Sample records for exercise pressor reflex

  1. Effects of exercise pressor reflex activation on carotid baroreflex function during exercise in humans

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Stromstad, M.; Ide, K.; Smith, S. A.; Querry, R. G.; Raven, P. B.; Secher, N. H.

    2001-01-01

    1. This investigation was designed to determine the contribution of the exercise pressor reflex to the resetting of the carotid baroreflex during exercise. 2. Ten subjects performed 3.5 min of static one-legged exercise (20 % maximal voluntary contraction) and 7 min dynamic cycling (20 % maximal oxygen uptake) under two conditions: control (no intervention) and with the application of medical anti-shock (MAS) trousers inflated to 100 mmHg (to activate the exercise pressor reflex). Carotid baroreflex function was determined at rest and during exercise using a rapid neck pressure/neck suction technique. 3. During exercise, the application of MAS trousers (MAS condition) increased mean arterial pressure (MAP), plasma noradrenaline concentration (dynamic exercise only) and perceived exertion (dynamic exercise only) when compared to control (P < 0.05). No effect of the MAS condition was evident at rest. The MAS condition had no effect on heart rate (HR), plasma lactate and adrenaline concentrations or oxygen uptake at rest and during exercise. The carotid baroreflex stimulus-response curve was reset upward on the response arm and rightward to a higher operating pressure by control exercise without alterations in gain. Activation of the exercise pressor reflex by MAS trousers further reset carotid baroreflex control of MAP, as indicated by the upward and rightward relocation of the curve. However, carotid baroreflex control of HR was only shifted rightward to higher operating pressures by MAS trousers. The sensitivity of the carotid baroreflex was unaltered by exercise pressor reflex activation. 4. These findings suggest that during dynamic and static exercise the exercise pressor reflex is capable of actively resetting carotid baroreflex control of mean arterial pressure; however, it would appear only to modulate carotid baroreflex control of heart rate.

  2. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats

    PubMed Central

    Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.

    2015-01-01

    Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445

  3. The role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrate rats

    PubMed Central

    Stone, Audrey J.; Copp, Steven W.; Kaufman, Marc P.

    2014-01-01

    Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide receptor (EP) 2 or EP4 receptors attenuated the exercise pressor reflex in decerebrate rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100ug in 10ul), a COX-2 specific inhibitor Celecoxib (100μg in 10μl), an EP2 antagonist PF-04418948 (10μg in 10μl), and an EP4 antagonist L-161,982 (4μg in 10μl) effectively attenuated the pressor responses to intrathecal injections of Arachidonic Acid (100μg in 10μl), EP2 agonist Butaprost (4ng in 10 μl), and EP4 agonist TCS 2510 (6.25μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hindlimb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23±5 mmHg, after Ketorolac 14±5 mmHg; p<0.05) whereas Celecoxib had no effect. We also found that 8μg of L-161,982, but not 4 μg of L-161,982, significantly attenuated the pressor response to static contraction (before L-161,982: 21±4 mmHg, after L-161,982 12±3 mmHg; p<0.05), whereas PF-04418948 (10μg) had no effect. We conclude that spinal COX-1, but not COX-2, plays a role in evoking the exercise pressor reflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. PMID:25003710

  4. Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.

    PubMed

    Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P

    2002-04-01

    Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.

  5. Proteinase-Activated Receptor-2 Sensitivity of Amplified TRPA1 Activity in Skeletal Muscle Afferent Nerves and Exercise Pressor Reflex in Rats with Femoral Artery Occlusion

    PubMed Central

    Xing, Jihong; Li, Jianhua

    2017-01-01

    Background/Aims Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease. PMID:29131007

  6. Role of central command in carotid baroreflex resetting in humans during static exercise

    NASA Technical Reports Server (NTRS)

    Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.

    2002-01-01

    The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.

  7. Abnormal Neurocirculatory Control During Exercise in Humans with Chronic Renal Failure

    PubMed Central

    Park, Jeanie; Middlekauff, Holly R.

    2014-01-01

    Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies. PMID:25458430

  8. Baroreflex regulation of blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.

  9. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  10. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement

    PubMed Central

    Smith, Scott A.; Downey, Ryan M.; Williamson, Jon W.; Mizuno, Masaki

    2014-01-01

    Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy. PMID:24600397

  11. Interstitial pH, K(+), lactate, and phosphate determined with MSNA during exercise in humans

    NASA Technical Reports Server (NTRS)

    MacLean, D. A.; Imadojemu, V. A.; Sinoway, L. I.

    2000-01-01

    The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.

  12. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    PubMed

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed in neurons pretreated with pertussis toxin, an uncoupler of G proteins and MOR. The endomorphin-mediated potentiation was a result of a leftward shift of the activation curve to higher pH values and a slight shift of the inactivation curve to lower pH values. Intra-arterial co-administration of lactic acid and E-2 led to a significantly greater pressor reflex than lactic acid alone in the presence of naloxone. Finally, E-2 effects were inhibited by pretreatment with the ASIC3 blocker APETx2 and enhanced by pretreatment with the ASIC1a blocker psalmotoxin-1. These findings have uncovered a novel role of endomorphins by which the opioids can enhance the lactic acid-mediated reflex increase in arterial pressure that is MOR stimulation-independent and APETx2-sensitive. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. Blood flow restriction training and the exercise pressor reflex: a call for concern.

    PubMed

    Spranger, Marty D; Krishnan, Abhinav C; Levy, Phillip D; O'Leary, Donal S; Smith, Scott A

    2015-11-01

    Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional. Copyright © 2015 the American Physiological Society.

  14. Brief submaximal isometric exercise improves cold pressor pain tolerance.

    PubMed

    Foxen-Craft, Emily; Dahlquist, Lynnda M

    2017-10-01

    Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.

  15. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats.

    PubMed

    Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen

    2016-07-01

    An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.

  16. The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex

    PubMed Central

    Ginzel, K. H.

    1958-01-01

    In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain. LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex. Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection. PMID:13584725

  17. The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex.

    PubMed

    GINZEL, K H

    1958-09-01

    In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain.LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex.Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection.

  18. Cardiovascular responses and neurotransmitter changes during static muscle contraction following blockade of inducible nitric oxide synthase (iNOS) within the ventrolateral medulla.

    PubMed

    Ally, Ahmmed; Phattanarudee, Siripan; Kabadi, Shruti; Patel, Maitreyee; Maher, Timothy J

    2006-05-23

    The enzyme nitric oxide synthase (NOS) which is necessary for the production of nitric oxide from L-arginine exists in three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Our previous studies have demonstrated the roles of nNOS and eNOS within the rostral (RVLM) and caudal ventrolateral medulla (CVLM) in modulating cardiovascular responses during static skeletal muscle contraction via altering localized glutamate and GABA levels (Brain Res. 977 (2003) 80-89; Neuroscience Res. 52 (2005) 21-30). In this study, we investigated the role of iNOS within the RVLM and CVLM on cardiovascular responses and glutamatergic/GABAergic neurotransmission during the exercise pressor reflex. Bilateral microdialysis of a selective iNOS antagonist, aminoguanidine (AGN; 1.0 microM), for 60 min into the RVLM attenuated increases in mean arterial pressure (MAP), heart rate (HR), and extracellular glutamate levels during a static muscle contraction. Levels of GABA within the RVLM were increased. After 120 min of discontinuation of the drug, MAP and HR responses and glutamate/GABA concentrations recovered to baseline values during a subsequent muscle contraction. In contrast, bilateral application of AGN (1.0 microM) into CVLM potentiated cardiovascular responses and glutamate concentration while attenuating levels of GABA during a static muscle contraction. All values recovered after 120 min of discontinuation of the drug. These results demonstrate that iNOS within the ventrolateral medulla plays an important role in modulating cardiovascular responses and glutamatergic/GABAergic neurotransmission that regulates the exercise pressor reflex.

  19. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.

    2001-01-01

    This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.

  20. Pharmacologic evaluation of pressor and visceromotor reflex responses to bladder distension.

    PubMed

    Su, Xin; Riedel, Erin S; Leon, Lisa A; Laping, Nicholas J

    2008-01-01

    Several mechanisms that are involved in acute rat bladder nociception were examined. The nociceptive response was measured by analyzing both cardiovascular and visceromotor reflex responses to urinary bladder distension. The contributions of micro-opioid receptor, kappa-opioid receptor, sodium channels, muscarinic receptors, and cyclooxygenase, were explored with morphine, U50,488, mexiletine, oxybutynin, and naproxen, respectively. Female Sprague-Dawley rats were acutely instrumented with jugular venous, carotid arterial, and bladder cannulas. Needle electrodes were placed directly into the abdominal musculature to measure myoelectrical activity subsequent to repeated phasic urinary bladder distension (60 mmHg for 20 sec in 3 min intervals) under 1% isoflurane. Drugs were administered by i.v. bolus injection 2 min prior to distension. The analgesics morphine (ID50 0.69 mg/kg), U50,488 (1.34 mg/kg), and mexiletine (2.60 mg/kg) significantly inhibited the visceromotor reflex response to noxious urinary bladder distension. Oxybutynin also attenuated reflex responses to noxious urinary bladder distension to 41% of the maximal pressor response and 32% of the control visceromotor reflex response (3.01 and 5.05 mg/kg), respectively, indicating a role of muscarinic receptors in bladder nociception. Naproxen did not attenuate the pressor response, but moderately inhibited visceromotor reflex to 45% of control at 30 mg/kg (P < 0.05). Current results using the rat urinary bladder distension model are consistent with previous research demonstrating a role of the analgesics (morphine, U50,488, and mexiletine) in the inhibition of visceral nociceptive transmission. The utility of the reflex responses to urinary bladder distension may provide a method useful to examine mechanisms which target the bladder sensory pathway. (c) 2007 Wiley-Liss, Inc.

  1. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans.

    PubMed

    Vianna, Lauro C; Fernandes, Igor A; Barbosa, Thales C; Teixeira, André L; Claudio Lucas da Nóbrega, Antonio

    2018-04-26

    The exercise pressor reflex (EPR) is comprised from group III and IV skeletal muscle afferents and is one of the principal mediators of the cardiovascular response to exercise. In animals, capsaicin-based analgesic balm (CAP) attenuates the pressor response to muscle contraction, indicating the transient receptor potential vanilloid 1 (TRPv1) receptor (localized on the group IV afferent neuron) as an important mediator of the EPR. However, whether these findings can be extrapolated to humans remain unknown. Here, we tested the hypothesis that CAP attenuates blood pressure (BP) and muscle sympathetic nerve activity (MSNA) responses to isolated muscle metaboreflex activation in healthy men. MSNA (microneurography) and beat-to-beat heart hate (HR - electrography) and BP (finger photoplethysmography) were continuously measured in eight healthy males (23{plus minus}5 y) at rest, during isometric handgrip exercise and during post-exercise ischemia (PEI). Trials were performed before, 30 and 60 min after the topical application of CAP (0.1%, CAPZASIN-HP) over the volar forearm of the subject's exercising arm. Isometric exercise evoked increases in mean BP (∆32{plus minus}4 mmHg) and MSNA (∆26{plus minus}5 bursts/min; ∆19{plus minus}5 bursts/100 heart beats). The increases in BP during handgrip were not affected by CAP, but the increase in MSNA was lower after 60-min of CAP application. During PEI, the increases in BP and MSNA were all significantly less than those before CAP (all P<0.05). In conclusion, CAP attenuated BP and sympathetic responses evoked by PEI in humans. These data provide evidence that TRPv1 receptors potentially contribute to the EPR in humans, via its metabolic component.

  2. Cardiovascular control during whole body exercise

    PubMed Central

    Secher, Niels H.

    2016-01-01

    It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min−1·100 g−1), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure. PMID:27311439

  3. Cardiovascular control during whole body exercise.

    PubMed

    Volianitis, Stefanos; Secher, Niels H

    2016-08-01

    It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure. Copyright © 2016 the American Physiological Society.

  4. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    PubMed

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  5. Evaluation of pressor and visceromotor reflex responses to bladder distension in urethane anesthetized rats.

    PubMed

    Blatt, Lauren K; Lashinger, Erin S R; Laping, Nicholas J; Su, Xin

    2009-01-01

    We tested cardiovascular and visceromotor reflex (VMR) responses to urinary bladder distension (UBD) in urethane anesthetized rats to see if it can replicate the response pattern and the inhibition of bladder nociceptive transmission by analgesics seen in isoflurane anesthetized animals. Female Sprague-Dawley rats under 3% isoflurane anesthesia were acutely instrumented with jugular venous, carotid arterial, and bladder cannulas for drug administration, blood pressure (BP) measurement, and bladder distension, respectively. Needle electrodes were placed directly into the abdominal musculature to measure myoelectrical activity subsequent to phasic UBD (30 sec in 3 min intervals). A cardiovascular response (pressor) and a VMR response (a contraction of abdominal and hind limb musculature) to UBD were evaluated in urethane (1.2 g/kg, i.v.) or isoflurane (1%) anesthetized rats. Pressor and VMR responses to noxious UBD (60 mmHg) were generated under both anesthesics. The thresholds of stimulus response functions for both pressor and VMR responses were not affected by either anesthesics. However, the magnitude of the maximal pressor response was significantly reduced in urethane anesthesia. The analgesics, morphine, and mexiletine, significantly inhibited the VMR response to noxious UBD under both anesthetics, but the intensities of the inhibition from both analgesics under urethane anesthesia were much lower than under isoflurane anesthesia (ID50: 2.07 mg/kg vs. 0.88 mg/kg for morphine, >10 mg/kg vs. 0.47 mg/kg for mexiletine). The rat urinary bladder distension model in urethane anesthetized rats demonstrates a blunted maximal pressor response and a reduced inhibition of visceral nociceptive transmission by analgesics. Neurourol. Urodynam. 28:442-446, 2009. (c) 2008 Wiley-Liss, Inc.

  6. The carotid baroreflex modifies the pressor threshold of the muscle metaboreflex in humans.

    PubMed

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Watanabe, Kazuhito; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-09-01

    The purpose of the present study was to test our hypothesis that unloading the carotid baroreceptors alters the threshold and gain of the muscle metaboreflex in humans. Ten healthy subjects performed a static handgrip exercise at 50% of maximum voluntary contraction. Contraction was sustained for 15, 30, 45, and 60 s and was followed by 3 min of forearm circulatory arrest, during which forearm muscular pH is known to decrease linearly with increasing contraction time. The carotid baroreceptors were unloaded by applying 0.1-Hz sinusoidal neck pressure (oscillating from +15 to +50 mmHg) during ischemia. We estimated the threshold and gain of the muscle metaboreflex by analyzing the relationship between the cardiovascular responses during ischemia and the amount of work done during the exercise. In the condition with unloading of the carotid baroreceptors, the muscle metaboreflex thresholds for mean arterial blood pressure (MAP) and total vascular resistance (TVR) corresponded to significantly lower work levels than the control condition (threshold for MAP: 795 ± 102 vs. 662 ± 208 mmHg and threshold for TVR: 818 ± 213 vs. 572 ± 292 kg·s, P < 0.05), but the gains did not differ between the two conditions (gain for MAP: 4.9 ± 1.7 vs. 4.4 ± 1.6 mmHg·kg·s -1 ·100 and gain for TVR: 1.3 ± 0.8 vs. 1.3 ± 0.7 mmHg·l -1 ·min -1 ·kg·s -1 ·100). We conclude that the carotid baroreflex modifies the muscle metaboreflex threshold in humans. Our results suggest the carotid baroreflex brakes the muscle metaboreflex, thereby inhibiting muscle metaboreflex-mediated pressor and vasoconstriction responses. NEW & NOTEWORTHY We found that unloading the carotid baroreceptors shifts the pressor threshold of the muscle metaboreflex toward lower metabolic stimulation levels in humans. This finding indicates that, in the normal loading state, the carotid baroreflex inhibits the muscle metaboreflex pressor response by shifting the reflex threshold to higher metabolic stimulation levels. Copyright © 2017 the American Physiological Society.

  7. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  8. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    PubMed Central

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  9. Occlusion of pressor responses to posterior diencephalic stimulation and muscular contraction.

    PubMed

    Rybicki, K J; Stremel, R W; Iwamoto, G A; Mitchell, J H; Kaufman, M P

    1989-02-01

    Although neural occlusion has been suggested to occur between the central and reflex mechanisms increasing arterial pressure, evidence consistent with this phenomenon is lacking. To assess the possibility of neural occlusion we recorded, in chloralose-anesthetized cats, the pressor responses to statically contracting the hindlimb muscles and to electrically stimulating histologically confirmed sites in the posterior hypothalamus and subthalamus. We also recorded the pressor responses to topical application of capsaicin onto the intestine and to stimulation of these diencephalic sites. The pressor responses to simultaneous static contraction and diencephalic stimulation were significantly smaller than the algebraic sum of the pressor responses to contraction and diencephalic stimulation evoked separately. Likewise, the pressor responses to simultaneous capsaicin application and diencephalic stimulation were significantly smaller than the algebraic sum of the responses evoked separately. High intensity stimulation of the L7 dorsal root or the diencephalic sites evoked pressor responses similar in magnitude to the algebraic sum of the two responses evoked separately; thus, the inability of the simultaneous maneuvers to evoke pressor responses that summed algebraically was not due to the fact that they caused a maximal effect. Our findings are consistent with the hypothesis that neural occlusion occurs during stimulation of the posterior diencephalon and static muscular contraction.

  10. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  11. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II.

    PubMed

    Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo

    2013-01-01

    Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.

  12. CHANGES OF ARTERIAL BLOOD PRESSURE IN ACUTE RADIATION DISEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzewski, J.

    1962-12-01

    Acute experiments were done in cats and chronic experiments in dogs. The cats were subjected to whole-body x irradiation with a dose of 1500 r, and were examined on the third day after irradiation, when radiation disease was fully developed. Reflexes from the baro- and chemoreceptors were investigated, and arterial blood pressure was recorded in the irradiated cats after intravenous administration of adrenaline, noradrenaline, serotonin, acetylcholine, histamine, Regitine, atropine, or Pendiomid. Dogs were subjected to whole-body irradiation with 800 r,; changes in arterial blood pressure, which occurred after the administration of neurohormones, were investigated before and after irradiation. Pressor reflexesmore » in irradiated cats, elicited by clamping and unclamping of both common carotid arteries, corresponded to a rise from 129.6 to 141.4 mm Hg, as compared to pressor reflexes in nonirradiated cats from 106.6 to 146. Reflexes from carotid sinus chemoreceptors evoked by 0.5% KCl were also weaker in irradiated cats. The results of both the acute and chronic experiments indicate that circulatory changes occur in radiation disease. The changes mainly involve responses of the circulatory system to neurohormones and stimulation of vascular baro- and chemoreceptors. (TCO)« less

  13. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans

    PubMed Central

    Strange, S

    1999-01-01

    Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733

  14. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  15. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans

    PubMed Central

    Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-01-01

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556

  16. Sex-dependent components of the analgesia produced by athletic competition.

    PubMed

    Sternberg, W F; Bokat, C; Kass, L; Alboyadjian, A; Gracely, R H

    2001-02-01

    Competing in various athletic events (track meet, basketball game, or fencing match) can produce analgesia to cold pressor stimuli in male and female college athletes compared with baseline assessments. This competition-induced analgesia has been attributed to the stress associated with competition, which has components related to both physical exercise and the cognitive aspects of competing. This study evaluated the analgesic effect of exercise-related stress, and that caused by the cognitively stressful components of competing independent of exercise. Cold pressor pain ratings were assessed after competition in a track meet and after treadmill exercise or sedentary video game competition in both athletes and nonathletes. As expected, competing in athletics resulted in a decrease in cold pressor ratings in both male and female athletes. Independent of athletic status, treadmill running induced analgesia in women, but not in males, whereas sedentary video game competition produced analgesia in men, but not in women. These findings suggest that different components of the competitive athletic experience might be responsible for the analgesic effects in a sex-dependent manner.

  17. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome.

    PubMed

    Lashinger, Erin S R; Steiginga, Matthew S; Hieble, J Paul; Leon, Lisa A; Gardner, Scott D; Nagilla, Rakesh; Davenport, Elizabeth A; Hoffman, Bryan E; Laping, Nicholas J; Su, Xin

    2008-09-01

    The activation of the TRPM8 channel, a member of the large class of TRP ion channels, has been reported to be involved in overactive bladder and painful bladder syndrome, although an endogenous activator has not been identified. In this study, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB) was evaluated as a TRPM8 channel blocker and used as a tool to evaluate the effects of this class of ion channel blocker on volume-induced bladder contraction and nociceptive reflex responses to noxious bladder distension in the rat. AMTB inhibits icilin-induced TRPM8 channel activation as measured in a Ca(2+) influx assay, with a pIC(50) of 6.23. In the anesthetized rat, intravenous administration of AMTB (3 mg/kg) decreased the frequency of volume-induced bladder contractions, without reducing the amplitude of contraction. The nociceptive response was measured by analyzing both visceromotor reflex (VMR) and cardiovascular (pressor) responses to urinary bladder distension (UBD) under 1% isoflurane. AMTB (10 mg/kg) significantly attenuated reflex responses to noxious UBD to 5.42 and 56.51% of the maximal VMR response and pressor response, respectively. The ID50 value on VMR response was 2.42 +/- 0.46 mg/kg. These results demonstrate that TRPM8 channel blocker can act on the bladder afferent pathway to attenuate the bladder micturition reflex and nociceptive reflex responses in the rat. Targeting TRPM8 channel may provide a new therapeutic opportunity for overactive bladder and painful bladder syndrome.

  18. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    PubMed

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  19. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro

    2016-10-01

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.

  20. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans.

    PubMed

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-11-15

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.

  1. Cyclical blood flow restriction resistance exercise: a potential parallel to remote ischemic preconditioning?

    PubMed

    Sprick, Justin D; Rickards, Caroline A

    2017-11-01

    Remote ischemic preconditioning (RIPC) is characterized by the cyclical application of limb blood flow restriction and reperfusion and has been shown to protect vital organs during a subsequent ischemic insult. Blood flow restriction exercise (BFRE) similarly combines bouts of blood flow restriction with low-intensity exercise and thus could potentially emulate the protection demonstrated by RIPC. One concern with BFRE, however, is the potential for an augmented rise in sympathetic outflow due to greater activation of the exercise pressor reflex. Because of the use of lower workloads, however, we hypothesized that BFRE would elicit an attenuated increase in sympathetic outflow [assessed via plasma norepinephrine (NE) and mean arterial pressure (MAP)] and middle cerebral artery velocity (MCAv) when compared with conventional exercise (CE). Fifteen subjects underwent two leg press exercise interventions: 1 ) BFRE-220 mmHg bilateral thigh occlusion at 20% 1 rep-max (1RM), and 2 ) CE-65% 1RM without occlusion. Each condition consisted of 4 × 5-min cycles of exercise, with 3 × 10-reps in each cycle. Five minutes of rest and reperfusion (for BFRE) followed each cycle. MAP increased with exercise ( P < 0.001) and was 4-5 mmHg higher with CE versus BFRE ( P ≤ 0.09). Mean MCAv also increased with exercise ( P < 0.001) and was higher with CE compared with BFRE during the first bout of exercise only ( P = 0.07). Plasma NE concentration increased with CE only ( P < 0.001) and was higher than BFRE throughout exercise ( P ≤ 0.02). The attenuated sympathetic response, combined with similar cerebrovascular responses, suggest that cyclical BFRE could be explored as an alternative to CE in the clinical setting. Copyright © 2017 the American Physiological Society.

  2. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses.

    PubMed

    Guo, Zhi-Ling; Fu, Liang-Wu; Su, Hou-Fen; Tjen-A-Looi, Stephanie C; Longhurst, John C

    2018-05-01

    We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C 7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the DRG at these spinal levels with intrathecal injection of TRPV1-siRNA, expression of phosphorylated ERK in the DRG neuron was reduced in MA-treated, but not EA-treated animals. These data suggest that TRPV1 in Group III and IV bimodal sensory afferent nerves contributes to acupuncture inhibition of reflex increases in blood pressure and specifically plays an important role during MA but not EA.

  3. Effect of prolonged hypodynamia on certain physiological functions in dogs

    NASA Technical Reports Server (NTRS)

    Yaremenko, B. R.

    1979-01-01

    The behavior of 20 dogs whose mobility was restricted was experimentally investigated. Their reactions to hypodynamia were either active behavior or progressive general depression and increased muscular weakness. Arterial pressure, pressor sinocarotid reflex valve, body weight, pulse rate, body temperature, and plasma cholinesterase activity were monitered for 28 days. Results are reported.

  4. Haemodynamic stability during general anaesthesia for intra-ocular surgery: the effect of topical oxybuprocaine.

    PubMed

    Lytle, J; Thomas, N F

    1992-07-01

    Local anaesthesia is frequently used in combination with light general anaesthesia to reduce the reflex responses to surgical stimulation. This combination has not previously been evaluated for intra-ocular surgery. During cataract extraction under general anaesthesia, the effect of topical anaesthesia with oxybuprocaine 0.4% on the pressor response was compared with normal saline in a control group. The simple technique of instilling local anaesthetic drops into the conjunctival sac blocked the pain pathway sufficiently to prevent the pressor response to surgical stimulation (p less than 0.001). Higher inspired concentrations of enflurane were required in the control group to achieve and maintain haemodynamic stability (p less than 0.001).

  5. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex.

    PubMed

    Michelini, Lisete C; O'Leary, Donal S; Raven, Peter B; Nóbrega, Antonio C L

    2015-08-01

    The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered. Copyright © 2015 the American Physiological Society.

  6. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex

    PubMed Central

    Michelini, Lisete C.; O'Leary, Donal S.; Raven, Peter B.

    2015-01-01

    The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered. PMID:26024683

  7. Endothelial dysfunction correlates with exaggerated exercise pressor response during whole body maximal exercise in chronic kidney disease.

    PubMed

    Downey, Ryan M; Liao, Peizhou; Millson, Erin C; Quyyumi, Arshed A; Sher, Salman; Park, Jeanie

    2017-05-01

    Chronic kidney disease (CKD) patients have exercise intolerance associated with increased cardiovascular mortality. Previous studies demonstrate that blood pressure (BP) and sympathetic nerve responses to handgrip exercise are exaggerated in CKD. These patients also have decreased nitric oxide (NO) bioavailability and endothelial dysfunction, which could potentially lead to an impaired ability to vasodilate during exercise. We hypothesized that CKD patients have exaggerated BP responses during maximal whole body exercise and that endothelial dysfunction correlates with greater exercise pressor responses in these patients. Brachial artery flow-mediated dilation (FMD) was assessed before maximal treadmill exercise in 56 participants: 38 CKD (56.7 ± 1.2 yr old, 38 men) and 21 controls (52.8 ± 1.8 yr old, 20 men). During maximal treadmill exercise, the slope-of-rise in systolic BP (+10.32 vs. +7.75 mmHg/stage, P < 0.001), mean arterial pressure (+3.50 vs. +2.63 mmHg/stage, P = 0.004), and heart rate (+11.87 vs. +10.69 beats·min -1 ·stage -1 , P = 0.031) was significantly greater in CKD compared with controls. Baseline FMD was significantly lower in CKD (2.76 ± 0.42% vs. 5.84 ± 0.97%, P = 0.008). Lower FMD values were significantly associated with a higher slope-of-rise in systolic BP (+11.05 vs. 8.71 mmHg/stage, P = 0.003) during exercise in CKD, as well as poorer exercise capacity measured as peak oxygen uptake (V̇o 2peak ; 19.47 ± 1.47 vs. 24.57 ± 1.51 ml·min -1 ·kg -1 , P < 0.001). These findings demonstrate that low FMD in CKD correlates with augmented BP responses during exercise and lower V̇o 2peak , suggesting that endothelial dysfunction may contribute to exaggerated exercise pressor responses and poor exercise capacity in CKD patients.

  8. Combining remote ischemic preconditioning and aerobic exercise: a novel adaptation of blood flow restriction exercise.

    PubMed

    Sprick, Justin D; Rickards, Caroline A

    2017-11-01

    Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65-70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4-5 mmHg lower with BFRE versus CE during the reperfusion periods ( P ≤ 0.05 for reperfusion periods 3 and 4 ). There were no differences in MCAv or PCAv between trials ( P ≥ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC. Copyright © 2017 the American Physiological Society.

  9. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  10. Musical Agency during Physical Exercise Decreases Pain.

    PubMed

    Fritz, Thomas H; Bowling, Daniel L; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2017-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.

  11. Musical Agency during Physical Exercise Decreases Pain

    PubMed Central

    Fritz, Thomas H.; Bowling, Daniel L.; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2018-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful. PMID:29387030

  12. Reduced Metaboreflex Control of Blood Pressure during Exercise in Individuals with Intellectual Disability: A Possible Contributor to Exercise Intolerance

    ERIC Educational Resources Information Center

    Dipla, K.; Zafeiridis, A.; Papadopoulos, S.; Koskolou, M.; Geladas, N.; Vrabas, I. S.

    2013-01-01

    The aim was to investigate the hemodynamic responses to isometric handgrip exercise (HG) and examine the role of the muscle metaboreflex in the exercise pressor response in individuals with intellectual disability (IID) and non-disabled control subjects. Eleven males with mild-moderate intellectual disabilities and eleven non-disabled males…

  13. The cold pressor test in interictal migraine patients - different parasympathetic pupillary response indicates dysbalance of the cranial autonomic nervous system.

    PubMed

    Eren, Ozan E; Ruscheweyh, Ruth; Schankin, Christoph; Schöberl, Florian; Straube, Andreas

    2018-04-16

    Data on autonomic nervous system (ANS) activations in migraine patients are quite controversial, with previous studies reporting over- and underactivation of the sympathetic as well as parasympathetic nervous system. In the present study, we explicitly aimed to assess the cranial ANS in migraine patients compared to healthy controls by applying the cold pressor test to a cohort of migraine patients in the interictal phase and measuring the pupillary response. In this prospective observational study, a strong sympathetic stimulus was applied to 20 patients with episodic migraine in the interictal phase and 20 matched controls without migraine, whereby each participant dipped the left hand into ice-cold (4 °C) water for a maximum of 5 min (cold pressor test). At baseline, 2, and 5 min during the cold pressor test, infrared monocular pupillometry was applied to quantify pupil diameter and light reflex parameters. Simultaneously, heart rate and blood pressure were measured by the external brachial RR-method at distinct time intervals to look for at least clinically relevant changes of the cardiovascular ANS. There were no significant differences between the migraine patients and controls at baseline and after 2 min of sympathetic stimulation in all the measured pupillary and cardio-vascular parameters. However, at 5 min, pupillary light reflex (PLR) constriction velocity was significantly higher in migraineurs than in controls (5.59 ± 0.73 mm/s vs. 5.16 ± 0.53 mm/s; unpaired t-test p < 0.05), while both cardiovascular parameters and PLR dilatation velocity were similar in both groups at this time point. Our findings of an increased PLR constriction velocity after sustained sympathetic stimulation in interictal migraine patients suggest an exaggerated parasympathetic response of the cranial ANS. This indicates that brainstem parasympathetic dysregulation might play a significant role in migraine pathophysiology. More dedicated examination of the ANS in migraine patients might be of value for a deeper understanding of its pathophysiology.

  14. Cerebellar pressor response in the dog

    NASA Technical Reports Server (NTRS)

    Dormer, K. J.; Stone, H. L.

    1976-01-01

    A fastigial pressor response has been elicited in the anesthetized mongrel dog. Stimulation within the rostral portions of this nucleus results in mean arterial pressure rises up to 150 mmHg above control. A proportional tachycardia is simultaneously evoked which may rapidly attain heart rates of 190 beats/min above control levels. Peak tachycardias immediately subside and often the heart rate declines below control values during stimulation while arterial pressure remains elevated. When either the carotid sinuses were isolated by ligation or a bilateral vagotomy was performed, the fastigial tachycardia was sustained. The response could still be attained when submaximal doses of alpha-chloralose anesthesia or high levels of barbiturates (30-40 mg/kg) were given. Both portions of the response result from widespread sympathetic activation; however, buffering of the response through the baroreceptor reflexes is only demonstrated in the cardiac segment of the response.

  15. Comparative analysis of efficacy of lignocaine 1.5 mg/kg and two different doses of dexmedetomidine (0.5 μg/kg and 1 μg/kg) in attenuating the hemodynamic pressure response to laryngoscopy and intubation

    PubMed Central

    Gulabani, Michell; Gurha, Pavan; Dass, Prashant; Kulshreshtha, Nishi

    2015-01-01

    Context: Laryngoscopy and intubation cause an intense reflex increase in heart rate, blood pressure, due to an increased sympathoadrenal pressor response. Lignoocaine has shown blunting of pressor response to intubation. Dexmedetomidine has sympatholytic effects. Aims: To the best of our knowledge there is no study comparing the efficacy of lignocaine with two different doses of dexmedetomidine for attenuating the pressor response. With this idea, we planned to conduct the present study. Materials and Methods: After approval by the Hospital Ethics committee, 90 consenting adults aged 18-65 years of age of either sex of non-hypertensive ASA Grade I or II were randomly allocated into three groups. Group D1- IV Dexmedetomidine 0.5μg/kg over 10 minutes Group D2- IV Dexmedetomidine 1μg/kg over 10 minutes Group X- IV Lignocaine 1.5mg/kg in 10 ml normal saline Statistical Analysis Used: ANOVA and Student's t test used for analysis. Results: Dexmedetomidine 1µg/kg was more effective than 0.5µg/kg and lignocaine 1.5mg/kg in attenuating the pressor response. Conclusions: We conclude that dexmedetomidine 1μg/kg adequately attenuates the hemodynamic response to laryngoscopy and endotracheal intubation when compared with dexmedetomidine 0.5μg/kg and lignocaine 1.5mg/kg. PMID:25886414

  16. The pressor response to water drinking in humans : a sympathetic reflex?

    NASA Technical Reports Server (NTRS)

    Jordan, J.; Shannon, J. R.; Black, B. K.; Ali, Y.; Farley, M.; Costa, F.; Diedrich, A.; Robertson, R. M.; Biaggioni, I.; Robertson, D.

    2000-01-01

    BACKGROUND: Water drinking increases blood pressure profoundly in patients with autonomic failure and substantially in older control subjects. The mechanism that mediates this response is not known. METHODS AND RESULTS: We studied the effect of drinking tap water on seated blood pressure in 47 patients with severe autonomic failure (28 multiple system atrophy [MSA], 19 pure autonomic failure patients [PAF]). Eleven older controls and 8 young controls served as control group. We also studied the mechanisms that could increase blood pressure with water drinking. Systolic blood pressure increased profoundly with water drinking, reaching a maximum of 33+/-5 mm Hg in MSA and 37+/-7 in PAF mm Hg after 30 to 35 minutes. The pressor response was greater in patients with more retained sympathetic function and was almost completely abolished by trimethaphan infusion. Systolic blood pressure increased by 11+/-2.4 mm Hg in elderly but not in young controls. Plasma norepinephrine increased in both groups. Plasma renin activity, vasopressin, and blood volume did not change in any group. CONCLUSIONS: Water drinking significantly and rapidly raises sympathetic activity. Indeed, it raises plasma norepinephrine as much as such classic sympathetic stimuli as caffeine and nicotine. This effect profoundly increases blood pressure in autonomic failure patients, and this effect can be exploited to improve symptoms due to orthostatic hypotension. Water drinking also acutely raises blood pressure in older normal subjects. The pressor effect of oral water is an important yet unrecognized confounding factor in clinical studies of pressor agents and antihypertensive medications.

  17. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    PubMed Central

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  18. Cardiovascular responses to water ingestion at rest and during isometric handgrip exercise.

    PubMed

    Mendonca, Goncalo V; Teixeira, Micael S; Pereira, Fernando D

    2012-07-01

    Water drinking activates sympathetic vasoconstriction in healthy young adults; however, this is not accompanied by a concomitant increase in resting blood pressure. It is not known whether the water pressor effect is unmasked by a physiological condition such as exercise. Therefore, we examined the effect of water ingestion (50 vs. 500 mL) on the cardiovascular and autonomic responses to isometric handgrip in 17 healthy participants (9 men, 8 women, aged 28.4 ± 9.7 years). Beat-to-beat blood pressure and R-R intervals were recorded in both conditions at rest (pre- and post-ingestion) and during handgrip at 30% of maximal voluntary contraction. R-R series were spectrally decomposed using an autoregressive approach. Water ingestion did not interact with the increase in mean arterial pressure (MAP) from rest to exercise, which was similar between conditions. In contrast, there was an overall bradycardic effect of water and this was accompanied by increased high frequency power (condition main effect, p < 0.05). When the differences in high frequency power between conditions were controlled for, MAP was significantly higher after drinking 500 mL of water (condition main effect, p < 0.05). In addition, water ingestion attenuated the increase in the low to high frequency power ratio from rest to handgrip (interaction effect, p < 0.05). In conclusion, the rise in blood pressure post-water ingestion is prevented both at rest and during isometric handgrip. Interestingly, this is not sustained after controlling for the enhanced vagal drive caused by water ingestion. Therefore, the mechanisms underlying this response most likely depend on reflex bradycardia of vagal origin.

  19. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease.

    PubMed

    Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D

    2017-07-01

    Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease. Copyright © 2017 the American Physiological Society.

  20. The Influence of a Personal Values Intervention on Cold Pressor-Induced Distress Tolerance.

    PubMed

    Smith, Brooke M; Villatte, Jennifer L; Ong, Clarissa W; Butcher, Grayson M; Twohig, Michael P; Levin, Michael E; Hayes, Steven C

    2018-06-01

    Research has demonstrated that values and acceptance interventions can increase distress tolerance, but the individual contribution of each remains unclear. The current study examined the isolated effect of a values intervention on immersion time in a cold pressor. Participants randomized to Values ( n = 18) and Control ( n = 14) conditions completed two cold pressor tasks, separated by a 30-min values or control intervention. Immersion time increased 51.06 s for participants in the Values condition and decreased by 10.79 s for those in the Control condition. Increases in self-reported pain and distress predicted decreases in immersion time for Control, but not Values, participants. The best-fitting model accounted for 39% of the variance in immersion time change. Results suggest that a brief isolated values exercise can be used to improve distress tolerance despite increased perceptions of pain and distress, such that values alone may be sufficient to facilitate openness to difficult experiences.

  1. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke.

    PubMed

    Marigold, Daniel S; Eng, Janice J; Dawson, Andrew S; Inglis, J Timothy; Harris, Jocelyn E; Gylfadóttir, Sif

    2005-03-01

    To determine the effect of two different community-based group exercise programs on functional balance, mobility, postural reflexes, and falls in older adults with chronic stroke. A randomized, clinical trial. Community center. Sixty-one community-dwelling older adults with chronic stroke. Participants were randomly assigned to an agility (n=30) or stretching/weight-shifting (n=31) exercise group. Both groups exercised three times a week for 10 weeks. Participants were assessed before, immediately after, and 1 month after the intervention for Berg Balance, Timed Up and Go, step reaction time, Activities-specific Balance Confidence, and Nottingham Health Profile. Testing of standing postural reflexes and induced falls evoked by a translating platform was also performed. In addition, falls in the community were tracked for 1 year from the start of the interventions. Although exercise led to improvements in all clinical outcome measures for both groups, the agility group demonstrated greater improvement in step reaction time and paretic rectus femoris postural reflex onset latency than the stretching/weight-shifting group. In addition, the agility group experienced fewer induced falls on the platform. Group exercise programs that include agility or stretching/weight shifting exercises improve postural reflexes, functional balance, and mobility and may lead to a reduction of falls in older adults with stroke.

  2. The Arg16/Gly beta2-adrenergic receptor polymorphism is associated with altered cardiovascular responses to isometric exercise.

    PubMed

    Eisenach, John H; McGuire, Antonio M; Schwingler, Rachel M; Turner, Stephen T; Joyner, Michael J

    2004-02-13

    A polymorphism in the gene encoding the beta(2)-adrenergic receptor (arginine or glycine at amino acid position 16) is associated with altered vasodilator responses to beta(2)-agonists, which may modulate the pressor response to endogenous catecholamines during stress. To test the hypothesis that the Arg16/Gly polymorphism is associated with differences in acute pressor responses to sympathoexcitation, we measured mean arterial pressure (MAP, Finapres) and heart rate (HR, ECG) during mental stress (MS), cold pressor test (CPT), and handgrip (HG) to fatigue in 31 healthy, nonobese, normotensive adults (mean age +/- SE: 31 +/- 1; 16 females). Subjects were homozygous for Gly16 (n = 16) or Arg16 (n = 15). Both groups had similar baseline MAP (Arg16, 86 +/- 3 mmHg; Gly16, 89 +/- 2 mmHg; P = 0.4) and HR (Arg16, 68 +/- 2 beats/min; Gly16, 65 +/- 3 beats/min; P = 0.3). For MS and CPT, MAP and HR did not differ between genotype groups. Handgrip also produced similar increases in MAP; however, the change in HR was greater in the Gly16 homozygotes (P(ANOVA) = 0.001, genotype-by-time interaction). During HG, peak HR at fatigue was 100 +/- 4 beats/min for Gly16 (54% increase from rest) vs. 93 +/- 3 beats/min for Arg16 (37% increase). We conclude that the cardiovascular responses to MS and CPT do not differ between Gly16 and Arg16 homozygotes. However, the greater HR response to exercise in the Gly16 homozygotes may serve to maintain the pressor response (increased cardiac output) in the face of augmented peripheral vasodilation (decreased total peripheral resistance) in this group.

  3. Nociceptive vascular reflexes evoked by scorpion venom modulate cardiorespiratory parameters involving vanilloid receptor 1 in anaesthetised rats.

    PubMed

    Singh, Sanjeev K; Deshpande, Shripad B

    2009-02-27

    Involvement of vanilloid and 5-HT(3) receptors in the cardiorespiratory reflexes evoked by intra-arterial (i.a.) injection of Mesobuthus tamulus (BT) venom was examined. In anaesthetised rats, blood pressure, respiratory excursions and ECG were recorded for 60min after the injection of venom in the absence or presence of antagonists. Injection of BT venom (1mg/kg, i.a.) produced alterations in respiratory frequency (RF), blood pressure (BP) and heart rate (HR). The changes in RF were manifested as immediate increase (40%) followed by a decrease (40%) and subsequent sustained increase (60%). In case of BP, the increase began around 40s, peaked at 5min (50%) and remained above the initial level subsequently. The bradycardiac response began around 5min which peaked (50% of the initial) around 25min and remained at that level. Thus, exhibiting immediate-tachypnoeic, intermediate-hypertensive and delayed-bradycardiac responses. Pretreatment with lignocaine, blocked the respiratory responses and attenuated the pressor responses evoked by venom. Pretreatment with capsazepine, vanilloid receptor 1 (VR1) antagonist, antagonized all the three parameters of cardiorespiratory responses evoked by venom. Whereas, ondansetron (5-HT(3) antagonist) attenuated the pressor and bradycardiac responses significantly but not the respiratory responses. These observations indicate that the cardiorespiratory changes induced by intra-arterial injection of venom are carried by afferents in addition to somatic nerves, involving mainly VR1 receptors and partially by 5-HT(3) receptors.

  4. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents

    PubMed Central

    Nobrega, Antonio C. L.; O'Leary, Donal; Silva, Bruno Moreira; Piepoli, Massimo F.; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed. PMID:24818143

  5. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed

    Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E

    2014-11-01

    Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed Central

    Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.

    2014-01-01

    Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323

  7. Activation of neurons in cardiovascular areas of cat brain stem affects spinal reflexes.

    PubMed

    Wu, W C; Wang, S D; Liu, J C; Horng, H T; Wayner, M J; Ma, J C; Chai, C Y

    1994-01-01

    In 65 cats anesthetized with chloralose (40 mg/kg) and urethane (400 mg/kg), the effects of electrical stimulation and microinjection of sodium glutamate (0.25 M, 100-200 nl) in the pressor areas in the rostral brain stem on the evoked L5 ventral root response (EVRR) due to intermittent stimulation of sciatic afferents were compared to stimulating the dorsomedial (DM) and ventrolateral (VLM) medulla. In general, stimulating these rostral brain stem pressor areas including the diencephalon (DIC) and rostral pons (RP) produced increases in systemic arterial pressure (SAP). In most of the cases (85%) there were associated changes in the EVRR, predominantly a decrease in EVRR (72%). Stimulation of the midbrain (MB, principally in the periaqueductal grey) produced decreases in SAP and EVRR. Decreases in EVRR was observed in 91% of the DM and VLM stimulations in which an increase in SAP was produced. This EVRR inhibition was essentially unaltered after acute midcollicular decerebration. Increases in EVRR were also observed and occurred more often in the rostral brain stem than in the medulla. Since changes of both EVRR and SAP could be reproduced by microinjection of Glu into the cardiovascular-reactive areas of the brain stem, this suggests that neuronal perikarya in these areas are responsible for both actions. On some occasions, Glu induced changes in EVRR but not in SAP. This effect occurred more frequently in the rostral brain stem than in the medulla. The present data suggest that separate neuron population exist in the brain stem for the integration of SAP and spinal reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training

    PubMed Central

    Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  9. Efficacy and position of endurance training as a non-drug therapy in the treatment of arterial hypertension.

    PubMed

    Ketelhut, R G; Franz, I W; Scholze, J

    1997-10-01

    Regular conditioning has been well documented to exert a beneficial effect on cardiovascular risk factors and to improve overall cardiovascular health and to reduce the incidence of coronary disease. There are conflicting results concerning the effect of physical exercise on blood pressure (BP) in hypertensive patients and its importance in the treatment of hypertension. Therefore 10 male patients with mild arterial hypertension were studied in order to define the BP response to long-term aerobic training (60 min twice a week) under resting conditions, during standardised ergometric workload, during isometric exercise, during cold pressor testing and during 24-h BP monitoring. After 18 months of regular training there were significant reductions in arterial pressures at rest, during and after standardised ergometry and during isometric and cold pressor testing when compared with pre-training. The heart rate also decreased significantly during exercise testing thus implying a decrease in myocardial oxygen consumption. After long-term training, a reduction in systolic and diastolic BP could also be shown during 24-h ambulatory BP monitoring. These results demonstrate that long-term aerobic training leads to a decrease in systolic and diastolic BP at rest, during exercise and during 24-h BP monitoring and imply a beneficial effect in the management of hypertension that is nearly comparable to that of drug therapy.

  10. Cold pressor test in spinal cord injury-revisited.

    PubMed

    Hubli, Michèle; Bolt, Doris; Krassioukov, Andrei V

    2018-06-01

    Systematic review. A spinal cord injury (SCI) commonly results in alterations of cardiovascular physiology. In order to investigate such alterations, the cold pressor test (CPT) has been used as an established challenge test. This review summarizes the basic physiology underlying a CPT, discusses potential mechanisms responsible for abnormal pressor responses following SCI, and highlights the utility of CPT in the SCI population. Canada and Switzerland. We have completed a comprehensive review of studies that have investigated the effect of foot or hand CPT on hemodynamic indices in individuals with SCI. Depending on the level of spinal cord lesion and the location of cold application, i.e., above or below the lesion, mean arterial pressure typically increases (ranging between 4 and 23 mmHg), while heart rate responses demonstrated either a decrease or an increase (ranging between -4 and 24 bpm) during CPT. The increase in blood pressure during foot CPT in high-level lesions might not necessarily be attributed to a physiological CPT response as seen in able-bodied individuals, but rather due to a reflexic sympathetic discharge below the level of lesion, known as autonomic dysreflexia. Further investigations in a wider range of individuals with SCI including incomplete injuries might be helpful to examine the ability of CPT assessing the integrity of the autonomic nervous system following SCI. Furthermore, additional autonomic tests are needed to emphasize the integrity of autonomic pathways and to account for the complexity of the autonomic nervous system.

  11. Exercise does not produce hypoalgesia when performed immediately after a painful stimulus.

    PubMed

    Gajsar, Hannah; Nahrwold, Katharina; Titze, Christina; Hasenbring, Monika I; Vaegter, Henrik B

    2018-04-25

    Exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) are assumed to reflect descending pain inhibition. Potential interactions between EIH and CPM may be important in the therapy of chronic pain, as reduced CPM and increased pain after exercise are frequently observed. This study compared the EIH response after CPM was activated using a cold pressor task with the EIH response after a control condition. Thirty-one participants (age: 27.7±9.8; 15 female) completed two sessions: a cold pressor task (CPT) session, i.e. testing EIH with preceding CPM activation induced using a 2 min CPT at approximately 2°C, and a control session, i.e. testing EIH after a control condition (2 min of quiet rest). EIH was induced using a 15 min bicycling exercise at a target heart rate corresponding to 75% VO2 max. Repeated measures ANOVAs on pressure pain thresholds (PPTs) at the hand, back and leg were used to determine the effects of exercise after the cold pressor test and control condition. Furthermore, correlations between CPM and EIH, in the CPT session as well as control session, were calculated at each assessment site. A significant time x condition interaction (F(1, 30)=43.61, p<0.001, partial η2=0.59), with Bonferroni-corrected post-hoc t-tests showed that PPTs increased after exercise in the control session (p<0.001), but not in the CPT session (p=0.125). Furthermore, there was a small positive correlation of EIH in the control session and CPM at the hand (r=0.37, p=0.043). There was a moderate negative correlation of EIH in the CPT session and CPM at the hand (r=-0.50, p=0.004), and smaller negative correlations at the back (r=-0.37, p=0.036) and at the leg (r=-0.35, p=0.054). Attenuated EIH after the CPM activation in comparison to a control condition suggests that EIH and CPM may share underlying pain inhibitory mechanisms on a systemic level. This assumption is further supported by the finding of small to moderate significant correlations between EIH and CPM at the hand. The attenuated EIH response furthermore suggests that these mechanisms are exhaustible, i.e. that its effects decline after a certain amount of inhibition. In patients with chronic pain, assessing the current capacity of the descending pain inhibitory system - as indicated by the CPM response - may aid to make better predictions about how patients will respond to exercise with respect to acute pain reduction.

  12. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    PubMed

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p < 0.01). Exercise decreased peripheral (- 8 ± 7 mmHg) and central (- 7 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 5 mmHg) and central (- 4 ± 7 mmHg) diastolic BP (p < 0.01). In comparison to measurements during CPT pre-exercise, there was a significant reduction in aPWV (- 0.19 ± 0.3 m / sec), peripheral (- 6 ± 10 mmHg) and central (- 5 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 6 mmHg) and central (- 3 ± 6 mmHg) diastolic BP during CPT after exercise (p < 0.01). The present study suggests that acute endurance exercise leads not only to decreased BP but even more reduces aPWV as a measure of AS even after 60 minutes of recovery. In particular, the investigation provides evidence that acute moderate-intensity exercise has a favorable effect on BP and aPWV during stress testing.

  13. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    PubMed

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training regimens currently utilized by international class and professional athletes should stimulate longitudinal studies of physiologic and pathophysiologic outcomes of intense isometric exercise training programs.

  14. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor

    PubMed Central

    Waterfall, J. F.

    1989-01-01

    1 Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific. 2 An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (∼76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by > 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1). 3 In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5×) than enalaprilat as an inhibitor of the angiotensin I pressor response. 4 Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5× more potent than enalapril as an ACE inhibitor. 5 In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at ≥ 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h. 6 Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg. 7 Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 ± 6 mm Hg. 8 Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral resistance. Small decreases in cardiac output and myocardial contractile force were seen at high doses. 9 Cilazapril had no adverse effect on cardiovascular reflexes. There was no impairment of the baroreflex in rats. Exercise-induced tachycardia and pressor responses in conscious cats were unchanged. 10 Cilazapril is exceptionally well absorbed by the oral route (98% in rats). PMID:2527528

  15. Role of arterial baroreceptors in mediating cardiovascular response to exercise

    NASA Technical Reports Server (NTRS)

    Mcritchie, R. J.; Vatner, S. F.; Patrick, T. A.; Braunwald, E.; Boettcher, D.; Heyndrickx, G. R.

    1976-01-01

    Experiments were conducted to define the role of the major arterial baroreceptors during moderately severe exercise by comparing the responses of untethered conscious dogs instrumented for the measurement of aortic pressure and cardiac output with those of dogs with total arterial baroreceptor denervation. The reflex heart rate responses to intravenous bolus doses of methoxamine were also examined in intact animals, both at rest and during exercise. Methoxamine is found to cause striking bradycardia at rest, but little bradycardia during exercise. Experimental findings suggest that the arterial baroreceptor reflex is normally inhibited during severe exercise and therefore plays little role in modulating the cardiovascular response to exercise.

  16. Cardiorespiratory responses and reduced apneic time to cold-water face immersion after high intensity exercise.

    PubMed

    Konstantinidou, Sylvia; Soultanakis, Helen

    2016-01-01

    Apnea after exercise may evoke a neurally mediated conflict that may affect apneic time and create a cardiovascular strain. The physiological responses, induced by apnea with face immersion in cold water (10 °C), after a 3-min exercise bout, at 85% of VO2max,were examined in 10 swimmers. A pre-selected 40-s apnea, completed after rest (AAR), could not be met after exercise (AAE), and was terminated with an agonal gasp reflex, and a reduction of apneic time, by 75%. Bradycardia was evident with immersion after both, 40-s of AAR and after AAE (P<0.05). The dramatic elevation of, systolic pressure and pulse pressure, after AAE, were indicative of cardiovascular stress. Blood pressure after exercise without apnea was not equally elevated. The activation of neurally opposing functions as those elicited by the diving reflex after high intensity exercise may create an autonomic conflict possibly related to oxygen-conserving reflexes stimulated by the trigeminal nerve, and those elicited by exercise. Copyright © 2015. Published by Elsevier B.V.

  17. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men

    PubMed Central

    Barbosa, Thales C.; Vianna, Lauro C.; Fernandes, Igor A.; Prodel, Eliza; Rocha, Helena N. M.; Garcia, Vinicius P.; Rocha, Natalia G.; Secher, Niels H.

    2016-01-01

    Key points The increase in blood pressure observed during physical activities is exaggerated in patients with hypertension, exposing them to a higher cardiovascular risk.Neural signals from the skeletal muscles appear to be overactive, resulting in this abnormal response in hypertensive patients.In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity.Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure of hypertensive men during cycling exercise to a level comparable to that of normotensive men.Skeletal muscle afferent overactivity causes the abnormal cardiovascular response to exercise and was reverted in this experimental model, appearing as potential target for treatment. Abstract Hypertensive patients present an exaggerated increase in blood pressure and an elevated cardiovascular risk during exercise. Although controversial, human studies suggest that group III and IV skeletal muscle afferents might contribute to this abnormal response. In the present study, we investigated whether attenuation of the group III and IV muscle afferent signal of hypertensive men eliminates the exaggerated increase in blood pressure occurring during exercise. Eight hypertensive men performed two sessions of 5 min of cycling exercise at 40 W. Between sessions, the subjects were provided with a lumbar intrathecal injection of fentanyl, a μ‐opioid receptor agonist, aiming to attenuate the central projection of opioid‐sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P < 0.05), whereas the increase in heart rate, stroke volume, cardiac output and vascular conductance was similar (P > 0.05). Fentanyl inhibited the blood pressure response to exercise in the hypertensive group (+11 ± 2 mmHg) to a level comparable to that of the normotensive group (P > 0.05). Moreover, fentanyl increased the responses of vascular conductance and stroke volume to exercise (P < 0.05), whereas the heart rate response was attenuated (P < 0.05) and the cardiac output response was maintained (P > 0.05). The results of the present study show that attenuation of the exercise pressor reflex normalizes the blood pressure response to cycling exercise in hypertensive individuals. PMID:26659384

  18. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection.

    PubMed

    Liu, Hao; Skinner, Robert D; Arfaj, Ahmad; Yates, Charlotte; Reese, Nancy B; Williams, Keith; Garcia-Rill, Edgar

    2010-10-30

    This study investigated whether l-dopa (DOPA), locomotor-like passive exercise (Ex) using a motorized bicycle exercise trainer (MBET), or their combination in adult rats with complete spinal cord transection (Tx) preserves and restores low frequency-dependent depression (FDD) of the H-reflex. Adult Sprague-Dawley rats (n=56) transected at T8-9 had one of five treatments beginning 7 days after transection: Tx (transection only), Tx+Ex, Tx+DOPA, Tx+Ex+DOPA, and control (Ctl, no treatment) groups. After 30 days of treatment, FDD of the H-reflex was tested. Stimulation of the tibial nerve at 0.2, 1, 5, and 10Hz evoked an H-reflex that was recorded from plantar muscles of the hind paw. No significant differences were found at the stimulation rate of 1Hz. However, at 5Hz, FDD of the H-reflex in the Tx+Ex, Tx+DOPA and Ctl groups was significantly different from the Tx group (p<0.01). At 10Hz, all of the treatment groups were significantly different from the Tx group (p<0.01). No significant difference was identified between the Ctl and any of the treatment groups. These results suggest that DOPA significantly preserved and restored FDD after transection as effectively as exercise alone or exercise in combination with DOPA. Thus, there was no additive benefit when DOPA was combined with exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Oral contraceptives modulate the muscle metaboreflex in healthy young women.

