Sample records for exercise results volume

  1. Does Stroke Volume Increase During an Incremental Exercise? A Systematic Review

    PubMed Central

    Vieira, Stella S.; Lemes, Brunno; de T. C. de Carvalho, Paulo; N. de Lima, Rafael; S. Bocalini, Danilo; A. S. Junior, José; Arsa, Gisela; A. Casarin, Cezar; L. Andrade, Erinaldo; J. Serra, Andrey

    2016-01-01

    Introduction: Cardiac output increases during incremental-load exercise to meet metabolic skeletal muscle demand. This response requires a fast adjustment in heart rate and stroke volume. The heart rate is well known to increase linearly with exercise load; however, data for stroke volume during incremental-load exercise are unclear. Our objectives were to (a) review studies that have investigated stroke volume on incremental load exercise and (b) summarize the findings for stroke volume, primarily at maximal-exercise load. Methods: A comprehensive review of the Cochrane Library’s, Embase, Medline, SportDiscus, PubMed, and Web of Sci-ence databases was carried out for the years 1985 to the present. The search was performed between February and June 2014 to find studies evaluating changes in stroke volume during incremental-load exercise. Controlled and uncontrolled trials were evaluated for a quality score. Results: The stroke volume data in maximal-exercise load are inconsistent. There is evidence to hypothesis that stroke volume increases during maximal-exercise load, but other lines of evidence indicate that stroke volume reaches a plateau under these circumstances, or even decreases. Conclusion: The stroke volume are unclear, include contradictory evidence. Additional studies with standardized reporting for subjects (e.g., age, gender, physical fitness, and body position), exercise test protocols, and left ventricular function are required to clarify the characteristics of stroke volume during incremental maximal-exercise load. PMID:27347221

  2. Effect Of Leg Exercise On Vascular Volumes During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1993-01-01

    Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.

  3. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule.

    PubMed

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu

    2015-06-01

    Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.

  4. Restoration of plasma volume after 16 days of head-down tilt induced by a single bout of maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Ludwig, D. A.; Doerr, D. F.

    1996-01-01

    Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.

  5. Effects of thermal stress and exercise on blood volume in humans

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.

    1985-01-01

    The available experimental data base on the effects of exercise, posture and the environment (heat) on the blood volume, composition and concentration in humans is surveyed in depth to synthesize supportable conclusions. A large disparity is noted in the effective controls which were initiated in previous experimental conditions, resulting in contradictory findings regarding, e.g., hemoconcentrations and hemodilution in response to exercise. Comparisons between the results of exercise and of supine, seated and upright subjects has underscored the importance of gravity in hemoconcentration, particularly in the legs, and the generation of aldotestosterone. Hemoconcentration has been confirmed to increase with exercise in a seated or supine position. Exercise in a heated environment transfers cardiac output from core areas and reduces filtration efficiencies. Also, plasma volume increases, an action which cannot yet be associated with crystalloidal or colloidal influences on the osmotic behavior of cell walls.

  6. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice.

    PubMed

    Yi, Xuejie; Gao, Haining; Chen, Dequan; Tang, Donghui; Huang, Wanting; Li, Tao; Ma, Tie; Chang, Bo

    2017-04-01

    To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P -450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P -450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function. Copyright © 2017 the American Physiological Society.

  7. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    NASA Technical Reports Server (NTRS)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  8. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  9. Elevated central venous pressure: A consequence of exercise training-induced hypervolemia

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mack, Gary W.; Nadel, Ethan R.

    1990-01-01

    Resting plasma volumes, and arterial and central venous pressures (CVP) were measured in 16 men before and after exercise training to determine if training-induced hypervolemia could be explained by a change in total vascular capacitance. In addition, resting levels of plasma vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (ALD), and norepinephrine (NE) were measured before and after training. The same measurements of vacular volume, pressures, and plasma hormones were measured in 8 subjects who did not undergo exercise and acted as controls. The exercise training program consisted of 10 weeks of controlled cycle exercise for 30 min/d, 4 d/wk at 75 to 80 percent of maximal oxygen uptake (VO2max). A training effect was verified by a 20 percent increase in VO2max, a resting bradycardia, and a 370 ml (9 percent) increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased. The percent change in blood volume from before to after training was linearly related to the percent change in CVP. As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was essentially unchanged following exercise training. Plasma AVP, ANP, ALD, and NE were unaltered. Results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance. This may represent a resetting of the pressure-volume stimulus-response relation for regulation of blood volume.

  10. Physical activity, fitness, and gray matter volume

    PubMed Central

    Erickson, Kirk I.; Leckie, Regina L.; Weinstein, Andrea M.

    2014-01-01

    In this review we explore the association between physical activity, cardiorespiratory fitness, and exercise on gray matter volume in older adults. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus, and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. Some heterogeneity in the literature may be explained by effect moderation by age, stress, or other factors. Finally, we report promising results from randomized exercise interventions that suggest that the volume of the hippocampus and prefrontal cortex remain pliable and responsive to moderate intensity exercise for 6-months to 1-year. Physical activity appears to be a propitious method for influencing gray matter volume in late adulthood, but additional well-controlled studies are necessary to inform public policies about the potential protective or therapeutic effects of exercise on brain volume. PMID:24952993

  11. Dose-Response Effects of Aerobic Exercise on Quality of Life in Postmenopausal Women: Results from the Breast Cancer and Exercise Trial in Alberta (BETA).

    PubMed

    Courneya, Kerry S; McNeil, Jessica; O'Reilly, Rachel; Morielli, Andria R; Friedenreich, Christine M

    2017-06-01

    Exercise generally improves quality of life (QoL) and psychosocial functioning in adult populations but few randomized trials have examined dose-response effects. The purpose of the present study was to report the QoL and psychosocial outcomes from the Breast Cancer and Exercise Trial in Alberta (BETA). Healthy but inactive postmenopausal women at risk for breast cancer were randomized to a year-long aerobic exercise intervention consisting of either 150 min/week (moderate volume group, n = 200) or 300 min/week (high volume group, n = 200). QoL was assessed at baseline and 1 year using the short form-36 health survey. Sleep quality, depression, anxiety, stress, self-esteem, and happiness were also assessed. Participant preference for group assignment (i.e., exercise volume) was assessed at baseline and tested as a moderator. There were no statistically significant dose-response effects of aerobic exercise on any QoL, sleep quality, or psychosocial outcome. Participant preference for group assignment did not moderate any QoL, sleep quality, or psychosocial responses. Marital status was a significant moderator (p for interaction = 0.01) and obesity showed a trend towards being a moderator (p for interaction = 0.08) of the dose-response effects of aerobic exercise on global sleep quality such that unmarried and obese women improved sleep quality with the higher volume of aerobic exercise. A higher volume of aerobic exercise, approximately double the minimum public health guideline, did not provide additional QoL or psychosocial benefits compared to the minimum public health guideline in inactive postmenopausal women, even for women who preferred the higher volume of exercise at baseline. Trial Registration clinicaltrials.gov identifier: NCT1435005.

  12. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  13. Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mack, G. W.; Nadel, E. R.

    1991-01-01

    Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.

  14. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  15. Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I

    2017-10-01

    To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.

  16. Association between exercise habits and subcortical gray matter volumes in healthy elderly people: A population-based study in Japan.

    PubMed

    Yamamoto, Mikie; Wada-Isoe, Kenji; Yamashita, Fumio; Nakashita, Satoko; Kishi, Masafumi; Tanaka, Kenichiro; Yamawaki, Mika; Nakashima, Kenji

    2017-06-01

    The relationship between exercise and subcortical gray matter volume is not well understood in the elderly population, although reports indicate that exercise may prevent cortical gray matter atrophy. To elucidate this association in the elderly, we measured subcortical gray matter volume and correlated this with volumes to exercise habits in a community-based cohort study in Japan. Subjects without mild cognitive impairment or dementia (n = 280, 35% male, mean age 73.1 ± 5.9 years) were evaluated using the Mini-Mental State Examination (MMSE), an exercise habit questionnaire, and brain magnetic resonance imaging. Subcortical gray matter volume was compared between groups based on the presence/absence of exercise habits. The MMSE was re-administered 3 years after the baseline examination. Ninety-one subjects (32.5%) reported exercise habits (exercise group), and 189 subjects (67.5%) reported no exercise habits (non-exercise group). Volumetric analysis revealed that the volumes in the exercise group were greater in the left hippocampus (p = 0.042) and bilateral nucleus accumbens (left, p = 0.047; right, p = 0.007) compared to those of the non-exercise group. Among the 195 subjects who received a follow-up MMSE examination, the normalized intra-cranial volumes of the left nucleus accumbens (p = 0.004) and right amygdala (p = 0.014)showed significant association with a decline in the follow-up MMSE score. Subjects with exercise habits show larger subcortical gray matter volumes than subjects without exercise habits in community-dwelling elderly subjects in Japan. Specifically, the volume of the nucleus accumbens correlates with both exercise habits and cognitive preservation.

  17. Influence of forward leaning and incentive spirometry on inspired volumes and inspiratory electromyographic activity during breathing exercises in healthy subjects.

    PubMed

    Santos, Thalita Vilaboim; Ruas, Gualberto; Sande de Souza, Luciane Aparecida Pascucci; Volpe, Marcia Souza

    2012-12-01

    Breathing exercises (BE), incentive spirometry and positioning are considered treatment modalities to achieve lung re-expansion. This study evaluated the influence of incentive spirometry and forward leaning on inspired tidal volumes (V(T)) and electromyographic activity of inspiratory muscles during BE. Four modalities of exercises were investigated: deep breathing, spirometry using both flow and volume-oriented devices, and volume-oriented spirometry after modified verbal instruction. Twelve healthy subjects aged 22.7 ± 2.1 years were studied. Surface electromyography activity of diaphragm, external intercostals, sternocleidomastoid and scalenes was recorded. Comparisons among the three types of exercises, without considering spirometry after modified instruction, showed that electromyographic activity and V(T) were lower during volume-oriented spirometry (p = 0.000, p = 0.054, respectively). Forward leaning resulted in a lower V(T) when compared to upright sitting (p = 0.000), but electromyographic activity was not different (p = 0.606). Inspired V(T) and electromyographic activity were higher during volume-oriented spirometry performed after modified instruction when compared with the flow-oriented device (p = 0.027, p = 0.052, respectively). In conclusion BE using volume-oriented spirometry before modified instruction resulted in a lower work of breathing as a result of a lower V(T) and was not a consequence of the device type used. Forward leaning might not be assumed by healthy subjects during situations of augmented respiratory demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD.

    PubMed

    O'Donnell, D E; Flüge, T; Gerken, F; Hamilton, A; Webb, K; Aguilaniu, B; Make, B; Magnussen, H

    2004-06-01

    The aim of this study was to test the hypothesis that use of tiotropium, a new long-acting anticholinergic bronchodilator, would be associated with sustained reduction in lung hyperinflation and, thereby, would improve exertional dyspnoea and exercise performance in patients with chronic obstructive pulmonary disease. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 187 patients (forced expiratory volume in one second 44 +/- 13% pred): 96 patients received 18 microg tiotropium and 91 patients received placebo once daily for 42 days. Spirometry, plethysmographic lung volumes, cycle exercise endurance and exertional dyspnoea intensity at 75% of each patient's maximal work capacity were compared. On day 42, the use of tiotropium was associated with the following effects at pre-dose and post-dose measurements as compared to placebo: vital capacity and inspiratory capacity (IC) increased, with inverse decreases in residual volume and functional residual capacity. Tiotropium increased post-dose exercise endurance time by 105 +/- 40 s (21%) as compared to placebo on day 42. At a standardised time near end-exercise (isotime), IC, tidal volume and minute ventilation all increased, whilst dyspnoea decreased by 0.9 +/- 0.3 Borg scale units. In conclusion, the use of tiotropium was associated with sustained reductions of lung hyperinflation at rest and during exercise. Resultant increases in inspiratory capacity permitted greater expansion of tidal volume and contributed to improvements in both exertional dyspnoea and exercise endurance.

  19. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study.

    PubMed

    Gorostegi-Anduaga, Ilargi; Corres, Pablo; MartinezAguirre-Betolaza, Aitor; Pérez-Asenjo, Javier; Aispuru, G Rodrigo; Fryer, Simon M; Maldonado-Martín, Sara

    2018-03-01

    Background Both exercise training and diet are recommended to prevent and control hypertension and overweight/obesity. Purpose The purpose of this study was to determine the effectiveness of different 16-week aerobic exercise programmes with hypocaloric diet on blood pressure, body composition, cardiorespiratory fitness and pharmacological treatment. Methods Overweight/obese, sedentary participants ( n = 175, aged 54.0 ± 8.2 years) with hypertension were randomly assigned into an attention control group (physical activity recommendations) or one of three supervised exercise groups (2 days/week: high-volume with 45 minutes of moderate-intensity continuous training (MICT), high-volume and high-intensity interval training (HIIT), alternating high and moderate intensities, and low-volume HIIT (20 minutes)). All variables were assessed pre- and post-intervention. All participants received the same hypocaloric diet. Results Following the intervention, there was a significant reduction in blood pressure and body mass in all groups with no between-group differences for blood pressure. However, body mass was significantly less reduced in the attention control group compared with all exercise groups (attention control -6.6%, high-volume MICT -8.3%, high-volume HIIT -9.7%, low-volume HIIT -6.9%). HIIT groups had significantly higher cardiorespiratory fitness than high-volume MICT, but there were no significant between-HIIT differences (attention control 16.4%, high-volume MICT 23.6%, high-volume HIIT 36.7%, low-volume HIIT 30.5%). Medication was removed in 7.6% and reduced in 37.7% of the participants. Conclusions The combination of hypocaloric diet with supervised aerobic exercise 2 days/week offers an optimal non-pharmacological tool in the management of blood pressure, cardiorespiratory fitness and body composition in overweight/obese and sedentary individuals with hypertension. High-volume HIIT seems to be better for reducing body mass compared with low-volume HIIT. The exercise-induced improvement in cardiorespiratory fitness is intensity dependent with low-volume HIIT as a time-efficient method in this population. ClinicalTrials.gov Registration: NCT02283047.

  20. 16 Weeks of Training with the International Space Station Advanced Resistive Exercise Device (aRED) Is not Different than Training with Free Weights

    NASA Technical Reports Server (NTRS)

    Loehr, J. A.; Lee, S. M. C.; English, K. E.; Leach, M.; Bentley, J.; Nash, R.; Hagan, R. D.

    2008-01-01

    The advanced Resistive Exercise Device (aRED) is a resistive exercise system designed to maintain muscle mass and strength in microgravity by simulating free weight (FW) exercise. aRED utilizes vacuum cylinders and inertial flywheels to replicate the constant mass and inertial components, respectively, of FW exercise in normal gravity. PURPOSE: To compare the effectiveness of aRED and FW resistive exercise training in ambulatory subjects. METHODS: Untrained subjects were assigned to two groups, FW (6 males, 3 females) and aRED (8 males, 3 females), and performed squat (SQ), heel raise (HR), and deadlift (DL) exercises 3 d wk-1 for 16 wks. SQ, HR and DL strength (1RM) were measured using FW hardware pre-, mid- and post-training. Subjects participated in a periodized training protocol with the exercise prescription based on a percentage of 1RM. Thigh and lower leg muscle volume were assessed using Magnetic Resonance Imaging (MRI), and leg (LLM) and total body lean mass (BLM) were measured using Dual Energy X-ray Absorptiometry (DXA) pre- and post-training. RESULTS: SQ 1RM increased in both FW (48.9+/-6.1%) and aRED (31.2+/-3.8%) groups, and there was a greater training response in FW compared with aRED (p=0.01). HR and DL 1RM increased in FW (HR: 12.3+/-2.4%, DL: 23.3+/-4.4%) and aRED (HR: 18.0+/-1.6%, DL: 23.2+'-2.8%), but there were no differences between groups. Thigh muscle volume was greater following training in both groups (FW: 9.8+/-0.9%, aRED: 7.1+/-1.2%) but lower leg muscle volume increased only in the FW group (3.0+/-1.1%). Lean tissue mass increased in both FW (LLM: 3.9+/-1.1%, BLM: 2.5+/-0.7%) and aRED (LLM: 4.8+/-0.7%, BLM: 2.6 0.7%). There were no between group differences in muscle volume or lean mass in response to training. CONCLUSIONS: In general, the increase in muscle strength, muscle volume, and lean tissue mass when training with aRED was not different than when using the same training protocol with FW. The smaller increase in SQ 1RM in the aRED group may be the result of undersizing the aRED flywheels which were intended to mimic the inertial component of the SQ movement when performing FW exercises. However, the biomechanical differences observed in body position during the performance of the aRED SQ, which may have affected training and testing, cannot be excluded as a factor that may have affected SQ 1RM results. PRACTICAL APPLICATIONS: Improvements in muscle strength, muscle volume and lean mass similar to FW exercise training may be elicited using an alternative source of resistance during exercise training. The acceleration of a mass during resistive exercise may result in greater muscle tension when changing the direction of movement resulting in enhanced strength gains. Therefore, to maximize the benefits of resistive exercise, the inertial components of FW exercise should be considered during exercise selection and hardware design. ACKNOWLEDGEMENT: This investigation was supported by NASA-JSC s Exercise Countermeasures Project.

  1. Exercise order affects the total training volume and the ratings of perceived exertion in response to a super-set resistance training session

    PubMed Central

    Balsamo, Sandor; Tibana, Ramires Alsamir; Nascimento, Dahan da Cunha; de Farias, Gleyverton Landim; Petruccelli, Zeno; de Santana, Frederico dos Santos; Martins, Otávio Vanni; de Aguiar, Fernando; Pereira, Guilherme Borges; de Souza, Jéssica Cardoso; Prestes, Jonato

    2012-01-01

    The super-set is a widely used resistance training method consisting of exercises for agonist and antagonist muscles with limited or no rest interval between them – for example, bench press followed by bent-over rows. In this sense, the aim of the present study was to compare the effects of different super-set exercise sequences on the total training volume. A secondary aim was to evaluate the ratings of perceived exertion and fatigue index in response to different exercise order. On separate testing days, twelve resistance-trained men, aged 23.0 ± 4.3 years, height 174.8 ± 6.75 cm, body mass 77.8 ± 13.27 kg, body fat 12.0% ± 4.7%, were submitted to a super-set method by using two different exercise orders: quadriceps (leg extension) + hamstrings (leg curl) (QH) or hamstrings (leg curl) + quadriceps (leg extension) (HQ). Sessions consisted of three sets with a ten-repetition maximum load with 90 seconds rest between sets. Results revealed that the total training volume was higher for the HQ exercise order (P = 0.02) with lower perceived exertion than the inverse order (P = 0.04). These results suggest that HQ exercise order involving lower limbs may benefit practitioners interested in reaching a higher total training volume with lower ratings of perceived exertion compared with the leg extension plus leg curl order. PMID:22371654

  2. Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Exercise within a lower body negative pressure (LBNP) chamber in supine posture was compared with similar exercise against Earth's gravity (without LBNP) in upright posture in nine healthy male volunteers. We measured footward force with a force plate, pressure in soleus and tibialis anterior muscles of the leg with transducer-tipped catheters, calf volume by strain gauge plethysmography, heart rate, and systolic and diastolic blood pressures during two conditions: 1) exercise in supine posture within an LBNP chamber during 100-mmHg LBNP (exercise-LBNP) and 2) exercise in upright posture against Earth's gravity without LBNP (exercise-1 G). Subjects exercised their ankle joints (dorsi- and plantarflexions) for 5 min during exercise-LBNP and for 5 min during exercise-1 G. Mean footward force produced during exercise-LBNP (743 +/- 37 N) was similar to that produced during exercise-1 G (701 +/- 24 N). Peak contraction pressure in the antigravity soleus muscle during exercise-LBNP (115 +/- 10 mmHg) was also similar to that during exercise-1 G (103 +/- 13 mmHg). Calf volume increased significantly by 3.3 +/- 0.5% during exercise-LBNP compared with baseline values. Calf volume did not increase significantly during exercise-1 G. Heart rate was significantly higher during exercise-LBNP (99 +/- 5 beats/min) than during exercise-1 G (81 +/- 3 beats/min). These results indicate that exercise in supine posture within an LBNP chamber can produce similar musculoskeletal stress in the legs and greater systemic cardiovascular stress than exercise in the upright posture against Earth's gravity.

  3. Low Volume Aerobic Training Heightens Muscle Deoxygenation in Early Post-Angina Pectoris Patients.

    PubMed

    Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to investigate the effect of low volume aerobic exercise training on muscle O2 dynamics during exercise in early post-angina pectoris (AP) patients, as a pilot study. Seven AP patients (age: 72 ± 6 years) participated in aerobic exercise training for 12 weeks. Training consisted of continuous cycling exercise for 30 min at the individual's estimated lactate threshold, and the subjects trained for 15 ± 5 exercise sessions over 12 weeks. Before and after training, the subjects performed ramp cycling exercise until exhaustion. Muscle O2 saturation (SmO2) and relative changes from rest in deoxygenated hemoglobin concentration (∆Deoxy-Hb) and total hemoglobin concentration (∆Total-Hb) were monitored at the vastus lateralis by near infrared spatial resolved spectroscopy during exercise. The SmO2 was significantly lower and ∆Deoxy-Hb was significantly higher after training than before training, while there were no significant changes in ∆Total-Hb. These results indicated that muscle deoxygenation and muscle O2 extraction were potentially heightened by aerobic exercise training in AP patients, even though the exercise training volume was low.

  4. Dehydration reduces left ventricular filling at rest and during exercise independent of twist mechanics.

    PubMed

    Stöhr, Eric J; González-Alonso, José; Pearson, James; Low, David A; Ali, Leena; Barker, Horace; Shave, Rob

    2011-09-01

    The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO₂max): 58 ± 7 ml·kg⁻¹·min⁻¹] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.

  5. [Effects of breathing exercises on breathing pattern and thoracoabdominal motion after gastroplasty].

    PubMed

    Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco

    2010-01-01

    To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.

  6. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    PubMed Central

    Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.

    2010-01-01

    Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498

  7. Ventilatory responses to exercise training in obese adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2012-10-15

    The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Telephone Equipment Installation and Repair Specialist (AFSC 36254).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This document contains the four volumes of an Air Force correspondence course in telephone equipment installation and repair. Each volume consists of student learning objectives, information, exercises, and answers to exercises; a volume review exercise is included for each volume. The first volume includes information about career field duties…

  9. Cardiovascular Effects of 1 Year of Alagebrium and Endurance Exercise Training in Healthy Older Individuals

    PubMed Central

    Fujimoto, Naoki; Hastings, Jeffrey L.; Carrick-Ranson, Graeme; Shafer, Keri M.; Shibata, Shigeki; Bhella, Paul S.; Abdullah, Shuaib M.; Barkley, Kyler W.; Adams-Huet, Beverley; Boyd, Kara N.; Livingston, Sheryl A.; Palmer, Dean; Levine, Benjamin D.

    2014-01-01

    Background Lifelong exercise training maintains a youthful compliance of the left ventricle (LV), whereas a year of exercise training started later in life fails to reverse LV stiffening, possibly because of accumulation of irreversible advanced glycation end products. Alagebrium breaks advanced glycation end product crosslinks and improves LV stiffness in aged animals. However, it is unclear whether a strategy of exercise combined with alagebrium would improve LV stiffness in sedentary older humans. Methods and Results Sixty-two healthy subjects were randomized into 4 groups: sedentary+placebo; sedentary+alagebrium (200 mg/d); exercise+placebo; and exercise+alagebrium. Subjects underwent right heart catheterization to define LV pressure–volume curves; secondary functional outcomes included cardiopulmonary exercise testing and arterial compliance. A total of 57 of 62 subjects (67±6 years; 37 f/20 m) completed 1 year of intervention followed by repeat measurements. Pulmonary capillary wedge pressure and LV end-diastolic volume were measured at baseline, during decreased and increased cardiac filling. LV stiffness was assessed by the slope of LV pressure–volume curve. After intervention, LV mass and end-diastolic volume increased and exercise capacity improved (by ≈8%) only in the exercise groups. Neither LV mass nor exercise capacity was affected by alagebrium. Exercise training had little impact on LV stiffness (training×time effect, P=0.46), whereas alagebrium showed a modest improvement in LV stiffness compared with placebo (medication×time effect, P=0.04). Conclusions Alagebrium had no effect on hemodynamics, LV geometry, or exercise capacity in healthy, previously sedentary seniors. However, it did show a modestly favorable effect on age-associated LV stiffening. PMID:24130005

  10. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in Healthy Older Adults

    PubMed Central

    Nagamatsu, Lindsay S.; Weinstein, Andrea M.; Erickson, Kirk I.; Fanning, Jason; Awick, Elizabeth A.; Kramer, Arthur F.; McAuley, Edward

    2015-01-01

    Background Identifying effective intervention strategies to combat age-related decline in mobility and brain health is a priority. The primary aim of our study was to examine whether 12 months of aerobic training (AT) versus balance and toning (BAT) exercises moderates the relationship between change in mobility and change in basal ganglia volume in older adults. Design Secondary analysis of a randomized controlled trial. Setting Champaign-Urbana, Illinois. Participants Community-dwelling older adults (N = 101; mean age = 66.41 years) Intervention 12-month exercise trial with two groups: AT and BAT. Measurements Mobility was assessed by the Timed Up and Go (TUG) test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted MR images using FIRST. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Results Exercise mode significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume; however, those who declined in mobility levels significantly decreased in left putamen volume. Conclusion Our primary finding that older adults who engage in 12 months of balance and tone training and improve mobility exhibit maintenance of brain volume in a key region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. PMID:26782858

  12. Creatine Kinase Activity Weakly Correlates to Volume Completed Following Upper Body Resistance Exercise

    ERIC Educational Resources Information Center

    Machado, Marco; Willardson, Jeffrey M.; Silva, Dailson P.; Frigulha, Italo C.; Koch, Alexander J.; Souza, Sergio C.

