elective brain tumor surgery. This is the first study indicating a benefit of rIPC in brain tumor surgery. German Clinical Trials Register, DRKS00010409 . Retrospectively registered on 13 October 2016.

  20. Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats.

    PubMed

    Duan, Yun-Fei; An, Yong; Zhu, Feng; Jiang, Yong

    2017-08-15

    Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all P<0.05). Compared with the sham and RIPC groups, elevated miR-34a expressions were found in I/R and RIPC+I/R groups (P<0.05). MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups (all P<0.05). RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.

  1. The role of mitochondria in protection of the heart by preconditioning

    PubMed Central

    Halestrap, Andrew P.; Clarke, Samantha J.; Khaliulin, Igor

    2007-01-01

    A prolonged period of ischaemia followed by reperfusion irreversibly damages the heart. Such reperfusion injury (RI) involves opening of the mitochondrial permeability transition pore (MPTP) under the conditions of calcium overload and oxidative stress that accompany reperfusion. Protection from MPTP opening and hence RI can be mediated by ischaemic preconditioning (IP) where the prolonged ischaemic period is preceded by one or more brief (2–5 min) cycles of ischaemia and reperfusion. Following a brief overview of the molecular characterisation and regulation of the MPTP, the proposed mechanisms by which IP reduces pore opening are reviewed including the potential roles for reactive oxygen species (ROS), protein kinase cascades, and mitochondrial potassium channels. It is proposed that IP-mediated inhibition of MPTP opening at reperfusion does not involve direct phosphorylation of mitochondrial proteins, but rather reflects diminished oxidative stress during prolonged ischaemia and reperfusion. This causes less oxidation of critical thiol groups on the MPTP that are known to sensitise pore opening to calcium. The mechanisms by which ROS levels are decreased in the IP hearts during prolonged ischaemia and reperfusion are not known, but appear to require activation of protein kinase Cε, either by receptor-mediated events or through transient increases in ROS during the IP protocol. Other signalling pathways may show cross-talk with this primary mechanism, but we suggest that a role for mitochondrial potassium channels is unlikely. The evidence for their activity in isolated mitochondria and cardiac myocytes is reviewed and the lack of specificity of the pharmacological agents used to implicate them in IP is noted. Some K+ channel openers uncouple mitochondria and others inhibit respiratory chain complexes, and their ability to produce ROS and precondition hearts is mimicked by bona fide uncouplers and respiratory chain inhibitors. IP may also provide continuing protection during reperfusion by preventing a cascade of MPTP-induced ROS production followed by further MPTP opening. This phase of protection may involve survival kinase pathways such as Akt and glycogen synthase kinase 3 (GSK3) either increasing ROS removal or reducing mitochondrial ROS production. PMID:17631856

  2. Reduced-Calorie Dietary Weight Loss, Exercise, and Sex Hormones in Postmenopausal Women: Randomized Controlled Trial

    PubMed Central

    Campbell, Kristin L.; Foster-Schubert, Karen E.; Alfano, Catherine M.; Wang, Chia-Chi; Wang, Ching-Yun; Duggan, Catherine R.; Mason, Caitlin; Imayama, Ikuyo; Kong, Angela; Xiao, Liren; Bain, Carolyn E.; Blackburn, George L.; Stanczyk, Frank Z.; McTiernan, Anne

    2012-01-01

    Purpose Estrogens and androgens are elevated in obesity and associated with increased postmenopausal breast cancer risk, but the effect of weight loss on these biomarkers is unknown. We evaluated the individual and combined effects of a reduced-calorie weight loss diet and exercise on serum sex hormones in overweight and obese postmenopausal women. Patients and Methods We conducted a single-blind, 12-month, randomized controlled trial from 2005 to 2009. Participants (age 50 to 75 years; body mass index > 25.0 kg/m2, exercising < 100 minutes/wk) were randomly assigned using a computer-generated sequence to (1) reduced-calorie weight loss diet (“diet”; n = 118), (2) moderate- to vigorous-intensity aerobic exercise (“exercise”; n = 117), (3) combined reduced-calorie weight loss diet and moderate- to vigorous-intensity aerobic exercise (“diet + exercise”; n = 117), or (4) control (n = 87). Outcomes were estrone concentration (primary) and estradiol, free estradiol, total testosterone, free testosterone, androstenedione, and sex hormone–binding globulin (SHBG) concentrations (secondary). Results Mean age and body mass index were 58 years and 30.9 kg/m2, respectively. Compared with controls, estrone decreased 9.6% (P = .001) with diet, 5.5% (P = .01) with exercise, and 11.1% (P < .001) with diet + exercise. Estradiol decreased 16.2% (P < .001) with diet, 4.9% (P = .10) with exercise, and 20.3% (P < .001) with diet + exercise. SHBG increased 22.4% (P < .001) with diet and 25.8% (P < .001) with diet + exercise. Free estradiol decreased 21.4% (P < .001) with diet and 26.0% (P < .001) with diet + exercise. Free testosterone decreased 10.0% (P < .001) with diet and 15.6% (P < .001) with diet + exercise. Greater weight loss produced stronger effects on estrogens and SHBG. Conclusion Weight loss significantly lowered serum estrogens and free testosterone, supporting weight loss for risk reduction through lowering exposure to breast cancer biomarkers. PMID:22614972