    PubMed

    Parmar, Hanna R; Sears, Jasmin; Molgat-Seon, Yannick; McCulloch, Cara L; McCracken, Laura A; Brown, Courtney V; Sheel, A William; Dominelli, Paolo B

    2018-05-01

    There are known sex differences in blood pressure regulation. The differences are related to ovarian hormones that influence β-adrenergic receptors and the transduction of muscle sympathetic nerve activity. Oral contraceptives (OC) modulate the ovarian hormonal profile in women and therefore may alter the cardiovascular response. We questioned if OC would alter the absolute pressor response to static exercise and influence the day-to-day variability of the response. Healthy men (n = 11) and women (n = 19) completed a familiarization day and 2 experimental testing days. Women were divided into those taking (W-OC, n = 10) and not taking (W-NC, n = 9) OC. Each experimental testing day involved isometric handgripping exercise, at 30% of maximal force, followed by circulatory occlusion to isolate the metaboreflex. Experimental days in men were 7-14 days apart. The first experimental testing in W-OC occurred 2-7 days after the start of the active phase of their OC. Women not taking OC were tested during the early and late follicular phase of the menstrual cycle as determined by commercial ovulation monitor. The increase in mean arterial pressure (MAP) during exercise was significantly lower in W-NC (95 ± 4 mm Hg) compared with men (114 ± 4 mm Hg) and W-OC (111 ± 3 mm Hg) (P < 0.05), with the differences preserved during circulatory occlusion. The rise in MAP was significantly correlated between the 2 testing days in men (r = 0.72, P < 0.01) and W-OC (r = 0.77, P < 0.05), but not in W-NC (r = 0.17, P = 0.67), indicating greater day-to-day variation in W-NC. In conclusion, OC modulate the exercise pressor response in women and minimize day-to-day variability in the exercise metaboreflex.

  20. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162

  1. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir

    2014-03-01

    Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.

  2. Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide

    PubMed Central

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.

    2013-01-01

    Acupuncture or electroacupuncture (EA) potentially offers a nonpharmacological approach to reduce high blood pressure (BP). However, ∼70% of the patients and animal subjects respond to EA, while 30% do not. EA acts, in part, through an opioid mechanism in the rostral ventrolateral medulla (rVLM) to inhibit sympathoexcitatory reflexes induced by gastric distention. CCK-8 opposes the action of opioids during analgesia. Therefore, we hypothesized that CCK-8 in the rVLM antagonizes EA modulation of sympathoexcitatory cardiovascular reflex responses. Male rats anesthetized with ketamine and α-chloralose subjected to repeated gastric distension every 10 min were examined for their responsiveness to EA (2 Hz, 0.5 ms, 1–4 mA) at P5-P6 acupoints overlying median nerve. Repeated gastric distension every 10 min evoked consistent sympathoexcitatory responses. EA at P5-P6 modulated gastric distension-induced responses. Microinjection of CCK-8 in the rVLM reversed the EA effect in seven responders. The CCK1 receptor antagonist devazepide microinjected into the rVLM converted six nonresponders to responders by lowering the reflex response from 21 ± 2.2 to 10 ± 2.9 mmHg (first vs. second application of EA). The EA modulatory action in rats converted to responders with devazepide was reversed with rVLM microinjection of naloxone (n = 6). Microinjection of devazepide in the absence of a second application of EA did not influence the primary pressor reflexes of nonresponders. These data suggest that CCK-8 antagonizes EA modulation of sympathoexcitatory cardiovascular responses through an opioid mechanism and that inhibition of CCK-8 can convert animals that initially are unresponsive to EA to become responsive. PMID:23785073

  3. Vestibular rehabilitation outcomes in chronic vertiginous patients through computerized dynamic visual acuity and Gaze stabilization test.

    PubMed

    Badaracco, Carlo; Labini, Francesca Sylos; Meli, Annalisa; De Angelis, Ezio; Tufarelli, Davide

    2007-09-01

    To evaluate the efficiency of the rehabilitative protocols in patients with labyrinthine hypofunction, focusing on computerized dynamic visual acuity test (DVAt) and Gaze stabilization test (GST) specifically evaluating the vestibulo-oculomotor reflex (VOR) changes due to vestibular rehabilitation. Consecutive sample study. Day hospital in Ears, Nose, and Throat Rehabilitation Unit. Thirty-two patients with chronic dizziness with a mean age of 60.74 years. Patients performed one cycle of 12 daily rehabilitation sessions (2 h each) consisting of exercises aimed at improving VOR gain. The rehabilitation program included substitutional and/or habitudinal exercises, exercises on a stability platform, and exercises on a moving footpath with rehabilitative software. Dizziness Handicap Inventory and Activities-specific Balance Confidence Scale. Computerized dynamic posturography, computerized DVAt, and GST. The patients significantly improved in all the tests. Vestibular rehabilitation improved the quality of life by reducing the handicap index and improving the ability in everyday tasks. The recovery of the vestibular-ocular reflex and vestibular-spinal reflex efficiency was objectively proven by instrumental testing. The DVAt and the GST allow to objectively quantify the fixation ability at higher frequencies and speeds (main VOR function). Moreover, these new parameters permit to completely evaluate vestibular rehabilitation outcomes, adding new information to the generally used tests that only assess vestibulospinal reflex.

  4. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.

    PubMed Central

    Hansen, J; Thomas, G D; Harris, S A; Parsons, W J; Victor, R G

    1996-01-01

    Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes. The major new finding is that the ability of reflex-sympathetic activation to decrease muscle oxygenation is abolished when the muscle is exercised at an intensity > 10% of maximal voluntary contraction (MVC). During high intensity handgrip, (45% MVC), contraction-induced decreases in muscle oxygenation remained stable despite progressive metaboreceptor-mediated reflex increases in SNA. During mild to moderate handgrips (20-33% MVC) that do not evoke reflex-sympathetic activation, experimentally induced increases in muscle SNA had no effect on oxygenation in exercising muscles but produced robust decreases in oxygenation in resting muscles. The latter decreases were evident even during maximal metabolic vasodilation accompanying reactive hyperemia. We conclude that in humans sympathetic neural control of skeletal muscle oxygenation is sensitive to modulation by metabolic events in the contracting muscles. These events are different from those involved in either metaboreceptor muscle afferent activation or reactive hyperemia. PMID:8755671

  5. Encouraging Reflexivity in Urban Geography Fieldwork: Study Abroad Experiences in Singapore and Malaysia

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2014-01-01

    Fieldwork in urban geography courses can encourage reflexivity among students regarding the cities they encounter. This article outlines how student reflexivity was encouraged within a new international field research course in Singapore and Malaysia. Drawing on examples from students' field exercises written during an intensive and occasionally…

  6. A Comparison of Statistical Models for Calculating Reliability of the Hoffmann Reflex

    ERIC Educational Resources Information Center

    Christie, A.; Kamen, G.; Boucher, Jean P.; Inglis, J. Greig; Gabriel, David A.

    2010-01-01

    The Hoffmann reflex is obtained through surface electromyographic recordings, and it is one of the most common neurophysiological techniques in exercise science. Measurement and evaluation of the peak-to-peak amplitude of the Hoffmann reflex has been guided by the observation that it is a variable response that requires multiple trials to obtain a…

  7. Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.

    PubMed

    Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K

    2017-01-01

    Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.

  8. Desensitization of the cough reflex by exercise and voluntary isocapnic hyperpnea.

    PubMed

    Lavorini, Federico; Fontana, Giovanni A; Chellini, Elisa; Magni, Chiara; Duranti, Roberto; Widdicombe, John

    2010-05-01

    Little is known about the effects of exercise on the sensory and cognitive aspects of coughing evoked by inhalation of tussigenic agents. The threshold for the cough reflex induced by inhalation of increasing nebulizer outputs of ultrasonically nebulized distilled water (fog), an index of cough reflex sensitivity, was assessed in twelve healthy humans in control conditions, during exercise and during voluntary isocapnic hyperpnea (VIH) at the same ventilatory level as the exercise. The intensity of the urge to cough (UTC), a cognitive component of coughing, was recorded throughout the trials on a linear scale. The relationships between inhaled fog nebulizer outputs and the correspondingly evoked UTC values, an index of the perceptual magnitude of the UTC sensitivity, were also calculated. Cough appearance was always assessed audiovisually. At an exercise level of 80% of anaerobic threshold, the median cough threshold was increased from a control value of 0.73 to 2.22 ml/min (P<0.01), i.e., cough sensitivity was downregulated. With VIH, the threshold increased from 0.73 to 2.22 ml/min (P<0.01), a similar downregulation. With exercise and VIH compared with control, mean UTC values at cough threshold were unchanged, i.e., control, 3.83 cm; exercise, 3.12 cm; VIH, 4.08 cm. The relationship of the fog nebulizer output/UTC value was linear in control conditions and logarithmic during both exercise and VIH. The perception of the magnitude of the UTC seems to be influenced by signals or sensations arising from exercising limb and thoracic muscles and/or by higher nervous (cortical) mechanisms. The results indicate that the adjustments brought into action by exercise-induced or voluntary hyperpnea exert inhibitory influences on the sensory and cognitive components of fog-induced cough.

  9. Traditional games resulted in post-exercise hypotension and a lower cardiovascular response to the cold pressor test in healthy children

    PubMed Central

    Rauber, Suliane B.; Boullosa, Daniel A.; Carvalho, Ferdinando O.; de Moraes, José F. V. N.; de Sousa, Ioranny R. C.; Simões, Herbert G.; Campbell, Carmen S. G.

    2014-01-01

    The present study aimed to verify if blood pressure (BP) reactivity could be reduced through a previous single session of active playing when compared to sedentary leisure. Sixteen pre-pubertal healthy children participated in this study. After familiarization with procedures and anthropometric evaluation, participants performed three sessions in randomized order: (1) 30 min of traditional Brazilian games (PLAY); (2) 30 min of video game playing (DDR); and (3) 30 min of watching TV (TV). Each session lasted 80 min, being 10 min of rest; 30 min of intervention activity; and 40 min of recovery. After recovery, the Cold Pressor Test (CPT) was used for the assessment of acute cardiovascular reactivity. BP was recorded at 30 s and 1 min during the CPT. Analysis of variance showed post-exercise hypotension (PEH) only after PLAY, and that systolic and diastolic BP were significantly increased in all conditions during CPT. However, the magnitude of the CPT-induced BP response was significantly less in PLAY compared to DDR and TV. The PEH observed during recovery and the reduced BP response to CPT following playing traditional games may be due its higher cardiovascular and metabolic demand as was indicated by the increased heart rate, oxygen consumption, and BP. It was concluded that BP reactivity to stress may be reduced through a previous single session of traditional games and that PEH was recorded only after this exercise form. This benefit indicates a potential role of playing strategies for cardiovascular health in childhood. PMID:25009506

  10. Traditional games resulted in post-exercise hypotension and a lower cardiovascular response to the cold pressor test in healthy children.

    PubMed

    Rauber, Suliane B; Boullosa, Daniel A; Carvalho, Ferdinando O; de Moraes, José F V N; de Sousa, Ioranny R C; Simões, Herbert G; Campbell, Carmen S G

    2014-01-01

    The present study aimed to verify if blood pressure (BP) reactivity could be reduced through a previous single session of active playing when compared to sedentary leisure. Sixteen pre-pubertal healthy children participated in this study. After familiarization with procedures and anthropometric evaluation, participants performed three sessions in randomized order: (1) 30 min of traditional Brazilian games (PLAY); (2) 30 min of video game playing (DDR); and (3) 30 min of watching TV (TV). Each session lasted 80 min, being 10 min of rest; 30 min of intervention activity; and 40 min of recovery. After recovery, the Cold Pressor Test (CPT) was used for the assessment of acute cardiovascular reactivity. BP was recorded at 30 s and 1 min during the CPT. Analysis of variance showed post-exercise hypotension (PEH) only after PLAY, and that systolic and diastolic BP were significantly increased in all conditions during CPT. However, the magnitude of the CPT-induced BP response was significantly less in PLAY compared to DDR and TV. The PEH observed during recovery and the reduced BP response to CPT following playing traditional games may be due its higher cardiovascular and metabolic demand as was indicated by the increased heart rate, oxygen consumption, and BP. It was concluded that BP reactivity to stress may be reduced through a previous single session of traditional games and that PEH was recorded only after this exercise form. This benefit indicates a potential role of playing strategies for cardiovascular health in childhood.

  11. 'Diving reflex' in man - Its relation to isometric and dynamic exercise.

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.

    1972-01-01

    To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.

  12. Effect of dynamic exercise on human carotid-cardiac baroreflex latency

    NASA Technical Reports Server (NTRS)

    Potts, J. T.; Raven, P. B.

    1995-01-01

    We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P < 0.05), and a strong positive correlation was found between the magnitude of the reflex tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Substance P release in the spinal cord during the exercise pressor reflex in anaesthetized cats.

    PubMed Central

    Wilson, L B; Fuchs, I E; Matsukawa, K; Mitchell, J H; Wall, P T

    1993-01-01

    1. The purpose of this study was to determine if static skeletal muscle contraction causes the release of substance P(SP) in the L7-dorsal horn region of the spinal cord. A laminectomy was performed to expose the spinal cord of alpha-chloralose anaesthetized cats. The L6 spinal root was cut. A microdialysis probe was inserted into the L7 dorsal horn region ipsilateral to the contracting triceps surae muscle. The probe was perfused with a buffer solution at 3 microliters/min. Substance P-like immunoreactivity (SP-LI) was measured, from the microdialysis samples, by radioimmunoassay. 2. A 5-9 min contraction of the triceps surae muscle was evoked by alternate electrical stimulation of the peripheral ends of the cut L7 and S1 ventral roots. Basal SP-LI release was 0.20 +/- 0.03 fmol/100 microliters and was increased to 0.54 +/- 0.05 fmol/100 microliters (mean +/- S.D.) by static muscle contraction. This increase was greatly attenuated after cutting the L7 and S1 dorsal roots (0.23 +/- 0.03 to 0.39 +/- 0.08 fmol/100 microliters) or completely abolished by muscle paralysis (0.27 +/- 0.03 to 0.31 +/- 0.01 fmol/100 microliters). Muscle contraction also increased mean arterial blood pressure (MAP) 29 +/- 20 mmHg and heart rate (HR) 11 +/- 5 beats/min (mean +/- S.D.). These cardiovascular changes to muscle contraction were abolished by sectioning the dorsal roots or when the ventral roots were electrically stimulated after the cats were paralysed. 3. These results demonstrate that static contraction of skeletal muscle increases the release of SP-LI in the dorsal horn of the spinal cord. Furthermore, these data support the hypothesis that SP plays a role in mediating the cardiovascular responses evoked during static exercise. PMID:7683719

  14. Neural blockade during exercise augments central command's contribution to carotid baroreflex resetting

    NASA Technical Reports Server (NTRS)

    Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Raven, P. B.; Secher, N. H.

    2001-01-01

    This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.

  15. Stomach distension increases efferent muscle sympathetic nerve activity and blood pressure in healthy humans.

    PubMed

    Rossi, P; Andriesse, G I; Oey, P L; Wieneke, G H; Roelofs, J M; Akkermans, L M

    1998-12-11

    Although the enteric nervous system is usually described as a separate and independent entity, animal studies show that gastric distension causes a reflex increase in arterial pressure and a sympathetically mediated increase in heart rate and peripheral vascular resistance. To assess the influence of gastric distension on sympathetic outflow and blood pressure, we recorded muscle sympathetic nerve activity (MSNA) from the peroneal nerve by microneurography in eight healthy volunteers. The stomach was distended by means of a barostat, using a single staircase protocol by which pressure was increased by 2 mmHg every 3 min. Gastric sensory function was assessed at each distension step by using a visual analog scale (VAS) for sensations of fullness, nausea and pain. For comparison, we also performed a cold pressor test. The MSNA increased on barostat-induced gastric distension with an almost concomitant elevation of blood pressure. The increase in both was proportional to the intragastric pressure and both decreased towards initial values after the end of distension. Heart rate increased inconsistently and only at higher distension pressures that were associated with high VAS scores. The opposite was found for the cold pressor test. The results of this study confirm the existence of a functional relationship between gastrointestinal distension and cardiovascular function. Decrease in this gastrovascular response may play a role in postprandial hypotension in the elderly, since the MSNA responses to simulated microgravity decrease with age.

  16. Lack of independent relationships between left ventricular mass and cardiovascular reactivity to physical and psychological stress in the Coronary Artery Risk Development in Young Adults (CARDIA) Study.

    PubMed

    Markovitz, J H; Raczynski, J M; Lewis, C E; Flack, J; Chesney, M; Chettur, V; Hardin, J M; Johnson, E

    1996-09-01

    The objective of this study was to determine whether exaggerated blood pressure (BP) reactivity to stress and psychosocial characteristics are related to left ventricular mass (LVM) in a large cohort of young adults. Analyses were conducted with 3,742 participants of the CARDIA study (945 white men, 1,024 white women, 781 black men, and 992 black women), evaluated in 1990 to 1091 with echocardiographic measurement of LVM. Analyses were stratified by gender and race. The relationships of LVM/height2.7 and cardiovascular reactivity to physical and psychological stressors (treadmill exercise, cold pressor, video game, and star-tracing tasks), were examined in both univariate and multivariate analyses adjusting for baseline BP, weight, and other relevant biobehavioral variables. The relationships between LVM and several psychosocial characteristics (hostility, anger suppression, anxiety, depressive symptoms, and education) were also assessed. Systolic blood pressure (SBP) reactivity to exercise was significantly related to LVM in black and white men; LVM was 10% greater among white men with exaggerated (upper quintile) peak exercise SBP than among other white men. SBP reactivity to the cold pressor test was related to LVM in all race/gender groups, although the relationship remained significant only among white men and women in the multivariate analysis. Diastolic blood pressure (DBP) reactivity to the video game was related to LVM only among black men in adjusted analyses. After adjusting for resting BP, weight, and other covariates in linear multiple regression models, SBP reactivity to exercise explained only 3% of the variance in LVM among white men. Otherwise, reactivity to other stressors or psychosocial variables accounted for no more than 1% of the variance in LVM. It was concluded that among a cohort of young adults, blood pressure reactivity to physical and mental stressors did not add substantially to the prediction of LVM when resting BP, weight, and other covariates were taken into account.

  17. Effects of forearm bier block with bretylium on the hemodynamic and metabolic responses to handgrip

    NASA Technical Reports Server (NTRS)

    Lee, F.; Shoemaker, J. K.; McQuillan, P. M.; Kunselman, A. R.; Smith, M. B.; Yang, Q. X.; Smith, H.; Gray, K.; Sinoway, L. I.

    2000-01-01

    We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and (31)P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm (P < 0.03 and P < 0.02, respectively). However, despite this increase in flow, venous K(+) release and H(+) release were both increased during exercise (P < 0.002 for both indexes). Additionally, minimal muscle pH measured during the first minute of recovery with NMR was lower after bier block (6.41 +/- 0.08 vs. 6.20 +/- 0.06; P < 0.036, simple effects). Meanwhile, reflex effects were unaffected by the bretylium bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H(+) release, presumably through a preferential recruitment of oxidative fibers.

  18. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  19. Targeted ablation of cardiac sympathetic neurons reduces resting, reflex and exercise-induced sympathetic activation in conscious rats.

    PubMed

    Lujan, Heidi L; Palani, Gurunanthan; Chen, Ying; Peduzzi, Jean D; Dicarlo, Stephen E

    2009-05-01

    Cholera toxin B subunit conjugated to saporin (SAP, a ribosomal inactivating protein that binds to and inactivates ribosomes) was injected in both stellate ganglia to evaluate the physiological response to targeted ablation of cardiac sympathetic neurons. Resting cardiac sympathetic activity (cardiac sympathetic tonus), exercise-induced sympathetic activity (heart rate responses to graded exercise), and reflex sympathetic activity (heart rate responses to graded doses of sodium nitroprusside, SNP) were determined in 18 adult conscious Sprague-Dawley male rats. Rats were randomly divided into the following three groups (n = 6/group): 1) control (no injection), 2) bilateral stellate ganglia injection of unconjugated cholera toxin B (CTB), and 3) bilateral stellate ganglia injection of cholera toxin B conjugated to SAP (CTB-SAP). CTB-SAP rats, compared with control and CTB rats, had reduced cardiac sympathetic tonus and reduced heart rate responses to graded exercise and graded doses of SNP. Furthermore, the number of stained neurons in the stellate ganglia and spinal cord (segments T(1)-T(4)) was reduced in CTB-SAP rats. Thus CTB-SAP retrogradely transported from the stellate ganglia is effective at ablating cardiac sympathetic neurons and reducing resting, exercise, and reflex sympathetic activity. Additional studies are required to further characterize the physiological responses to this procedure as well as determine if this new approach is safe and efficacious for the treatment of conditions associated with excess sympathetic activity (e.g., autonomic dysreflexia, hypertension, heart failure, and ventricular arrhythmias).

  20. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study

    PubMed Central

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524

  1. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study.

    PubMed

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.

  2. Baroreflex Function in Rats after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Hasser, Eileen M.

    1997-01-01

    Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.

  3. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.

    1994-01-01

    Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).

  4. Analysis of responses of cold pressor tests on pilots and executives

    NASA Technical Reports Server (NTRS)

    Swaroop, R.

    1977-01-01

    Statistical analyses were performed to study the relationship between cold pressor test responses and certain medical attributes of a group of 81 pilots and a group of 466 executives. The important results of this study were as follows: There was a significant relationship between a subject's cold pressor test response and his profession (that is, pilot or executive). The executives' diastolic cold pressor test responses were significantly related to their medical conditions, and their families' medical conditions. Significant relationships were observed between executives' diastolic and systolic cold pressor test responses and their history of tranquilizer and cardiac drug use.

  5. Impact of tachycardia and sympathetic stimulation by cold pressor test on cardiac diastology and arterial function in elderly females.

    PubMed

    Johnson, Jonas; Håkansson, Felicia; Shahgaldi, Kambiz; Manouras, Aristomenis; Norman, Mikael; Sahlén, Anders

    2013-04-01

    Abnormal vascular-ventricular coupling has been suggested to contribute to heart failure with preserved ejection fraction in elderly females. Failure to increase stroke volume (SV) during exercise occurs in parallel with dynamic changes in arterial physiology leading to increased afterload. Such adverse vascular reactivity during stress may reflect either sympathoexcitation or be due to tachycardia. We hypothesized that afterload elevation induces SV failure by transiently attenuating left ventricular relaxation, a phenomenon described in animal research. The respective roles of tachycardia and sympathoexcitation were investigated in n = 28 elderly females (70 ± 4 yr) carrying permanent pacemakers. At rest, during atrial tachycardia pacing (ATP; 100 min(-1)) and during cold pressor test (hand immersed in ice water), we performed Doppler echocardiography (maximal untwist rate analyzed by speckle tracking imaging of rotational mechanics) and arterial tonometry (arterial stiffness estimated as augmentation index). Estimation of arterial compliance was based on an exponential relationship between arterial pressure and volume. We found that ATP produced central hypovolemia and a reduction in SV which was larger in patients with stiffer arteries (higher augmentation index). There was an associated adverse response of arterial compliance and vascular resistance during ATP and cold pressor test, causing an overall increase in afterload, but nonetheless enhanced maximal rate of untwist and no evidence of afterload-dependent failure of relaxation. In conclusion, tachycardia and cold provocation in elderly females produces greater vascular reactivity and SV failure in the presence of arterial stiffening, but SV failure does not arise secondary to afterload-dependent attenuation of relaxation.

  6. Comparison of the transplacental transfer of enalapril, captopril and losartan in sheep.

    PubMed Central

    Stevenson, K M; Gibson, K J; Lumbers, E R

    1995-01-01

    1. The transplacental transfers of three drugs (enalapril, captopril and losartan) which block the renin angiotensin system and have different lipophilicities were studied in chronically catheterized foetal sheep (125-139 days gestation). 2. The ability of the foeto-placental unit to convert enalapril to enalaprilat was studied in two chronically catheterized foetuses. Enalapril (3 mg kg-1, 7.9 mumol kg-1) given i.v. to the foetuses abolished the foetal pressor response to 5 micrograms angiotensin I (AI) in one foetus and attenuated the pressor response in the other. 3. Enalapril (100 mg, 5.7 mumol kg-1) given i.v. to the ewe (n = 5) abolished the maternal pressor response to 2.5 micrograms AI (n = 1) and attenuated the maternal pressor response to 5 micrograms AI (n = 5, P < 0.001). The foetal pressor response to 5 micrograms AI (n = 2) and 10 micrograms AI (n = 3) did not change. The maternal and foetal pressor responses to angiotensin II (AII; n = 5) did not change. 4. Foetal pressor responses to 5 micrograms AI (n = 1) and 10 micrograms AI (n = 2) were attenuated within 11 min of their mothers (n = 3) being given i.v. captopril (15 mg, 1.5 mumol kg-1). Foetal pressor responses to 5 micrograms AII (n = 1) and to 10 micrograms AII (n = 2) did not change. 5. Losartan (100 mg, kg-1, 21.7 mumol kg-1) given i.v. to the foetus (n = 9) attenuated the foetal pressor response to 5 micrograms AII (P < 0.001) but the maternal pressor response to 5 micrograms AII did not change.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7606354

  7. Lack of desensitization of the cough reflex in ovalbumin-sensitized rabbits during exercise.

    PubMed

    Tiotiu, Angelica; Chenuel, Bruno; Foucaud, Laurent; Demoulin, Bruno; Demoulin-Alexikova, Silvia; Christov, Christo; Poussel, Mathias

    2017-01-01

    Cough is a major symptom of asthma frequently experienced during exercise but little is known about interactions between cough and exercise. The goal of our study was to clarify the potential modulation of the cough reflex (CR) by exercise in a spontaneously breathing anaesthetized animal model of airway eosinophilic inflammation. Ten ovalbumin (OVA) sensitized adult rabbits and 8 controls were studied. The ventilatory response to direct tracheal stimulation, performed both at rest and during exercise was determined to quantify the incidence and the sensitivity of the CR. Broncho-alveolar lavages (BAL) and cell counts were performed to assess the level of the airway inflammation following OVA-induced sensitization. Exercise was mimicked by Electrically induced hindlimb Muscular Contractions (EMC). Among 494 tracheal stimulations, 261 were performed at rest and 233 at exercise. OVA challenges in sensitized rabbits caused a significant increase in the percentage of eosinophils (p = 0.008) in BAL. EMC increased minute ventilation by 36% and 35% in OVA and control rabbits respectively, compared to rest values. The sensitivity of the CR decreased during exercise compared to baseline in control rabbits (p = 0.0313) while it remained unchanged in OVA rabbits. The desensitization of the CR during exercise in control rabbits was abolished in OVA rabbits. The precise role of airway inflammation in this lack of CR desensitization needs to be further investigated but it might contribute to the exercise-induced cough in asthmatics.

  8. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure.

    PubMed

    Haack, Karla K V; Zucker, Irving H

    2015-03-01

    The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Genetic variation in the ASIC3 gene influences blood pressure levels in Taiwanese.

    PubMed

    Ko, Yu-Lin; Hsu, Lung-An; Wu, Semon; Teng, Ming-Sheng; Chang, Hsien-Hsun; Chen, Chih-Cheng; Cheng, Ching-Feng

    2008-11-01

    The acid-sensing ion channel 3 (ASIC3) is a ligand-gated cation channel activated by extracellular protons, and is associated with an exercise-induced pressor reflex and possibly autonomic imbalance. To test the statistical association between genetic polymorphisms of the ASIC3 gene and blood pressure (BP) variations in Taiwanese, 551 unrelated individuals (286 men and 265 women) were recruited from a routine health examination. The participants had no prior history of cardiovascular disease or medication use for hypertension. Six ASIC3 gene polymorphisms were genotyped; three were polymorphic, and only the rs2288646 polymorphism was associated with variations in BP among participants. Significantly higher systolic, diastolic, and mean BP were observed in participants carrying the rs2288646-A allele (P=0.034, 0.023, and 0.010, respectively). Significantly higher frequencies of the rs2288646-A-containing genotype were observed in normotensive, prehypertensive, and hypertensive subgroups (P for trend=0.026); and in those with higher systolic and diastolic BPs (P for trend=0.005 and P for trend=0.002, respectively). The association between the rs2288646-A allele and BP persisted even after adjustment for age, sex, BMI, and other metabolic factors. When a second independent group of 403 individuals was combined with the first group of 551 (n=954), a significantly higher frequency of the rs2288646-A-containing genotype was observed in participants with hypertension (9.7 vs. 4.0%, P=0.003). Our data showed an independent association between an ASIC3 genetic polymorphism and BP variations in Taiwanese. These results suggest that the ASIC3 may be involved in BP regulation.

  10. Physiological stress response, reflex impairment and delayed mortality of white sturgeon Acipenser transmontanus exposed to simulated fisheries stressors

    PubMed Central

    McLean, Montana F.; Hanson, Kyle C.; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Nettles, Taylor L.; Litvak, Matt K.; Crossin, Glenn T.

    2016-01-01

    White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations. PMID:27766153

  11. Dehydration enhances pain-evoked activation in the human brain compared with rehydration.

    PubMed

    Ogino, Yuichi; Kakeda, Takahiro; Nakamura, Koji; Saito, Shigeru

    2014-06-01

    Negative effects of dehydration on the human brain and cognitive function have been reported. In this study, we examined the effects of dehydration on pain thresholds and cortical activations in response to pain, compared with rehydration with an oral rehydration solution (ORS) by functional magnetic resonance imaging. Five healthy adult men were subjected to dehydration and rehydration on 2 different days. The condition on the first day was randomly assigned to each subject. They completed a 40-minute exercise protocol using a walking machine after 12 hours of fasting under both conditions. For rehydration, the subjects consumed up to 3000 mL ORS starting from the night before the test day. After exercise, a painful stimulus (cold pressor test) was applied to the subjects' medial forearm in a magnetic resonance imaging scanning gantry, and pain-evoked brain activation was analyzed. On the rehydration day, each of the subjects consumed an average of 2040 mL (range; 1800-2500 mL) ORS. Physiological data revealed that subjects when dehydrated lost more weight from exercise than subjects when rehydrated had a larger heart rate increase, a higher tympanic temperature, and a higher urine osmolality. Subjective data revealed that the subjects reported significantly stronger thirst while dehydrated than while rehydrated with ORS, although the levels of hunger and anxiety and mood did not significantly differ between conditions. The cold pressor test robustly activated the pain-related neural network, notably the anterior cingulate cortex, insula, and thalamus. Such activations in the dehydrated subjects were greater than those in the rehydrated subjects in terms of peak and cluster, accompanied by a decrease in pain threshold (P = 0.001). Our findings suggest that dehydration brings about increased brain activity related to painful stimuli together with enhanced thirst, whereas rehydration with ORS alleviates thirst and decreases brain activity related to painful stimuli.

  12. Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Diedrich, Andre; Cox, James F.; Zuckerman, Julie H.; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; hide

    2002-01-01

    Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.

  13. Influence of exercise on visceral pain: an explorative study in healthy volunteers

    PubMed Central

    van Weerdenburg, Laura JGM; Brock, Christina; Drewes, Asbjørn Mohr; van Goor, Harry; de Vries, Marjan; Wilder-Smith, Oliver HG

    2017-01-01

    Background and objectives Contradictory results have been found about the effect of different exercise modalities on pain. The aim of this study was to investigate the early effects of aerobic and isometric exercise on different types of experimental pain, including visceral pain, compared to an active control condition. Methods Fifteen healthy subjects (6 women, mean [standard deviation] age 25 [6.5] years) completed 3 interventions consisting of 20 minutes of aerobic cycling, 12 minutes of isometric knee extension and a deep breathing procedure as active control. At baseline and after each intervention, psychophysical tests were performed, including electrical stimulation of the esophagus, pressure pain thresholds and the cold pressor test as a measure for conditioned pain modulation. Participants completed the Medical Outcome Study Short-Form 36 and State-Trait Anxiety Inventory prior to the experiments. Data were analyzed using two-way repeated measures analysis of variance. Results No significant differences were found for the psychophysical tests after the interventions, compared to baseline pain tests and the control condition. Conclusion No hypoalgesic effect of aerobic and isometric exercise was found. The evidence for exercise-induced hypoalgesia appears to be not as consistent as initially thought, and caution is recommended when interpreting the effects of exercise on pain. PMID:28096689

  14. Acute effect of oral water intake during exercise on post-exercise hypotension.

    PubMed

    Endo, M Y; Kajimoto, C; Yamada, M; Miura, A; Hayashi, N; Koga, S; Fukuba, Y

    2012-11-01

    Post-exercise hypotension (PEH) is a sustained reduction in mean arterial blood pressure (MAP) after prolonged exercise. As water drinking is known to elicit a large acute pressor response, we aimed to explore the effect of drinking water during exercise on PEH. Ten normotensive male volunteers performed the control protocol: 30 min supine rest, 60 min cycling exercise in moderate intensity, and 60 min supine rest recovery. In the water drinking protocol, the same procedure was followed but with water intake during exercise to compensate for exercise-induced body weight lost. Heart rate, MAP, cardiac output and blood flow in the brachial artery were measured pre- and post-exercise. The total vascular conductance (TVC) and the vascular conductance (VC) in the brachial artery were calculated pre- and post-exercise, and the relative change in plasma volume (ΔPV) was also measured. Body weight loss during exercise was 0.65 ± 0.24 kg in the control. ΔPV was not different during recovery in either protocol. MAP in the control was significantly reduced during the latter half of the recovery compared with baseline. In contrast, MAP in the water drinking showed no reduction during recovery, and was significantly higher than in the control. TVC and VC in the brachial artery were lower in the water drinking, in which vasoconstriction was relatively exaggerated. Prevention of dehydration after exercise by oral water intake, or oral water intake per se has a role in maintaining post-exercise MAP and it may be related to reduction in TVC.

  15. Diagnosing and treating neurogenic orthostatic hypotension in primary care.

    PubMed

    Kuritzky, Louis; Espay, Alberto J; Gelblum, Jeffrey; Payne, Richard; Dietrich, Eric

    2015-01-01

    In response to a change in posture from supine or sitting to standing, autonomic reflexes normally maintain blood pressure (BP) by selective increases in arteriovenous resistance and by increased cardiac output, ensuring continued perfusion of the central nervous system. In neurogenic orthostatic hypotension (NOH), inadequate vasoconstriction and cardiac output cause BP to drop excessively, resulting in inadequate perfusion, with predictable symptoms such as dizziness, lightheadedness and falls. The condition may represent a central failure of baroreceptor signals to modulate cardiovascular function, a peripheral failure of norepinephrine release from cardiovascular sympathetic nerve endings, or both. Symptomatic patients may benefit from both non-pharmacologic and pharmacologic interventions. Among the latter, two pressor agents have been approved by the US Food and Drug Administration: the sympathomimetic prodrug midodrine, approved in 1996 for symptomatic orthostatic hypotension, and the norepinephrine prodrug droxidopa, approved in 2014, which is indicated for the treatment of symptomatic neurogenic orthostatic hypotension caused by primary autonomic failure (Parkinson's disease, multiple system atrophy and pure autonomic failure). A wide variety of off-label options also have been described (e.g. the synthetic mineralocorticoid fludrocortisone). Because pressor agents may promote supine hypertension, NOH management requires monitoring of supine BP and also lifestyle measures to minimize supine BP increases (e.g. head-of-bed elevation). However, NOH has been associated with cognitive impairment and increases a patient's risk of syncope and falls, with the potential for serious consequences. Hence, concerns about supine hypertension - for which the long-term prognosis in patients with NOH is yet to be established - must sometimes be balanced by the need to address a patient's immediate risks.

  16. Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2003-01-01

    INTRODUCTION: Plasma volume, heart rate (HR) variability, and stimulus-response relationships for baroreflex control of forearm vascular resistance (FVR) and HR were studied in eight healthy men after and without performing a bout of maximal exercise to test the hypotheses that acute expansion of plasma volume is associated with 1) reduction in baroreflex-mediated HR response, and 2) altered operational range for central venous pressure (CVP). METHODS: The relationship between stimulus (DeltaCVP) and vasoconstrictive reflex response (DeltaFVR) during unloading of cardiopulmonary baroreceptors was assessed with lower-body negative pressure (LBNP, 0, -5, -10, -15, -20 mm Hg). The relationship between stimulus (Deltamean arterial pressure (MAP)) and cardiac reflex response (DeltaHR) during loading of arterial baroreceptors was assessed with steady-state infusion of phenylephrine (PE) designed to increase MAP by 15 mm Hg alone and during application of LBNP (PE+LBNP) and neck pressure (PE+LBNP+NP). Measurements of vascular volume and autonomic baroreflex responses were conducted on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested 24 h after graded cycle exercise to volitional exhaustion. On another day, measurement of baroreflex response was repeated with no exercise (control). The order of exercise and control treatments was counterbalanced. RESULTS: Baseline CVP was elevated (P = 0.04) from a control value of 10.5 +/- 0.4 to 12.3 +/- 0.4 mm Hg 24 h after exercise. Average DeltaFVR/DeltaCVP during LBNP was not different (P = 0.942) between the exercise (-1.35 +/- 0.32 pru x mm Hg-1) and control (-1.32 +/- 0.36 pru x mm Hg-1) conditions. However, maximal exercise caused a shift along the reflex response relationship to a higher CVP and lower FVR. HR baroreflex response (DeltaHR/DeltaMAP) to PE+LBNP+NP was lower (P = 0.015) after maximal exercise (-0.43 +/- 0.15 beats x min-1 x mm Hg-1) compared with the control condition (-0.83 +/- 0.14 beats x min-1 x mm Hg-1). CONCLUSION: Expansion of vascular volume after acute exercise is associated with altered operational range for CVP and reduced HR response to arterial baroreceptor stimulation.

  17. AV3V lesions attenuate the cardiovascular responses produced by blood-borne excitatory amino acid analogs

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Beltz, T. G.; Lewis, S. J.; Johnson, A. K.

    1999-01-01

    Systemic injections of the excitatory amino acid (EAA) analogs, kainic acid (KA) and N-methyl-D-aspartate (NMDA), produce a pressor response in conscious rats that is caused by a centrally mediated activation of sympathetic drive and the release of arginine vasopressin (AVP). This study tested the hypothesis that the tissue surrounding the anteroventral part of the third ventricle (AV3V) plays a role in the expression of the pressor responses produced by systemically injected EAA analogs. Specifically, we examined whether prior electrolytic ablation of the AV3V region would affect the pressor responses to KA and NMDA (1 mg/kg iv) in conscious rats. The KA-induced pressor response was smaller in AV3V-lesioned than in sham-lesioned rats (11 +/- 2 vs. 29 +/- 2 mmHg; P < 0.05). After ganglion blockade, KA produced a pressor response in sham-lesioned but not AV3V-lesioned rats (+27 +/- 3 vs. +1 +/- 2 mmHg; P < 0.05). The KA-induced pressor response in ganglion-blocked sham-lesioned rats was abolished by a vasopressin V1-receptor antagonist. Similar results were obtained with NMDA. The pressor response to AVP (10 ng/kg iv) was slightly smaller in AV3V-lesioned than in sham-lesioned ganglion-blocked rats (45 +/- 3 vs. 57 +/- 4 mmHg; P < 0.05). This study demonstrates that the pressor responses to systemically injected EAA analogs are smaller in AV3V-lesioned rats. The EAA analogs may produce pressor responses by stimulation of EAA receptors in the AV3V region, or the AV3V region may play an important role in the expression of these responses.

  18. Contrasting actions of pressor agents in severe autonomic failure

    NASA Technical Reports Server (NTRS)

    Jordan, J.; Shannon, J. R.; Biaggioni, I.; Norman, R.; Black, B. K.; Robertson, D.

    1998-01-01

    BACKGROUND: Orthostatic hypotension is the most disabling symptom of autonomic failure. The choice of a pressor agent is largely empiric, and it would be of great value to define predictors of a response. PATIENTS AND METHODS: In 35 patients with severe orthostatic hypotension due to multiple system atrophy or pure autonomic failure, we determined the effect on seated systolic blood pressure (SBP) of placebo, phenylpropanolamine (12.5 mg and 25 mg), yohimbine (5.4 mg), indomethacin (50 mg), ibuprofen (600 mg), caffeine (250 mg), and methylphenidate (5 mg). In a subgroup of patients, we compared the pressor effect of midodrine (5 mg) with the effect of phenylpropanolamine (12.5 mg). RESULTS: There were no significant differences in the pressor responses between patients with multiple system atrophy or pure autonomic failure. When compared with placebo, the pressor response was significant for phenylpropanolamine, yohimbine, and indomethacin. In a subgroup of patients, we confirmed that this pressor effect of phenylpropanolamine, yohimbine, and indomethacin corresponded to a significant increase in standing SBP. The pressor responses to ibuprofen, caffeine, and methylphenidate were not significantly different from placebo. Phenylpropanolamine and midodrine elicited similar pressor responses. There were no significant associations between drug response and autonomic function testing, postprandial hypotension, or plasma catecholamine levels. CONCLUSIONS: We conclude that significant increases in systolic blood pressure can be obtained in patients with orthostatic hypotension due to primary autonomic failure with phenylpropanolamine in low doses or yohimbine or indomethacin in moderate doses. The response to a pressor agent cannot be predicted by autonomic function testing or plasma catecholamines. Therefore, empiric testing with a sequence of medications, based on the risk of side effects in the individual patient and the probability of a response, is a useful approach.

  19. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2011-09-01

    The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.

  20. Increased conditioned pain modulation in athletes.

    PubMed

    Flood, Andrew; Waddington, Gordon; Thompson, Kevin; Cathcart, Stuart

    2017-06-01

    The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.

  1. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion.

    PubMed

    Florian, John P; Simmons, Erin E; Chon, Ki H; Faes, Luca; Shykoff, Barbara E

    2013-11-01

    The physiological responses to water immersion (WI) are known; however, the responses to stress following WI are poorly characterized. Ten healthy men were exposed to three physiological stressors before and after a 6-h resting WI (32-33°C): 1) a 2-min cold pressor test, 2) a static handgrip test to fatigue at 40% of maximum strength followed by postexercise muscle ischemia in the exercising forearm, and 3) a 15-min 70° head-up-tilt (HUT) test. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), cardiac output (Q), limb blood flow (BF), stroke volume (SV), systemic and calf or forearm vascular resistance (SVR and CVR or FVR), baroreflex sensitivity (BRS), and HR variability (HRV) frequency-domain variables [low-frequency (LF), high-frequency (HF), and normalized (n)] were measured. Cold pressor test showed lower HR, SBP, SV, Q, calf BF, LFnHRV, and LF/HFHRV and higher CVR and HFnHRV after than before WI (P < 0.05). Handgrip test showed no effect of WI on maximum strength and endurance and lower HR, SBP, SV, Q, and calf BF and higher SVR and CVR after than before WI (P < 0.05). During postexercise muscle ischemia, HFnHRV increased from baseline after WI only, and LFnHRV was lower after than before WI (P < 0.05). HUT test showed lower SBP, DBP, SV, forearm BF, and BRS and higher HR, FVR, LF/HFHRV, and LFnHRV after than before WI (P < 0.05). The changes suggest differential activation/depression during cold pressor and handgrip (reduced sympathetic/elevated parasympathetic) and HUT (elevated sympathetic/reduced parasympathetic) following 6 h of WI.

  2. Effect of losartan, an angiotensin II type 1 receptor antagonist on cardiac autonomic functions of rats during acute and chronic inhibition of nitric oxide synthesis.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Mishra, A K; Fahim, M

    2012-01-01

    We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.

  3. A personal overview of causalgia and other reflex dystrophies.

    PubMed Central

    Shumacker, H B

    1985-01-01

    This is a personal assessment of true major causalgia and the other reflex dystrophies, related but distinctly separate entities. The clinical picture of causalgia differs only in minor respects from that described by Mitchell over 120 years ago. Its management has, however, been clarified, largely through the extensive experiences of World War II. It is readily recognized and can be treated effectively by sympathetic blocks or sympathectomy together with active exercise. The other reflex dystrophies are far less understood. They appear to have a similar pattern in their early phase and to respond well to a program of exercise and control of edema--a regimen which, because of pain and paresis, cannot be carried out without sympathetic blocks or occasionally sympathectomy. When not recognized early and treated properly, the sympatomatology usually changes dramatically and treatment differs. Often control of edema and active use of the affected part are all that is necessary. Sometimes, in addition to these measures, sympathetic blocks or sympathectomy is required. Guidelines found useful in management are outlined. Puzzling features are discussed. PMID:3977427

  4. Effects of water drinking on cardiovascular responses to supine exercise and on orthostatic hypotension after exercise in pure autonomic failure.

    PubMed

    Humm, A M; Mason, L M; Mathias, C J

    2008-10-01

    Patients with pure autonomic failure (PAF) have an abnormal fall in blood pressure (BP) with supine exercise and exacerbation of orthostatic hypotension (OH) after exercise. This study assessed the pressor effect of water on the cardiovascular responses to supine exercise and on OH after exercise. 8 patients with PAF underwent a test protocol consisting of standing for 5 min, supine rest for 10 min, supine exercise by pedalling a cycle ergometer at workloads of 25, 50 and 75 W (each for 3 min), supine rest for 10 min and standing for 5 min. The test protocol was performed without water ingestion and on a separate occasion after 480 ml of distilled water immediately after pre-exercise standing. Beat to beat cardiovascular indices were measured with the Portapres II device with subsequent Modelflow analysis. All patients had severe OH pre-exercise (BP fall systolic 65.0 (26.1) mm Hg, diastolic 22.7 (13.5) mm Hg), with prompt recovery of BP in the supine position. 5 min after water drinking, there was a significant rise in BP in the supine position. With exercise, there was a clear fall in BP (systolic 42.1 (24.4) mm Hg, diastolic 25.9 (10.0) mm Hg) with a modest rise in heart rate; this occurred even after water ingestion (BP fall systolic 49.8 (18.9) mm Hg, diastolic 26.0 (9.1) mm Hg). BP remained low after exercise but was significantly higher after water intake, resulting in better tolerance of post-exercise standing. Water drinking did not change the abnormal cardiovascular responses to supine exercise. However, water drinking improved orthostatic tolerance post-exercise.

  5. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    PubMed

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  6. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  7. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  8. Effect of some blocking drugs on the pressor response to physostigmine in the rat

    PubMed Central

    Gokhale, S. D.; Gulati, O. D.; Joshi, N. Y.

    1963-01-01

    Bretylium and guanethidine blocked the pressor effect of physostigmine and potentiated the responses to adrenaline and noradrenaline on the blood pressure of the rat. Morphine and atropine in small doses blocked the pressor effect of physostigmine without interfering with the actions of adrenaline and noradrenaline. Chlorpromazine in small doses (0.5 to 2.5 mg/kg) blocked the pressor effect of physostigmine and potentiated the responses to noradrenaline whilst those to adrenaline remained unaltered. 3,6-Di(3-diethylaminopropoxy)pyridazine di(methiodide) (Win 4981) blocked the pressor effect of physostigmine and, in its early stages, this block was partially reversed by choline chloride. N-Diethylaminoethyl-N-isopentyl-N'N'-diisopropylurea (P-286), in a dose that reduced the effect of dimethylphenylpiperazinium, had no effect on the pressor response to physostigmine or on the responses to adrenaline and noradrenaline. Hexamethonium, even in large doses (100 mg/kg), only blocked partially the effect of physostigmine while mecamylamine produced a complete block; the responses to adrenaline and noradrenaline were potentiated in both instances. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14081658

  9. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats.

    PubMed

    Shanks, Julia; Xia, Zhiqiu; Lisco, Steven J; Rozanski, George J; Schultz, Harold D; Zucker, Irving H; Wang, Han-Jun

    2018-06-01

    The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory pulmonary chemosensitive sympathetic afferent reflex. This finding may have important clinical implications in pulmonary conditions inducing sensory nerve activation such as pulmonary inflammation and inhalation of chemical stimuli. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Haemodynamic responses in chronically painful, human trapezius muscle to cold pressor stimulation.

    PubMed

    Acero, C O; Kuboki, T; Maekawa, K; Yamashita, A; Clark, G T

    1999-10-01

    The aim was to compare haemodynamic responses in trapezius muscles to cold pressor stimulation in individuals with localized trapezius myalgia and asymptomatic controls. Nine males with chronic localized pain in the trapezius (mean age, 23.2 years) and nine male controls (mean age, 24.6 years) who had no medical history of migraine, hypertension or sustained pain in the trapezius region were investigated. Two experimental (cold pressor and mock) trials were performed in a randomly assigned sequence. In the cold pressor trial the participant's left foot and ankle were immersed in 4 degrees C cold water for 2 min; the mock trial was done without that stimulus. Blood volume was continuously recorded 1 min before, 2 min during, and 5 min after cold pressor stimulation using near-infrared spectroscopy. Each participant's blood-volume data were baseline-corrected and submitted to statistical analysis. Results showed that the individuals with muscle pain exhibited a significantly lower mean blood volume than the controls during cold pressor stimulation (p = 0.0367). Upon withdrawal of that stimulation, the mean blood volume in both groups fell below the baseline. These results suggest that individuals with chronic regional trapezius myalgia have less capacity to vasodilate this muscle during cold pressor stimulation than those without such myalgia. It is not yet known if this difference in the haemodynamic response is a cause or an effect of the myalgia.

  11. Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats.

    PubMed

    Alsufyani, Hadeel A; Docherty, James R

    2018-04-15

    We have investigated the cardiac and pressor responses to (±)-ephedrine and (-)-ephedrine in pentobarbitone anaesthetized male wistar rats. The tachycardiac responses to (±)- and (-)-ephedrine were similar, but pressor responses to (-)-ephedrine (10 mg/kg) were significantly greater than those to (±)-ephedrine, and for both, the pressor response was followed by a small depressor response. Sympathectomy did not affect pressor responses, but significantly increased the later depressor response to both compounds. Sympathectomy did not affect tachycardiac or depressor responses to the β-adrenoceptor agonist isoprenaline, but significantly reduced the tachycardia to (±)-ephedrine. (±)-Ephedrine contracted vas deferens from vehicle treatment animals, but in vas deferens from sympathectomised rats, (±)-ephedrine produced almost no tonic contraction (α 1A -adrenoceptor mediated), but the phasic contraction was unaffected (α 1D -adrenoceptor mediated). It is concluded, firstly, that (-)-ephedrine is more potent than the racemate mixture at producing pressor responses. Secondly, since the depressor response to isoprenaline was unaffected, sympathectomy presumably reduced a pressor component to the response to (±)- and (-)-ephedrine. Hence, a component of the pressor response to both (±)- and (-)-ephedrine is indirect and may involve actions at α 1A -adrenoceptors, at which ephedrine does not have marked direct actions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: the role of cognitive processing.

    PubMed

    Law, Emily F; Dahlquist, Lynnda M; Sil, Soumitri; Weiss, Karen E; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Seventy-nine children ages 6-15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing.

  13. The illusion of presence influences VR distraction: effects on cold-pressor pain.

    PubMed

    Gutierrez-Martinez, Olga; Gutierrez-Maldonado, Jose; Cabas-Hoyos, Kattia; Loreto, Desirée

    2010-01-01

    This study investigated whether VR presence influences how effectively VR distraction reduces pain intensity during a cold-pressor experience. Thirty-seven healthy students underwent a cold pressor task while interacting with a VR distraction world. After the VR cold-pressor experience, each subject provided VAS ratings of the most intense pain experienced during the hand immersion and rated their illusion of having been inside the virtual world. Results showed that the amount of VR presence reported correlated significantly and negatively with ratings of pain intensity. The importance of using an appropriately designed VR to achieve effective VR analgesia is highlighted.

  14. Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.005) during the cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.

  15. The chronic infusion of hexamethonium and phenylephrine to effectively clamp sympathetic vasomotor tone. A novel approach.

    PubMed

    Collister, J P; Osborn, J W

    1999-11-01

    There are several ways to assess the sympathetic nervous system (i.e. , nerve recording, sympathectomy, etc.), each of which has its own limitations. The present study was conducted to establish a standard, testable chronic ganglionic blockade protocol with a fixed level of adrenergic vasomotor tone. Rats were instrumented with radio telemetry pressure transducers and venous catheters for continuous measurement of arterial pressure and infusion of pharmacologic agents, respectively. After 3 days of control measurements, rats were infused for 9 days with a continuous dose of the ganglionic blocking agent, hexamethonium and the alpha-adrenergic agonist, phenylephrine. In this way, sympathetic tone was effectively "clamped," which maintained a normal level of arterial pressure. Control pressure between hexamethonium + phenylephrine (HEX + PE) treated rats (101+/-2 mm Hg) and saline (VEHICLE) treated rats (101+/-2 mmHg) was not different. By day 9 of the infusion, there was no difference in arterial pressure between groups (VEHICLE: 101+/-3 mm Hg, HEX + PE: 103+/-3 mm Hg) or from the control period, although heart rate was significantly less in HEX + PE rats (VEHICLE: 406+/-9 beats/min vs. HEX + PE: 343+/-6 beats/min). The effectiveness of this technique was validated by measuring cardiac baroreceptor reflex sensitivity, as well as the pressor response to the direct ganglionic stimulating agent, 1, 1-dimethyl-4-phenylpiperazinium iodide (DMPP). Compared to VEHICLE rats, HEX + PE rats showed no tachycardic response to depressor stimuli and an absence of a pressor response to DMPP. We conclude that this protocol is a useful technique to chronically, yet reversibly, block the sympathetic nervous system in experimental settings.

  16. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    PubMed

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.

  17. Effects of treadmill training on functional recovery following peripheral nerve injury in rats

    PubMed Central

    Boeltz, Tiffany; Ireland, Meredith; Mathis, Kristin; Nicolini, Jennifer; Poplavski, Karen; Rose, Samuel J.; Wilson, Erin

    2013-01-01

    Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking. PMID:23468390

  18. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570

  19. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.

  20. Interplay between brain stem angiotensins and monocyte chemoattractant protein-1 as a novel mechanism for pressor response after ischemic stroke.

    PubMed

    Chang, Alice Y W; Li, Faith C H; Huang, Chi-Wei; Wu, Julie C C; Dai, Kuang-Yu; Chen, Chang-Han; Li, Shau-Hsuan; Su, Chia-Hao; Wu, Re-Wen

    2014-11-01

    Pressor response after stroke commonly leads to early death or susceptibility to stroke recurrence, and detailed mechanisms are still lacking. We assessed the hypothesis that the renin-angiotensin system contributes to pressor response after stroke by differential modulation of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) in the rostral ventrolateral medulla (RVLM), a key brain stem site that maintains blood pressure. We also investigated the beneficial effects of a novel renin inhibitor, aliskiren, against stroke-elicited pressor response. Experiments were performed in male adult Sprague-Dawley rats. Stroke induced by middle cerebral artery occlusion elicited significant pressor response, accompanied by activation of angiotensin II (Ang II)/type I receptor (AT1R) and AT2R signaling, depression of Ang-(1-7)/MasR and Ang IV/AT4R cascade, alongside augmentation of MCP-1/C-C chemokine receptor 2 (CCR2) signaling and neuroinflammation in the RVLM. Stroke-elicited pressor response was significantly blunted by antagonism of AT1R, AT2R or MCP-1/CCR2 signaling, and eliminated by applying Ang-(1-7) or Ang IV into the RVLM. Furthermore, stroke-activated MCP-1/CCR2 signaling was enhanced by AT1R and AT2R activation, and depressed by Ang-(1-7)/MasR and Ang IV/AT4R cascade. Aliskiren inhibited stroke-elicited pressor response via downregulating MCP-1/CCR2 activity and reduced neuroinflammation in the RVLM; these effects were potentiated by Ang-(1-7) or Ang IV. We conclude that whereas Ang II/AT1R or Ang II/AT2R signaling in the brain stem enhances, Ang-(1-7)/MasR or Ang IV/AT4R antagonizes pressor response after stroke by differential modulations of MCP-1 in the RVLM. Furthermore, combined administration of aliskiren and Ang-(1-7) or Ang IV into the brain stem provides more effective amelioration of stroked-induced pressor response. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs. Copyright © 2014 the authors 0270-6474/14/348976-12$15.00/0.