    2012-01-01

    In the current study, we examined the relationship between serum creatine kinase (CK) activity following upper body resistance exercise with a 1- or 3-min rest between sets. Twenty men performed two sessions, each consisting of four sets with a 10-repetition maximum load. The results demonstrated significantly greater volume for the 3-min…

  13. Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control.

    PubMed

    Wood, Helen E; Mitchell, Gordon S; Babb, Tony G

    2009-09-30

    Small increases in external dead space (V(D)) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased V(D) and STM. Men were studied at rest and during cycle exercise (10-50W) without (Control) and with added V(D) (200-600ml). With added V(D), V(T) increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, V(T) increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and V(D) on mean inspiratory flow indicated that the augmented exercise ventilatory response with added V(D) (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased V(D) and STM.

  14. The connection between chronic obstructive pulmonary disease symptoms and hyperinflation and its impact on exercise and function.

    PubMed

    Cooper, Christopher B

    2006-10-01

    Forced expiratory volume in 1 second (FEV1) has served as an important diagnostic measurement of chronic obstructive pulmonary disease (COPD) but has not been found to correlate with patient-centered outcomes such as exercise tolerance, dyspnea, or health-related quality of life. It has not helped us understand why some patients with severe FEV1 impairment have better exercise tolerance compared with others with similar FEV1 values. Hyperinflation, or air trapping caused by expiratory flow limitation, causes operational lung volumes to increase and even approach the total lung capacity (TLC) during exercise. Some study findings suggest that a dyspnea limit is reached when the end-inspiratory lung volume encroaches within approximately 500 mL of TLC. The resulting limitation in daily physical activity establishes a cycle of decline that includes physical deconditioning (elevated blood lactic acid levels at lower levels of exercise) and worsening dyspnea. Hyperinflation is reduced by long-acting bronchodilators that reduce airways resistance. The deflation of the lungs, in turn, results in an increased inspiratory capacity. For example, the once-daily anticholinergic bronchodilator tiotropium increases inspiratory capacity, 6-minute walk distance, and cycle exercise endurance time, and it decreases isotime fatigue or dyspnea. Pulmonary rehabilitation and oxygen therapy both reduce ventilatory requirements and improve breathing efficiency, thereby reducing hyperinflation and improving exertional dyspnea. Thus, hyperinflation is directly associated with patient-centered outcomes such as dyspnea and exercise limitation. Furthermore, therapeutic interventions--including pharmacotherapy and lung volume--reduction surgery--that reduce hyperinflation improve these outcomes.

  15. Effects of posture on exercise performance - Measurement by systolic time intervals.

    NASA Technical Reports Server (NTRS)

    Spodick, D. H.; Quarry-Pigott, V. M.

    1973-01-01

    Because posture significantly influences cardiac performance, the effects of moderate supine and upright ergometer exercise were compared on the basis of proportional (+37%) rate increments over resting control. Supine exercise produced significant decreases in left ventricular ejection time (LVET), pre-ejection period (PEP), and isovolumic contraction time (IVCT). Ejection time index (ETI) and corrected ejection time (LVETc) did not change significantly. Upright exercise produced greater decreases in PEP and LVET, but despite the rate increase there was no change in LVET, which resulted in sharp increases in ETI and LVETc. The discordant directional effects on LVET and its rate-correcting indices between the two postures were consistent with hemodynamic studies demonstrating lack of stroke volume change during supine exercise and increased stroke volume over control during light to moderate upright exercise.

  16. The dose-response effects of aerobic exercise on musculoskeletal injury: a post hoc analysis of a randomized trial.

    PubMed

    Brown, Justin C; Schmitz, Kathryn H

    2017-01-01

    In a post hoc analysis, we quantified the risk of musculoskeletal injury (MSI) associated with different volumes of aerobic exercise in a randomized trial. Premenopausal women (n = 119) were randomized to one of three groups: low-dose aerobic exercise (150 min·per week), high-dose aerobic exercise (300 min·per week) or control (usual activity) for 5 months. Compared to the control group, the risk of reporting an acute MSI increased with higher volumes of aerobic exercise, with a similar pattern observed for recurrent MSI. The risk of reporting an MSI severe enough to impair activities of daily living did not increase with higher volumes of aerobic exercise. Approximately half of MSI were causally attributed to aerobic exercise. The risk of experiencing an acute or recurrent MSI increases with higher volumes of aerobic exercise; however, the risk of experiencing an MSI severe enough to impair activities of daily living does not increase with higher volumes of aerobic exercise.

  17. Reciprocal effects of treatment-induced increases in exercise and improved eating, and their psychosocial correlates, in obese adults seeking weight loss: a field-based trial.

    PubMed

    Annesi, James J; Porter, Kandice J

    2013-12-05

    A better understanding of interrelations of exercise and improved eating, and their psychosocial correlates of self-efficacy, mood, and self-regulation, may be useful for the architecture of improved weight loss treatments. Theory-based research within field settings, with samples possessing high probabilities of health risks, might enable rapid application of useful findings. Adult volunteers with severe obesity (body mass index [BMI] 35-50 kg/m²; age = 43.0 ± 9.5 y; 83% female) were randomly assigned to six monthly cognitive-behavioral exercise support sessions paired with either group-based nutrition education (n = 145) or cognitive behavioral methods applied to improved eating (n = 149). After specification of mediation models using a bias-corrected bootstrapping procedure, a series of reciprocal effects analyses assessed: a) the reciprocal effects of changes in exercise and fruit and vegetable intake, resulting from the treatments, b) the reciprocal effects of changes in the three psychosocial variables tested (i.e. self-efficacy, mood, and self-regulation) and fruit and vegetable change, resulting from change in exercise volume, and c) the reciprocal effects of changes in the three psychosocial variables and exercise change, resulting from change in fruit and vegetable intake. Mediation analyses suggested a reciprocal effect between changes in exercise volume and fruit and vegetable intake. After inclusion of psychosocial variables, also found were reciprocal effects between change in fruit and vegetable intake and change in mood, self-efficacy for controlled eating, and self-regulation for eating; and change in exercise volume and change in mood and exercise-related self-regulation. Findings had implications for behavioral weight-loss theory and treatment. Specifically, results suggested that treatments should focus upon, and leverage, the transfer effects from each of the primary weight-loss behaviors (exercise and healthy eating) to the other. Findings on psychosocial correlates of these behavioral processes may also have practical applications.

  18. The Effect of Two Different Hand Exercises on Grip Strength, Forearm Circumference, and Vascular Maturation in Patients Who Underwent Arteriovenous Fistula Surgery

    PubMed Central

    Kong, Sangwon; Lee, Kyung Soo; Kim, Junho

    2014-01-01

    Objective To compare the effect of two different hand exercises on hand strength and vascular maturation in patients who underwent arteriovenous fistula surgery. Methods We recruited 18 patients who had chronic kidney disease and had undergone arteriovenous fistula surgery for hemodialysis. After the surgery, 10 subjects performed hand-squeezing exercise with GD Grip, and other 8 subjects used Soft Ball. The subjects continued the exercises for 4 weeks. The hand grip strength, pinch strength (tip, palmar and lateral pinch), and forearm circumference of the subjects were assessed before and after the hand-squeezing exercise. The cephalic vein size, blood flow velocity and volume were also measured by ultrasonography in the operated limb. Results All of the 3 types of pinch strengths, grip strength, and forearm circumference were significantly increased in the group using GD Grip. Cephalic vein size and blood flow volume were also significantly increased. However, blood flow velocity showed no difference after the exercise. The group using Soft Ball showed a significant increase in the tip and lateral pinch strength and forearm circumference. The cephalic vein size and blood flow volume were also significantly increased. On comparing the effect of the two different hand exercises, hand-squeezing exercise with GD Grip had a significantly better effect on the tip and palmar pinch strength than hand-squeezing exercise with Soft Ball. The effect on cephalic vein size was not significantly different between the two groups. Conclusion The results showed that hand squeezing exercise with GD Grip was more effective in increasing the tip and palmar pinch strength compared to hand squeezing exercise with soft ball. PMID:25379494

  19. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Greene, E. R.; Hoekenga, D. E.; Caprihan, A.; Luft, U. C.

    1981-01-01

    The instantaneous stroke volume (SV) and cardiac output (Q) in eight male subjects during steady-state supine (S) and upright (U) exercises at 300 kpm/min is assessed by a 3.0-MHz pulsed Doppler echocardiograph. The mean transients in heart rate (HR), SV, and Q for each posture were determined and the center-line blood velocities obtained in the ascending aorta. Results show that the mean supine values for SV and Q at rest and exercise were 111 ml and 6.4 l/min and 112 ml and 9.7 l/min, respectively. The corresponding results for U were 76 ml and 5.6 l/min and 92 ml and 8.4 l/min, respectively. The values compare favorably with previous studies utilizing invasive procedures. The transient response of Q following the onset of exercise in U was about twice as fast as in S because of the rapid and almost immediate upsurge in SV. The faster rise in aortic flow in U with exercise represented and additional volume (184 ml) of blood passing through the aorta compared with S in the first 20 exercises. It is suggested that the rapid mobilization of pooled venous blood from the leg veins during U was responsible for the increased blood flow.

  20. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  2. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    PubMed Central

    Anand, R.

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116

  3. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial.

    PubMed

    Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.

  4. Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.

  5. Temporal dynamics of the circadian heart rate following low and high volume exercise training in sedentary male subjects.

    PubMed

    Jelinek, Herbert F; Karmakar, C; Kiviniemi, A M; Hautala, A J; Tulppo, M P; Mäkikallio, T H; Huikuri, H V; Khandoker, A H; Palaniswami, M

    2015-10-01

    Increased risk of arrhythmic events occurs at certain times during the circadian cycle with the highest risk being in the second and fourth quarter of the day. Exercise improves treatment outcome in individuals with cardiovascular disease. How different exercise protocols affect the circadian rhythm and the associated decrease in adverse cardiovascular risk over the circadian cycle has not been shown. Fifty sedentary male participants were randomized into an 8-week high volume and moderate volume training and a control group. Heart rate was recorded using Polar Electronics and investigated with Cosinor analysis and by Poincaré plot derived features of SD1, SD2 and the complex correlation measure (CCM) at 1-h intervals over the 24-h period. Moderate exercise significantly increased vagal modulation and the temporal dynamics of the heart rate in the second quarter of the circadian cycle (p = 0.004 and p = 0.007 respectively). High volume exercise had a similar effect on vagal output (p = 0.003) and temporal dynamics (p = 0.003). Cosinor analysis confirms that the circadian heart rate displays a shift in the acrophage following moderate and high volume exercise from before waking (1st quarter) to after waking (2nd quarter of day). Our results suggest that exercise shifts vagal influence and increases temporal dynamics of the heart rate to the 2nd quarter of the day and suggest that this may be the underlying physiological change leading to a decrease in adverse arrhythmic events during this otherwise high-risk period.

  6. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    NASA Astrophysics Data System (ADS)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  7. Low-Volume Intense Exercise Elicits Post-exercise Hypotension and Subsequent Hypervolemia, Irrespective of Which Limbs Are Exercised.

    PubMed

    Graham, Matthew J; Lucas, Samuel J E; Francois, Monique E; Stavrianeas, Stasinos; Parr, Evelyn B; Thomas, Kate N; Cotter, James D

    2016-01-01

    Exercise reduces arterial and central venous blood pressures during recovery, which contributes to its valuable anti-hypertensive effects and to facilitating hypervolemia. Repeated sprint exercise potently improves metabolic function, but its cardiovascular effects (esp. hematological) are less well-characterized, as are effects of exercising upper versus lower limbs. The purposes of this study were to identify the acute (<24 h) profiles of arterial blood pressure and blood volume for (i) sprint intervals versus endurance exercise, and (ii) sprint intervals using arms versus legs. Twelve untrained males completed three cycling exercise trials; 50-min endurance (legs), and 5(*)30-s intervals using legs or arms, in randomized and counterbalanced sequence, at a standardized time of day with at least 8 days between trials. Arterial pressure, hemoglobin concentration and hematocrit were measured before, during and across 22 h after exercise, the first 3 h of which were seated rest. The post-exercise hypotensive response was larger after leg intervals than endurance (AUC: 7540 ± 3853 vs. 3897 ± 2757 mm Hg·min, p = 0.049, 95% CI: 20 to 6764), whereas exercising different limbs elicited similar hypotension (arms: 6420 ± 3947 mm Hg·min, p = 0.48, CI: -1261 to 3896). In contrast, arterial pressure at 22 h was reduced after endurance but not after leg intervals (-8 ± 8 vs. 0 ± 7 mm Hg, p = 0.04, CI: 7 ± 7) or reliably after arm intervals (-4 ± 8 mm Hg, p = 0.18 vs. leg intervals). Regardless, plasma volume expansion at 22 h was similar between leg intervals and endurance (both +5 ± 5%; CI: -5 to 5%) and between leg and arm intervals (arms: +5 ± 7%, CI: -8 to 5%). These results emphasize the relative importance of central and/or systemic factors in post-exercise hypotension, and indicate that markedly diverse exercise profiles can induce substantive hypotension and subsequent hypervolemia. At least for endurance exercise, this hypervolemia may not depend on the volume of post-exercise hypotension. Finally, endurance exercise led to reduced blood pressure the following day, but sprint interval exercise did not.

  8. The effects of volume versus intensity of long-term voluntary exercise on physiology and behavior in C57/Bl6 mice.

    PubMed

    Robison, Lisa S; Popescu, Dominique L; Anderson, Maria E; Beigelman, Steven I; Fitzgerald, Shannon M; Kuzmina, Antonina E; Lituma, David A; Subzwari, Sarima; Michaelos, Michalis; Anderson, Brenda J; Van Nostrand, William E; Robinson, John K

    2018-06-04

    Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits. Copyright © 2018. Published by Elsevier Inc.

  9. Blood Volume: Its Adaptation to Endurance Training

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Expansion of blood volume (hypervolemia) has been well documented in both cross-sectional and longitudinal studies as a consequence of endurance exercise training. Plasma volume expansion can account for nearly all of the exercise-induced hypervolemia up to 2-4 wk; after this time expansion may be distributed equally between plasma and red cell volumes. The exercise stimulus for hypervolemia has both thermal and nonthermal components that increase total circulating plasma levels of electrolytes and proteins. Although protein and fluid shifts from the extravascular to intravascular space may provide a mechanism for rapid hypervolemia immediately after exercise, evidence supports the notion that chronic hypervolemia associated with exercise training represents a net expansion of total body water and solutes. This net increase of body fluids with exercise training is associated with increased water intake and decreased urine volume output. The mechanism of reduced urine output appears to be increased renal tubular reabsorption of sodium through a more sensitive aldosterone action in man. Exercise training-induced hypervolemia appears to be universal among most animal species, although the mechanisms may be quite different. The hypervolemia may provide advantages of greater body fluid for heat dissipation and thermoregulatory stability as well as larger vascular volume and filling pressure for greater cardiac stroke volume and lower heart rates during exercise.

  10. Reciprocal effects of treatment-induced increases in exercise and improved eating, and their psychosocial correlates, in obese adults seeking weight loss: a field-based trial

    PubMed Central

    2013-01-01

    Background A better understanding of interrelations of exercise and improved eating, and their psychosocial correlates of self-efficacy, mood, and self-regulation, may be useful for the architecture of improved weight loss treatments. Theory-based research within field settings, with samples possessing high probabilities of health risks, might enable rapid application of useful findings. Methods Adult volunteers with severe obesity (body mass index [BMI] 35–50 kg/m2; age = 43.0 ± 9.5 y; 83% female) were randomly assigned to six monthly cognitive-behavioral exercise support sessions paired with either group-based nutrition education (n = 145) or cognitive behavioral methods applied to improved eating (n = 149). After specification of mediation models using a bias-corrected bootstrapping procedure, a series of reciprocal effects analyses assessed: a) the reciprocal effects of changes in exercise and fruit and vegetable intake, resulting from the treatments, b) the reciprocal effects of changes in the three psychosocial variables tested (i.e. self-efficacy, mood, and self-regulation) and fruit and vegetable change, resulting from change in exercise volume, and c) the reciprocal effects of changes in the three psychosocial variables and exercise change, resulting from change in fruit and vegetable intake. Results Mediation analyses suggested a reciprocal effect between changes in exercise volume and fruit and vegetable intake. After inclusion of psychosocial variables, also found were reciprocal effects between change in fruit and vegetable intake and change in mood, self-efficacy for controlled eating, and self-regulation for eating; and change in exercise volume and change in mood and exercise-related self-regulation. Conclusion Findings had implications for behavioral weight-loss theory and treatment. Specifically, results suggested that treatments should focus upon, and leverage, the transfer effects from each of the primary weight-loss behaviors (exercise and healthy eating) to the other. Findings on psychosocial correlates of these behavioral processes may also have practical applications. PMID:24308572

  11. Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats.

    PubMed

    Boldt, Kevin Rudi; Rios, Jaqueline Lourdes; Joumaa, Venus; Herzog, Walter

    2018-05-03

    The positive effects of chronic endurance exercise training on health and performance have been well documented. These positive effects have been evaluated primarily at the structural level, and work has begun to evaluate mechanical adaptations of the myocardium. However, it remains poorly understood how the volume of exercise training affects cardiac adaptation. In order to gain some understanding, we subjected three-month-old Sprague-Dawley rats (N=23) to treadmill running for eleven weeks at one of three exercise volumes (moderate, high, and extra high). Following training, hearts were excised and mechanical testing was completed on skinned trabecular fiber bundles. Performance on a maximal fitness test was dose-dependent upon training volume, where greater levels of training led to greater performance. No differences were observed between animals from any group for active stress production. Heart mass and passive stress increases in a dose-dependent manner for animals in the control, moderate, and high duration groups. However, hearts from animals in the extra high duration group presented with inhibited responses for heart mass and passive stress, despite performing greatest on a graded treadmill fitness test. These results suggest that heart mass and passive stress adapt in a dose-dependent manner, until exercise becomes excessive and adaptation is inhibited. Our findings are in agreement with the beneficial role exercise has in cardiac adaptation. However, excessive exercise comes with risks of maladaptation which must be weighed against the desire to increase performance.

  12. Beat by beat stroke volume assessment by PDE in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 3.0 MHz pulse Doppler echocardiograph was used to estimate instantaneous stroke volume and cardiac output in 8 men during steady state supine and upright exercise at 300 kpm/min which were compared with other studies utilizing invasive procedures. The mean transients in heart rate and stroke volume and cardiac output for the first 20 sec of exercise in each posture were then determined. Centerline blood velocities were obtained in the ascending aorta with the transducer positioned manually in the suprasternal notch. Mean supine values for stroke volume and cardiac output at rest and exercise were 111 (6.4) and 112 ml (9.7 L/min), respectively, for supine. The corresponding results for upright were 76 (5.6) and 92 ml (8.4 L/min). These values compare favorably with prior studies. The transient response of cardiac output following the onset of upright was about twice as fast as in S because of the rapid and almost immediate upsurge in stroke volume. In supine, only heart rate served to augment cardiac output as stroke volume initially fell. The faster initial aortic flow in upright must represent the rapid mobilization of pooled venous blood from the leg veins which more than accounts for the additional volume (184 ml) of blood passing through the aorta during upright compared with supine in the first 20 sec.

  13. Exercise, exercise training, and the immune system. A compendium of research (1902-1991)

    NASA Technical Reports Server (NTRS)

    Hardesty, A. J.; Greenleaf, J. E.; Simonson, S.; Hu, A.; Jackson, C. G. R.

    1993-01-01

    This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of physical exercise and the human immune system. If the author's abstract or summary was appropriate, it was included. In other cases, a more detailed synopsis of the paper was prepared under the subheadings 'Purpose,' 'Methods,' 'Results,' and 'Conclusions.' Author and subject indices are provided, plus a selected bibliography of related work or those papers received after the volume was being prepared for publication. This volume includes material published from 1902 through 1991.

  14. Mathematics Technical Report: Exercise Volume. National Assessment of Educational Progress. Report No. 04-MA-20.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    Included in Chapter 1 of this report are background information on the 1972-73 mathematics assessment; details of the computational formulas used in reporting results; and explanations of the technical documentation, exercise presentation, documentation pages, scoring guides, and data tables for released and unreleased exercises. The remainder of…

  15. Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.

    PubMed Central

    Silke, B; Frais, M A; Muller, P; Verma, S P; Reynolds, G; Taylor, S H

    1985-01-01

    The circulatory consequences of slow-calcium channel blockade with a new dihydropyridine nisoldipine were evaluated at rest and during exercise-induced angina in 16 patients with angiographically proven coronary artery disease. In 10 patients resting cardiac stroke output (thermodilution) and pulmonary artery occluded pressure were determined following four intravenous nisoldipine injections (cumulative dosage of 1, 2, 4 and 8 micrograms kg-1). The exercise effects of nisoldipine were evaluated by comparing the effects of the 8 micrograms kg-1 cumulative dosage with a control exercise period at the same workload. At rest nisoldipine reduced systemic vascular resistance and mean arterial pressure, and increased heart rate, cardiac and stroke volume indices. During 4 min supine-bicycle exercise nisoldipine reduced systemic mean arterial pressure and vascular resistance; this resulted in augmented cardiac and stroke volume indices at an unchanged pulmonary artery occluded pressure. In six additional patients rest and exercise ejection fractions were measured using a nonimaging nuclear probe. Nisoldipine (4 micrograms kg-1) resulted in a small trend to increase left ventricular rest and exercise ejection fraction. These data demonstrated improved rest and exercise cardiac performance following nisoldipine in patients with severe coronary artery disease. PMID:4091998

  16. The Metabolic Cost of a High Intensity Exercise Program During Bed Rest

    NASA Technical Reports Server (NTRS)

    Hackney, Kyle; Everett, Meghan; Guined, Jamie; Cunningham, Daid

    2012-01-01

    Background: Given that disuse-related skeletal muscle atrophy may be exacerbated by an imbalance between energy intake and output, the amount of energy required to complete exercise countermeasures is an important consideration in the well being of subject health during bed rest and spaceflight. Objective: To evaluate the energy cost of a high intensity exercise program performed during short duration bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest and exercise countermeasures. Exercise energy expenditure and excess post exercise oxygen consumption (EPOC) were collected once in each of 5 different exercise protocols (30 second, 2 minute and 4 minute intervals, continuous aerobic and a variety of resistance exercises) during bed rest. Body mass, basal metabolic rate (BMR), upper and lower leg muscle, subcutaneous, and intramuscular adipose tissue (IMAT) volumes were assessed before and at the end of bed rest. Results: There were no significant differences in body mass (pre: 75.1 +/- 10.5 kg; post: 75.2 +/- 10.1 kg), BMR (pre: 1649 +/- 216 kcal; post: 1657 +/- 177 kcal), muscle subcutaneous, or IMAT volumes (Table 2) after 14 days of bed rest and exercise. Body mass was maintained with an average daily intake of 2710 +/- 262 kcal (36.2 +/- 2.1 kcal/kg/day), while average daily energy expenditure was 2579 +/-311 kcal (34.5 +/- 3.6 kcal/kg/day). Exercise energy expenditure was significantly greater as a result of continuous aerobic exercise than all other exercise protocols.