  3. Ergogenic effects of beetroot juice supplementation during severe-intensity exercise in obese adolescents.

    PubMed

    Rasica, Letizia; Porcelli, Simone; Marzorati, Mauro; Salvadego, Desy; Vezzoli, Alessandra; Agosti, Fiorenza; De Col, Alessandra; Tringali, Gabriella; Jones, Andrew M; Sartorio, Alessandro; Grassi, Bruno

    2018-04-25

    Previous studies showed a higher O 2 cost of exercise, and therefore a reduced exercise tolerance, in obese patients during constant work rate (CWR) exercise compared to healthy subjects. Among the ergogenic effects of dietary nitrate (NO 3 -) supplementation in sedentary healthy subjects, a reduced O 2 cost and enhanced exercise tolerance have often been demonstrated. The aim of this study was to evaluate the effects of beetroot juice supplementation, rich in NO 3 -, on physiological variables associated with exercise tolerance in obese adolescents. In a double-blind, randomized, crossover study, ten obese adolescents (8F, 2M; age=16{plus minus}1 yr; BMI=35.2{plus minus}5.0 kg.m -2 ) were tested after 6 days of supplementation with beetroot juice (5 mmol NO 3 - per day) (BR) or placebo (PLA). Following each supplementation period, patients carried out two repetitions of 6-min moderate-intensity CWR exercise and one severe-intensity CWR exercise until exhaustion. Plasma NO 3 - concentration was significantly higher in BR vs. PLA (108{plus minus}37 vs. 15{plus minus}5 μM, P<0.0001). The O 2 cost of moderate-intensity exercise was not different in BR vs. PLA (13.3{plus minus}1.7 vs. 12.9{plus minus}1.1 mL.min -1 .W -1 , P=0.517). During severe-intensity exercise, signs of a reduced amplitude of the O 2 uptake slow component were observed in BR, in association with a significantly longer time to exhaustion (561{plus minus}198 s in BR vs. 457{plus minus}101 s in PLA, P=0.0143). In obese adolescents, short-term dietary NO 3 - supplementation is effective in improving exercise tolerance during severe-intensity exercise. This may prove to be useful in contrasting early fatigue and reduced physical activity in this at-risk population.

  4. Effects of bench step exercise intervention on work ability in terms of cardiovascular risk factors and oxidative stress: a randomized controlled study.

    PubMed

    Ohta, Masanori; Eguchi, Yasumasa; Inoue, Tomohiro; Honda, Toru; Morita, Yusaku; Konno, Yoshimasa; Yamato, Hiroshi; Kumashiro, Masaharu

    2015-01-01

    Work ability is partly determined by physical and mental fitness. Bench step exercise can be practiced anywhere at any time. The aim of this study was to determine the effects of a bench step exercise on work ability by examining cardiovascular risk factors and oxidative stress. Thirteen volunteers working in a warehousing industry comprised the bench step exercise group (n=7) and the control group (n=6). The participants in the step exercise group were encouraged to practice the step exercise at home for 16 weeks. The step exercise improved glucose metabolism and antioxidative capacity and increased work ability by reducing absences from work and improving the prognosis of work ability. The improvement in work ability was related to a reduction in oxidative stress. These results suggest that a bench step exercise may improve work ability by reducing cardiovascular risk factors and oxidative stress.

  5. 40 CFR 86.132-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... outdoors awaiting testing, to prevent unusual loading of the canisters. During this time care must be taken... idle again for 1 minute. (H) After the vehicle is turned off the last time, it may be tested for... preconditioned according to the following procedure. For vehicles with multiple canisters in a series...

  6. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  7. 40 CFR 86.132-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Vehicle preconditioning. 86.132-96... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  8. 40 CFR 86.132-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Vehicle preconditioning. 86.132-96... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  9. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  10. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  11. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  12. Revealing Preconditions for Trustful Collaboration in CSCL

    ERIC Educational Resources Information Center

    Gerdes, Anne

    2010-01-01

    This paper analyses preconditions for trust in virtual learning environments. The concept of trust is discussed with reference to cases reporting trust in cyberspace and through a philosophical clarification holding that trust in the form of self-surrender is a common characteristic of all human co-existence. In virtual learning environments,…

  13. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding

    2007-09-01

    In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.

  14. 33 CFR 183.220 - Preconditioning for tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.220 Preconditioning for tests. A boat must meet the... boat. (b) The boat must be loaded with a quantity of weight that, when submerged, is equal to the sum...

  15. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    PubMed

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. The effects of exercise on cocaine self-administration, food-maintained responding, and locomotor activity in female rats: importance of the temporal relationship between physical activity and initial drug exposure.