  2. Downregulation of cough by exercise and voluntary hyperpnea.

    PubMed

    Fontana, Giovanni A

    2010-01-01

    No information exists on the effects of hyperpnea on the sensory and cognitive aspects of coughing evoked by inhalation of tussigenic agents. The threshold for the cough reflex induced by inhalation of increasing concentrations of ultrasonically nebulized distilled water (fog), and the index of cough reflex sensitivity, was assessed in 12 healthy humans in control conditions, during exercise, and during voluntary isocapnic hyperventilation (VIH) to the same level as the exercise. The intensity of the urge-to-cough (UTC), a cognitive component of coughing, was also recorded throughout the trials. The log-log relationship between inhaled fog concentrations and the correspondingly evoked UTC values, an index of the perceptual magnitude of the UTC sensitivity, was also calculated. Cough appearance was always assessed audiovisually. At an exercise level of 80% of anaerobic threshold, the mean cough threshold was increased from a control value of 1.03 +/- 0.65 to 2.25 +/- 1.14 ml/min (p < 0.01), i.e., cough sensitivity was downregulated. With VIH, the mean (+/-SD) threshold increased from 1.03 +/- 0.65 to 2.42 +/- 1.16 ml/min (p < 0.01), a similar downregulation. With exercise and VIH compared with control, mean UTC values at cough threshold were not significantly changed: control, 3.83 +/- 1.11 cm; exercise, 3.12 +/- 0.82 cm; VIH, 4.08 +/- 1.67 cm. Since the slopes of the log fog concentration/log UTC value were approximately halved during exercise and VIH compared with control, the UTC sensitivity to fog was depressed (p < 0.01). The results indicate that the adjustments brought into action by exercise-induced or voluntary hyperventilation exert inhibitory influences on the sensory and cognitive components of fog-induced cough.

  3. Construction of a model demonstrating neural pathways and reflex arcs.

    PubMed

    Chan, V; Pisegna, J M; Rosian, R L; DiCarlo, S E

    1996-12-01

    Employment opportunities in the future will require higher skills and an understanding of mathematics and science. As a result of the growing number of careers that require solid science and mathematics training, the methods of science education are undergoing major reform. To adequately equip students for technologically advanced positions, new teaching methods must be developed that prepare tomorrow's workforce for the challenges of the 21st century. One such method is the use of models. By actively building and manipulating concrete models that represent scientific concepts, students are involved in the most basic level of Piaget's learning scheme: the sensorimotor stage. Models are useful in reaching all students at the foundational levels of learning, and further learning experiences are rapidly moved through higher learning levels. This success ensures greater comprehension and understanding compared with the traditional methods of rote memorization. We developed an exercise for the construction of an inexpensive, easy-to-build model demonstrating neural pathways and reflex arcs. Our exercise also includes many supplemental teaching tools. The exercise is designed to fulfill the need of sound physiological teaching materials for high school students.

  4. Videogame Distraction using Virtual Reality Technology for Children Experiencing Cold Pressor Pain: The Role of Cognitive Processing

    PubMed Central

    Law, Emily F.; Sil, Soumitri; Weiss, Karen E.; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    Objective This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Methods Seventy-nine children ages 6–15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. Results As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. Conclusion The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing. PMID:20656761

  5. Pain catastrophizing mediates the relationship between self-reported strenuous exercise involvement and pain ratings: moderating role of anxiety sensitivity.

    PubMed

    Goodin, Burel R; McGuire, Lynanne M; Stapleton, Laura M; Quinn, Noel B; Fabian, Lacy A; Haythornthwaite, Jennifer A; Edwards, Robert R

    2009-11-01

    To investigate the cross-sectional associations among self-reported weekly strenuous exercise bouts, anxiety sensitivity, and their interaction with pain catastrophizing and pain responses to the cold pressor task (CPT) in healthy, ethnically diverse young adults (n = 79). Exercise involvement has been shown to have hypoalgesic effects and cognitive factors may partially explain this effect. Particularly, alterations in pain catastrophizing have been found to mediate the positive pain outcomes of multidisciplinary treatments incorporating exercise. Further, recent evidence suggests that exercise involvement and anxiety sensitivity may act together, as interacting factors, to exert an effect on catastrophizing and pain outcomes; however, further research is needed to clarify the nature of this interaction. Before the CPT, participants were asked to complete the Godin Leisure-Time Exercise Questionnaire, the Beck Depression Inventory, and the Anxiety Sensitivity Index. After the CPT, participants completed a modified version of the Pain Catastrophizing Scale and the Short Form-McGill Pain Questionnaire. At a high level of anxiety sensitivity, controlling for depressive symptoms, CPT immersion time, and sex differences, a bias-corrected (BC), bootstrapped confidence interval revealed that pain catastrophizing significantly mediated the relationship between self-reported weekly strenuous exercise bouts and pain response (95% BC Confidence Interval = -9.558, -0.800 with 1000 resamples). At intermediate and low levels of anxiety sensitivity, no significant mediation effects were found. These findings support that, for pain catastrophizing to mediate the strenuous exercise-pain response relation, individuals must possess a high level of anxiety sensitivity.

  6. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Vissing, J.; Vissing, S. F.; MacLean, D. A.; Saltin, B.; Quistorff, B.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    Muscle acidosis has been implicated as a major determinant of reflex sympathetic activation during exercise. To test this hypothesis we studied sympathetic exercise responses in metabolic myopathies in which muscle acidosis is impaired or augmented during exercise. As an index of reflex sympathetic activation to muscle, microneurographic measurements of muscle sympathetic nerve activity (MSNA) were obtained from the peroneal nerve. MSNA was measured during static handgrip exercise at 30% of maximal voluntary contraction force to exhaustion in patients in whom exercise-induced muscle acidosis is absent (seven myophosphorylase deficient patients; MD [McArdle's disease], and one patient with muscle phosphofructokinase deficiency [PFKD]), augmented (one patient with mitochondrial myopathy [MM]), or normal (five healthy controls). Muscle pH was monitored by 31P-magnetic resonance spectroscopy during handgrip exercise in the five control subjects, four MD patients, and the MM and PFKD patients. With handgrip to exhaustion, the increase in MSNA over baseline (bursts per minute [bpm] and total activity [%]) was not impaired in patients with MD (17+/-2 bpm, 124+/-42%) or PFKD (65 bpm, 307%), and was not enhanced in the MM patient (24 bpm, 131%) compared with controls (17+/-4 bpm, 115+/-17%). Post-handgrip ischemia studied in one McArdle patient, caused sustained elevation of MSNA above basal suggesting a chemoreflex activation of MSNA. Handgrip exercise elicited an enhanced drop in muscle pH of 0.51 U in the MM patient compared with the decrease in controls of 0.13+/-0.02 U. In contrast, muscle pH increased with exercise in MD by 0.12+/-0.05 U and in PFKD by 0.01 U. In conclusion, patients with glycogenolytic, glycolytic, and oxidative phosphorylation defects show normal muscle sympathetic nerve responses to static exercise. These findings indicate that muscle acidosis is not a prerequisite for sympathetic activation in exercise.

  7. Pharmacological observations on the hypotensive action of extracts of teleost fish urophyses (urotensin I) in the rat

    PubMed Central

    Lederis, K.; Medaković, M.

    1974-01-01

    1 Intravenous injections of urotensin I regularly caused a long-lasting, dose-related, lowering of blood pressure and an increase in heart rate in conscious rats, or a reduction in perfusion pressure in the isolated hind limb of the rat. 2 After subcutaneous administration, the hypotensive effect of urotensin I was greater in extent and in duration (> 24 hours). 3 Anaesthesia with ether, chloralose, pentobarbitone and thiobarbitone caused a decrease in blood pressure and only slightly diminished the hypotensive effect of urotensin. 4 Mecamylamine, hexamethonium, atropine, phenoxybenzamine, propranolol and diphenhydramine did not alter the effect of urotensin in conscious rats or in the isolated hind limb, although the effects of the respective agonists, i.e. nicotine, acetylcholine, noradrenaline, isoprenaline and histamine were inhibited. 5 In conscious rats, pressor effects of adrenaline, noradrenaline, nicotine and angiotensin II, and depressor effects of acetylcholine and bradykinin, were decreased or inhibited, whereas the hypotensive effect of phenoxybenzamine was potentiated by previous administration of urotensin I. Carotid occlusion reflex was partially inhibited by lower doses of urotensin and abolished by higher doses in rats lightly anaesthetized with chloralose. Urotensin elicited postural hypotension in rats anaesthetized with pentobarbitone. 6 The increase in heart rate produced by urotensin was not affected by phenoxybenzamine, but was abolished by propranolol or ganglion blocking agents (mecamylamine or hexamethonium). 7 It is concluded that urotensin elicits hypotension in the rat by a direct dilatory action on the resistance vessels causing a simultaneous reflex tachycardia. PMID:4375526

  8. Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle.

    PubMed

    Valenti, Vitor E; de Abreu, Luiz Carlos; Sato, Monica A; Ferreira, Celso; Adami, Fernando; Fonseca, Fernando L A; Xavier, Valdelias; Godoy, Moacir; Monteiro, Carlos B; Vanderlei, Luiz Carlos M; Saldiva, Paulo H N

    2012-03-30

    Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL) injection into the 4th V. Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.

  9. Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    PubMed Central

    2012-01-01

    Background Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL) injection into the 4th V. Results Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity. PMID:22463380

  10. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress.

    PubMed

    El Sayed, Khadigeh; Macefield, Vaughan G; Hissen, Sarah L; Joyner, Michael J; Taylor, Chloe E

    2016-12-15

    Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders. Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post-exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s -1 ) compared with positive responders (0.4 ± 0.1 mmHg s -1 ; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress

    PubMed Central

    El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.

    2016-01-01

    Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. PMID:27690366

  12. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats.

    PubMed

    Faria, Thaís de Oliveira; Targueta, Gabriel Pelegrineti; Angeli, Jhuli Keli; Almeida, Edna Aparecida Silveira; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2010-09-01

    The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.

  13. Anteroventral Third Ventricle Lesions Attenuate Pressor Responses to Serotonin in Anesthetized Rats

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Lewis, Stephen J.; Johnson, Alan Kim

    1996-01-01

    When administered intravenously, serotonin (5-hydroxytryptamine; 5-HT) evokes a triphasic blood pressure response, consisting of the Bezold-Jarisch-associated depressor response, a pressor action, and long-lasting depressor response. Because the pressor response may, in part, be caused by central nervous system (CNS) activation by 5-HT, we predicted that destruction of the anteroventral third ventricle (AV3V) region, an area rich in 5-HT receptors, would attenuate increases in blood pressure to intravenous 5-HT. In anesthetized sham-lesioned and AV3V-lesioned Sprague-Dawley rats. we measured mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (SNA) to increasing bolus doses of intravenous 5-HT (1, 2.5, 5, 10, 25 microg/kg), before and after blockade of bradycardia using methylatropine (200 microg/kg). In all rats, bolus injections of 5-HT elicited bradycardia accompanied by a fall in lumbar SNA and an initial hypotension followed by a pressor response and a longer lasting hypotensive response. The bradycardia, reduction in lumbar SNA, and both depressor responses were equivalent in sham-lesioned and AV3V-lesioned groups. Importantly, AV3V lesions attenuated pressor responses to increasing doses of 5-HT (3 +/- 1, 6 +/- 4, 6 +/- 4, 17 +/- 4, 35 +/- 3 mmHg) compared to sham-lesioned controls (6 +/- 3, 16 +/- 7, 33 +/- 5, 54 +/- 4, 51 +/- 6 mmHg; P < 0.0001). This attenuation was conserved following blockade of bradycardia with methylatropine (P < 0.01). In summary, pressor responses to intravenous 5-HT are diminished by AV3V lesions. These data indicate that the pressor component of the blood pressure response to intravenous 5-HT is partly dependent upon interaction with the CNS.

  14. The evaluation of the novel pressor activity of gamma-piperidinobutyramide (WY 20051, DF480).

    PubMed Central

    Alps, B J; Devoy, P W; Waterfall, J F

    1976-01-01

    1 gamma-Piperidinobutyramide (Wy 20051, DF480) injected intravenously evoked pressor responses in the anaesthetized ganglion blocked rat preparation over the dose range 2.4 x 10(-6)-3.0 x 10(-4) mol/kg. 2 High doses (greater than 3.8 x 10(-5) mol/kg) or even repeated submaximal doses (1.9 x 10(-5) mol/kg) of Wy 20051 caused tachyphylaxis of this pressor response. 3 The noradrenaline pressor-response curve was shifted significantly to the right of the control curve following a dose of Wy 20051 (1.5 x 10(-4) mol/kg cumulative). 4 The dose-response curve for the pressor action of Wy 20051 was potentiated in reserpine-treated anaesthetized rats. In contrast, tyramine-induced pressor responses were abolished. 5 Wy 20051 contracted the guinea-pig isolated aortic spiral preparation (3.8 x 10(-5)-6.0 x 10(-4) mol) and evoked constrictor responses in the perfused mesenteric vasculature preparation of the rat (5.9 x 10(-7)-1.2 x 10(-5) mol). At higher doses the responses were reduced. 6 Wy 20051-induced constrictor responses of the perfused mesentery were unaffected by blockade of alpha-adrenoceptors or by tachyphylaxis of 5-hydroxytryptamine receptors. 7 The time for abolition of Wy 20051-induced constrictor responses of the mesentery in a calcium-free medium was not significantly different from that required for noradrenaline, but was significantly greater than that for KCl (P less than 0.001). 8 Wy 20051 and noradrenaline, but not KCl, evoked constrictor responses in the depolarized rat mesenteric vasculature. 9 The results indicate that Wy 20051 evokes pressor responses which have some of the characteristics of those of noradrenaline. However, the responses are not elicited by an alpha-adrenoceptor mechanism. PMID:3247

  15. Hypothalamic supraoptic but not paraventricular nucleus is involved in cardiovascular responses to carbachol microinjected into the bed nucleus of stria terminalis of unanesthetized rats.

    PubMed

    Alves, Fernando H F; Crestani, Carlos C; Busnardo, Cristiane; Antunes-Rodrigues, José; Gomes, Felipe V; Resstel, Leonardo B M; Corrêa, Fernando M A

    2011-06-01

    Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl₂, 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl₂, either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl₂ microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Commissural NTS lesions enhance the pressor response to central cholinergic and adrenergic activation.

    PubMed

    Vieira, Alexandre A; De Luca, Laurival A; Colombari, Eduardo; Colombari, Debora S A; Menani, José V

    2012-07-11

    Electrolytic lesions of the commissural nucleus of the solitary tract (commNTS) in rats enhance the pressor response to bilateral carotid occlusion or to intravenous infusion of hypertonic NaCl without changing baroreflex responses. In an opposite direction, commNTS lesions abolish the pressor responses to peripheral chemoreflex activation. These opposite effects of commNTS lesions apparently result from an impairment of sympathetic activation in one case and in a facilitation of vasopressin secretion in the others. In the present study, we investigated the effects of the electrolytic lesions of the commNTS in the pressor responses that depend on sympathetic activation and vasopressin secretion produced by central cholinergic or adrenergic activation with intracerebroventricular (i.c.v.) injections of carbachol or noradrenaline, respectively, in unanesthetized rats. Male Holtzman rats (280-320 g, n=8-15/group) with acute (1 day) or chronic (21 days) sham or commNTS lesions (1 mA×10 s) and a stainless steel cannula implanted in the lateral ventricle were used. Acute commNTS lesions increased the pressor response to i.c.v. injection of carbachol (0.5 nmol/1μ1) (52 ± 2, vs. sham: 37 ± 2mm Hg) or noradrenaline (80 nmol/1μl) (45 ± 6, vs. sham: 30 ± 3 mm Hg), whereas chronic commNTS lesions did not affect the pressor responses to the same treatments. Lesions of the commNTS impaired chemoreflex responses produced by intravenous KCN, without changing baroreflex responses. The results suggest that commNTS-dependent inhibitory signals are involved in the modulation of the pressor responses to central cholinergic and adrenergic activation, probably limiting vasopressin secretion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Cardiovascular responses to injections of angiotensin II or carbachol into the rostral ventrolateral medulla in rats with AV3V lesions.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; Colombari, Débora S A; De Paula, Patrícia M; Menani, José V

    2013-11-27

    Injection of l-glutamate (GLU) into the rostral ventrolateral medulla (RVLM) produces sympathetically-mediated pressor responses that depend on the integrity of the tissue surrounding the anteroventral third ventricle (AV3V region). The injection of angiotensin II (ANG II) or the cholinergic agonist carbachol into the RVLM also produces pressor responses. In the present study, we investigated if the lesion of the AV3V region affects the pressor responses to ANG II or carbachol injected into the RVLM in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses to ANG II (200ng/100nl) injected into the RVLM were reduced by acute (1 day) (12±3 vs. sham lesions: 26±4mmHg) or chronic (15 days) AV3V lesions (12±5 vs. sham lesions: 27±4mmHg), whereas acute or chronic AV3V lesions did not affect the pressor responses to carbachol (1nmol/100nl) injected into the RVLM. The present results suggest that the AV3V region modulates the excitability of the RVLM neurons involved with the pressor response produced by the activation of angiotensinergic mechanisms in this area. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of lidocaine injections into the lateral parabrachial nucleus on dipsogenic and pressor response to central angiotensin 2 in rats

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; Beltz, Terry G.

    1995-01-01

    This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and pressor responses induced by intracerebroventricular (i.c.v.) injection of angiotensin 2 (ANG 2). Centrally injected ANG 2 (50 ng/1 microliter) induced water intake ( IO.2 +/- 0.8 ml/h) and pressor responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the pressor response (17 +/- 1 mmHg) to i.c.v. ANG 2. Lidocaine alone injected into the LPBN also induced a pressor response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced bv i.c.v. ANG 2 are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG 2. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.

  19. The effects of team reflexivity on psychological well-being in manufacturing teams.

    PubMed

    Chen, Jingqiu; Bamberger, Peter A; Song, Yifan; Vashdi, Dana R

    2018-04-01

    While the impact of team reflexivity (a.k.a. after-event-reviews, team debriefs) on team performance has been widely examined, we know little about its implications on other team outcomes such as member well-being. Drawing from prior team reflexivity research, we propose that reflexivity-related team processes reduce demands, and enhance control and support. Given the centrality of these factors to work-based strain, we posit that team reflexivity, by affecting these factors, may have beneficial implications on 3 core dimensions of employee burnout, namely exhaustion, cynicism, and inefficacy (reduced personal accomplishment). Using a sample of 469 unskilled manufacturing workers employed in 73 production teams in a Southern Chinese factory, we implemented a time lagged, quasi-field experiment, with half of the teams trained in and executing an end-of-shift team debriefing, and the other half assigned to a control condition and undergoing periodic postshift team-building exercises. Our findings largely supported our hypotheses, demonstrating that relative to team members assigned to the control condition, those assigned to the reflexivity condition experienced a significant improvement in all 3 burnout dimensions over time. These effects were mediated by control and support (but not demands) and amplified as a function of team longevity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy.

    PubMed

    Nelson, Michael D; Rader, Florian; Tang, Xiu; Tavyev, Jane; Nelson, Stanley F; Miceli, M Carrie; Elashoff, Robert M; Sweeney, H Lee; Victor, Ronald G

    2014-06-10

    To determine whether phosphodiesterase type 5 (PDE5) inhibition can alleviate exercise-induced skeletal muscle ischemia in boys with Duchenne muscular dystrophy (DMD). In 10 boys with DMD and 10 healthy age-matched male controls, we assessed exercise-induced attenuation of reflex sympathetic vasoconstriction, i.e., functional sympatholysis, a protective mechanism that matches oxygen delivery to metabolic demand. Reflex vasoconstriction was induced by simulated orthostatic stress, measured as the decrease in forearm muscle oxygenation with near-infrared spectroscopy, and performed when the forearm muscles were rested or lightly exercised with rhythmic handgrip exercise. Then, the patients underwent an open-label, dose-escalation, crossover trial with single oral doses of tadalafil or sildenafil. The major new findings are 2-fold: first, sympatholysis is impaired in boys with DMD-producing functional muscle ischemia-despite contemporary background therapy with corticosteroids alone or in combination with cardioprotective medication. Second, PDE5 inhibition with standard clinical doses of either tadalafil or sildenafil alleviates this ischemia in a dose-dependent manner. Furthermore, PDE5 inhibition also normalizes the exercise-induced increase in skeletal muscle blood flow (measured by Doppler ultrasound), which is markedly blunted in boys with DMD. These data provide in-human proof of concept for PDE5 inhibition as a putative new therapeutic strategy for DMD. This study provides Class IV evidence that in patients with DMD, PDE5 inhibition restores functional sympatholysis. © 2014 American Academy of Neurology.

  1. [Vojta's method as the early neurodevelopmental diagnosis and therapy concept].

    PubMed

    Banaszek, Grazyna

    2010-01-01

    Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.

  2. Baroreflex responses and LBNP tolerance following exercise training

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Eckberg, D. L.; Fritsch, J. M.; Mack, G. W.; Nadel, E. R.

    1990-01-01

    The hypothesis that endurance exercise training designed to increase aerobic capacity results in reduced orthostatic tolerance due to alterations of blood-pressure controlling mechanisms was reexamined using a specially designed training in which tolerance to orthostasis and the primary mechanisms associated with the blood-pressure control could be measured before and after the increase in aerobic capacity. Results demonstrate that maximal oxygen uptake can be significantly elevated in individuals of average fit without reducing lower body negative pressure tolerance. The exercise training was found to cause a resting bradycardia, which had no effect on the cardiac vagal reflex response.

  3. Effect of intravenous infusion of a beta-adrenergic blocking agent on the haemodynamic changes in human masseter muscle induced by cold-pressor stimulation.

    PubMed

    Maekawa, K; Kuboki, T; Miyawaki, T; Shimada, M; Yamashita, A; Clark, G T

    1999-06-01

    Eight healthy non-smoking males (mean age: 24.1 +/- 1.1 years) without any history of chronic muscle pain and migraine participated in this study. Haemoglobin (Hb) and oxygen (O2) saturation in the right masseter muscle were continuously recorded with a non-invasive near-infrared spectroscopic device. Heart rate and blood pressure were also recorded. The experiment had three phases: a placebo drug (physiological saline) with cold-pressor trial, a 30-sec maximal voluntary clenching (MVC) trial, and a propranolol with cold-pressor trial. The saline and drug trials each involved continuous recording for 1 min before, 2 min during and 5 min after the cold-pressor stimulation (4 degrees C). Physiological saline (20 ml) or propranolol hydrochloride (20 ml) were infused at the rate of 2 ml/min. This infusion was begun 20 min before the baseline recording and participants did not know which solution (saline or propranolol) was being infused. For the MVC trial, each participant was asked to perform a 30-sec clench of their jaw-closing muscles. There was a rest period of 15 min between each trial. The individual Hb and O2 data were normalized so that the baseline at the beginning of the experiment was equal to zero, and the Hb and O2 data were normalized as a percentage of the individual's own highest absolute Hb and O2 after and during the MVC, respectively. The results showed that the mean baseline Hb 1 min before cold-pressor stimulation was significantly lower in the beta-blocker trial than in the placebo trial (p = 0.035). The mean change in Hb from baseline during cold-pressor stimulation in the beta-blocker trial was also significantly less than in the placebo trial (p = 0.035). The mean Hb rebound change after the cold-pressor stimulation in the beta-blocker trial was significantly higher than in the placebo trial, and no significant heart-rate differences were observed in the period after cold-pressor stimulation. Overall, the mean heart rate before and during that stimulation was significantly lower in the beta-blocker trial than the placebo trial (p < 0.001). There was no significant mean blood-pressure difference between placebo and beta-blocker trials at any time. These results suggest that beta-adrenoceptor blocking decreases the blood volume in the resting masseter, suppresses the incremental blood-volume change during cold-pressor stimulation, and discloses a hidden vasoconstrictive effect after that stimulation.

  4. Quantitative evaluation of the stretch reflex before and after hydro kinesy therapy in patients affected by spastic paresis.

    PubMed

    Pagliaro, P; Zamparo, P

    1999-04-01

    The aim of this study was the quantitative evaluation of the myotatic reflex in a group of 26 patients affected by stationary spastic paresis (6: hemiparesis; 5: paraparesis; 8: tetraparesis; 7: multiple sclerosis) before and after a treatment of hydro-kinesy therapy. The treatment was carried out in an indoor pool containing warm (32 degrees C) sea water and consisted of active and passive motion exercises, coordination exercises and immersion walking. The measured parameters were: (i) the peak input force (FpH) measured by means of an instrumented hammer with which the patellar tendon was hit; and (ii) the peak value of the corresponding reflex force of the quadriceps femoris (FpQ) measured by means of a load cell connected to the subject's ankle. The peak values of the reflex response (FpQ) were found to increase as a function of the intensity of the imposed stimulus and to reach a plateau between 15 and 30 N of FpH. A Student's t test applied to the paired values of FpQ (as measured at plateau conditions) on both the lower limbs, before and after therapy, showed no significant changes due to the treatment in the four groups of subjects. However, if all subjects were grouped regardless the type of illness: 1) the average reflex response of the affected limb (the one characterized before therapy by the higher FpQ values) was found to decrease following the treatment (75.1+/-26.7 N pre therapy and 69.1+/-29.3 N post therapy, p = 0.07, n = 26); and 2) the effect of the treatment was found to be significantly larger (p = 0.04, n = 26) on the affected limb (delta FpQ = 6.07+/-16.5 N) as respect with the contra lateral one (delta FpQ = -0.16+/-12.1 N).

  5. Influence of Education and Neighborhood Poverty on Pressor Responses to Phenylephrine in African-Americans and Caucasian-Americans

    PubMed Central

    Thomas, KaMala S.; Nelesen, Richard A.; Ziegler, Michael G.; Natarajan, Loki; Dimsdale, Joel E.

    2009-01-01

    Although neighborhood disadvantage has been linked to the development of cardiovascular disease, the mechanism through which living in impoverished neighborhoods is associated with poor cardiovascular health is not well understood. Additionally, it is not clear whether individual socioeconomic status (SES) interacts with neighborhood factors to influence cardiovascular outcomes. Using multilevel modeling, we examined the interaction between neighborhood poverty and individual SES on pressor responses to an alpha agonist, Phenylephrine (PE), in an adult sample of 105 African-Americans and 106 Caucasian-Americans. Neighborhood poverty was assessed using census block data gathered from the Census Bureau. Education and occupation were used to assess individual SES. Pressor responsiveness was calculated as the systolic and diastolic blood pressure (BP) response to a 100-microgram PE bolus administered intravenously. There was a significant interaction between education and neighborhood poverty on pressor responses. Higher education was associated with smaller BP responses to PE; but only in individuals who lived in neighborhoods in which less than 5% of the residents lived below the poverty line. Occupation was unrelated to pressor responses to PE. These results suggest that neighborhood characteristics play an important role in cardiovascular functioning. PMID:19427353

  6. Automatic ethics: the effects of implicit assumptions and contextual cues on moral behavior.

    PubMed

    Reynolds, Scott J; Leavitt, Keith; DeCelles, Katherine A

    2010-07-01

    We empirically examine the reflexive or automatic aspects of moral decision making. To begin, we develop and validate a measure of an individual's implicit assumption regarding the inherent morality of business. Then, using an in-basket exercise, we demonstrate that an implicit assumption that business is inherently moral impacts day-to-day business decisions and interacts with contextual cues to shape moral behavior. Ultimately, we offer evidence supporting a characterization of employees as reflexive interactionists: moral agents whose automatic decision-making processes interact with the environment to shape their moral behavior.

  7. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  8. Arterial blood pressure response to heavy resistance exercise.

    PubMed

    MacDougall, J D; Tuxen, D; Sale, D G; Moroz, J R; Sutton, J R

    1985-03-01

    The purpose of this study was to record the blood pressure response to heavy weight-lifting exercise in five experienced body builders. Blood pressure was directly recorded by means of a capacitance transducer connected to a catheter in the brachial artery. Intrathoracic pressure with the Valsalva maneuver was recorded as mouth pressure by having the subject maintain an open glottis while expiring against a column of Hg during the lifts. Exercises included single-arm curls, overhead presses, and both double- and single-leg presses performed to failure at 80, 90, 95, and 100% of maximum. Systolic and diastolic blood pressures rose rapidly to extremely high values during the concentric contraction phase for each lift and declined with the eccentric contraction. The greatest peak pressures occurred during the double-leg press where the mean value for the group was 320/250 mmHg, with pressures in one subject exceeding 480/350 mmHg. Peak pressures with the single-arm curl exercise reached a mean group value of 255/190 mmHg when repetitions were continued to failure. Mouth pressures of 30-50 Torr during a single maximum lift, or as subjects approached failure with a submaximal weight, indicate that a portion of the observed increase in blood pressure was caused by a Valsalva maneuver. It was concluded that when healthy young subjects perform weight-lifting exercises the mechanical compression of blood vessels combines with a potent pressor response and a Valsalva response to produce extreme elevations in blood pressure. Pressures are extreme even when exercise is performed with a relatively small muscle mass.

  9. Chronotropic and pressor effects of water ingestion at rest and in response to incremental dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Teixeira, Micael S; Heffernan, Kevin S; Fernhall, Bo

    2013-06-01

    Ingestion of water attenuates the chronotropic response to submaximal exercise. However, it is not known whether this effect is equally manifested during dynamic exercise below and above the ventilatory threshold (VT). We explored the effects of water ingestion on the heart rate response to an incremental cycle-ergometer protocol. In a randomized fashion, 19 healthy adults (10 men and nine women, age 20.9 ± 1.8 years) ingested 50 and 500 ml of water before completing a cycle-ergometer protocol on two separate days. The heart rate and oxygen uptake ( ) responses to water ingestion were analysed both at rest and during exercise performed below and above the VT. The effects of water intake on brachial blood pressure were measured only at rest. Resting mean arterial pressure increased and resting heart rate decreased, but only after 500 ml of water (P < 0.05). Compared with that seen after 50 ml of water, the 500 ml volume elicited an overall decrease in submaximal heart rate (P < 0.05). In contrast, drinking 500 ml of water did not affect submaximal . The participants' maximal heart rate, maximal and VT were similar between conditions. Our results therefore indicate that, owing to its effects on submaximal heart rate over a broad spectrum of intensities, the drinking of water should be recognized as a potential confounder in cardiovascular exercise studies. However, by showing no differences between conditions for submaximal , they also suggest that the magnitude of heart rate reduction after drinking 500 ml of water may be of minimal physiological significance for exercise cardiorespiratory capacity.

  10. Autonomic mechanisms of muscle metaboreflex control of heart rate.

    PubMed

    O'Leary, D S

    1993-04-01

    Ischemia in active skeletal muscle induces reflex increases in systemic arterial pressure (SAP) and heart rate (HR), termed the muscle metaboreflex. When metaboreflex activation is maintained during postexercise muscle ischemia, SAP remains elevated; however, HR decreases. Why the HR responses differ with metaboreflex activation during exercise vs. during postexercise ischemia while the SAP responses are similar in each setting remains unclear. Two hypotheses were tested: 1) the increase in HR with muscle ischemia occurs predominantly via an increase in sympathetic activity, and 2) sympathetic activity to the heart remains elevated during post-exercise ischemia; however, HR decreases because of an increase in parasympathetic outflow. The muscle metaboreflex was activated in conscious dogs during treadmill exercise (3.2 kph, 0% grade) by progressively decreasing perfusion to the hindlimbs. Experiments were performed before and after muscarinic (atropine) or beta- (atenolol or propranolol) receptor blockade. In control experiments, once beyond the threshold for the reflex, the HR sensitivity of the muscle metaboreflex averaged -2.4 +/- 0.3 beats.min-1.mmHg-1 and the reflex open-loop gain averaged -3.2 +/- 0.3 (calculated as the ratio of the increase in HR or SAP to the decrease in hindlimb perfusion pressure beyond threshold). Atropine had no effect on either HR sensitivity (-2.7 +/- 0.4 beats.min-1.mmHg-1) or open-loop gain (-3.3 +/- 0.5, both P > 0.05 vs. control). However, pretreatment with beta-receptor antagonist significantly decreased both HR sensitivity (-0.7 +/- 0.1 beats.min-1.mmHg-1, P < 0.001) and open-loop gain (-1.9 +/- 0.3, P < 0.01). During postexercise ischemia, HR decreased while SAP remained elevated.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The effects of coping style on virtual reality enhanced videogame distraction in children undergoing cold pressor pain.

    PubMed

    Sil, Soumitri; Dahlquist, Lynnda M; Thompson, Caitlin; Hahn, Amy; Herbert, Linda; Wohlheiter, Karen; Horn, Susan

    2014-02-01

    This study sought to evaluate the effectiveness of virtual reality (VR) enhanced interactive videogame distraction for children undergoing experimentally induced cold pressor pain and examined the role of avoidant and approach coping style as a moderator of VR distraction effectiveness. Sixty-two children (6-13 years old) underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered both with and without a VR helmet in counterbalanced order. As predicted, children demonstrated significant improvement in pain tolerance during both interactive videogame distraction conditions. However, a differential response to videogame distraction with or without the enhancement of VR technology was not found. Children's coping style did not moderate their response to distraction. Rather, interactive videogame distraction with and without VR technology was equally effective for children who utilized avoidant or approach coping styles.

  12. Effects of videogame distraction using a virtual reality type head-mounted display helmet on cold pressor pain in children.

    PubMed

    Dahlquist, Lynnda M; Weiss, Karen E; Clendaniel, Lindsay Dillinger; Law, Emily F; Ackerman, Claire Sonntag; McKenna, Kristine D

    2009-06-01

    To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Forty-one children, aged 6-14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited.

  13. Effects of Videogame Distraction and a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Young Elementary School-Aged Children

    PubMed Central

    Weiss, Karen E.; Law, Emily F.; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag

    2010-01-01

    Objective This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Methods Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. Results As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Conclusions Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed. PMID:19786489

  14. Active and passive distraction using a head-mounted display helmet: effects on cold pressor pain in children.

    PubMed

    Dahlquist, Lynnda M; McKenna, Kristine D; Jones, Katia K; Dillinger, Lindsay; Weiss, Karen E; Ackerman, Claire Sonntag

    2007-11-01

    The current study tested the effectiveness of interactive versus passive distraction that was delivered via a virtual reality type head-mounted display helmet for children experiencing cold pressor pain. Forty children, aged 5 to 13 years, underwent 1 or 2 baseline cold pressor trials followed by interactive distraction and passive distraction trials in counterbalanced order. Pain threshold and pain tolerance. Children who experienced either passive or interactive distraction demonstrated significant improvements in both pain tolerance and pain threshold relative to their baseline scores. In contrast, children who underwent a second cold pressor trial without distraction showed no significant improvements in pain tolerance or threshold. Although both distraction conditions were effective, the interactive distraction condition was significantly more effective. Implications for the treatment of children's distress during painful medical procedures are discussed. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  15. Effects of videogame distraction and a virtual reality type head-mounted display helmet on cold pressor pain in young elementary school-aged children.

    PubMed

    Dahlquist, Lynnda M; Weiss, Karen E; Law, Emily F; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag

    2010-07-01

    This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed.

  16. Aerobic Exercise As a Potential Way to Improve Self-Control after Ego-Depletion in Healthy Female College Students.

    PubMed

    Zou, Zhiling; Liu, Yang; Xie, Jing; Huang, Xiting

    2016-01-01

    To test whether aerobic exercise can help build self-control stamina in healthy female young adults. Stamina in this context is defined as the capability to endure ego depletion, which can be measured with a self-control task following another activity also requiring self-control. Forty-five healthy undergraduate women were randomized to either an experimental group or control group. Participants in the experimental group were required to run in their campus running field for 30 min for a period of 5 weeks. Individuals in the control group were required to do diary entries regarding self-control in their daily lives, also for a period of 5 weeks. Before and after the 5-week intervention, participants completed a pain threshold test, a color word Stroop task and the following Cold Pressor Task (CPT) (with and without a distraction component). There was significant decrease of pain tolerance in session 2 relative to session 1 in the control group, but no such decline was found in the experimental group (though the improvement of pain tolerance was not significant), possibly suggesting successful self-control against this kind of decline. Five weeks of aerobic exercise increased self-control after ego depletion in terms of pain tolerance. These findings suggest that aerobic exercise may serve as a potential effective intervention for enhancing self-control in a college female population.

  17. Effect of sex and ovarian hormones on carotid baroreflex resetting and function during dynamic exercise in humans

    PubMed Central

    Kim, Areum; Deo, Shekhar H.; Fisher, James P.

    2012-01-01

    To date, no studies have examined whether there are either sex- or ovarian hormone-related alterations in arterial baroreflex resetting and function during dynamic exercise. Thus we studied 16 young men and 18 young women at rest and during leg cycling at 50% heart rate (HR) reserve. In addition, 10 women were studied at three different phases of the menstrual cycle. Five-second pulses of neck pressure (NP) and neck suction (NS) from +40 to −80 Torr were applied to determine full carotid baroreflex (CBR) stimulus response curves. An upward and rightward resetting of the CBR function curve was observed during exercise in all groups with a similar magnitude of CBR resetting for mean arterial pressure (MAP) and HR between sexes (P > 0.05) and at different phases of the menstrual cycle (P > 0.05). For CBR control of MAP, women exhibited augmented pressor responses to NP at rest and exercise during mid-luteal compared with early and late follicular phases. For CBR control of HR, there was a greater bradycardic response to NS in women across all menstrual cycle phases with the operating point (OP) located further away from centering point (CP) on the CBR-HR curve during rest (OP-CP; in mmHg: −13 ± 3 women vs. −3 ± 3 men; P < 0.05) and exercise (in mmHg: −31 ± 2 women vs. −15 ± 3 men; P < 0.05). Collectively, these findings suggest that sex and fluctuations in ovarian hormones do not influence exercise resetting of the baroreflex. However, women exhibited greater CBR control of HR during exercise, specifically against acute hypertension, an effect that was present throughout the menstrual cycle. PMID:22267388

  18. Effect of hindlimb suspension on cardiovascular responses to sympathomimetics and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Overton, J. Michael; Tipton, Charles M.

    1990-01-01

    To determine whether hindlimb suspension is associated with the development of cardiovascular deconditioning, male rats were studied before and after undergoing one of three treatment conditions for 9 days: (1) cage control (n = 15, CON), (2) horizontal suspension (n = 15, HOZ), and (3) head-down suspension (n = 18, HDS). Testing included lower body negative pressure administered during chloralose-urethan anesthesia and graded doses of sympathomimetic agents (norepinephrine, phenylephrine, and tyramine) administered to conscious unrestrained animals. Both HDS and HOZ were associated with a small decrease in the hypotensive response to lower body negative pressure. The HOZ group, but not the HDS group, exhibited augmented reflex tachycardia. Furthermore, both HDS and HOZ groups manifested reduced pressor responses to phenylephrine after treatment. These reductions were associated with significantly attenuated increases in mesenteric vascular resistance. However, baroreflex control of heart rate was not altered by the treatment conditions. Collectively, these results indicate that 9 days of HDS in rats does not elicit hemodynamic response patterns generally associated with cardiovascular deconditioning induced by hypogravic conditions.

  19. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training

    PubMed Central

    Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin

    2014-01-01

    For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598

  20. Time-course effects of aerobic exercise training on cardiovascular and renal parameters in 2K1C renovascular hypertensive rats.

    PubMed

    Maia, R C A; Sousa, L E; Santos, R A S; Silva, M E; Lima, W G; Campagnole-Santos, M J; Alzamora, A C

    2015-11-01

    Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150-180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.

  1. A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure.

    PubMed

    OUTSCHOORN, A S; JACOB, J

    1960-03-01

    The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine.

  2. A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure

    PubMed Central

    Outschoorn, A. S.; Jacob, J.

    1960-01-01

    The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine. PMID:14429484

  3. Angiotensin II in the paraventricular nucleus stimulates sympathetic outflow to the cardiovascular system and make vasopressin release in rat.

    PubMed

    Khanmoradi, Mehrangiz; Nasimi, Ali

    2016-10-06

    The hypothalamic paraventricular nucleus (PVN) plays essential roles in neuroendocrine and autonomic functions, including cardiovascular regulation. It was shown that microinjection of angiotensin II (AngII) into the PVN produced a pressor response. In this study, we explored the probable mechanisms of this pressor response. AngII was microinjected into the PVN and cardiovascular responses were recorded. Then, the responses were re-tested after systemic injection of a ganglionic blocker, Hexamethonium, or a vasopressin V1 receptor blocker. Hexamethonium pretreatment (i.v.) greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that the sympathetic system is involved in the cardiovascular effect of AngII in the PVN. Systemic pretreatment (i.v.) with V1 antagonist greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that vasopressin release is involved in the cardiovascular effect of AngII in the PVN. Overall, we found that AngII microinjected into the PVN produced a pressor response mediated by the sympathetic system and vasopressin release, indicating that other than circulating AngII, endogenous AngII of the PVN increases the vasopressin release from the PVN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition

    NASA Technical Reports Server (NTRS)

    Guidi, E.; Hollenberg, N. K.

    1986-01-01

    We assessed renal blood flow and pressor responses to graded angiotensin II doses in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats ingesting a diet containing 1.6% sodium basally and after acute and chronic angiotensin converting enzyme (ACE) inhibition with captopril. In the basal state the pressor response to angiotensin II was enhanced (P<0.0005) and the renal vascular response was blunted (P<0.005) in SHR compared with WKY rats. After acute captopril administration the pressor response was enhanced in both strains, and the difference between them was maintained, while the renal vascular response was enhanced in both, but more in SHR, so that the renal vascular response in the SHR became larger than in WKY (P<0.0001). Chronic captopril treatment blunted both pressor and renal responses in WKY rats, but only the pressor response in SHR. The renal vessels of SHR seem to be different from those of WKY rats in reaction to exogenous angiotensin II, and in response to both acute administration of captopril (probably acting through blockade of angiotensin II production) and chronic administration of captopril (probably acting mainly through accumulation of kinin or production of prostaglandins).

  5. The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms.

    PubMed

    Oliveira, Rita C; Campagnole-Santos, Maria J; Santos, Robson A S

    2013-01-01

    In the present study, the peripheral mechanism that mediates the pressor effect of angiotensin-(1-7) in the rostral ventrolateral medulla was investigated. Angiotensin-(1-7) (25 pmol) was bilaterally microinjected in the rostral ventrolateral medulla near the ventral surface in urethane-anesthetized male Wistar rats that were untreated or treated (intravenously) with effective doses of selective autonomic receptor antagonists (atenolol, prazosin, methyl-atropine, and hexamethonium) or a vasopressin V1 receptor antagonist [d(CH2)5 -Tyr(Me)-AVP] given alone or in combination. Unexpectedly, the pressor response produced by angiotensin-(1-7) (16 ± 2 mmHg, n = 12), which was not associated with significant changes in heart rate, was not significantly altered by peripheral treatment with prazosin, the vasopressin V1 receptor antagonist, hexamethonium or methyl-atropine. Similar results were obtained in experiments that tested the association of prazosin and atenolol; methyl-atropine and the vasopressin V1 antagonist or methyl-atropine and prazosin. Peripheral treatment with the combination of prazosin, atenolol and the vasopressin V1 antagonist abolished the pressor effect of glutamate; however, this treatment produced only a small decrease in the pressor effect of angiotensin-(1-7) at the rostral ventrolateral medulla. The combination of hexamethonium with the vasopressin V1 receptor antagonist or the combination of prazosin, atenolol, the vasopressin V1 receptor antagonist and methyl-atropine was effective in blocking the effect of angiotensin-(1-7) at the rostral ventrolateral medulla. These results indicate that angiotensin-(1-7) triggers a complex pressor response at the rostral ventrolateral medulla that involves an increase in sympathetic tonus, release of vasopressin and possibly the inhibition of a vasodilatory mechanism.

  6. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors.

    PubMed

    Wsol, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L; Cudnoch-Jedrzejewska, A

    2014-01-01

    The role of central oxytocin in the regulation of cardiovascular parameters under resting conditions and during acute stress was investigated in male normotensive Wistar-Kyoto (WKY; n = 40) and spontaneously hypertensive rats (SHR; n = 28). In Experiment 1, mean arterial blood pressure (MABP) and heart rate (HR) were recorded in WKY and SHR rats at rest and after an air-jet stressor during intracerebroventricular (ICV) infusions of vehicle, oxytocin or oxytocin receptor (OTR) antagonist. In Experiment 2, the effects of vehicle, oxytocin and OTR antagonist were determined in WKY rats after prior administration of a V1a vasopressin receptor (V1aR) antagonist. Resting MABP and HR were not affected by any of the ICV infusions either in WKY or in SHR rats. In control experiments (vehicle), the pressor response to stress was significantly higher in SHR. Oxytocin enhanced the pressor response to stress in the WKY rats but reduced it in SHR. During V1aR blockade, oxytocin infusion entirely abolished the pressor response to stress in WKY rats. Combined blockade of V1aR and OTR elicited a significantly greater MABP response to stress than infusion of V1a antagonist and vehicle. This study reveals significant differences in the regulation of blood pressure in WKY and SHR rats during alarming stress. Specifically, the augmentation of the pressor response to stress by exogenous oxytocin in WKY rats is caused by its interaction with V1aR, and endogenous oxytocin regulates the magnitude of the pressor response to stress in WKY rats by simultaneous interaction with OTR and V1aR.

  7. Effects of Videogame Distraction using a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Children

    PubMed Central

    Weiss, Karen E.; Dillinger Clendaniel, Lindsay; Law, Emily F.; Ackerman, Claire Sonntag; McKenna, Kristine D.

    2009-01-01

    Objective To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Method Forty-one children, aged 6–14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Results Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited. PMID:18367495

  8. The discovery of the pressor effect of DOPS and its blunting by decarboxylase inhibitors.

    PubMed

    Kaufmann, H

    2006-01-01

    In the 1950s it was found that an artificial aminoacid, 3,4-threo-dihydroxyphenylserine (DOPS), was converted to norepinephrine (NE) in a single step by the enzyme L-aromatic amino acid decarboxylase (AADC), bypassing the need for the rate limiting enzyme dopamine beta hydroxylase. Trying to replicate the success of dihydroxyphenylalanine (DOPA) in the treatment of Parkinson disease, treatment with DOPS was attempted in patients with autonomic failure who have impaired NE release. DOPS improved orthostatic hypotension in patients with familial amyloid polyneuropathy, congenital deficiency of dopamine beta hydroxylase, pure autonomic failure and multiple system atrophy. DOPS pressor effect is due to its conversion to NE outside the central nervous system because concomitant administration of carbidopa, an inhibitor of AADC that does not cross the blood-brain barrier, blunted both the increase in plasma NE and the pressor response. DOPS pressor response is not dependent on intact sympathetic terminals because its conversion to NE also occurs in non-neuronal tissues.

  9. A comparative assessment of the duration of action of amlodipine and nifedipine GITS in normotensive subjects.

    PubMed

    Ueda, S; Meredith, P A; Howie, C A; Elliott, H L

    1993-12-01

    1 This study in normotensive subjects compared the duration and consistency of action of amlodipine (5 mg) and nifedipine GITS (60 mg) by assessment of the attenuation of pressor responses to noradrenaline and angiotensin II. 2 Both drugs significantly attenuated pressor responses to both vasoconstrictors at 6 and 24 h post-dose with rightward shifts of up to 2.3-fold in the dose-response curves. 3 There was significantly less pharmacokinetic variability with amlodipine: for example, intra-subject variability was 33% with amlodipine and 59% with nifedipine GITS. 4 There were no significant differences in the pressor dose ratios up to 48 h post-dose with amlodipine whereas there was a significant and progressive reduction in the pressor dose ratios with nifedipine. 5 These results suggest that both drugs are broadly comparable as once daily treatments but amlodipine displayed less intra- and inter-subject variability and provided a significantly more sustained effect with a reserve of pharmacological activity up to 48 h post-dose.

  10. Health Instruction Packages: Consumer--Child Care.

    ERIC Educational Resources Information Center

    Wojcik, Bonnie; And Others

    Text, illustrations, and exercises are utilized in these four learning modules to instruct parents and nursing students in topics related to child care and development. The first module, "Growth and Development: Let's Test Your Baby's Reflexes" by Bonnie Wojcik, describes the behavioral signs that are indicative of eight normal primitive…

  11. Exertional dyspnea associated with chest wall strapping is reduced when external dead space substitutes for part of the exercise stimulus to ventilation.

    PubMed

    Garske, Luke A; Lal, Ravin; Stewart, Ian B; Morris, Norman R; Cross, Troy J; Adams, Lewis

    2017-05-01

    Chest wall strapping has been used to assess mechanisms of dyspnea with restrictive lung disease. This study examined the hypothesis that dyspnea with restriction depends principally on the degree of reflex ventilatory stimulation. We compared dyspnea at the same (iso)ventilation when added dead space provided a component of the ventilatory stimulus during exercise. Eleven healthy men undertook a randomized controlled crossover trial that compared four constant work exercise conditions: 1 ) control (CTRL): unrestricted breathing at 90% gas exchange threshold (GET); 2 ) CTRL+dead space (DS): unrestricted breathing with 0.6-l dead space, at isoventilation to CTRL due to reduced exercise intensity; 3 ) CWS: chest wall strapping at 90% GET; and 4 ) CWS+DS: chest strapping with 0.6-l dead space, at isoventilation to CWS with reduced exercise intensity. Chest strapping reduced forced vital capacity by 30.4 ± 2.2% (mean ± SE). Dyspnea at isoventilation was unchanged with CTRL+DS compared with CTRL (1.93 ± 0.49 and 2.17 ± 0.43, 0-10 numeric rating scale, respectively; P = 0.244). Dyspnea was lower with CWS+DS compared with CWS (3.40 ± 0.52 and 4.51 ± 0.53, respectively; P = 0.003). Perceived leg fatigue was reduced with CTRL+DS compared with CTRL (2.36 ± 0.48 and 2.86 ± 0.59, respectively; P = 0.049) and lower with CWS+DS compared with CWS (1.86 ± 0.30 and 4.00 ± 0.79, respectively; P = 0.006). With unrestricted breathing, dead space did not change dyspnea at isoventilation, suggesting that dyspnea does not depend on the mode of reflex ventilatory stimulation in healthy individuals. With chest strapping, dead space presented a less potent stimulus to dyspnea, raising the possibility that leg muscle work contributes to dyspnea perception independent of the ventilatory stimulus. NEW & NOTEWORTHY Chest wall strapping was applied to healthy humans to simulate restrictive lung disease. With chest wall strapping, dyspnea was reduced when dead space substituted for part of a constant exercise stimulus to ventilation. Dyspnea associated with chest wall strapping depended on the contribution of leg muscle work to ventilatory stimulation. Chest wall strapping might not be a clinically relevant model to determine whether an alternative reflex ventilatory stimulus mimics the intensity of exertional dyspnea. Copyright © 2017 the American Physiological Society.

  12. The influence of water ingestion on postexercise hypotension and standing haemodynamics.

    PubMed

    Mendonca, Goncalo V; Fernhall, Bo

    2016-11-01

    In young healthy adults, postexercise hypotension (PEH) occurs after a single bout of dynamic exercise due to peripheral vasodilation. Gravitational stress may further aggravate the magnitude of PEH, thus predisposing to orthostatic intolerance. As water drinking activates sympathetic vasoconstriction, it might offset PEH via enhanced α-adrenergic vascular responsiveness. We hypothesized that water ingestion before exercise would decrease the magnitude of PEH and improve the haemodynamic reaction to active standing postmaximal exercise. In a randomized fashion, 17 healthy adults (nine men; eight women, 21·2 ± 1·6 years) ingested 50 and 500 ml of water before completing resting, cycle ergometer and recovery protocols on two separate days. After exercise, measurements [arterial blood pressure (BP), heart rate and spectral heart rate variability (HRV)] were taken in the seated position followed by 5 min of active standing. Compared to that seen post-50 ml of water, the 500 ml volume elicited an overall increase in BP (P < 0·05). Nevertheless, the magnitude of PEH was not different after either volume of water. There was an overall bradycardic effect of water, and this was accompanied by increased high-frequency power (P < 0·05). Finally, no BP, heart rate or HRV differences were found between conditions in response to active standing. These data suggest that, despite being well preserved after maximal exercise, the water pressor response does not affect the magnitude of PEH. They also indicate that drinking 500 ml of water does not impact the BP, heart rate or HRV response to 5 min of active standing during recovery postmaximal exercise. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Exercise-induced Hypoalgesia in People With Knee Osteoarthritis With Normal and Abnormal Conditioned Pain Modulation.

    PubMed

    Fingleton, Caitríona; Smart, Keith M; Doody, Catherine M

    2017-05-01

    Normal efficiency of exercise-induced hypoalgesia (EIH) has been demonstrated in people with knee osteoarthritis (OA), while recent evidence suggests that EIH may be associated with features of pain sensitization such as abnormal conditioned pain modulation (CPM). The aim of this study was to investigate whether people with knee OA with abnormal CPM have dysfunctional EIH compared with those with normal CPM and pain-free controls. Forty peoples with knee OA were subdivided into groups with abnormal and normal CPM, as determined by a decrease/increase in pressure pain thresholds (PPTs) following the cold pressor test. Abnormal CPM (n=19), normal CPM (n=21), and control participants (n=20) underwent PPT testing before, during, and after aerobic and isometric exercise protocols. Between-group differences were analyzed using repeated-measures analysis of variance and within-group differences were analyzed using Wilcoxon signed-rank tests. Significant differences were demonstrated between groups for changes in PPTs postaerobic (F2,55=4.860; P=0.011) and isometric (F2,57=4.727; P=0.013) exercise, with significant decreases in PPTs demonstrated during and postexercise in the abnormal CPM group (P<0.05), and significant increases in PPTs shown during and postexercise in the normal CPM and control groups (P<0.05). Results are suggestive of dysfunctional EIH in response to aerobic and isometric exercise in knee OA patients with abnormal CPM, and normal function of EIH in knee OA patients with an efficient CPM response. Identification of people with knee OA with inefficient endogenous pain modulation may allow for a more individualized and graded approach to exercises in these individuals.

  14. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  15. Rapid onset pressor response to exercise in young women with a family history of hypertension.

    PubMed

    Matthews, Evan L; Greaney, Jody L; Wenner, Megan M

    2017-09-01

    What is the central question of this study? Alterations in blood pressure control at exercise onset are apparent in older adults with established cardiovascular disease. It is currently not known whether these alterations are evident in young adults with a family history of hypertension. What is the main finding and its importance? We demonstrate that young women with a family history of hypertension display a larger change in blood pressure within the first 10 s of isometric exercise. These data suggest altered blood pressure control in young women with a family history of hypertension. Hypertensive adults demonstrate atypical increases in blood pressure (BP) and muscle sympathetic nerve activity (MSNA) at the immediate onset of static muscle contraction. However, it is unknown whether these abnormal responses occur in young, otherwise healthy adults at risk for developing future disease, such as those with a family history of hypertension (+FH). We tested the hypothesis that +FH young women have exaggerated increases in BP and MSNA at the onset of static muscle contraction compared with those without a family history of hypertension (-FH). We retrospectively examined beat-by-beat BP and MSNA during the initial 30 s of isometric handgrip exercise (30% of maximal voluntary contraction) in 16 +FH (22 ± 2 years old, 22 ± 3 kg m -2 ) and 16 -FH (22 ± 3 years old, 22 ± 3 kg m -2 ) women. Resting mean arterial pressure (+FH 80 ± 11 mmHg versus -FH 84 ± 13 mmHg), MSNA burst frequency (+FH 7 ± 3 bursts min -1 versus -FH 9 ± 5 bursts min -1 ) and burst incidence [+FH 12 ± 4 bursts (100 heart beats) -1 versus -FH 12 ± 8 bursts (100 heart beats) -1 ] were similar between groups (all P > 0.05). Within the first 10 s of exercise, changes in mean arterial pressure (+FH Δ8 ± 6 mmHg versus -FH Δ3 ± 2 mmHg, P < 0.05) and heart rate (+FH Δ8 ± 5 beats min -1 versus -FH Δ4 ± 4 beats min -1 , P < 0.05) were greater in +FH women. Absolute MSNA burst frequency during the first 30 s of exercise was not different between groups (-FH 7 ± 5 bursts min -1 versus +FH 9 ± 3 bursts min -1 ). Cardiovascular and sympathetic responses during the cold pressor test were not different between groups. These data demonstrate that young women at risk for developing cardiovascular disease exhibit greater changes in BP at the onset of static muscle contraction. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  16. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?

    PubMed

    Poitras, Veronica J; Hudson, Robert W; Tschakovsky, Michael E

    2018-05-01

    Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.

  17. Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial.

    PubMed

    Vangsgaard, Steffen; Taylor, Janet L; Hansen, Ernst A; Madeleine, Pascal

    2014-06-15

    Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group (n = 15) and a reference group (n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5-37.3]; P = 0.01), MVC force (26.4% [15.0-37.7]; P < 0.01), and RFD (24.6% [3.2-46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group (r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training. Copyright © 2014 the American Physiological Society.