  17. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration.

    PubMed

    Evans, Gethin H; James, Lewis J; Shirreffs, Susan M; Maughan, Ronald J

    2017-04-01

    Hypohydration, or a body water deficit, is a common occurrence in athletes and recreational exercisers following the completion of an exercise session. For those who will undertake a further exercise session that day, it is important to replace water losses to avoid beginning the next exercise session hypohydrated and the potential detrimental effects on performance that this may lead to. The aim of this review is to provide an overview of the research related to factors that may affect postexercise rehydration. Research in this area has focused on the volume of fluid to be ingested, the rate of fluid ingestion, and fluid composition. Volume replacement during recovery should exceed that lost during exercise to allow for ongoing water loss; however, ingestion of large volumes of plain water results in a prompt diuresis, effectively preventing longer-term maintenance of water balance. Addition of sodium to a rehydration solution is beneficial for maintenance of fluid balance due to its effect on extracellular fluid osmolality and volume. The addition of macronutrients such as carbohydrate and protein can promote maintenance of hydration by influencing absorption and distribution of ingested water, which in turn effects extracellular fluid osmolality and volume. Alcohol is commonly consumed in the postexercise period and may influence postexercise rehydration, as will the coingestion of food. Future research in this area should focus on providing information related to optimal rates of fluid ingestion, advisable solutions to ingest during different duration recovery periods, and confirmation of mechanistic explanations for the observations outlined. Copyright © 2017 the American Physiological Society.

  18. The effects of in-flight treadmill exercise on postflight orthostatic tolerance

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F.; Charles, John B.

    1992-01-01

    In-flight aerobic exercise is thought to decrease the deconditioning effects of microgravity. Two deconditioning characteristics are the decreases in aerobic capacity (maximum O2 uptake) and an increased cardiovascular response to orthostatic stress (supine to standing). Changes in both parameters were examined after Shuttle flights of 8 to 11 days in astronauts who performed no in-flight exercise, a lower than normal volume of exercise, and a near-normal volume of exercise. The exercise regimen was a traditional continuous protocol. Maximum O2 uptake was maintained in astronauts who completed a near-normal exercise volume of in-flight exercise. Cardiovascular responses to stand test were equivocal among the groups. The use of the traditional exercise regimen as a means to maintain adequate orthostatic responses produced equivocal responses. A different exercise prescription may be more effective in maintaining both exercise capacity and orthostatic tolerance.

  19. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  20. Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?

    PubMed

    Bouwsema, Melissa M; Tedjasaputra, Vincent; Stickland, Michael K

    2017-03-01

    Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (Dl CO ) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower Dl CO , Dl CO relative to cardiac output (Dl CO /Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o 2peak ) and sixteen men (118 ± 22% predicted relative V̇o 2peak ) were matched for height and weight. Hemoglobin-corrected diffusing capacity (Dl CO ), Vc, and Dm were determined via the multiple-[Formula: see text] Dl CO technique at rest and during incremental exercise up to 90% of V̇o 2peak Both groups increased Dl CO , Vc, and Dm with exercise intensity, but women had 20% lower Dl CO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in Dl CO /Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower Dl CO , Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the Dl CO , Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (Dl CO /Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in Dl CO /Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in Dl CO , Vc, or Dm response to exercise. Copyright © 2017 the American Physiological Society.

  1. Exercise volume and aerobic fitness in young adults: the Midwest Exercise Trial-2.

    PubMed

    Schubert, Matthew M; Washburn, Richard A; Honas, Jeffery J; Lee, Jaehoon; Donnelly, Joseph E

    2016-01-01

    To examine the effect of exercise volume at a fixed intensity on changes in aerobic fitness. Ninety-two overweight/obese individuals (BMI 25-40 kg m(2)), age 18-30 years, 50 % women, completed a 10 mo, 5 d wk(-1) supervised exercise intervention at 2 levels of exercise energy expenditure (400 or 600 kcal session(-1)) at 70-80 % heart rate (HR) max. Exercise consisted primarily of walking/jogging on motor-driven treadmills. The duration and intensity of all exercise sessions were verified by a downloadable HR monitor set to collect HR in 1-min epochs. All participants were instructed to continue their typical patterns of non-exercise physical activity and dietary intake over the duration of the 10 mo intervention. Maximal aerobic capacity (indirect calorimetry) was assessed on a motor-driven treadmill using a modified Balke protocol at baseline, mid-point (5 mo), and following completion of the 10 mo intervention. VO2 max (L min(-1)) increased significantly in both the 400 (11.3 %) and 600 kcal session(-1) groups (14 %) compared to control (-2.0 %; p < 0.001); however, the differences between exercise groups were not significant. Similar results were noted for change in relative VO2 max (mL kg(-1) min(-1)); however, the magnitude of change was greater than for absolute VO2 max (L min(-1)) (400 group = 18.3 %; 600 group = 20.2 %) due to loss of body weight over the 10-mo intervention in both exercise groups. Our results indicate that exercise volume was not associated with change in aerobic fitness in a sample of previously sedentary, overweight and obese young adults.

  2. Exercise training improves breathing strategy and performance during the six-minute walk test in obese adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2014-08-15

    We aimed to examine ventilatory responses during the six-minute walk test in healthy-weight and obese adolescents before and after exercise training. Twenty obese adolescents (OB) (age: 14.5±1.7 years; BMI: 34.0±4.7kg·m(-2)) and 20 age and gender-matched healthy-weight adolescents (HW) (age: 15.5±1.5 years; BMI: 19.9±1.4kg·m(-2)) completed six-minute walk test during which breath-by-breath gas analysis and expiratory flow limitation (expFL) were measured. OB participated in a 12-week exercise-training program. Comparison between HW and OB participants showed lower distance achieved during the 6MWT in OB (-111.0m, 95%CI: -160.1 to 62.0, p<0.05) and exertional breathlessness was greater (+0.78 a.u., 95%CI: 0.091-3.27, p=0.039) when compared with HW. Obese adolescents breathed at lower lung volumes, as evidenced by lower end expiratory and end inspiratory lung volumes during exercise (p<0.05). Prevalence of expFL (8 OB vs 2 HW, p=0.028) and mean expFL (14.9±21.9 vs 5.32±14.6% VT, p=0.043, in OB and HW) were greater in OB. After exercise training, mean increase in the distance achieved during the 6MWT was 64.5 meters (95%CI: 28.1-100.9, p=0.014) and mean decrease in exertional breathlessness was 1.62 (95%CI: 0.47-2.71, p=0.05). Obese adolescents breathed at higher lung volumes, as evidenced by the increase in end inspiratory lung volume from rest to 6-min exercise (9.9±13.4 vs 20.0±13.6%TLC, p<0.05). Improved performance was associated with improved change in end inspiratory lung volume from rest to 6-min exercise (r=0.65, p=0.025). Our results suggest that exercise training can improve breathing strategy during submaximal exercise in obese adolescents and that this increase is associated with greater exercise performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Changes in body weight, C-reactive protein, and total adiponectin in non-obese women after 12 months of a small-volume, home-based exercise program.

    PubMed

    Mediano, Mauro Felippe Felix; Neves, Fabiana Alves; Cunha, Alessandra Cordeiro de Souza Rodrigues; Souza, Erica Patricia Garcia de; Moura, Anibal Sanchez; Sichieri, Rosely

    2013-01-01

    Our objective was to evaluate the effects of small-volume, home-based exercise combined with slight caloric restriction on the inflammatory markers C-reactive protein and adiponectin. In total, 54 women were randomly assigned to one of two groups for exercise intervention: the control or home-based exercise groups. Weight, waist and hip circumferences, and inflammatory markers were measured at baseline and after 6 and 12 months. Women allocated to the home-based exercise group received a booklet explaining the physical exercises to be practiced at home at least 3 times per week, 40 minutes per session, at low-to-moderate intensity. All participants received dietary counseling aimed at reducing caloric intake by 100-300 calories per day, with a normal distribution of macro-nutrients (26-28% of energy as fat). Clinicaltrials.gov: NCT01206413 RESULTS: The home-based exercise group showed a significantly greater reduction in weight and body mass index at six months, but no difference between groups was observed thereafter. With regard to the inflammatory markers, a greater but non-statistically significant reduction was found for C-reactive protein in the home-based exercise group at six months; however, this difference disappeared after adjusting for weight change. No differences in adiponectin were found at the 6- or 12-month follow-up. Small-volume, home-based exercise did not promote changes in inflammatory markers independent of weight change.

  4. Dietary sodium and plasma volume levels with exercise.

    PubMed

    Luetkemeier, M J; Coles, M G; Askew, E W

    1997-05-01

    Sodium is the major cation of the extracellular fluid and has a potent influence on fluid movement. Sodium has been likened to a sponge that draws fluids into the extracellular space, including the plasma volume, to equalize gradients in concentration. Conventional wisdom suggests limiting dietary intake of Na+ to decrease risk of hypertension. However, there are some extreme occupational or exercise-related conditions where sweat losses are great and Na+ losses may exceed normal dietary intake. This can occur acutely such as in an ultra-endurance event or chronically as in hard manual work in the hear. In such cases, additional Na+ in the form of a higher Na+ diet or adding Na+ to beverages used for fluid replacement may be warranted. A higher Na+ diet also appears to accelerate the cardiovascular and thermoregulatory adaptations that accompany heat acclimation or short term exercise training. Saline ingestion before exercise causes an expansion of plasma volume at rest and throughout the subsequent exercise bout. This expansion of plasma volume alters cardiovascular and thermoregulatory responses to exercise in ways that may lead to beneficial changes in endurance exercise performance. Plasma volume expansion also occurs with saline infusion during exercise, but exercise performance advantages have yet to be reported. The purpose of this article is to review the literature concerning dietary sodium and its influence on fluid balance, plasma volume and thermoregulation during exercise. It contains 2 major sections. First, we will discuss manipulations in daily Na+ intake initiated before or throughout an exercise regime. Second, we will examine studies where an acute Na+ load was administered immediately before or during an exercise trial. The dependent variables that we will discuss pertain to: (i) body water compartments, i.e. plasma volume; (ii) thermoregulatory variables, i.e. core temperature and sweat rate; (iii) cardiovascular variables, i.e. heart rate and stroke volume; and (iv) performance, i.e. time trial performance and time to exhaustion. Particular attention will be given to the route by which Na+ was administered, the environmental conditions, the level of acclimation of the participants and specifics relating to Na+ administration such as the osmolality of the Na(+)-containing beverage.

  5. Plasma /Na+/, /Ca++/, and volume shifts and thermoregulation during exercise in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Stremel, R. W.; Bernauer, E. M.; Adams, W. C.; Vignau, S. R.; Brock, P. J.

    1977-01-01

    Graded-exercise experiments are conducted on six trained male runners (19-23 yr) subjected to ergometer exercise in a program consisting of 30-min resting control period, 60 min of rest or exercise at work loads that resulted in a maximal oxygen uptake equivalent to 6% (resting), 23%, 43%, and 62% of maximal oxygen uptake, followed by 30 min of recovery. The parameters measured and discussed are rectal temperature (T-re), skin temperatures at different spots, maximal oxygen uptake, plasma volume (PV), and various plasma electrolyte and protein concentrations. The objectives are to determine whether the increased T-re during progressively greater work loads are related to plasma sodium ion and calcium ion concentrations, as well as to evaluate the influence of PV shifts on the electrolyte and osmotic concentrations. The results suggest that the shift (loss) in PV accounts for the increases in the plasma constituent concentrations that result in significant correlations with T-re.

  6. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  7. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart-lung transplantation.

    PubMed Central

    Banner, N; Guz, A; Heaton, R; Innes, J A; Murphy, K; Yacoub, M

    1988-01-01

    1. Ventilatory and cardiovascular responses to the onset of voluntary and electrically induced leg exercise were studied in six patients following heart transplantation and five following heart-lung transplantation; the results were compared between the patient groups and also with responses from a group of normal subjects. 2. Oxygen consumption, carbon dioxide production and ventilation and its components were measured over two 30 s periods prior to, and two 30 s periods following, the onset of exercise. Relative changes in stroke volume and cardiac output were derived from ensemble-averaged Doppler measurements of ascending aortic blood velocity over the same 30 s periods. 3. None of the groups of subjects showed any significant differences in responses to voluntary exercise compared to electrically induced exercise of similar work pattern and intensity. 4. Compared to normal controls, the transplanted subjects showed higher resting heart rates which did not increase at the onset of exercise; stroke volume increased, but less than in the normal subjects. The resulting cardiac output increases in the transplanted subjects were minimal compared to the normal subjects. 5. Ventilation and oxygen uptake increased immediately and with similar magnitude in all three groups. 6. These results show that in the same individual it is possible to have an appropriate ventilatory response to the onset of exercise in the presumed absence of a normal corticospinal input to the exercising muscles (electrically induced exercise) and afferent neural information from the lungs and heart, and in the absence of a normal circulatory response to exercise. The mechanisms underlying this ventilatory response remain undetermined. PMID:3136247

  8. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events.

    PubMed

    Eijsvogels, Thijs M H; Molossi, Silvana; Lee, Duck-Chul; Emery, Michael S; Thompson, Paul D

    2016-01-26

    Habitual physical activity and regular exercise training improve cardiovascular health and longevity. A physically active lifestyle is, therefore, a key aspect of primary and secondary prevention strategies. An appropriate volume and intensity are essential to maximally benefit from exercise interventions. This document summarizes available evidence on the relationship between the exercise volume and risk reductions in cardiovascular morbidity and mortality. Furthermore, the risks and benefits of moderate- versus high-intensity exercise interventions are compared. Findings are presented for the general population and cardiac patients eligible for cardiac rehabilitation. Finally, the controversy of excessive volumes of exercise in the athletic population is discussed. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.

    2013-04-01

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  10. Effects of topical essential oil on exercise volume after a 12-week exercise program for women with fibromyalgia: a pilot study.

    PubMed

    Rutledge, Dana N; Jones, C Jessie

    2007-12-01

    We determined--in women with fibromyalgia (FM)--effects of essential oils used with a 12-week exercise program on exercise volume, pain, physical performance, and physical function. This was a randomized clinical trial comparing 024 essential oil with sham oil combined with exercise. SETTINGS included community sites in southern California. The study included 20 women randomized to 024 oil, 23 to sham oil. Women were trained in oil application before exercise, at bedtime on exercise days; the 12-week program included weekly group sessions with trained leaders guided by a prerecorded regimen (allowing choice of program level) plus 2 days of home exercise with the recorded regimen. Primary: Exercise volume (number of days exercised multiplied by exercise level--intensity and duration). Secondary: Pain (Brief Pain Inventory), measures of physical performance (30-second chair stands, 6-minute walk, multidimensional balance), and self-reported physical function (Composite Physical Function scale). The average participant was 54 years old, had some college education, was married, Caucasian, and minimally/mildly depressed. There was no significant difference in exercise volume between women using 024 as compared with those using sham oil after 12 weeks (depression as covariate). There were no significant group nor pre- to postexercise changes in pain intensity or interference. There were greater positive changes in 30-second chair stands, 6-minute walk distance, and multidimensional balance scores in the 024 group than in the sham group, but these were not significant. The counterirritant 024 oil was not different from the sham oil in its effect on exercise volume (frequency, exercise level--intensity and duration) for women with FM. It is unknown whether 024 actually decreases local pain when used with exercise. Increases in physical function found, while not significant, may be attributable to the exercise regimen or to the interaction of the oils and exercise regimen.

  11. MPCV Exercise Operational Volume Analysis

    NASA Technical Reports Server (NTRS)

    Godfrey, A.; Humphreys, B.; Funk, J.; Perusek, G.; Lewandowski, B. E.

    2017-01-01

    In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.

  12. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    DTIC Science & Technology

    2016-01-01

    Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 – Dry Exercise Authors...Tolerance, Part 1 – Dry Exercise 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Warkander D...exercise (60% of peak O2 consumption) on a cycle ergometer on dry land at sea level. R was such that the work of breathing per volume (volume-averaged

  13. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents.

    PubMed

    Herting, Megan M; Nagel, Bonnie J

    2012-08-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.

  14. Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents

    PubMed Central

    Herting, Megan M.; Nagel, Bonnie J.

    2012-01-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054

  15. Moderation of age, sex, and ethnicity on psychosocial predictors of increased exercise and improved eating.

    PubMed

    Annesi, James J

    2013-01-01

    Although research indicates that treatment-induced improvements in self-regulation, mood, and self-efficacy significantly predict increased exercise and improved eating, moderation by participants' personal characteristics is largely unknown. Severely obese adults (N = 414; 47% White, 53% African American) volunteered for a behavioral exercise and nutrition treatment and demonstrated significant within-group improvements in self-efficacy for exercise, self-regulation for exercise, mood, self-efficacy for controlled eating, self-regulation for controlled eating, exercise volume, and fruit and vegetable intake over 26 weeks. After testing age, sex, and race/ethnicity as possible moderators of the prediction of changes in exercise volume and fruit and vegetable consumption by changes in self-regulation, mood, and self-efficacy, only age significantly moderated change in volume of exercise. Implications for theory and treatment were discussed.

  16. Stroke Volume During Concomitant Apnea and Exercise: Influence of Gravity and Venous Return

    NASA Astrophysics Data System (ADS)

    Hoffmann, Uwe; Drager, Tobias; Steegmanns, Ansgar; Koesterer, Thomas; Linnarsson, Dag

    2008-06-01

    The responses of the cardiovascular system to intensive exercise (hiP) and combined stimuli by hiP and breath-hold (hiP-BH) for 20 s were examined during changing gravity (parabolic flight) and constant gravity (1g). The basic response to microgravity (μg) during low-intensity exercise was an increase in cardiac output (CO) and stroke volume (SV) as a result of augmented venous return. When onset of hiP was superimposed, the initial augmentation of CO and SV were increased further. In contrast, when BH was added, the increases of CO and SV were slowed. We propose that this was due to a transient increase of the pulmonary blood volume with the combination of μg and BH at large lung volume, creating a temporary imbalance between right ventricular input and left ventricular output. In addition, the BH- induced relative bradycardia may have contributed to a prolongation of the right-to- left indirect ventricular interdependence.

  17. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative pressure (-10 torr) to mimic spaceflight- related decreases in cardiac filling volumes.

  18. Exercise training hypotension - Implications for plasma volume, renin, and vasopressin

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Sciaraffa, D.; Shvartz, E.; Keil, L. C.; Brock, P. J.

    1981-01-01

    The relation of changes in plasma volume, plasma renin activity and arginine vasopressin to changes in resting blood pressure during exercise training is investigated. Resting supine, sitting, and standing systolic and fifth-phase diastolic blood pressures were measured in ten men before and after an eight-day training period on a cycle ergometer in either a hot (39.8 C) or cool (23.8 C) environment, and compared with plasma volume, renin and vasopressin levels, heart rates, maximal oxygen uptakes, rectal temperatures and sweat rates. Following acclimatization, resting supine and sitting diastolic pressures are observed to decrease by 6 and 9 mm Hg, respectively, while no significant changes are found in the diastolic pressures of the control group or the systolic pressures of either group. Resting plasma volume is found to increase by 12.2% in the controls and by 17.6% after acclimatization following the exercise training. Results suggest that the resting hypotension produced is not attributable to changes in resting plasma volume, renin or vasopressin, although heat acclimatization, which leads to large decreases in plasma volume and increases in vasopressin and renin activity, may be useful in the treatment of hypertension.

  19. A randomized trial of exercise on well-being and function following breast cancer surgery: the RESTORE trial.

    PubMed

    Anderson, Roger T; Kimmick, Gretchen G; McCoy, Thomas P; Hopkins, Judith; Levine, Edward; Miller, Gary; Ribisl, Paul; Mihalko, Shannon L

    2012-06-01

    This study aimed to determine the effect of a moderate, tailored exercise program on health-related quality of life, physical function, and arm volume in women receiving treatment for nonmetastatic breast cancer. Women who were within 4-12 weeks of surgery for stage I-III breast cancer were randomized to center-based exercise and lymphedema education intervention or patient education. Functional assessment of cancer therapy-breast cancer (FACT-B), 6-min walk, and arm volume were performed at 3-month intervals through 18 months. Repeated measures analysis of covariance was used to model the total meters walked over time, FACT-B scores, and arm volume. Models were adjusted for baseline measurement, baseline affected arm volume, number of nodes removed, age, self-reported symptoms, baseline SF-12 mental and physical component scores, visit, and treatment group. Of the recruited 104 women, 82 completed all 18 months. Mean age (range) was 53.6 (32-82) years; 88% were Caucasian; 45% were employed full time; 44% were overweight; and 28% obese. Approximately, 46% had breast-conserving surgery; 79% had axillary node dissection; 59% received chemotherapy; and 64% received radiation. The intervention resulted in an average increase of 34.3 ml (SD = 12.8) versus patient education (p = 0.01). Changes in FACT-B scores and arm volumes were not significantly different. With this early exercise intervention after breast cancer diagnosis, a significant improvement was achieved in physical function, with no decline in health-related quality of life or detrimental effect on arm volume. Starting a supervised exercise regimen that is tailored to an individual's strength and stamina within 3 months following breast cancer surgery appears safe and may hasten improvements in physical functioning.

  20. Effects of upright and supine position on cardiac rest and exercise response in aortic regurgitation.

    PubMed

    Shen, W F; Roubin, G S; Fletcher, P J; Choong, C Y; Hutton, B F; Harris, P J; Kelly, D T

    1985-02-01

    The effects of upright and supine position on cardiac response to exercise were assessed by radionuclide ventriculography in 15 patients with moderate to severe aortic regurgitation (AR) and in 10 control subjects. In patients with AR, heart rate was higher during upright exercise, but systolic and diastolic blood pressure and left ventricular (LV) output were similar during both forms of exercise. LV stroke volume and end-diastolic volume were not altered during supine exercise. LV end-systolic volume increased and ejection fraction decreased during supine exercise, but both were unchanged during upright exercise. Of 15 patients, 5 in the upright and 12 in the supine position had an abnormal LV ejection fraction response to exercise (p less than 0.01). Right ventricular ejection fraction increased and regurgitant index decreased with both forms of exercise and was not significantly different between the 2 positions. Thus, posture is important in determining LV response to exercise in patients with moderate to severe AR.

  1. Cardiovascular Effects of 1 Year of Progressive and Vigorous Exercise Training in Previously Sedentary Individuals Older Than 65 Years of Age

    PubMed Central

    Fujimoto, Naoki; Prasad, Anand; Hastings, Jeffrey L.; Arbab-Zadeh, Armin; Bhella, Paul S.; Shibata, Shigeki; Palmer, Dean; Levine, Benjamin D.

    2013-01-01

    Background Healthy but sedentary aging leads to cardiovascular stiffening, whereas life-long endurance training preserves left ventricular (LV) compliance. However, it is unknown whether exercise training started later in life can reverse the effects of sedentary behavior on the heart. Methods and Results Twelve sedentary seniors and 12 Masters athletes were thoroughly screened for comorbidities. Subjects underwent invasive hemodynamic measurements with pulmonary artery catheterization to define Starling and LV pressure-volume curves; secondary functional outcomes included Doppler echocardiography, magnetic resonance imaging assessment of cardiac morphology, arterial stiffness (total aortic compliance and arterial elastance), and maximal exercise testing. Nine of 12 sedentary seniors (70.6±3 years; 6 male, 3 female) completed 1 year of endurance training followed by repeat measurements. Pulmonary capillary wedge pressures and LV end-diastolic volumes were measured at baseline, during decreased cardiac filling with lower-body negative pressure, and increased filling with saline infusion. LV compliance was assessed by the slope of the pressure-volume curve. Before training, V̇O2max, LV mass, LV end-diastolic volume, and stroke volume were significantly smaller and the LV was less compliant in sedentary seniors than Masters athletes. One year of exercise training had little effect on cardiac compliance. However, it reduced arterial elastance and improved V̇O2 max by 19% (22.8±3.4 versus 27.2± 4.3 mL/kg/mL; P<0.001). LV mass increased (10%, 64.5±7.9 versus 71.2±12.3 g/m2; P=0.037) with no change in the mass-volume ratio. Conclusions Although 1 year of vigorous exercise training did not appear to favorably reverse cardiac stiffening in sedentary seniors, it nonetheless induced physiological LV remodeling and imparted favorable effects on arterial function and aerobic exercise capacity. PMID:20956204

  2. IMPACT OF DIET AND/OR EXERCISE INTERVENTION ON INFRAPATELLAR FAT PAD MORPHOLOGY - SECONDARY ANALYSIS FROM THE INTENSIVE DIET AND EXERCISE FOR ARTHRITIS (IDEA) TRIAL

    PubMed Central

    Murillo, A. Pogacnik; Eckstein, F.; Wirth, W.; Beavers, D.; Loeser, R. F.; Nicklas, B. J.; Mihalko, S.L.; Miller, G.D.; Hunter, D.J.; Messier, S. P.