    PubMed

    Smith, Mark A; Witte, Maryam A

    2012-12-01

    Previous studies have reported that exercise decreases cocaine self-administration in rats with long-term access (8+ weeks) to activity wheels in the home cage. The purpose of this study was to (a) examine the importance of the temporal relationship between physical activity and initial drug exposure, (b) determine the effects of exercise on responding maintained by a nondrug reinforcer (i.e., food), and (c) investigate the effects of exercise on cocaine-induced increases in locomotor activity. To this end, female rats were obtained at weaning and divided into 4 groups: (a) EXE-SED rats were housed in exercise cages for 6 weeks and then transferred to sedentary cages after the first day of behavioral testing; (b) SED-EXE rats were housed in sedentary cages for 6 weeks and then transferred to exercise cages after the first day of behavioral testing; (c) SED-SED rats remained in sedentary cages for the duration of the study; and (d) EXE-EXE rats remained in exercise cages for the duration of the study. Relative to the sedentary group (SED-SED), exercise reduced cocaine self-administration in both groups with access to activity wheels after initial drug exposure (EXE-EXE, SED-EXE) but did not reduce cocaine self-administration in the group with access to activity wheels only before drug exposure (EXE-SED). Exercise also decreased the effects of cocaine on locomotor activity but did not reduce responding maintained by food. These data suggest that exercise may reduce cocaine use in drug-experienced individuals with no prior history of aerobic activity without decreasing other types of positively reinforced behaviors.

  17. Exercises reduce the progression rate of adolescent idiopathic scoliosis: results of a comprehensive systematic review of the literature.

    PubMed

    Negrini, S; Fusco, C; Minozzi, S; Atanasio, S; Zaina, F; Romano, M

    2008-01-01

    A previously published systematic review (Ped.Rehab.2003 - DARE 2004) documented the existence of the evidence of level 2a (Oxford EBM Centre) on the efficacy of specific exercises to reduce the progression of AIS (Adolescent Idiopathic Scoliosis). To confirm whether the indication for treatment with specific exercises for AIS has changed in recent years. Systematic review. A bibliographic search with strict inclusion criteria (patients treated exclusively with exercises, outcome Cobb degrees, all study designs) was performed on the main electronic databases and through extensive manual searching. We retrieved 19 studies, including one RCT and eight controlled studies; 12 studies were prospective. A methodological and clinical evaluation was performed. The 19 papers considered included 1654 treated patients and 688 controls. The highest-quality study (RCT) compared two groups of 40 patients, showing an improvement of curvature in all treated patients after six months. We found three papers on Scoliosis Intensive Rehabilitation (Schroth), five on extrinsic autocorrection-based methods (Schroth, side-shift), four on intrinsic autocorrection-based approaches (Lyon and SEAS) and five with no autocorrection (three asymmetric, two symmetric exercises). Apart from one (no autocorrection, symmetric exercises, very low methodological quality), all studies confirmed the efficacy of exercises in reducing the progression rate (mainly in early puberty) and/or improving the Cobb angles (around the end of growth). Exercises were also shown to be effective in reducing brace prescription. In five years, eight more papers have been published to the indexed literature coming from throughout the world (Asia, the US, Eastern Europe) and proving that interest in exercises is not exclusive to Western Europe. This systematic review confirms and strengthens the previous ones. The actual evidence on exercises for AIS is of level 1b.

  18. Effects of Different Exercise Modalities on Fatigue in Prostate Cancer Patients Undergoing Androgen Deprivation Therapy: A Year-long Randomised Controlled Trial.

    PubMed

    Taaffe, Dennis R; Newton, Robert U; Spry, Nigel; Joseph, David; Chambers, Suzanne K; Gardiner, Robert A; Wall, Brad A; Cormie, Prue; Bolam, Kate A; Galvão, Daniel A

    2017-08-01

    Physical exercise mitigates fatigue during androgen deprivation therapy (ADT); however, the effects of different exercise prescriptions are unknown. To determine the long-term effects of different exercise modes on fatigue in prostate cancer patients undergoing ADT. Between 2009 and 2012, 163 prostate cancer patients aged 43-90 y on ADT were randomised to exercise targeting the musculoskeletal system (impact loading+resistance training; ILRT; n=58), the cardiovascular and muscular systems (aerobic+resistance training; ART; n=54), or to usual care/delayed exercise (DEL; n=51) for 12 mo across university-affiliated exercise clinics in Australia. Supervised ILRT for 12 mo, supervised ART for 6 mo followed by a 6-mo home program, and DEL received a printed booklet on exercise information for 6 mo followed by 6-mo stationary cycling exercise. Fatigue was assessed using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 36 and vitality using the Short Form-36. Analysis of variance was used to compare outcomes for groups at 6 mo and 12 mo. Fatigue was reduced (p=0.005) in ILRT at 6 mo and 12 mo (∼5 points), and in ART (p=0.005) and DEL (p=0.022) at 12 mo. Similarly, vitality increased for all groups (p≤0.001) at 12 mo (∼4 points). Those with the highest levels of fatigue and lowest vitality improved the most with exercise (p trend <0.001). A limitation was inclusion of mostly well-functioning individuals. Different exercise modes have comparable effects on reducing fatigue and enhancing vitality during ADT. Patients with the highest levels of fatigue and lowest vitality had the greatest benefits. We compared the effects of different exercise modes on fatigue in men on androgen deprivation therapy. All exercise programs reduced fatigue and enhanced vitality. We conclude that undertaking some form of exercise will help reduce fatigue, especially in those who are the most fatigued. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review.