  18. Aerobic Exercise As a Potential Way to Improve Self-Control after Ego-Depletion in Healthy Female College Students

    PubMed Central

    Zou, Zhiling; Liu, Yang; Xie, Jing; Huang, Xiting

    2016-01-01

    Purpose: To test whether aerobic exercise can help build self-control stamina in healthy female young adults. Stamina in this context is defined as the capability to endure ego depletion, which can be measured with a self-control task following another activity also requiring self-control. Methods: Forty-five healthy undergraduate women were randomized to either an experimental group or control group. Participants in the experimental group were required to run in their campus running field for 30 min for a period of 5 weeks. Individuals in the control group were required to do diary entries regarding self-control in their daily lives, also for a period of 5 weeks. Before and after the 5-week intervention, participants completed a pain threshold test, a color word Stroop task and the following Cold Pressor Task (CPT) (with and without a distraction component). Results: There was significant decrease of pain tolerance in session 2 relative to session 1 in the control group, but no such decline was found in the experimental group (though the improvement of pain tolerance was not significant), possibly suggesting successful self-control against this kind of decline. Conclusions: Five weeks of aerobic exercise increased self-control after ego depletion in terms of pain tolerance. These findings suggest that aerobic exercise may serve as a potential effective intervention for enhancing self-control in a college female population. PMID:27148113

  19. The Lifenet View: Fostering Contextual Understanding in the Professional Education Curriculum

    ERIC Educational Resources Information Center

    Armstrong, Jan

    2010-01-01

    The work described in this article represents an effort to foster a contextual understanding of human development in culturally and developmentally diverse classrooms through autobiographical reflection and reflexive inquiry. The author's goal is to use the exercise to foster "deep learning" about human development and to develop a classroom…

  20. Applying Active Learning at the Graduate Level: Merger Issues at Newco.

    ERIC Educational Resources Information Center

    Berger, Bruce K.

    2002-01-01

    Suggests that active learning can benefit students in public relations and integrated communication courses at the graduate level. Describes how three active learning approaches--research and field work, student accountabilities for learning, and student reflection and reflexive exercises--were used in a graduate class project to help a Fortune 50…

  1. Children and Adolescents as Political Actors: Collective Visions of Politics and Citizenship

    ERIC Educational Resources Information Center

    Dias, Teresa Silva; Menezes, Isabel

    2014-01-01

    This article presents a case study on the political thought and citizenship conceptions of children and adolescents. Considering children and adolescents as reflexive citizens and partners in community development processes, it is our purpose to understand the development of political thought, and particularly how children conceive the exercise of…

  2. Polymorphic ventricular tachycardia due to variant angina diagnosed on Holter monitoring and confirmed with cold pressor test.

    PubMed

    Öztürk, Semi; Aktemur, Tuğba; Kalyoncuoğlu, Muhsin; Durmuş, Gündüz; Can, Mehmet

    2017-04-01

    A 52-year-old man complaining of persistent recurring chest pain at night underwent coronary angiogram at another institution. Normal coronaries were observed and he was discharged with muscle spasmolytic prescription. Since symptoms had continued, 24-hour Holter monitoring was ordered at our facility and results revealed huge ST elevation and polymorphic ventricular tachycardia. Cold pressor test performed in catheterization laboratory also resulted in ventricular tachycardia. Nifedipine was prescribed and follow-up Holter monitoring revealed no further vasospastic episodes. Utility of 24-hour Holter rhythm monitoring and cold pressor test in patients with recurrent chest pain at night is demonstrated in this report.

  3. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma.

    PubMed

    He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen

    2017-04-01

    Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Neural mechanism of the pressor response to obstructive and nonobstructive apnea.

    PubMed

    Katragadda, S; Xie, A; Puleo, D; Skatrud, J B; Morgan, B J

    1997-12-01

    Obstructive and nonobstructive apneas elicit substantial increases in muscle sympathetic nerve activity and arterial pressure. The time course of change in these variables suggests a causal relationship; however, mechanical influences, such as release of negative intrathoracic pressure and reinflation of the lungs, are potential contributors to the arterial pressure rise. To test the hypothesis that apnea-induced pressor responses are neurally mediated, we measured arterial pressure (photoelectric plethysmography), muscle sympathetic nerve activity (peroneal microneurography), arterial O2 saturation (pulse oximeter), and end-tidal CO2 tension (gas analyzer) during sustained Mueller maneuvers, intermittent Mueller maneuvers, and simple breath holds in six healthy humans before, during, and after ganglionic blockade with trimethaphan (3-4 mg/min, titrated to produce complete disappearance of sympathetic bursts from the neurogram). Ganglionic blockade abolished the pressor responses to sustained and intermittent Mueller maneuvers (-4 +/- 1 vs. +15 +/- 3 and 0 +/- 2 vs. +15 +/- 5 mmHg) and breath holds (0 +/- 3 vs. +11 +/- 3, all P < 0.05). We conclude that the acute pressor response to obstructive and nonobstructive voluntary apnea is sympathetically mediated.

  5. Tai Chi with mental imagery theory improves soleus H-reflex and nerve conduction velocity in patients with type 2 diabetes.

    PubMed

    Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward; Lee, Haneul

    2017-04-01

    Diabetes is a disease that leads to damage to the peripheral nerves which may eventually cause balance instability. The purpose of this study was to determine the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on soleus H-reflex and nerve conduction velocity (NCV) of the sural and superficial peroneal nerves in people with diabetes. Quasi-experimental, one group pretest-posttest design. Human Research Laboratory. A series of Yang style of Tai Chi classes with mental imagery, one hour, two sessions per week for 8 weeks was done. The Activities-specific Balance Confidence (ABC) Scale, Functional Reach Test (FRT), and One Leg Standing Test (OLS) were measured as functional data. Hoffman reflex (H-reflex), and sural and superficial peroneal NCV were measured as main outcomes. All functional outcomes measures were significantly improved after the intervention (p<0.01). In the H-reflex, there was a significant increase in amplitude (μV) after completing 8 weeks of TC exercise (p=0.02). In the sural nerve, the velocity (p=0.01), amplitude (p=0.01), and latency (p=0.01) were significantly improved between pre and post-test. In the superficial peroneal nerve, significant improvements were observed in (p=0.02) and latency (p=0.01), but not in amplitude (μV) (p>0.05). Combining TC intervention with MI theory showed an improvement in the H-reflex and NCV tests, which suggests improved balance and walking stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hostility and Facial Affect Recognition: Effects of a Cold Pressor Stressor on Accuracy and Cardiovascular Reactivity

    ERIC Educational Resources Information Center

    Herridge, Matt L.; Harrison, David W.; Mollet, Gina A.; Shenal, Brian V.

    2004-01-01

    The effects of hostility and a cold pressor stressor on the accuracy of facial affect perception were examined in the present experiment. A mechanism whereby physiological arousal level is mediated by systems which also mediate accuracy of an individual's interpretation of affective cues is described. Right-handed participants were classified as…

  7. Bitters: Time for a New Paradigm.

    PubMed

    McMullen, Michael K; Whitehouse, Julie M; Towell, Anthony

    2015-01-01

    In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm.

  8. Bitters: Time for a New Paradigm

    PubMed Central

    McMullen, Michael K.; Whitehouse, Julie M.; Towell, Anthony

    2015-01-01

    In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm. PMID:26074998

  9. Exercise-induced decrease in insular cortex rCBF during postexercise hypotension.

    PubMed

    Lamb, Kala; Gallagher, Kevin; McColl, Roderick; Mathews, Dana; Querry, Ross; Williamson, Jon W

    2007-04-01

    The insular cortex (IC), a region of the brain involved in blood pressure (BP) modulation, shows decreases in regional cerebral blood flow (rCBF) during postexercise hypotension (PEH). To determine whether changes in IC neural activity were caused by prior exercise or by changes in BP, this investigation compared patterns of rCBF during periods of hypotension, which was induced by prior exercise (i.e., PEH) and sodium nitroprusside (SNP) infusion and a cold pressor (CP), to restore BP. Ten subjects were studied on three different days with randomly assigned conditions: i) resting baseline; ii) PEH; and iii) SNP-induced hypotension (matched to the PEH BP decrease). Data were collected for heart rate (HR) and mean BP, and rCBF was assessed using single-photon emission computed tomography (SPECT) as an index of brain activation. Using ANOVA across conditions, there were differences (P<0.05; mean +/- SD) from baseline during PEH for HR (+12 +/- 3 bpm) and mean BP (-8 +/- 2 mm Hg) and during SNP-induced hypotension (HR = +15 +/- 4 bpm; MBP = -9 +/- 2 mm Hg), with no differences between PEH and SNP. After exercise, there were decreases (P<0.05) in the leg sensorimotor area, anterior cingulate, and the right and left inferior thalamus, right inferior insula, and left anterior insular regions. During SNP-induced hypotension, there were significant increases in the right and left inferior thalamus and the right and left inferior anterior IC. CP during PEH increased BP and IC activity. Data show that reductions in IC neural activity are not caused by acute BP decreases. Findings suggest that exercise can lead to a temporary decrease in IC neural activity, which may be a significant neural factor contributing to PEH.

  10. Understanding Student Engagement in Online Learning Environments: The Role of Reflexivity

    ERIC Educational Resources Information Center

    Kahn, Peter; Everington, Lucy; Kelm, Kathleen; Reid, Iain; Watkins, Francine

    2017-01-01

    It is important to develop understanding of what underpins the engagement of students in online learning environments. This article reports on a multiple case study that explored student engagement in a set of postgraduate degrees offered on a fully online basis. The study was based on a theorization of student engagement as the exercise of…

  11. Rainbow-Like Spectra with a CD: An Active-Learning Exercise

    ERIC Educational Resources Information Center

    Planinsic, G.

    2008-01-01

    Rainbow-like spectra, produced by reflexive diffraction of white light on a CD, offer a spectacular visual effect as well as an excellent classroom opportunity for students to learn how physics works. In this paper we show that building a coherent qualitative explanation can be a challenging task that requires students to combine gained knowledge…

  12. Using Empathic Identification as a Literacy Tool for Building Culturally Responsive Pedagogy with Preservice Teachers

    ERIC Educational Resources Information Center

    Gunn, AnnMarie Alberton; King, James R.

    2015-01-01

    This study explores how teaching cases that featured diversity and literacy issues and self-reflexive writing exercises called postcard narratives can be used as tools by teacher educators for developing a culturally responsive pedagogy with preservice teachers. This study used interviews with the professor, a journal kept by the professor, a…

  13. Arg16/Gly beta2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise.

    PubMed

    Eisenach, John H; Barnes, Sunni A; Pike, Tasha L; Sokolnicki, Lynn A; Masuki, Shizue; Dietz, Niki M; Rehfeldt, Kent H; Turner, Stephen T; Joyner, Michael J

    2005-11-01

    Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.

  14. Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect

    PubMed Central

    Ishida, Akio; Ohya, Yusuke

    2017-01-01

    Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response. PMID:28421141

  15. Cold pressor stimulus temperature and resting masseter muscle haemodynamics in normal humans.

    PubMed

    Maekawa, K; Kuboki, T; Clark, G T; Shinoda, M; Yamashita, A

    1998-11-01

    Cold pressor stimulation reportedly increases sympathetic nerve activity in human skeletal muscles. This study examined the effect of cold pressor stimulation on the resting haemodynamics of the right masseter muscle in normal individuals, using near-infrared spectroscopy. Nine healthy non-smoking males with no history of chronic muscle pain or vascular headaches participated. Their right hand was immersed in a water bath (4, 10, 15 degrees C) for exactly 1 min. Each trial lasted 7 min (1 min before, 1 min during, 5 min after stimulation) and a strictly random order was utilized for the three test temperatures and the mock trial. Masseter muscle haemoglobin concentration and oxygen saturation, as well as heart rate and blood pressure, were continuously recorded in each trial. After completing the four trials, each participant produced and sustained a 30-s maximum voluntary clench in the intercuspal position. Data across the four trials were baseline-corrected and then magnitude-normalized to the individual's highest absolute haemoglobin and oxygen signal during the 30-s maximal clenching effort. Haemoglobin and oxygen saturation increased progressively during cold pressor stimulation as the water temperature decreased (Hb, p < 0.0001; O2, p = 0.0327); very little effect was seen during the mock trial. Heart rate and blood pressure also increased progressively during the stimulation as the temperature decreased (heart rate, p = 0.0013; systolic blood pressure, p = 0.0042; diastolic blood pressure, p = 0.0156). These data suggest that cold pressor, stimulation induces a strong increase in intramuscular blood volume which appears to be due to both a local vasodilative response and increased cardiac output.

  16. Functions of AT1 and AT2 angiotensin receptors in the paraventricular nucleus of the rat, correlating single-unit and cardiovascular responses.

    PubMed

    Khanmoradi, Mehrangiz; Nasimi, Ali

    2017-06-01

    The paraventricular hypothalamic nucleus (PVN) is a complex structure with both neuroendocrine and autonomic functions including cardiovascular control. The PVN contains angiotensin II (AngII) immunoreactive cells, fibers, as well as AT1 and AT2 receptors of AngII. We microinjected AngII into the PVN of normotensive anesthetized rats and simultaneously recorded blood pressure, heart rate (HR) and single-unit responses. The roles of AT1 and AT2 receptors in these responses were also evaluated. Microinjection of AngII into the PVN produced a short excitatory single-unit response and two types of pressor responses: short duration with a decrease in HR and long with an increase in HR. Microinjection of losartan, an AT1 antagonist, into the PVN produced two response types, attenuation and augmentation of the pressor and firing rate responses to AngII. Microinjection of PD123319, an AT2 antagonist, into the PVN greatly attenuated pressor and single-unit response to AngII, indicating that the pressor response was mediated through AT2 receptors too. In conclusion, microinjection of AngII into the PVN stimulates neurons resulting in an increase in firing rate and consequently produces a short or long pressor response. These responses were mediated through AT1 and AT2 receptors; however, AT1 receptor may produce inhibition too. The results suggest that AngII of the PVN may be a neurotransmitter playing a role in arterial pressure regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Role of rostral ventrolateral medulla in the pressor response to intraventricular (4th) injection of substance P].

    PubMed

    Zhang, X H; Ni, H

    1998-04-01

    Experiments were done in rabbits anaesthetized with urethane and immobilized under artificial respiration. It was found that substance P (SP, 0.8 ng/kg dissolved in 100 microliters artificial cerebro-spinal fluid, CSF) injected into the 4th ventricle induced either a rise or a drop of pulmonary arterial pressure (PAP) with predominated pressor response. In addition, a rise in carotid arterial pressure (CAP) and reduction in heart rate (HR) were also observed, whereas no significant alteration in PAP, CAP and HR was observed. Microinjection of SP receptor antagonist [D-Pro2, D-Phe7, D-Trp9]--SP (5-10 ng dissolved in 0.5 microliter CSF) or phentolamine (2-3 micrograms dissolved in 0.5 microliter CSF) into the bilateral rostral ventrolateral medulla (rVLM) prior to intraventricular injection of SP could block the SP-induced pressor responses in pulmonary and carotid arteries, while microinjection of SP receptor antagonist or phentolamine into bilateral caudal ventrolateral medulla (cVLM) at the same dosage had no effect. The results show that SP-induced pulmonary and carotid pressor responses may be mediated through SP-receptor and alpha-adrenergic receptors in the rostral ventro-lateral medulla (rVLM).

  18. The Comparison between Effects of 12 weeks Combined Training and Vitamin D Supplement on Improvement of Sensory-motor Neuropathy in type 2 Diabetic Women.

    PubMed

    Nadi, Maryam; Marandi, Seyyed Mohammad; Esfarjani, Fahimeh; Saleki, Mohammad; Mohammadi, Mahboobeh

    2017-01-01

    Peripheral neuropathy is a common complaint of diabetes. This study aimed to determine the effects of 12 weeks combined training with Vitamin D supplement on improvement of sensory-motor neuropathy in women with diabetic neuropathy. This clinical trial study conducted on 90 patients were selected and randomly divided into two groups. Finally, 81 adult females with diabetes type II (20-55 years old) were interred in this study. The control group had no training, but received Vitamin D. The experimental group received Vitamin D and 12 weeks training program (3 days a week, 60 min/session) including aerobic exercises, strength, and flexibility. Aerobic exercise intensity was set at 60-70% maximum heart rate and resistance training intensity was determined by 10 R.M. Michigan neuropathy questionnaire, reflex hammer and tuning fork 128 Hz used to screening tense of neuropathy (Michigan Neuropathy Screening Instrument) that were used for pretest and posttest. Following 3 months combined training and supplementation with Vitamin D, had observed a significant reduction in numbness ( P = 0.001), pain (0.002), tingling ( P = 0.001), and weakness ( P = 0.002) in the lower limb and also increases in sense of touch intervention ( P = 0.005), detects the position of the fingers ( P = 0.001) and vibration perception ( P = 0.001) in tissues. Knee reflexes ( P = 0.77) and ankles reflexes ( P = 0.47) did not significantly change after interventions. It seems that taking part in combined training and supplementation with Vitamin D can improve the symptoms of sensory-motor neuropathy.

  19. Baroreflex-Mediated Heart Rate and Vascular Resistance Responses 24 h after Maximal Exercise

    DTIC Science & Technology

    2003-01-01

    of normal physiological function in bedridden patients and astronauts. The implication for failure of CVP and plasma volume to return to baseline... FUNCTION , BLOOD PRES- SURE, CENTRAL VENOUS PRESSURE, PHENYLEPHRINE, NECK PRESSURE, LOWER BODY NEGATIVE PRESSURE, COUNTERMEASURES Increased incidence of...orthostatic hypotension and intol-erance in humans is associated with vascular hypovole-mia and attenuated cardiovascular reflex functions

  20. Understanding Policy: Why Health Education Policy Is Important and Why It Does Not Appear to Work

    ERIC Educational Resources Information Center

    Evans, John; Davies, Brian; Rich, Emma; DePian, Laura

    2013-01-01

    Drawing on research investigating the impact of health imperatives around obesity, diet and exercise on the actions of teachers and pupils in schools, this paper offers a reflexive account of the relationships between the "noise" of obesity discourse in the public domain, policies forged to tackle health issues and the realities of…

  1. Vibration exercise: the potential benefits.

    PubMed

    Cochrane, D J

    2011-02-01

    The aim of this review was to examine the physiological effects of vibration exercise (VbX), including the cardiovascular indices and to elucidate its potential use for those with compromised health. VbX has long been acknowledged as a potential modality in sport, exercise, and health sectors. Muscle force and power have been shown to increase after VbX for athletes, the aged and those with diseases, where neural factors are thought to be the main contributor. Further, similarities to the tonic vibration reflex have been used to propose that the muscle spindle plays a role in activating the muscle which could benefit those with compromised health. There is strong evidence that acute VbX can enhance upper and lower-body muscle power, and there is some indication that longer-term VbX can augment muscle power of upper and lower body extremities, although this is less convincing. It is not conclusive whether VbX increases force attributes. This has been fraught by the type and parameters used for various muscle contractions, and the different sample populations that have varied in chronological age, experience and training status. VbX provides an insufficient stimulus to enhance cardiovascular indices, where VbX cannot increase heart rate to the same extent as conventional aerobic exercise. But when conventional aerobic exercise is not possible, for example, in aged, cardiovascular compromised persons, VbX could be implemented at an early stage because it could provide a safe induction of a slight elevation of cardiovascular function indices while providing neural and myogenic benefits. In conclusion, VbX is a safe modality to increase physiological responses of reflex and muscle activity, and muscle function, for athletes, the aged and compromised health. However, further research should focus on the optimum dose relationship of frequency, amplitude and duration for the various populations. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Angiotensin I- and II- and norepinephrine-mediated pressor responses in an ancient holostean fish, the bowfin (Amia calva).

    PubMed

    Butler, D G; Oudit, G Y; Cadinouche, M Z

    1995-06-01

    Dorsal aortic blood pressure (PSYS, systolic; PDIAS, diastolic; and PDA, mean) and heart rate (HR) were measured in resting freshwater bowfins (n = 6), Amia calva L., before and after i.v. injections of 50, 100, 200, 500, and 1000 ng.kg-1 of synthetic [Asn1, Val5]-angiotensin II (ANG II). Baseline PSYS, PDIAS, and PDA were 27.7 +/- 2.8, 22.4 +/- 1.8, and 24.5 +/- 2 mm Hg, respectively. Bowfins were only moderately responsive to ANG II in a stepwise manner and the increase in blood pressure became significant only at the two highest doses; lower doses tended only to increase arterial pressure. Pressor responses due to 200 and 500 ng.kg-1 decayed over a greater time period compared with other doses. alpha-Adrenergic blockade abolished 70% of the ANG II-mediated pressor responses. Eel, salmon, and goosefish angiotensin I (ANG I; 500 ng.kg-1) elicited similar vasopressor responses (magnitude and time course) which were eliminated by prior angiotensin converting enzyme inhibition (captopril; 2-10 mg.kg-1). Bullfrog ANG I evoked a pressor effect, only at a higher dose (5000 ng.kg-1). Consecutive norepinephrine (NE) injections (100, 200, 500, and 1000 ng.kg-1) increased PSYS, PDIAS, and PDA in a dose-dependent manner which was dependent on alpha-adrenoceptors since phentolamine (1-3 mg.kg-1) abolished 80% of the pressor action of NE. PSYS was elevated by 100 ng.kg-1 of NE but PDIAS and PDA were significantly increased only at 200 ng.kg-1 ANG II and NE had no measurable chronotropic effect and resting HR (27.2 +/- 0.8 beats.min-1) was unchanged. Captopril and phentolamine treatments produced rapid hypotension and bradycardia (25-30%) which lasted from 15 to 30 and 20 to 40 min, respectively. The rising and decreasing phases of the NE-mediated pressor responses had shorter durations than ANG II effects. Tachyphylaxis occurred with the high doses of ANG II and NE. The data show that in the ancient bowfin, which evidently lacks renal juxtaglomerular cells, the cardiovascular system can be regulated by the renin-angiotensin system and NE.

  3. Blood pressure and the contractility of a human leg muscle.

    PubMed

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  4. Blood pressure and the contractility of a human leg muscle

    PubMed Central

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  5. Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers.

    PubMed

    Di Stefano, Andrea Francesco Daniele; Rusca, Antonio

    2011-12-01

    The aim of this study was to evaluate the pressor response to oral tyramine during repeated administration of oral safinamide in healthy volunteers. Twelve females and eight males aged 52.7 ± 4.9 years entered the study. An oral tyramine screening test was conducted to select subjects sensitive to the tyramine pressor effect on systolic blood pressure (SBP) in the dose range of 200-400 mg. Safinamide 300 mg was then administered once daily under fasting conditions. Starting on day 5 (safinamide pharmacokinetic steady state), single ascending doses of tyramine were co-administered daily: 50, 100 and 200 mg were administered on days 5, 6 and 7, respectively. Vital parameters were monitored by telemetry. No SBP increase ≥30 mmHg over baseline was observed when tyramine was co-administered with safinamide. Less than one third of the 400 mg responders reported SBP increases between 22 and 27 mmHg, which were below the threshold of 30 mmHg over baseline. SBP increases, as well as time interval to pressor response measured after co-treatment with safinamide and tyramine 200 mg, were not significantly different from those measured after administration of oral tyramine 200 mg alone. Safinamide 300 mg, administered o.d. under fasting conditions, does not change the tyramine pressor response as evaluated at steady state after 6-7 days of treatment as compared with the effect of tyramine administered alone. Safinamide, which inhibits monoamine oxidase (MAO)-B, does not affect oral tyramine metabolism mediated mostly by the intestinal MAO-A.

  6. Persistent post-surgical pain and experimental pain sensitivity in the Tromsø study: comorbid pain matters.

    PubMed

    Johansen, Aslak; Schirmer, Henrik; Stubhaug, Audun; Nielsen, Christopher S

    2014-02-01

    In a large survey incorporating medical examination (N=12,981), information on chronic pain and surgery was collected, and sensitivity to different pain modalities was tested. Tolerance to the cold pressor test was analysed with survival statistics for 10,486 individuals, perceived cold pressor pain intensity was calculated for 10,367 individuals, heat pain threshold was assessed for 4,054 individuals, and pressure pain sensitivity for 4,689 individuals. Persistent post-surgical pain, defined by self-report, was associated with lower cold pressor tolerance (sex-adjusted hazard ratio=1.34, 95% confidence interval=1.08-1.66), but not when adjusting for other chronic pain. Other experimental pain modalities did not differentiate between individuals with or without post-surgical pain. Of the individuals with chronic pain (N=3352), 6.2% indicated surgery as a cause, although only 0.5% indicated surgery as the only cause. The associations found between persistent post-surgical pain and cold pressor tolerance is largely explained by the co-existence of chronic pain from other causes. We conclude that most cases of persistent post-surgical pain are coexistent with other chronic pain, and that, in an unselected post-surgical population, persistent post-surgical pain is not significantly associated with pain sensitivity when controlling for comorbid pain from other causes. A low prevalence of self-reported persistent pain from surgery attenuates statistically significant associations. We hypothesize that general chronic pain is associated with central changes in pain processing as expressed by reduced tolerance for the cold pressor test. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    PubMed

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P < 0.008). Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both P < 0.01), but not after breath holding (P = 0.099). Cold pressor pain ratings tended to rise less after cathodal vs anodal tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  8. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats.

    PubMed

    Brasil, Taíz F S; Fassini, Aline; Corrêa, Fernando M

    2018-01-01

    The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.

  9. Influence of a high-intensity interval training session on peripheral and central blood pressure at rest and during stress testing in healthy individuals.

    PubMed

    Ketelhut, Sascha; Milatz, Florian; Heise, Walter; Ketelhut, Reinhard G

    2016-09-01

    Regular physical activity is known to reduce arterial pressure (BP). In a previous investigation, we could prove that even a single bout of moderate-intensity continuous exercise (MICE) causes a prolonged reduction in BP. Whether high-intensity interval training (HIIT) has a favourable influence on BP, and therefore may be followed subjects and methods by a prolonged BP reduction, should be examined on the basis of blood pressure response after exercise and during a subsequent stress test. In 39 healthy men (aged 34 ± 8 years, BMI 24 ± 2), peripheral and central BP were measured noninvasively at rest and at the end of a 2-min cold pressor test (CPT) using a Mobil-O-Graph (24 PWA monitor, IEM). Following HIIT (6 x 1 min at 98% of the previously determined maximum wattage, 4-min rest between intervals) BP was measured again throughout 60 min of rest and thereafter during a CPT. The results were compared with those obtained before HIIT. Similar to MICE, peripheral and central BPs were significantly (p < 0.05) lower 45 min after HIIT. When analysing peripheral BP during a CPT before and after exercise, significantly lower systolic (p < 0.001) and diastolic (p = 0.008) pressures were established after HIIT. This was true for systolic (p = 0.002) and diastolic (p = 0.006) central BP as well. Although there were no more significant differences between pressures at rest before and 60 min after exercise, the increase in peripheral systolic pressure due to CPT was significantly slower after HIIT (p = 0.019) when compared with BP during CPT before exercise. This was true for central systolic BP as well (p = 0.017). HIIT leads to a BP reduction, which can still be detected up to 45 min after completion of the training. Even 60 min after exercise, pressures during a CPT showed a reduced augmentation, indicating an attenuated hemodynamic response to stress testing after HIIT.

  10. Changes in plasma volume and baroreflex function following resistance exercise

    NASA Technical Reports Server (NTRS)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  11. Influence of dosage, consciousness, and nifedipine on the acute pressor response to intraperitoneally administered cadmium. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, C.E.; Hungerford, S.

    1982-05-01

    The acute pressor effect of intraperitoneally administered cadmium was explored over the dose range 0.015-2 mg/kg in both pentobarbital-anesthetized and conscious rats. The former first respondent at 0.031 mg/kg, and successive doublings of that dosage increased the highest pressures attained in a stepwise fashion until a dosage of 0.25 mg/kg, the maximally effective quantity, was reached. Arterial pressure did not rise in conscious rats until a dose of 1 mg/kg, which gave the maximum response within the range examined. Heart-rate changes with Cd were slight, and rarely significant at a given dosage, but pentobarbital invariably caused tachycardia. Anesthetized rats thusmore » gave a graded response, while conscious animals reacted in an all-or-none fashion. The increased pressor responsiveness of rats under pentobarbital can not be ascribed to its cardiac parasympatholytic effects, since sensitivity was not conferred upon conscious rats when pretreated with atropine at a dose producing even greater tachycardia than that caused by pentobarbital. Nifedipine, which blocks calcium entry into smooth muscle cells, prevented the pressor response to cadmium when given as pretreatment and terminated an ongoing response when give intercurrently. Possible mechanisms to account for the observed behavior are considered.« less

  12. Resistance exercise training and the orthostatic response

    NASA Technical Reports Server (NTRS)

    McCarthy, J. P.; Bamman, M. M.; Yelle, J. M.; LeBlanc, A. D.; Rowe, R. M.; Greenisen, M. C.; Lee, S. M.; Spector, E. R.; Fortney, S. M.

    1997-01-01

    Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4-14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance.

  13. Handling Ibuprofen Increases Pain Tolerance and Decreases Perceived Pain Intensity in a Cold Pressor Test

    PubMed Central

    Rutchick, Abraham M.; Slepian, Michael L.

    2013-01-01

    Pain contributes to health care costs, missed work and school, and lower quality of life. Extant research on psychological interventions for pain has focused primarily on developing skills that individuals can apply to manage their pain. Rather than examining internal factors that influence pain tolerance (e.g., pain management skills), the current work examines factors external to an individual that can increase pain tolerance. Specifically, the current study examined the nonconscious influence of exposure to meaningful objects on the perception of pain. Participants (N = 54) completed a cold pressor test, examined either ibuprofen or a control object, then completed another cold pressor test. In the second test, participants who previously examined ibuprofen reported experiencing less intense pain and tolerated immersion longer (relative to baseline) than those who examined the control object. Theoretical and applied implications of these findings are discussed. PMID:23469170

  14. Hyperventilation and cold-pressor stress echocardiography combined with automated functional imaging non-invasively detected vasospastic angina

    PubMed Central

    Suzuki, Kengo; Akashi, Yoshihiro J; Mizukoshi, Kei; Kou, Seisyou; Takai, Manabu; Izumo, Masaki; Shimozato, Takashi; Hayashi, Akio; Ohtaki, Eiji; Nobuoka, Sachihiko; Miyake, Fumihiko

    2010-01-01

    A 47-year-old male presented with chest discomfort while sleeping. The patient was suspected of having vasospastic angina (VSA) and underwent hyperventilation and cold-pressor stress echocardiography. No chest pain, ECG changes or decreased wall motion was found. However, automated function imaging (AFI) showed decreased peak systolic strain at the apex and postsystolic shortening at both the apex and inferior wall, which was not found before the test. The provocation test revealed 99% stenosis in the right coronary artery #2 at a dose of 50 μg acetylcholine and 90% stenosis in the left coronary artery #8 at a dose of 100 μg. The patient was thus diagnosed as having VSA. The present case demonstrates the usefulness of AFI combined with hyperventilation and cold-pressor stress echocardiography as a screening examination for VSA. PMID:22798093

  15. Maternal low-protein diet-induced delayed reflex ontogeny is attenuated by moderate physical training during gestation in rats.

    PubMed

    Falcão-Tebas, Filippe; Bento-Santos, Adriano; Fidalgo, Marco Antônio; de Almeida, Marcelus Brito; dos Santos, José Antônio; Lopes de Souza, Sandra; Manhães-de-Castro, Raul; Leandro, Carol Góis

    2012-02-01

    We evaluated the effects of moderate- to low-intensity physical training during gestation on reflex ontogeny in neonate rats whose mothers were undernourished. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n 7); trained (T, n 7); untrained with a low-protein diet (NT+LP, n 7); trained with a low-protein diet (T+LP, n 4). Trained rats were subjected to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 d/week and 60 min/d, at 65 % of VO₂max). After confirming the pregnancy, the intensity and duration of the exercise were reduced. Low-protein groups were provided with an 8 % casein diet, and controls were provided with a 17 % casein diet. Their respective offspring were evaluated (during the 10th-17th days of postnatal life) in terms of physical feature maturation, somatic growth and reflex ontogeny. Pups born to mothers provided with the low-protein diet during gestation and lactation showed delayed physical feature and reflex maturation and a deficit in somatic growth when compared with controls. However, most of these deficiencies were attenuated in pups of undernourished mothers undergoing training. In conclusion, physical training during gestation attenuates the effects of perinatal undernutrition on some patterns of maturation in the central nervous system during development.

  16. Exercise is medicine: some cautionary remarks in principle as well as in practice.

    PubMed

    Neville, Ross D

    2013-08-01

    On the basis of extensive research on the relationship between physical activity, exercise and health, as well as strong support from policymakers and practitioners, the "Exercise is Medicine" initiative has become something of a linchpin in the agenda for modern healthcare reform and reflects a broader acceptance that the philosophy of health politics must shift from social engineering to performativity. However, in spite of the avowed commitment to encouraging individuals to take on a more reflexive relation to their health, it remains unclear as to whether an initiative such as this is, unambiguously, a good thing. In this paper, a number of cautionary remarks are made with respect to "Exercise is Medicine" in principle as well as in practice. Firstly, it is argued that equating exercise with medicine is to equate it with a definition of and relation to the body to which it is not entirely akin. And secondly, it is argued that any proposed alignment of the fitness and healthcare industries needs further critical examination, a realigning of interests, and a thorough reconsideration of their suitability of fit.

  17. Usefulness of ambulatory radionuclide monitoring of left ventricular function early after acute myocardial infarction for predicting residual myocardial ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breisblatt, W.M.; Weiland, F.L.; McLain, J.R.

    1988-11-15

    Ambulatory radionuclide monitoring of left ventricular function was performed with the nuclear Vest device in 35 patients early after acute myocardial infarction. Patients were evaluated during post-infarction treadmill, other activities that included mental stress and cold pressor challenge, and with stress thallium imaging and cardiac catheterization. Of the 35 patients evaluated, 14 had ischemic responses on treadmill testing and 21 had negative responses. By contrast, 20 had redistribution by thallium imaging suggesting ischemia. Vest studies demonstrated 56 responses suggestive of ischemia in 23 patients. Twenty-two occurred during exercise and 13 with mental stress. Seventy-five percent were silent and only 39%more » had associated electrocardiographic changes. Vest responses were compared in patients whose thallium scan was indicative of ischemia (thallium-positive) and those without ischemia (thallium-negative). Ejection fraction was higher in the thallium-positive group (0.52 +/- 0.11), as compared with thallium-negative patients (0.44 +/- 0.1). With exercise, ejection fraction decreased for the thallium-positive patients from 0.52 +/- 0.11 to 0.40 +/- 0.09 at peak exercise. For thallium-negative patients, ejection fraction changes were not significant. During mental stress, ejection fraction decreased from 0.51 +/- 0.11 to 0.45 +/- 0.12 for thallium-positive patients while thallium-negative patients were unchanged. Vest-measured decreases in ejection fraction of greater than or equal to 5 units during exercise were highly sensitive (90%), specific (73%) and predictive (82%) of a positive thallium scan. The same response for mental stress was specific (87%) and predictive (85%) of a positive scan result.« less

  18. Absence of resting cardiovascular dysfunction in middle-aged endurance-trained athletes with exaggerated exercise blood pressure responses.

    PubMed

    Currie, Katharine D; Sless, Ryan T; Notarius, Catherine F; Thomas, Scott G; Goodman, Jack M

    2017-08-01

    Untrained individuals with exaggerated blood pressure (EBP) responses to graded exercise testing are characterized as having resting dysfunction of the sympathetic and cardiovascular systems. The purpose of this study was to determine the resting cardiovascular state of endurance-trained individuals with EBP through a comparison of normotensive athletes with and without EBP. EBP was defined as a maximal systolic blood pressure (SBP) at least 190 mmHg and at least 210 mmHg for women and men respectively, in response to a graded exercise test. Twenty-two life-long endurance-trained athletes (56 ± 5 years, 16 men) with EBP (EBP+) and 11 age and sex-matched athletes (55 ± 5 years, eight men) without EBP (EBP-) participated in the study. Sympathetic reactivity was assessed using BP responses to a cold pressor test, isometric handgrip exercise, and postexercise muscle ischemia. Resting left ventricular structure and function was assessed using two-dimensional echocardiography, whereas central arterial stiffness was assessed using carotid-to-femoral pulse wave velocity. Calf vascular conductance was measured at rest and peak postexercise using strain-gauge plethysmography. All sympathetic reactivity, left ventricular, and arterial stiffness indices were similar between groups. There was no between-group difference in resting vascular conductance, whereas peak vascular conductance was higher in EBP+ relative to EBP- (1.81 ± 0.65 vs. 1.45 ± 0.32 ml/100 ml/min/mmHg, P < 0.05). Findings from this study suggest that athletes with EBP do not display the resting cardiovascular state typically observed in untrained individuals with EBP. This response in athletes, therefore, is likely a compensatory mechanism to satisfy peripheral blood-flow demands rather than indicative of latent dysfunction.

  19. Central antioxidant therapy inhibits parasympathetic baroreflex control in conscious rats.

    PubMed

    Giusti, Marcelo Franchini; Sato, Monica Akemi; Cardoso, Leonardo Máximo; Braga, Valdir Andrade; Colombari, Eduardo

    2011-02-04

    Baroreceptor reflex is an important system for neural control of blood pressure. Recently, reactive oxygen species (ROS) have been shown to play an important role in neuronal activity of central areas related to blood pressure control. The aim of this study was to investigate the effects elicited by ascorbic acid (AAC) and N-acetylcysteine (NAC) injections into the 4thV on the parasympathetic component of the baroreflex. Male Wistar rats were implanted with a stainless steel guide cannula into the 4thV. One day prior to the experiments, the femoral artery and vein were cannulated for pulsatile arterial pressure, mean arterial pressure and heart rate measurements and drug administration, respectively. After baseline recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 3 μg/kg, i.v.) and a depressor dose of sodium nitroprusside (SNP, 30 μg/kg, i.v.) before (control) and 5, 15, 30 and 60 min after AAC or NAC into the 4thV. Control PHE injection induced baroreflex-mediated bradycardia (-93 ± 13 bpm, n=7). Interestingly, after AAC injection into the 4thV, PHE injection produced a transient tachycardia at 5 (40 ± 23 bpm), 15 (26 ± 22 bpm) and 30 min (59 ± 21 bpm). No changes were observed in baroreflex-mediated tachycardia evoked by SNP after AAC injection on 4thV (control: 151 ± 23bpm vs. 135 ± 18 bpm at 5 min after AAC, n=7). In the NAC treated group, PHE induced a reduction in reflex bradycardia at 5 min when compared to control (-11 ± 17 bpm vs. -83 ± 15 bpm, n=7). No changes were observed in baroreflex-mediated tachycardia evoked by SNP after NAC injection on 4thV. The antioxidants AAC and NAC may act in the central nervous system affecting the parasympathetic component of the cardiac baroreflex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  1. Vasopressin and sympathetic system mediate the cardiovascular effects of the angiotensin II in the bed nucleus of the stria terminalis in rat.

    PubMed

    Nasimi, Ali; Kafami, Marzieh

    2016-07-01

    The bed nucleus of the stria terminalis (BST) is involved in cardiovascular regulation. The angiotensin II (Ang II) receptor (AT1), and angiotensinogen were found in the BST. In our previous study we found that microinjection of Ang II into the BST produced a pressor response. This study was performed to find the mechanisms mediating this response in anesthetized rats. Ang II was microinjected into the BST and the cardiovascular responses were re-tested after systemic injection of a blocker of autonomic or vasopressin V1 receptor. The ganglionic nicotinic receptor blocker, hexamethonium dichloride, attenuated the pressor response to Ang II, indicating that the cardiovascular sympathetic system is involved in the pressor effect of Ang II. A selective vasopressin V1 receptor antagonist greatly attenuated the pressor effect of Ang II, indicating that the Ang II increases the arterial pressure via stimulation of vasopressin release as well. In conclusion, in the BST, Ang II as a neurotransmitter increases blood pressure by exciting cardiovascular sympathetic system and directly or indirectly causing vasopressin to release into bloodstream by VPN. This is an interesting new finding that not only circulating Ang II but also brain Ang II makes vasopressin release. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    PubMed

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.

  4. Reflex effects following selective stimulation of J receptors in the cat.

    PubMed Central

    Anand, A; Paintal, A S

    1980-01-01

    1. Experiments carried out on anaesthetized cats showed that increasing blood flow, through the lobes of a lung, by 133% (S.E. 33%) generated an average of 0.75 impulses/sec (S.E. 0.3) in ten almost silent J receptors. Equivalent activity was produced by injecting 12-18 micrograms phenyl diguanide/kg into the right atrium. Such activity caused marked reflex effects, i.e. apnoea, rapid shallow breathing and reduction in the knee jerk. 2. The reflex effects of J receptors were studied after blocking the activity from cardiac receptors by intrapericardial injections of xylocaine. This was necessary because left atrial injections of phenyl diguanide produced reflex respiratory effects and inhibition of the knee jerk. 3. Hypoxia, but not hypercapnia, attenuated the reflex effects of J receptors, apnoea being abolished if the Pa,O2 fell below 35 mmHg. This was a central effect as it occurred in spite of increased activity of J receptors following phenyl diguanide, and effects of hypoxia persisted after cutting both carotid nerves. 4. The only invariable reflex effect of J receptors was a reduction in the total number and the average frequency of phrenic impulses in each breath. The changes in inspiratory time (ti) and expiratory time (te) following apnoea were variable although most frequently both were reduced. In about half the observations the first effect before the apnoea was a reduction in ti, in the other half it was a reduction in te. It was concluded that an input from J receptors inhibits inspiratory and expiratory mechanisms directly. 5. In some cats apnoea and rapid shallow breathing produced by J receptors continued after interrupting their activity by vagotomy and this did not diminish the reduction in ti or te; in other cats it did. The reduction in te was at times quite independent of changes in ti, i.e. pulmonary stretch receptor activity. 6. It was concluded that J receptors must be stimulated during moderate exercise to levels that produce marked respiratory reflex effects and inhibition of muscles. PMID:6770080

  5. C-reactive protein and cold-pressor tolerance in the general population: the Tromsø Study.

    PubMed

    Schistad, Elina Iordanova; Stubhaug, Audun; Furberg, Anne-Sofie; Engdahl, Bo Lars; Nielsen, Christopher Sivert

    2017-07-01

    The aim of this study was to examine whether increases in severity of subclinical inflammation, measured by high-sensitivity C-reactive protein (hs-CRP), increased experimental pain sensitivity, measured by cold-pressor tolerance, and to test whether this relationship is independent of chronic pain. A large population-based study from 2007 to 2008, the sixth Tromsø Study, provided data from 12,981 participants. For the present analysis, complete data for 10,274 participants (age: median 58 years) were available. The main outcome measure was cold-pressor tolerance, tested by placing the dominant hand in circulating cold water (3°C) for a maximum of 106 seconds. Cox proportional hazard models, treating hand withdrawal during the cold-pressor test as the event and enduring the full test time as censored data, were used to investigate the relationship between hs-CRP levels (≤3 or >3 mg/L) and cold-pressure tolerance. The fully adjusted model was controlled for age, sex, education, body mass index, smoking status, alcohol consumption, emotional distress, statin usage, and self-reported presence of chronic pain. Additional analysis was performed in participants without chronic pain. Higher levels of hs-CRP were negatively related to cold-pressor tolerance (hazard ratio [HR] = 1.24, 95% confidence interval [CI], 1.12-1.37, P < 0.001), adjusted for age and sex. This relationship remained essentially unaltered after controlling for potential confounders (HR = 1.22, 95% CI, 1.09-1.36, P < 0.001), as well as for the presence of chronic pain (HR = 1.22, 95% CI, 1.09-1.36, P < 0.001). The present data show that subclinical inflammation is related to increased pain sensitivity, suggesting a potential role of inflammation in experimental pain which may be of importance for the development of clinical pain.

  6. Discharges of aortic and carotid sinus baroreceptors during spontaneous motor activity and pharmacologically evoked pressor interventions.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Ishida, Tomoko; Idesako, Mitsuhiro; Liang, Nan

    2014-07-01

    Our laboratory has demonstrated that the cardiomotor component of aortic baroreflex is temporarily inhibited at the onset of spontaneous motor activity in decerebrate cats, without altering carotid sinus baroreflex. A reason for this dissociation may be attributed to a difference in the responses between aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity. The stimulus-response curves of AoNA and CsNA against mean arterial blood pressure (MAP) were compared between the pressor interventions evoked by spontaneous motor activity and by intravenous administration of phenylephrine or norepinephrine, in which the responses in heart rate (HR) were opposite (i.e., tachycardia vs. baroreflex bradycardia), despite the identical increase in MAP of 34-40 mmHg. In parallel to the pressor response, mean AoNA and CsNA increased similarly by 78-81 and by 88 % of the baseline control, respectively, irrespective of whether the pressor response was evoked by spontaneous motor activity or by a pharmacological intervention. The slope of the stimulus-response curve of the mean AoNA became greater (P < 0.05) during spontaneous motor activity as compared to the pharmacological intervention. On the other hand, the stimulus-response curve of the mean CsNA and its slope were equal (P > 0.05) between the two pressor interventions. Furthermore, the slopes of the stimulus-response curves of both diastolic AoNA and CsNA (defined as the minimal value within a beat) exhibited a greater increase during spontaneous motor activity. All differences in the slopes of the stimulus-response curves were abolished by restraining HR at the intrinsic cardiac frequency. In conclusion, mean mass activities of both aortic and carotid sinus baroreceptors are able to encode the beat-by-beat changes in MAP not only at rest but also during spontaneous motor activity and spontaneous motor activity-related reduction of aortic baroreceptor activity is denied accordingly.

  7. Aerobic Exercise Training Improves Orthostatic Tolerance in Aging Humans.

    PubMed

    Xu, Diqun; Wang, Hong; Chen, Shande; Ross, Sarah; Liu, Howe; Olivencia-Yurvati, Albert; Raven, Peter B; Shi, Xiangrong

    2017-04-01

    This study was designed to test the hypothesis that aerobic exercise training of the elderly will increase aerobic fitness without compromising orthostatic tolerance (OT). Eight healthy sedentary volunteers (67.0 ± 1.7 yr old, four women) participated in 1 yr of endurance exercise training (stationary bicycle and/or treadmill) program at the individuals' 65%-75% of HRpeak. Peak O2 uptake (V˙O2peak) and HRpeak were determined by a maximal exercise stress test using a bicycle ergometer. Carotid baroreceptor reflex (CBR) control of HR and mean arterial pressure (MAP) were assessed by a neck pressure-neck suction protocol. Each subject's maximal gain (Gmax), or sensitivity, of the CBR function curves were derived from fitting their reflex HR and MAP responses to the corresponding neck pressure-neck suction stimuli using a logistic function curve. The subjects' OT was assessed using lower-body negative pressure (LBNP) graded to -50 mm Hg; the sum of the product of LBNP intensity and time (mm Hg·min) was calculated as the cumulative stress index. Training increased V˙O2peak (before vs after: 22.8 ± 0.92 vs 27.9 ± 1.33 mL·min·kg, P < 0.01) and HRpeak (154 ± 4 vs 159 ± 3 bpm, P < 0.02) and decreased resting HR (65 ± 5 vs 59 ± 5 bpm, P < 0.02) and MAP (99 ± 2 vs 87 ± 2 mm Hg, P < 0.05). CBR stimulus-response curves identified a leftward shift with an increase in CBR-HR Gmax (from -0.13 ± 0.02 to -0.27 ± 0.04 bpm·mm Hg, P = 0.01). Cumulative stress index was increased from 767 ± 68 mm Hg·min pretraining to 946 ± 44 mm Hg·min posttraining (P < 0.05). Aerobic exercise training improved the aerobic fitness and OT in elderly subjects. An improved OT is likely associated with an enhanced CBR function that has been reset to better maintain cerebral perfusion and cerebral tissue oxygenation during LBNP.

  8. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training?

    PubMed

    Radhakrishnan, K; Sharma, V K; Subramanian, S K

    2017-05-10

    Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (p<0.001), resting supine HR (p=0.001), HR after 5 minutes of assuming standing posture (p=0.003); significant increase in TTT (p<0.001), derived VO2max (p<0.001), METs (p<0.001) and drop in recovery HR (p=0.038); altered HR response and BP response during exercise. We hypothesize that these changes are probably due to VRMT induced learnt behaviour to control the breathing pattern that improves breathing economy, improvement in respiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.

  9. The Effects of Interactive and Passive Distraction on Cold Pressor Pain in Preschool-aged Children

    PubMed Central

    Dahlquist, Lynnda M.; Wohlheiter, Karen

    2011-01-01

    Objective Using a mixed model design, this study examined the effects of interactive versus passive distraction on healthy preschool-aged children’s cold pressor pain tolerance. Methods Sixty-one children aged 3–5 years were randomly assigned to one of the following: interactive distraction, passive distraction, or no distraction control. Participants underwent a baseline cold pressor trial followed by interactive distraction trial, passive distraction trial, or second baseline trial. One or two additional trials followed. Children originally assigned to distraction received the alternate distraction intervention. Controls participated in both interactive and passive distraction trials in counterbalanced order. Results Participants showed significantly higher pain tolerance during both interactive and passive distraction relative to baseline. The two distraction conditions did not differ. Conclusions Interactive and passive video game distraction appear to be effective for preschool-aged children during laboratory pain exposure. Future studies should examine whether more extensive training would enhance effects of interactive video game distraction. PMID:21278378

  10. SPASTICITY—Its Nature and Treatment

    PubMed Central

    Levine, Milton G.; Kabat, Herman

    1954-01-01

    There are a number of physiological means of relaxing spasticity, including active resistive exercise, cold hydrotherapy, heat, electrical stimulation of antagonistic muscles, passive stretch in diagonal movement patterns, and the Von Bechterew reflex. Although none of them will cure spasticity, temporary relaxation may permit a patient to achieve better functioning of an affected joint. The choice of procedure will depend on the nature of the lesion and the muscular distribution of the spasticity. PMID:13150200

  11. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  12. 6-[N,S-dimethyl-N'-cyanothioureidomethyl]-6,11-dihydro-5H- dibenz[b,e]azepine hydrochloride (Fran 12): a histamine and 5-hydroxytryptamine antagonist with pressor properties.

    PubMed

    Law, S C; Guyett, F J; King, R G; Boura, A L; Jackson, W R; Hodgson, W C

    1992-01-01

    We have synthesized and examined some of the pharmacological properties of 6-[N,S-dimethyl-N'-cyanoisothioureidomethyl]-6,11-dihydro-5H- dibenz(b,e)azepine hydrochloride (Fran 12), a derivative of 6-methylaminomethyl-6,11-dihydro-5H- dibenz[b,e,]azepine. In the guinea-pig isolated ileum, Fran 12 (10(-7)-10(-5) M) caused parallel rightward shifts of the concentration-response curves to histamine. A Schild plot gave a pA2 of 7.48, with a slope not significantly different from -1.0. In the rat stomach fundus strip and in endothelium-denuded aortic rings, Fran 12 inhibited contractile responses to 5-hydroxytryptamine in a non-competitive manner. In both chloralose-anaesthetized and pithed rats, it inhibited pressor responses to 5-hydroxytryptamine. It had no effect on depressor responses to 5-hydroxytryptamine in anaesthetized rats. In pithed rats, Fran 12 (0.25-2 mg/kg, i.v.) produced dose-dependent increases in blood pressure. These were not inhibited by i.v. phentolamine, prazosin, yohimbine, propranolol, methysergide, pentolinium or atropine but were inhibited by verapamil. These results indicate that Fran 12 is a histamine and 5-hydroxytryptamine antagonist which also exerts pressor effects via a peripheral action. The pressor action does not appear to be mediated via effects on alpha 1- or alpha 2-adrenoceptors, muscarinic or nicotinic cholinoceptors or 5-hydroxytryptamine receptors, although calcium channel activation may play a role.

  13. Enhanced 5-hydroxytryptamine (5-HT) release from vascular adrenergic nerves in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, H.; Urabe, M.; Takasaki, K.

    1986-03-01

    The release of 5-HT from vascular adrenergic nerves was compared between normotensive Wistar Kyoto rats (WKY) and SHR. The mesenteric vascular bed isolated from WKY and SHR was perfused with Krebs solution at a constant flow rate of 5 ml/min. Periarterial nerve stimulation (PNS) was delivered at 4 to 16 Hz for 30 sec. In the SHR preparation, the pressor response to PNS, previously decreased by prazonsin (50 nM), was greatly potentiated after treatment with 5-HT(1 ..mu..M) for 15 min and a frequency-dependent pressor response to PNS reappeared, whereas the 5-HT treatment did not alter the pressor response to exogenousmore » norepinephrine (1 nmol) previously reduced by prazonsin. The potentiation of pressor response to PNS after 5-HT treatment was small in the WKY preparation. This potentiation in both WKY and SHR did not occur in the presence of ketanserin (10 nM). In the preparation labeled with (/sup 3/H)-5-HT, PNS (4-16 Hz) evoked a frequency-dependent increase of (/sup 3/H)-efflux, which was abolished by treatment with tetrodotoxin (100 nM) or 6-hydroxydopamine (50 mg/kg i.p. x 2) and in calcium-free Krebs solution. The PNS evoked-(/sup 3/H)-efflux was much greater in SHR than WKY. These results suggest that the release of 5-HT from vascular adrenergic nerves by PNS is enhanced in the SHR preparation.« less

  14. Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; de Almeida Colombari, Débora Simões; Menani, José V

    2004-10-29

    The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28+/-3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/100 nl) injected into the NTS reduced MAP (-26+/-8 mm Hg) or produced no effect (2+/-7 mm Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to l-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses.

  15. Effect of acute transdermal estrogen administration on basal, mental stress and cold pressor-induced sympathetic responses in postmenopausal women.

    PubMed

    Sofowora, Gbemiga G; Singh, Iqbal; He, Huai B; Wood, Alastair J J; Stein, C Michael

    2005-06-01

    Administration of estrogen has vascular effects through poorly defined mechanisms that may include sympathetic withdrawal. To define the effects of acute estrogen administration on sympathetic responses, nineteen healthy postmenopausal women (age 54+/-2 years) were studied after application of a placebo or estrogen patch for 36 hours, in random order. A p-value, adjusted for multiple comparisons, of <0.017 was used to determine statistical significance. Heart rate, blood pressure, and norepinephrine spillover were measured at rest, during mental stress (Stroop test), and during a cold pressor test. Estrogen did not attenuate basal or stimulated hemodynamic responses significantly. The increase in mean arterial pressure after the Stroop test (5.9+/-1.2mm/ Hg on placebo vs 6.1+/-1.6mm/Hg on estrogen, p=0.9) and after the cold pressor test (12.6+/-2.4mm/Hg on placebo vs 13.0+/-2.2 mm/Hg on estrogen, p=0.8) did not differ. Basal, mental stress and cold pressor-stimulated norepinephrine spillover were not significantly affected by short-term estrogen administration. Norepinephrine spillover tended to be higher after estrogen (1296.2+/-238 ng/min) than placebo (832.5+/-129 ng/min) (p=0.02) at baseline and after the Stroop test (1881.1+/-330 ng/min vs 1014.6+/-249 ng/min) (p=0.02). Acute transdermal estrogen administration did not attenuate norepinephrine spillover or sympathetically mediated hemodynamic responses.

  16. Pressor mechanism evaluation for phytochemical compounds using in silico compound-protein interaction prediction.

    PubMed

    He, Min; Cao, Dong-Sheng; Liang, Yi-Zeng; Li, Ya-Ping; Liu, Ping-Le; Xu, Qing-Song; Huang, Ren-Bin

    2013-10-01

    In this study, a method was applied to evaluate pressor mechanisms through compound-protein interactions. Our method assumed that the compounds with different pressor mechanisms should bind to different target proteins, and thereby these mechanisms could be differentiated using compound-protein interactions. Twenty-six phytochemical components and 46 tested target proteins related to blood pressure (BP) elevation were collected. Then, in silico compound-protein interactions prediction probabilities were calculated using a random forest model, which have been implemented in a web server, and the credibility was judged using related literature and other methods. Further, a heat map was constructed, it clearly showed different prediction probabilities accompanied with hierarchical clustering analysis results. Followed by a compound-protein interaction network was depicted according to the results, we can see the connectivity layout of phytochemical components with different target proteins within the BP elevation network, which guided the hypothesis generation of poly-pharmacology. Lastly, principal components analysis (PCA) was carried out upon the prediction probabilities, and pressor targets could be divided into three large classes: neurotransmitter receptors, hormones receptors and monoamine oxidases. In addition, steroid glycosides seem to be close to the region of hormone receptors, and a weak difference existed between them. This work explored the possibility for pharmacological or toxicological mechanism classification using compound-protein interactions. Such approaches could also be used to deduce pharmacological or toxicological mechanisms for uncharacterized compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Pain Anxiety and Its Association With Pain Congruence Trajectories During the Cold Pressor Task.