    2017-01-01

    Objectives The infrapatellar fat pad (IPFP) represents intra-articular adipose tissue that may contribute to intra-articular inflammation and pain by secretion of pro-inflammatory cytokines. Here we examined the impact of weight loss by diet and/or exercise interventions on IPFP volume. Methods Intensive Diet and Exercise for Arthritis (IDEA) was a single-blinded, single-center, 18-month, prospective, randomized controlled trial that enrolled 454 overweight and obese older adults with knee pain and radiographic osteoarthritis. Participants were randomized to 1 of 3 groups: exercise only control (E), diet-induced weight loss (D), and diet-induced weight loss + exercise (D+E). In a subsample (n=106; E: n=36; D: n=35; D+E: n=35), magnetic resonance images were acquired at baseline and 18-month follow-up, from which we analyzed IPFP volume, surface areas and thickness in this secondary analysis. Results Average weight loss in each group amounted to 1.0% in E, 10.5% in D, and 13.0% in D+E. A significant (p< 0.01) reduction in IPFP volume was observed in E (2.1%), D (4.0%) and D+E (5.2%). The IPFP volume loss in D+E was significantly greater than that in E (p<0.05) when not adjusting for parallel comparisons. Across intervention groups, there were significant correlations between IPFP volume change, individual weight loss (r=0.40), and change in total body fat mass (DXA; r=0.44; n=88) and in subcutaneous thigh fat area (CT; r=0.32; n=82). Conclusions As a potential link between obesity and knee OA, the IPFP was sensitive to intervention by diet and/or exercise, and its reduction was correlated with change in weight and body fat. PMID:28222422

  3. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice.

    PubMed

    McCabe, Laura R; Irwin, Regina; Tekalur, Arjun; Evans, Christian; Schepper, Jonathan D; Parameswaran, Narayanan; Ciancio, Mae

    2018-03-29

    High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study.

    PubMed

    Jonasson, Lars S; Nyberg, Lars; Kramer, Arthur F; Lundquist, Anders; Riklund, Katrine; Boraxbekk, Carl-Johan

    2016-01-01

    Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64-78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher "Cognitive score," a composite including episodic memory, processing speed, updating, and executive function tasks ( p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, "Cognitive score" was related to dlPFC thickness at baseline, but changes in "Cognitive score" and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in "Cognitive score" in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why studies focusing on a narrower range of functions have sometimes reported mixed results.

  5. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study

    PubMed Central

    Jonasson, Lars S.; Nyberg, Lars; Kramer, Arthur F.; Lundquist, Anders; Riklund, Katrine; Boraxbekk, Carl-Johan

    2017-01-01

    Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64–78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher “Cognitive score,” a composite including episodic memory, processing speed, updating, and executive function tasks (p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, “Cognitive score” was related to dlPFC thickness at baseline, but changes in “Cognitive score” and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in “Cognitive score” in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why studies focusing on a narrower range of functions have sometimes reported mixed results. PMID:28149277

  6. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise

    PubMed Central

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099

  7. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise.

    PubMed

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

  8. Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice.

    PubMed

    Sack, Markus; Lenz, Jenny N; Jakovcevski, Mira; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Deussing, Jan; Bielohuby, Maximilian; Bidlingmaier, Martin; Pfister, Frederik; Stalla, Günter K; Sartorius, Alexander; Gass, Peter; Weber-Fahr, Wolfgang; Fuss, Johannes; Auer, Matthias K

    2017-10-01

    Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.

  9. The effect of climbing Mount Everest on spleen contraction and increase in hemoglobin concentration during breath holding and exercise.

    PubMed

    Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika

    2014-04-01

    Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work.

  10. High Intensity Exercise Countermeasures does not Prevent Orthostatic Intolerance Following Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Ploutz-Snyder, Lori L.; Lee, Stuart M. C.

    2014-01-01

    Approximately 20% of Space Shuttle astronauts became presyncopal during operational stand and 80deg head-up tilt tests, and the prevalence of orthostatic intolerance increases after longer missions. Greater than 60% of the US astronauts participating in Mir and early International Space Station missions experienced presyncope during post-flight tilt tests, perhaps related to limitations of the exercise hardware that prevented high intensity exercise training until later ISS missions. The objective of this study was to determine whether an intense resistive and aerobic exercise countermeasure program designed to prevent cardiovascular and musculoskeletal deconditioning during 70 d of bed rest (BR), a space flight analog, would protect against post-BR orthostatic intolerance. METHODS Twenty-six subjects were randomly assigned to one of three groups: non-exercise controls (n=11) or one of two exercise groups (ExA, n=8; ExB, n=7). Both ExA and ExB groups performed the same resistive and aerobic exercise countermeasures during BR, but one exercise group received testosterone supplementation while the other received a placebo during BR in a double-blinded fashion. On 3 d/wk, subjects performed lower body resistive exercise and 30 min of continuous aerobic exercise (=75% max heart rate). On the other 3 d/wk, subjects performed only highintensity, interval-style aerobic exercise. Orthostatic intolerance was assessed using a 15-min 80? head-up tilt test performed 2 d (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using carbon monoxide rebreathing on BR-3 and before rising on the first recovery day (BR+0). The code for the exercise groups has not been broken, and results are reported here without group identification. RESULTS Only one subject became presyncopal during tilt testing on BR-2, but 7 of 11 (63%) controls, 3 of 8 (38%) ExA, and 4 of 7 (57%) ExB subjects were presyncopal on BR70. Survival analysis of post-BR tilt tests revealed no differences (p=0.77) between groups. Plasma volume (absolute or relative to body mass index) decreased (p<0.001) from pre to post-BR, with no differences between groups. CONCLUSIONS These preliminary results corroborate previous reports that the performance of a vigorous exercise countermeasure protocol during BR, even with testosterone supplementation, does not protect against orthostatic intolerance or plasma volume loss. Preventing post-BR orthostatic intolerance may require additional countermeasures, such as orthostatic stress during BR or end-of-BR fluid infusion.

  11. Cardiac size of high-volume resistance trained female athletes: shaping the body but not the heart.

    PubMed

    Venckunas, T; Simonavicius, J; Marcinkeviciene, J E

    2016-03-01

    Introduction Exercise training, besides many health benefits, may result in cardiac remodelling which is dependent on the type and amount of exercise performed. It is not clear, however, whether significant adaptation in cardiac structure is possible in females undergoing resistance type of exercise training. Rigorous high volume training of most muscle groups emphasising resistance exercises are being undertaken by athletes of some aesthetic sports such as female fitness (light bodybuilding). The impact of this type of training on cardiac adaptation has not been investigated until now. The aim of the current study was to disclose the effect of high volume resistance training on cardiac structure and function. Methods 11 top-level female fitness athletes and 20 sedentary age-matched controls were recruited to undergo two-dimensional echocardiography. Results Cardiac structure did not differ between elite female fitness athletes and controls (p > 0.05), and fitness athletes had a tendency for a smaller (p = 0.07) left ventricular (LV) mass indexed to lean body mass. Doppler diastolic function index (E/A ratio) and LV ejection fraction were similar between the groups (p > 0.05). Conclusions Elite female fitness athletes have normal cardiac size and function that do not differ from matched sedentary controls. Consequently, as high volume resistance training has no easily observable effect on adaptation of cardiac structure, when cardiac hypertrophy is present in young resistance-trained lean female, other reasons such as inherited cardiac disease are to be considered carefully.

  12. Motivation for Different Types and Doses of Exercise During Breast Cancer Chemotherapy: a Randomized Controlled Trial.

    PubMed

    Courneya, Kerry S; Segal, Roanne J; Vallerand, James R; Forbes, Cynthia C; Crawford, Jennifer J; Dolan, Lianne B; Friedenreich, Christine M; Reid, Robert D; Gelmon, Karen; Mackey, John R; McKenzie, Donald C

    2016-08-01

    Exercise is beneficial for breast cancer patients during chemotherapy, but their motivation to perform different types and doses of exercise is unknown. The purpose of this study was to examine the anticipated and experienced motivation of breast cancer patients before and after three different exercise programs during chemotherapy. Breast cancer patients initiating chemotherapy (N = 301) were randomized to a standard dose of 25-30 min of aerobic exercise, a higher dose of 50-60 min of aerobic exercise, or a combined dose of 50-60 min of aerobic and resistance exercise. Patient preference and motivational outcomes from the theory of planned behavior (i.e., perceived benefit, enjoyment, support, difficulty, and motivation) were assessed before and after the interventions. At pre-randomization, breast cancer patients were significantly (p < 0.001) more likely to prefer the combined program (80.1 %); however, after the interventions there was a significant (p < 0.001) increase in the number of patients preferring the high volume program and having no preference. At pre-randomization, breast cancer patients anticipated more favorable motivational outcomes for the combined program and less favorable motivational outcomes for the high volume program (all p < 0.001). After the interventions, the motivational outcomes experienced exceeded the anticipated motivational outcomes significantly more in the high volume group than the standard or combined groups. Anticipated motivational outcomes for different types and doses of exercise during chemotherapy varied considerably at pre-randomization, but the motivational outcomes experienced after the three interventions were similar. Clinicians can recommend any of the three exercise interventions to breast cancer patients knowing that positive motivational outcomes will result. Clinicaltrials.gov identifier: NCT00249015 .

  13. Submaximal exercise VO2 and Qc during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Ertl, A. C.; Bernauer, E. M.

    1996-01-01

    BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p < 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p < 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.

  14. Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest

    PubMed Central

    Hastings, Jeffrey L.; Krainski, Felix; Snell, Peter G.; Pacini, Eric L.; Jain, Manish; Bhella, Paul S.; Shibata, Shigeki; Fu, Qi; Palmer, M. Dean

    2012-01-01

    This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of −6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (−10 ± 22%, P = 0.169) but not with exercise (−14 ± 43%, P = 0.047) or sedentary bed rest (−24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance. PMID:22345434

  15. Metabolic and Cardiovascular Responses to Upright Cycle Exercise with Leg Blood Flow Reduction

    PubMed Central

    Ozaki, Hayao; Brechue, William F.; Sakamaki, Mikako; Yasuda, Tomohiro; Nishikawa, Masato; Aoki, Norikazu; Ogita, Futoshi; Abe, Takashi

    2010-01-01

    The purpose of this study was to examine the metabolic and cardiovascular response to exercise without (CON) or with (BFR) restricted blood flow to the muscles. Ten young men performed upright cycle exercise at 20, 40, and 60% of maximal oxygen uptake, VO2max in both conditions while metabolic and cardiovascular parameters were determined. Pre-exercise VO2 was not different between CON and BFR. Cardiac output (Q) was similar between the two conditions as a 25% reduction in stroke volume (SV) observed in BFR was associated with a 23% higher heart rate (HR) in BFR compared to CON. As a result rate-pressure product (RPP) was higher in the BFR but there was no difference in mean arterial pressure (MAP) or total peripheral resistance (TPR). During exercise, VO2 tended to increase with BFR (~10%) at each workload. Q increased in proportion to exercise intensity and there were no differences between conditions. The increase in SV with exercise was impaired during BFR; being ~20% lower in BFR at each workload. Both HR and RPP were significantly greater at each workload with BFR. MAP and TPR were greater with BFR at 40 and 60% VO2max. In conclusion, the BFR employed impairs exercise SV but central cardiovascular function is maintained by an increased HR. BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; probably indicated by a higher energy supply and RPP. When incorporating BFR, HR and RPP may not be valid or reliable indicators of exercise intensity. Key points Blood flow reduction (BFR) employed impairs stroke volume (SV) during exercise, but central cardiovascular function is maintained by an increased heart rate (HR). BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; Probably indicated by a higher energy supply (VO2) and rate-pressure product (HR x systolic blood pressure). PMID:24149689

  16. Home-based exercise may not decrease the insulin resistance in individuals with metabolic syndrome.

    PubMed

    Chen, Chiao-Nan; Chuang, Lee-Ming; Korivi, Mallikarjuna; Wu, Ying-Tai

    2015-01-01

    This study investigated the differences in exercise self-efficacy, compliance, and effectiveness of home-based exercise in individuals with and without metabolic syndrome (MetS). One hundred and ten individuals at risk for diabetes participated in this study. Subjects were categorized into individuals with MetS and individuals without MetS. Metabolic risk factors and exercise self-efficacy were evaluated for all subjects before and after 3 months of home-based exercise. Univariate analysis of variance was used to compare the effectiveness of a home-based exercise program between individuals with and without MetS. The home-based exercise program improved body mass index and lipid profile in individuals at risk for diabetes, regardless of MetS status at baseline. Individuals without MetS had higher exercise self-efficacy at baseline and performed greater exercise volume compared with individuals with MetS during the intervention. The increased exercise volume in individuals without MetS may contribute to their better control of insulin resistance than individuals with MetS. Furthermore, baseline exercise self-efficacy was correlated with exercise volume executed by subjects at home. We conclude that home-based exercise programs are beneficial for individuals at risk for diabetes. However, more intensive and/or supervised exercise intervention may be needed for those with MetS.

  17. Plasma volume shifts and exercise thermoregulation with water immersion and six-degree head-down tilt

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew Carl

    1994-01-01

    The hypothesized fluid shifts and resultant responses that occur during spaceflight are simulated by six-degree head down tilt (HDT) and water immersion (WI). The purpose of this study was to compare exercise thermoregulation before and after physiologic mechanisms reduce plasma volume (PV) in response to 24-hr HDT (HDT24). A secondary study utilized WI to reproduce the PV reduction of HDT24. Seven males were studied in two conditions: during 70 minutes of supine cycling ergometry at 58 percent of peak oxygen consumption following 1-hr HDT (HDT1) and HDT24; and up to 6 hr WI at 34.5 C. Plasma volume was reduced by 10.4 percent in HDT24 when compared to HDT1. Pre-exercise rectal temperature, T(sub re), was an average 0.22 C higher after HDT24. Rectal temperature increased during exercise with no interaction between time and treatment. The reduced PV and elevated pre-exercise T(sub re) had offsetting effects on thermoregulatory mechanisms, suggesting no alteration in the response at a given T(sub re). Plasma volume was reduced by 4.3 +/- 2.3 percent and 1.1 +/- 1.8 percent following HDT24 and WI, respectively, compared to upright chair rest. Although the reductions in PV were not significantly different, great intra-individual variability was evident. The ability to reproduce PV changes consistently with HDT and WI is limited by this variability.

  18. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  20. Effect of Exercise Intensity and Duration on Postexercise Executive Function.

    PubMed

    Tsukamoto, Hayato; Takenaka, Saki; Suga, Tadashi; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2017-04-01

    The effect of exercise volume represented by exercise intensity and duration on postexercise executive function (EF) improvement remains unclear. In the present study, involving two volume-controlled evaluations, we aimed to compare acute exercise protocols with differing intensities and durations to establish an effective exercise protocol for improving EF. In study 1, 12 healthy male subjects performed cycle ergometer exercise, based on a low-intensity (LI) protocol for 20 min (LI20), moderate-intensity (MI) protocol for 20 min (MI20), and MI20 volume-matched LI protocol for 40 min (LI40). The exercise intensities for the LI and MI were set at 30% and 60% of peak oxygen consumption, respectively. In study 2, 15 healthy male subjects performed MI exercise for 10 min (MI10), MI20, and 40 min (MI40). To evaluate the EF, the color-word Stroop task was administrated before exercise, immediately after exercise, and during the 30-min postexercise recovery. In study 1, postexercise EF improvement was sustained for a longer duration after MI20 than after LI40 and was sustained for a longer duration after LI40 than after LI20. In study 2, although there was no significant difference in post-MI exercise EF improvement, the magnitude of difference in the EF between preexercise and 30-min postexercise recovery period was moderately larger in MI40, but not in MI10 and MI20, indicating that the EF improvement during postexercise recovery could be sustained after MI40. The present findings showed that postexercise EF improvement could be prolonged after MI exercise with a moderate duration compared with volume-matched LI exercise with a longer duration. In addition, MI exercise with a relatively long duration may slightly prolong the postexercise EF improvement.

  1. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    PubMed Central

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  2. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction.

    PubMed

    Borlaug, Barry A; Melenovsky, Vojtech; Russell, Stuart D; Kessler, Kristy; Pacak, Karel; Becker, Lewis C; Kass, David A

    2006-11-14

    Nearly half of patients with heart failure have a preserved ejection fraction (HFpEF). Symptoms of exercise intolerance and dyspnea are most often attributed to diastolic dysfunction; however, impaired systolic and/or arterial vasodilator reserve under stress could also play an important role. Patients with HFpEF (n=17) and control subjects without heart failure (n=19) generally matched for age, gender, hypertension, diabetes mellitus, obesity, and the presence of left ventricular hypertrophy underwent maximal-effort upright cycle ergometry with radionuclide ventriculography to determine rest and exercise cardiovascular function. Resting cardiovascular function was similar between the 2 groups. Both had limited exercise capacity, but this was more profoundly reduced in HFpEF patients (exercise duration 180+/-71 versus 455+/-184 seconds; peak oxygen consumption 9.0+/-3.4 versus 14.4+/-3.4 mL x kg(-1) x min(-1); both P<0.001). At matched low-level workload, HFpEF subjects displayed approximately 40% less of an increase in heart rate and cardiac output and less systemic vasodilation (all P<0.05) despite a similar rise in end-diastolic volume, stroke volume, and contractility. Heart rate recovery after exercise was also significantly delayed in HFpEF patients. Exercise capacity correlated with the change in cardiac output, heart rate, and vascular resistance but not end-diastolic volume or stroke volume. Lung blood volume and plasma norepinephrine levels rose similarly with exercise in both groups. HFpEF patients have reduced chronotropic, vasodilator, and cardiac output reserve during exercise compared with matched subjects with hypertensive cardiac hypertrophy. These limitations cannot be ascribed to diastolic abnormalities per se and may provide novel therapeutic targets for interventions to improve exercise capacity in this disorder.

  3. The effect of different volumes of acute resistance exercise on elderly individuals with treated hypertension.

    PubMed

    Scher, Luria M L; Ferriolli, Eduardo; Moriguti, Julio C; Scher, Ricardo; Lima, Nereida K C

    2011-04-01

    Acute resistance exercise can reduce the blood pressure (BP) of hypertensive subjects. The aim of this study was to evaluate the effect of different volumes of acute low-intensity resistance exercise over the magnitude and the extent of BP changes in treated hypertensive elderly individuals. Sixteen participants (7 men, 9 women), with mean age of 68 ± 5 years, performed 3 independent randomized sessions: Control (C: 40 minutes of rest), Exercise 1 (E1: 20 minutes, 1 lap in the circuit), and Exercise 2 (E2: 40 minutes, 2 laps in the circuit) with the intensity of 40% of 1 repetition maximum. Blood pressure was measured before (during 20 minutes) and after each session (every 5 minutes during 60 minutes) using both a mercury sphygmomanometer and a semiautomatic device (Omrom-HEM-431). After that, 24-hour ambulatory blood pressure monitoring was performed (Dyna-MAPA). Blood pressure decreased during the first 60 minutes (systolic: p < 0.01, diastolic: p < 0.05) after all exercise sessions. Only the highest volume session promoted a reduction of mean systolic 24-hour BP and awake BP (p < 0.05) after exercise, with higher diastolic BP during sleep (p < 0.05). Diastolic 24-hour BP and both systolic and diastolic BP during sleep were higher after E1 (p < 0.05). Concluding, acute resistive exercise sessions in a circuit with different volumes reduced BP during the first 60 minutes after exercise in elderly individuals with treated hypertension. However, only the highest volume promoted a reduction of mean 24-hour and awake systolic BP.

  4. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  5. Relation of exercise capacity with lung volumes before and after 6-minute walk test in subjects with COPD.

    PubMed

    Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-11-01

    There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.

  6. Resistance exercise training and the orthostatic response

    NASA Technical Reports Server (NTRS)

    McCarthy, J. P.; Bamman, M. M.; Yelle, J. M.; LeBlanc, A. D.; Rowe, R. M.; Greenisen, M. C.; Lee, S. M.; Spector, E. R.; Fortney, S. M.

    1997-01-01

    Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4-14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance.

  7. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-12-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼ 20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-05-15

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation.

    PubMed

    Cipryan, Lukas; Laursen, Paul B; Plews, Daniel J

    2016-10-01

    The cardiorespiratory, cardiac autonomic (via heart rate variability (HRV)) and plasma volume responses to varying sequences of high-intensity interval training (HIT) of consistent external work were investigated. Twelve moderately trained males underwent three HIT bouts and one control session. The HIT trials consisted of warm-up, followed by 12 min of 15 s, 30 s or 60 s work:relief HIT sequences at an exercise intensity of 100% of the individual velocity at [Formula: see text]O2max (v[Formula: see text]O2max), interspersed by relief intervals at 60% [Formula: see text]O2max (work/relief ratio = 1). HRV was evaluated via the square root of the mean sum of the squared differences between R-R intervals (rMSSD) before, 1 h, 3 h and 24 h after the exercise. Plasma volume was assessed before, immediately after, and 3 h and 24 h after. There were no substantial between-trial differences in acute cardiorespiratory responses. The rMSSD values remained decreased 1 h after the exercise cessation in all exercise groups. The rMSSD subsequently increased between 1 h and 3 h after exercise, with the most pronounced change in the 15/15 group. There were no relationships between HRV and plasma volume. All HIT protocols resulted in similar cardiorespiratory responses with slightly varying post-exercise HRV responses, with the 30/30 protocol eliciting the least disruption to post-exercise HRV. These post-exercise HRV findings suggest that the 30/30 sequence may be the preferable HIT prescription when the between-training period is limited.

  11. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  12. Aircraft Electrical Repairman Technician, 2-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a volume of text information; a student workbook containing objectives, reading assignments, chapter review exercises, and answers; a volume review exercise; and two illustration booklets for use with the student exercises. Covered in the course are the following topics: use and maintenance…

  13. Characteristics of patients with severe heart failure exhibiting exercise oscillatory ventilation.

    PubMed

    Matsuki, Ryosuke; Kisaka, Tomohiko; Ozono, Ryoji; Kinoshita, Hiroki; Sada, Yoshiharu; Oda, Noboru; Hidaka, Takayuki; Tashiro, Naonori; Takahashi, Makoto; Sekikawa, Kiyokazu; Ito, Yoshihiro; Kimura, Hiroaki; Hamada, Hironobu; Kihara, Yasuki

    2013-01-01

    This study aims to elucidate the characteristics of patients with severe nonischemic heart failure exhibiting exercise oscillatory ventilation (EOV) and the association of these characteristics with the subjective dyspnea. Forty-six patients with nonischemic heart failure who were classified into the New York Heart Association (NYHA) functional class III underwent cardiopulmonary exercise testing (CPX) and were divided into two groups according to the presence or absence of EOV. We evaluated the patients by using the Specific Activity Scale (SAS), biochemical examination, echocardiographic evaluation, results of CPX and symptoms during CPX (Borg scale), and reasons for exercise termination. EOV was observed in 20 of 46 patients. The following characteristics were observed in patients with EOV as compared with those without EOV with statistically significant differences: more patients complaining dyspnea as the reason for exercise termination, lower SAS score, higher N-terminal pro-brain natriuretic peptide level, larger left atrial dimension and volume, left ventricular end-diastolic volume, higher Borg scale score at rest and at the anerobic threshold, higher respiratory rate at rest and at peak exercise, and higher slope of the minute ventilation-to-CO₂ output ratio, and lower end-tidal CO₂ pressure at peak exercise. Among the subjects with NYHA III nonischemic heart failure, more patients with EOV had a stronger feeling of dyspnea during exercise as compared with those without EOV, and the subjective dyspnea was an exercise-limiting factor in many cases.

  14. The effect of intra-articular glucocorticosteroids and exercise on symptoms and bone marrow lesions in knee osteoarthritis: a secondary analysis of results from a randomized controlled trial.