    PubMed

    Ulrich, Silvia; Schneider, Simon R; Bloch, Konrad E

    2017-12-01

    Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po 2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.

  20. Reducing workplace burnout: the relative benefits of cardiovascular and resistance exercise

    PubMed Central

    Bretland, Rachel Judith

    2015-01-01

    Objectives. The global burden of burnout cost is in excess of $300 billion annually. Locally, just under half of working Australians experience high levels of occupational burnout. Consequently, burnout interventions are paramount to organisational productivity. Exercise has the potential to provide a multilevel and cost effective burnout intervention. The current study aims to extend the literature by comparing cardiovascular with resistance exercise to assess their relative effectiveness against well-being, perceived stress, and burnout. Design. Participants were 49 (36 females and 13 males) previously inactive volunteers ranging in age from 19 to 68 that completed a four week exercise program of either cardiovascular, resistance, or no exercise (control). Randomised control trial design was employed. Method. Participants were measured against the Subjective Exercise Experience Scale, the Perceived Stress Scale, and the Maslach Burnout Inventory. Results. After four weeks of exercise participants had greater positive well-being and personal accomplishment, and concomitantly less psychological distress, perceived stress, and emotional exhaustion. Cardiovascular exercise was found to increase well-being and decrease psychological distress, perceived stress, and emotional exhaustion. Resistance training was noticeably effective in increasing well-being and personal accomplishment and to reduce perceived stress. The present findings revealed large effect sizes suggesting that exercise may be an effective treatment for burnout. However, given a small sample size further research needs to be conducted. Conclusion. Exercise has potential to be an effective burnout intervention. Different types of exercise may assist employees in different ways. Organisations wishing to proactively reduce burnout can do so by encouraging their employees to access regular exercise programs. PMID:25870778

  1. Reducing workplace burnout: the relative benefits of cardiovascular and resistance exercise.

    PubMed

    Bretland, Rachel Judith; Thorsteinsson, Einar Baldvin

    2015-01-01

    Objectives. The global burden of burnout cost is in excess of $300 billion annually. Locally, just under half of working Australians experience high levels of occupational burnout. Consequently, burnout interventions are paramount to organisational productivity. Exercise has the potential to provide a multilevel and cost effective burnout intervention. The current study aims to extend the literature by comparing cardiovascular with resistance exercise to assess their relative effectiveness against well-being, perceived stress, and burnout. Design. Participants were 49 (36 females and 13 males) previously inactive volunteers ranging in age from 19 to 68 that completed a four week exercise program of either cardiovascular, resistance, or no exercise (control). Randomised control trial design was employed. Method. Participants were measured against the Subjective Exercise Experience Scale, the Perceived Stress Scale, and the Maslach Burnout Inventory. Results. After four weeks of exercise participants had greater positive well-being and personal accomplishment, and concomitantly less psychological distress, perceived stress, and emotional exhaustion. Cardiovascular exercise was found to increase well-being and decrease psychological distress, perceived stress, and emotional exhaustion. Resistance training was noticeably effective in increasing well-being and personal accomplishment and to reduce perceived stress. The present findings revealed large effect sizes suggesting that exercise may be an effective treatment for burnout. However, given a small sample size further research needs to be conducted. Conclusion. Exercise has potential to be an effective burnout intervention. Different types of exercise may assist employees in different ways. Organisations wishing to proactively reduce burnout can do so by encouraging their employees to access regular exercise programs.

  2. Incomplete Gröbner basis as a preconditioner for polynomial systems

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Tao, Yu-Hui; Bai, Feng-Shan

    2009-04-01

    Precondition plays a critical role in the numerical methods for large and sparse linear systems. It is also true for nonlinear algebraic systems. In this paper incomplete Gröbner basis (IGB) is proposed as a preconditioner of homotopy methods for polynomial systems of equations, which transforms a deficient system into a system with the same finite solutions, but smaller degree. The reduced system can thus be solved faster. Numerical results show the efficiency of the preconditioner.

  3. Effects of exercise training on the cardiovascular system: pharmacological approaches.

    PubMed

    Zanesco, Angelina; Antunes, Edson

    2007-06-01

    Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system.

  4. Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKα2 in the regulation of exercise capacity in vivo.