    PubMed

    Clark, Shannon M; Cano, Annmarie; Goubert, Liesbet; Vlaeyen, Johan W S; Wurm, Lee H; Corley, Angelia M

    2017-04-01

    Incongruence of pain severity ratings among people experiencing pain and their observers has been linked to psychological distress. Previous studies have measured pain rating congruence through static self-report, involving a single rating of pain; however, this method does not capture changes in ratings over time. The present study examined the extent to which partners were congruent on multiple ratings of a participants' pain severity during the cold pressor task. Furthermore, 2 components of pain anxiety-pain catastrophizing and perceived threat-were examined as predictors of pain congruence. Undergraduate couples in a romantic relationship (N = 127 dyads) participated in this study. Both partners completed measures of pain catastrophizing and perceived threat before randomization to their cold pressor participant or observer roles. Participants and observers rated the participant's pain in writing several times over the course of the task. On average, observers rated participants' pain as less severe than participants' rated their own pain. In addition, congruence between partners increased over time because of observers' ratings becoming more similar to participant's ratings. Finally, pain catastrophizing and perceived threat independently and jointly influenced the degree to which partners similarly rated the participant's pain. This article presents a novel application of the cold pressor task to show that pain rating congruence among romantic partners changes over time. These findings indicate that pain congruence is not static and is subject to pain anxiety in both partners. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5. Taken together, the above results suggest that the inhibitory action of 5-HT on the electrically-induced pressor responses is primarily mediated by an action on inhibitory prejunctional 5-HT1-like receptors leading to a decrease in the sympathetic nerve discharge. Interestingly, 5-HT-induced excitatory mechanisms could be made manifest once the inhibitory action of 5-HT had been antagonized. PMID:8719815

  19. The autonomic nervous system at high altitude

    PubMed Central

    Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976

  20. Carbon monoxide and lethal arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farber, J.P.; Schwartz, P.J.; Vanoli, E.

    1990-12-01

    The effect of acute exposure to carbon monoxide on ventricular arrhythmias was studied in a previously described chronically maintained animal model of sudden cardiac death. In 60 percent of dogs with a healed anterior myocardial infarction, the combination of mild exercise and acute myocardial ischemia induces ventricular fibrillation. The events in this model are highly reproducible, thus allowing study by internal control analysis. Dogs that develop ventricular fibrillation during the test of exercise and acute myocardial ischemia are considered at high risk for sudden death and are defined as 'susceptible'; dogs that survive the test without a fatal arrhythmia aremore » considered at low risk for sudden death and are defined as 'resistant.' In the current study, the effects of carboxyhemoglobin levels ranging from 5 to 15 percent were tested in resistant and susceptible dogs. A trend toward higher heart rates was observed at all levels of carboxyhemoglobin, although significant differences were observed only with 15 percent carboxyhemoglobin. This trend was observed at rest and during exercise in both resistant and susceptible dogs. In resistant animals, in which acute myocardial ischemia is typically associated with bradycardia even under the control condition, this reflex response occurred earlier and was augmented after exposure to carbon monoxide. This effect may depend on the increased hypoxic challenge caused by carbon monoxide, and thus on an augmentation of the neural reflex activation or a sensitization of the sinus node to acetylcholine induced by hypoxia. In both resistant and susceptible dogs, carbon monoxide exposure induced a worsening of ventricular arrhythmias in a minority of cases. This worsening was not reproducible in subsequent trials. These data indicate that acute exposure to carbon monoxide is seldom arrhythmogenic in dogs that have survived myocardial infarction. (Abstract Truncated)« less

  1. Effect of exercise training on cardiopulmonary baroreflex control of forearm vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Mack, G. W.; Convertino, V. A.; Nadel, E. R.

    1993-01-01

    We studied the stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) in four groups of male volunteer subjects: i) unfit, ii) physically fit, iii) before and after 10 wk of endurance training (chronic blood volume expansion), and iv) before and after acute blood volume expansion. We assessed the relationship between reflex stimulus, i.e., changes in central venous pressure and response, i.e., FVR, during unloading of cardiopulmonary mechanoreceptors with lower body negative pressure (LBNP, 0 to -20 mm Hg). The slope of the linear relationship between FVR and CVP, the index of the responsiveness of this baroreflex, was significantly diminished (> 50%) in the fit subjects compared with the unfit. The slope of the FVR-CVP relationship was inversely correlated with the subject's total blood volume, suggesting that blood volume expansion was related to the attenuated CP baroreflex. In the exercise training study, maximal oxygen consumption and blood volume increased following 10 wk of endurance training (N = 14) but were unchanged in the time control group (N = 7). The slope of the FVR-CVP relationship was significantly reduced (32%) following 10 wk of training but was unchanged in the time control group. The reduction in slope of the FVR-CVP relationship was inversely related to the increase in blood volume associated with exercise training. Acute blood volume expansion 8 ml.kg-1 body weight with 5% human serum albumin solution) significantly reduced the slope of the FVR-CVP relationship. These data support the hypothesis that the attenuated forearm vascular reflex in physically fit individuals is related to a training-induced hypervolemia.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. International Conference on Hypertonic Resuscitation (6th) (SALT 6), Held in Teton Village, Wyoming on 2-3 Jun 1994. Program and Abstracts

    DTIC Science & Technology

    1994-10-01

    Furthermore, a systemic -wide incrL ase in capillary permeability raises the interstitial colloid osmotic pressure ([’i) and reverses the [’p-H’i gradient in...1:40 Mayuki Aibiki, Medical University of South Carolina Abstract #1 Role of Autonomic Nervous System in Acute Pressor Effects Induced by 3.5...YOUNES 33,36 Zwischenberger 21 Zwissler 35 SALT 6 Teton Village, Wyoming Abstract 1 ROLE OF AUTONOMIC NERVOUS SYSTEM IN ACUTE PRESSOR EFFECTS INDUCED BY

  3. Cardiovascular reflexes during rest and exercise modified by gravitational stresses

    NASA Astrophysics Data System (ADS)

    Bonde-petersen, Flemming

    The hypotheses tested were whether variations in central venous pressure via the low pressure baroreceptors would take over or modify the arterial baroreceptor function, and further to which extent local and "whole body" hydrostatic stresses influence blood flow distribution. We investigated total forearm and skin blood flow (venous occlusion plethysmography and 133-Xe clearance) and cardiac output (rebreathing method) among other parameters. Hypo-and hypergravitational stresses were simulated by LBNP, LBPP, water immersion and lowering of the arm. The changes in flow distribution in the arm were ascribed to arterial baroreceptor function and not to low pressure baroreceptor activity. The enhancement of venous return during water immersion increased exercise tolerance during heat stress presumably due both to increased stroke volume and decreased venous pooling. The response to sustained handgrip exercise during LBNP and LBPP was not different from control measurements and the effects explained by arterial baroreceptor function. Application of exercise and local hydrostatic stresses in combination with gravitational stresses represent an interesting model for further study of the mechanisms behind the distribution of cardiac output to the peripheral organs.

  4. Aviation-Related Cardiorespiratory Effects of Blood Donation in Female Pilots

    DTIC Science & Technology

    1984-03-01

    subjective responses at ground level (GL) to hypoxic gas inhalation equivalent to breathing air at 6,000, 8,000, 10,000 and 12,400 ft MSL of altitude, 5...34opening up" of the circulation by a short bout of exercise can overwhelm the ability of the compensatory cardiovascular reflexes to maintain cerebral...ordinarily responsible for hypoxically stimulated increases in HR &nd VE were depressed at this time. However, no direct evidence was obtained in this

  5. [Use of physical therapy measures in the rehabilitation of patients having undergone radical mastectomy].

    PubMed

    Gerasimenko, V N; Voĭnarevich, A O; Grushina, T I

    1988-01-01

    Low-frequency electrotherapy, magnetotherapy, massage, exercise therapy and drugs were used in 90 patients who after radical treatment for breast cancer suffered pain and limited mobility in the shoulder joint. These procedures were intended to treat said complications, to normalize reflexes and to cut down the period of rehabilitative therapy. The treatment proved effective. No untoward effects on the course of the disease were observed within the first 3-5 years.

  6. A Conceptual Framework for the Progression of Balance Exercises in Persons with Balance and Vestibular Disorders

    PubMed Central

    Klatt, BN; Carender, WJ; Lin, CC; Alsubaie, SF; Kinnaird, CR; Sienko, KH; Whitney, SL

    2016-01-01

    There is little information in peer-reviewed literature to specifically guide the choice of exercise for persons with balance and vestibular disorders. The purpose of this study is to provide a rationale for the establishment of a progression framework and propose a logical sequence in progressing balance exercises for persons with vestibular disorders. Our preliminary conceptual framework was developed by a multidisciplinary team of physical therapists and engineers with extensive experience with people with vestibular disorders. Balance exercises are grouped into six different categories: static standing, compliant surface, weight shifting, modified center of gravity, gait, and vestibulo-ocular reflex (VOR). Through a systematized literature review, interviews and focus group discussions with physical therapists and postural control experts, and pilot studies involving repeated trials of each exercise, exercise progressions for each category were developed and ranked in order of degree of difficulty. Clinical expertise and experience guided decision making for the exercise progressions. Hundreds of exercise combinations were discussed and research is ongoing to validate the hypothesized rankings. The six exercise categories can be incorporated into a balance training program and the framework for exercise progression can be used to guide less experienced practitioners in the development of a balance program. It may also assist clinicians and researchers to design, develop, and progress interventions within a treatment plan of care, or within clinical trials. A structured exercise framework has the potential to maximize postural control, decrease symptoms of dizziness/visual vertigo, and provide “rules” for exercise progression for persons with vestibular disorders. The conceptual framework may also be applicable to persons with other balance-related issues. PMID:27489886

  7. AV3V lesions reduce the pressor response to L-glutamate into the RVLM.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; Colombari, Débora Simões de Almeida; Menani, José V

    2006-05-01

    Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic pre-ganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM.

  8. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences. Introduction and overviewProtecting the Airways: mucus and submucosal glands.The airway intrinsic nervous system: a special role in innate defense?Innate defense: prophylactic secretion and local responses.Acute ‘Emergency’ airway defense reflexesAirway receptors: Improved methods reveal greater diversityHijacking emergency defense for innate defense: receptor plasticity and airways sensitization.Conclusion: Implications for cystic fibrosis and lung transplantation. PMID:17350348

  9. Affective pictures processing, attention, and pain tolerance.

    PubMed

    de Wied, M; Verbaten, M N

    2001-02-01

    Two experiments were conducted to determine whether attention mediates the effects of affective distractors on cold pressor pain, or whether the cognitive processes of priming and appraisal best account for the effects. In Experiment I, 65 male respondents were exposed to either pleasant, neutral or unpleasant pictures selected from the International Affective Pictures System (IAPS). The cold-pressor test was administered simultaneously. Consistent with predictions based on priming and appraisal hypotheses, results revealed a linear trend across conditions, such that pain tolerance scores were higher as a function of picture pleasantness. A second study was conducted to examine the role of pain cues in the effects of negative affect on cold pressor pain. Thirty-nine male respondents were exposed to unpleasant pictures that either did or did not include pain-related material. Respondents who viewed pictures without pain cues tolerated the cold water for a longer period of time than respondents who viewed pictures that contained pain-related information. Priming and appraisal processes that might underlie the observed differences, and the type of affective distractors that could be meaningful for enhancing pain tolerance, are discussed.

  10. Calcium antagonism: aldosterone and vascular responses to catecholamines and angiotensin II in man.

    PubMed

    Elliott, H L

    1993-12-01

    Effects of calcium antagonists on pressor mechanisms: A number of differences have been reported in the variable extent to which calcium antagonists interfere with various pressor mechanisms. In theory, high lipid solubility, membrane-binding characteristics and a prolonged duration of action appear to be requirements for a calcium antagonist to affect mechanisms such as vasodilation, endogenous vasoconstrictor responses, hormone release and natriuretic activity. Reduction in peripheral vascular resistance: A reduction in peripheral vascular resistance is fundamental to the antihypertensive effect not only of calcium antagonists but also of angiotensin converting enzyme inhibitors and alpha 1-adrenoceptor antagonists. However, only the calcium antagonists interfere directly with the pressor responses mediated by both the adrenergic nervous system and the renin-angiotensin system. Mechanism of lacidipine effects: Preliminary results with the new dihydropyridine calcium antagonist lacidipine indicate that it not only has vasodilator activity but that it also interferes with both adrenergic and non-adrenergic endogenous vasoconstrictor mechanisms. This may provide additional potentially beneficial cardiovascular effects, particularly in relation to left ventricular hypertrophy and dysfunction.

  11. Altering gender role expectations: effects on pain tolerance, pain threshold, and pain ratings.

    PubMed

    Robinson, Michael E; Gagnon, Christine M; Riley, Joseph L; Price, Donald D

    2003-06-01

    The literature demonstrating sex differences in pain is sizable. Most explanations for these differences have focused on biologic mechanisms, and only a few studies have examined social learning. The purpose of this study was to examine the contribution of gender-role stereotypes to sex differences in pain. This study used experimental manipulation of gender-role expectations for men and women. One hundred twenty students participated in the cold pressor task. Before the pain task, participants were given 1 of 3 instructional sets: no expectation, 30-second performance expectation, or a 90-second performance expectation. Pain ratings, threshold, and tolerance were recorded. Significant sex differences in the "no expectation" condition for pain tolerance (t = 2.32, df = 38, P <.05) and post-cold pressor pain ratings (t = 2.6, df = 37, P <.05) were found. Women had briefer tolerance times and higher post-cold pressor ratings than men. When given gender-specific tolerance expectations, men and women did not differ in their pain tolerance, pain threshold, or pain ratings. This is the first empirical study to show that manipulation of expectations alters sex differences in laboratory pain.

  12. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p

  13. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed rest period, with a return to baseline 3 to 5 days after bed rest, depending on the duration of bed rest. In addition, a relationship between CV and loss of muscle strength in the lower leg was observed post bed rest for most subjects. Immediately post-bed rest, most subjects showed decreased performance on SOTs, with the greater decrements on sway-referenced support and head movement conditions. Post-bed rest decrements were less than typically observed following spaceflight. Decrements in postural control and the stretch reflex can be primarily attributed to the unloading mechanisms this ground-based analog provides. The stretch reflex is a concise test measurement that can be obtained during the head-down phase of bed rest, as it does not interfere with the bed rest paradigm. This makes it an ideal tool that can detect, early on, whether a countermeasure is successful in preserving muscle function.

  14. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals.

    PubMed

    Williams, Terrie M; Fuiman, Lee A; Kendall, Traci; Berry, Patrick; Richter, Beau; Noren, Shawn R; Thometz, Nicole; Shattock, Michael J; Farrell, Edward; Stamper, Andy M; Davis, Randall W

    2015-01-16

    Unlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse. Unexpectedly, cardiac arrhythmias occurred in >73% of deep, aerobic dives, which we attribute to the interplay between sympathetic and parasympathetic drivers for exercise and diving, respectively. Such marked cardiac variability alters the common view of a stereotypic 'dive reflex' in diving mammals. It also suggests the persistence of ancestral terrestrial traits in cardiac function that may help explain the unique sensitivity of some deep-diving marine mammals to anthropogenic disturbances.

  15. Posttraumatic syringomyelia associated with heavy weightlifting exercises: case report.

    PubMed

    Balmaseda, M T; Wunder, J A; Gordon, C; Cannell, C D

    1988-11-01

    Posttraumatic syringomyelia is a well-recognized late sequel to spinal trauma occurring in 1% to 3.2% of spinal cord injured patients. Its clinical presentation is usually marked by pain, ascending sensory loss, increased muscle weakness, and depressed deep tendon reflexes. The case of a 25-year-old man with C8 complete quadriplegia, who developed a syrinx five years after his initial injury, is presented. This patient kept a log of his daily physical workout which consisted of lifting weights of 50 to 60 pounds with his neck extensors and biceps. The diagnosis was made clinically and confirmed by magnetic resonance imaging. Repeated valsalva maneuvers from daily heavy weightlifting exercises most likely predisposed this patient to the development and extension of his syringomyelia. Dramatic improvement followed surgical placement of a subarachnoid shunt.

  16. Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.

    1984-01-01

    A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.

  17. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.

    PubMed

    Nicol, Caroline; Avela, Janne; Komi, Paavo V

    2006-01-01

    Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are examples of the SSC for leg extensor muscles; similar phases can also be found for the upper-body activities. Consequently, it is normal and expected that the fatigue phenomena should be explored during SSC activities. The fatigue responses of repeated SSC actions are very versatile and complex because the fatigue does not depend only on the metabolic loading, which is reportedly different among muscle actions. The complexity of SSC fatigue is well reflected by the recovery patterns of many neuromechanical parameters. The basic pattern of SSC fatigue response (e.g. when using the complete exhaustion model of hopping or jumping) is the bimodality showing an immediate reduction in performance during exercise, quick recovery within 1-2 hours, followed by a secondary reduction, which may often show the lowest values on the second day post-exercise when the symptoms of muscle soreness/damage are also greatest. The full recovery may take 4-8 days depending on the parameter and on the severity of exercise. Each subject may have their own time-dependent bimodality curve. Based on the reviewed literature, it is recommended that the fatigue protocol is 'completely' exhaustive to reduce the important influence of inter-subject variability in the fatigue responses. The bimodality concept is especially apparent for stretch reflex responses, measured either in passive or active conditions. Interestingly, the reflex responses follow parallel changes with some of the pure mechanical parameters, such as yielding of the braking force during an initial ground contact of running or hopping. The mechanism of SSC fatigue and especially the bimodal response of performance deterioration and its recovery are often difficult to explain. The immediate post-exercise reduction in most of the measured parameters and their partial recovery 1-2 hours post-exercise can be explained primarily to be due to metabolic fatigue induced by exercise. The secondary reduction in these parameters takes place when the muscle soreness is highest. The literature gives several suggestions including the possible structural damage of not only the extrafusal muscle fibres, but also the intrafusal ones. Temporary changes in structural proteins and muscle-tendon interaction may be related to the fatigue-induced force reduction. Neural adjustments in the supraspinal level could naturally be operative, although many studies quoted in this article emphasise more the influences of exhaustive SSC fatigue on the fusimotor-muscle spindle system. It is, however, still puzzling why the functional recovery lasts several days after the disappearance of muscle soreness. Unfortunately, this and many other possible mechanisms need more thorough testing in animal models provided that the SSC actions can be truly performed as they appear in normal human locomotion.

  18. The effect of labetalol and propranolol on the pressor response to sexual arousal in women.

    PubMed Central

    Riley, A J; Riley, E J

    1981-01-01

    1 The effect of a single oral dose of labetalol (100 mg), propranolol (80 mg) and placebo on the pressor response to sexual autostimulation has been studied in six female volunteers. 2 Labetalol but not propranolol significantly reduced the increase in blood pressure that occurred at orgasm. 3 The subjective features of the sexual response were assessed by each subject using visual analogue scales. 4 Subjects reported a significant reduction in vaginal lubrication with labetalol compared to both placebo and propranolol. 5 No other effects were noted. PMID:7295463

  19. A Biomechanical Simulation of the Effect of the Extrinsic Flexor Muscles on Finger Joint Flexion

    DTIC Science & Technology

    2001-10-25

    vol. 44, pp. 493-504, 1997. [8] A.B. Leger and T.E. Milner, “The effect of eccentric exercise on intrinsic and reflex stiffness in the human hand...line of action of the tendons and the effective moment arms. After a certain point, the FDP tendon became slack, while the FDS tendon remained...link chain with three revolute joints and four links was created to model the index finger. The tendons from the extrinsic flexor muscles were

  20. Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP1 contains short reports concerning: (1) Autonomic Regulation of Circulation and Mechanical Function of Heart at Different Stages of 14th Month Space Flight; (2) Cardiovascular Oxygen Transport in Exercising Humans in Microgravity; (3) Venous Hemodynamic Changes Assessed by Air Plethysmography During a 16-Day Space Flight; (4) Respiratory Mechanics After 180 Days Space Mission (EUROMIR'95); (5) Assessment of the Sympathetic and the Parasympathetic Nervous Activity During Parabolic Flight by Pupillary Light Reflex; and(6) Vascular Response to Different Gravity.

  1. Sex differences in the modulation of vasomotor sympathetic outflow during static handgrip exercise in healthy young humans

    PubMed Central

    Jarvis, Sara S.; VanGundy, Tiffany B.; Galbreath, M. Melyn; Shibata, Shigeki; Okazaki, Kazunobu; Reelick, Miriam F.; Levine, Benjamin D.

    2011-01-01

    Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents. PMID:21508291

  2. Pressor response to oral tyramine and monoamine oxidase inhibition during treatment with ralfinamide (NW-1029).

    PubMed

    Di Stefano, Andrea F D; Radicioni, Milko Massimiliano; Rusca, Antonio

    2013-05-01

    Ralfinamide, an original Na(+) channel blocker developed for the treatment of chronic pain, inhibits monoamineoxidase-B with no apparent effect on monoamineoxidase-A. To evaluate the pressor response to oral tyramine under fasting conditions during treatment with ralfinamide in healthy normotensive subjects. Ten women and 10 men aged 52.9 ± 5.5, sensitive to the oral tyramine pressor effect in the dose range 200-400 mg, received ralfinamide 320 mg daily during 7 days of confinement. Starting on day 5, ascending doses of tyramine 50, 100 and 200 mg were daily administered to subjects, who had responded to 200 mg at screening, and 100, 200 and 400 mg to the 400 mg responders. Vital parameters were monitored. The systolic blood pressure peak (ΔSBP), the time to achieve the peak (Δt) and the area under the pressure curve (over baseline) were calculated. ΔSBP ≥ 30 mmHg were measured for one subject with tyramine 200 mg and for 11 subjects with 400 mg, whilst ΔSBP was <30 mmHg for eight subjects at all the tested doses. ΔSBP, Δt and AUC after co-treatment with ralfinamide and tyramine were not significantly different from those measured after tyramine alone. Ralfinamide did not potentiate the pressor response to single oral doses of tyramine from 50 to 400 mg. These preliminary results give an evidence for the specificity of ralfinamide for MAO-B in comparison with MAO-A, analogously to the observations previously done for safinamide. Dietary tyramine restrictions may not be necessary in neuropathic pain patients receiving ralfinamide as a therapy.

  3. Discrepancy between stimulus response and tolerance of pain in Alzheimer disease

    PubMed Central

    Werner, Mads U.; Jensen, Troels Staehelin; Ballegaard, Martin; Andersen, Birgitte Bo; Høgh, Peter; Waldemar, Gunhild

    2015-01-01

    Background: Affective-motivational and sensory-discriminative aspects of pain were investigated in patients with mild to moderate Alzheimer disease (AD) and healthy elderly controls using the cold pressor test tolerance and repetitive stimuli of warmth and heat stimuli, evaluating the stimulus-response function. Methods: A case-control design was applied examining 33 patients with mild to moderate AD dementia and 32 healthy controls with the cold pressor test (4°C). Warmth detection threshold (WDT) and heat pain threshold (HPT) were assessed using 5 stimulations. A stimulus-response function was estimated using 4 incrementally increasing suprathreshold heat stimuli. Results: Cold pressor tolerance was lower in patients with AD dementia than in controls (p = 0.027). There were no significant differences between groups regarding WDT and HPT. Significant successive increases in HPT assessments indicated habituation (p < 0.0001), which was similar in the 2 groups (p = 0.85). A mixed model for repeated measures demonstrated that pain rating of suprathreshold stimuli depended on HPT (p = 0.0004) and stimulus intensity (p < 0.0001). Patients with AD dementia had significantly lower increases in pain ratings than controls during suprathreshold stimulation (p = 0.0072). Conclusion: Our results indicate that AD dementia is not associated with a propensity toward development of sensitization or a lack of habituation, suggesting preservation of sensory-discriminative aspects of pain perception. The results further suggest that the attenuated cold pressor pain tolerance may relate to impairment of coping abilities. Paradoxically, we found an attenuated stimulus-response function, compared to controls, suggesting that AD dementia interferes with pain ratings over time, most likely due to memory impairment. PMID:25788560

  4. An alternative to the traditional cold pressor test: the cold pressor arm wrap.

    PubMed

    Porcelli, Anthony John

    2014-01-16

    Recently research on the relationship between stress and cognition, emotion, and behavior has greatly increased. These advances have yielded insights into important questions ranging from the nature of stress' influence on addiction(1) to the role of stress in neural changes associated with alterations in decision-making(2,3). As topics being examined by the field evolve, however, so too must the methodologies involved. In this article a practical and effective alternative to a classic stress induction technique, the cold pressor test (CPT), is presented: the cold pressor arm wrap (CPAW). CPT typically involves immersion of a participant's dominant hand in ice-cold water for a period of time(4). The technique is associated with robust activation of the sympatho-adrenomedullary (SAM) axis (and release of catecholamines; e.g. adrenaline and noradrenaline) and mild-to-moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis with associated glucocorticoid (e.g. cortisol) release. While CPT has been used in a wide range of studies, it can be impractical to apply in some research environments. For example use of water during, rather than prior to, magnetic resonance imaging (MRI) has the potential to damage sensitive and expensive equipment or interfere with acquisition of MRI signal. The CPAW is a practical and effective alternative to the traditional CPT. Composed of a versatile list of inexpensive and easily acquired components, CPAW makes use of MRI-safe gelpacs cooled to a temperature similar to CPT rather than actual water. Importantly CPAW is associated with levels of SAM and HPA activation comparable to CPT, and can easily be applied in a variety of research contexts. While it is important to maintain specific safety protocols when using the technique, these are easy to implement if planned for. Creation and use of the CPAW will be discussed.

  5. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain.

    PubMed

    Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali

    2015-07-23

    The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Increased Sensitivity to Angiotensin II is Present Postpartum in Women with History of Hypertensive Pregnancy

    PubMed Central

    Saxena, Aditi R.; Karumanchi, S. Ananth; Brown, Nancy J.; Royle, Caroline M.; McElrath, Thomas F.; Seely, Ellen W.

    2010-01-01

    Pregnancies complicated by new onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear if this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high and low sodium balance. Ten women had history of hypertensive pregnancy (five with preeclampsia; five with transient hypertension of pregnancy) and 15 women had history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone and soluble fms-like tyrosine kinase 1 (sFlt-1) levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 vs. 104 mmHg and 73 vs. 65 mmHg, respectively, p<0.05). Women with history of hypertensive pregnancy had pressor response to salt loading, demonstrated by increase in systolic blood pressure on high salt diet. They also had greater systolic pressor response (10 vs. 2 mmHg, p=0.03), greater increase in aldosterone (56.8 vs. 30.8 ng/dL, p=0.03) and increase in sFlt-1 levels (11.0 vs. -18.9 pg/mL, p=0.02) after infusion of angiotensin II in low sodium balance, compared with controls. Thus, women with history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal and sFlt-1 responses to infused angiotensin II in low sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women. PMID:20308605

  7. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy.

    PubMed

    Saxena, Aditi R; Karumanchi, S Ananth; Brown, Nancy J; Royle, Caroline M; McElrath, Thomas F; Seely, Ellen W

    2010-05-01

    Pregnancies complicated by new-onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear whether this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high- and low-sodium balance. Ten women had a history of hypertensive pregnancy (5 with preeclampsia; 5 with transient hypertension of pregnancy), and 15 women had a history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone, and soluble fms-like tyrosine kinase 1 levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with a history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 versus 104 mm Hg and 73 versus 65 mm Hg, respectively; P<0.05). Women with a history of hypertensive pregnancy had a pressor response to salt loading, demonstrated by an increase in systolic blood pressure on a high-salt diet. They also had greater systolic pressor response (10 versus 2 mm Hg; P=0.03), greater increase in aldosterone (56.8 versus 30.8 ng/dL; P=0.03), and increase in soluble fms-like tyrosine kinase 1 levels (11.0 versus -18.9 pg/mL; P=0.02) after infusion of angiotensin II in low-sodium balance compared with controls. Thus, women with a history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal, and soluble fms-like tyrosine kinase 1 responses to infused angiotensin II in low-sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women.

  8. Effects of intravenous and topical laryngeal lidocaine on heart rate, mean arterial pressure and cough response to endotracheal intubation in dogs.

    PubMed

    Thompson, Kate R; Rioja, Eva

    2016-07-01

    To compare the effects of intravenous (IV) and topical laryngeal lidocaine on heart rate (HR), mean arterial pressure (MAP) and cough response to endotracheal intubation (ETI) in dogs. Prospective, randomized, blinded clinical study. Forty-two client-owned dogs (American Society of Anesthesiologists class I and II status) undergoing elective orthopaedic surgery. Dogs were randomized to three groups. Dogs in group SALIV received 0.1 mL kg(-1) IV saline. Dogs in group LIDIV received 2 mg kg(-1) IV 2% lidocaine. Dogs in group LIDTA received 0.4 mg kg(-1) topically sprayed laryngeal 2% lidocaine. All dogs were premedicated with methadone (0.2 mg kg(-1) IV). After 30 minutes, IV propofol was administered to abolish the lateral palpebral reflex and produce jaw relaxation. The allocated treatment was then administered and, after 30 seconds, further propofol was administered to abolish the medial palpebral reflex and facilitate ETI. HR and MAP were measured at four time-points using cardiac auscultation and automated oscillometry, respectively. The cough response at ETI was recorded. One-way anova and post hoc Tukey adjustment were used to analyse parametric data. The Kruskal-Wallis test was used to analyse non-parametric data. Odds ratios were calculated for the cough response. A p-value of ≤0.05 was considered to indicate statistical significance. In response to ETI, changes in MAP differed significantly between groups. In SALIV, MAP increased (4 ± 6 mmHg), whereas it decreased in LIDIV (6 ± 13 mmHg) (p = 0.013) and LIDTA (7 ± 11 mmHg) (p = 0.003). Dogs in SALIV were almost 10 times more likely to cough than dogs in LIDIV (odds ratio 9.75, 95% confidence interval 0.98-96.60; p = 0.05). In propofol-anaesthetized dogs, IV and topical laryngeal lidocaine attenuated the pressor response to ETI, whereas IV lidocaine reduced the cough response. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  9. Effects of weightlessness on human baroreflex function

    NASA Technical Reports Server (NTRS)

    Fritsch, Janice M.; Eckberg, Dwain L.

    1992-01-01

    Impaired cardiovascular function, characterized by orthostatic intolerance and reduced exercise capacity, is a result of space travel. We hypothesized that postflight baroreflex dysfunction may contribute. We studied the vagally mediated carotid baroreceptor-cardiac reflex response of 6 astronauts before, during, and after the ten day SLS-l mission. A series of R-waves triggered pressure and suction steps (from 40 to minus 65 mmHg) were delivered to a neck chamber during held expirtation. Resulting R-R interval changes were plotted against carotid distending pressure (systolic - neck pressure), and curve parameters calculated. After an initial rise, the operational point declined consistently during the flight and reached a nadir on landing day, but had recovered to preflight levels by L + 4. Slope and range of the response declined throughout the flight, were slightly recovered by the time measurements were made on landing day, but still were reduced on L + 4. These data indicate that space flight results in a significant impairment of the carotid baroreceptor cardiac reflex response.

  10. Sustained Efficacy of Virtual Reality Distraction

    PubMed Central

    Rutter, Charles E.; Dahlquist, Lynnda M.; Weiss, Karen E.

    2011-01-01

    The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of eight weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent one baseline cold pressor trial and one VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance, and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a non-pharmacological analgesic are discussed. PMID:19231295

  11. The effect of safinamide, a novel drug for Parkinson's disease, on pressor response to oral tyramine: a randomized, double-blind, clinical trial.

    PubMed

    Marquet, A; Kupas, K; Johne, A; Astruc, B; Patat, A; Krösser, S; Kovar, A

    2012-10-01

    This randomized, double-blind, placebo-, comparator (selegiline 10 mg/day)-, and positive (phenelzine 30 mg/day)-controlled study investigated the pressor response to oral tyramine under fasting conditions after the administration of safinamide at therapeutic (100 mg/day) and supratherapeutic (350 mg/day) dosing regimens in healthy volunteers for the purpose of assessing the need for dietary restrictions. Pressor response was characterized by Tyr30, defined as the tyramine dose that triggers a sustained increase in systolic blood pressure (SBP) of ≥30 mm Hg as compared with baseline SBP. The primary end point was the tyramine sensitivity factor (TSF), defined as the ratio of Tyr30 at screening to Tyr30 under treatment. Safinamide induced a mild increase in TSF; however, the effect at each of the doses was numerically lower than those of the comparators (geometric mean TSFs: placebo, 1.52; safinamide 100 mg, 2.15; safinamide 350 mg, 2.74; selegiline, 3.12; phenelzine, 9.98). This study confirms that safinamide is a highly selective monoamine oxidase-B inhibitor, even at supratherapeutic doses, and suggests that it can be administered without tyramine-related dietary restrictions.

  12. Cold pressor-induced pain does not impair WAIS-IV processing speed index or working memory index performance.

    PubMed

    Etherton, Joseph

    2014-01-01

    Chronic pain frequently involves cognitive complaints such as concentration and memory deficits, but studies of the effects of pain on cognition have not consistently demonstrated deficits and have not typically utilized standard neuropsychological instruments. Effects of cold pressor-induced pain on Wechsler Adult Intelligence Scale-Fourth Edition Processing Speed Index (PSI) and Working Memory Index (WMI) performance was examined in nonclinical volunteers (n = 40). All took one PSI subtest and one WMI subtest normally, and then took different PSI and WMI subtests during cold pressor-induced pain or painless warm-water immersion. Scaled scores for normal administration versus pain or painless water immersion did not differ and there was no interaction between group (control vs. pain) and manner of administration, despite moderately severe mean pain ratings (M = 6.8 on a 0-10 pain-rating scale). Results indicate that induced pain in nonclinical volunteers does not impair PSI or WMI performance, and they suggest that chronic pain per se should not be expected to substantially affect these cognitive functions. However, patients with chronic pain may differ from nonclinical volunteers in their experience of pain, potentially limiting generalizability.

  13. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    PubMed

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P < 0.0001) and additional signs of sympathetic activation, including tachycardia, diaphoresis and flushing of the skin. Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic activation. The increase in blood pressure is exaggerated in patients with FD as a result of blunted afferent baroreceptor signalling. The chewing pressor response may be useful as a counter-manoeuvre to raise blood pressure and prevent symptomatic orthostatic hypotension in patients with FD. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  14. Neuromuscular adaptations after a rehabilitation program in patients with chronic low back pain: case series (uncontrolled longitudinal study)

    PubMed Central

    2013-01-01

    Background To investigate the impact of a short-term multimodal rehabilitation program for patients with low back pain (LBP) on trunk muscle reflex responses and feedforward activation induced by postural perturbations. Methods Case series (uncontrolled longitudinal study). Thirty chronic patients with LBP (21 women and 19 men, mean age 42.6 ± 8.6 years, mean weight 73 ± 14 kg, mean height 174 ± 10 cm) were included. The intervention consisted in a 5-day program including therapeutic education sessions (360 min), supervised abdominal and back muscle strength exercises (240 min), general aerobic training (150 min), stretching (150 min), postural education (150 min) and aqua therapy (150 min). Feedforward activation level and reflex amplitude determined by surface electromyographic activity triggered by postural perturbations were recorded from abdominal and paraspinal muscles in unexpected and expected conditions. Subjects were tested before, just after and again one month after the rehabilitation program. Results No main intervention effect was found on feedforward activation levels and reflex amplitudes underlining the absence of changes in the way patients with LBP reacted across perturbation conditions. However, we observed a shift in the behavioral strategy between conditions, in fact feedforward activation (similar in both conditions before the program) decreased in the unexpected condition after the program, whereas reflex amplitudes became similar in both conditions. Conclusions The results suggest that a short-term rehabilitation program modifies trunk behavioral strategies during postural perturbations. These results can be useful to clinicians for explaining to patients how to adapt to daily life activities before and after rehabilitation. PMID:24063646

  15. High-velocity angular vestibulo-ocular reflex adaptation to position error signals.

    PubMed

    Scherer, Matthew; Schubert, Michael C

    2010-06-01

    Vestibular rehabilitation strategies including gaze stabilization exercises have been shown to increase gain of the angular vestibulo-ocular reflex (aVOR) using a retinal slip error signal (ES). The identification of additional ESs capable of promoting substitution strategies or aVOR adaptation is an important goal in the management of vestibular hypofunction. Position ESs have been shown to increase both aVOR gain and recruitment of compensatory saccades (CSs) during passive whole body rotation. This may be a useful compensatory strategy for gaze instability during active head rotation as well. In vestibular rehabilitation, the imaginary target exercise is often prescribed to improve gaze stability. This exercise uses a position ES; however, the mechanism for its effect has not been investigated. We compared aVOR gain adaptation using 2 types of small position ES: constant versus incremental. Ten subjects with normal vestibular function were assessed with unpredictable and active head rotations before and after a 20-minute training session. Subjects performed 9 epochs of 40 active, high-velocity head impulses using a position ES stimulus to increase aVOR gain. Five subjects demonstrated significant aVOR gain increases with the constant-position ES (mean, 2%; range, -18% to 12%) compared with another 5 subjects showing significant aVOR gain increases to the incremental-position ES (mean, 3.7%; range, -2% to 22.6%). There was no difference in aVOR gain adaptation or CS recruitment between the 2 paradigms. These findings suggest that some subjects can increase their aVOR gain in response to high-velocity active head movement training using a position ES. The primary mechanism for this seems to be aVOR gain adaptation because CS use was not modified. The overall low change in aVOR gain adaptation with position ES suggests that retinal slip is a more powerful aVOR gain modifier.

  16. The physiological basis of rehabilitation in chronic heart and lung disease.

    PubMed

    Vogiatzis, Ioannis; Zakynthinos, Spyros

    2013-07-01

    Cardiopulmonary rehabilitation is recognized as a core component of management of individuals with congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) that is designed to improve their physical and psychosocial condition without impacting on the primary organ impairment. This has lead the scientific community increasingly to believe that the main effects of cardiopulmonary rehabilitative exercise training are focused on skeletal muscles that are regarded as dysfunctional in both CHF and COPD. Accordingly, following completion of a cardiopulmonary rehabilitative exercise training program there are important peripheral muscular adaptations in both disease entities, namely increased capillary density, blood flow, mitochondrial volume density, fiber size, distribution of slow twitch fibers, and decreased lactic acidosis and vascular resistance. Decreased lactic acidosis at a given level of submaximal exercise not only offsets the occurrence of peripheral muscle fatigue, leading to muscle task failure and muscle discomfort, but also concurrently mitigates the additional burden on the respiratory muscles caused by the increased respiratory drive, thereby reducing dyspnea sensations. Furthermore in patients with COPD, exercise training reduces the degree of dynamic lung hyperinflation leading to improved arterial oxygen content and central hemodynamic responses, thus increasing systemic muscle oxygen availability. In patients with CHF, exercise training has beneficial direct and reflex sympathoinhibitory effects and favorable effects on normalization of neurohumoral excitation. These physiological benefits apply to all COPD and CHF patients independently of the degree of disease severity and are associated with improved exercise tolerance, functional capacity, and quality of life.

  17. Augmented sympathetic vasoconstriction in exercising forearms of postmenopausal women is reversed by oestrogen therapy

    PubMed Central

    Fadel, Paul J; Wang, Zhongyun; Watanabe, Hitoshi; Arbique, Debbie; Vongpatanasin, Wanpen; Thomas, Gail D

    2004-01-01

    Sympathetic vasoconstriction is normally attenuated in exercising muscles of young men and women. Recent evidence indicates that such modulation, termed functional sympatholysis, may be impaired in older men. Whether a similar impairment occurs in older women, and what role oestrogen deficiency might play in this impairment, are not known. Based on the strong positive correlation between circulating oestrogen levels and functional sympatholysis previously reported in female rats, we hypothesized that sympatholysis would be impaired in oestrogen-deficient postmenopausal women, and that this impairment would be reversed by oestrogen replacement. To test these hypotheses, we measured vasoconstrictor responses in the forearms of pre- and postmenopausal women using near infrared spectroscopy to detect decreases in muscle oxygenation in response to reflex activation of sympathetic nerves evoked by lower body negative pressure (LBNP). In eight premenopausal women, LBNP decreased muscle oxygenation by 20 ± 1% in resting forearm, but only by 3 ± 2% in exercising forearm (P < 0.05). In contrast, in eight postmenopausal women, LBNP decreased muscle oxygenation by 15 ± 3% in resting forearm, and by 12 ± 4% in exercising forearm (P > 0.05). After 1 month of transdermal oestradiol replacement in these women, the normal effect of exercise to blunt sympathetic vasoconstriction was restored (rest, −19 ± 3%; exercise, −2 ± 3%; P < 0.05). These data indicate that functional sympatholysis is impaired in oestrogen-deficient postmenopausal women. The effect of short-term unopposed oestrogen replacement to correct this impairment implicates a role for oestrogen in the sympathetic neural control of muscle haemodynamics during exercise. PMID:15498809

  18. Quadriceps Muscle Function After Rehabilitation With Cryotherapy in Patients With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Hart, Joseph M.; Kuenze, Christopher M.; Diduch, David R.; Ingersoll, Christopher D.

    2014-01-01

    Context: Persistent muscle weakness after anterior cruciate ligament (ACL) reconstruction may be due to underlying activation failure and arthrogenic muscle inhibition (AMI). Knee-joint cryotherapy has been shown to improve quadriceps function transiently in those with AMI, thereby providing an opportunity to improve quadriceps muscle activation and strength in patients with a reconstructed ACL. Objective: To compare quadriceps muscle function in patients with a reconstructed ACL who completed a 2-week intervention including daily cryotherapy (ice bag), daily exercises, or both. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: A total of 30 patients with reconstructed ACLs who were at least 6 months post-index surgery and had measurable quadriceps AMI. Intervention(s): The patients attended 4 supervised visits over a 2-week period. They were randomly assigned to receive 20 minutes of knee-joint cryotherapy, 1 hour of therapeutic rehabilitation exercises, or cryotherapy followed by exercises. Main Outcome Measure(s): We measured quadriceps Hoffmann reflex, normalized maximal voluntary isometric contraction torque, central activation ratio using the superimposed-burst technique, and patient-reported outcomes before and after the intervention period. Results: After the 2-week intervention period, patients who performed rehabilitation exercises immediately after cryotherapy had higher normalized maximal voluntary isometric contraction torques (P = .002, Cohen d effect size = 1.4) compared with those who received cryotherapy alone (P = .16, d = 0.58) or performed exercise alone (P = .16, d = 0.30). Conclusions: After ACL reconstruction, patients with AMI who performed rehabilitation exercises immediately after cryotherapy experienced greater strength gains than those who performed cryotherapy or exercises alone. PMID:25299442

  19. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  20. Perceptual and cerebro-spinal responses to graded innocuous and noxious stimuli following aerobic exercise.

    PubMed

    Micalos, P S; Harris, J; Drinkwater, E J; Cannon, J; Marino, F E

    2015-11-01

    The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.

  1. Pharmacology of o-chlorobenzylidene malononitrile (CS)

    PubMed Central

    Brimblecombe, R. W.; Green, D. M.; Muir, A. W.

    1972-01-01

    1. The effects of o-chlorobenzylidene malononitrile (CS) have been studied on several isolated organs and tissues, anaesthetized animals and cat encéphale isolé preparations. 2. On the isolated guinea-pig ileum an initial dose of CS produced a small, non-maintained contraction. Subsequent doses had reduced effects. There was no effect on peristalsis when the substance was given intraluminally. 3. No significant effects of CS were detected on the rat phrenic nerve-diaphragm preparation, the isolated perfused rabbit heart or on the contractor response of the indirectly stimulated cat tibialis muscle. 4. In the cat encéphale isolé preparation 1 mg/kg (i.v.) produced a brief period of electrocortical alerting but no abnormal activity in the electrocorticogram. Doses in excess of 10 mg/kg produced cortical depression. 5. Intravascular injection into the chloralose anaesthetized cat resulted typically in a pressor response accompanied by a brief period of apnoea. The threshold dose for the pressor response varied with the route of administration, but generally lay between 2·5 and 12·5 μg/kg; the threshold dose for apnoea was slightly higher. Small variations in this pattern of response were seen with different species and other anaesthetics. 6. When administered by stomach tube to chloralose anaesthetized cats, CS produced no measurable effects at doses of up to 100 mg/kg. 7. No changes in blood pressure or respiration were detected in anaesthetized cats given pure CS aerosol for 1 h in concentrations of between 345 mg/m3 and 1·39 g/m3 via a tracheal cannula or through the upper respiratory tract. Pure CS solution given by slow intravenous infusion at a similar dose and over a similar period produced significant effects on blood pressure and respiration. 8. Pyrotechnically generated (grenade) CS produced variable effects when given by inhalation in concentrations of between 460 and 1,040 mg/m3 for 1 hour. Respiratory depression, possibly reflex in nature, regularly occurred when the material was given via the upper respiratory tract, and respiratory stimulation occurred when it was given via a tracheal cannula. 9. Some cats were pre-exposed to a dose of 500 (mg/min)/m3 on 4 successive days and on the fifth day anaesthetized and exposed to high concentrations of grenade CS. Three out of six cats died during or after this final exposure compared to one out of six among animals not so pre-exposed. The general pattern of response to the final exposure to CS in the two groups was similar. PMID:5040666

  2. Acute reductions in blood flow restricted to the dorsomedial medulla induce a pressor response in rats.

    PubMed

    Waki, Hidefumi; Bhuiyan, Mohammad E R; Gouraud, Sabine S; Takagishi, Miwa; Hatada, Atsutoshi; Kohsaka, Akira; Paton, Julian F R; Maeda, Masanobu

    2011-08-01

    The brainstem nucleus of the solitary tract (nucleus tractus solitarii, NTS) is a pivotal region for regulating the set-point of arterial pressure, the mechanisms of which are not fully understood. Based on evidence that the NTS exhibits O2-sensing mechanisms, we examined whether a localized disturbance of blood supply, resulting in hypoxia in the NTS, would lead to an acute increase in arterial pressure. Male Wistar rats were used. Cardiovascular parameters were measured before and after specific branches of superficial dorsal medullary veins were occluded; we assumed these were drainage vessels from the NTS and would produce stagnant hypoxia. Hypoxyprobe-1, a marker for detecting cellular hypoxia in the post-mortem tissue, was used to reveal whether vessel occlusion induced hypoxia within the NTS. Following vessel occlusion, blood flow in the dorsal surface of the medulla oblongata including the NTS region showed an approximately 60% decrease and was associated with hypoxia in neurons located predominantly in the caudal part of the NTS as revealed using hypoxyprobe-1. Arterial pressure increased and this response was pronounced significantly in both magnitude and duration when baroreceptor reflex afferents were sectioned. These results suggest that localized hypoxia in the NTS increases arterial pressure. We suggest this represents a protective mechanism whereby the elevated systemic pressure is a compensatory mechanism to enhance cerebral perfusion. Whether this physiological mechanism has any relevance to neurogenic hypertension is discussed.

  3. Mechanism of action of hypotensive prostaglandins in patients with essential hypertension.

    PubMed

    Michibayashi, Tsutomu

    2002-06-01

    Despite extensive investigation, the biological mechanisms causing essential hypertension (EHT) remain unclear. To clarify the means by which hypotensive prostaglandins (Hypo-PGs, mainly PGE1 and PGE2) act in patients with EHT, the interaction between intravenously infused Hypo-PGs and pressor substances such as an adrenergic neurotransmitter, noradrenaline (NA) and angiotensin II (AII) was examined both in patients with EHT and in perfused isolated rabbit ear artery preparations. In patients with EHT, Hypo-PGs were shown to reduce the pressor responses to intravenously infused NA or AII, although no significant difference was found between the pressor responses to NA under basal conditions and the responses during intravenous infusion of Hypo-PGs. Animal studies were undertaken to investigate the inhibitory action of Hypo-PGs on the vasoconstrictive responses to electrical stimulation of the perivascular sympathetic nerves (VSNS) and to exogenous NA at pre- and postjunctional sites in blood vessel walls. The suppressive action of Hypo-PGs on the response to VSNS was shown to be more potent than that to their action on the response to exogenous NA. Thus, it was concluded that the hypotensive action of intravenously infused Hypo-PGs in patients with EHT may be more dependent on prejunctional sites than on the postjunctional sites in the walls of blood vessels.

  4. Effect of dietary sodium intake on the responses to bicuculline in the paraventricular nucleus of rats.

    PubMed

    DiBona, G F; Jones, S Y

    2001-08-01

    The tachycardic, pressor, and renal sympathoexcitatory responses produced by administration of the gamma-aminobutyric acid antagonist bicuculline into the paraventricular nucleus of the rat are attenuated by the administration of losartan, an angiotensin II type 1 receptor antagonist, into the ipsilateral rostroventrolateral medulla. Therefore, excitatory synaptic inputs to pressor neurons in the rostroventrolateral medulla that arise from activation of the paraventricular nucleus are mediated predominantly by the action of angiotensin II on angiotensin II type 1 receptors. To examine whether such responses are influenced by physiological changes in the activity of the renin-angiotensin system, we measured heart rate, arterial pressure, and renal sympathetic nerve activity responses to the administration of bicuculline in the paraventricular nucleus in normal rats that were fed low-, normal-, and high-sodium diets and in rats with congestive heart failure. The rank order of both plasma renin activity and renal sympathoexcitatory responses was congestive heart failure>low-sodium diet>normal-sodium diet>high-sodium diet. The rank order of pressor and tachycardic responses exhibited a similar trend, but the differences between the groups were smaller and not statistically significant. The results indicate that the renal sympathoexcitatory responses to activation of the paraventricular nucleus are modulated by physiological alterations in the activity of the renin-angiotensin system.

  5. Skeletal muscle metaboreflex in patients with chronic renal failure.

    PubMed

    Vieira, Paulo J C; Silva, Leonardo R; Maldamer, Vinicius Z; Cipriano, Gerson; Chiappa, Adriana M G; Schuster, Rodrigo; Boni, Victor H F; Grandi, Tatiani; Wolpat, Andiara; Roseguini, Bruno T; Chiappa, Gaspar R

    2017-03-01

    The sympathetic nervous system is affected in patients with chronic renal failure (CRF). This study tested the hypothesis that patients with CRF have an altered skeletal muscle metaboreflex. Twenty patients with CRF and 18 healthy subjects of similar age participated in the study. The muscle metaboreflex was determined based on heart rate (HR), mean arterial pressure, calf blood flow and calf vascular resistance (CVR) in response to handgrip exercise. The control of vascular resistance in the calf muscle mediated by the metaboreflex was estimated by subtracting the area under the curve with circulatory occlusion from that without occlusion. Arterial pressure and HR responses during exercise and recovery were similar in two groups of subjects. In the control group, CVR increased during exercise and remained elevated during circulatory occlusion, whereas no significant change was seen in the patients. Thus, the index of the metaboreflex was 7·82 ± 9·57 in the patients versus16·52 ± 14 units in the controls. The findings demonstrate that patients with CRF have a decreased vascular resistance response in the calf during the handgrip exercise, which suggests that CRF condition attenuates this reflex. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  6. Vascular reactivity and ACE activity response to exercise training are modulated by the +9/-9 bradykinin B₂ receptor gene functional polymorphism.

    PubMed

    Alves, Cléber Rene; Alves, Guilherme Barreto; Pereira, Alexandre Costa; Trombetta, Ivani Credidio; Dias, Rodrigo Gonçalves; Mota, Glória F A; Fernandes, Tiago; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2013-06-17

    The bradykinin receptor B₂ (BDKRB₂) gene +9/-9 polymorphism has been associated with higher gene transcriptional activity, and characteristics of cardiovascular phenotypes and physical performance. We hypothesized that vasodilation and ACE activity response to exercise training is modulated by BDKRB₂ gene. We genotyped 71 healthy volunteers were genotyped for the BDKRB₂ gene polymorphism. Heart rate (HR), mean blood pressure (MBP), and forearm blood flow (FBF) were evaluated. Angiotensin-I converting enzyme (ACE) activity was measured by fluorescence. Aerobic training was performed for 16 wk. All variables were reassessed after completion of the training period. In pretraining period, HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among all genotypes. After physical training, the FBF and the FVC response during handgrip exercise such as area under the curve were higher in -9/-9 carriers than the other two groups. However, there were no changes in HR and MBP for all three groups. In addition, in posttraining period the decrease in ACE activity was higher in the -9/-9 group than the other two groups. These results suggest that reflex muscle vasodilation and ACE activity in response to exercise training are modulated by BDKRB₂ gene +9/-9 polymorphism in healthy individuals.

  7. Baseline aortic pulse wave velocity is associated with central and peripheral pressor responses during the cold pressor test in healthy subjects.

    PubMed

    Borner, Anastasiya; Murray, Kyle; Trotter, Claire; Pearson, James

    2017-07-01

    Cold environmental temperatures increase sympathetic nerve activity and blood pressure, and increase the risk of acute cardiovascular events in aged individuals. The acute risk of cardiovascular events increases with aortic pulse wave velocity as well as elevated central and peripheral pulse pressures. The aim of this study was to examine the independent influence of aortic pulse wave velocity upon central and peripheral pressor responses to sympathetic activation via the cold pressor test (CPT). Twenty-two healthy subjects (age: 18-73 years) completed a CPT with the left hand immersed in 2-4°C water for 3 min. During the CPT, central (from: 36 ± 7 to: 51 ± 12 mmHg) and peripheral pulse pressure increased (from: 54 ± 7 to: 66 ± 11; both P  <   0.05). In all subjects the increase in central pulse pressure during the CPT was independently associated with baseline aortic pulse wave velocity ( r 2  = 0.221, P  =   0.027) but not age ( P  >   0.05). In a subset of subjects with higher arterial stiffness, the increase in peripheral pulse pressure during the CPT was independently associated with baseline aortic pulse wave velocity ( r 2  = 0.415, P  =   0.032) but not age ( P  >   0.05). These data indicate that central and peripheral pulse pressure responses during sympathetic activation are positively and independently associated with aortic pulse wave velocity through a wide age range. Decreasing aortic pulse wave velocity in aged individuals with elevated arterial stiffness may help reduce the incidence of acute cardiovascular events upon exposure to cold environmental temperatures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  9. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    PubMed

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P < 0.001), but was similar in obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  10. Diagnostic accuracy of heart-rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy.

    PubMed

    Sacre, J W; Jellis, C L; Coombes, J S; Marwick, T H

    2012-09-01

    Poor prognosis associated with blunted post-exercise heart-rate recovery may reflect autonomic dysfunction. This study sought the accuracy of post-exercise heart-rate recovery in the diagnosis of cardiac autonomic neuropathy, which represents a serious, but often unrecognized complication of Type 2 diabetes. Clinical assessment of cardiac autonomic neuropathy and maximal treadmill exercise testing for heart-rate recovery were performed in 135 patients with Type 2 diabetes and negative exercise echocardiograms. Cardiac autonomic neuropathy was defined by abnormalities in ≥ 2 of 7 autonomic function markers, including four cardiac reflex tests and three indices of short-term (5-min) heart-rate variability. Heart-rate recovery was defined at 1-, 2- and 3-min post-exercise. Patients with cardiac autonomic neuropathy (n = 27; 20%) had lower heart-rate recovery at 1-, 2- and 3-min post-exercise (P < 0.01). Heart-rate recovery demonstrated univariate associations with autonomic function markers (r-values 0.20-0.46, P < 0.05). Area under the receiver-operating characteristic curve revealed good diagnostic performance of all heart-rate recovery parameters (range 0.80-0.83, P < 0.001). Optimal cut-offs for heart-rate recovery at 1-, 2- and 3-min post-exercise were ≤ 28 beats/min (sensitivity 93%, specificity 69%), ≤ 50 beats/min (sensitivity 96%, specificity 63%) and ≤ 52 beats/min (sensitivity 70%, specificity 84%), respectively. These criteria predicted cardiac autonomic neuropathy independently of relevant clinical and exercise test information (adjusted odds ratios 7-28, P < 0.05). Post-exercise heart-rate recovery provides an accurate diagnostic test for cardiac autonomic neuropathy in Type 2 diabetes. The high sensitivity and modest specificity suggests heart-rate recovery may be useful to screen for patients requiring clinical autonomic evaluation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  11. Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.

    PubMed

    Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S

    2017-12-29

    Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was significant (P < 0.002). Fibromyalgia patients withdrew their extremity from the cold water significantly earlier than neuropathic pain patients and healthy controls; however, they had a higher perceived pain intensity on the VAS than neuropathic pain patients and control subjects. Furthermore, neuropathic pain patients had a localized hypersensitivity to mechanical and thermal stimuli in the affected area of the body. In contrast, fibromyalgia patients displayed a general hypersensitivity to mechanical and thermal stimuli when the stimuli were rated by the VAS, and hypersensitivity to some of the sensory stimuli. Conclusions These findings are the first to suggest that a conditioning stimulus evoked by a cold pressor test reduced spontaneous ongoing pain in patients with peripheral neuropathic pain, but not in fibromyalgia patients when directly compared. The current study supports the notion that fibromyalgia and neuropathic pain are distinct pain conditions with separate sensory patterns and dysfunctions in pain-modulating networks. Fibromyalgia should therefore not, as sometimes discussed, be included in NP conditions. Implications On the basis of the findings, it is of interest to speculate on the underlying mechanisms. The results are consistent with the idea that peripheral neuropathic pain is primarily driven from damaged nerve endings in the periphery, while chronic fibromyalgia pain may be a central disorder with increased activity in pain-facilitating systems.