    PubMed

    Nielsen, F K; Boesen, M; Jurik, A G; Bliddal, H; Nybing, J D; Ellegaard, K; Bartholdy, C; Bandak, E; Henriksen, M

    2018-03-02

    To evaluate if the relative volume of bone marrow lesions (BMLs) changed in patients with knee osteoarthritis (OA) during a therapeutic study. This study is a sub-study to a larger clinical trial which compared the clinical effects of intra-articular corticosteroid injection in knee OA to placebo injection, both given prior to exercise therapy. Clinical assessment using the Knee injury and Osteoarthritis Outcome Score (KOOS) and magnetic resonance imaging (MRI) examinations with BML assessments were performed at baseline and follow-up after 14 weeks and 26 weeks, respectively. The BML volume was determined using a computer assisted method focusing on participants with valid baseline and follow-up MRI examinations. Any changes in BML and KOOS were analyzed and investigated for associations. Fifty participants received steroid and placebo injection, respectively, of which 41 and 45 had complete MRI examinations at week 14, and 36 and 33 at week 26, respectively. All participants received 12 weeks of exercise. A significant change in relative BML volume was observed between the corticosteroid group and the placebo group after 14 weeks [-1.1% vs 2.7%; between-group difference, 3.8% (95% CI 0.5-7.0)] but not after 26 weeks [0.8% vs 1.6%; between-group difference, 0.8% (95% CI -2.8 to 4.4)]. No significant association was found between changes in relative BML volume and KOOS. Despite the statistically significant difference in BML volume at 14 weeks after corticosteroid injection and 12 weeks exercise therapy compared to placebo injection and exercise, there is very little evidence on a relationship between corticosteroids and BML volume. EudraCT number: 2012-002607-18. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    PubMed

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P < .01), and subcutaneous abdominal fat volume remained unchanged (P = .9). Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P < .01) and paracardial fat volume from 4.6 mL ± 0.9 to 3.7 mL ± 0.8 (P = .02). Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  16. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  17. Biomechanical Modeling of the Deadlift Exercise on the HULK Device to Improve the Efficacy of Resistive Exercise Microgravity Countermeasures

    NASA Technical Reports Server (NTRS)

    Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.

    2016-01-01

    Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.

  18. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength.

    PubMed

    Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino

    2017-01-01

    The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  19. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.

  20. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in Healthy Older Adults.

    PubMed

    Nagamatsu, Lindsay S; Weinstein, Andrea M; Erickson, Kirk I; Fanning, Jason; Awick, Elizabeth A; Kramer, Arthur F; McAuley, Edward

    2016-01-01

    To examine whether 12 months of aerobic training (AT) moderated the relationship between change in mobility and change in basal ganglia volume than balance and toning (BAT) exercises in older adults. Secondary analysis of a randomized controlled trial. Champaign-Urbana, Illinois. Community-dwelling older adults (N=101; mean age 66.4). Twelve-month exercise trial with two groups: AT and BAT. Mobility was assessed using the Timed Up and Go test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted magnetic resonance images using the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software Library Integrated Registration and Segmentation Tool. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Exercise significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume, although left putamen volume of those who declined in mobility levels decreased significantly. The primary finding that older adults who engaged in 12 months of BAT training and improved mobility exhibited maintenance of brain volume in an important region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  1. Caloric and exercise requirements of space flight - Biostereometric results from Skylab

    NASA Technical Reports Server (NTRS)

    Whittle, M. W.

    1979-01-01

    The biostereometric study of the Skylab astronauts used stereophotogrammetry to make accurate three-dimensional measurements of body form, from which regional and total body volumes were derived. Volume changes in the thighs and calves, over the course of the flight, showed a high correlation with inflight exercise on the bicycle ergometer, and suggested that an exercise level of 80-100 W-min/d/kg lean body mass would be necessary to prevent inflight muscle atrophy. The bicycle ergometer is thus a relatively inefficient means of preventing leg muscle atrophy. Inflight caloric intake showed a high correlation with the change in volume of the buttocks, the abdomen, and the body as a whole, and suggested that a caloric intake of 47-51 kcal/d/kg lean body mass would be necessary to prevent a change in body fat. Only one of the astronauts exceeded this range and gained body fat; the group as a whole showed a mean fat loss of 1.2 kg.

  2. Potential Universal Application of High-intensity Interval Training from Athletes and Sports Lovers to Patients.

    PubMed

    Azuma, Koichiro; Matsumoto, Hideo

    2017-06-25

    Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.

  3. The Efficacy of Exercise in Reducing Depressive Symptoms among Cancer Survivors: A Meta-Analysis

    PubMed Central

    Brown, Justin C.; Huedo-Medina, Tania B.; Pescatello, Linda S.; Ryan, Stacey M.; Pescatello, Shannon M.; Moker, Emily; LaCroix, Jessica M.; Ferrer, Rebecca A.; Johnson, Blair T.

    2012-01-01

    Introduction The purpose of this meta-analysis was to examine the efficacy of exercise to reduce depressive symptoms among cancer survivors. In addition, we examined the extent to which exercise dose and clinical characteristics of cancer survivors influence the relationship between exercise and reductions in depressive symptoms. Methods We conducted a systematic search identifying randomized controlled trials of exercise interventions among adult cancer survivors, examining depressive symptoms as an outcome. We calculated effect sizes for each study and performed weighted multiple regression moderator analysis. Results We identified 40 exercise interventions including 2,929 cancer survivors. Diverse groups of cancer survivors were examined in seven exercise interventions; breast cancer survivors were examined in 26; prostate cancer, leukemia, and lymphoma were examined in two; and colorectal cancer in one. Cancer survivors who completed an exercise intervention reduced depression more than controls, d + = −0.13 (95% CI: −0.26, −0.01). Increases in weekly volume of aerobic exercise reduced depressive symptoms in dose-response fashion (β = −0.24, p = 0.03), a pattern evident only in higher quality trials. Exercise reduced depressive symptoms most when exercise sessions were supervised (β = −0.26, p = 0.01) and when cancer survivors were between 47–62 yr (β = 0.27, p = 0.01). Conclusion Exercise training provides a small overall reduction in depressive symptoms among cancer survivors but one that increased in dose-response fashion with weekly volume of aerobic exercise in high quality trials. Depressive symptoms were reduced to the greatest degree among breast cancer survivors, among cancer survivors aged between 47–62 yr, or when exercise sessions were supervised. PMID:22303474

  4. Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2003-01-01

    INTRODUCTION: Plasma volume, heart rate (HR) variability, and stimulus-response relationships for baroreflex control of forearm vascular resistance (FVR) and HR were studied in eight healthy men after and without performing a bout of maximal exercise to test the hypotheses that acute expansion of plasma volume is associated with 1) reduction in baroreflex-mediated HR response, and 2) altered operational range for central venous pressure (CVP). METHODS: The relationship between stimulus (DeltaCVP) and vasoconstrictive reflex response (DeltaFVR) during unloading of cardiopulmonary baroreceptors was assessed with lower-body negative pressure (LBNP, 0, -5, -10, -15, -20 mm Hg). The relationship between stimulus (Deltamean arterial pressure (MAP)) and cardiac reflex response (DeltaHR) during loading of arterial baroreceptors was assessed with steady-state infusion of phenylephrine (PE) designed to increase MAP by 15 mm Hg alone and during application of LBNP (PE+LBNP) and neck pressure (PE+LBNP+NP). Measurements of vascular volume and autonomic baroreflex responses were conducted on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested 24 h after graded cycle exercise to volitional exhaustion. On another day, measurement of baroreflex response was repeated with no exercise (control). The order of exercise and control treatments was counterbalanced. RESULTS: Baseline CVP was elevated (P = 0.04) from a control value of 10.5 +/- 0.4 to 12.3 +/- 0.4 mm Hg 24 h after exercise. Average DeltaFVR/DeltaCVP during LBNP was not different (P = 0.942) between the exercise (-1.35 +/- 0.32 pru x mm Hg-1) and control (-1.32 +/- 0.36 pru x mm Hg-1) conditions. However, maximal exercise caused a shift along the reflex response relationship to a higher CVP and lower FVR. HR baroreflex response (DeltaHR/DeltaMAP) to PE+LBNP+NP was lower (P = 0.015) after maximal exercise (-0.43 +/- 0.15 beats x min-1 x mm Hg-1) compared with the control condition (-0.83 +/- 0.14 beats x min-1 x mm Hg-1). CONCLUSION: Expansion of vascular volume after acute exercise is associated with altered operational range for CVP and reduced HR response to arterial baroreceptor stimulation.

  5. Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.

    PubMed

    Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L

    2001-07-01

    To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.

  6. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes.

    PubMed

    Mason McClatchey, P; Bauer, Timothy A; Regensteiner, Judith G; Schauer, Irene E; Huebschmann, Amy G; Reusch, Jane E B

    2017-08-01

    Exercise capacity is impaired in type 2 diabetes, and this impairment predicts excess morbidity and mortality. This defect appears to involve excess skeletal muscle deoxygenation, but the underlying mechanisms remain unclear. We hypothesized that reduced blood flow, reduced local recruitment of blood volume/hematocrit, or both contribute to excess skeletal muscle deoxygenation in type 2 diabetes. In patients with (n=23) and without (n=18) type 2 diabetes, we recorded maximal reactive hyperemic leg blood flow, peak oxygen utilization during cycling ergometer exercise (VO 2peak ), and near-infrared spectroscopy-derived measures of exercise-induced changes in skeletal muscle oxygenation and blood volume/hematocrit. We observed a significant increase (p<0.05) in skeletal muscle deoxygenation in type 2 diabetes despite similar blood flow and recruitment of local blood volume/hematocrit. Within the control group skeletal muscle deoxygenation, local recruitment of microvascular blood volume/hematocrit, blood flow, and VO 2peak are all mutually correlated. None of these correlations were preserved in type 2 diabetes. These results suggest that in type 2 diabetes 1) skeletal muscle oxygenation is impaired, 2) this impairment may occur independently of bulk blood flow or local recruitment of blood volume/hematocrit, and 3) local and global metrics of oxygen transport are dissociated. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Physical dose of therapeutic exercises in institutional neck rehabilitation.

    PubMed

    Wasenius, Niko; Karapalo, Teppo; Sjögren, Tuulikki; Pekkonen, Mika; Mälkiä, Esko

    2013-03-01

    To determine the intensity and volume of therapeutic exercises during a standard 13-day inpatient neck rehabilitation course in relation to overall physical activity in rehabilitation and everyday life. Cross-sectional study. Subjects (n = 19; 16 women and 3 men; mean age 48.6 years, standard deviation (SD) 6.6) with chronic non-specific neck pain were recruited from two inpatient neck rehabilitation courses. Intensity and volume of therapeutic exercises and physical activity were measured in metabolic equivalents (METs) with an objective measurement device and all-time recall questionnaire. Maximum oxygen uptake was determined in METs (METc) by direct maximal cycle ergometer. Subjects' mean METc was 7.2 METs (SD 1.4) or 25.3 ml/kg/min (SD 4.8). Intensity of all therapeutic exercises was 1.9 METs or 27 %METc (SD 5.1) and volume 7.7 MET-hours/week. Intensity of specific neck and shoulder exercises was 2.0 METs or 28 %METc (SD 5.4) and volume 2.5 MET-hours/week. In addition, subjects were more active in everyday life than in inpatient rehabilitation. The therapeutic exercise dose failed to reach previously reported target values for pain relief. The dose of therapeutic exercises and confounding physical activity should be carefully controlled in pain rehabilitation programmes.

  8. The effect of lifelong exercise dose on cardiovascular function during exercise

    PubMed Central

    Carrick-Ranson, Graeme; Hastings, Jeffrey L.; Bhella, Paul S.; Fujimoto, Naoki; Shibata, Shigeki; Palmer, M. Dean; Boyd, Kara; Livingston, Sheryl; Dijk, Erika

    2014-01-01

    An increased “dose” of endurance exercise training is associated with a greater maximal oxygen uptake (V̇o2max), a larger left ventricular (LV) mass, and improved heart rate and blood pressure control. However, the effect of lifelong exercise dose on metabolic and hemodynamic response during exercise has not been previously examined. We performed a cross-sectional study on 101 (69 men) seniors (60 yr and older) focusing on lifelong exercise frequency as an index of exercise dose. These included 27 who had performed ≤2 exercise sessions/wk (sedentary), 25 who performed 2–3 sessions/wk (casual), 24 who performed 4–5 sessions/wk (committed) and 25 who performed ≥6 sessions/wk plus regular competitions (Masters athletes) over at least the last 25 yr. Oxygen uptake and hemodynamics [cardiac output, stroke volume (SV)] were collected at rest, two levels of steady-state submaximal exercise, and maximal exercise. Doppler ultrasound measures of LV diastolic filling were assessed at rest and during LV loading (saline infusion) to simulate increased LV filling. Body composition, total blood volume, and heart rate recovery after maximal exercise were also examined. V̇o2max increased in a dose-dependent manner (P < 0.05). At maximal exercise, cardiac output and SV were largest in committed exercisers and Masters athletes (P < 0.05), while arteriovenous oxygen difference was greater in all trained groups (P < 0.05). At maximal exercise, effective arterial elastance, an index of ventricular-arterial coupling, was lower in committed exercisers and Masters athletes (P < 0.05). Doppler measures of LV filling were not enhanced at any condition, irrespective of lifelong exercise frequency. These data suggest that performing four or more weekly endurance exercise sessions over a lifetime results in significant gains in V̇o2max, SV, and heart rate regulation during exercise; however, improved SV regulation during exercise is not coupled with favorable effects on LV filling, even when the heart is fully loaded. PMID:24458750

  9. Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat.

    PubMed Central

    Maughan, R J; Leiper, J B; Shirreffs, S M

    1997-01-01

    Maintenance of fluid balance is a major concern for all athletes competing in events held in hot climates. This paper reviews recent work relating to optimisation of fluid replacement after sweat loss induced by exercising in the heat. Data are taken from studies undertaken in our laboratory. Issues investigated were drink composition, volume consumed, effects of consuming food with a drink, effects of alcohol in rehydration effectiveness, voluntary intake of fluid, and considerations for women related to the menstrual cycle. The results are presented as a series of summaries of experiments, followed by a discussion of the implications. The focus of this review is urine output after ingestion of a drink; fluid excreted in urine counteracts rehydration. Also included are data on the restoration of plasma volume losses. Ingestion of large volumes of plain water will inhibit thirst and will also promote a diuretic response. If effective rehydration is to be maintained for some hours after fluid ingestion, drinks should contain moderately high levels of sodium (perhaps as much as 50-60 mmol/l) and possibly also some potassium to replace losses in the sweat. To surmount ongoing obligatory urine losses, the volume consumed should be greater than the volume of sweat lost. Palatability of drinks is important in stimulating intake and ensuring adequate volume replacement. Where opportunities allow, the electrolytes required may be ingested as solid food consumed with a drink. There are no special concerns for women related to changes in hormone levels associated with the menstrual cycle. Ingestion of carbohydrate-electrolyte drinks in the post-exercise period restores exercise capacity more effectively than plain water. The effects on performance of an uncorrected fluid deficit should persuade all athletes to attempt to remain fully hydrated at all times, and the aim should be to start each bout of exercise in a fluid replete state. This will only be achieved if a volume of fluid in excess of the sweat loss is ingested together with sufficient electrolytes. PMID:9298549

  10. Comparison of Flow and Volume Incentive Spirometry on Pulmonary Function and Exercise Tolerance in Open Abdominal Surgery: A Randomized Clinical Trial

    PubMed Central

    Kumar, Amaravadi Sampath; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan

    2016-01-01

    Introduction Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. Aim To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. Materials and Methods A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni’s ‘t’-test. Exercise tolerance was analysed by Paired ‘T’-test. Results Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1st, 2nd and 3rd postoperative day when compared with preoperative day. On 4th and 5th postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Conclusion Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance. PMID:26894090

  11. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  12. Training with the International Space Station interim resistive exercise device

    NASA Technical Reports Server (NTRS)

    Schneider, Suzanne M.; Amonette, William E.; Blazine, Kristi; Bentley, Jason; Lee, Stuart M C.; Loehr, James A.; Moore, Alan D Jr; Rapley, Michael; Mulder, Edwin R.; Smith, Scott M.

    2003-01-01

    A unique, interim elastomer-based resistive exercise device (iRED) is being used on the International Space Station. PURPOSE: This study characterized iRED training responses in a 1-g environment by: 1) determining whether 16 wk of high-intensity training with iRED produces increases in muscle strength and volume and bone mineral density (BMD), 2) comparing training responses with iRED to free weights, and 3) comparing iRED training responses at two training volumes. METHODS: Twenty-eight untrained men were assigned to four groups of seven subjects each: a no exercise control group (CON), an iRED group who trained with three sets/exercise (iRED3), a free-weight group (FW) who trained with three sets/exercise, and an iRED group who trained with six sets/exercise (iRED6). Training exercises included squat (SQ), heel raise (HR), and dead lift (DL) exercises, 3 d.wk(-1) for 16 wk. RESULTS: For CON, no changes occurred pre- to posttraining. For iRED3, increases (P< or =0.05) in one-repetition maximum (1-RM) strength (SQ 21 +/- 4%, HR 17 +/- 4%, DL 29 +/- 5%), leg lean mass (3.1 +/- 0.5%) by dual energy x-ray absorptiometry (DXA), and thigh (4.5 +/- 0.9%) and calf (5.9 +/- 0.7%) muscle volume (by magnetic resonance imaging) occurred after training with no changes in BMD (DXA). For FW, increases in 1-RM strength (SQ 22 +/- 5%, HR 24 +/- 3%, DL 41 +/- 7%), whole body (3.0 +/- 1.1%) and leg lean mass (5.4 +/- 1.2%), thigh (9.2 +/- 1.3%) and calf (4.2 +/- 1.0%) muscle volumes, and lumbar BMD (4.2 +/- 0.7%) occurred after training. For iRED6, all responses were similar to iRED3. CONCLUSION: High-intensity training with the iRED produced muscle responses similar to FW but was not effective in stimulating bone. Bed rest and spaceflight studies are needed to evaluate the effectiveness of the iRED to prevent microgravity deconditioning.

  13. Tai Chi Chuan and Baduanjin increase grey matter volume in older adults: a brain imaging study

    PubMed Central

    Tao, Jing; Liu, Jiao; Liu, Weilin; Huang, Jia; Xue, Xiehua; Chen, Xiangli; Wu, Jinsong; Zheng, Guohua; Chen, Bai; Li, Ming; Sun, Sharon; Jorgenson, Kristen; Lang, Courtney; Hu, Kun; Chen, Shanjia; Chen, Lidian; Kong, Jian

    2017-01-01

    The aim of this study is to investigate and compare how 12-weeks of Tai Chi Chuan and Baduanjin exercise can modulate brain structure and memory function in older adults. Magnetic Resonance Imaging(MRI) and memory function measurements (Wechsler Memory Scale-Chinese revised, WMS-CR)were applied at both the beginning and end of the study. Results showed that both Tai Chi Chuan and Baduanjin could significantly increase grey matter volume (GMV) in the insula, medial temporal lobe (MTL), and putamen after 12-weeks of exercise. No significant differences were observed in grey matter volume (GMV) between the Tai Chi Chuan and Baduanjin groups. We also found that compared to healthy controls, Tai Chi Chuan and Baduanjin significantly improved visual reproduction subscores on the WMS-CR. Baduanjin also improved mental control, recognition, touch and comprehension memory subscores of the WMS-CR compared to the control group. Memory quotient (MQ)and visual reproduction subscores were both associated with GMV increases in the putamen and hippocampus. Our results demonstrate the potential of Tai Chi Chuan and Baduanjin exercise for the prevention of memory deficits in older adults. PMID:28869478

  14. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.

  15. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance

    PubMed Central

    Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure

    2012-01-01

    The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068

  16. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children.

    PubMed

    Kilian, Yvonne; Wehmeier, Udo F; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy

    2016-01-01

    The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min(-1)·kg(-1) peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30', 60', 180') and HVT (d3, 0', 60'). RESULTS of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.

  17. Exercise training - Blood pressure responses in subjects adapted to microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.

  18. Graduated Compression Stockings for Runners: Friend, Foe, or Fake?

    PubMed Central

    Bovenschen, H. Jorn; te Booij, Mariëlle; van der Vleuten, Carine J. M.

    2013-01-01

    Objective: To assess the effect of graduated compression stockings (GCS) on lower leg volume and leg complaints in runners during and after exercise. Design: Cross-sectional study. Setting: Radboud University Nijmegen Medical Centre and an outdoor running track in Nijmegen, The Netherlands. Patients or Other Participants: Thirteen Dutch trained recreational runners. Intervention(s): Participants used a GCS on 1 leg during running. Main Outcome Measures: (1) Lower leg volume of both legs was measured at baseline, directly after running, and at 5 minutes and 30 minutes after running using a validated perometer. (2) Leg complaints were reported on questionnaires at set intervals. Results: (1) In both experiments, the legs with GCS showed a reduction in mean (± SEM) leg volume directly after running, as compared with the leg without GCS: −14.1 ± 7.6 mL (P = .04) for the 10-km running track and −53.5 ± 17.8 mL (P = .03) for the maximum exercise test. This effect was not observed at 5 and 30 minutes after running. (2) No differences in leg complaints were reported in either experiment. Conclusions: The GCS prevented an increase in leg volume just after the running exercise. However, this result was not accompanied by a reduction in subjective questionnaire-reported leg complaints. The practical consequences of the present findings need further study. PMID:23672387

  19. Serum anti-Müllerian hormone and ovarian morphology assessed by magnetic resonance imaging in response to acupuncture and exercise in women with polycystic ovary syndrome: secondary analyses of a randomized controlled trial.

    PubMed

    Leonhardt, Henrik; Hellström, Mikael; Gull, Berit; Lind, Anna-Karin; Nilsson, Lars; Janson, Per Olof; Stener-Victorin, Elisabet

    2015-03-01

    To investigate whether electro-acupuncture or physical exercise influence serum anti-Müllerian hormone (AMH), antral follicle count (AFC) or ovarian volume in women with polycystic ovary syndrome (PCOS). Secondary analyses of a prospective, randomized controlled clinical trial. University Hospital, Sweden. Seventy-four women with PCOS recruited from the general population. Women with PCOS were randomized to 16 weeks of electro-acupuncture (14 treatments), exercise (at least three times/week), or no intervention. Serum AMH recorded at baseline, after 16 weeks of intervention, and at follow up at 32 weeks. AFC, and ovarian volume assessed by magnetic resonance imaging at baseline and at follow up at 32 weeks. After 16 weeks of intervention, serum levels of AMH were significantly decreased in the electro-acupuncture group by 17.5% (p < 0.001), and differed from the change in the exercise group. AMH remained decreased by 15% (p = 0.004) also at follow up at 32 weeks, but did not differ from the exercise or the no intervention groups. There was a decrease by 8.5% (p = 0.015) in ovarian volume between baseline and follow up in the electro-acupuncture group, and by 11.7% (p = 0.01) in AFC in the physical exercise group. No other variables were affected. This study is the first to demonstrate that acupuncture reduces serum AMH levels and ovarian volume. Physical exercise did not influence circulating AMH or ovarian volume. Despite a within-group decrease in AFC, exercise did not lead to a between-group difference. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  20. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  1. Changes in dynamic lung mechanics after lung volume reduction coil treatment of severe emphysema.

    PubMed

    Makris, Demosthenes; Leroy, Sylvie; Pradelli, Johana; Benzaquen, Jonathan; Guenard, Hervé; Perotin, Jeanne-Marie; Zakynthinos, Spyros; Zakynthinos, Epaminondas; Deslee, Gaëtan; Marquette, Charles Hugo

    2018-06-01

    We assessed the relationships between changes in lung compliance, lung volumes and dynamic hyperinflation in patients with emphysema who underwent bronchoscopic treatment with nitinol coils (coil treatment) (n=11) or received usual care (UC) (n=11). Compared with UC, coil treatment resulted in decreased dynamic lung compliance (C Ldyn ) (p=0.03) and increased endurance time (p=0.010). The change in C Ldyn was associated with significant improvement in FEV 1 and FVC, with reduction in residual volume and intrinsic positive end-expiratory pressure, and with increased inspiratory capacity at rest/and at exercise. The increase in end-expiratory lung volume (EELV) during exercise (EELV dyn-ch =EELV isotime EELV rest ) demonstrated significant attenuation after coil treatment (p=0.02). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    PubMed

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  3. Caffeine and diuresis during rest and exercise: A meta-analysis

    PubMed Central

    Coca, Aitor; Casa, Douglas J.; Antonio, Jose; Green, James M.; Bishop, Phillip A.