    PubMed

    Lee-Young, R S; Ayala, J E; Fueger, P T; Mayes, W H; Kang, L; Wasserman, D H

    2011-07-01

    Skeletal muscle AMP-activated protein kinase (AMPK)α2 activity is impaired in obese, insulin-resistant individuals during exercise. We determined whether this defect contributes to the metabolic dysregulation and reduced exercise capacity observed in the obese state. C57BL/6J wild-type (WT) mice and/or mice expressing a kinase dead AMPKα2 subunit in skeletal muscle (α2-KD) were fed chow or high-fat (HF) diets from 3 to 16 weeks of age. At 15 weeks, mice performed an exercise stress test to determine exercise capacity. In WT mice, muscle glucose uptake and skeletal muscle AMPKα2 activity was assessed in chronically catheterized mice (carotid artery/jugular vein) at 16 weeks. In a separate study, HF-fed WT and α2-KD mice performed 5 weeks of exercise training (from 15 to 20 weeks of age) to test whether AMPKα2 is necessary to restore work tolerance. HF-fed WT mice had reduced exercise tolerance during an exercise stress test, and an attenuation in muscle glucose uptake and AMPKα2 activity during a single bout of exercise (P<0.05 versus chow). In chow-fed α2-KD mice, running speed and time were impaired ∼45 and ∼55%, respectively (P<0.05 versus WT chow); HF feeding further reduced running time ∼25% (P<0.05 versus α2-KD chow). In response to 5 weeks of exercise training, HF-fed WT and α2-KD mice increased maximum running speed ∼35% (P<0.05 versus pre-training) and maintained body weight at pre-training levels, whereas body weight increased in untrained HF WT and α2-KD mice. Exercise training restored running speed to levels seen in healthy, chow-fed mice. HF feeding impairs AMPKα2 activity in skeletal muscle during exercise in vivo. Although this defect directly contributes to reduced exercise capacity, findings in HF-fed α2-KD mice show that AMPKα2-independent mechanisms are also involved. Importantly, α2-KD mice on a HF-fed diet adapt to regular exercise by increasing exercise tolerance, demonstrating that this adaptation is independent of skeletal muscle AMPKα2 activity.

  5. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke.

    PubMed

    Alfieri, Alessio; Srivastava, Salil; Siow, Richard C M; Cash, Diana; Modo, Michel; Duchen, Michael R; Fraser, Paul A; Williams, Steven C R; Mann, Giovanni E

    2013-12-01

    Disruption of the blood-brain barrier (BBB) and cerebral edema are the major pathogenic mechanisms leading to neurological dysfunction and death after ischemic stroke. The brain protects itself against infarction via activation of endogenous antioxidant defense mechanisms, and we here report the first evidence that sulforaphane-mediated preactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1) in the cerebral vasculature protects the brain against stroke. To induce ischemic stroke, Sprague-Dawley rats were subjected to 70 min middle cerebral artery occlusion (MCAo) followed by 4, 24, or 72 h reperfusion. Nrf2 and HO-1 protein expression was upregulated in cerebral microvessels of peri-infarct regions after 4-72 h, with HO-1 preferentially associated with perivascular astrocytes rather than the cerebrovascular endothelium. In naïve rats, treatment with sulforaphane increased Nrf2 expression in cerebral microvessels after 24h. Upregulation of Nrf2 by sulforaphane treatment prior to transient MCAo (1h) was associated with increased HO-1 expression in perivascular astrocytes in peri-infarct regions and cerebral endothelium in the infarct core. BBB disruption, lesion progression, as analyzed by MRI, and neurological deficits were reduced by sulforaphane pretreatment. As sulforaphane pretreatment led to a moderate increase in peroxynitrite generation, we suggest that hormetic preconditioning underlies sulforaphane-mediated protection against stroke. In conclusion, we propose that pharmacological or dietary interventions aimed to precondition the brain via activation of the Nrf2 defense pathway in the cerebral microvasculature provide a novel therapeutic approach for preventing BBB breakdown and neurological dysfunction in stroke. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A.

    PubMed

    Erzinger, Melanie M; Bovet, Cédric; Hecht, Katrin M; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J

    2016-01-01

    The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues.

  7. Considerations in detecting CDC select agents under field conditions

    NASA Astrophysics Data System (ADS)

    Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul

    2008-04-01

    Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.

  8. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark.