  12. A manual therapy and exercise approach to meralgia paresthetica in pregnancy: a case report

    PubMed Central

    Skaggs, Clayton D.; Winchester, Brett A.; Vianin, Michael; Prather, Heidi

    2006-01-01

    Abstract Objective To present a case of a pregnant patient with meralgia paresthetica who improved using manual therapy and exercise procedures. Clinical Features A 22-year-old patient in the sixteenth week of pregnancy had low back pain, bilateral anterolateral thigh paresthesia and groin pain for a duration of 1 month. She had no motor deficits in either lower extremity and her reflexes were intact. As a standard clinic procedure, a battery of functional tests were performed including: active straight leg raise, long dorsal ligament test, and the pelvic pain provocation procedure. Based on her clinical history and physical responses to the aforementioned functional tests, the diagnosis of meralgia paresthetica was deduced. Intervention and Outcome Treatment was provided at 6 visits over a 6-week period where the patient underwent evaluation, manual intervention, and exercise prescription. Active Release Technique (ART) was performed to the restricted right sacroiliac (SIJ) complex and quadratus lumborum muscles. ART and post-isometric relaxation were applied to the illiopsoas muscles. The home exercise program consisted of pelvic/low back mobility, stabilization and relaxation exercises. After 6 treatments, the patient reported complete resolution of low back pain and left lower extremity symptoms and a 90% improvement in the right thigh symptoms. At her one-year follow-up, the patient reported no further complications and the absence of pain. Conclusions Manual therapy and exercises may serve as an effective treatment protocol for pregnant patients experiencing low back pain complicated by paresthesia. Because these conservative procedures offer a low-risk intervention, additional clinical studies are warranted to further study this treatment. PMID:19674679

  13. Physician perceptions of the value of physical modalities in the treatment of musculoskeletal disease.

    PubMed

    Rush, P J; Shore, A

    1994-06-01

    We randomly surveyed 100 specialists in rehabilitation medicine and 100 rheumatologists concerning their perceptions of the value of 11 different physical modalities--cold, active and passive exercise, interferential current, laser, magnetotherapy, microwave, shortwave diathermy, traction, ultrasound and transcutaneous nerve stimulation in the treatment of seven different musculoskeletal conditions--acute arthritis, joint contracture, neck pain, back pain, tendinitis, reflex sympathetic dystrophy and frozen shoulder. There were significant differences in the perceived benefits of modalities which varied by modality and condition. Overall, rehabilitation medicine specialists regarded modalities to be helpful more often than rheumatologists (P < 0.001).

  14. Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor

    PubMed Central

    Ferreira-Santos, Larissa; Martinez, Daniel G.; Nicolau, José Carlos; Moreira, Humberto G.; Alves, Maria Janieire; Pereira, Alexandre C.; Trombetta, Ivani C.; Negrão, Carlos Eduardo

    2017-01-01

    Background Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. Methods and results Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. Conclusion The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS. PMID:28235084

  15. Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor.

    PubMed

    Ferreira-Santos, Larissa; Martinez, Daniel G; Nicolau, José Carlos; Moreira, Humberto G; Alves, Maria Janieire; Pereira, Alexandre C; Trombetta, Ivani C; Negrão, Carlos Eduardo; Rondon, Maria Urbana P B

    2017-01-01

    Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS.

  16. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.

    PubMed

    Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton

    2015-02-01

    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Reflex-mediated dynamic neuromuscular stabilization in stroke patients: EMG processing and ultrasound imaging.

    PubMed

    Yoon, Hyun S; You, Joshua Sung H

    2017-07-20

    Postural core instability is associated with poor dynamic balance and a high risk of serious falls. Both neurodevelopmental treatment (NDT) and dynamic neuromuscular stabilization (DNS) core stabilization exercises have been used to improve core stability, but the outcomes of these treatments remain unclear. This study was undertaken to examine the therapeutic effects of NDT and DNS core stabilization exercises on muscular activity, core stability, and core muscle thickness. Ten participants (5 healthy adults; 5 hemiparetic stroke patients) were recruited. Surface electromyography (EMG) was used to determine core muscle activity of the transversus abdominis/internal oblique (TrA/IO), external oblique (EO), and rectus abdominis (RA) muscles. Ultrasound imaging was used to measure transversus abdominals/internal oblique (TrA/IO) thickness, and a pressure biofeedback unit (PBU) was used to measure core stability during the DNS and NDT core exercise conditions. Data are reported as median and range and were compared using nonparametric Mann - Whitney U test and Wilcoxon signed rank test at p< 0.05. Both healthy and hemiparetic stroke groups showed greater median EMG amplitude in the TrA/IO muscles, core stability, and muscle thickness values during the DNS exercise condition than during the NDT core exercise condition, respectively (p< 0.05). However, the relative changes in the EMG amplitude, core stability, and muscle thickness values were greater during the DNS exercise condition than during the NDT core exercise condition in the hemiparetic stroke patient group (p< 0.05). Our novel results provide the first clinical evidence that DNS is more effective than NDT in both healthy and hemiparetic stroke subjects to provide superior deep core muscle activation, core stabilization, and muscle thickness. Moreover, such advantageous therapeutic benefits of the DNS core stabilization exercise over the NDT exercise were more apparent in the hemiparetis stroke patients than normal controls.

  18. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative pressure (-10 torr) to mimic spaceflight- related decreases in cardiac filling volumes.

  19. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    PubMed

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  20. Head-down-tilt bed rest alters forearm vasodilator and vasoconstrictor responses

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Silber, D. H.; Gray, K.; Herr, M.; Sinoway, L. I.

    1998-01-01

    To test the hypothesis that head-down-tilt bed rest (HDBR) for 14 days alters vascular reactivity to vasodilatory and vasoconstrictor stimuli, the reactive hyperemic forearm blood flow (RHBF, measured by venous occlusion plethysmography) and mean arterial pressure (MAP, measured by Finapres) responses after 10 min of circulatory arrest were measured in a control trial (n = 20) and when sympathetic discharge was increased by a cold pressor test (RHBF + cold pressor test; n = 10). Vascular conductance (VC) was calculated (VC = RHBF/MAP). In the control trial, peak RHBF at 5 s after circulatory arrest (34.1 +/- 2.5 vs. 48.9 +/- 4.3 ml . 100 ml-1 . min-1) and VC (0.34 +/- 0.02 vs. 0.53 +/- 0.05 ml . 100 ml-1 . min-1 . mmHg-1) were reduced in the post- compared with the pre-HDBR tests (P < 0. 05). Total excess RHBF over 3 min was diminished in the post- compared with the pre-HDBR trial (84.8 vs. 117 ml/100 ml, P < 0.002). The ability of the cold pressor test to lower forearm blood flow was less in the post- than in the pre-HDBR test (P < 0.05), despite similar increases in MAP. These data suggest that regulation of vascular dilation and the interaction between dilatory and constrictor influences were altered with bed rest.

  1. Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid (MMA(III)).

    PubMed

    Lim, Kyung-Min; Shin, Yoo-Sun; Kang, Seojin; Noh, Ji-Yoon; Kim, Keunyoung; Chung, Seung-Min; Yun, Yeo-Pyo; Chung, Jin-Ho

    2011-09-10

    A close link between arsenic exposure and hypertension has been well-established through many epidemiological reports, yet the mechanism underlying it remains unclear. Here we report that nanomolar concentrations of monomethylarsonous acid (MMA(III)), a toxic trivalent methylated arsenic metabolite, can potentiate agonist-induced vasoconstriction and pressor responses. In freshly isolated rat aortic ring, exposure to nanomolar MMA(III) (100-500 nM) potentiated phenylephrine (PE)-induced vasoconstriction while at higher concentrations (≥2.5 μM), suppression of vasoconstriction and apoptosis of vascular smooth muscle were observed. Potentiation of agonist-induced vasoconstriction was also observed with other contractile agonists and it was retained in endothelium-denuded aortic rings, suggesting that these events are agonist-independent and smooth muscle cell dependent. Interestingly, exposure to MMA(III) resulted in increased myosin light chain phosphorylation while PE-induced Ca2+ influx was not affected, reflecting that Ca2+ sensitization is involved. In line with this, MMA(III) enhanced agonist-induced activation of small GTPase RhoA, a key contributor to Ca2+ sensitization. Of note, treatment of MMA(III) to rats induced significantly higher pressor responses in vivo, demonstrating that this event can occur in vivo indeed. We believe that RhoA-mediated Ca2+ sensitization and the resultant potentiation of vasoconstriction by MMA(III) may shed light on arsenic-associated hypertension. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. Hooking injury, physiological status and short-term mortality of juvenile lemon sharks (Negaprion bevirostris) following catch-and-release recreational angling

    PubMed Central

    Danylchuk, Andy J.; Suski, Cory D.; Mandelman, John W.; Murchie, Karen J.; Haak, Christopher R.; Brooks, Annabelle M. L.; Cooke, Steven J.

    2014-01-01

    Sport fishing for sharks, including fishing with the intent to release, is becoming more prevalent within the recreational angling community. Common targets of recreational anglers are juvenile lemon sharks (Negaprion brevirostris) that frequent shallow tropical nearshore habitats. In this study, we captured 32 juvenile lemon sharks (530–875 mm total length) with conventional angling gear (i.e. spinning rods, dead fish bait and 5/0 barbed circle hooks) from the coastal waters of Eleuthera, The Bahamas, to determine the consequences of capture for individual sharks. Each shark was examined for hooking injuries, blood sampled to quantify physiological disturbance, assessed for reflex impairment and then monitored to assess post-release behaviour and mortality. Four sharks (12.5%) died following release during the 15 min tracking period. Principal components (PC) analysis revealed four axes describing 66.5% of the variance for blood physiology parameters, total length and water temperature. The PC1 and PC3 scores, characterized by positive factor loadings for indicators of exercise-induced stress and blood ion concentrations, respectively, were significantly related to fight time but were not associated with short-term mortality. Short-term mortality was significantly related to factor scores for PC4 that loaded heavily for water temperature and total length. Ten sharks (31%) exhibited impaired reflexes, with loss of bite reflex being most prevalent. Sharks that died had the following characteristics: (i) they had two or more impaired reflexes; (ii) they were hooked in the basihyal; (iii) they exhibited no movement after the initial bout of directional swimming; and (iv) they experienced high water temperatures (i.e. >31°C). Collectively, these results indicate that for juvenile lemon sharks inhabiting tropical flats, fight time can influence the degree of physiological disturbance, while water temperature contributes to the likelihood of survival following release. PMID:27293620

  3. Discordant orthostatic reflex renin-angiotensin and sympathoneural responses in premenopausal exercising-hypoestrogenic women.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Murai, Hisayoshi; Morris, Beverley L; Floras, John S; Harvey, Paula J

    2015-05-01

    Our prior observations in normotensive postmenopausal women stimulated the hypotheses that compared with eumenorrheic women, active hypoestrogenic premenopausal women with functional hypothalamic amenorrhea would demonstrate attenuated reflex renin-angiotensin-aldosterone system responses to an orthostatic challenge, whereas to defend blood pressure reflex increases in muscle, sympathetic nerve activity would be augmented. To test these hypotheses, we assessed, in recreationally active women, 12 with amenorrhea (ExFHA; aged 25 ± 1 years; body mass index 20.7 ± 0.7 kg/m(2); mean ± SEM) and 17 with eumenorrhea (ExOv; 24 ± 1 years; 20.9 ± 0.5 kg/m(2)), blood pressure, heart rate, plasma renin, angiotensin II, aldosterone, and muscle sympathetic nerve activity at supine rest and during graded lower body negative pressure (-10, -20, and -40 mm Hg). At baseline, heart rate and systolic blood pressure were lower (P<0.05) in ExFHA (47 ± 2 beats/min and 94 ± 2 mm Hg) compared with ExOv (56 ± 2 beats/min and 105 ± 2 mm Hg), but muscle sympathetic nerve activity and renin-angiotensin-aldosterone system constituents were similar (P>0.05). In response to graded lower body negative pressure, heart rate increased (P<0.05) and systolic blood pressure decreased (P<0.05) in both groups, but these remained consistently lower in ExFHA (P<0.05). Lower body negative pressure elicited increases (P<0.05) in renin, angiotensin II, and aldosterone in ExOv, but not in ExFHA (P>0.05). Muscle sympathetic nerve activity burst incidence increased reflexively in both groups, but more so in ExFHA (P<0.05). Otherwise, healthy hypoestrogenic ExFHA women demonstrate low blood pressure and disruption of the normal circulatory response to an orthostatic challenge: plasma renin, angiotensin II, and aldosterone fail to increase and blood pressure is defended by an augmented sympathetic vasoconstrictor response. © 2015 American Heart Association, Inc.

  4. Hooking injury, physiological status and short-term mortality of juvenile lemon sharks (Negaprion bevirostris) following catch-and-release recreational angling.

    PubMed

    Danylchuk, Andy J; Suski, Cory D; Mandelman, John W; Murchie, Karen J; Haak, Christopher R; Brooks, Annabelle M L; Cooke, Steven J

    2014-01-01

    Sport fishing for sharks, including fishing with the intent to release, is becoming more prevalent within the recreational angling community. Common targets of recreational anglers are juvenile lemon sharks (Negaprion brevirostris) that frequent shallow tropical nearshore habitats. In this study, we captured 32 juvenile lemon sharks (530-875 mm total length) with conventional angling gear (i.e. spinning rods, dead fish bait and 5/0 barbed circle hooks) from the coastal waters of Eleuthera, The Bahamas, to determine the consequences of capture for individual sharks. Each shark was examined for hooking injuries, blood sampled to quantify physiological disturbance, assessed for reflex impairment and then monitored to assess post-release behaviour and mortality. Four sharks (12.5%) died following release during the 15 min tracking period. Principal components (PC) analysis revealed four axes describing 66.5% of the variance for blood physiology parameters, total length and water temperature. The PC1 and PC3 scores, characterized by positive factor loadings for indicators of exercise-induced stress and blood ion concentrations, respectively, were significantly related to fight time but were not associated with short-term mortality. Short-term mortality was significantly related to factor scores for PC4 that loaded heavily for water temperature and total length. Ten sharks (31%) exhibited impaired reflexes, with loss of bite reflex being most prevalent. Sharks that died had the following characteristics: (i) they had two or more impaired reflexes; (ii) they were hooked in the basihyal; (iii) they exhibited no movement after the initial bout of directional swimming; and (iv) they experienced high water temperatures (i.e. >31°C). Collectively, these results indicate that for juvenile lemon sharks inhabiting tropical flats, fight time can influence the degree of physiological disturbance, while water temperature contributes to the likelihood of survival following release.

  5. Central command differentially affects aortic and carotid sinus baroreflexes at the onset of spontaneous motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Idesako, Mitsuhiro; Ishida, Tomoko; Endo, Kana; Liang, Nan

    2013-12-01

    Our laboratory has recently demonstrated that central command provides selective inhibition of the cardiomotor component of aortic (AOR) baroreflex during exercise, preserving carotid sinus (CS) baroreflex. To further explore the differential effects of central command on the arterial baroreflexes, we surgically separated the AOR and CS baroreflex systems, to identify the input-output relationship of each baroreflex system using brief occlusion of the abdominal aorta in decerebrate cats. Baroreflex sensitivity for heart rate (HR) was estimated from the baroreflex ratio between the pressor and bradycardia responses during aortic occlusion and from the slope of the baroreflex curve between the changes in mean arterial blood pressure (ΔMAP) and ΔHR. Spontaneous motor activity accompanied the abrupt increases in HR and MAP. When aortic occlusion was given at the onset of spontaneous motor activity, the baroreflex ratio was blunted to 11-25% of the preexercise value in either intact or AOR baroreflex. The slope of the ΔMAP-ΔHR curve was similarly attenuated at the onset of spontaneous motor activity to 11-18% of the slope during the preexercise period. In contrast, in the CS baroreflex, the baroreflex ratio and curve slope were not significantly (P>0.05) altered by spontaneous motor activity. An upward shift of the baroreflex curve appeared at the onset of spontaneous motor activity, irrespective of the intact, AOR, and CS baroreflex conditions. Taken together, it is concluded that central command provides selective inhibition for the cardiomotor limb of the aortic baroreflex at the onset of exercise, which in turn contributes to an instantaneous increase in HR. © 2013.

  6. Cardiovascular responses in type A and type B men to a series of stressors.

    PubMed

    Ward, M M; Chesney, M A; Swan, G E; Black, G W; Parker, S D; Rosenman, R H

    1986-02-01

    Fifty-six healthy adult males were administered the Type A Structured Interview and assessed as exhibiting either Type A (N = 42) or Type B (N = 14) behavior pattern. They were monitored for systolic (SBP) and diastolic blood pressure (DBP) and heart rate (HR) responses during a series of six challenging tasks: Mental Arithmetic, Hypothesis Testing, Reaction Time, Video Game, Handgrip, and Cold Pressor. The results indicated that Type A subjects exhibited greater cardiovascular responses than did Type B subjects during some (Hypothesis Testing, Reaction Time, Video Game and Mental Arithmetic) but not all (Handgrip and Cold Pressor) of the tasks. These results are discussed in terms of previously reported findings on conditions that do and do not produce differences in Type A/B cardiovascular stress responses.

  7. Infant reflexes

    MedlinePlus

    ... infants; Tonic neck reflex; Galant reflex; Truncal incurvation; Rooting reflex; Parachute reflex; Grasp reflex ... up if both hands are grasping your fingers. ROOTING REFLEX This reflex occurs when the baby's cheek ...

  8. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.

    PubMed

    Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I

    2012-03-01

    The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.

  9. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    PubMed Central

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  10. Alpha 1-adrenergic blockade does not alter control of skin blood flow during exercise.

    PubMed

    Kenney, W L; Tankersley, C G; Newswanger, D L; Puhl, S M

    1991-03-01

    Human skin blood flow (SkBF) is controlled by both an alpha-adrenergic vasoconstrictor system and an active vasodilator system. During upright dynamic exercise, SkBF increases linearly with increasing body core temperature (Tc) until higher (i.e., greater than 38 degrees C) Tcs, beyond which little further increase in SkBF occurs. To examine the role of the two efferent control arms in this attenuated SkBF rise, we tested nine men (aged 25-53 yr) with and without (placebo) orally administered prazosin HCl (an alpha 1-adrenergic antagonist) during 1 h of moderate cycle exercise (100 W) in a warm (36 degrees C, 45% relative humidity) environment. Blockade of reflex vasoconstriction was verified via a cold challenge. During exercise, mean arterial pressure (MAP, brachial auscultation) was significantly lower (P less than 0.03) and heart rate significantly higher (P less than 0.02) during the prazosin trials; plasma catecholamine concentrations were unaffected. Neither esophageal temperature (Tes) nor mean skin temperature was affected by the drug during exercise. Forearm vascular conductance (FVC) was calculated from forearm blood flow (FBF, venous occlusion plethysmography) and MAP (FVC = FBF/MAP). FVC plotted as a function of time or Tes resulted in coincident response patterns for the placebo and prazosin treatments, reaching a plateau at a Tes of about 38 degrees C. The responses of the older men were not selectively altered by prazosin treatment, indicating that the lower FBF responses previously seen in older subjects during exercise in the heat does not appear to be the result of an increased alpha 1-adrenergic tone.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Altered neuromuscular control of leg stiffness following soccer-specific exercise.

    PubMed

    Oliver, Jon L; De Ste Croix, Mark B A; Lloyd, Rhodri S; Williams, Craig A

    2014-11-01

    To examine changes to neuromuscular control of leg stiffness following 42 min of soccer-specific exercise. Ten youth soccer players, aged 15.8 ± 0.4 years, stature 1.73 ± 0.06 m and mass 59.8 ± 9.7 kg, hopped on a force plate at a self-selected frequency before and after simulated soccer exercise performed on a non-motorised treadmill. During hopping, muscle activity was measured using surface electromyography from four lower limb muscles and analysed to determine feedforward- and feedback-mediated activity, as well as co-contraction. There was a small, non-significant change in stiffness following exercise (26.6 ± 10.6 vs. 24.0 ± 7.0 kN m(-1), p > 0.05, ES = 0.25), with half the group increasing and half decreasing their stiffness. Changes in stiffness were significantly related to changes in centre of mass (CoM) displacement (r = 0.90, p < 0.01, extremely large correlation) but not changes in peak ground reaction force (r = 0.58, p > 0.05, large correlation). A number of significant relationships were observed between changes in stiffness and CoM displacement with changes in feedforward, feedback and eccentric muscle activity of the soleus and vastus lateralis muscles following exercise (r = 0.64-0.98, p < 0.05, large-extremely large correlations), but not with changes in co-contraction (r = 0.11-0.55, p > 0.05, small-large correlations). Following soccer-specific exercise individual changes in feedforward- and reflex-mediated activity of the soleus and vastus lateralis, and not co-contraction around the knee and ankle, modulate changes in CoM displacement and leg stiffness.

  12. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  13. The influence of recovery posture on post-exercise hypotension in normotensive men.

    PubMed

    Raine, N M; Cable, N T; George, K P; Campbell, I G

    2001-03-01

    Postexercise hypotension may be the result of an impaired vasoconstrictor response. This hypothesis was investigated by examining the central and peripheral hemodynamic responses during supine and seated recovery after maximal upright exercise. After supine or seated baseline measurements, seven normotensive male volunteers completed a graded upright cycling protocol to volitional exhaustion. This was immediately followed by either supine or seated recovery. Measurements of pulsatile arterial blood pressure and central and peripheral hemodynamic variables recorded 30 min before exercise were compared with those taken throughout 60 min of recovery. Compared with baseline, mean arterial pressure (MAP) was reduced after exercise (P < 0.05) although the degree of change was not different between the supine (-9 +/- 4 mm Hg) and seated positions (-6 +/- 2 mm Hg). This change in MAP was associated with a reduction in diastolic blood pressure (DBP) (P < 0.05) and arterial pulse pressure (APP) (P < 0.01) for the supine and seated positions, respectively. The reduction in APP during seated recovery was accompanied by a decline in stroke volume (SV) (P < 0.05), not seen in the supine position, that limited the contribution of cardiac output (CO) to the maintenance of MAP. This effect of seated recovery was compensated by greater systemic (SVR) and regional vascular resistances in the forearm (FVR) and the forearm skin (SkVRA). There was also evidence of an augmented return of FVR and SkVRA to resting levels in the seated position after exercise. The lower peripheral resistance in the supine compared with seated recovery position suggests there is potential for greater vasoconstriction, although this is not evoked to increase blood pressure. This further suggests that the arterial baroreceptor reflex is reset to a lower operating pressure after exercise.

  14. RELATIVE ACTIONS OF QUATERNARY METHYL DERIVATIVES OF TYRAMINE, DOPAMINE AND NORADRENALINE.

    PubMed

    CUTHBERT, M F

    1964-08-01

    Tyramine methiodide and dopamine methobromide have greater pressor effect (three- to five-times) in the spinal cat than the parent amines. Noradrenaline methochloride has little pressor effect. Dopamine methobromide is about four times as potent as nicotine; tyramine methiodide is about equiactive to nicotine; and noradrenaline methochloride has only one-tenth the potency of nicotine. Their pressor effects are usually abolished by hexamethonium but in some experiments the effect of noradrenaline methochloride persisted and was then abolished by tolazoline. Injected intravenously into the cat anaesthetized with chloralose, each of the three quaternary derivatives contracts the nictitating membrane; dopamine methobromide is again the most active, having more than six times the potency of nicotine. When the contractions of the nictitating membrane are induced by continuous stimulation of the preganglionic fibres of the cervical sympathetic nerve, intravenous injection of the quaternary derivatives of tyramine and dopamine has a biphasic effect; there is a block on which a contraction of the membrane appears to be superimposed. Noradrenaline methochloride produces only a further contraction of the membrane. On the isolated rectus abdominis muscle preparation of the frog, dopamine methobromide is the most active in contracting the muscle, being about twelve times as active as nicotine; noradrenaline methochloride is weakest, having only one-hundredth the activity of nicotine. These effects are antagonized by hexamethonium. On the isolated phrenic nerve-diaphragm preparation of the rat, the quaternary derivatives of tyramine and dopamine each have neuromuscular blocking properties, 0.7- and 3-times respectively that of nicotine. Noradrenaline methochloride has no effect. In the sciatic nerve-tibialis preparation of the cat, the quaternary derivatives of tyramine and dopamine are approximately equipotent in producing neuromuscular paralysis, having about three times the activity of nicotine and one-fifth that of suxamethonium. These effects are not antagonized either by neostigmine or by edrophonium. Noradrenaline methochloride has no neuromuscular blocking effect. The nicotine-like properties of these quaternized sympathomimetic amines are discussed. It is of interest that the presence of an hydroxyl group attached to the beta-carbon atom of the side-chain greatly reduces nicotine-like activity. By comparison, choline had about one forty-fifth the pressor activity of ethyltrimethylammonium.

  15. Relative actions of quaternary methyl derivatives of tyramine, dopamine and noradrenaline

    PubMed Central

    Cuthbert, M. F.

    1964-01-01

    Tyramine methiodide and dopamine methobromide have greater pressor effect (three- to five-times) in the spinal cat than the parent amines. Noradrenaline methochloride has little pressor effect. Dopamine methobromide is about four times as potent as nicotine; tyramine methiodide is about equiactive to nicotine; and noradrenaline methochloride has only one-tenth the potency of nicotine. Their pressor effects are usually abolished by hexamethonium but in some experiments the effect of noradrenaline methochloride persisted and was then abolished by tolazoline. Injected intravenously into the cat anaesthetized with chloralose, each of the three quaternary derivatives contracts the nictitating membrane; dopamine methobromide is again the most active, having more than six times the potency of nicotine. When the contractions of the nictitating membrane are induced by continuous stimulation of the preganglionic fibres of the cervical sympathetic nerve, intravenous injection of the quaternary derivatives of tyramine and dopamine has a biphasic effect; there is a block on which a contraction of the membrane appears to be superimposed. Noradrenaline methochloride produces only a further contraction of the membrane. On the isolated rectus abdominis muscle preparation of the frog, dopamine methobromide is the most active in contracting the muscle, being about twelve times as active as nicotine; noradrenaline methochloride is weakest, having only one-hundredth the activity of nicotine. These effects are antagonized by hexamethonium. On the isolated phrenic nerve-diaphragm preparation of the rat, the quaternary derivatives of tyramine and dopamine each have neuromuscular blocking properties, 0.7- and 3-times respectively that of nicotine. Noradrenaline methochloride has no effect. In the sciatic nerve-tibialis preparation of the cat, the quaternary derivatives of tyramine and dopamine are approximately equipotent in producing neuromuscular paralysis, having about three times the activity of nicotine and one-fifth that of suxamethonium. These effects are not antagonized either by neostigmine or by edrophonium. Noradrenaline methochloride has no neuromuscular blocking effect. The nicotine-like properties of these quaternized sympathomimetic amines are discussed. It is of interest that the presence of an hydroxyl group attached to the β-carbon atom of the side-chain greatly reduces nicotine-like activity. By comparison, choline had about one forty-fifth the pressor activity of ethyltrimethylammonium. PMID:14206269

  16. Global Brain Blood-Oxygen Level Responses to Autonomic Challenges in Obstructive Sleep Apnea

    PubMed Central

    Macey, Paul M.; Kumar, Rajesh; Ogren, Jennifer A.; Woo, Mary A.; Harper, Ronald M.

    2014-01-01

    Obstructive sleep apnea (OSA) is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD) signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr), and 20 female (age 50.5±8.1 yrs) and 37 male (age 45.6±9.2 yrs) healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip), but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05). OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error) at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex-specific brain injury in the syndrome. PMID:25166862

  17. The Potential Neural Mechanisms of Acute Indirect Vibration

    PubMed Central

    2011-01-01

    There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s) of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR), which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz) which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz). Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s) are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s) and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s) occur during and post-vibration. Key points There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception, but little attention has been given to the neural mechanism(s) of acute indirect vibration. Current findings suggest that acute vibration exposure may cause a neural response, but there is little consensus on identifying which neural mechanism(s) are specifically responsible. This is due to a number of studies using various vibration testing protocols (i.e.varying frequencies, amplitudes, durations, and methods of application). Spinal reflexes, muscle tuning and neuromuscular aspects and central motor command are all viable neuromechanical factors that may contribute at different stages to transiently increasing muscular performance. Additional research is encouraged to determine when (pre, during and post) the different neural mechanism(s) respond to direct and indirect vibration stimuli. PMID:24149291

  18. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  19. The circadian rhythm of core temperature: origin and some implications for exercise performance.

    PubMed

    Waterhouse, Jim; Drust, Barry; Weinert, Dietmar; Edwards, Benjamin; Gregson, Warren; Atkinson, Greg; Kao, Shaoyuan; Aizawa, Seika; Reilly, Thomas

    2005-01-01

    This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep-wake cycle. This masking effect can be overcome directly by constant routines and indirectly by "purification" methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.

  20. Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults.

    PubMed

    Hsieh, Annie Y; Tripp, Dean A; Ji, Li-Jun; Sullivan, Michael J L

    2010-11-01

    Experimental pain research indicates ethnic differences in pain experience. Most of the cross-cultural pain research studied African Americans and Hispanics with little data available for Asian groups. This study examined differences in pain catastrophizing, pain attitudes, and pain responses between Chinese and European Canadian young adults. Prior to completing a cold-pressor (CP) task, 80 Chinese and 80 European Canadian undergraduate students were administered measures of pain catastrophizing and pain attitudes, including stoicism and cautiousness. Pain threshold, pain tolerance, and pain intensity were measured during the CP task. The Short Form-McGill Pain Questionnaire was administered immediately postimmersion to measure sensory and affective pain. While there was no group difference in pain threshold and pain intensity, Chinese participants displayed lower pain tolerance and reported higher SF-MPQ-Affective than European Canadians. Regarding psychological variables, there was no difference in stoicism and cautiousness between groups, but Chinese participants reported greater pain catastrophizing. Mediational analysis indicated that pain catastrophizing mediated the group differences in SF-MPQ-Affective score. The implications of the findings and future research were discussed. The study found ethnic differences in cold-pressor responses, in which Chinese undergraduates reported higher levels of pain compared to their Euro-Canadian counterparts. The finding that pain catastrophizing mediated the ethnic difference in SF-MPQ-Affective scores indicated the importance of examining the role of catastrophizing in pain reports from Chinese and Euro-Canadian patients. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  1. Selective norepinephrine reuptake inhibition as a human model of orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Schroeder, Christoph; Tank, Jens; Boschmann, Michael; Diedrich, Andre; Sharma, Arya M.; Biaggioni, Italo; Luft, Friedrich C.; Jordan, Jens; Robertson, D. (Principal Investigator)

    2002-01-01

    BACKGROUND: Observations in patients with functional mutations of the norepinephrine transporter (NET) gene suggest that impaired norepinephrine uptake may contribute to idiopathic orthostatic intolerance. METHODS AND RESULTS: We studied the effect of the selective NET blocker reboxetine and placebo in a randomized, double-blind, crossover fashion on cardiovascular responses to cold pressor testing, handgrip testing, and a graded head-up tilt test (HUT) in 18 healthy subjects. In a subset, we determined isoproterenol and phenylephrine sensitivities. Subjects ingested 8 mg reboxetine or placebo 12 hours and 1 hour before testing. In the supine position, heart rate was 65+/-2 bpm with placebo and 71+/-3 bpm with reboxetine. At 75 degrees HUT, heart rate was 84+/-3 and 119+/-4 bpm with placebo and with reboxetine (P<0.0001). Mean arterial pressure was 85+/-2 with placebo and 91+/-2 mm Hg with reboxetine while supine (P<0.01) and 88+/-2 mm Hg and 90+/-3 mm Hg at 75 degrees HUT. Blood pressure responses to cold pressor and handgrip testing were attenuated with reboxetine. Reboxetine increased the sensitivity to the chronotropic effect of isoproterenol and the pressor effect of phenylephrine. Vasovagal reactions occurred in 9 subjects on placebo and in 1 subject on reboxetine. CONCLUSIONS: Selective NET blockade creates a phenotype that resembles idiopathic orthostatic intolerance. This observation supports the hypothesis that disordered norepinephrine uptake mechanisms can contribute to human cardiovascular disease. Our study also suggests that NET inhibition might be useful in preventing vasovagal reactions.

  2. Effects of Carbidopa and Entacapone on the Metabolic Fate of the Norepinephrine Prodrug L-DOPS

    PubMed Central

    Goldstein, David S.; Holmes, Courtney; Sewell, LaToya; Pechnik, Sandra; Kopin, Irwin J.

    2016-01-01

    Background L-threo-3,4-dihydroxyphenylserine (L-DOPS), a norepinephrine (NE) prodrug, is investigational for orthostatic hypotension, which occurs commonly in Parkinson’s disease. Adjunctive anti-parkinsonian drugs might interact with L-DOPS. We tested whether L-aromatic aminoacid decarboxylase inhibition by carbidopa (CAR) attenuates L-DOPS conversion to NE and blocks the pressor effect of L-DOPS, whereas catechol-O-methyltransferase inhibition by entacapone (ENT) interferes with L-DOPS metabolism and augments the pressor effect. Methods Twelve patients with autonomic failure took 400 mg of L-DOPS with 200 mg of placebo (PLA), CAR, or ENT on different days. Plasma L-DOPS, NE, and deaminated NE metabolites (dihydroxyphenylglycol [DHPG], dihydroxymandelic acid [DHMA]) were measured. Results L-DOPS+PLA and L-DOPS+ENT increased systolic pressure similarly (by 27 ± 8 and 24 ± 9 mm Hg at 3 hours). L-DOPS+CAR did not increase pressure. The peak increase in plasma NE (0.57 ± 0.11 nmol/L) averaged less than 1/15 000th that in L-DOPS and less than 1/35th that in DHPG+DHMA. CAR prevented and ENT augmented responses of plasma DHPG and DHMA to L-DOPS. Conclusions After L-DOPS administration plasma, NE levels do not increase sufficiently to increase blood pressure. Pressor responses to L-DOPS seem to reflect NE produced extraneuronally that escapes extensive enzymatic deamination and O-methylation and evokes vasoconstriction before reaching the systemic circulation. PMID:20220040

  3. Effects of carbidopa and entacapone on the metabolic fate of the norepinephrine prodrug L-DOPS.

    PubMed

    Goldstein, David S; Holmes, Courtney; Sewell, LaToya; Pechnik, Sandra; Kopin, Irwin J

    2011-01-01

    L-threo-3,4-dihydroxyphenylserine (L-DOPS), a norepinephrine (NE) prodrug, is investigational for orthostatic hypotension, which occurs commonly in Parkinson's disease. Adjunctive anti-parkinsonian drugs might interact with L-DOPS. We tested whether L-aromatic amino-acid decarboxylase inhibition by carbidopa (CAR) attenuates L-DOPS conversion to NE and blocks the pressor effect of L-DOPS, whereas catechol-O-methyltransferase inhibition by entacapone (ENT) interferes with L-DOPS metabolism and augments the pressor effect. Twelve patients with autonomic failure took 400 mg of L-DOPS with 200 mg of placebo (PLA), CAR, or ENT on different days. Plasma L-DOPS, NE, and deaminated NE metabolites (dihydroxyphenylglycol [DHPG], dihydroxymandelic acid [DHMA]) were measured. L-DOPS+PLA and L-DOPS+ENT increased systolic pressure similarly (by 27 ± 8 and 24 ± 9 mm Hg at 3 hours). L-DOPS+CAR did not increase pressure. The peak increase in plasma NE (0.57 ± 0.11 nmol/L) averaged less than 1/15,000 th that in L-DOPS and less than 1/35th that in DHPG+DHMA. CAR prevented and ENT augmented responses of plasma DHPG and DHMA to L-DOPS. After L-DOPS administration plasma, NE levels do not increase sufficiently to increase blood pressure. Pressor responses to L-DOPS seem to reflect NE produced extraneuronally that escapes extensive enzymatic deamination and O-methylation and evokes vasoconstriction before reaching the systemic circulation.

  4. Heat stress attenuates the increase in arterial blood pressure during the cold pressor test.

    PubMed

    Cui, Jian; Shibasaki, Manabu; Low, David A; Keller, David M; Davis, Scott L; Crandall, Craig G

    2010-11-01

    The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ~0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.

  5. Role of the hypothalamic arcuate nucleus in cardiovascular regulation

    PubMed Central

    Sapru, Hreday N.

    2012-01-01

    Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM. PMID:23260431

  6. Attention bias modification and its impact on experimental pain outcomes: Comparison of training with words versus faces in pain.

    PubMed

    Sharpe, L; Johnson, A; Dear, B F

    2015-10-01

    The aim of this study was to compare the effectiveness of training participants' attention towards or away from painful faces versus pain-related words on pain outcomes on an acute experimental pain paradigm. Participants were randomized to receive either training towards or away from painful faces or words. Following training, participants completed the cold pressor task. The results confirm that attention bias modification produced the predicted changes in attentional biases. Clear training effects were observed for words and faces, such that attentional biases changed in the predicted direction on the stimuli presented during the training. However, for those trained on words, training effects also generalized to face stimuli. As predicted, those who received training away from painful stimuli took longer to report pain (higher pain threshold) during the cold pressor task, and this effect was more pronounced for those trained on words. Contrary to expectations, those trained on faces (regardless of training direction) reported less pain than those trained on words. There were no differences between the groups for pain tolerance (length of time participants were able to keep their arms in the cold pressor). These findings confirm that attentional biases are modifiable, and impact (in the expected manner) how quickly participants perceive pain. Further, exposure to painful faces resulted in additional benefits to the level of pain reported. However, we were unable to confirm that change in attentional biases was the mechanism of change. © 2014 European Pain Federation - EFIC®

  7. The chronically instrumental ewe: a model for studying vascular reactivity to angiotensin II in pregnancy.

    PubMed Central

    Rosenfeld, C R; Gant, N F

    1981-01-01

    Vascular refractoriness to the systemic pressor effects of angiotension II (AII) develops normally during human pregnancy. To ascertain if the ewe might provide a suitable animal model to study the mechanisms responsible for this response (unique to pregnancy) we studied this phenomenon in unanesthetized, chronically instrumented nonpregnant and pregnant sheep, 68-143 d gestation. In these studies dose-response curves were established for changes in both mean arterial pressure and uterine blood flow. The pressor response to continuous infusions of AII increases as a function of the dose of AII in both nonpregnant and pregnant animals (P less than 0.001), R = 0.943 and 0.879, respectively. However, the pregnant animals were refractory to the pressor effects of AII, requiring 0.016 microgram of AII/min per kg to elicit a 20 mm HG rise in mean arterial pressure, in contrast to 0.009 for nonpregnant animals. The slope and intercept for the regression lines are different at P less than 0.001. In pregnant animals the dose-response curve for uterine blood flow was also determined. Increases in uterine blood flow were observed at doses of AII less than 0.016 microgram/min per kg, while larger doses resulted in a progressively greater reduction in blood flow. It appears likely that the ewe may serve as an animal model suitable for the further study of the unique pregnancy-modified systemic and uteroplacental vascular responses elicited by AII. PMID:7462427

  8. Neurocardiology: Structure-Based Function.

    PubMed

    Ardell, Jeffrey L; Armour, John Andrew

    2016-09-15

    Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  9. [Complementary feeding].

    PubMed

    Pérez Lizaur, Ana Bertha

    2011-01-01

    According to PAHO and WHO, supplementary feeding is the process that begins when human milk is insufficient to meet the nutritional needs of an infant and requires other foods and liquids. The decision to begin complementary feeding depends on socio-economic, physiological, nutritional and psychological factors. The maturation of the neuromuscular, gastrointestinal and renal system influences the chances of success of supplementary feeding. Reflexes and skills in a child with normal development can be expected and the consistency of foods can provide a way to, on one hand allow the ingestion of food and the other to allow the children to exercise their reflexes to enhance neuromuscular maturation. WHO recommends exclusive breastfeeding promotion to six months, as there are several benefits to mother and child; in Mexico, the NOM-043-SSA2-2005 promotes complementary feeding from 6 months. It should be noted that the order of introduction is not definitive and that the literature shows different patterns of input according to the needs of children and their socio-economic and cultural environment. Parents and caregivers select and buy food, model, and establish rules of behavior at home related to food. Evidence suggest that environmental factors acting at an early stage of development of small modeling preferences and eating behaviors.

  10. Student-generated case reports.

    PubMed

    Good, Christopher J

    2009-01-01

    When students create teaching materials, learning can be enhanced. Therefore, a project was designed based on the traditional clinical case report and the chiropractic technique and principles curriculum at the University of Bridgeport College of Chiropractic. The objectives were to increase mastery in a clinical topic, increase awareness of different patient presentations and management options, and enhance information technology skills. Following lectures about the components of a case report and neurological reflexes related to visceral comorbidities and subluxation and joint dysfunction, students created a case report based on a template provided by the instructor. A survey gathered student perspectives on the exercise. More than 70% of the surveyed students felt the project was at least moderately helpful in improving understanding of a case report, the condition investigated, their clinical reasoning, and the ability to integrate information. Most felt that they improved their understanding of neurological reflexes, use of the literature, and the practice of evidence-based care. The majority believed that they identified weakness in knowledge, improved self-learning skills, and increased confidence in managing patients. Most enjoyed it at least somewhat and 70% agreed that the project should be continued. Many believed that they were better prepared for national boards and had improved their writing skills.

  11. Temperature Regulation in Crewmembers After a 115-Day Space Flight

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Williams, W. J.; Siconolfi, S. F.; Gonzalez, R.; Greenleaf, J. E.; Mikhavlov, V.; Kobzev, Y.; Fortney, S. M.

    1996-01-01

    Impaired thermoregulation, which has been observed during exercise following bed rest, may significantly impact crewmembers during space flight operations by decreasing exercise capacity and orthostatic tolerance. Impaired temperature regulation would cause higher levels of core temperature, due to an attenuated cutaneous vasodilatory reflex and sweating response, for a given oxygen consumption. Two mate crewmembers of the Mir 18 mission performed supine cycle exercise se (20 min @ 40% and 20 min @ 65% preflight VO2pk) 145 days preflight and 5 days postflight. Core temperature (Tcore) was measured by an ingestible telemetry pill, skin blood flow (SBF) by laser Doppler velocimetry, and sweat rate (SR) by dew point hygrometry. Tcore at the time of test termination was similar (37.8 C) for both subjects before and after flight despite a shorter test duration (40 vs 28-29 minutes) postflight. The slopes of the SBF/Tcore relationship (Subj 1: 396 vs 214; Subj 2: 704 vs 143 Perfusion Unit/degC) and SR/Tcore relationship (Subj 1: 4.5 vs 2.1; Subj 2: 11.0 vs 3.6mg/min/sq cm/degC) were reduced postflight. Tcore thresholds for both SR (Subj 1: 37.4 vs 37.6; Subj 2: 37.6 vs 37.6 C) and SBF (Subj 1: 37.3 vs 37.5; Subj 2: 37.6 vs 37.7 C) were similar pre- to postflight. For these 2 crewmembers, it appeared that thermoregulation during exercise was impaired as evidenced by compromised heat loss responses after long-duration space flight.

  12. Estrogen Receptor-α in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females.

    PubMed

    Hinton, Antentor Othrell; He, Yanlin; Xia, Yan; Xu, Pingwen; Yang, Yongjie; Saito, Kenji; Wang, Chunmei; Yan, Xiaofeng; Shu, Gang; Henderson, Alexander; Clegg, Deborah J; Khan, Sohaib A; Reynolds, Corey; Wu, Qi; Tong, Qingchun; Xu, Yong

    2016-06-01

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in female mice lacking estrogen receptor-α in the brain medial amygdala. Deletion of estrogen receptor-α in medial amygdala neurons also resulted in increased excitability of these neurons, associated with elevated ionotropic glutamate receptor expression. We further demonstrated that selective activation of medial amygdala neurons mimicked effects of stress to increase blood pressure in mice. Together, our results support a model where estrogen acts on estrogen receptor-α expressed by medial amygdala neurons to prevent stress-induced activation of these neurons, and therefore prevents pressor responses to stress. © 2016 American Heart Association, Inc.

  13. Concept priming and pain: an experimental approach to understanding gender roles in sex-related pain differences.

    PubMed

    Fowler, Stephanie L; Rasinski, Heather M; Geers, Andrew L; Helfer, Suzanne G; France, Christopher R

    2011-04-01

    Prior research has found that sex differences in pain are partially due to individual variations in gender roles. In a laboratory study, we tested the hypothesis that the presence of covert gender role cues can also moderate the extent to which women and men experience pain. Specifically, we varied gender role cues by asking male and female participants to write about instances in which they behaved in a stereotypically feminine, masculine, or neutral manner. Pain and cardiovascular reactivity to the cold pressor task were then assessed. Results revealed that, when primed with femininity, men reported less pain and anxiety from the cold pressor task than women. However, no differences existed between the sexes in the masculine or neutral prime conditions. The results indicate that covert gender cues can alter pain reports. Further, at least in some situations, feminine role cues may be more influential on pain reports than masculine role cues.

  14. Sustained efficacy of virtual reality distraction.

    PubMed

    Rutter, Charles E; Dahlquist, Lynnda M; Weiss, Karen E

    2009-04-01

    The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of 8 weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent 1 baseline cold pressor trial and 1 VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a nonpharmacological analgesic are discussed. This article addresses the concern that the efficacy of virtual reality-assisted distraction from pain could potentially decrease with repeated exposure. The current finding that efficacy did not diminish over several repeated exposures provides support for the use of virtual reality as an adjuvant treatment of pain.

  15. Taking one for the team: Physiological trajectories of painful intergroup retaliation.

    PubMed

    Niedbala, Elizabeth M; Hohman, Zachary P; Harris, Breanna N; Abide, Alexandra C

    2018-06-13

    Retaliating against a threatening outgroup offers group members specific rewards, such as restored group esteem, a reduction in anger, and a sense of gratification. Because retaliation is rewarding, group members may appraise an attack on the outgroup to be beneficial, even if it feels physically painful. We hypothesized that group members would be more willing to endure pain to retaliate against a threatening outgroup, and that appraising the painful retaliation as rewarding would down-regulate their physiological stress response to pain. Participants were manipulated to feel threatened by a rival group and then completed the cold-pressor. During the cold-pressor, participants either retaliated against the outgroup or not. Results showed that retaliation inhibited physiological responses to pain, alleviated intergroup anger, and felt less aversive. We propose that these responses are caused by a cognitive reappraisal of pain, where painful retaliation is expected to be rewarding instead of threatening. Copyright © 2017. Published by Elsevier Inc.

  16. Juvenile onset depression alters cardiac autonomic balance in response to psychological and physical challenges

    PubMed Central

    Bylsma, Lauren M.; Yaroslavsky, Ilya; Rottenberg, Jonathan; Jennings, J. Richard; George, Charles J.; Kiss, Enikő; Kapornai, Krisztina; Halas, Kitti; Dochnal, Roberta; Lefkovics, Eszter; Benák, István; Baji, Ildikó; Vetró, Ágnes; Kovacs, Maria

    2015-01-01

    Cardiac autonomic balance (CAB) indexes the ratio of parasympathetic to sympathetic activation (Berntson, Norman, Hawkley, & Cacioppo, 2008), and is believed to reflect overall autonomic flexibility in the face of environmental challenges. However, CAB has not been examined in depression. We examined changes in CAB and other physiological variables in 179 youth with a history of juvenile onset depression (JOD) and 161 healthy controls, in response to two psychological (unsolvable puzzle, sad film) and two physical (handgrip, and forehead cold pressor) challenges. In repeated measures analyses, controls showed expected reductions in CAB for both the handgrip and unsolvable puzzle, reflecting a shift to sympathetic relative to parasympathetic activation. By contrast, JOD youth showed increased CAB from baseline for both tasks (ps<.05). No effects were found for the forehead cold pressor or sad film tasks, suggesting that CAB differences may arise under conditions requiring greater attentional control or sustained effort. PMID:26225465

  17. Comparative biochemistry of renins and angiotensins in the vertebrates.

    PubMed

    Nakajima, T; Khosla, M C; Sakakibara, S

    1978-09-01

    Comparative biochemistry of renins and angiotensins was discussed. Renin extracted from hog kidney was different from that from mouse submaxillary glands in immunoreactivity and carbohydrate content. Rat kidney renin was also different from hog kidney renin in the amino acid composition. The presence of big and big-big renins was pointed out immunochemically. These big renins were considered to be precursors of kidney renin. Angiotensins in mammalian and nonmammalian species produced by renal or extrarenal renin have been differentiated by some biochemical and pharmacological criteria. Some of these angiotensins were analyzed sequentially. The replacements of amino acid residues at positions 1, 5, and/or 9 of angiotensin I have been demonstrated in nonmammalian species. Specific pressor activities have been determined using synthetic angiotensins by a 4 point assay in rat. Specific pressor activities of various angiotensins were obtained from the dose-blood pressure-response curves using a single angiotensin sample per assay rat.

  18. Cardiovascular reactivity and the presence of pets, friends, and spouses: the truth about cats and dogs.

    PubMed

    Allen, Karen; Blascovich, Jim; Mendes, Wendy B

    2002-01-01

    The purpose of this study was to examine the effects of the presence of friends, spouses, and pets on cardiovascular reactivity to psychological and physical stress. Cardiovascular reactivity was examined among 240 married couples, half of whom owned a pet. Mental arithmetic and cold pressor were performed in one of four randomly assigned social support conditions: alone, with pet or friend (friend present for non-pet owners), with spouse, with spouse and pet/friend. Relative to people without pets, people with pets had significantly lower heart rate and blood pressure levels during a resting baseline, significantly smaller increases (ie, reactivity) from baseline levels during the mental arithmetic and cold pressor, and faster recovery. Among pet owners, the lowest reactivity and quickest recovery was observed in the pet-present conditions. People perceive pets as important, supportive parts of their lives, and significant cardiovascular and behavioral benefits are associated with those perceptions.

  19. Substance P analogues potentiate the pressor response to microinjection of L-glutamate into laminas I and II of the cat dorsal horn.

    PubMed

    Beyaert, C A; Hill, J M; Kaufman, M P

    1997-06-06

    Microinjection of a substance P analogue (1 mM; 7 or 10 nl) into laminae I and II of the L7 dorsal horn of decerebrate cats significantly potentiated (P < 0.05) the increase in arterial pressure evoked by microinjection of L-glutamate (109 mM; 7 or 10 nl) into these spinal sites. Microinjection of the substance P analogues (i.e., GR73638 and [Sar9,Met(O2)11]-substance P) which were selective NK-1 receptor agonists, had no impact on the cardioacceleration evoked by microinjection of L-glutamate (P > 0.05). In addition, microinjection of these analogues had no effect on the modest and non-significant increase in phrenic nerve discharge evoked by L-glutamate. We conclude that stimulation of NK-1 receptors in the superficial laminae of the dorsal horn potentiates the pressor responses to microinjection of L-glutamate.

  20. Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.

    PubMed

    Engward, Hilary; Davis, Geraldine

    2015-07-01

    A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.

  1. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress

    PubMed Central

    Dinh, Quynh Nhu; Drummond, Grant R.; Kemp-Harper, Barbara K.; Diep, Henry; Silva, T. Michael De; Kim, Hyun Ah; Vinh, Antony; Robertson, Avril A.B.; Cooper, Matthew A.; Mansell, Ashley

    2017-01-01

    Aging is commonly associated with chronic low-grade inflammation and hypertension but it is unknown whether a cause-effect relationship exists between them. We compared the sensitivity of young adult (8-12 w) and aged (23-31 mo) male C57Bl6J mice to develop hypertension in response to a slow-pressor dose of angiotensin II (Ang II; 0.28 mg/kg/d; 28 d). In young mice, the pressor response to Ang II was gradual and increased to 142±8 mmHg over 28 d. However, in aged mice, Ang II promptly increased SBP and reached 155±12 mmHg by 28 d. Aging increased renal but not brain expression of Ang II receptors (At1ar and At2r) and elevated AT1R:AT2R expression ratio in mesenteric artery. Maximal contractile responses of mesenteric arteries to Ang II were enhanced in aged mice and were not affected by L-NAME, indomethacin or tempol. Mesenteric arteries and thoracic aortae from aged mice exhibited higher Nox2-dependent superoxide production. Despite having higher renal expression of Nlrp3, Casp-1 and Il-1β, Ang II-induced hypertension (SBP: 139±7 mmHg) was unaffected by co-infusion of the NLRP3 inflammasome inhibitor, MCC950 (10 mg/kg/d; SBP: 145±10 mmHg). Thus, increased vascular AT1R:AT2R expression, rather than NLRP3 inflammasome activation, may contribute to enhanced responses to Ang II in aging. PMID:28659507

  2. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress.

    PubMed

    Dinh, Quynh Nhu; Drummond, Grant R; Kemp-Harper, Barbara K; Diep, Henry; De Silva, T Michael; Kim, Hyun Ah; Vinh, Antony; Robertson, Avril A B; Cooper, Matthew A; Mansell, Ashley; Chrissobolis, Sophocles; Sobey, Christopher G

    2017-06-28

    Aging is commonly associated with chronic low-grade inflammation and hypertension but it is unknown whether a cause-effect relationship exists between them. We compared the sensitivity of young adult (8-12 w) and aged (23-31 mo) male C57Bl6J mice to develop hypertension in response to a slow-pressor dose of angiotensin II (Ang II; 0.28 mg/kg/d; 28 d). In young mice, the pressor response to Ang II was gradual and increased to 142±8 mmHg over 28 d. However, in aged mice, Ang II promptly increased SBP and reached 155±12 mmHg by 28 d. Aging increased renal but not brain expression of Ang II receptors ( At1ar and At2r ) and elevated AT1R:AT2R expression ratio in mesenteric artery. Maximal contractile responses of mesenteric arteries to Ang II were enhanced in aged mice and were not affected by L-NAME, indomethacin or tempol. Mesenteric arteries and thoracic aortae from aged mice exhibited higher Nox2-dependent superoxide production. Despite having higher renal expression of Nlrp3, Casp-1 and Il-1β , Ang II-induced hypertension (SBP: 139±7 mmHg) was unaffected by co-infusion of the NLRP3 inflammasome inhibitor, MCC950 (10 mg/kg/d; SBP: 145±10 mmHg). Thus, increased vascular AT1R:AT2R expression, rather than NLRP3 inflammasome activation, may contribute to enhanced responses to Ang II in aging.

  3. Hypothalamic disconnection caudal to paraventricular nucleus affects cardiovascular and drinking responses to central angiotensin II and carbachol.

    PubMed

    Urzedo-Rodrigues, Lilia Simone; Depieri, Tatiane; Cherobino, Anderson Julio; Lopes, Oswaldo U; Menani, José V; Colombari, Débora S A

    2011-05-04

    The paraventricular nucleus of the hypothalamus (PVN) is an important area of the brain involved in the control of cardiovascular system and fluid-electrolyte balance. In the present study we evaluated the effects of hypothalamic disconnection (HD) caudal to PVN in the pressor and dipsogenic responses induced by intracerebroventricular (icv) injections of angiotensin II (ANG II) or carbachol (cholinergic agonist). Male Holtzman rats (280-320 g) with a stainless steel cannula implanted into the lateral ventricle and submitted to sham or HD surgery were used. HD (2 or 15 days) reduced the pressor responses to ANG II (50 ng/1μl) icv (8±3 and 11±3 mm Hg, respectively, vs. sham: 23±3 and 21±2 mm Hg) or carbachol (4 nmol/1 μl) icv (8±2 and 21±3 mm Hg, respectively, vs. sham: 33±3 and 33±3 mm Hg), without changing baseline arterial pressure. Acutely (2-4 days), HD also reduced water intake to icv ANG II (3.3±2.2 vs. sham: 14.2±3.0 ml/60 min) or carbachol (4.4±1.8 vs. sham: 11.4±1.6 ml/60 min); however, chronically (15-17 days), HD produced no change on ANG II- and carbachol-induced water intake, in spite of the increased daily water intake and urinary volume. The results suggest that medial projections caudal to PVN are important for pressor and dipsogenic responses to central angiotensinergic and cholinergic activation. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-09-01

    In comparison to male rodents, females are protected against angiotensin (ANG) II- and aldosterone (Aldo)-induced hypertension. However, the mechanisms underlying this protective effect are not well understood. ANG-(1-7) is formed from ANG II by angiotensin-converting enzyme 2 (ACE2) and has an antihypertensive effect in the central nervous system (CNS). The present study tested the hypothesis that central ANG-(1-7) plays an important protective role in attenuating the development of Aldo/NaCl-hypertension in female rats. Systemic infusion of Aldo into intact female rats with 1% NaCl as their sole drinking fluid resulted in a slight increase in blood pressure (BP). Intracerebroventricular (icv) infusion of A-779, an ANG-(1-7) receptor (Mas-R) antagonist, significantly augmented the pressor effects of Aldo/NaCl. In contrast, systemic Aldo/NaCl induced a significant increase in BP in ovariectomized (OVX) female rats, and central infusion of ANG-(1-7) significantly attenuated this Aldo/NaCl pressor effect. The inhibitory effect of ANG-(1-7) on the Aldo/NaCl pressor effect was abolished by concurrent infusion of A-779. RT-PCR analyses showed that there was a corresponding change in mRNA expression of several renin-angiotensin system components, estrogen receptors and an NADPH oxidase subunit in the lamina terminalis. Taken together these results suggest that female sex hormones regulate an antihypertensive axis of the brain renin-angiotensin system involving ACE2/ANG-(1-7)/Mas-R that plays an important counterregulatory role in protecting against the development of Aldo/NaCl-induced hypertension.