    2016-01-01

    Objectives Although ergogenic, acute caffeine ingestion may increase urine volume, prompting concerns about fluid balance during exercise and sport events. This meta-analysis evaluated caffeine induced diuresis in adults during rest and exercise. Design Meta-analysis. Methods A search of three databases was completed on November 1, 2013. Only studies that involved healthy adults and provided sufficient information concerning the effect size (ES) of caffeine ingestion on urine volume were included. Sixteen studies met the inclusion criteria, providing a total of 28 ESs for the meta-analysis. Heterogeneity was assessed using a random-effects model. Results The median caffeine dosage was 300 mg. The overall ES of 0.29 (95% confidence interval (CI) = 0.11-0.48, p = 0.001) corresponds to an increase in urine volume of 109 ± 195 mL or 16.0 ± 19.2% for caffeine ingestion vs. non-caffeine conditions. Subgroup meta-analysis confirmed exercise as a strong moderator: active ES = 0.10, 95% CI = −0.07 to 0.27, p = 0.248 vs. resting ES = 0.54, 95% CI = 0.22–0.85, p = 0.001 (Cochran's Q, p = 0.019). Females (ES = 0.75,95% CI = 0.38–1.13, p< 0.001) were more susceptible to diuretic effects than males (ES = 0.13,95% CI = −0.05 to 0.31, p = 0.158) (Cochran's Q, p = 0.003). Conclusions Caffeine exerted a minor diuretic effect which was negated by exercise. Concerns regarding unwanted fluid loss associated with caffeine consumption are unwarranted particularly when ingestion precedes exercise. PMID:25154702

  4. Red cell volume with changes in plasma osmolarity during maximal exercise.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.

    1973-01-01

    The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.

  5. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres

    PubMed Central

    Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans‐Christer; Nielsen, Joachim

    2016-01-01

    Key points Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise.Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types.Repeated exercise alters this compartmentalized glycogen depletion.The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Abstract Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3–13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross‐country skiers (aged 25 ± 4 years, V˙O2 max : 65 ± 4 ml kg−1 min−1; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1–4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [−52%; (−89:−15%)] than type 2 fibres [−15% (−52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: −19% (−33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: −35% (−66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: −31% (−50:−11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type‐dependent. PMID:27689320

  6. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    PubMed

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type-dependent. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Hypervolemia from Drinking Hyperhydration Solutions at Rest and Exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Looft-Wilson, Robin; Jackson, Catherine G. R.; Geelen, Ghislaine; Barnes, Paul R.; Jensen, Christopher D.; Whittam, James H.

    1995-01-01

    The mechanism of muscular fatigue from physical work and exercise (high metabolism) is not clear, but involves disturbances of muscle surface membrane excitation-contraction coupling from changes in sarcoplasmic reticulum Ca2+ release, cell H+ and Pi responses, and carbohydrate metabolism. Fatigue in people at rest (low metabolism) involves both psychological and physiological factors, probably in different proportions. One common factor appears to be the level and distribution of water and electrolytes within muscle cells and other vascular, interstitial, body fluid compartments. The vascular fluid volume, composed of plasma and red blood cells, is a primary regulatory factor for cardiovascular function; reduction of vascular volume (hypovolemia) and total body water (hypohydration) adversely affect exercise performance. Plasma volume and plasma ionic-osmotic constituent concentrations are also regulatory factors for body thermoregulation, which is often compromised from exercise induced hypovolemia and hypohydration. Rehydration of dehydrated people on earth is relatively easy with appropriate food (osmols), fluid, and a restful environment. But ad libitum drinking under stressful conditions; e.g., heat, exercise, or prior dehydration, results in involuntary dehydration defined as the delay in full fluid replacement (euhydration) during and following loss of body fluid. Astronauts, with their reduced total body water are euhydrated while in weightlessness, but become "dehydrated" during reentry and landing. Thus, people subjected to acute or chronic stress are probably somewhat "dehydrated" as well as fatigued. Many rehydration drinks are more concentrated (hypertonic-hyperosmotic) with respect to the normal plasma osmolality of 285 mOsm/kg H2O and more of the drink osmols are contributed by carbohydrates than by ionized substances. There have been few studies on the efficacy of various drink formulations for increasing body fluid compartment volumes, especially plasma volume, in rested hydrated subjects. Recent findings from our laboratory have indicated that drinks containing greater concentrations of ionized substances (Performance 1 and AstroAde) up to 157 mEq/L Na+ induced greater levels of hypervolemia in resting, moderately dehydrated men, and were also better than water for attenuating the characteristic hypovolemia during supine, submaximal, leg ergometer exercise.

  8. Changes in plasma volume and baroreflex function following resistance exercise

    NASA Technical Reports Server (NTRS)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  9. CD4(+)/CD8(+) T-lymphocyte Ratio: Effects of Rehydration before Exercise in Dehydrated Men

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Jackson, Catherine G. R.; Lawless, Desales

    1995-01-01

    Effects of fluid ingestion on CD4+/CD8+ T-lymphocyte cell ratios were measured in four dehydrated men (ages 30-46 yr) before and after 70 min of supine submaximal (71 % VO(sub 2max) lower extremity cycle exercise. Just before exercise, Evans blue dye was injected for measurement of plasma volume. The subjects then drank one of six fluid formulations (12 ml/kg) in 3-4 min. All six mean post-hydration (pre-exercise) CD4+/CD8+ ratios (Becton-Dickinson Fluorescence Activated Cell Sorter and FACScan Consort-30 software program were below the normal range of 1.2-1.5; mean (+/- SE) and range were 0.77 +/- 0.12 and 0.39-1.15, respectively. The post-exercise ratios increased: mean = 1.36 =/- 0.15 (P less than 0.05) and range = 0.98-1.98. Regression of mean CD4+/CD8+ ratios on mean plasma osmolality resulted in pre- and post-exercise correlation coefficients of -0.76 (P less than 0.10) and -0.92 (P less than 0.01), respectively. The decreased pre-exercise ratios (after drinking) were probably not caused by the Evans blue dye but appeared to be associated more with the stress (osmotic) of dehydration. The increased post-exercise ratios to normal levels accompanied the rehydration and were not due to the varied electrolyte and osmotic concentrations of the ingested fluids or to the varied vascular volume shifts during exercise. Thus, the level of subject hydration and plasma osmotality may be factors involved in the mechanism of immune system modulation induced by exercise.

  10. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.

  11. Muscle Adaptations Following Short-Duration Bed Rest with Integrated Resistance, Interval, and Aerobic Exercise

    NASA Technical Reports Server (NTRS)

    Hackney, Kyle J.; Scott, Jessica M.; Buxton, Roxanne; Redd-Goetchius, Elizabeth; Crowell, J. Brent; Everett, Meghan E.; Wickwire, Jason; Ryder, Jeffrey W.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.

    2011-01-01

    Unloading of the musculoskeletal system during space flight results in deconditioning that may impair mission-related task performance in astronauts. Exercise countermeasures have been frequently tested during bed rest (BR) and limb suspension; however, high-intensity, short-duration exercise prescriptions have not been fully explored. PURPOSE: To determine if a high intensity resistance, interval, and aerobic exercise program could protect against muscle atrophy and dysfunction when performed during short duration BR. METHODS: Nine subjects (1 female, 8 male) performed a combination of supine exercises during 2 weeks of horizontal BR. Resistance exercise (3 d / wk) consisted of squat, leg press, hamstring curl, and heel raise exercises (3 sets, 12 repetitions). Aerobic (6 d / wk) sessions alternated continuous (75% VO2 peak) and interval exercise (30 s, 2 min, and 4 min) and were completed on a supine cycle ergometer and vertical treadmill, respectively. Muscle volumes of the upper leg were calculated pre, mid, and post-BR using magnetic resonance imaging. Maximal isometric force (MIF), rate of force development (RFD), and peak power of the lower body extensors were measured twice before BR (averaged to represent pre) and once post BR. ANOVA with repeated measures and a priori planned contrasts were used to test for differences. RESULTS: There were no changes to quadriceps, hamstring, and adductor muscle volumes at mid and post BR time points compared to pre BR (Table 1). Peak power increased significantly from 1614 +/- 372 W to 1739 +/- 359 W post BR (+7.7%, p = 0.035). Neither MIF (pre: 1676 +/- 320 N vs. post: 1711 +/- 250 N, +2.1%, p = 0.333) nor RFD (pre: 7534 +/- 1265 N/ms vs. post: 6951 +/- 1241 N/ms, -7.7%, p = 0.136) were significantly impaired post BR.

  12. High Intensity Resistive and Rowing Exercise Countermeasures Do Not Prevent Orthostatic Intolerance Following 70 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Stenger, Michael B.; Laurie, Steven S.; Ploutz-Snyder, Lori L.; Platts, Steven H.

    2015-01-01

    More than 60% of US astronauts participating in Mir and early International Space Station missions (greater than 5 months) were unable to complete a 10-min 80 deg head-up tilt test on landing day. This high incidence of post-spaceflight orthostatic intolerance may be related to limitations of the inflight exercise hardware that prevented high intensity training. PURPOSE: This study sought to determine if a countermeasure program that included intense lower-body resistive and rowing exercises designed to prevent cardiovascular and musculoskeletal deconditioning during 70 days of 6 deg head-down tilt bed rest (BR), a spaceflight analog, also would protect against post- BR orthostatic intolerance. METHODS: Sixteen males participated in this study and performed no exercise (Control, n=10) or performed an intense supine exercise protocol with resistive and aerobic components (Exercise, n=6). On 3 days/week, exercise subjects performed lower body resistive exercise and a 30-min continuous bout of rowing (greater than or equal to 75% max heart rate). On 3 other days/week, subjects performed only high-intensity, interval-style rowing. Orthostatic intolerance was assessed using a 15-min 80 deg head-up tilt test performed 2 days (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using a carbon monoxide rebreathing technique on BR-3 and before rising on the first recovery day (BR+0). RESULTS: Following 70 days of BR, tilt tolerance time decreased significantly in both the Control (BR-2: 15.0 +/- 0.0, BR70: 9.9 +/- 4.6 min, mean +/- SD) and Exercise (BR-2: 12.2 +/- 4.7, BR70: 4.9 +/- 1.9 min) subjects, but the decreased tilt tolerance time was not different between groups (Control: -34 +/- 31, Exercise: -56 +/- 16%). Plasma volume also decreased (Control: -0.56 +/- 0.40, Exercise: -0.48 +/- 0.33 L) from pre to post-BR, with no differences between groups (Control: -18 +/- 11%, Exerciser: -15 +/-1 0%). CONCLUSIONS: These findings confirm previous reports in shorter BR studies that the performance of an exercise countermeasure protocol by itself during BR does not prevent orthostatic intolerance or plasma volume loss. This suggests that protection against orthostatic intolerance in astronauts following long-duration spaceflight will require an additional intervention, such as periodic orthostatic stress, fluid repletion, and/or lower-body compression garments.

  13. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase.

    PubMed

    Sun, Meng-Wei; Zhong, Mei-Fang; Gu, Jun; Qian, Feng-Lei; Gu, Jian-Zhong; Chen, Hong

    2008-04-01

    The objective of this study was to examine the effects of moderate and high levels of exercise volume on endothelium-dependent vasodilation and associated changes in vascular endothelial/inducible nitric oxide synthase (eNOS and iNOS) and heme oxygenase (HO). Male Sprague-Dawley rats were assigned to sedentary control, acute (2 weeks), or chronic (6 weeks) treadmill running at moderate intensity (50% maximal aerobic velocity) with different durations of exercise episodes: 2 h/d (endurance training, moderate volume) and 3 h/d (intense training, high volume). Endothelium-dependent vascular function was examined in isolated thoracic aorta. Co-localization and contents of aortic eNOS/iNOS and HO-1/HO-2 were determined with immunofluorescence and Western blotting. Compared with sedentary controls, rats subjected to acute and chronic endurance training showed enhanced endothelium-dependent relaxation (p<0.01). Whereas acetylcholine-induced dilation was inhibited completely by NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) in sedentary controls, the dilation in the training groups was only partly blocked by L-NAME (inhibition was 98+/-3%, 79+/-6%, and 77+/-5% in sedentary control, acute, and chronic training groups, respectively, p<0.01). The remnant dilation in the training groups was further inhibited by HO inhibitor protoporphyrin IX zinc, with concomitant elevation in aortic eNOS as well as HO-1 and HO-2. In contrast to endurance exercise, high-volume intense training resulted in mild hypertension with significant impairment in endothelium-dependent vasodilation and profuse increases in aortic iNOS and eNOS (p<0.01). In conclusion, endothelium-dependent vasodilation is improved by endurance exercise but impaired by chronic intense training. Elevations of vascular eNOS and HO-1/HO-2 may contribute to enhanced vasodilation, which can be offset by intense training and elevation in vascular iNOS.

  14. Muscle Volume Increases Following 16 Weeks of Resistive Exercise Training with the Advanced Resistive Exercise Device (ARED) and Free Weights

    NASA Technical Reports Server (NTRS)

    Nash, R. E.; Loehr, J. A.; Lee, S. M. C.; English, K. L.; Evans, H.; Smith, S. A.; Hagan, R. D.

    2009-01-01

    Space flight-induced muscle atrophy, particularly in the postural and locomotorymuscles, may impair task performance during long-duration space missions and planetary exploration. High intensity free weight (FW) resistive exercise training has been shown to prevent atrophy during bed rest, a space flight analog. NASA developed the Advanced Resistive Exercise Device (ARED) to simulate the characteristics of FW exercise (i.e. constant mass, inertial force) and to be used as a countermeasure during International Space Station (ISS) missions. PURPOSE: To compare the efficacy of ARED and FW training to induce hypertrophy in specific muscle groups in ambulatory subjects prior to deploying ARED on the ISS. METHODS: Twenty untrained subjects were assigned to either the ARED (8 males, 3 females) or FW (6 males, 3 females) group and participated in a periodizedtraining protocol consisting of squat (SQ), heel raise (HR), and deadlift(DL) exercises 3 d wk-1 for 16 wks. SQ, HR, and DL muscle strength (1RM) was measured before, after 8 wks, and after 16 wks of training to prescribe exercise and measure strength changes. Muscle volume of the vastigroup (V), hamstring group (H), hip adductor group (ADD), medial gastrocnemius(MG), lateral gastrocnemius(LG), and deep posterior muscles including soleus(DP) was measured using MRI pre-and post-training. Consecutive cross-sectional images (8 mm slices with a 2 mm gap) were analyzed and summed. Anatomical references insured that the same muscle sections were analyzed pre-and post-training. Two-way repeated measures ANOVAs (p<0.05) were used to test for differences in muscle strength and volume between training devices. RESULTS: SQ, HR, and DL 1RM increased in both FW (SQ: 49+/-6%, HR: 12+/-2%, DL: 23+/-4%) and ARED (SQ: 31+/-4%, HR: 18+/-2%, DL: 23+/-3%) groups. Both groups increased muscle volume in the V (FW: 13+/-2%, ARED: 10+/-2%), H (FW: 3+/-1%, ARED: 3+/-1 %), ADD (FW: 15=/-2%, ARED: 10+/-1%), LG (FW: 7+/-2%, ARED: 4+/-1%), MG (FW: 7+/-2%, ARED: 5+/-2%), and DP (FW: 2+/-1%; ARED: 2+/-1%) after training. There were no between group differences in muscle strength or volume. CONCLUSIONS: The increase in muscle volume and strength following ARED training is not different than FW training. With the training effects similar to FW and a 600 lb load capacity, ARED likely will protect against muscle atrophy in microgravity.

  15. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.

    PubMed

    Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten

    2013-09-01

    Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.

  16. Decreased peak arteriovenous oxygen difference during treadmill exercise testing in individuals infected with the human immunodeficiency virus.

    PubMed

    Cade, W Todd; Fantry, Lori E; Nabar, Sharmila R; Keyser, Randall E

    2003-11-01

    To determine if arteriovenous oxygen difference was lower in asymptomatic individuals with human immunodeficiency virus (HIV) infection than in sedentary but otherwise healthy controls. Quasi-experimental cross-sectional. Clinical exercise laboratory. Fifteen subjects (10 men, 5 women) with HIV and 15 healthy gender- and activity level-matched controls (total N=30). Participants performed an incremental maximal exercise treadmill test to exhaustion. Electrocardiogram, metabolic, and noninvasive cardiac output measurements were evaluated at rest and throughout the tests. Data were analyzed by using analysis of covariance. Peak oxygen consumption (Vo(2)), cardiac output, stroke volume, and arteriovenous oxygen difference. The arteriovenous oxygen difference was determined indirectly using the Fick equation. Peak VO(2) was significantly lower (P<.0005) in participants with HIV (24.6+/-1.2mL.kg(-1).min(-1)) compared with controls (32.0+/-1.2mL.kg(-1).min(-1)). There were no significant intergroup differences in cardiac output or stroke volume at peak exercise. Peak arteriovenous oxygen difference was significantly lower (P<.04) in those infected with HIV (10.8+/-0.5 volume %) than in controls (12.4+/-0.5 volume %). The observed deficit in aerobic capacity in the participants with HIV appeared to be the result of a peripheral tissue oxygen extraction or utilization limitation. In addition to deconditioning, potential mechanisms for this significant attenuation may include HIV infection and inflammation, highly active antiretroviral therapy medication regimens, or a combination of these factors.

  17. Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training

    PubMed Central

    Arbab-Zadeh, Armin; Perhonen, Merja; Howden, Erin; Peshock, Ronald M.; Zhang, Rong; Adams-Huet, Beverly; Haykowsky, Mark J.; Levine, Benjamin D.

    2017-01-01

    Background It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Methods and Results Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake (V̇o2 max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean V̇o2 max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. Conclusions One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training. PMID:25281664

  18. Effect of training on blood volume and plasma hormone concentrations in the elderly

    NASA Technical Reports Server (NTRS)

    Carroll, J. F.; Convertino, V. A.; Wood, C. E.; Graves, J. E.; Lowenthal, D. T.; Pollock, M. L.

    1995-01-01

    The purpose of this investigation was to determine the effects of 6 months of endurance training on resting plasma (PV) and blood volume (BV), and resting hormone and electrolyte concentrations in the elderly. Thirty-eight elderly men and women (ages 60-82 yr) were assigned to endurance exercise training (N = 29) or to control (N = 9) groups. Resting plasma levels of adrenocorticotropic hormone, vasopressin, aldosterone, norepinephrine, epinephrine, sodium, potassium, and protein were measured at the start (T1) and end (T2) of 26 wk of training. PV measurement was performed using the Evan's blue dye technique. Endurance training consisted of uphill treadmill walking or stairclimbing exercise 3 times.wk-1, 30-45 min.d-1, at 75-84% of maximal heart rate reserve. The exercise group increased VO2max by 11.2% (P < or = 0.05) and increased resting PV and BV by 11.2% and 12.7% (P < or = 0.05), respectively. Hormone and electrolyte levels in the exercise group remained unchanged; all variables were unchanged in the control group. These results are similar to findings in younger individuals. Because plasma hormone concentrations were maintained despite a chronically elevated BV, endurance training in healthy, elderly subjects may be associated with a resetting of volume receptors.

  19. High-volume resistance training session acutely diminishes respiratory muscle strength.

    PubMed

    Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi

    2012-01-01

    This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.

  20. Analysis of muscle activation in each body segment in response to the stimulation intensity of whole-body vibration.

    PubMed

    Lee, Dae-Yeon

    2017-02-01

    [Purpose] The purpose of this study was to investigate the effects of a whole-body vibration exercise, as well as to discuss the scientific basis to establish optimal intensity by analyzing differences between muscle activations in each body part, according to the stimulation intensity of the whole-body vibration. [Subjects and Methods ] The study subjects included 10 healthy men in their 20s without orthopedic disease. Representative muscles from the subjects' primary body segments were selected while the subjects were in upright positions on exercise machines; electromyography electrodes were attached to the selected muscles. Following that, the muscle activities of each part were measured at different intensities. No vibration, 50/80 in volume, and 10/25/40 Hz were mixed and applied when the subjects were on the whole-vibration exercise machines in upright positions. After that, electromyographic signals were collected and analyzed with the root mean square of muscular activation. [Results] As a result of the analysis, it was found that the muscle activation effects had statistically meaningful differences according to changes in exercise intensity in all 8 muscles. When the no-vibration status was standardized and analyzed as 1, the muscle effect became lower at higher frequencies, but became higher at larger volumes. [Conclusion] In conclusion, it was shown that the whole-body vibration stimulation promoted muscle activation across the entire body part, and the exercise effects in each muscle varied depending on the exercise intensities.

  1. Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous high-intensity exercise in active, untrained, healthy males.

    PubMed

    Niven, Ailsa; Thow, Jacqueline; Holroyd, Jack; Turner, Anthony P; Phillips, Shaun M

    2018-09-01

    This study compared affective responses to low volume high-intensity interval exercise (HIIE), moderate-intensity continuous exercise (MICE) and high-intensity continuous exercise (HICE). Twelve untrained males ([Formula: see text] 48.2 ± 6.7 ml·kg -1 ·min -1 ) completed MICE (30 min cycle at 85% of ventilatory threshold (VT)), HICE (cycle at 105% of VT matched with MICE for total work), and HIIE (10 x 6 s cycle sprints with 60 s recovery). Affective valence and perceived activation were measured before exercise, post warm-up, every 20% of exercise time, and 1, 5, 10, and 15 min post-exercise. Affective valence during exercise declined by 1.75 ± 2.42, 1.17 ± 1.99, and 0.42 ± 1.38 units in HICE, HIIE, and MICE, respectively, but was not statistically influenced by trial (P = 0.35), time (P = 0.06), or interaction effect (P = 0.08). Affective valence during HICE and HIIE was consistently less positive than MICE. Affective valence post-exercise was not statistically influenced by trial (P = 0.10) and at 5 min post-exercise exceeded end-exercise values (P = 0.048). Circumplex profiles showed no negative affect in any trial. Affective responses to low volume HIIE are similar to HICE but remain positive and rebound rapidly, suggesting it may be a potential alternative exercise prescription.

  2. Effects of exercise on capillaries in the white matter of transgenic AD mice

    PubMed Central

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-01-01

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478

  3. Effects of exercise on capillaries in the white matter of transgenic AD mice.

    PubMed

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-09-12

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.

  4. How To Sample in Surveys. The Survey Kit, Volume 6.

    ERIC Educational Resources Information Center

    Fink, Arlene

    The nine-volume Survey Kit is designed to help readers prepare and conduct surveys and become better users of survey results. All the books in the series contain instructional objectives, exercises and answers, examples of surveys in use, illustrations of survey questions, guidelines for action, checklists of "dos and don'ts," and…

  5. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Keil, L. C.; Bernauer, E. M.; Greenleaf, J. E.

    1981-01-01

    The influence of work intensity on plasma volume, osmolality, vasopressin and renin activity and the interrelationships between these responses are investigated. Plasma volume, renin activity and osmotic, sodium and arginine vasopressin concentrations were measured in venous blood samples taken from 15 healthy male subjects before and after six minutes of bicycle ergometer exercise at 100, 175 and 225 W. Plasma volume is found to decrease significantly with increasing work intensity, while increases in Na(+) concentration, osmolality and vasopressin are only observed to be significant when the work intensity exceeds 40% maximal aerobic capacity and plasma resin activity increased linearly at all work levels. In addition, significant correlations are observed between plasma volume and osmolality and sodium changes, and between vasopressin and osmolality and sodium content changes. Data thus support the hypotheses that (1) vasopressin may be the primary controlling endocrine for fluid and electrolyte levels following exercise; (2) an exercise intensity greater than 40% maximal aerobic capacity is required to stimulate vasopressin release through changes in plasma osmolality; and (3) the stimulation of the renin-angiotensin system is a more general stress response.

  6. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players.