    PubMed

    Nilsson, Göran E; Renshaw, Gillian M C

    2004-08-01

    Especially in aquatic habitats, hypoxia can be an important evolutionary driving force resulting in both convergent and divergent physiological strategies for hypoxic survival. Examining adaptations to anoxic/hypoxic survival in hypoxia-tolerant animals may offer fresh ideas for the treatment of hypoxia-related diseases. Here, we summarise our present knowledge of two fishes that have evolved to survive hypoxia under very different circumstances. The crucian carp (Carassius carassius) is of particular interest because of its extreme anoxia tolerance. During the long North European winter, it survives for months in completely oxygen-deprived freshwater habitats. The crucian carp also tolerates a few days of anoxia at room temperature and, unlike anoxia-tolerant freshwater turtles, it is still physically active in anoxia. Moreover, the crucian carp does not appear to reduce neuronal ion permeability during anoxia and may primarily rely on more subtle neuromodulatory mechanisms for anoxic metabolic depression. The epaulette shark (Hemiscyllium ocellatum) is a tropical marine vertebrate. It lives on shallow reef platforms that repeatedly become cut off from the ocean during periods of low tides. During nocturnal low tides, the water [O(2)] can fall by 80% due to respiration of the coral and associated organisms. Since the tides become lower and lower over a period of a few days, the hypoxic exposure during subsequent low tides will become progressively longer and more severe. Thus, this shark is under a natural hypoxic preconditioning regimen. Interestingly, hypoxic preconditioning lowers its metabolic rate and its critical P(O(2)). Moreover, repeated anoxia appears to stimulate metabolic depression in an adenosine-dependent way.

  9. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Resistance Exercise Reduces Seizure Occurrence, Attenuates Memory Deficits and Restores BDNF Signaling in Rats with Chronic Epilepsy.

    PubMed

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Lopim, Glauber Menezes; Vannucci Campos, Diego; Fernandes, Jansen; Cabral, Francisco Romero; Arida, Ricardo Mario

    2017-04-01

    Epilepsy is a disease characterized by recurrent, unprovoked seizures. Cognitive impairment is an important comorbidity of chronic epilepsy. Human and animal model studies of epilepsy have shown that aerobic exercise induces beneficial structural and functional changes and reduces the number of seizures. However, little is yet understood about the effects of resistance exercise on epilepsy. We evaluated the effects of a resistance exercise program on the number of seizures, long-term memory and expression/activation of signaling proteins in rats with epilepsy. The number of seizures was quantified by video-monitoring and long-term memory was assessed by an inhibitory avoidance test. Using western blotting, multiplex and enzyme-linked immunosorbent assays, we determined the effects of a 4-week resistance exercise program on IGF-1 and BDNF levels and ERK, CREB, mTOR activation in the hippocampus of rats with epilepsy. Rats with epilepsy submitted to resistance exercise showed a decrease in the number of seizures compared to non-exercised epileptic rats. Memory deficits were attenuated by resistance exercise. Rats with epilepsy showed an increase in IGF-1 levels which were restored to control levels by resistance exercise. BDNF levels and ERK and mTOR activation were decreased in rats with epilepsy and resistance exercise restored these to control levels. In conclusion, resistance exercise reduced seizure occurrence and mitigated memory deficits in rats with epilepsy. These resistance exercise-induced beneficial effects can be related to changes in IGF-1 and BDNF levels and its signaling protein activation. Our findings indicate that the resistance exercise might be included as complementary therapeutic strategy for epilepsy treatment.

  11. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat.

    PubMed

    Minett, G M; Duffield, R; Billaut, F; Cannon, J; Portus, M R; Marino, F E

    2014-08-01

    This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Impact of Exercise on Suicide Risk: Examining Pathways through Depression, PTSD, and Sleep in an Inpatient Sample of Veterans

    ERIC Educational Resources Information Center

    Davidson, Collin L.; Babson, Kimberly A.; Bonn-Miller, Marcel O.; Souter, Tasha; Vannoy, Steven

    2013-01-01

    Suicide has a large public health impact. Although effective interventions exist, the many people at risk for suicide cannot access these interventions. Exercise interventions hold promise in terms of reducing suicide because of their ease of implementation. While exercise reduces depression, and reductions in depressive symptoms are linked to…

  13. Do diabetes and obesity affect the metabolic response to exercise?

    PubMed

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  14. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.

    PubMed

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2018-06-11

    We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.

  15. Combined aspirin and cilostazol treatment is associated with reduced platelet aggregation and prevention of exercise-induced platelet activation.

    PubMed

    Cleanthis, M; Bhattacharya, V; Smout, J; Ashour, H; Stansby, G

    2009-05-01

    Cilostazol has proven efficacy in increasing walking distance in claudicants, but it has not been demonstrated to be more effective than placebo in secondary cardiovascular prevention. The direct effect of exercise on platelet function remains less well defined. We have investigated the effect of combination treatment with aspirin and cilostazol on platelet activity in claudicants subjected to repeated treadmill exercise. Nineteen claudicants completed a double-blind, randomised, controlled, cross-over trial. Each subject received a 2-week course of aspirin (75mg) and placebo and aspirin and cilostazol (100mg twice daily). Following each 2-week treatment period, patients participated in a standardised treadmill test (3.2kmh(-1), 10 degrees incline) walking to maximal claudication distance. The exercise was repeated thrice in total, and blood was sampled before and after exercise. Platelet activation was measured using free platelet counting aggregation, flow cytometry for surface markers of platelet activation and soluble P-selectin assay. Compared to aspirin and placebo, combination treatment with aspirin and cilostazol was associated with reduced arachidonic-acid-induced platelet aggregation (p<0.01, Wilcoxon signed-rank test). Aspirin and placebo treatment were associated with elevated P-selectin expression, platelet-monocyte aggregation and reduced CD42b expression (p<0.05, Wilcoxon signed-rank test) post-exercise. No difference was seen in spontaneous platelet aggregation whilst soluble P-selectin was reduced post-exercise with combination treatment with aspirin and cilostazol (p<0.05, Wilcoxon signed-rank test). Combination treatment with aspirin and cilostazol results in suppression of platelet activation and reduces the effect of exercise on platelets. The benefit seen may be a result of cilostazol enhancing the inhibitory effect of aspirin on the cyclo-oxygenase pathway.