  5. Effect of healthy aging on renal vascular responses to local cooling and apnea

    PubMed Central

    Patel, Hardikkumar M.; Mast, Jessica L.; Sinoway, Lawrence I.

    2013-01-01

    Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception. PMID:23640587

  6. Variability in Hoffmann and tendon reflexes in healthy male subjects

    NASA Technical Reports Server (NTRS)

    Good, E.; Do, S.; Jaweed, M.

    1992-01-01

    There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.

  7. Assessing the Physiological Cost of Active Videogames (Xbox Kinect) Versus Sedentary Videogames in Young Healthy Males.

    PubMed

    Barry, Gillian; Tough, Daniel; Sheerin, Phillip; Mattinson, Oliver; Dawe, Rachael; Board, Elisabeth

    2016-02-01

    The aims of this study were twofold: (1) to compare the physiological costs of active videogames (AVGs) and sedentary videogames (SVGs) and (2) to compare the exercise intensities attained during AVGs with the exercise intensity criteria for moderate and vigorous physical activity, as stated in current physical activity recommendations for improving public health. Nineteen young males participated in the study (age, 23 ± 3 years; height, 178 ± 6 cm; weight, 78 ± 15 kg). Participants completed a maximum oxygen uptake ([Formula: see text]) test and a gaming session, including AVGs ("Reflex Ridge," "River Rush," and "Boxing" for the Microsoft [Redmond, WA] Kinect™) and SVGs ("FIFA 14" [Electronic Arts, Burnaby, BC, Canada] and "Call of Duty" [Activision, Santa Monica, CA]). Heart rate (HR) and oxygen uptake [Formula: see text]) were recorded continuously during all videogames. Rating of perceived exertion (RPE) was taken every 3 minutes during AVGs and SVGs. Energy expenditure (EE), expressed as metabolic equivalents (METs), was calculated. One MET was defined as the volume of oxygen consumed at rest in a seated position and is equal to 3.5 mL of O2/kg of body mass/minute. The exercise intensity for each game was expressed as a percentage of [Formula: see text] and percentage of age-predicted maximum HR (HRmax). Exercise intensity (percentage HRmax, percentage [Formula: see text], and RPE) and EE (METs) were significantly higher during active gaming compared with sedentary gameplay (P < 0.01). AVGs elicited moderate levels of exercise intensity (64-72 percent HRmax) in line with current recommended physical activity guidelines. Our results indicate AVGs provoke physiological responses equivalent to a moderate-intensity physical activity.

  8. Associations of blood pressure with self-report measures of anger and hostility among black and white men and women.

    PubMed

    Durel, L A; Carver, C S; Spitzer, S B; Llabre, M M; Weintraub, J K; Saab, P G; Schneiderman, N

    1989-01-01

    This study examined associations between blood pressure (BP) and dispositional variables pertaining to anger and hostility. Black and White 25- to 44-year old male and female normotensives and unmedicated mild to moderate hypertensives completed four reliable self-report scales--the Cook-Medley Hostility (Ho) Scale, the Trait Anger subscale of the State-Trait Anger Scale (STAS-T), and the Cognitive Anger and Somatic Anger subscales of the Cognitive-Somatic Anger Scale--plus the Framingham Anger Scale and the Harburg Anger Scale. They also engaged in three laboratory tasks--Type A Structured Interview (SI), a video game, and a cold pressor task--that elicit cardiovascular reactivity. Ambulatory BP readings at home and at work were also obtained from most subjects. Blacks had significantly higher Ho and lower STAS-T scores than did Whites. Women reported higher levels of somatic anger than did men. White women showed significant positive correlations between STAS-T and systolic BP (SBP) and diastolic BP (DBP) both at rest in the laboratory and during the SI. Black women revealed significant positive relationships between STAS-T and SBP and DBP at rest in the laboratory and at work as well as with DBP during the cold pressor test. For Black men, cognitive anger and DBP at rest were positively related. In contrast, White men revealed significant negative correlations between Ho scores and SBP at rest and during the video game; these men also showed significant negative relationships between somatic anger and SBP and DBP reactivity during the cold pressor test. Women, but not men, showed significant positive relationships between all four anger measures and ambulatory BP at work. Whereas main effects relating anger and cardiovascular measures were not apparent as a function of race, Blacks demonstrated significantly greater SBP and DBP reactivity than Whites during the cold pressor test, with the converse occurring during the SI. Men demonstrated significantly greater DBP reactivity than women during the video game. The present findings indicate that self-reports on anger/hostility measures and cardiovascular responses to behavioral tasks differ as a function of race but that relationships between anger and BP regulation need to take into account possible race-sex interactions and selection of anger/hostility measures.

  9. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area.

    PubMed

    Díaz-Casares, A; López-González, M V; Peinado-Aragonés, C A; González-Barón, S; Dawid-Milner, M S

    2012-08-16

    To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic response (p<0.001). Kynurenic acid within the lateral parabrachial region (lPB) abolished the tachycardia (p<0.001) and decreased the magnitude of blood pressure response (p<0.001) to HDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (p<0.01 and p<0.001, respectively) and CNQX (p<0.05 in both cases) into the lPB. Kynurenic acid microinjection in this region produced an inhibition of the tachypnea (p<0.001) to HDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (p<0.01) and decreased the magnitude of the pressor response (p<0.001) to HDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (p<0.05, in both cases) and pressor response (p<0.05, in both cases). The respiratory response evoked by HDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The politics of researching global health politics

    PubMed Central

    Rushton, Simon

    2015-01-01

    In this comment, I build on Shiffman’s call for the global health community to more deeply investigate structural and productive power. I highlight two challenges we must grapple with as social scientists carrying out the types of investigation that Shiffman proposes: the politics of challenging the powerful; and the need to investigate types of expertise that have traditionally been thought of as ‘outside’ global health. In doing so, I argue that moving forward with the agenda Shiffman sets out requires social scientists interested in the global politics of health to be reflexive about our own exercise of structural and productive power and the fact that researching global health politics is itself a political undertaking. PMID:25905482

  11. Peripheral neuropathy: an often-overlooked cause of falls in the elderly.

    PubMed

    Richardson, J K; Ashton-Miller, J A

    1996-06-01

    Peripheral neuropathy is common in the elderly and results in impairments in distal proprioception and strength that hinder balance and predispose them to falls. The loss of heel reflexes, decreased vibratory sense that improves proximally, impaired position sense at the great toe, and inability to maintain unipedal stance for 10 seconds in three attempts all suggest functionally significant peripheral neuropathy. Physicians can help their patients with peripheral neuropathy to prevent falls by teaching them and their families about peripheral nerve dysfunction and its effects on balance and by advising patients to substitute vision for the lost somatosensory function, correctly use a cane, wear proper shoes and orthotics, and perform balance and upper extremity strengthening exercises.

  12. Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA1 includes short reports covering: (1) Indices of Baroreceptor Reflex Sensitivity: The Use in Rehabilitation Medicine and Space Cardiology; (2) +Gz and +Gx Tolerance of Healthy Persons of Non-Flying Trades at Primary Selection of the Centrifuge; (3) Effect of Dry Immersion on Calf Blood Supply During Sustained Contraction and Upright Exercise in Man; (4) Cardiovascular and Valsalva Responses during Parabolic flight; (5) An Analysis of the Cardiovascular Responses under Hyper- and Hypo-Gravity Environments using a Mathematical model; (6) Effect of Very Gradual Onset Rate +Gz Exposures on the Cardiovascular System; and (7) NASA Specialized Center of Research and Training (NSCORT) in Integrated Physiology: Mechanisms of Physiological Adaptations to Microgravity.

  13. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.

  14. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  15. Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Robertson, R. M.; Robertson, D.

    1994-01-01

    It has been postulated that alpha 2-adrenergic receptors play a modulatory role in the regulation of blood pressure. Activation of alpha 2-receptors located in the central nervous system results in inhibition of sympathetic tone and decrease of blood pressure. This indeed may be the mechanism of action of central sympatholytic antihypertensives such as alpha-methyldopa. Presynaptic alpha 2-receptors also are found in adrenergic nerve terminals. These receptors act as a negative feedback mechanism by inhibiting the release of norepinephrine. The relevance of alpha 2-adrenergic receptors for blood pressure regulation can be explored with yohimbine, a selective antagonist of these receptors. Yohimbine increases blood pressure in resting normal volunteers. This effect is associated with an increase in both sympathetic nerve activity, reflecting an increase in central sympathetic outflow, and in norepinephrine spillover, reflecting potentiation of the release of norepinephrine from adrenergic nerve terminals. These actions, therefore, underscore the importance of alpha 2-adrenergic receptors for blood pressure regulation even under resting conditions. Patients with autonomic failure, even those with severe sympathetic deprivation, are hypersensitive to the pressor effects of yohimbine. This increased responsiveness can be explained by sensitization of adrenergic receptors, analogous to denervation supersensitivity, and by the lack of autonomic reflexes that would normally buffer any increase in blood pressure. Preliminary studies suggest that the effectiveness of yohimbine in autonomic failure can be enhanced with monoamine oxidase inhibitors. Used in combination, yohimbine increases norepinephrine release, whereas monoamine oxidase inhibitors inhibit its degradation. Therefore, yohimbine is not only a useful tool in the study of blood pressure regulation, but may offer a therapeutic option in autonomic dysfunction.

  16. National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.

    PubMed

    Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne

    2016-11-04

    Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S  = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S  = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.

  17. Cardiopulmonary reflex, cardiac cytokines, and nandrolone decanoate: response to resistance training in rats.

    PubMed

    Lima, Ewelyne Miranda; Nascimento, Andrews Marques; Brasil, Girlandia Alexandre; Kalil, Ieda Carneiro; Lenz, Dominik; Endringer, Denise Coutinho; Andrade, Tadeu Uggere; Bissoli, Nazaré Souza

    2015-11-01

    This study evaluated the effects of nandrolone associated with resistance training (RT) on cardiac cytokines, angiotensin-converting enzyme activity (ACEA), and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were divided into 3 groups: CONT (received vehicle, no training); EXERC (RT: after one week of water adaptation, rats were exercised by jumping into water twice a week for 4 weeks), and ND+EXERC (received nandrolone decanoate 10 mg/kg, twice/week, i.m, associated with RT). The BJR was analysed by measuring bradycardic and hypotensive responses elicited by serotonin administration. Myocyte hypertrophy and matrix collagen deposition were determined by morphometric analysis of H&E and picrosirius red-stained samples, respectively. TNF-α and ACEA were also studied. RT promoted physiological myocyte hyrpertrophy but did not cause changes in the other parameters. The association of ND with RT increased myocyte hypertrophy, deposition of matrix type I collagen, TNF-α and ACEA; decreased IL-10, and impairment in the BJR were observed in ND+EXERC compared with CONT and EXERC. ND is associated with alterations in cardiac structure and function as a result of the development of pathological cardiac hypertrophy (cardiac cytokine imbalance, elevation of ACEA) and cardiac injury, even when combined with resistance training.

  18. Nitric oxide-dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle

    PubMed Central

    Chavoshan, Bahman; Sander, Mikael; Sybert, Troy E; Hansen, Jim; Victor, Ronald G; Thomas, Gail D

    2002-01-01

    Nitric oxide (NO) attenuates α-adrenergic vasoconstriction in contracting rodent skeletal muscle, but it is unclear if NO plays a similar role in human muscle. We therefore hypothesized that in humans, NO produced in exercising skeletal muscle blunts the vasoconstrictor response to sympathetic activation. We assessed vasoconstrictor responses in the microcirculation of human forearm muscle using near-infrared spectroscopy to measure decreases in muscle oxygenation during reflex sympathetic activation evoked by lower body negative pressure (LBNP). Experiments were performed before and after NO synthase inhibition produced by systemic infusion of NG-nitro-l-arginine methyl ester (l-NAME). Before l-NAME, LBNP at −20 mmHg decreased muscle oxygenation by 20 ± 2 % in resting forearm and by 2 ± 3 % in exercising forearm (n = 20), demonstrating metabolic modulation of sympathetic vasoconstriction. As expected, l-NAME increased mean arterial pressure by 17 ± 3 mmHg, leading to baroreflex-mediated supression of baseline muscle sympathetic nerve activity (SNA). The increment in muscle SNA in response to LBNP at −20 mmHg also was attenuated after l-NAME (before, +14 ± 2; after, +8 ± 1 bursts min−1; n = 6), but this effect of l-NAME was counteracted by increasing LBNP to −40 mmHg (+19 ± 2 bursts min−1). After l-NAME, LBNP at −20 mmHg decreased muscle oxygenation similarly in resting (−11 ± 3 %) and exercising (−10 ± 2 %) forearm (n = 12). Likewise, LBNP at −40 mmHg decreased muscle oxygenation both in resting (−19 ± 4 %) and exercising (−21 ± 5 %) forearm (n = 8). These data advance the hypothesis that NO plays an important role in modulating sympathetic vasoconstriction in the microcirculation of exercising muscle, because such modulation is abrogated by NO synthase inhibition with l-NAME. PMID:11927694

  19. Evaluation of cranial tibial and extensor carpi radialis reflexes before and after anesthetic block in cats.

    PubMed

    Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso

    2017-02-01

    Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.

  20. [H reflex in patients with spastic quadriplegia].

    PubMed

    Miyama, Sahoko; Arimoto, Kiyoshi; Kimiya, Satoshi

    2009-01-01

    Hoffmann reflex (H reflex) is an electrically elicited spinal monosynaptic reflex. H reflex was examined in 18 patients with spastic quadriplegia who had perinatal or postnatal problems. H reflex was elicitable in 11 patients for the abductor pollicis brevis (61.1%), 10 for the abductor digiti minimi (55.6%) and 16 for the abductor hallucis (88.9%). Because the abductor pollicis brevis and the abductor digiti minimi do not exhibit H reflex in normal subjects, it was suggested that the excitability of alpha motor neurons innervating these muscles was increased. H reflex was not detected for the extensor digitorum brevis in any patients, indicating the difference in the excitability among alpha motor neurons. In some patients, H reflex did not disappear under supramaximal stimuli. We conclude that the mechanism of evolution of H reflex in patients with spastic quadriplegia is different from that in normal subjects.

  1. Diminished Baroreflex Control of Forearm Vascular Resistance Following Training

    NASA Technical Reports Server (NTRS)

    Mack, G. W.; Thompson, C. A.; Doerr, D. F.; Nadel, E. R.; Convertino, V. A.

    1991-01-01

    The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR units in mm Hg x min x I00 ml/ml) were studied in 14 volunteers before and after 10 wk of endurance training. We assessed the relationship betaleen reflex stimulus (changes in central venous pressure, CVP) and response (FVR) during unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP, 0 to - 2O mm Hg). Changes in CVP during LBNP were estimated from pressure changes in a large peripheral vein in the dependent arm of the subject in the right lateral decubitus position. Maximal oxygen uptake (VO(sub 2max)) and total blood volume increased with endurance training from 37.8 +/- 1.4 ml/min x kg and 63.6 +/- 2.1 ml/kg to 45.3 +/- 1.4 ml/ min x kg and 69.3 +/- 2.8 ml/kg respectively (P less than 0.05). Reflex forearm vasoconstriction occurred in response to a reduction in estimated CVP, and the absolute change in FVR per unit of CVP was reduced from -5.96 +/- 0.79 to -4.06 +/- 0.52 units x mm/ Hg (P less than 0.05) following exercise training but was unchanged from -6.10 to 0.57 to -6.22 +/- 0.94 units x mm/ Hg for the time control group (N = 7). Resting values for FVR were similar before and after exercise training; however, resting estimated CVP was elevated from 9.5 +/- 0.5 mm x Hg before training to 11.3 +/- 0.6 mm x Hg after training. The reduction in sensitivity of the cardiopulmonary baroreflex control of FVR was linearly related to the increase in blood volume (r = 0.65, P less than 0.05). suggesting that diminished cardiopulmonary baroreflex control of FVR in physically fit individuals is related, in part, to a training-induced blood volume expansion.

  2. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    PubMed

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  3. Vestibular activation of sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carter, J. R.

    2003-01-01

    AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.

  4. Low doses of fludrocortisone and hydrocortisone, alone or in combination, on vascular responsiveness to phenylephrine in healthy volunteers

    PubMed Central

    Laviolle, Bruno; Donal, Erwan; Le Maguet, Pascale; Lainé, Fabrice; Bellissant, Eric

    2013-01-01

    Aims A single administration of hydrocortisone has been shown to enhance the pressor response to phenylephrine in healthy volunteers and to norepinephrine in septic shock patients. Similar data do not exist for fludrocortisone. Since there continues to be disagreement about the utility of fludrocortisone in septic shock, we assessed the effects of a single administration of low doses of hydrocortisone (50 mg intravenously) and fludrocortisone (50 μg orally), given either alone or in combination, on phenylephrine mean arterial pressure and cardiac systolic and diastolic function dose–response relationships in 12 healthy male volunteers with hypo-aldosteronism induced by intravenous sodium loading. Methods This was a placebo-controlled, randomized, double-blind, crossover study performed according to a 2 × 2 factorial design. Subjects received first a 2000 ml infusion of NaCl 0.9% during 2 h. Then fludrocortisone 50 μg (or its placebo) was administered orally and hydrocortisone 50 mg (or its placebo) was injected intravenously. At 1.5 h after treatment administration, incremental doses of phenylephrine were infused (from 0.01 to 3 μg kg−1 min−1), each dose being infused during 5 min. Results Both fludrocortisone (P < 0.001) and hydrocortisone (P = 0.002) induced a significant decrease in pressor response to phenylephrine, their effects being additive (fludrocortisone × hydrocortisone interaction, P = 0.792). The two drugs did not induce any detectable cardiac effect. Conclusions Single administrations of fludrocortisone and hydrocortisone decreased the pressor response to phenylephrine in healthy volunteers with hypo-aldosteronism. These similar effects of hydrocortisone and fludrocortisone probably express a rapid non-genomic vasodilating effect of the two steroids in the context of acute volume loading. PMID:22703532

  5. Traditional medicine Cassia absus L. (chaksu)-pharmacological evaluation.

    PubMed

    Aftab, K; Atta-Ur-Rahman; Ahmed, S I; Usmanghani, K

    1996-01-01

    A crude extract of Cassia absus L. produced a dose dependent decrease in systemic arterial blood pressure and heart rate in pentothal anaesthetized rats. Repeated injections of the same dose of the crude extract (CA) showed tachyphylaxis. The cardio-vascular actions were not modified by pretreatment with atropine, chloropheniramine, ranitidine or propranolol in vivo. The pressor response of norepinephnine was not altered, whereas the pressor response of carotid occlusion was less when this was performed before administration of CA. Moreover, nicotine induced an increase in arterial blood pressure which was completely abolished by the CA, suggesting that the decrease in blood pressure is unlikely to be mediated via cholinergic, histaminergic or β-2-adrenergic receptor stimulation, or by α-1-adrenergic receptor blockade. Perhaps the crude extract has centrally acting/ganglion blocking action or anti-nicotinic action. In spontaneously beating guinea-pig atria, CA induced a concentration dependent decrease in force and rate of atrial contraction. Pretreatment of cardiac tissue with the crude extract blocked the pressor response of nicotine, without altering/modifying the response to isoprenaline. In the rabbit aorta, CA caused concentration-dependent relaxation of phenylephrine and K(+)-induced contractions. In the guinea-pig ileum, CA at a low concentrations significantly reduced the spasmogenic response of nicotine without modifying the effect of acetylcholine. At high concentrations, it non-specifically abolished all the spasmogenic responses to ACh, 5 HT and histamine. The neuromuscular activity of CA was found to be similar to that of d-tubocurarine in skeletal muscle preparations (Frog rectus abdominis). These results revealed that the CA of Cassia absus exerts centrally acting/ganglion blocking, anti-nicotinic, non-specific muscle relaxant and curare like activities. Copyright © 1996 Gustav Fischer Verlag, Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  6. Involvement of a phosphoramidon-sensitive endopeptidase in the processing of big endothelin-1 in the guinea-pig.

    PubMed

    Pons, F; Touvay, C; Lagente, V; Mencia-Huerta, J M; Braquet, P

    1992-06-24

    In anaesthetized and ventilated guinea-pigs, i.v. injection of 1 nmol/kg big endothelin-1 (big ET-1) did not evoke significant changes in pulmonary inflation pressure (PIP) and mean arterial blood pressure (MBP), whereas injection of the same dose of endothelin-1 (ET-1) induced marked and rapid bronchoconstrictor and pressor responses. Administered at the dose of 10 nmol/kg, big ET-1 provoked significant increases in PIP and MBP, which developed slowly and were long-lasting as compared to those evoked by ET-1. When big ET-1 was incubated for 45 min at 37 degrees C with alpha-chymotrypsin (2 mU/nmol) or pepsin (1 microgram/nmol) and then injected into guinea-pigs at the dose of 1 nmol/kg, marked bronchoconstrictor and pressor responses were observed, with kinetics similar to those noted after administration of the same dose of ET-1. The magnitude of the alpha-chymotrypsin- or pepsin-treated big ET-1 responses was similar to that induced by ET-1, incubated or not with the enzymes. Injected i.v. at the dose of 5 mg/kg, 5 min before the challenge, phosphoramidon almost totally inhibited the bronchoconstrictor and pressor responses induced by 10 nmol/kg big ET-1, whereas thiorphan (5 mg/kg) partially reduced the increase in PIP and exerted a minimal effect on the changes in MBP. Administered at the dose of 20 mg/kg per os, 1 h before i.v. administration of 10 nmol/kg big ET-1, enalapril maleate and captopril did not significantly alter the bronchoconstriction and the hypertensive response evoked by the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    PubMed Central

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  8. Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice.

    PubMed

    Palma-Rigo, Kesia; Jackson, Kristy L; Davern, Pamela J; Nguyen-Huu, Thu-Phuc; Elghozi, Jean-Luc; Head, Geoffrey A

    2011-11-01

    Schlager hypertensive (BPH/2J) mice have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS), but the contribution of the renin-angiotensin system (RAS) is unclear. In the present study, we examined the cardiovascular effects of chronically blocking the RAS in BPH/2J mice. Schlager normotensive (BPN/3J, n = 6) and BPH/2J mice (n = 8) received the angiotensin AT 1A-receptor antagonist losartan (150 mg/kg per day) in drinking water for 2 weeks. Pre-implanted telemetry devices were used to record mean arterial pressure (MAP), heart rate (HR) and locomotor activity. MAP was reduced by losartan treatment in BPN/3J (-23 mmHg, P < 0.01) and in BPH/2J mice (-25 mmHg, P < 0.001), whereas HR was increased. Losartan had little effect on initial pressor responses to feeding or to stress, but did attenuate the sustained pressor response to cage-switch stress. During the active period, the hypotension to sympathetic blockade with pentolinium was greater in BPH/2J than BPN/3J (suggesting neurogenic hypertension), but was not affected by losartan. During the inactive period, a greater depressor response to pentolinium was observed in losartan-treated animals. The hypotensive actions of losartan suggest that although the RAS provides an important contribution to BP, it contributes little, if at all, to the hypertension-induced or the greater stress-induced pressor responses in Schlager mice. The effects of pentolinium suggest that the SNS is mainly responsible for hypertension in BPH/2J mice. However, the RAS inhibits sympathetic vasomotor tone during inactivity and prolongs sympathetic activation during periods of adverse stress, indicating an important sympatho-modulatory role.

  9. Hemodynamic actions and mechanisms of systemically administered α-MSH analogs in mice.

    PubMed

    Rinne, Petteri; Tikka, Sanna; Mäkelä, Satu; Streng, Tomi; Savontaus, Eriika

    2012-11-01

    α-Melanocyte-stimulating hormone (α-MSH) regulates important physiological functions including energy homeostasis and inflammation. Potent analogs of α-MSH, [Nle(4), D-Phe(7)]-α-MSH (NDP-α-MSH) and melanotan-II (MT-II), are widely used in pharmacological studies, but the hemodynamic effects associated with their systemic administration have not been thoroughly examined. Therefore, we investigated the hemodynamic actions of these compounds in anesthetized and conscious C57Bl/6N mice using peripheral routes of administration. NDP-α-MSH and MT-II induced mild changes in blood pressure and heart rate in anesthetized mice compared to the effects observed in conscious mice, suggesting that anesthesia distorts the hemodynamic actions of α-MSH analogs. In conscious mice, NDP-α-MSH and MT-II increased blood pressure and heart rate in a dose-dependent manner, but the tachycardic effect was more prominent than the pressor effect. Pretreatment with the melanocortin (MC) 3/4 receptor antagonist SHU9119 abolished these hemodynamic effects. Furthermore, the blockade of β(1)-adrenoceptors with metoprolol prevented the pressor effect and partly the tachycardic action of α-MSH analogs, while the ganglionic blocker hexamethonium abrogated completely the difference in heart rate between vehicle and α-MSH treatments. These findings suggest that the pressor effect is primarily caused by augmentation of cardiac sympathetic activity, but the tachycardic effect seems to involve withdrawal of vagal tone in addition to sympathetic activation. In conclusion, the present results indicate that systemic administration of α-MSH analogs elevates blood pressure and heart rate via activation of MC(3/4) receptor pathways. These effects and the consequent increase in cardiac workload should be taken into account when using α-MSH analogs via peripheral routes of administration. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. SYMPATHETIC NEURAL AND HEMODYNAMIC RESPONSES DURING COLD PRESSOR TEST IN ELDERLY BLACKS AND WHITES

    PubMed Central

    Okada, Yoshiyuki; Jarvis, Sara S.; Best, Stuart A.; Edwards, Jeffrey G.; Hendrix, Joseph M.; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D.; Fu, Qi

    2016-01-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Since blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate (HR), cardiac output (Qc), and muscle sympathetic nerve activity (MSNA) were measured during supine baseline, 2-min CPT, and 3-min recovery in 47 elderly [68±7 (SD) yrs] volunteers (12 blacks, 35 whites). Baseline BP, HR, Qc, or MSNA did not differ between races. Systolic and diastolic BP (DBP) and HR increased during CPT (all P<0.001) with no racial differences (all P>0.05). Qc increased during CPT and up to 30 sec of recovery in both groups, but was lower in blacks than whites. MSNA increased during CPT in both groups (both P<0.001); the increase in burst frequency was similar between groups, while the increase in total activity was smaller in blacks (P=0.030 for interaction). Peak change (Δ) in DBP was correlated with Δ total activity at 1 min into CPT in both blacks (r=0.78, P=0.003) and whites (r=0.43, P=0.009), while the slope was significantly greater in blacks (P=0.007). Thus, elderly blacks have smaller sympathetic and central hemodynamic (e.g., Qc) responses, but a greater pressor response for a given sympathetic activation during CPT than elderly whites. This response may stem from augmented sympathetic vascular transduction, greater sympathetic activation to other vascular bed(s), and/or enhanced non-adrenergically mediated vasoconstriction in elderly blacks. PMID:27021009

  11. Coffee-Antihypertensive Drug Interaction: A Hemodynamic and Pharmacokinetic Study With Felodipine.

    PubMed

    Bailey, David G; Dresser, George K; Urquhart, Brad L; Freeman, David J; Arnold, John Malcolm

    2016-12-01

    A period of abstinence from coffee to permit caffeine elimination appears to enable increased blood pressure on subsequent exposure. We hypothesized that this would offset the antihypertensive effect of the dihydropyridine calcium channel blocker felodipine. A randomized, single-dose, crossover study assessed hemodynamic and pharmacokinetic effects following 2 days without coffee and caffeine-containing foods. Consistently brewed black coffee (2×300ml), felodipine maximum recommended dose (10mg), and coffee plus felodipine were tested in middle-aged normotensive subjects. Pretreatment plasma caffeine concentrations were unquantifiable. After coffee, blood pressure changes (mm Hg) averaged over study hours 1-4 were increased for brachial systolic (7.6, P < 0.001) and diastolic (4.9, P < 0.001) and aortic systolic (7.4, P < 0.001), pulse (3.0, P < 0.05) and augmentation (1.4, P < 0.05) relative to baseline. After coffee plus felodipine, they were higher for brachial systolic (4.0, P < 0.05) and diastolic (3.9, P < 0.001) and aortic systolic (4.6, P < 0.05) compared to felodipine alone. The pressor effects of coffee and its modulation by felodipine were variable among individuals. Coffee containing caffeine (127mg) caused maximum pressor effect. Caffeine and felodipine pharmacokinetics were similar for coffee and felodipine given alone or in combination indicating an interaction having a pharmacodynamic basis. Plasma felodipine concentration-diastolic blood pressure reduction relationship shifted with coffee such that doubling the felodipine concentration would eliminate the pressor effect. However, this may increase the risk of adverse drug events particularly during the timeframe without coffee. Intermittent coffee ingestion might complicate hypertension diagnosis and management for many individuals. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Intrathecal administration of a substance P receptor antagonist: studies on peripheral and central nervous system hemodynamics and on specificity of action.

    PubMed

    Helke, C J; Phillips, E T; O'Neill, J T

    1987-07-01

    Regional central nervous system and peripheral hemodynamic effects of the intrathecal (i.t.) administration of a substance P (SP) receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P ([D-Arg]-SP), were studied in anesthetized rats. It was found that [D-Arg]-SP (3.3 nmol i.t.) reduced mean arterial pressure and cardiac output due to a reduction in stroke volume. Total peripheral resistance was not altered. Whereas most vascular beds showed no alterations in vascular resistance, a renal vasoconstriction was noted. The hypotensive effect of [D-Arg]-SP was blocked by phentolamine (10 mg/kg i.v.) but not by propranolol (1 mg/kg i.v.). In the absence of changes in vascular arterial resistance due to [D-Arg]-SP, it appears that a change in venous return may contribute to the [D-Arg]-SP-induced reduction in stroke volume. These data provide evidence that a spinal cord SP system may tonically affect sympathetic neurons controlling venous, but not arterial, vasomotor tone. [D-Arg]-SP (i.t.) did not alter brain blood flow but significantly decreased blood flow in the thoracolumbar spinal cord 15 to 20 min after administration. The reduction in spinal cord flow did not appear to be responsible for the [D-Arg]-SP-induced hypotension because kainic acid (i.t.), an agent that interacts with glutamate receptors, produced similar pressor responses in the presence and absence of [D-Arg]-SP. In addition, whereas the pressor effect of low doses of a SP agonist [pGlu5, MePhe8, MeGly9]-substance P (5-11) were blocked by [D-Arg]-SP, a higher dose produced the typical pressor effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Plasma renin and cardiovascular responses to the cold pressor test differ in black and white populations: The SABPA study.

    PubMed

    Gafane, L F; Schutte, R; Van Rooyen, J M; Schutte, A E

    2016-05-01

    Low plasma renin levels and augmented cardiovascular reactivity to stress are common in blacks and have been linked to the development of hypertension in this population. We (i) compared cardiovascular and plasma renin reactivity to a cold pressor test between a black and white population; and (ii) investigated the associations between cardiovascular and plasma renin reactivity within the black and white populations. Our population consisted of 153 black and 188 white men and women (age range, 20-65 years). We measured blood pressure (BP), heart rate (HR), stroke volume (SV), total peripheral resistance (TPR), Windkessel arterial compliance, and determined plasma renin levels at rest and during the cold pressor test. Reactivity was calculated for each participant as the percentage change from the resting value. We found lower renin and elevated BP in blacks compared with whites at rest and during stress (both, P<0.001). During stress, HR increased more in blacks (P<0.001), whereas SV (P<0.001) and arterial compliance (P=0.013) decreased more in blacks compared with whites. TPR reactivity was positively associated with renin reactivity in blacks only (β=0.17; P=0.041), while in whites diastolic BP reactivity was positively associated with renin reactivity (β=0.21; P=0.005). Although blacks had suppressed renin levels at rest and during acute stress, vascular resistance reactivity associated positively with renin reactivity only in the black population. These results suggest that low renin levels in blacks during rest and stress are linked to increased peripheral vascular responses to stress, which may contribute to elevated BP in blacks.

  14. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat.

    PubMed

    Díaz-Casares, Amelia; López-González, Manuel Víctor; Peinado-Aragonés, Carlos Antonio; Lara, José Pablo; González-Barón, Salvador; Dawid-Milner, Marc Stefan

    2009-07-07

    To analyze the role of parabrachial complex (PBc) in the modulation of cardiorespiratory response evoked from the hypothalamic defense area (HDA), cardiorespiratory changes were analyzed in spontaneously breathing anesthetised rats in response to electrical stimulation of the HDA (1 ms pulses, 30-50 microA, 100 Hz for 5 s) before and after the microinjection of muscimol (50 nl, 0.25 nmol, 5 s) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic (p<0.001) response. Muscimol microinjection within the lateral parabrachial region (lPB) abolished the respiratory response to HDA stimulation (p<0.01) and decreased the pressor response (p<0.05). Muscimol within the medial parabrachial region and Kölliker-Fuse (mPB-KF) decreased the magnitude of the pressor (p<0.01) and tachycardic (p<0.05) responses to HDA stimulation. The respiratory response persisted unchanged. Finally, extracellular recording of putative neurons from these regions were obtained during HDA stimulation to confirm functional interaction between HDA and parabrachial regions. 105 pontine cells were recorded during HDA stimulation, 57 from the lPB and 48 from the mPB-KF. In mPB-KF 34/48 (71%) and in lPB 38/57 (67%) cells were influenced from HDA. The results indicate that neurons from different regions of the PBc have an important function in mediating the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  15. Response inhibition predicts painful task duration and performance in healthy individuals performing a cold pressor task in a motivational context.

    PubMed

    Karsdorp, P A; Geenen, R; Vlaeyen, J W S

    2014-01-01

    Long-term avoidance of painful activities has shown to be dysfunctional in chronic pain. Pain may elicit escape or avoidance responses automatically, particularly when pain-related fear is high. A conflict may arise between opposing short-term escape/avoidance goals to reduce pain and long-term approach goals to receive a reward. An inhibitory control system may resolve this conflict. It was hypothesized that reduced response inhibition would be associated with greater escape/avoidance during pain, particularly among subjects with higher pain-related fear. Response inhibition was measured with the stop-signal task, and pain-related fear with the Fear of Pain Questionnaire. Participants completed a tone-detection task (TDT) in which they could earn money while being exposed to cold pressor pain. Escape/avoidance was operationalized as the hand immersion time during a cold pressor task (CPT) and the performance on the TDT. Poorer response inhibition was associated with shorter CPT immersion duration and with worse TDT performance. Pain after the CPT was associated with pain-related fear, but not with response inhibition. No supportive evidence was found for the hypothesis that the relation between inhibition and escape/avoidance would be most pronounced for those with higher pain-related fear. In contrast, the relation between response inhibition and number of hits on the TDT was most pronounced for those with lower pain-related fear. The findings suggest that individuals with a stronger ability to inhibit responses in a stop-signal task are better able to inhibit escape/avoidance responses elicited by pain, in the service of a conflicting approach goal. © 2013 European Pain Federation - EFIC®

  16. Maternal Gestational Hypertension-Induced Sensitization of Angiotensin II Hypertension Is Reversed by Renal Denervation or Angiotensin-Converting Enzyme Inhibition in Rat Offspring.

    PubMed

    Xue, Baojian; Yin, Haifeng; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Johnson, Alan Kim

    2017-04-01

    Numerous findings demonstrate that there is a strong association between maternal health during pregnancy and cardiovascular disease in adult offspring. The purpose of the present study was to test whether maternal gestational hypertension modulates brain renin-angiotensin-aldosterone system (RAAS) and proinflammatory cytokines that sensitizes angiotensin II-elicited hypertensive response in adult offspring. In addition, the role of renal nerves and the RAAS in the sensitization process was investigated. Reverse transcription polymerase chain reaction analyses of structures of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAAS components and proinflammatory cytokines in 10-week-old male offspring of hypertensive dams. Most of these increases were significantly inhibited by either renal denervation performed at 8 weeks of age or treatment with an angiotensin-converting enzyme inhibitor, captopril, in drinking water starting at weaning. When tested beginning at 10 weeks of age, a pressor dose of angiotensin II resulted in enhanced upregulation of mRNA expression of RAAS components and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented pressor response in male offspring of hypertensive dams. The augmented blood pressure change and most of the increases in gene expression in the offspring were abolished by either renal denervation or captopril. The results suggest that maternal hypertension during pregnancy enhances pressor responses to angiotensin II through overactivity of renal nerves and the RAAS in male offspring and that upregulation of the brain RAAS and proinflammatory cytokines in these offspring may contribute to maternal gestational hypertension-induced sensitization of the hypertensive response to angiotensin II. © 2017 American Heart Association, Inc.

  17. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  18. Gender affects renal vasoconstrictor response to Ang I and Ang II.

    PubMed

    Gandhi, S K; Gainer, J; King, D; Brown, N J

    1998-01-01

    This study tested the hypothesis that gender affects the pressor and renal vasoconstrictor responses to angiotensin (Ang) I and Ang II in salt-replete normotensive subjects. Ang I and Ang II were infused in graded doses into 9 men and 8 women in a randomized, single-blind, crossover study. There were no differences between genders in baseline blood pressure, heart rate, sodium excretion, renal plasma flow, angiotensin-converting enzyme (ACE) genotype, ACE activity, plasma renin activity, aldosterone, or Ang II levels. Although pressor responses to Ang I and Ang II were similar in men and women, there was a negative relationship between the change in mean arterial pressure and the change in heart rate during Ang I and II infusion in women only. The half-time of the pressor response after discontinuation of Ang I but not Ang II infusion was greater in men than in women (9.5+/-2.2 versus 4.3+/-2.1 minutes, P<.05). This difference in duration did not result from gender differences in the metabolism of Ang I because Ang II levels measured during Ang I infusion were identical in men and women. In contrast, the renal vasoconstrictor response to Ang I and Ang II was significantly increased in women compared with that in men (Ang I, -243+/-31 versus -138+/-13 U/1.73 m2; Ang II, -233+/-25 versus -175+/-18 U/1.73 m2; P<.03). These data suggest an effect of gender on baroreflex reactivity during angiotensin infusion. Moreover, in the setting of similar Ang II concentrations, the dramatic difference in the renal vasoconstrictor responses to Ang I and Ang II between salt-replete men and salt-replete women suggests gender differences at a pharmacodynamic level.

  19. Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Roncari, Camila F; Guo, Fang; Johnson, Alan Kim

    2012-10-01

    Previous studies have shown that preconditioning rats with a nonpressor dose of angiotensin II (Ang II) sensitizes the pressor response produced by later treatment with a higher dose of Ang II and that Ang II and aldosterone (Aldo) can modulate each other's pressor effects through actions involving the central nervous system. The current studies tested whether Aldo can cross-sensitize the pressor actions of Ang II to enhance hypertension by employing an induction-delay-expression experimental design. Male rats were implanted for telemetered blood pressure recording. During induction, subpressor doses of either subcutaneous or intracerebroventricular Aldo were delivered for 1 week. Rats were then rested for 1 week (delay) to assure that any exogenous Aldo was metabolized. After this, Ang II was given subcutaneously for 2 weeks (expression). During induction and delay, Aldo had no sustained effect on blood pressure. However, during expression, Ang II-induced hypertension was greater in the groups receiving subcutaneous or intracerebroventricular Aldo during induction in comparison with those groups receiving vehicle. Central administration of mineralocorticoid receptor antagonist blocked sensitization. Brain tissue collected at the end of delay and expression showed increased mRNA expression of several renin-angiotensin-aldosterone system components in cardiovascular-related forebrain regions of cross-sensitized rats. Cultured subfornical organ neurons preincubated with Aldo displayed greater increases in [Ca2+]i after Ang II treatment, and there was a greater Fra-like immunoreactivity present at the end of expression in cardiovascular-related forebrain structures. Taken together, these results indicate that Aldo pretreatment cross-sensitizes the development of Ang II-induced hypertension probably by mechanisms that involve the central nervous system.

  20. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S D

    2015-10-14

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.

  1. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed Central

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S.D.

    2015-01-01

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage. PMID:26793405

  2. On the Second Language Acquisition of Spanish Reflexive Passives and Reflexive Impersonals by French- and English-Speaking Adults

    ERIC Educational Resources Information Center

    Tremblay, Annie

    2006-01-01

    This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…

  3. Implementation of a smartphone as a wireless gyroscope application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2014-01-01

    The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.

  4. H-reflex modulation in the human medial and lateral gastrocnemii during standing and walking

    PubMed Central

    Makihara, Yukiko; Segal, Richard L.; Wolpaw, Jonathan R.; Thompson, Aiko K.

    2011-01-01

    Introduction The soleus H-reflex is dynamically modulated during walking. However, modulation of the gastrocnemii H-reflexes has not been studied systematically. Methods The medial and lateral gastrocnemii (MG and LG) and soleus H-reflexes were measured during standing and walking in humans. Results Maximum H-reflex amplitude was significantly smaller in MG (mean 1.1 mV) or LG (1.1 mV) than in soleus (3.3 mV). Despite these size differences, the reflex amplitudes of the three muscles were positively correlated. The MG and LG H-reflexes were phase- and task-dependently modulated in ways similar to the soleus H-reflex. Discussion Although there are anatomical and physiological differences between the soleus and gastrocnemii muscles, the reflexes of the three muscles are similarly modulated during walking and between standing and walking. The findings support the hypothesis that these reflexes are synergistically modulated during walking to facilitate ongoing movement. PMID:22190317

  5. Implementation of an iPhone wireless accelerometer application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa

    2013-01-01

    The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.

  6. Heritability of Pain Catastrophizing and Associations with Experimental Pain Outcomes: A Twin Study

    PubMed Central

    Trost, Zina; Strachan, Eric; Sullivan, Michael; Vervoort, Tine; Avery, Ally R.; Afari, Niloofar

    2014-01-01

    The current study employed a twin paradigm to examine the genetic and environmental contributions to pain catastrophizing as well as the observed association between pain catastrophizing and cold pressor task (CPT) outcomes. Male and female monozygotic (n=206) and dizygotic twins (n=194) from the University of Washington Twin Registry completed a measure of pain catastrophizing and performed a CPT challenge. As expected, pain catastrophizing emerged as a significant predictor of several CPT outcomes, including cold pressor immersion tolerance, pain tolerance, and delayed pain rating. The heritability estimate for pain catastrophizing was found to be 37% with the remaining 63% of variance attributable to unique environmental influence. Additionally, the observed associations between pain catastrophizing and CPT outcomes were not found attributable to shared genetics or environmental exposure, suggesting a direct relationship between catastrophizing and experimental pain outcomes. This study is the first to examine the heritability of pain catastrophizing and potential processes by which pain catastrophizing is related to experimental pain response. PMID:25599234

  7. Effects of playing video games on pain response during a cold pressor task.

    PubMed

    Raudenbush, Bryan; Koon, Jerrod; Cessna, Trevor; McCombs, Kristin

    2009-04-01

    Two studies assessed whether playing video games would significantly distract participants from painful stimulation via a cold pressor test. In Study 1, participants (8 men, 22 women, M age = 18.5 yr., SD = 1.3) in an action-oriented game condition tolerated pain for a longer time period and reported lower pain intensity ratings than those in a nonaction-oriented game or a nongame control condition. No differences were found on scores of aggressiveness, competitiveness, or prior video game experience, suggesting that these factors play little role. In Study 2, participants (14 men, 13 women, M age = 19.7 yr., SD = 1.3) engaged in six video game conditions (action, fighting, puzzle, sports, arcade, and boxing) and a nongame control condition. Video game play produced an increase in pulse, which was greatest during the action, fighting, sports, and boxing games. Pain tolerance was greatest during the sports and fighting games. Thus, certain games produce greater distraction, which may have implications for the medical field as an adjunct to pain management.

  8. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  9. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    PubMed Central

    Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869

  10. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation.

    PubMed

    Dias, Rodrigo G; Alves, Maria-Janieire N N; Pereira, Alexandre C; Rondon, Maria Urbana P B; Dos Santos, Marcelo R; Krieger, José E; Krieger, Marta H; Negrão, Carlos E

    2009-04-10

    The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of NG-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). l-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.

  11. [The diabetic hand].

    PubMed

    Schiavon, F; Circhetta, C; Dani, L

    2004-01-01

    Diabetes mellitus is a chronic metabolic condition characterized by persistent hyperglycaemia with resultant morbidity and mortality related to its microvascular and macrovascular complications. In addition diabetes is also associated with several musculoskeletal disorders of the hand, that can be debilitating. There is increased incidence of these abnormalities in patients with type 1 and type 2 diabetes compared with the general population, related to disease duration but not to the age or sex. Typical diabetes associated hand condition include the palmar flexor tenosynovitis, Dupuytren's contracture, syndrome of limited joint mobility, carpal tunnel syndrome, Charcot arthropathy and reflex sympathetic dystrophy. Maintaining good glycaemic control by exercise, diet and drugs improves or prevents the development of these hand rheumatic condition. In this brief report we review the rational therapeutic approach to these disorders.

  12. Neurodevelopmental Reflex Testing in Neonatal Rat Pups.

    PubMed

    Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y

    2017-04-24

    Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.

  13. Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.

    PubMed

    Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R

    2016-01-01

    The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.

    PubMed

    Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun

    2015-08-01

    Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.

  15. The differential role of motor cortex in the stretch reflex modulation induced by changes in environmental mechanics and verbal instruction

    PubMed Central

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.

    2009-01-01

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713

  16. The differential role of motor cortex in stretch reflex modulation induced by changes in environmental mechanics and verbal instruction.

    PubMed

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J

    2009-10-21

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.

  17. Persistence of deep-tendon reflexes during partial cataplexy.

    PubMed

    Barateau, Lucie; Pizza, Fabio; Lopez, Régis; Antelmi, Elena; Plazzi, Giuseppe; Dauvilliers, Yves

    2018-05-01

    Deep-tendon reflexes are abolished during generalized cataplexy, but whether this is the case in partial cataplexy currently remains unknown. Partial cataplexy may mimic other neurologic/psychiatric phenomena, and knowledge of the reflexes status may provide information for differential diagnosis. We assessed whether deep-tendon reflexes are persistent during partial cataplexy. Five drug-free patients with typical diagnoses of narcolepsy and clear-cut partial cataplexy were diagnosed in Reference Narcolepsy Centers in France and Italy. Biceps and patellar reflexes were elicited by physicians in charge and video-documented during cataplexy. Reflexes were assessed several times for each patient in different conditions and for various localizations of cataplexy. The absence of tendon reflexes and complete loss of muscle tone during generalized cataplexy was confirmed, but the persistence of those reflexes during several partial cataplectic attacks at different ages, gender, localization of cataplexy (upper limbs, face) and reflexes (biceps, patellar) in drug-naive or withdrawal conditions was documented. The persistence of tendon reflexes during several partial cataplexy episodes contrasts with their absence during generalized cataplexy. This discovery has clinical implications: the persistence of tendon reflexes does not rule out cataplexy diagnosis for partial attacks, whereas their transient abolishment or persistence during generalized attacks indicates cataplexy or pseudocataplexy, respectively. Copyright © 2018. Published by Elsevier B.V.

  18. Primitive Reflexes and Attention-Deficit/Hyperactivity Disorder: Developmental Origins of Classroom Dysfunction

    ERIC Educational Resources Information Center

    Taylor, Myra; Houghton, Stephen; Chapman, Elaine

    2004-01-01

    The present research studied the symptomatologic overlap of AD/HD behaviours and retention of four primitive reflexes (Moro, Tonic Labyrinthine Reflex [TLR], Asymmetrical Tonic Neck Reflex [ATNR], Symmetrical Tonic Neck Reflex [STNR]) in 109 boys aged 7-10 years. Of these, 54 were diagnosed with AD/HD, 34 manifested sub-syndromal coordination,…

  19. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  20. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys

    PubMed Central

    Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.

    2016-01-01

    Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479

  1. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    USDA-ARS?s Scientific Manuscript database

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  2. Protective role of aerodigestive reflexes against aspiration: study on subjects with impaired and preserved reflexes.

    PubMed

    Dua, Kulwinder; Surapaneni, Sri Naveen; Kuribayashi, Shiko; Hafeezullah, Mohammed; Shaker, Reza

    2011-06-01

    Direct evidence to support the airway protective function of aerodigestive reflexes triggered by pharyngeal stimulation was previously demonstrated by abolishing these reflexes by topical pharyngeal anesthesia in normal subjects. Studies have also shown that these reflexes deteriorate in cigarette smokers. Aim of this study was to determine the influence of defective pharyngeal aerodigestive reflexes on airway protection in cigarette smokers. Pharyngoglottal Closure reflex; PGCR, Pharyngo-UES Contractile reflex; PUCR, and Reflexive Pharyngeal Swallow; RPS were studied in 15 healthy non-smokers (24.2±3.3 SD y, 7 males) and 15 healthy chronic smokers (27.3±8.1, 7 males). To elicit these reflexes and to evaluate aspiration, colored water was perfused into the hypopharynx at the rate of 1 mL/min. Maximum volume of water that can safely dwell in the hypopharynx before spilling into the larynx (Hypopharyngeal Safe Volume; HPSV) and the threshold volume to elicit PGCR, PUCR, and RPS were determined in smokers and results compared with non-smokers. At baseline, RPS was elicited in all non-smokers (100%) and in only 3 of 15 smokers (20%; P<.001). None of the non-smokers showed evidence of laryngeal spillage of water, whereas 12 of 15 smokers with absent RPS had laryngeal spillage. Pharyngeal anesthesia abolished RPS reflex in all non-smokers resulting in laryngeal spillage. The HPSV was 0.61±0.06 mL and 0.76±0.06 mL in non-smokers and smokers respectively (P=.1). Deteriorated reflexive pharyngeal swallow in chronic cigarette smokers predispose them to risks of aspiration and similarly, abolishing this reflex in non-smokers also results in laryngeal spillage. These observations directly demonstrate the airway protective function of RPS. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Reversible grasp reflexes in normal pressure hydrocephalus.

    PubMed

    Thomas, Rhys H; Bennetto, Luke; Silva, Mark T

    2009-05-01

    We present two cases of normal pressure hydrocephalus in combination with grasp reflexes. In both cases the grasp reflexes disappeared following high volume cerebrospinal fluid removal. In one of the cases the grasp reflexes returned over a period of weeks but again resolved following definitive cerebrospinal fluid shunting surgery, and remained absent until final follow up at 9 months. We hypothesise that resolving grasp reflexes following high volume CSF removal has both diagnostic and prognostic value in normal pressure hydrocephalus, encouraging larger studies on the relevance of primitive reflexes in NPH.

  4. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.

    PubMed

    Goodman, Shawn S; Keefe, Douglas H

    2006-06-01

    Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.

  5. Retention of primitive reflexes and delayed motor development in very low birth weight infants.

    PubMed

    Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G

    1984-06-01

    Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.

  6. Differential Effects of Nebivolol vs Metoprolol on Functional Sympatholysis in Hypertensive Humans

    PubMed Central

    Price, Angela; Raheja, Prafull; Wang, Zhongyun; Arbique, Debbie; Adams-Huet, Beverley; Mitchell, Jere H.; Victor, Ronald G.; Thomas, Gail D.; Vongpatanasin, Wanpen

    2013-01-01

    In young healthy humans, sympathetic vasoconstriction is markedly blunted during exercise to optimize blood flow to the metabolically active muscle. This phenomenon known as functional sympatholysis is impaired in hypertensive humans and rats by angiotensin II-dependent mechanisms involving oxidative stress and inactivation of nitric oxide (NO). Nebivolol is a β1−adrenergic receptor blocker that has NO-dependent vasodilatory and antioxidant properties. We therefore asked if nebivolol would restore functional sympatholysis in hypertensive humans. In 21 subjects with stage I hypertension, we measured muscle oxygenation and forearm blood flow (FBF) responses to reflex increases in sympathetic nerve activity (SNA) evoked by lower body negative pressure (LBNP) at rest and during rhythmic handgrip exercise at baseline, after 12 weeks of nebivolol (5–20 mg/day), or metoprolol (100–300 mg/day), using a double-blind crossover design. We found that nebivolol had no effect on LBNP-induced decreases in oxygenation and FBF in resting forearm (from −29±5 to −30±5% and from −29±3 to −29±3%, respectively; p=NS). However, nebivolol attenuated the LBNP-induced reduction in oxygenation and FBF in exercising forearm (from −14±4% to −1±5% and from −15 ±2% to −6±2%, respectively, both p < 0.05). This effect of nebivolol on oxygenation and FBF in exercising forearm was not observed with metoprolol in the same subjects despite a similar reduction in BP. Nebivolol had no effect on SNA at rest or during handgrip, suggesting a direct effect on vascular function. Thus, our data demonstrate that nebivolol restored functional sympatholysis in hypertensive humans by a mechanism that does not involve β1-adrenergic receptors. PMID:23547240

  7. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

    PubMed

    Matsukawa, Kanji

    2012-01-01

    Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.

  8. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury

    PubMed Central

    Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.

    2016-01-01

    Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521

  9. Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko

    2012-08-15

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.

  10. The Dynamics of the Stapedial Acoustic Reflex.

    NASA Astrophysics Data System (ADS)

    Moss, Sherrin Mary

    Available from UMI in association with The British Library. This thesis aims to separate the neural and muscular components of the stapedial acoustic reflex, both anatomically and physiologically. It aims to present an hypothesis to account for the differences between ipsilateral and contralateral reflex characteristics which have so far been unexplained, and achieve a greater understanding of the mechanisms underlying the reflex dynamics. A technique enabling faithful reproduction of the time course of the reflex is used throughout the experimental work. The technique measures tympanic membrane displacement as a result of reflex stapedius muscle contraction. The recorded response can be directly related to the mechanics of the middle ear and stapedius muscle contraction. Some development of the technique is undertaken by the author. A model of the reflex neural arc and stapedius muscle dynamics is evolved that is based upon a second order system. The model is unique in that it includes a latency in the ipsilateral negative feedback loop. Oscillations commonly observed on reflex responses are seen to be produced because of the inclusion of a latency in the feedback loop. The model demonstrates and explains the complex relationships between neural and muscle dynamic parameters observed in the experimental work. This more comprehensive understanding of the interaction between the stapedius dynamics and the neural arc of the reflex would not usually have been possible using human subjects, coupled with a non-invasive measurement technique. Evidence from the experimental work revealed the ipsilateral reflex to have, on average, a 5 dB lower threshold than the contralateral reflex. The oscillatory charcteristics, and the steady state response, of the contralateral reflex are also seen to be significantly different from those of the ipsilateral reflex. An hypothesis to account for the experimental observations is proposed. It is propounded that chemical neurotransmitters, and their effect upon the contralateral reflex arc from the site of the superior olivary complex to the motoneurones innervating the stapedius, account for the difference between the contralateral and ipsilateral reflex thresholds and dynamic characteristics. In the past two years the measurement technique used for the experimental work has developed from an audiological to a neurological diagnostic tool. This has enabled the results from the study to be applied in the field for valuable biomechanical and neurological explanations of the reflex response. (Abstract shortened by UMI.).

  11. Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2017-08-15

    The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked tonic EUS activity, indicative of the guarding reflex, that was proportional to the urethral flow rate. These results demonstrate the complementary roles of sensory feedback from the bladder and urethra in regulating reflexes in the lower urinary tract that depend on the state of the bladder. Understanding the neural control of functional reflexes and how they are mediated by sensory information in the bladder and urethra will open new opportunities, especially in neuromodulation, to treat pathologies of the lower urinary tract. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Abnormal flexor carpi radialis H-reflex as a specific indicator of C7 as compared with C6 radiculopathy.