    PubMed

    Hoffman, Jay R; Ratamess, Nicholas A; Faigenbaum, Avery D; Ross, Ryan; Kang, Jie; Stout, Jeffrey R; Wise, John A

    2008-01-01

    The purpose of this study was to examine the effect of 30 days of beta-alanine supplementation in collegiate football players on anaerobic performance measures. Subjects were randomly divided into a supplement (beta-alanine group [BA], 4.5 g x d(-1) of beta-alanine) or placebo (placebo group [P], 4.5 g x d(-1) of maltodextrin) group. Supplementation began 3 weeks before preseason football training camp and continued for an additional 9 days during camp. Performance measures included a 60-second Wingate anaerobic power test and 3 line drills (200-yd shuttle runs with a 2-minute rest between sprints) assessed on day 1 of training camp. Training logs recorded resistance training volumes, and subjects completed questionnaires on subjective feelings of soreness, fatigue, and practice intensity. No difference was seen in fatigue rate in the line drill, but a trend (P = .07) was observed for a lower fatigue rate for BA compared with P during the Wingate anaerobic power test. A significantly higher training volume was seen for BA in the bench press exercise, and a trend (P = .09) for a greater training volume was seen for all resistance exercise sessions. In addition, subjective feelings of fatigue were significantly lower for BA than P. In conclusion, despite a trend toward lower fatigue rates during 60 seconds of maximal exercise, 3 weeks of beta-alanine supplementation did not result in significant improvements in fatigue rates during high-intensity anaerobic exercise. However, higher training volumes and lower subjective feelings of fatigue in BA indicated that as duration of supplementation continued, the efficacy of beta-alanine supplementation in highly trained athletes became apparent.

  7. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.

    PubMed

    Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R

    2010-02-01

    Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.

  8. Effect of Exercise Training and +Gz Acceleration Training on Men

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, Shawn R.; Stocks, Jodie M.; Evans, Joyce; Knapp, Charles F.; Cowell, Stephenie A.; Pemberton, Kendra N.; Wilson, Heather W.; Vener, Jamie M.; Evetts, Simon N.

    2001-01-01

    Countermeasures for reduction in work capacity (maximal oxygen uptake and strength) during spaceflight and enhanced orthostatic intolerance during re-entry, landing and egress from the return vehicle are continuing problems. The purpose for this study was to test the hypothesis that passive-acceleration training; supine, interval, exercise plus acceleration training and exercise combined with acceleration training would improve orthostatic tolerance in ambulatory men; and that addition of the aerobic exercise conditioning would not alter this improved tolerance from that of passive-acceleration training. Seven men (24-38 yr) underwent "Passive" training on the Ames human-powered centrifuge (HPC) for 30 min, "Exercise" training on the cycle ergometer with constant +Gz acceleration; and "Combined" exercise training at 40% to 90% of the HPC +Gz(max) exercise level. Maximal supine exercise loads increased significant (P<0.05) by 8.3% (Passive), 12.6% (Exercise), and by 15.4% (Combined) after training, but their post-training maximal oxygen uptakes and maximal heart rates were unchanged. Maximal time to fatigue (endurance) was unchanged with Passive was increased (P<0.05) with Exercise and Combined training. Thus, the exercise in the Exercise and Combined training Phases resulted in greater maximal loads and endurance without effect on maximal oxygen uptake or heart rate. There was a 4% to 6% increase (P<0.05) in all four quadriceps muscle volumes (right and left) after post-Combined training. Resting pre-tilt heart rate was elevated by 12.9% (P<0.05) only after Passive training suggesting that the exercise training attenuated the HR response. Plasma volume (% Delta) was uniformly decreased by 8% to 14% (P<0.05) at tilt-tolerance pre- vs. post-training indicating essentially no effect of training on the level of hypovolemia. Post-training tilt-tolerance time and heart rate were increased (P<0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training appeared to attenuate the increased Passive tilt-tolerance.

  9. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged. Taken together, these data suggest that longer duration BR induces a number of changes that result in peripheral adaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  10. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    NASA Technical Reports Server (NTRS)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  11. The influence of exercise intensity on heat acclimation in trained subjects.

    PubMed

    Houmard, J A; Costill, D L; Davis, J A; Mitchell, J B; Pascoe, D D; Robergs, R A

    1990-10-01

    Low-intensity exercise (less than or equal to 50% VO2max) has been demonstrated to produce heat acclimation (HA) in trained subjects. The purpose of this study was to determine whether shorter-duration, moderate-intensity exercise would also result in HA. Nine trained runners performed two 9-d exercise heat-stress protocols. Each protocol consisted of a 90-min heat tolerance test on days 1 (HTT1) and 9 (HTT2). On days 2-8 the subjects exercised at 50% VO2max for 60 min.d-1 (T50) or at 75% VO2max for 30-35 min.d-1 (T75). Final HTT2 heart rate and rectal temperature (Tr) were significantly (P less than 0.001) reduced, as compared to HTT1, with no differences between T50 and T75. Both protocols resulted in significant (P less than 0.05) reductions in HTT2 pre-exercise Tr and total exercising caloric expenditure, both of which are known to contribute to HA. No changes in resting plasma volume, osmolality, protein, post-HTT aldosterone, and exercising sweat rate were observed. These results demonstrate that equal levels of HA were obtained with T50 and T75, which suggests that moderate-intensity, short-duration exercise in the heat can produce HA in trained subjects.

  12. Reduction of O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy

    PubMed Central

    Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku

    2015-01-01

    Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190

  13. Low-Volume Whole-Body Vibration Training Improves Exercise Capacity in Subjects With Mild to Severe COPD.

    PubMed

    Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R

    2017-03-01

    The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.

  14. Effects of combined high-intensity aerobic interval training program and Mediterranean diet recommendations after myocardial infarction (INTERFARCT Project): study protocol for a randomized controlled trial.

    PubMed

    Maldonado-Martín, Sara; Jayo-Montoya, Jon Ander; Matajira-Chia, Tatiana; Villar-Zabala, Beatriz; Goiriena, Juan José; Aispuru, G Rodrigo

    2018-03-02

    Exercise therapy has long been used for rehabilitation purposes after myocardial infarction (MI) and the benefit of regular physical exercise is also well-established. High-intensity interval training (HIIT) has been proposed to be more effective than continuous exercise for improving exercise capacity and health-related adaptations to low-volume (LV) and HIIT are also known. Furthermore, the Mediterranean diet (Mediet) has been widely reported to be a model of healthy eating for its contribution to a favorable health status and a better quality of life, reducing overall mortality. This study will investigate the effects of different HIIT programs (high-volume [HV] vs LV) and Mediet recommendations in clinical condition, cardiorespiratory fitness, biomarkers, ventricular function, and perception of quality of life after MI, and compared to an attention control group that is recommended to Mediet and physical activity without supervision sessions. In this randomized controlled trial, cardiorespiratory fitness, anthropometry, central and peripheral cardiovascular variables, biochemical and nutritional condition, and quality of life will be assessed before and after 16 weeks of intervention in 177 participants diagnosed with MI type 1. All participants will be randomly (1:1:1) assigned to the attention control group or two exercise groups (Mediet recommendations plus supervised aerobic exercise two days/week: (1) HV (40 min) HIIT group and (2) LV (20 min) HIIT group. This study will be the first clinical trial comparing the effects of two different volumes of HIIT programs with Mediet recommendations for people after MI. The results of this study will provide good evidence for physical rehabilitation in this population. ClinicalTrials.gov, NCT02876952 . Registered on 24 August 2016.

  15. A practical guide to exercise training for heart failure patients.

    PubMed

    Smart, Neil; Fang, Zhi You; Marwick, Thomas H

    2003-02-01

    Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.

  16. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health.

    PubMed

    Hettinga, Dries M; Andrews, Brian J

    2008-01-01

    A lesion in the spinal cord leads in most cases to a significant reduction in active muscle mass, whereby the paralysed muscles cannot contribute to oxygen consumption (VO2) during exercise. Consequently, persons with spinal cord injury (SCI) can only achieve high VO2 values by excessively stressing the upper body musculature, which might increase the risk of musculoskeletal overuse injury. Alternatively, the muscle mass involved may be increased by using functional electrical stimulation (FES). FES-assisted cycling, FES-cycling combined with arm cranking (FES-hybrid exercise) and FES-rowing have all been suggested as candidates for cardiovascular training in SCI. In this article, we review the levels of VO2 (peak [VO2peak] and sub-peak [VO2sub-peak]) that have been reported for SCI subjects using these FES exercise modalities. A systematic literature search in MEDLINE, EMBASE, AMED, CINAHL, SportDiscus and the authors' own files revealed 35 studies that reported on 499 observations of VO2 levels achieved during FES-exercise in SCI. The results show that VO2peak during FES-rowing (1.98 L/min, n = 17; 24.1 mL/kg/min, n = 11) and FES-hybrid exercise (1.78 L/min, n = 67; 26.5 mL/kg/min, n = 35) is considerably higher than during FES-cycling (1.05 L/min, n = 264; 14.3 mL/kg/min, n = 171). VO2sub-peak values during FES-hybrid exercise were higher than during FES-cycling. FES-exercise training can produce large increases in VO2peak; the included studies report average increases of +11% after FES-rowing training, +12% after FES-hybrid exercise training and +28% after FES-cycling training. This review shows that VO2 during FES-rowing or FES-hybrid exercise is considerably higher than during FES-cycling. These observations are confirmed by a limited number of direct comparisons; larger studies to test the differences in effectiveness of the various types of FES-exercise as cardiovascular exercise are needed. The results to date suggest that FES-rowing and FES-hybrid are more suited for high-intensity, high-volume exercise training than FES-cycling. In able-bodied people, such exercise programmes have shown to result in superior health and fitness benefits. Future research should examine whether similar high-intensity and high-volume exercise programmes also give persons with SCI superior fitness and health benefits. This kind of research is very timely given the high incidence of physical inactivity-related health conditions in the aging SCI population.

  17. Influence of Exercise Modality on Cerebral-Ocular Hemodynamics and Pressures

    NASA Technical Reports Server (NTRS)

    Scott, J.; Martin, D.; Crowell, B.; Goetchius, E.; Seponski, C.; Gonzales, R.; Matz, T.; Ploutz-Snyder, R.; Stenger, M.; Ploutz-Snyder, L.

    2016-01-01

    Background: Moderate and high intensity aerobic or resistance exercise has clearly identified benefits for cardiac, muscle, and bone health. However, the impact of such exercise - either as a mitigating or an exacerbating factor - on the development of the visual impairment and intracranial pressure syndrome (VIIP) is unknown. Accordingly, our aim was to characterize the effect of an acute bout of resistance (RE), moderate-intensity continuous (CE), and high-intensity interval exercise (IE) during a cephalad fluid shift on cerebral-ocular hemodynamics and pressures. Methods: 10 male subjects (36 plus or minus 9 years) completed 4 testing days in a 15 degree head-down tilt (HDT): (1) assessment of maximum volume of O (sub 2), (2) RE session (4 sets of 12 repetition maximum leg press exercise), (3) CE session (30 minutes of cycling at 60 percent maximum volume of O (sub 2)), and (4) IE session (4 by 4-minute intervals of exercise at 85 percent maximum volume of O (sub 2) with 3-minute active rest periods). During each session, blood flow (Vivid-e, GE Healthcare) in extracranial arteries (common carotid artery, CCA; internal carotid artery, ICA; external carotid artery, ECA and vertebral artery, VA), and mean blood flow velocity in middle cerebral artery (MCA), internal jugular pressure (IJP; VeinPress), and intraocular pressure (IOP; Icare PRO) were measured at rest, at the end of each resistance or interval set, and every 5 minutes during continuous exercise. Translaminar pressure gradient (TLPG) was estimated by subtracting IJP from IOP. Results: There were no differences across days in pre-exercise resting blood flows or pressures. IOP decreased slightly from HDT rest (20.2 plus or minus 2.3 millimeters of mercury) to exercise (RE: 19.2 plus or minus 2.8 millimeters of mercury; CE: 18.9 plus or minus 3.2 millimeters of mercury; IE: 20.1 plus or minus 2.8 millimeters of mercury), while IJP decreased during CE (31.6 plus or minus 9.5 millimeters of mercury) and RE (32.0 plus or minus 8.1 millimeters of mercury), and increased during IE (35.1 plus or minus 9.5 millimeters of mercury) from HDT rest (33.3 plus or minus 6.5 millimeters of mercury). Estimated TLPG was increased during IE only. Compared to RE and CE, IE resulted in the greatest increase in MCA blood flow velocity and extracranial artery blood flow. Conclusions: These preliminary results suggest that high-intensity IE acutely increases cerebral blood flow, IJP, and TLPG. Alterations in TLPG is one mechanism that may contribute to optic nerve sheath edema in astronauts. Accordingly, acutely raising IOP and/or orbital pressure during exercise could optimize cerebral-ocular pressures during spaceflight.

  18. Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.

    PubMed

    Harrop, Bradley J; Woodruff, Sarah J

    2015-06-01

    The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women.

  19. Cardiopulmonary Response to Exercise Testing in People with Chronic Stroke: A Retrospective Study

    PubMed Central

    Billinger, Sandra A.; Taylor, Jordan M.; Quaney, Barbara M.

    2012-01-01

    Background and Purpose. This study investigated the cardiopulmonary response and safety of exercise testing at peak effort in people during the chronic stage of stroke recovery. Methods. This retrospective study examined data from 62 individuals with chronic stroke (males: 32; mean (SD); age: (12.0) yr) participating in an exercise test. Results. Both males and females had low cardiorespiratory fitness levels. No significant differences were found between gender for peak HR (P = 0.27), or VO2 peak (P = 0.29). Males demonstrated higher values for minute ventilation, tidal volume, and respiratory exchange ratio. No major adverse events were observed in the exercise tests conducted. Discussion and Conclusion. There are differences between gender that may play a role in exercise testing performance and should be considered when developing exercise programs. The low VO2 peak of this cohort of chronic stroke survivors suggests the need for participation in exercise interventions. PMID:21961083

  20. Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.

    1984-01-01

    A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.

  1. Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.

    2014-01-01

    Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.

  2. Determinants of expiratory flow limitation in healthy women during exercise.

    PubMed

    Dominelli, Paolo B; Guenette, Jordan A; Wilkie, Sabrina S; Foster, Glen E; Sheel, A William

    2011-09-01

    Expiratory flow limitation (EFL) can occur in healthy young women during exercise. We questioned whether the occurrence and severity of EFL were related to aerobic fitness or anatomical factors. Twenty-two healthy young (<40 yr) women performed a progressive cycle test to exhaustion. The subjects' maximum expiratory flow-volume curve was compiled from several effort-graded vital capacity maneuvers before and after exercise. The maximum expiratory flow-volume curve, along with inspiratory capacity maneuvers, was used to determine lung volumes and expiratory flows and to quantify EFL. To determine relative airway size, we used a ratio sensitive to both airway size and lung volume, called the dysanapsis ratio. The subjects were partitioned into two groups based upon the appearance of >5% EFL. Ten subjects showed EFL during exercise. Forced vital capacities (4.4 ± 0.4 vs 3.7 ± 0.4 L, P < 0.001) and forced expiratory flows for any given lung volume were significantly larger in the non-expiratory flow-limited (NEFL) group. The NEFL group's dysanapsis ratio was significantly larger than that of the EFL group (0.27 ± 0.06 vs 0.21 ± 0.04, respectively, P < 0.05), indicating larger airways in the NEFL group. There was no difference between the NEFL and EFL groups with respect to maximal aerobic capacity (50.8 ± 10.0 vs 46.7 ± 5.9 mL·kg(-1)·min(-1), respectively, P = 0.264). At peak exercise, the NEFL group had a significantly higher end-expiratory lung volume than the EFL group (40.1% ± 4.8% vs 33.7% ± 5.7% FVC, respectively, P < 0.05). We conclude that EFL in women can largely be explained by anatomical factors that influence the capacity to generate flow and volume during exercise rather than fitness per se.

  3. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    PubMed Central

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF

    2016-01-01

    Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031

  4. The Effect of Exercise on Breast Cancer-Related Lymphedema: What the Lymphatic Surgeon Needs to Know.

    PubMed

    Panchik, Daniel; Masco, Sarah; Zinnikas, Patrice; Hillriegel, Brooke; Lauder, Tori; Suttmann, Erica; Chinchilli, Vernon; McBeth, Maureen; Hermann, William

    2018-06-23

     Breast cancer-related lymphedema (BCRL) affects many areas of daily living. Individuals with lymphedema may experience chronic and progressive swelling, recurrent skin infections, and decreased self-image and quality of life. For many years, it was considered best practice for this population to avoid exercise; however, in recent years, research has begun to challenge this belief. This systematic review and meta-analyses examined the recent literature on the effects of exercise for patients with, or at risk for, BCRL to inform best practice.  A total of 807 articles were retrieved from CINAHL, Academic Search Complete, Medline, and PubMed. Results were systematically filtered to 26 articles through inclusion criteria, exclusion criteria, and the Effective Public Health Practice Project quality assessment tool for quantitative studies. Data were pooled from studies containing relative and absolute volume measurements of limb volume, as well as upper extremity function measured by the Disabilities of Arm, Shoulder, and Hand (DASH) questionnaire; meta-analyses were conducted using SAS software.  The literature was reviewed and statistically analyzed. Results have indicated aerobic exercise, resistance exercise, stretching, yoga, qigong, and pilates can be safe and effective in the management of symptoms for those with, or at risk for, BCRL.  Several forms of exercise appear to be safe interventions for clinicians to use when treating this population and offer benefits such as improved quality of life, strength, body mass index, and mental health and decreased pain and lymphatic swelling. Additional research should be conducted to further examine the efficacy and safety of nontraditional forms of exercise in the treatment of BCRL. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Hypnosis for exercise-induced asthma.

    PubMed

    Ben-Zvi, Z; Spohn, W A; Young, S H; Kattan, M

    1982-04-01

    Hypnosis has been used for many years in the treatment of asthma, but studies of its usefulness have been controversial. We assessed the efficacy of hypnosis in attenuating exercise-induced asthma (EIA) in 10 stable asthmatics. The subjects ran on a treadmill while mouth breathing for 6 min on 5 different days. Pulmonary mechanics were measured before and after each challenge. Two control exercise challenges resulted in a reproducible decrease in forced expiratory volume in one second (FEV1). On 2 other days, saline or cromolyn by nebulization was given in a double-blind manner with the suggestion that these agents would prevent EIA. Hypnosis prior to exercise resulted in a 15.9% decrease in FEV1 compared with a 31.8% decrease on the control days (p less than 0.001). Pretreatment with cromolyn resulted in a 7.6% decrease in FEV1. We conclude that hypnosis can alter the magnitude of a pathophysiologic process, namely, the bronchospasm after exercise in patients with asthma.

  6. How To Measure Survey Reliability and Validity. The Survey Kit, Volume 7.

    ERIC Educational Resources Information Center

    Litwin, Mark S.

    The nine-volume Survey Kit is designed to help readers prepare and conduct surveys and become better users of survey results. All the books in the series contain instructional objectives, exercises and answers, examples of surveys in use, illustrations of survey questions, guidelines for action, checklists of "dos and don'ts," and…

  7. The respiration pattern as an indicator of the anaerobic threshold.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration.

  8. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise.

    PubMed

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K

    2017-02-20

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.

  9. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

    PubMed Central

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.

    2017-01-01

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506

  10. Exercise order in resistance training.

    PubMed

    Simão, Roberto; de Salles, Belmiro Freitas; Figueiredo, Tiago; Dias, Ingrid; Willardson, Jeffrey M

    2012-03-01

    Resistance training (RT) is now an integral component of a well rounded exercise programme. For a correct training prescription, it is of the utmost importance to understand the interaction among training variables, such as the load, volume, rest interval between sets and exercises, frequency of sessions, exercise modality, repetition velocity and, finally, exercise order. Sports medicine research has indicated that exercise order is an important variable that affects both acute responses and chronic adaptations to RT programmes. Therefore, the purpose of this review was to analyse and discuss exercise order with relevance to acute responses (e.g. repetition performance) and also the expression of chronic adaptable characteristics (e.g. maximal strength and hypertrophy). To accomplish this purpose, the Scielo, Science Citation Index, National Library of Medicine, MEDLINE, Scopus, SPORTDiscus™ and CINAHL® databases were accessed to locate previously conducted original scientific investigations. The studies reviewed examined both acute responses and chronic adaptations with exercise order as the experimental variable. Generally, with relevance to acute responses, a key finding was that exercise order affects repetition performance over multiple sets, indicating that the total repetitions, and thus the volume, is greater when an exercise is placed at the beginning of an RT session, regardless of the relative amount of muscle mass involved. The pre-exhaustion method might not be an effective technique to increase the extent of neuromuscular recruitment for larger muscle groups (e.g. pectoralis major for the bench press) when preceded by a single-joint movement (e.g. pec-deck fly). With relevance to localized muscular endurance performance, oxygen consumption and ratings of perceived exertion, the limited amount of research conducted thus far indicates that exercise order does not appear to impact the acute expression of these variables. In terms of chronic adaptations, greater strength increases were evident by untrained subjects for the first exercise of a given sequence, while strength increases were inhibited for the last exercise of a given sequence. Additionally, based on strength and hypertrophy (i.e. muscle thickness and volume) effect-size data, the research suggests that exercises be ordered based on priority of importance as dictated by the training goal of a programme, irrespective of whether the exercise involves a relatively large or small muscle group. In summary, exercise order is an important variable that should receive greater attention in RT prescription. When prescribed appropriately with other key prescriptive variables (i.e. load, volume, rest interval between sets and exercises), the exercise order can influence the efficiency, safety and ultimate effectiveness of an RT programme.

  11. Exercise volume and intensity: a dose-response relationship with health benefits.

    PubMed

    Foulds, Heather J A; Bredin, Shannon S D; Charlesworth, Sarah A; Ivey, Adam C; Warburton, Darren E R

    2014-08-01

    The health benefits of exercise are well established. However, the relationship between exercise volume and intensity and health benefits remains unclear, particularly the benefits of low-volume and intensity exercise. The primary purpose of this investigation was, therefore, to examine the dose-response relationship between exercise volume and intensity with derived health benefits including volumes and intensity of activity well below international recommendations. Generally healthy, active participants (n = 72; age = 44 ± 13 years) were assigned randomly to control (n = 10) or one of five 13-week exercise programs: (1) 10-min brisk walking 1×/week (n = 10), (2) 10-min brisk walking 3×/week (n = 10), (3) 30-min brisk walking 3×/week (n = 18), (4) 60-min brisk walking 3×/week (n = 10), and (5) 30-min running 3×/week (n = 14), in addition to their regular physical activity. Health measures evaluated pre- and post-training including blood pressure, body composition, fasting lipids and glucose, and maximal aerobic power (VO2max). Health improvements were observed among programs at least 30 min in duration, including body composition and VO2max: 30-min walking 28.8-34.5 mL kg(-1) min(-1), 60-min walking 25.1-28.9 mL kg(-1) min(-1), and 30-min running 32.4-36.4 mL kg(-1) min(-1). The greater intensity running program also demonstrated improvements in triglycerides. In healthy active individuals, a physical activity program of at least 30 min in duration for three sessions/per week is associated with consistent improvements in health status.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massie, B.; Kramer, B.L.; Topic, N.

    Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responsesmore » at rest were decreases in left and right ventricular end-diastolic volumes from 388 +/- 81 to 350 +/- 77 ml and from 52 +/- 26 to 43 +/- 20 volume units, respectively, and in their corresponding filling pressures, from 24 +/- 10 to 17 +/- 9 mm Hg and 10 +/- 5 to 6 +/- 5 mm Hg. Although stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 +/- 6% to 22+/- 5% and from 25 +/- 9% to 29 +/- 11%, respectively. During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. This, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.« less

  13. Dose–response effects of aerobic exercise on energy compensation in postmenopausal women: combined results from two randomized controlled trials

    PubMed Central

    McNeil, J; Brenner, D R; Courneya, K S; Friedenreich, C M

    2017-01-01

    Background/objectives: Despite the clear health benefits of exercise, exercised-induced weight loss is often less than expected. The term ‘exercise energy compensation’ is used to define the amount of weight loss below what is expected for the amount of exercise energy expenditure. We examined the dose–response effects of exercise volume on energy compensation in postmenopausal women. Participants/methods: Data from Alberta Physical Activity and Breast Cancer Prevention (ALPHA) and Breast Cancer and Exercise Trial in Alberta (BETA) were combined for the present analysis. The ALPHA and BETA trials were two-centred, two-armed, 12-month randomized controlled trials. The ALPHA trial included 160 participants randomized to 225 min per week of aerobic exercise, and the BETA trial randomized 200 participants to each 150 and 300 min per week of aerobic exercise. All participants were aged 50–74 years, moderately inactive (<90 min per week of exercise), had no previous cancer diagnosis and a body mass index between 22 and 40 kg m−2. Energy compensation was based on changes in body composition (dual-energy X-ray absorptiometry scan) and estimated exercise energy expenditure from completed exercise volume. Associations between Δenergy intake, ΔVO2peak and Δphysical activity time with energy compensation were assessed. Results: No differences in energy compensation were noted between interventions. However, there were large inter-individual differences in energy compensation between participants; 9.4% experienced body composition changes that were greater than expected based on exercise energy expenditure, 64% experienced some degree of energy compensation and 26.6% experienced weight gain based on exercise energy expenditure. Increases in VO2peak were associated with reductions in energy compensation (β=−3.44 ml kg−1 min−1, 95% confidence interval for β=−4.71 to −2.17 ml kg−1 min−1; P=0.0001). Conclusions: Large inter-individual differences in energy compensation were noted, despite no differences between activity doses. In addition, increases in VO2peak were associated with lower energy compensation. Future studies are needed to identify behavioral and metabolic factors that may contribute to this large inter-individual variability in energy compensation. PMID:28360432

  14. Exercise Increases the Cardiovascular Stimulus Provided by Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Moore, F. B.; Hinghofer-Szalkay, H.; Jezova, D.; Diedrich, A.; Ferris, M. B.; Schlegel, T. T.; Pathwardhan, A. R.; Knapp, C. F.; Evans, J. M.