  16. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  17. Preserving Symmetry in Preconditioned Krylov Subspace Methods

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Chow, E.; Saad, Y.; Yeung, M. C.

    1996-01-01

    We consider the problem of solving a linear system Ax = b when A is nearly symmetric and when the system is preconditioned by a symmetric positive definite matrix M. In the symmetric case, one can recover symmetry by using M-inner products in the conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like CG, the new algorithms are mathematically equivalent to split preconditioning, but do not require M to be factored. Better robustness in a specific sense can also be observed. When combined with truncated versions of iterative methods, tests show that this is more effective than the common practice of forfeiting near-symmetry altogether.

  18. Fractal-like kinetics, a possible link between preconditioning and sepsis immunodepression. On the chemical basis of innate immunity.

    PubMed

    Vasilescu, C; Olteanu, M; Flondor, P

    2012-01-01

    In a recent paper the authors hypothesized that the so called fractal-like enzyme kinetics of intracellular reactions may explain the preconditioning effect in biology (Vasilescu C, Olteanu M, Flondor P, Revue Roumaine de Chimie. 2011; 56(7): 751-7). Inside cells the reaction kinetics is very well described by fractal-like kinetics. In the present work some clinical implications of this model are analyzed. Endotoxin tolerance is a particular case of preconditioning and shows similarities with the immunodepression seen in some sepsis patients. This idea offers a theoretical support for modulation of the enzymatic activity of the cell by changing the fractal dimension of the cytoskeleton.

  19. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    PubMed Central

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (P<0.01) lipidation of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) (∼50%) and the LC3‐II/LC3‐I ratio (∼60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3‐II/LC3‐I ratio (∼80%) in muscle of the exercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3‐I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. PMID:26614120

  20. Exercise: When to Check with Your Doctor First

    MedlinePlus

    ... check with your doctor before you start to exercise. By Mayo Clinic Staff Regular exercise can help you control your weight, reduce your ... talk to your doctor before starting a new exercise routine. Although moderate physical activity such as brisk ...

  1. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  2. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  3. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  4. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  5. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  6. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  7. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  8. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Harada, Kyouji; Morimoto, Munenori; Sakakihara, Michio

    2004-03-01

    Several preconditioned iterative methods reported in the literature have been used for improving the convergence rate of the Gauss-Seidel method. In this article, on the basis of nonnegative matrix, comparisons between some splittings for such preconditioned matrices are derived. Simple numerical examples are also given.

  9. Attributes and Preconditions of Collaboration between and among Schools, Institutions of Higher Education, and State Education Agencies. Instructional Leadership and School Improvement.

    ERIC Educational Resources Information Center

    Reed, Patricia; Cejda, Brent

    Recognizing that successful collaboration among schools, institutes of higher education, and state education agencies to is an important factor in the professional development of education personnel, this document examines existing knowledge of interorganizational collaboration and identifies organizational preconditions conducive to the…

  10. Xenon Preconditioning Protects against Renal Ischemic-Reperfusion Injury via HIF-1α Activation

    PubMed Central

    Ma, Daqing; Lim, Ta; Xu, Jing; Tang, Haidy; Wan, Yanjie; Zhao, Hailin; Hossain, Mahmuda; Maxwell, Patrick H.; Maze, Mervyn

    2009-01-01

    The mortality rate from acute kidney injury after major cardiovascular operations can be as high as 60%, and no therapies have been proved to prevent acute kidney injury in this setting. Here, we show that preconditioning with the anesthetic gas xenon activates hypoxia-inducible factor 1α (HIF-1α) and its downstream effectors erythropoietin and vascular endothelial growth factor in a time-dependent manner in the kidneys of adult mice. Xenon increased the efficiency of HIF-1α translation via modulation of the mammalian target of rapamycin pathway. In a model of renal ischemia-reperfusion injury, xenon provided morphologic and functional renoprotection; hydrodynamic injection of HIF-1α small interfering RNA demonstrated that this protection is HIF-1α dependent. These results suggest that xenon preconditioning is a natural inducer of HIF-1α and that administration of xenon before renal ischemia can prevent acute renal failure. If these data are confirmed in the clinical setting, then preconditioning with xenon may be beneficial before procedures that temporarily interrupt renal perfusion. PMID:19144758

  11. Pharmacological preconditioning by milrinone: memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice.

    PubMed

    Saklani, Reetu; Jaggi, Amteshwar; Singh, Nirmal

    2010-07-01

    We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 microg/kg & 100 microg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.