    PubMed

    Zheng, Chaojun; Zhu, Yu; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Wang, Lixun; Jin, Xiang; Weber, Robert; Jiang, Jianyuan; Anuvat, Kevin

    2014-12-01

    The H-reflex of the flexor carpi radialis (FCR H-reflex) has not been commonly used for the diagnosis of cervical radiculopathy when compared with the routinely tested soleus H-reflex. Although both S1 and S2 roots innervate the soleus, the H-reflex is selectively related to S1 nerve root function clinically. Flexor carpi radialis is also innervated by two nerve roots which are C6 and C7. Although they are among the most common roots involved in cervical radiculopathy, few studies reported if the attenuation of the FCR H-reflex is caused by lesions affecting C7 or C6 nerve roots, or both. We aimed to identify whether an abnormal FCR H-reflex was attributed to the C7 or C6 nerve root lesion, or both. The sensitivities of needle electromyography, FCR H-reflex, and provocative tests in unilateral C7 or C6 radiculopathy were also compared in this study. A concentric needle electrode recorded bilateral FCR H-reflexes in 41 normal subjects (control group), 51 patients with C7 radiculopathy, and 54 patients with C6 radiculopathy. Clinical, radiological, and surgical approaches identified the precise single cervical nerve root involved in all patient groups. The H-reflex and M-wave latencies were measured and compared bilaterally. Abnormal FCR H-reflex was defined as the absence of the H-reflex or a side-to-side difference over 1.5 milliseconds which was based on the normal side-to-side difference of the H-reflex latency of 16.9 milliseconds (SD = 1.7 milliseconds) from the control group. We also determined standard median and ulnar conduction and needle electromyography. The provocative tests included bilateral determination of the Shoulder Abduction and Spurling's tests in all radiculopathy group patients. Abnormal FCR H-reflexes were recorded in 45 (88.2%) of C7 radiculopathy group patients, and 2 (3.7%) of C6 radiculopathy group patients (P < 0.05). Needle electromyography was abnormal in 41 (80.4%) of C7 radiculopathy patients and 43 (79.6%) of C6 radiculopathy patients. Provocative tests were positive in 15 (29.4%) of C7 radiculopathy patients and 25 (46.3%) of C6 radiculopathy patients. Flexor carpi radialis H-Reflex provides a sensitive assessment of evaluating the C7 spinal reflex pathway. Clinically, a combination of the FCR H-reflex with needle electromyography may yield the highest level of diagnostic information for evaluating clinical cases of C7 radiculopathy.

  13. A new hypothesis of cause of syncope: trigeminocardiac reflex during extraction of teeth.

    PubMed

    Arakeri, Gururaj; Arali, Veena

    2010-02-01

    Transient Loss Of Consciousness (TLOC) or vasovagal syncope is well known phenomenon in dental/maxillofacial surgery. Despite considerable study of vasovagal syncope, its pathophysiology remains to be fully elucidated. After having encountered a case of trigeminocardiac reflex after extraction of maxillary first molar we observed and studied 400 extractions under local anesthesia to know the relation between trigeminocardiac reflex and syncope. We make hypothesis that trigeminocardiac reflex which is usually seen under general anesthesia when all sympathetic reflexes are blunted can also occur under local anesthesia during extractions of maxillary molars (dento-cardiac reflex) and mediate syncope.

  14. The Reflexes of the Fundus Oculi

    PubMed Central

    Ballantyne, A. J.

    1940-01-01

    The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary degeneration of the retina or after the subsidence of severe retinitis or retino-choroiditis. A mirror reflex from the layer of pigmented epithelium or from the external limiting membrane is sometimes recognizable in normal eyes, especially in the brunette fundus. In such, it forms the background to a striking picture of the fine circumfoveal vessels. Pathological reflexes from the level of the pigmented epithelium or of the external limiting membrane are also observed, and these often present a granular, frosted or crystalline appearance. They may indicate a senile change, or result from trauma or from retino-choroidal degeneraion. Somewhat similar reflexes may sometimes be present as small frosted patches anterior to the retinal vessels. Linear sinuous, whether appearing in annular form, as straight needles, as broader single sinuous lines, as the tapering, branched double reflexes of Vogt, or in association with traction or pressure folds, in the retina, are probably always pathological. By the use of selected light of long and short wave lengths, it can be shown that intraretinal or true retinal folds may exist with or without the surface reflexes which indicate a corresponding folding of the internal limiting membrane. On the other hand, superficial linear reflexes of various types may occur without evidence of retinal folding. Annular reflexes usually accompany a rounded elevation of the retina due to tumour, hæmorrhage or exudate, but may indicate the presence of rounded depressions; traction folds occur where there is choroido-retinal scarring, or in association with macular hole or cystic degeneraion at the macula; pressure folds in cases of orbital cyst, abscess or neoplasm; and the other linear reflexes in association with papillo-retinal œdema, for example, in retrobulbar neuritis, in hypertensive neuro-retinitis, in contusio bulbi and in anterior uveitis. Punctate reflexes, other than Gunn's dots, are also pathological. They may occur as one variety of “fragmented” surface reflexes, or as evidence of the presence of some highly refractile substance, such as cholesterin or calcium carbonate, in a retinal exudate or other lesion. It is characteristic of the pathological reflexes that they come and go and change their character according to the progress of the pathological condition. The linear reflexes in particular may change from one from to another, and may be finally transformed into surface reflexes of physiological character. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:19992307

  15. [Clinical techniques for use in neurological physical examinations. II. Motor and reflex functions].

    PubMed

    Rodríguez-García, P L; Rodríguez-Pupo, L; Rodríguez-García, D

    The aim of this study is to highlight the chief practical aspects of the techniques used in the neurological physical examination of the motor and reflex functions. We recommend clinicians to carry out a brief but consistent and effective exploration in a systematic, flexible and orderly manner to check for abnormalities in the motor and reflex functions of the nervous system. Should any anomalies be detected, then a more detailed and thorough neurological exploration must be performed selectively. We present a detailed review of the practical aspects of the main techniques used in the physical examination of these neurological categories. The motor function is explored using techniques that examine muscle tone, muscle strength, muscle fatigability, hypokinesia, tremor, coordination and gait. Lastly, in this category several manoeuvres that are useful in hysterical or mimicking paralyses are also dealt with. Reflexes to examination are usually divided into: 1. Myotatic reflexes; 2. Cutaneomucous reflexes; 3. Spinal cord or defence automatism reflexes; 4. Posture and attitude reflexes. We also add the study of primitive pathological reflexes, remote reflexes, synkinesias and signs of meningeal irritation. We present a detailed description of the main clinical techniques used in the neurological physical examination of motility and reflexes, as well as an approach that allows them to be performed on adult patients. In addition, we underline the importance of physically examining the nervous system in contemporary medicine and the need to continually perfect the way these techniques are performed in order to achieve an efficient clinical practice.

  16. Decision Space Operations: Campaign Design Aimed at an Adversary’s Decision Making

    DTIC Science & Technology

    2003-01-01

    14 Figure 3: Reflexive control, Initial situation (physical reality ...20 Figure 4: Reflexive control, reality as X imagines it to be...20 Figure 5: Reflexive control, reality as Y imagines it to be .......................................................21 Figure 6: Reflexive

  17. Carbon monoxide and lethal arrhythmias. Research report, Jul 85-Jan 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farber, J.P.; Schwartz, P.J.; Vanoli, E.

    1990-01-01

    The effect of acute exposure to carbon monoxide on ventricular arrhythmias was studied in dogs with a healed anterior myocardial infarction. The combination of mild exercise and acute myocardial ischemia induces ventricular fibrillation in 60 percent of the animals. Dogs that develop ventricular fibrillation are considered at high risk for sudden death and are defined as susceptible; dogs that survive the test without fatal arrhythmia are considered at low risk and are defined as 'resistant.' The effects of carboxyhemoglobin levels ranging from 5 to 15 percent were tested in resistant and susceptible dogs. A trend toward higher heart rates wasmore » observed at rest and during exercise in both resistant and susceptible dogs at all levels of carboxyhemoglobin, although significant differences were observed only with 15 percent carboxyhemoglobin. In resistant animals, in which acute myocardial ischemia is typically associated with bradycardia even under the control condition, the reflex response occurred earlier and was augmented after exposure to carbon monoxide. In both resistant and susceptible dogs, carbon monoxide exposure induced a worsening of ventricular arrhythmias in a minority of cases. The worsening was not reproducible in subsequent trials. These data indicate that acute exposure to carbon monoxide is seldom arrhythmogenic in dogs that have survived myocardial infarction. Nevertheless, the observation that carbon monoxide exposure increases heart rate at rest and during moderate exercise may have clinical implications relevant to patients with coronary artery disease.« less

  18. The trigeminocardiac reflex – a comparison with the diving reflex in humans

    PubMed Central

    Lemaitre, Frederic; Schaller, Bernhard

    2015-01-01

    The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761

  19. Physical fitness and cardiovascular response to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Rohm-Young, D.; Blomqvist, C. G.

    1984-01-01

    Klein et al. (1977) have questioned the concept of endurance training as an appropriate means of preparing for prolonged space flights. Their opinion was mainly based on reports of endurance athletes who had a decreased tolerance to orthostatic or gravitational stress induced by lower body negative pressure (LBNP), upright tilt, or whole body water immersion. The present investigation had the objective to determine if the hemodynamic response to LBNP is different between a high and average fit group of subjects. In addition, the discrete aspect of cardiovascular function which had been altered by chronic training was to be identified. On the basis of the results of experiments conducted with 14 young male volunteers, it is concluded that the reflex response to central hypovolemia is altered by endurance exercise training.

  20. Wh-filler-gap dependency formation guides reflexive antecedent search

    PubMed Central

    Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya

    2015-01-01

    Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579

  1. Simultaneous characterizations of reflex and nonreflex dynamic and static changes in spastic hemiparesis

    PubMed Central

    Chung, Sun G.; Ren, Yupeng; Liu, Lin; Roth, Elliot J.; Rymer, W. Zev

    2013-01-01

    This study characterizes tonic and phasic stretch reflex and stiffness and viscosity changes associated with spastic hemiparesis. Perturbations were applied to the ankle of 27 hemiparetic and 36 healthy subjects under relaxed or active contracting conditions. A nonlinear delay differential equation model characterized phasic and tonic stretch reflex gains, elastic stiffness, and viscous damping. Tendon reflex was characterized with reflex gain and threshold. Reflexively, tonic reflex gain was increased in spastic ankles at rest (P < 0.038) and was not regulated with muscle contraction, indicating impaired tonic stretch reflex. Phasic-reflex gain in spastic plantar flexors was higher and increased faster with plantar flexor contraction (P < 0.012) than controls (P < 0.023) and higher in dorsi-flexors at lower torques (P < 0.038), primarily because of its increase at rest (P = 0.045), indicating exaggerated phasic stretch reflex especially in more spastic plantar flexors, which showed higher phasic stretch reflex gain than dorsi-flexors (P < 0.032). Spasticity was associated with increased tendon reflex gain (P = 0.002) and decreased threshold (P < 0.001). Mechanically, stiffness in spastic ankles was higher than that in controls across plantar flexion/dorsi-flexion torque levels (P < 0.032), and the more spastic plantar flexors were stiffer than dorsi-flexors at comparable torques (P < 0.031). Increased stiffness in spastic ankles was mainly due to passive stiffness increase (P < 0.001), indicating increased connective tissues/shortened fascicles. Viscous damping in spastic ankles was increased across the plantar flexion torque levels and at lower dorsi-flexion torques, reflecting increased passive viscous damping (P = 0.033). The more spastic plantar flexors showed higher viscous damping than dorsi-flexors at comparable torque levels (P < 0.047). Simultaneous characterizations of reflex and nonreflex changes in spastic hemiparesis may help to evaluate and treat them more effectively. PMID:23636726

  2. Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear.

    PubMed

    Friesenbichler, Bernd; Lepers, Romuald; Maffiuletti, Nicola A

    2015-05-01

    Unstable footwear has been shown to increase lower extremity muscle activity, but the reflex response to perturbations induced by this intervention is unknown. Twenty healthy subjects stood in stable and unstable footwear conditions (presented randomly) while H-reflex amplitude and background muscle activity were measured in the soleus and lateral gastrocnemius (LG) muscles. Wearing unstable footwear resulted in larger H-reflexes (normalized to the maximal M-wave) for the LG (+12%; P = 0.025), but not for the soleus (+4%; P > 0.05). Background activity of both muscles was significantly higher in the unstable condition. The H-reflex facilitation observed with unstable footwear was unexpected, as challenging postural conditions usually result in reflex depression. Increased muscle activity, decreased presynaptic inhibition, and/or more forward postural position may have (over-)compensated the expected reflex depression. Differences between LG and soleus H-reflex modulation may be due to diverging motor unit recruitment thresholds. © 2015 Wiley Periodicals, Inc.

  3. Enhancement of the intrinsic defecation reflex by mosapride, a 5-HT4 agonist, in chronically lumbosacral denervated guinea pigs.

    PubMed

    Kojima, Yu; Fujii, Hisao; Katsui, Renta; Nakajima, Yoshiyuki; Takaki, Miyako

    2006-10-01

    The defecation reflex is composed of rectal distension-evoked rectal (R-R) reflex contractions and synchronous internal anal sphincter (R-IAS) reflex relaxations in guinea pigs. These R-R and R-IAS reflexes are controlled via extrinsic sacral excitatory nerve pathway (pelvic nerves), lumbar inhibitory nerve pathways (colonic nerves) and by intrinsic cholinergic excitatory and nitrergic inhibitory nerve pathways. The effect of mosapride (a prokinetic benzamide) on the intrinsic reflexes, mediated via enteric 5-HT(4) receptors, was evaluated by measuring the mechanical activity of the rectum and IAS in anesthetized guinea pigs using an intrinsic R-R and R-IAS reflex model resulting from chronic (two to nine days) lumbosacral denervation (PITH). In this model, the myenteric plexus remains undamaged and the distribution of myenteric and intramuscular interstitial cells of Cajal is unchanged. Although R-R and R-IAS reflex patterns markedly changed, the reflex indices (reflex pressure or force curve-time integral) of both the R-R contractions and the synchronous R-IAS relaxations were unchanged. The frequency of the spontaneous R and IAS motility was also unchanged. Mosapride (0.1-1.0 mg/kg) dose-dependently increased both intrinsic R-R (maximum: 1.82) and R-IAS reflex indices (maximum: 2.76) from that of the control (1.0) 6-9 days following chronic PITH. The dose-response curve was similar to that in the intact guinea pig, and had shifted to the left from that in the guinea pig after acute PITH. A specific 5-HT(4) receptor antagonist, GR 113808 (1.0 mg/kg), decreased both reflex indices by approximately 50% and antagonized the effect of mosapride 1.0 mg/kg. This was quite different from the result in the intact guinea pig where GR 113808 (1.0 mg/kg) did not affect either of the reflex indices. The present results indicate that mosapride enhanced the intrinsic R-R and R-IAS reflexes and functionally compensated for the deprivation of extrinsic innervation. The actions of mosapride were mediated through endogenously active, intrinsic 5-HT(4) receptors which may be post-synaptically located in the myenteric plexus of the anorectum.

  4. 77 FR 29665 - Determination That PITRESSIN TANNATE IN OIL (Vasopressin Tannate) Injection, 5 Pressor Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Withdrawn From Sale for Reasons of Safety or Effectiveness AGENCY: Food and Drug Administration, HHS. ACTION... safety or effectiveness. This determination will allow FDA to approve abbreviated new drug applications... suspends approval of the drug's NDA or ANDA for reasons of safety or effectiveness or if FDA determines...

  5. GENETIC INFLUENCE ON THE DEVELOPMENT OF RENAL HYPERTENSION IN PARABIOTIC RATS

    PubMed Central

    Iwai, J.; Knudsen, K. D.; Dahl, L. K.; Heine, M.; Leitl, G.

    1969-01-01

    The effects of several renal manipulations including uninephrectomy, unilateral renal artery constriction, and a combination of these two (Goldblatt procedure) were studied in two strains of rats with opposite constitutional predispositions to experimental hypertension. The protective value of intact renal tissue to protect against hypertension was shown to be genetically determined. The Goldblatt procedure carried out on only one member of a parabiotic pair induced hypertension in this operated rat but significant hypertension developed in the intact partner only when the operated animal belonged to the strain predisposed to hypertension. It was speculated that there were qualitative differences in the pressor signals of the two strains of rats. In the strain genetically predisposed to hypertension there are at least two pressor principles: (a) one which is common to both strains, not transmittable via the parabiosis junction and presumably related to the renin-angiotensin system; and (b) a second which is specific for the hypertension-prone strain and can be transmitted through the parabiosis junction. This transmittable agent is probably identical with the factor that produces salt hypertension and is associated with the salt-excreting mechanism. PMID:4304137

  6. Potentiation of buprenorphine antinociception with ultra-low dose naltrexone in healthy subjects.

    PubMed

    Hay, J L; La Vincente, S F; Somogyi, A A; Chapleo, C B; White, J M

    2011-03-01

    Previous reports have demonstrated greater antinociception following administration of a buprenorphine/naloxone combination compared to buprenorphine alone among healthy volunteers. The aim of the current investigation was to determine whether buprenorphine antinociception could be enhanced with the addition of ultra-low dose naltrexone, using a range of dose ratios. A repeated-measures, double-blind, cross-over trial was undertaken with 10 healthy participants. The effects of each buprenorphine:naltrexone ratio (100:1, 133:1, 166:1, and 200:1) on cold pressor tolerance time and respiration were compared to the effects of buprenorphine only. The 166:1 ratio was associated with significantly greater tolerance time to cold pressor pain than buprenorphine alone. Minimal respiratory depression and few adverse events were observed in all conditions. These findings suggest that, as previously described with naloxone, the addition of ultra-low dose naltrexone can enhance the antinociceptive effect of buprenorphine in humans. This potentiation is dose-ratio dependent and occurs without a concomitant increase in adverse effects. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, P.M.; Kadekaro, M.; Andrews, D.W.

    The subfornical organ is a major receptor area for one of the principal stimuli of thirst, the octapeptide, angiotensin II. In conscious water-sated rats, the authors examined the effects of intravenous infusion of angiotensin II on the rate of glucose utilization in the subfornical organ and in structures anatomically and functionally connected with it. Angiotensin II produced pressor and drinking responses and increased glucose utilization selectively in the subfornical organ and pituitary neural lobe and in no other brain structure. Treatment with the angiotensin II antagonist, sar1-leu8-angiotensin II, before intravenous administration of angiotensin II prevented metabolic stimulation of the subfornicalmore » organ and neural lobe. Captopril, an inhibitor of angiotensin-converting enzyme, reduced subfornical organ glucose metabolism to a level similar to that found in control animals. These results demonstrate that peripheral angiotensin II stimulates glucose metabolism in the subfornical organ under conditions in which it provokes drinking and pressor responses. The findings suggest that circulating angiotensin II is responsible for the high rate of glucose utilization observed in the subfornical organ of Brattleboro rats homozygous for diabetes insipidus.« less

  8. Fate of angiotensin I in the toad Bufo melanostictus

    PubMed Central

    Ng, K. K. F.

    1973-01-01

    1. The effects of angiotensin I and II on the blood pressure of pithed toads and the disappearance of angiotensin I and II in the perfused organs of the toad were studied. 2. Angiotensin I was relatively inactive on the blood pressure of pithed toads; it exhibited less than 3% of the pressor activity of angiotensin II. 3. Angiotensin I was not converted to angiotensin II during passage through the lungs. There was also no evidence of net conversion during passage through the kidney and hind quarters. 4. During passage through the lungs, 33-50% of angiotensin I was removed and 25-50% was removed during passage through the hind quarters. No loss of activity was detected when angiotensin II passed through the kidneys. 5. Angiotensin II passed through the lungs and kidneys without loss but 25-50% disappeared during passage through the hind quarters. 6. The relatively low pressor activity of angiotensin I together with its lack of conversion to angiotensin II in isolated perfused organs suggest that the converting enzyme is absent in the toad, Bufo melanostictus. PMID:4357961

  9. Symptoms of anxiety and depression are related to cardiovascular responses to active, but not passive, coping tasks.

    PubMed

    Yuenyongchaiwat, Kornanong; Baker, Ian S; Sheffield, David

    2017-01-01

    Anxiety and depression have been linked to blunted blood pressure (BP) and heart rate (HR) reactions to mental stress tests; however, most studies have not included indices of underlying hemodynamics nor multiple stress tasks. This study sought to examine the relationships of anxiety and depression with hemodynamic responses to acute active and passive coping tasks. A total of 104 participants completed the Hospital Anxiety and Depression Scales and mental arithmetic, speech, and cold pressor tasks while BP, HR, total peripheral resistance, and cardiac output (CO) were assessed. After adjustment for traditional risk factors and baseline cardiovascular activity, depression scores were negatively associated with systolic BP, HR, and CO responses to the mental arithmetic task, while anxiety scores were inversely related to the systolic BP response to mental arithmetic. High anxiety or depression scores appear to be associated with blunted cardiac reactions to mental arithmetic (an active coping task), but not to the cold pressor test or speech tasks. Future research should further examine potential mechanisms and longitudinal pathways relating depression and anxiety to cardiovascular reactivity. TCTR20160208004.

  10. Interactive effects of the affect quality and directional focus of mental imagery on pain analgesia.

    PubMed

    Alden, A L; Dale, J A; DeGood, D E

    2001-06-01

    College students (25 men and 25 women) were randomly assigned (within sex) to each of the 4 factorial groups, based on manipulation of affect quality (positive vs. negative) and directional focus (internal vs. external) of mental imagery, and to a control group receiving no manipulation. Both imagery variables had a significant impact on pain tolerance and ratings during a cold-pressor test with positive affect and external imagery producing greater analgesia than their counterpart conditions. Positive affect imagery combined with external imagery resulted in the lowest reported pain amongst the groups. However, self-reported mood descriptors did not consistently parallel the pain tolerance and rating data. Likewise, although heart rate and skin potential responses increased during the cold pressor for the group as a whole, the only significant difference amongst the experimental groups was the relatively higher skin potential reactivity of the positive affect-external imagery group--possibly reflecting greater task engagement for this group. Seemingly, imagery in this situation operates primarily via cognitive, rather than via physiological mediators of the pain experience.

  11. The effects of meptazinol in comparison with pentazocine, morphine and naloxone in a rat model of anaphylactic shock.

    PubMed Central

    Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.

    1985-01-01

    The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission. PMID:3978318

  12. The effects of meptazinol in comparison with pentazocine, morphine and naloxone in a rat model of anaphylactic shock.

    PubMed

    Paciorek, P M; Todd, M H; Waterfall, J F

    1985-02-01

    The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission.

  13. Periventricular anteroventral third ventricle lesions diminish the pressor response produced by systemic injection of the N-methyl-D-aspartate receptor antagonist MK-801

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Beltz, T. G.; Lewis, S. J.; Johnson, A. K.

    1999-01-01

    This study examined whether electrolytic ablation of the periventricular anteroventral third ventricle (AV3V) would affect the increases in mean arterial blood pressure (MAP) and heart rate (HR) in conscious rats produced by systemic injection of the centrally acting N-methyl-D-aspartate (NMDA) receptor ion-channel blocker, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801; 250 microgram/kg, i.v.). MK-801 produced a smaller increase in MAP in rats with AV3V lesions than in sham-lesion rats (+36+/-2% vs. +52+/-5%, respectively, P<0.05). In contrast, MK-801 produced similar increases in HR in the AV3V- and sham-lesion rats (+28+/-3% vs. +22+/-4%, respectively, P>0.05). These findings demonstrate that the MK-801-induced pressor response is dependent upon the integrity of the AV3V region, whereas the MK-801-induced tachycardia is not. Copyright 1999 Elsevier Science B.V.

  14. Golden tapetal reflex in male patients with X-linked retinitis pigmentosa. Case report and practical implications.

    PubMed

    van Osch, L; van Schooneveld, M; Bleekerwagemakers, E M

    1990-12-01

    The golden tapetal reflex in the ocular fundus is considered pathognomonic of the carrier state in some families with X-linked retinitis pigmentosa (XRP). Reports concerning affected males with this characteristic reflex are scarce. A six-year-old boy with XRP having a tapetal reflex is described. Recently the tapetal reflex has drawn attention in linkage studies. XRP is probably genetically heterogeneous and has at least two genetic forms. The finding of a tapetal reflex in one or more female carriers in a family with XRP may be helpful in differentiating between these two genetic forms.

  15. Suppression of the oculocephalic reflex (doll's eyes phenomenon) in normal full-term babies.

    PubMed

    Snir, Moshe; Hasanreisoglu, Murat; Hasanreisoglue, Murat; Goldenberg-Cohen, Nitza; Friling, Ronit; Katz, Kalman; Nachum, Yoav; Benjamini, Yoav; Herscovici, Zvi; Axer-Siegel, Ruth

    2010-05-01

    To determine the precise age of suppression of the oculocephalic reflex in infants and its relationship to specific clinical characteristics. The oculocephalic reflex was prospectively tested in 325 healthy full-term babies aged 1 to 32 weeks attending an orthopedic outpatient clinic. Two ophthalmologists raised the baby's head 30 degrees above horizontal and rapidly rotated it in the horizontal and vertical planes while watching the conjugate eye movement. Suppression of the reflex, by observer agreement, was analyzed in relation to gestational age, postpartum age, postconceptional age, birth weight, and current weight. The data were fitted to a logistic regression model to determine the probability of suppression of the reflex according to the clinical variables. The oculocephalic reflex was suppressed in 75% of babies by the age of 11.5 weeks and in more than 95% of babies aged 20 weeks. Although postpartum age had a greater influence than gestational age, both were significantly correlated with suppression of the reflex (p = 0.01 and p = 0.04, respectively; two-sided t-test). Postpartum age was the best single variable explaining absence of the reflex. On logistic regression with cross-validation, the model including postpartum age and current weight yielded the best results; both these factors were highly correlated with suppression of the reflex (r = 0.74). The oculocephalic reflex is suppressed in the vast majority of normal infants by age 11.5 weeks. The disappearance of the reflex occurs gradually and longitudinally and is part of the normal maturation of the visual system.

  16. Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-02-01

    Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.

  17. Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.

    2010-01-01

    Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…

  18. Cardiac rehabilitation improves coronary endothelial function in patients with heart failure due to dilated cardiomyopathy: A positron emission tomography study.

    PubMed

    Legallois, Damien; Belin, Annette; Nesterov, Sergey V; Milliez, Paul; Parienti, J-J; Knuuti, Juhani; Abbas, Ahmed; Tirel, Olivier; Agostini, Denis; Manrique, Alain

    2016-01-01

    Endothelial dysfunction is common in patients with heart failure and is associated with poor clinical outcome. Cardiac rehabilitation is able to enhance peripheral endothelial function but its impact on coronary vasomotion remains unknown. We aimed to evaluate the effect of cardiac rehabilitation on coronary vasomotion in patients with heart failure. We prospectively enrolled 29 clinically stable heart failure patients from non-ischaemic dilated cardiomyopathy and without coronary risk factors. Myocardial blood flow was quantified using (15)-O water positron emission tomography at rest and during a cold pressor test, before and after 12 weeks of cardiac rehabilitation and optimization of medical therapy. Rest myocardial blood flow was significantly improved after the completion of rehabilitation compared to baseline (1.31 ± 0.38 mL/min/g vs. 1.16 ± 0.41 mL/min/g, p = 0.04). The endothelium-related change in myocardial blood flow from rest to cold pressor test and the percentage of myocardial blood flow increase during the cold pressor test were both significantly improved after cardiac rehabilitation (respectively from -0.03 ± 0.22 mL/min/g to 0.19 ± 0.22 mL/min/g, p < 0.001 and from 101.5 ± 16.5% to 118.3 ± 24.4%, p < 0.001). Left ventricular ejection fraction, plasma levels of brain natriuretic peptide, maximal oxygen consumption and the Minnesota Living with Heart Failure Questionnaire score were also significantly improved. The improvement was not related to uptitration of medical therapy. Coronary endothelial function is altered in patients with heart failure due to non-ischaemic dilated cardiomyopathy. In these patients, cardiac rehabilitation significantly improves coronary vasomotion. © The European Society of Cardiology 2014.

  19. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  20. Effects of cilnidipine, a novel dihydropyridine calcium antagonist, on autonomic function, ambulatory blood pressure and heart rate in patients with essential hypertension.

    PubMed

    Minami, J; Kawano, Y; Makino, Y; Matsuoka, H; Takishita, S

    2000-12-01

    The aim of the present study was to evaluate the effects of cilnidipine, a novel dihydropyridine calcium antagonist, on autonomic function, ambulatory blood pressure and heart rate in patients with essential hypertension. Ten inpatients with mild to moderate essential hypertension (four men and six women; age: 44-64 years) underwent a drug-free period for 7 days and a treatment period with cilnidipine 10 mg orally for another 7 days, in a randomized crossover study. On the sixth day of each period, they underwent autonomic function tests including a mental arithmetic test, a cold pressor test and a Valsalva manoeuvre. After these tests, 24 h ambulatory blood pressure, heart rate, and the electrocardiogram R-R intervals were monitored every 30 min. A power spectral analysis of R-R intervals was performed to obtain the low-and high-frequency components. Cilnidipine significantly decreased the 24 h blood pressure by 6.5 +/- 1.7 mm Hg systolic (mean +/- s.e.mean; P < 0.01) and 5.0 +/- 1.1 mmHg diastolic (P < 0.01), whereas cilnidipine did not change heart rate or any indices of power spectral components. During the cold pressor test, the maximum change in systolic blood pressure and percentage changes in both systolic and diastolic blood pressures were significantly lower during the treatment period with cilnidipine than during the drug-free period. The baroreflex sensitivity measured from the overshoot phase of the Valsalva manoeuvre did not differ significantly between the two periods. Cilnidipine is effective as a once-daily antihypertensive agent and causes little influence on heart rate and the autonomic nervous system in patients with mild to moderate essential hypertension. Moreover, it is suggested that cilnidipine has an additional clinical benefit in the inhibition of the pressor response induced by acute cold stress.

  1. Spinal action of neurokinins producing cardiovascular responses in the conscious freely moving rat: evidence for a NK-1 receptor mechanism.

    PubMed

    Hasséssian, H; Drapeau, G; Couture, R

    1988-12-01

    This study was initiated to characterize the receptors which mediate the cardiovascular responses elicited by the intrathecal (i.th.) administration of neurokinins (NK) in the conscious freely moving rat. The dose response profile for substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) was determined over 0.065-65 nmol doses of the peptides. After i.th. administration at the T8-T10 thoracic level, only SP elicited a dose dependent pressor response. However, all NK elicited a dose dependent increase in heart rate (HR), and the following rank order of potency was observed: SP greater than NKA greater than NKB. SP (6.5 nmol) produced cardiovascular responses markedly greater than an equimolar dose of any of the seven SP fragments which were studied. The C-terminal sequences SP (4-11), [pGlu5]SP (5-11), [pGlu6]SP (6-11), and SP (7-11), as a group were slightly more potent than the N-terminal fragments, SP (1-4), SP (1-7) and SP (1-9) which were almost inactive. The NK-1 receptor selective agonists [Pro9, Met(O2)11]SP and [beta-Ala4, Sar9, Met(O2)11]SP (4-11), produced pressor and positive chronotropic responses equal to or greater in intensity than SP. With up to 6.5 nmol of the NK-2 receptor selective agonist [Nle10]NKA (4-10), no dose dependent cardiovascular response was produced and the NK-3 receptor selective agonist senktide (succinyl-[Asp6, MePhe8]SP (6-11], produced neither a cardiac nor pressor response when 6.5 nmol was administered. These results are consistent with the hypothesis that, receptors of the NK-1 subtype mediate the cardiovascular responses evoked by the spinal action of NK.

  2. Effect of 3-Day Bed Rest on the Basal Sympathetic Activity and Responsiveness of this System to Physiological Stimuli In Athletes and Sedentary Subjects

    NASA Technical Reports Server (NTRS)

    Smorawinski, Jerzy; Adrian, Jacek; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Greenleaf, John E.; Dalton, P. Bonnie (Technical Monitor)

    2002-01-01

    The aims of this study were: (1) to examine the effect of three days of bed rest (BR) on basal plasma epinephrine [E] and norepinephrine [NE] and the catecholamine responses to various physiological stimuli, and (2) to find out whether previous physical activity modifies effects of BR. In the first series, 29 young men (11 sedentary students, 8 endurance and 10 strength trained athletes) were submitted to oral glucose tolerance test in supine position and to active orthostatic test before and after 3 days of BR. Plasma [E] and [NE] were measured after overnight fast (basal condition), at 60, 120 and 180 min after glucose ingestion (70 a), and at the 8th min of unsupported standing. In the second series, other 22 subjects (12 sedentary students, 10 endurance and 10 strength trained athletes) were submitted to 2 min cold pressor test (CPT) and exercise. Plasma E and NE were determined in the supine position after overnight fast and at 60th and 120th s of hand cooling. Then, after breakfast followed by 2-3 hour sitting, the subjects performed cycle ergometer exercise with workload increasing until volitional exhaustion. Plasma [E] and [NE] were determined at the end of each load. Plasma catecholamines were determined made radioenzymatically. After BR, basal plasma [NE] was decreased in endurance and strength athletes (p<0.01) but not in sedentary subjects. In neither group BR affected the basal [E]. Responses of both catecholamines to glucose load were diminished after BR in all three groups (p<0.05) but the effect was most pronounced in the endurance athletes. All subjects tolerated well 8-min standing although their heart rate response was increased after BR. Plasma catecholamine responses standing were not significantly affected by BR in either group but the plasma [NE] and [E] during standing were lowered after BR in endurance athletes (p<0.01). BR did not affect blood pressure and catecholamine responses to CPT. The pre- and post-exercise plasma catecholamines were similar before and after BR although the subjects achieved lower maximal loads after BR. In endurance athletes the threshold for plasma NA rise occurred at lower work intensity after than before BR (p<0.05).

  3. The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex

    PubMed Central

    e Silva, Mauro Henrique Chagas; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva

    2016-01-01

    Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474

  4. The parallel programming of voluntary and reflexive saccades.

    PubMed

    Walker, Robin; McSorley, Eugene

    2006-06-01

    A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.

  5. [Effects of morphine on pupillary light reflex in monkeys].

    PubMed

    Meng, Zhi-Qiang; Zhang, Yu-Hua; Chen, Nan-Hui; Miao, Ying-Da; Hu, Xin-Tian; Ma, Yuan-Ye

    2010-06-01

    The pupil size of both human and other animals can be affected by light. Many kinds of psychiatrical and psychological disorders, such as drug abuse, associate with abnormal properties of pupillary light reflex. Thus, the properties of pupillary light reflex could serve as an indicator for drug abuse detection. However, the effect of drug abuse on pupillary light reflex is till unclear. To assess the effects of addictive drugs on pupillary light reflex quantificationally, in the present study, we examined the effects of morphine on pupil diameter and pupillary light reflex in rhesus monkeys. By measuring the pupil diameter at different timing points before and after the administration of morphine, we found that morphine administration reduced the diameter of pupil and decreased the constriction rate. Our present results provide an experimental support for applying the properties of pupillary light reflex as a reference in addicts' detection.

  6. Snout and Visual Rooting Reflexes in Infantile Autism. Brief Report.

    ERIC Educational Resources Information Center

    Minderaa, Ruud B.; And Others

    1985-01-01

    The authors conducted extensive neurological evaluations of 42 autistic individuals and were surprised to discover a consistently positive snout reflex in most of them. Difficulties with assessing the reflex are noted. The authors then reassessed the Ss for a series of primitive reflexes which are interpreted as signs of diffuse cortical brain…

  7. On Reflection: Is Reflexivity Necessarily Beneficial in Intercultural Education?

    ERIC Educational Resources Information Center

    Blasco, Maribel

    2012-01-01

    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending on the concepts of selfhood that prevail and how…

  8. The Limits of Institutional Reflexivity in Bulgarian Universities

    ERIC Educational Resources Information Center

    Slantcheva, Snejana

    2004-01-01

    This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…

  9. Patients With Fibromyalgia Have Significant Autonomic Symptoms But Modest Autonomic Dysfunction.

    PubMed

    Vincent, Ann; Whipple, Mary O; Low, Phillip A; Joyner, Michael; Hoskin, Tanya L

    2016-05-01

    Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia; however, no study to date has assessed these variables simultaneously with comprehensive measures. To characterize physical fitness and autonomic function with the use of clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Cross-sectional, observational, controlled study. Community sample of patients with fibromyalgia and healthy controls. Thirty patients with fibromyalgia and 30 pain and fatigue-free controls. Participants completed a battery of self-report questionnaires and physiological measures, including clinically validated measures of physical fitness and autonomic function. Six-Minute Walk Test total distance, maximal oxygen consumption as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire, and self-reported autonomic symptoms via the 31-item Composite Autonomic Symptom Score questionnaire. Autonomic function, as assessed by self-report, was significantly different between patients and controls (P < .0001); in contrast, the only difference between patients and controls on the Autonomic Reflex Screen was in the adrenergic domain (P = .022), and these abnormalities were mild. Self-reported physical activity was not significantly different between patients and controls (P = .99), but levels of moderate and vigorous physical activity as measured by actigraphy were significantly lower in patients (P = .012 and P = .047, respectively). Exercise capacity (6-Minute Walk) was poorer in patients (P = .0006), but there was no significant difference in maximal volume of oxygen consumption (P = .07). Patients with fibromyalgia report more severe symptoms across all domains, including physical activity and autonomic symptoms, compared with controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of function have only modest objective measures of autonomic dysfunction. We recommend that the primary treatment goal should be focused on restoration of function, which may also ameliorate symptoms. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. Patients with Fibromyalgia Have Significant Autonomic Symptoms but Modest Autonomic Dysfunction

    PubMed Central

    Vincent, Ann; Whipple, Mary O.; Low, Phillip A.; Joyner, Michael; Hoskin, Tanya L.

    2015-01-01

    Background Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia, however no study to date has simultaneously assessed these variables utilizing comprehensive measures. Objective To characterize physical fitness and autonomic function using clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Design Cross-sectional, observational, controlled study Setting Community sample of patients with fibromyalgia and healthy controls Participants 30 patients with fibromyalgia and 30 pain and fatigue-free controls Methods: Participants completed a battery of self-report questionnaires and physiological measures including clinically validated measures of physical fitness and autonomic function. Main Outcome Measurements 6 Minute Walk Test total distance, VO2 max as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire and self-reported autonomic symptoms using the 31-item Composite Autonomic Symptom Score questionnaire. Results Autonomic function, as assessed by self-report, was significantly different between patients and controls (p<.0001); in contrast, the only difference between patients and controls on the Autonomic Reflex Screen was in the adrenergic domain (p=.022), and these abnormalities were mild. Self-reported physical activity was not significantly different between patients and controls (p=.99), but levels of moderate and vigorous physical activity as measured by actigraphy, were significantly lower in patients (p=.012 and p=.047, respectively). Exercise capacity (6 Minute Walk) was poorer in patients (p=.0006), but there was no significant difference in maximal volume of oxygen consumption (p=.07). Conclusions Patients with fibromyalgia report more severe symptoms across all domains including physical activity and autonomic symptoms when compared to controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of function have only modest objective measures of autonomic dysfunction. We recommend that the primary treatment goal should be focused on restoration of function which may also ameliorate symptoms. PMID:26314231

  11. Decreased active vasodilator sensitivity in aged skin.

    PubMed

    Kenney, W L; Morgan, A L; Farquhar, W B; Brooks, E M; Pierzga, J M; Derr, J A

    1997-04-01

    Older men and women respond to local and reflex-mediated heat stress with an attenuated increase in cutaneous vascular conductance (CVC). This study was performed to test the hypothesis that an augmented or sustained noradrenergic vasoconstriction (VC) may play a role in this age-related difference. Fifteen young (22 +/- 1 yr) and 15 older (66 +/- 1 yr) men exercised at 50% peak oxygen uptake in a 36 degrees C environment. Skin perfusion was monitored at two sites on the right forearm by laser-Doppler flowmetry: one site pretreated with bretylium tosylate (BT) to block the local release of norepinephrine and thus VC and an adjacent control site. Blockade of reflex VC was verified during whole body cooling using a water-perfused suit. CVC (perfusion divided by mean arterial pressure) at each site was reported as a percentage of the maximal CVC (%CVCmax) induced at the end of each experiment by prolonged local heating at 42 degrees C. Neither age nor BT affected the %CVCmax (75-86%) attained at high core temperatures. During the early rise phase of CVC, the %CVCmax-change in esophageal temperature (delta T(es)) curve was shifted to the right in the older men (effective delta T(es) associated with 50% CVC response for young, 0.22 +/- 0.04 and 0.39 +/- 0.04 degrees C and for older, 0.73 +/- 0.04 and 0.85 +/- 0.04 degrees C at control and BT sites, respectively). BT had no interactive effect on this age difference, suggesting a lack of involvement of the VC system in the attenuated CVC response of individuals over the age of 60 yr. Additionally, increases in skin vascular conductance were quantitatively compared by measuring increases in total forearm vascular conductance (FVC, restricted to the forearm skin under these conditions). After the initial approximately 0.2 degrees C increase in T(es), FVC was 40-50% lower in the older men (P < 0.01) for the remainder of the exercise. Decreased active vasodilator sensitivity to increasing core temperature, coupled with structural limitations to vasodilation, appears to limit the cutaneous vascular response to exertional heat stress in older subjects.

  12. The Pivotal Role of the Parieto-Occipital Lobe in Card Game-Induced Reflex Epilepsy: A Voxel-Based Morphometry Study.

    PubMed

    Park, Kang Min; Kim, Sung Eun; Lee, Byung In

    2016-01-01

    The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.

  13. Intrapartum synthetic oxytocin reduce the expression of primitive reflexes associated with breastfeeding.

    PubMed

    Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-05-01

    Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.

  14. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury

    PubMed Central

    Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.

    2014-01-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110

  15. Comparison of single bout effects of bicycle training versus locomotor training on paired reflex depression of the soleus H-reflex after motor incomplete spinal cord injury.

    PubMed

    Phadke, Chetan P; Flynn, Sheryl M; Thompson, Floyd J; Behrman, Andrea L; Trimble, Mark H; Kukulka, Carl G

    2009-07-01

    To examine paired reflex depression changes post 20-minute bout each of 2 training environments: stationary bicycle ergometer training (bicycle training) and treadmill with body weight support and manual assistance (locomotor training). Pretest-posttest repeated-measures. Locomotor laboratory. Motor incomplete SCI (n=12; mean, 44+/-16y); noninjured subjects (n=11; mean, 30.8+/-8.3y). All subjects received each type of training on 2 separate days. Paired reflex depression at different interstimulus intervals (10 s, 1 s, 500 ms, 200 ms, and 100 ms) was measured before and after both types of training. (1) Depression was significantly less post-SCI compared with noninjured subjects at all interstimulus intervals and (2) post-SCI at 100-millisecond interstimulus interval: reflex depression significantly increased postbicycle training in all SCI subjects and in the chronic and spastic subgroups (P<.05). Phase-dependent regulation of reflex excitability, essential to normal locomotion, coordinated by pre- and postsynaptic inhibitory processes (convergent action of descending and segmental inputs onto spinal circuits) is impaired post-SCI. Paired reflex depression provides a quantitative assay of inhibitory processes contributing to phase-dependent changes in reflex excitability. Because bicycle training normalized reflex depression, we propose that bicycling may have a potential role in walking rehabilitation, and future studies should examine the long-term effects on subclinical measures of reflex activity and its relationship to functional outcomes.

  16. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-07-26

    To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.

  17. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults

    PubMed Central

    Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.

    2015-01-01

    Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560

  18. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers.

    PubMed

    Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke

    2014-01-01

    The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.

  19. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers

    PubMed Central

    Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke

    2014-01-01

    Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572

  20. Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography.

    PubMed

    Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke

    2010-01-01

    We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.

  1. Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke

    PubMed Central

    Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.

    2010-01-01

    Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072

  2. Neuroanatomical basis of Sandifer's syndrome: a new vagal reflex?

    PubMed

    Cerimagic, Denis; Ivkic, Goran; Bilic, Ervina

    2008-01-01

    Sandifer's syndrome is a gastrointestinal disorder with neurological features. It is characterized by reflex torticollis following deglutition in patients with gastroesophageal reflux and/or hiatal hernia. The authors believe that neurological manifestations of the syndrome are the consequence of vagal reflex with the reflex center in nucleus tractus solitarii (NTS). Three models for the neuroanatomical basis of the hypothetic reflex arc are presented. In the first one the hypothetic reflex arc is based on the classic hypothesis of two components nervus accessorius (n.XI) - radix cranialis (RC) and radix spinalis (RS) The nervous impulses are transmitted by nervus vagus (n.X) general visceral afferent (GVA) fibers to NTS situated in medulla oblongata, then by interneuronal connections on nucleus ambiguus (NA) and nucleus dorsalis nervi vagi (NDX). Special visceral efferent fibers (SVE) impulses from NA are in part transferred to n.XI ramus externus (RE) (carrying the majority of general somatic efferent (GSE) fibers) via hypothetic anastomoses in the region of foramen jugulare. This leads to contraction of trapezius and sternocleidomastoideus muscles, and the occurrence of intermittent torticollis. In the second suggested neuroanatomical model the hypothetic reflex arc is organized in the absence of n.XI RC, the efferent part of the reflex arc continues as NA, which is motor nucleus of nervus glossopharyngeus (n.IX) and n.X in this case while distal roots of n.XI that appear at the level of the olivary nucleus lower edge represent n.X roots. In the third presented model the hypothetic reflex arc includes no jugular transfer and could be realized via interneuronal connections directly from NTS to the spinal motoneurons within nucleus radicis spinalis nervi accessorii (NRS n.XI) or from NA to NRS n.XI. The afferent segment of the postulated reflex arc in all three models is mediated via n.X. We conclude that Sandifer's syndrome is a clinical manifestation of another vagal reflex that could be termed a "vagocervical" or "esophagocervical" reflex, based on the neuroanatomical hypotheses elaborated in this paper.

  3. "On Becoming a Critically Reflexive Practitioner" Redux: What Does It Mean to "Be" Reflexive?

    ERIC Educational Resources Information Center

    Cunliffe, Ann L.

    2016-01-01

    In this commentary, Cunliffe states that is convinced that reflexivity offers a way of foregrounding our moral and ethical responsibility for people and for the world around us. To "BE" reflexive was defined as embracing "subjective understandings of reality as a basis for thinking more critically about the impact of our…

  4. Introducing Reflexivity to Evaluation Practice: An In-Depth Case Study

    ERIC Educational Resources Information Center

    van Draanen, Jenna

    2017-01-01

    There is currently a paucity of literature in the field of evaluation regarding the practice of reflection and reflexivity and a lack of available tools to guide this practice--yet using a reflexive model can enhance evaluation practice. This paper focuses on the methods and results of a reflexive inquiry that was conducted during a participatory…

  5. The stiff-man syndrome: new pathophysiological aspects from abnormal exteroceptive reflexes and the response to clomipramine, clonidine, and tizanidine.

    PubMed Central

    Meinck, H M; Ricker, K; Conrad, B

    1984-01-01

    Neurophysiological investigations of a patient suffering from the stiff-man syndrome revealed that exteroceptive reflexes, in particular those elicited from the skin, were excessively enhanced. In contrast, no abnormalities were found within the monosynaptic reflex arc. Clomipramine injection severely aggravated the clinical symptoms whereas diazepam, clonidine, and tizanidine decreased both muscular stiffness and abnormal exteroceptive reflexes. The hypothesis is put forward that the stiff-man syndrome is a disorder of descending brain-stem systems which exert a net inhibitory control on axial and limb girdle muscle tone as well as on exteroceptive reflex transmission. Detection of abnormal exteroceptive reflex activity in conjunction with neuropharmacological testing might help in the diagnosis of this rare disease. PMID:6707674

  6. [Reflex seizures, cinema and television].

    PubMed

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.

  7. Acceptance- versus Change-Based Pain Management: The Role of Psychological Acceptance

    ERIC Educational Resources Information Center

    Blacker, Kara J.; Herbert, James D.; Forman, Evan M.; Kounios, John

    2012-01-01

    This study compared two theoretically opposed strategies for acute pain management: an acceptance-based and a change-based approach. These two strategies were compared in a within-subjects design using the cold pressor test as an acute pain induction method. Participants completed a baseline pain tolerance assessment followed by one of the two…

  8. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Intrapartum Synthetic Oxytocin Reduce the Expression of Primitive Reflexes Associated with Breastfeeding

    PubMed Central

    Olza Fernández, Ibone; Malalana Martínez, Ana M.; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-01-01

    Abstract Aim: Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. Materials and Methods: A cohort prospective study was conducted at a tertiary hospital. Mother–infant dyads who received intrapartum oxytocin (n=53) were compared with mother–infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. Results: The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Conclusions: Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent. PMID:25785487

  10. Manual therapy directed at the knee or lumbopelvic region does not influence quadriceps spinal reflex excitability.

    PubMed

    Grindstaff, Terry L; Pietrosimone, Brian G; Sauer, Lindsay D; Kerrigan, D Casey; Patrie, James T; Hertel, Jay; Ingersoll, Christopher D

    2014-08-01

    Manual therapies, directed to the knee and lumbopelvic region, have demonstrated the ability to improve neuromuscular quadriceps function in individuals with knee pathology. It remains unknown if manual therapies may alter impaired spinal reflex excitability, thus identifying a potential mechanism in which manual therapy may improve neuromuscular function following knee injury. To determine the effect of local and distant mobilisation/manipulation interventions on quadriceps spinal reflex excitability. Seventy-five individuals with a history of knee joint injury and current quadriceps inhibition volunteered for this study. Participants were randomised to one of five intervention groups: lumbopelvic manipulation (grade V), lumbopelvic manipulation positioning (no thrust), grade IV patellar mobilisation, grade I patellar mobilisation, and control (no treatment). Changes in spinal reflex excitability were quantified by assessing the Hoffmann reflex (H-reflex), presynaptic, and postsynaptic excitability. A hierarchical linear-mixed model for repeated measures was performed to compare changes in outcome variables between groups over time (pre, post 0, 30, 60, 90 min). There were no significant differences in H-reflex, presynaptic, or postsynaptic excitability between groups across time. Manual therapies directed to the knee or lumbopelvic region did not acutely change quadriceps spinal reflex excitability. Although manual therapies may improve impairments and functional outcomes the underlying mechanism does not appear to be related to changes in spinal reflex excitability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    PubMed

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  13. Anatomically remote muscle contraction facilitates patellar tendon reflex reinforcement while mental activity does not: a within-participants experimental trial.

    PubMed

    Passmore, Steven R; Bruno, Paul A

    2012-09-07

    The Jendrassik maneuver (JM) is a remote facilitation muscular contraction shown to affect amplitude and temporal components of the human stretch reflex. Conflicting theoretical models exist regarding the neurological mechanism related to its ability to reinforce reflex parameters. One mechanism involves the gamma motoneurons of the fusimotor system, which are subject to both physical and mental activity. A second mechanism describes reduced alpha motoneuron presynaptic inhibition, which is not subject to mental activity. In the current study, we determined if mental activity could be used to create a reflex facilitation comparable to a remote muscle contraction. Using a within-participants design, we investigated the relative effect of the JM and a successfully employed mental task (Stroop task) on the amplitude and temporal components of the patellar tendon reflex. We found that the addition of mental activity had no influence on the patellar tendon reflex parameters measured, while the JM provided facilitation (increased reflex amplitude, decreased total reflex time). The findings from this study support the view that the mechanism for the JM is a reduction in presynaptic inhibition of alpha motoneurons as it is influenced by physical and not mental activity.

  14. Emotional Dissonance and Burnout: The Moderating Role of Team Reflexivity and Re-Evaluation.

    PubMed

    Andela, Marie; Truchot, Didier

    2017-08-01

    The aim of the present study was to better understand the relationship between emotional dissonance and burnout by exploring the buffering effects of re-evaluation and team reflexivity. The study was conducted with a sample of 445 nurses and healthcare assistants from a general hospital. Team reflexivity was evaluated with the validation of the French version of the team reflexivity scale (Facchin, Tschan, Gurtner, Cohen, & Dupuis, 2006). Burnout was measured with the MBI General Survey (Schaufeli, Leiter, Maslach, & Jackson, 1996). Emotional dissonance and re-evaluation were measured with the scale developed by Andela, Truchot, & Borteyrou (2015). With reference to Rimé's theoretical model (2009), we suggested that both dimensions of team reflexivity (task and social reflexivity) respond to both psychological necessities induced by dissonance (cognitive clarification and socio-affective necessities). Firstly, results indicated that emotional dissonance was related to burnout. Secondly, regression analysis confirmed the buffering role of re-evaluation and social reflexivity on the emotional exhaustion of emotional dissonance. Overall, results contribute to the literature by highlighting the moderating effect of re-evaluation and team reflexivity in analysing the relationship between emotional dissonance and burnout. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Reflex responses of lip muscles in young and older women.

    PubMed

    Wohlert, A B

    1996-06-01

    The perioral reflex in response to innocuous mechanical stimulation of the lip vermilion was studied in 20 young and 20 older women. Responses to stimuli at the right and left sides of both the upper and lower lips were recorded. Results show significant specificity of response, especially for upper lip sites. Reflex response at the site of stimulation was greatest in amplitude and shortest in latency, followed by response at sites ipsilateral to the site of stimulation. Younger subjects showed greater localizing tendency than older subjects. Stimulation was significantly less likely to produce a reflex response in the older group. When reflex responses did occur, they were significantly lower in amplitude and longer in latency than the responses of the younger group. Nonetheless, reflex responses were common in both groups, with responses at the site of stimulation occurring 78% of the time in older women and 90% of the time in younger women. Every participant showed at least one reflex response to lip stimulation. Results suggest decreasing complexity of synaptic drive to the perioral system in old age but also show that reflexive response does not deteriorate completely, remaining an available element for motor control in normal older women.

  16. Severe rhabdomyolysis after excessive bodybuilding.

    PubMed

    Finsterer, J; Zuntner, G; Fuchs, M; Weinberger, A

    2007-12-01

    A 46-year-old male subject performed excessive physical exertion during 4-6 h in a studio for body builders during 5 days. He was not practicing sport prior to this training and denied the use of any aiding substances. Despite muscle aching already after 1 day, he continued the exercises. After the last day, he recognized tiredness and cessation of urine production. Two days after discontinuation of the training, a Herpes simplex infection occurred. Because of acute renal failure, he required hemodialysis. There were absent tendon reflexes and creatine kinase (CK) values up to 208 274 U/L (normal: <170 U/L). After 2 weeks, CK had almost normalized and, after 4 weeks, hemodialysis was discontinued. Excessive muscle training may result in severe, hemodialysis-dependent rhabdomyolysis. Triggering factors may be prior low fitness level, viral infection, or subclinical metabolic myopathy.

  17. Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.; Mcritchie, R. J.

    1976-01-01

    The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.

  18. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.

    PubMed

    Elson, Matthew S; Berkowitz, Ari

    2016-03-02

    The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.

  19. The Moro reaction: More than a reflex, a ritualized behavior of nonverbal communication.

    PubMed

    Rousseau, Pierre V; Matton, Florence; Lecuyer, Renaud; Lahaye, Willy

    2017-02-01

    To propose a phylogenetic significance to the Moro reflex which remains unexplained since its publication in 1918 because both hands are free at the end of the gesture. Among the 75 videos of healthy term newborns we have filmed in a research project on antenatal education to parenthood, we describe a sequence that clearly showed the successive movements of the Moro reflex and we report the occurrence of this reflex in the videos that were recorded from Time 0 of birth defined as the moment that lies between the birth of the thorax and the pelvis of the infant. The selected sequence showed the following succession of the newborn's actions: quick extension-adduction of both arms, the orientation of the body, head and eyes towards a human person, and full extension-abduction of both arms with spreading of the fingers, crying and a distressed face. There were 13 Moro reflexes between 2 and 14s from Time 0 of birth. We found a significant association between the occurrence of the Moro reflex and the placement of the newborn at birth in supine position on the mother's abdomen (p=0.002). The quick extension-adduction of both arms which started the sequence may be considered as a startle reflex controlled by the neural fear system and the arm extension-adduction which followed as a Moro reflex. The characteristics of all Moro reflexes were those of ritualization: amplitude, duration, stereotype of the gestures. This evolutionary process turns a physiological behavior, grasping in this case, to a non-verbal communicative behavior whose meaning is a request to be picked up in the arms. The gestures associated with the Moro reflex: crying and orientation of the body, head, and eyes towards a human person, are gestures of intention to communicate which support our hypothesis. The neural mechanism of the Moro reaction probably involves both the fear and the separation-distress systems. This paper proposes for the first time a phylogenetic significance to the Moro reflex: a ritualized behavior of nonverbal communication. Professionals should avoid stimulating the newborns' fear system by unnecessarily triggering Moro reflexes. Antenatal education should teach parents to respond to the Moro reflexes of their newborn infant by picking her up in their arms with mother talk. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Cerebellum in Maintenance of a Motor Skill: A Hierarchy of Brain and Spinal Cord Plasticity Underlies H-Reflex Conditioning

    ERIC Educational Resources Information Center

    Wolpaw, Jonathan R.; Chen, Xiang Yang

    2006-01-01

    Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…

Top