  12. Remote ischaemic preconditioning and prevention of cerebral injury.

    PubMed

    Rehni, Ashish K; Shri, Richa; Singh, Manjeet

    2007-03-01

    Bilateral carotid artery occlusion of 10 min followed by reperfusion for 24 hr was employed in present study to produce ischaemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Short-term memory was evaluated using elevated plus maze. Inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired short-term memory, motor co-ordination and lateral push response. A preceding episode of mesenteric artery occlusion for 15 min and reperfusion of 15 min (remote mesenteric ischaemic preconditioning) prevented markedly ischaemia-reperfusion-induced cerebral injury measured in terms of infarct size, loss of short-term memory, motor coordination and lateral push response. Glibenclamide (5 mg/kg, iv) a KATP channel blocker and caffeine (7 mg/kg, iv) an adenosine receptor blocker attenuated the neuroprotective effect of remote mesenteric ischaemic preconditioning. It may be concluded that neuroprotective effect of remote mesenteric ischaemic preconditioning may be due to activation of adenosine receptors and consequent activation of KATP channels in mice.

  13. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  14. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    PubMed

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  15. The Effectiveness of Neck Stretching Exercises Following Total Thyroidectomy on Reducing Neck Pain and Disability: A Randomized Controlled Trial.

    PubMed

    Ayhan, Hatice; Tastan, Sevinc; Iyigün, Emine; Oztürk, Erkan; Yildiz, Ramazan; Görgülü, Semih

    2016-06-01

    Although there are a limited number of studies showing effects of neck stretching exercises following a thyroidectomy in reducing neck discomfort symptoms, no study has specifically dealt with and examined the effect of neck stretching exercises on neck pain and disability. To analyze the effect of neck stretching exercises, following a total thyroidectomy, on reducing neck pain and disability. A randomized controlled trial was conducted. The participants were randomly assigned either to the stretching exercise group (n = 40) or to the control group (n = 40). The stretching exercise group learned the neck stretching exercises immediately after total thyroidectomy. The effects of the stretching exercises on the participants' neck pain and disability, neck sensitivity, pain with neck movements as well as on wound healing, were evaluated at the end of the first week and at 1 month following surgery. When comparing neck pain and disability scale (NPDS) scores, neck sensitivity and pain with neck movement before thyroidectomy, after 1 week and after 1-month time-points, it was found that patients experienced significantly less pain and disability in the stretching exercise group than the control group (p < .001). At the end of the first week, the NPDS scores (mean [SD] = 8.82 [12.23] vs. 30.28 [12.09]), neck sensitivity scores (median [IR] = 0 [.75] vs. 2.00 [4.0]) and pain levels with neck movements (median [IR] = 0 [2.0] vs. 3.5 [5.75]) of the stretching exercise group were significantly lower than those of the control group. However, there was no significant difference between the groups with regard to the scores at the 1-month evaluation (p > .05). Neck stretching exercises done immediately after a total thyroidectomy reduce short-term neck pain and disability symptoms. © 2016 Sigma Theta Tau International.

  16. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man.

    PubMed

    van Someren, Ken A; Edwards, Adam J; Howatson, Glyn

    2005-08-01

    This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

  17. Exercise limits the production of endothelin in the coronary vasculature

    PubMed Central

    de Beer, Vincent J.; Bender, Shawn B.; Taverne, Yannick J.; Gao, Fen; Duncker, Dirk J.; Laughlin, M. Harold

    2011-01-01

    We previously demonstrated that endothelin (ET)-mediated coronary vasoconstriction wanes with increasing exercise intensity via a nitric oxide- and prostacyclin-dependent mechanism (Ref. 23). Therefore, we hypothesized that the waning of ET coronary vasoconstriction during exercise is the result of decreased production of ET and/or decreased ET receptor sensitivity. We investigated coronary ET receptor sensitivity using intravenous infusion of ET and coronary ET production using intravenous infusion of the ET precursor Big ET, at rest and during continuous treadmill exercise at 3 km/h in 16 chronically instrumented swine. In the systemic vasculature, Big ET and ET induced similar changes in hemodynamic parameters at rest and during continuous exercise at 3 km/h, indicating that exercise does not alter ET production or receptor sensitivity in the systemic vasculature. In the coronary vasculature, infusion of ET resulted in similar dose-dependent decreases in coronary blood flow and coronary venous oxygen tension and saturation at rest and during exercise. In contrast, administration of Big ET resulted in dose-dependent decreases in coronary blood flow, as well as coronary venous oxygen tension and saturation at rest. These effects of Big ET were significantly reduced during exercise. Altogether, our data indicate that continuous exercise at 3 km/h attenuates ET-mediated coronary vasoconstriction through reduced production of ET from Big ET rather than through reduced ET sensitivity of the coronary vasculature. The decreased ET production during exercise likely contributes to metabolic coronary vasodilation. PMID:21317308

  18. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  19. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  20. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

Top