    2008-01-01

    We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 plus or minus 9 yr, 82.8 plus or minus 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control, on average, by: A: 5, B: 39, C: 11, D: 44 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control, on average: A: -394, B: -548, C: -537, D: -708 mL. For thigh fluid volume, changes from control, on average, were: A: -137, B: 129, C: -75, D: 159 mL. Hematocrit changes from control were: A: 2.3, B: 3.5, C: 2.3, D: 4.3 %. Radius effects were mild and included greater loss of fluid from the thorax, less fluid loss from the thigh and increased heart rate at the longer radius. Pre-acceleration exercise effects were more dramatic and included additional loss of fluid from the chest, increased fluid volume of the thigh, increased hematocrit and greater heart rate increases. We propose that short bouts of intense exercise can be used to magnify the cardiovascular stress delivered by artificial gravity (AG) training and the combination of AG with exercise training can be fine-tuned to preserve orthostatic tolerance of astronauts during spaceflight.

  15. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans.

    PubMed

    Klansky, Andrew; Irvin, Charlie; Morrison-Taylor, Adriane; Ahlstrand, Sarah; Labrie, Danielle; Haverkamp, Hans Christian

    2016-07-01

    In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction. Copyright © 2016 the American Physiological Society.

  16. Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis.

    PubMed

    Granata, Cesare; Jamnick, Nicholas A; Bishop, David J

    2018-04-19

    Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.

  17. Electrocardiographic and scintigraphic evaluation of patients with subclinical hyperthyroidism during workout.

    PubMed

    Kaminski, Grzegorz; Dziuk, Mirosław; Szczepanek-Parulska, Ewelina; Zybek-Kocik, Ariadna; Ruchala, Marek

    2016-08-01

    Subclinical hyperthyroidism (sHT) was found to be associated with elevated heart rate, blood pressure and increased risk of extrasystoles. However, the full clinical relevance of morphological and functional implications of sHT on the cardiovascular system is still a matter of debate. The aim of the study was to prospectively assess the influence of endogenous sHT on exercise capacity and cardiac function during workout with the use of exercise electrocardiography (ExECG) and perfusion scintigraphy. The studied group consisted of 44 consecutively recruited patients diagnosed with sHT. In all patients, ExECG, followed by post-exercise myocardial perfusion imaging, was performed. Both ExECG and scintigraphy were performed twice-in the state of sHT and after euthyroidism was restored. An average time period of exercise test was significantly longer in the state of euthyroidism than in sHT. An average oxygen consumption during exercise test was also higher after euthyroidism was achieved when compared to sHT. The end-diastolic and end-systolic volume indexes, stroke volume index and cardiac index were significantly larger in patients with sHT if compared values achieved after euthyroidism restoration. Stroke volume index was negatively correlated with TSH, and positively with free thyroid hormones values in the state of sHT, before euthyroidism was achieved. Cardiac index was positively correlated with free thyroid hormones levels. The obtained results indicate worse physical capacity in subjects with sHT and improvement of several parameters assessed during ExECG and perfusion scintiscan after therapy. Observed changes might reflect the mechanism of the deleterious effect exerted by sHT on the heart.

  18. Tai Chi Chuan and Baduanjin Increase Grey Matter Volume in Older Adults: A Brain Imaging Study.

    PubMed

    Tao, Jing; Liu, Jiao; Liu, Weilin; Huang, Jia; Xue, Xiehua; Chen, Xiangli; Wu, Jinsong; Zheng, Guohua; Chen, Bai; Li, Ming; Sun, Sharon; Jorgenson, Kristen; Lang, Courtney; Hu, Kun; Chen, Shanjia; Chen, Lidian; Kong, Jian

    2017-01-01

    The aim of this study is to investigate and compare how 12-weeks of Tai Chi Chuan and Baduanjin exercise can modulate brain structure and memory function in older adults. Magnetic resonance imaging and memory function measurements (Wechsler Memory Scale-Chinese revised, WMS-CR) were applied at both the beginning and end of the study. Results showed that both Tai Chi Chuan and Baduanjin could significantly increase grey matter volume (GMV) in the insula, medial temporal lobe, and putamen after 12-weeks of exercise. No significant differences were observed in GMV between the Tai Chi Chuan and Baduanjin groups. We also found that compared to healthy controls, Tai Chi Chuan and Baduanjin significantly improved visual reproduction subscores on the WMS-CR. Baduanjin also improved mental control, recognition, touch, and comprehension memory subscores of the WMS-CR compared to the control group. Memory quotient and visual reproduction subscores were both associated with GMV increases in the putamen and hippocampus. Our results demonstrate the potential of Tai Chi Chuan and Baduanjin exercise for the prevention of memory deficits in older adults.

  19. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.

    PubMed

    Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E

    1976-12-01

    Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.

  20. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  1. Exercise thermoregulation with bed rest, confinement, and immersion deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1997-01-01

    Altered thermoregulation following exposure to prolonged (12-14 days) of bed rest and 6 hr of head-down thermoneutral water immersion in humans, and cage confinement (8 weeks) in male, mongrel dogs resulted in occasional increased core temperature (Tcore) at rest, but consistent "excessive" increase in Tcore during submaximal exercise. This excessive increase in Tcore in nonexercising and exercising subjects was independent of the mode (isometric or isotonic) of exercise training during bed rest, and was associated with the consistent hypovolemia in men but not in women taking estrogen supplementation (1.25 mg premarin/ day) which restored plasma volume during bed rest to ambulatory control levels. Post-bed rest exercise sweating (evaporative heat loss) was unchanged or higher than control levels; however, calculated tissue heat conductance was significantly lower in men, and forearm venoconstriction was greater (venous volume was reduced) in women during exercise after bed rest. Because sweating appeared proportional to the increased level of Tcore, these findings suggest that one major factor for the excessive hyperthermia is decreased core to periphery heat conduction. Exercising dogs respond like humans with excessive increase in both rectal (Tre) and exercising muscle temperatures (Tmu) after confinement and, after eight weeks of exercise training on a treadmill following confinement, they had an attenuated rate of increase of Tre even below ambulatory control levels. Intravenous infusion of glucose also attenuated not only the rise in Tre during exercise in normal dogs, but also the excessive rise in Tre and exercising Tmu after confinement. Oral glucose also appeared to reduce the rate of increase in excessive Tre in men after immersion deconditioning. There was a greater rate of rise in Tcore in two cosmonauts during supine submaximal exercise (65% VO2 max) on the fifth recovery day after the 115-day Mir 18 mission. Thus, the excessive rise in core temperature after deconditioning appears to be caused by decreased peripheral vasodilation in humans. Factors related to glucose metabolism may influence this mechanism.

  2. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness?

    PubMed

    Gillen, Jenna B; Gibala, Martin J

    2014-03-01

    Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. "All out" HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that "lack of time" remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.

  3. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats.

    PubMed

    Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-09-01

    The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quantitation of aortic and mitral regurgitation in the pediatric population: evaluation by radionuclide angiocardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, R.A.; Treves, S.; Freed, M.

    The ability to quantitate aortic (AR) or mitral regurgitation (MR), or both, by radionuclide angiocardiography was evaluated in children and young adults at rest and during isometric exercise. Regurgitation was estimated by determining the ratio of left ventricular stroke volume to right ventricular stroke volume obtained during equilibrium ventriculography. The radionuclide measurement was compared with results of cineangiography, with good correlation between both studies in 47 of 48 patients. Radionuclide stroke volume ratio was used to classify severity: the group with equivocal regurgitation differed from the group with mild regurgitation (p less than 0.02); patients with mild regurgitation differed frommore » those with moderate regurgitation (p less than 0.001); and those with moderate regurgitation differed from those with severe regurgitation (p less than 0.01). The stroke volume ratio was responsive to isometric exercise, remaining constant or increasing in 16 of 18 patients. After surgery to correct regurgitation, the stroke volume ratio significantly decreased from preoperative measurements in all 7 patients evaluated. Results from the present study demonstrate that a stroke volume ratio greater than 2.0 is compatible with moderately severe regurgitation and that a ratio greater than 3.0 suggests the presence of severe regurgitation. Thus, radionuclide angiocardiography should be useful for noninvasive quantitation of AR or MR, or both, helping define the course of young patients with left-side valvular regurgitation.« less

  5. Use of a turbine in a breath-by-breath computer-based respiratory measurement system.

    PubMed

    Venkateswaran, R S; Gallagher, R R

    1997-01-01

    The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.

  6. Hematological variations at rest and during maximal and submaximal exercise in a cold (0°C) environment

    NASA Astrophysics Data System (ADS)

    Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.

    1990-03-01

    The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.

  7. Physiological mechanisms of dyspnea during exercise with external thoracic restriction: Role of increased neural respiratory drive

    PubMed Central

    Mendonca, Cassandra T.; Schaeffer, Michele R.; Riley, Patrick

    2013-01-01

    We tested the hypothesis that neuromechanical uncoupling of the respiratory system forms the mechanistic basis of dyspnea during exercise in the setting of “abnormal” restrictive constraints on ventilation (VE). To this end, we examined the effect of chest wall strapping (CWS) sufficient to mimic a “mild” restrictive lung deficit on the interrelationships between VE, breathing pattern, dynamic operating lung volumes, esophageal electrode-balloon catheter-derived measures of the diaphragm electromyogram (EMGdi) and the transdiaphragmatic pressure time product (PTPdi), and sensory intensity and unpleasantness ratings of dyspnea during exercise. Twenty healthy men aged 25.7 ± 1.1 years (means ± SE) completed symptom-limited incremental cycle exercise tests under two randomized conditions: unrestricted control and CWS to reduce vital capacity (VC) by 21.6 ± 0.5%. Compared with control, exercise with CWS was associated with 1) an exaggerated EMGdi and PTPdi response; 2) no change in the relationship between EMGdi and each of tidal volume (expressed as a percentage of VC), inspiratory reserve volume, and PTPdi, thus indicating relative preservation of neuromechanical coupling; 3) increased sensory intensity and unpleasantness ratings of dyspnea; and 4) no change in the relationship between increasing EMGdi and each of the intensity and unpleasantness of dyspnea. In conclusion, the increased intensity and unpleasantness of dyspnea during exercise with CWS could not be readily explained by increased neuromechanical uncoupling but likely reflected the awareness of increased neural respiratory drive (EMGdi) needed to achieve any given VE during exercise in the setting of “abnormal” restrictive constraints on tidal volume expansion. PMID:24356524

  8. Erythrocyte volume in acidified venous blood from exercising limbs.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Rochelle, R. H.

    1973-01-01

    Five male volunteers performed arm exercises in the sitting position by cranking the pedals of a bicycle ergometer at 50 revolutions per min. The initial mechanical work load of 0 kgm/min was increased every minute by 75 kgm/min until exhaustion occurred. The data obtained show a significant acidification of the venous blood from the working arms and a substantial increase in venous pCO2 during this type of muscular activity. However, the erythrocyte volume remained unaltered during the exercise.

  9. Effect of carbohydrate composition on fluid balance, gastric emptying, and exercise performance.

    PubMed

    Cole, K J; Grandjean, P W; Sobszak, R J; Mitchell, J B

    1993-12-01

    This study examined the effects of serial feedings of different carbohydrate (CHO) solutions on plasma volume, gastric emptying (GE), and performance during prolonged cycling exercise. Solutions containing 6 g% glucose-sucrose (CHO-6GS), 8.3 g% high fructose corn syrup (CHO-8HF), 6.3 g% high fructose corn syrup + 2 g% glucose polymer (CHO-8HP), and a water placebo (WP) were compared. Ten trained male cyclists performed four cycling trials consisting of 105 min at 70% VO2max followed by a 15-min all-out, self-paced performance ride. Every 15 min the men consumed one of the four test solutions. Blood samples were taken before, during, and after exercise to determine blood glucose and plasma volume changes. There were no significant differences in performance, GE, or plasma volume changes between trials. Blood glucose was significantly elevated at the 105-min time-point in all CHO trials when compared to WP. The CHO-8HF and CHO-8HP drinks resulted in a significantly higher delivery of CHO to the intestine. Higher rates of CHO oxidation during the steady-state ride were observed only with the CHO-6GS drink.

  10. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    PubMed

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.

  11. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p

  12. The effect of a period of intense exercise on the marker approach to detect growth hormone doping in sports.

    PubMed

    Voss, Sven Christian; Robinson, Neil; Alsayrafi, Mohammed; Bourdon, Pitre C; Schumacher, Yorck Olaf; Saugy, Martial; Giraud, Sylvain

    2014-06-01

    The major objective of this study was to investigate the effects of several days of intense exercise on the growth hormone marker approach to detect doping with human growth hormone (hGH). In addition we investigated the effect of changes in plasma volume on the test. Fifteen male athletes performed a simulated nine-day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race + three days before and after). Plasma volumes were estimated by the optimized CO Rebreathing method. IGF-1 and P-III-NP were analyzed by Siemens Immulite and Cisbio Assays, respectively. All measured GH 2000 scores were far below the published decision limits for an adverse analytical finding. The period of exercise did not increase the GH-scores; however the accompanying effect of the increase in Plasma Volume yielded in essentially lower GH-scores. We could demonstrate that a period of heavy, long-term exercise with changes in plasma volume does not interfere with the decision limits for an adverse analytical finding. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Prevalence of Exercise Addiction Symptomology and Disordered Eating in Australian Students Studying Nutrition and Dietetics.

    PubMed

    Rocks, Tetyana; Pelly, Fiona; Slater, Gary; Martin, Lisa Anne

    2017-10-01

    Previous research has reported the existence of disordered eating in students studying nutrition and dietetics. However, the occurrence of exercise addiction, previously linked to disordered eating, is poorly understood in this group. The main objective of this study was to explore the prevalence of self-reported symptoms of exercise addiction and the association with disordered eating in a sample of students studying nutrition and dietetics. A secondary objective was to compare the prevalence of exercise addiction to students enrolled in another health-related degree. We conducted a cross-sectional study in 165 undergraduate students. Participants were students of both sexes enrolled in nutrition and dietetics and occupational therapy degree programs at an Australian university in August 2013. Participants completed four validated questionnaires for assessment of exercise- and eating-related attitudes and behaviors measuring scores for exercise addiction, weekly volume of physical activity (PA), eating disorder symptoms, and cognitive restraint. Stretch stature and body mass were measured and body composition was assessed using dual energy x-ray absorptiometry. Independent t test, Mann-Whitney U test, and χ 2 test were completed to compare groups of students based on sex, degree, or eating attitudes. Spearman's correlation was performed to explore associations between continuous variables (exercise addiction scores, PA volume, and scores for eating attitudes and cognitive restraint). Approximately 23% of nutrition and dietetics students were found to be at risk of exercise addiction (20% females and 35% males; P=0.205), while the majority demonstrated some symptoms of exercise addiction. A similar proportion of at risk individuals was found in the female occupational therapy group (19%; P=1.000). In females (nutrition and dietetics and occupational therapy combined), the exercise addiction scores were associated with three other outcome measures: PA volume (r s =0.41; P<0.001), eating attitudes scores (r s =0.24; P=0.008), and cognitive restraint (r s =0.32; P<0.001). Comparative analysis indicated that female students with high cognitive restraint had greater exercise addiction scores than those with low cognitive restraint (20.3 [4.8] compared to 17.8 [4.2]; P=0.003). Results suggest high prevalence of exercise addiction in this sample of undergraduate health-related degree students and its link to amount of PA and disordered eating in females. Future research should include larger samples of both sexes to build the existing understanding on these maladaptive behaviors. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  14. High, but not low, exercise volume shifts the balance of renin-angiotensin system toward ACE2/Mas receptor axis in skeletal muscle in obese rats.

    PubMed

    Frantz, Eliete Dalla Corte; Giori, Isabele Gomes; Machado, Marcus Vinícius; Magliano, D'Angelo Carlo; Freitas, Fernanda Marques; Andrade, Mariana Sodré Boêta; Vieira, Aline Bomfim; Nóbrega, Antonio Claudio Lucas; Tibiriçá, Eduardo

    2017-10-01

    Metabolic syndrome is a cluster of metabolic risk factors that is linked to central obesity, elevated blood pressure, insulin resistance (IR), and dyslipidemia, where the renin-angiotensin system (RAS) may provide a link among them. This study aimed to evaluate volume exercise effects comparing low vs. high volume of chronic aerobic exercise on RAS axes in skeletal muscle in a diet-induced obesity (DIO) rat model. For this, male Wistar-Kyoto rats were fed a standard chow (SC) diet or a high-fat (HF) diet for 32 wk. Animals receiving the HF diet were randomly divided into low exercise volume (LEV, 150 min/wk) and high exercise volume (HEV, 300 min/wk) at the 20th week. After 12 wk of aerobic treadmill training, the body mass and composition, blood pressure, glucose and lipid metabolism, RAS axes, insulin signaling, and inflammatory pathway were performed. HEV slowed the body mass gain, reduced intra-abdominal fat pad and leptin levels, improved total and peripheral body composition and inflammatory cytokine, reduced angiotensin II type 1 receptor expression, and increased Mas receptor protein expression compared with the HF animals. Sedentary groups (SC and HF) presented lower time to exhaustion and maximal velocity compared with the LEV and HEV groups. Both exercise training groups showed reduced resting systolic blood pressure and heart rate, improved glucose tolerance, IR, insulin signaling, and lipid profile. We conclude that the HEV, but not LEV, shifted the balance of RAS toward the ACE2/Mas receptor axis in skeletal muscle, presenting protective effects against the DIO model. Copyright © 2017 the American Physiological Society.

  15. Ventilatory abnormalities in patients with cystic fibrosis undergoing the submaximal treadmill exercise test.

    PubMed

    Parazzi, Paloma Lopes Francisco; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; de Almeida, Celize Cruz Bresciani; Martins, Luiz Cláudio; Paschoal, Ilma Aparecida; Toro, Adyleia Aparecida Dalbo Contrera; Schivinski, Camila Isabel Santos; Ribeiro, Jose Dirceu

    2015-05-19

    Exercise has been studied as a prognostic marker for patients with cystic fibrosis (CF), as well as a tool for improving their quality of life and analyzing lung disease. In this context, the aim of the present study was to evaluate and compare variables of lung functioning. Our data included: (i) volumetric capnography (VCAP) parameters: expiratory minute volume (VE), volume of exhaled carbon dioxide (VCO2), VE/VCO2, ratio of dead space to tidal volume (VD/VT), and end-tidal carbon dioxide (PetCO2); (ii) spirometry parameters: forced vital capacity (FVC), percent forced expiratory volume in the first second of the FVC (FEV1%), and FEV1/FVC%; and (iii) cardiorespiratory parameters: heart rate (HR), respiratory rate, oxygen saturation (SpO2), and Borg scale rating at rest and during exercise. The subjects comprised children, adolescents, and young adults aged 6-25 years with CF (CF group [CFG]) and without CF (control group [CG]). This was a clinical, prospective, controlled study involving 128 male and female patients (64 with CF) of a university hospital. All patients underwent treadmill exercise tests and provided informed consent after study approval by the institutional ethics committee. Linear regression, Kruskal-Wallis test, and Mann-Whitney test were performed to compare the CFG and CG. The α value was set at 0.05. Patients in the CFG showed significantly different VCAP values and spirometry variables throughout the exercise test. Before, during, and after exercise, several variables were different between the two groups; statistically significant differences were seen in the spirometry parameters, SpO2, HR, VCO2, VE/VCO2, PetCO2, and Borg scale rating. VCAP variables changed at each time point analyzed during the exercise test in both groups. VCAP can be used to analyze ventilatory parameters during exercise. All cardiorespiratory, spirometry, and VCAP variables differed between patients in the CFG and CG before, during, and after exercise.

  16. Efficacy of different types of aerobic exercise in fibromyalgia syndrome: a systematic review and meta-analysis of randomised controlled trials

    PubMed Central

    2010-01-01

    Introduction The efficacy and the optimal type and volume of aerobic exercise (AE) in fibromyalgia syndrome (FMS) are not established. We therefore assessed the efficacy of different types and volumes of AE in FMS. Methods The Cochrane Library, EMBASE, MEDLINE, PsychInfo and SPORTDISCUS (through April 2009) and the reference sections of original studies and systematic reviews on AE in FMS were systematically reviewed. Randomised controlled trials (RCTs) of AE compared with controls (treatment as usual, attention placebo, active therapy) and head-to-head comparisons of different types of AE were included. Two authors independently extracted articles using predefined data fields, including study quality indicators. Results Twenty-eight RCTs comparing AE with controls and seven RCTs comparing different types of AE with a total of 2,494 patients were reviewed. Effects were summarised using standardised mean differences (95% confidence intervals) by random effect models. AE reduced pain (-0.31 (-0.46, -0.17); P < 0.001), fatigue (-0.22 (-0.38, -0.05); P = 0.009), depressed mood (-0.32 (-0.53, -0.12); P = 0.002) and limitations of health-related quality of life (HRQOL) (-0.40 (-0.60, -0.20); P < 0.001), and improved physical fitness (0.65 (0.38, 0.95); P < 0.001), post treatment. Pain was significantly reduced post treatment by land-based and water-based AE, exercises with slight to moderate intensity and frequency of two or three times per week. Positive effects on depressed mood, HRQOL and physical fitness could be maintained at follow-up. Continuing exercise was associated with positive outcomes at follow-up. Risks of bias analyses did not change the robustness of the results. Few studies reported a detailed exercise protocol, thus limiting subgroup analyses of different types of exercise. Conclusions An aerobic exercise programme for FMS patients should consist of land-based or water-based exercises with slight to moderate intensity two or three times per week for at least 4 weeks. The patient should be motivated to continue exercise after participating in an exercise programme. PMID:20459730

  17. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD.

    PubMed

    Watson, Emma L; Gould, Douglas W; Wilkinson, Thomas J; Xenophontos, Soteris; Clarke, Amy L; Vogt, Barbara Perez; Viana, João L; Smith, Alice C

    2018-06-01

    There is a growing consensus that patients with chronic kidney disease (CKD) should engage in regular exercise, but there is a lack of formal guidelines. In this report, we determined whether combined aerobic and resistance exercise would elicit superior physiological gains, in particular muscular strength, compared with aerobic training alone in nondialysis CKD. Nondialysis patients with CKD stages 3b-5 were randomly allocated to aerobic exercise {AE, n = 21; 9 men; median age 63 [interquartile range (IQR) 58-71] yr; median estimated glomerular filtration rate (eGFR) 24 (IQR 20-30) ml·min -1 ·1.73 m -2 } or combined exercise [CE, n = 20, 9 men, median age 63 (IQR 51-69) yr, median eGFR 27 (IQR 22-32) ml·min -1 ·1.73 m -2 ], preceded by a 6-wk run-in control period. Patients then underwent 12 wk of supervised AE (treadmill, rowing, or cycling exercise) or CE training (as AE plus leg extension and leg press exercise) performed three times per week. Outcome assessments of knee extensor muscle strength, quadriceps muscle volume, exercise capacity, and central hemodynamics were performed at baseline, following the 6-wk control period, and at the end of the intervention. AE and CE resulted in significant increases in knee extensor strength of 16 ± 19% (mean ± SD; P = 0.001) and 48 ± 37% ( P < 0.001), respectively, which were greater after CE ( P = 0.02). AE and CE resulted in 5 ± 7% ( P = 0.04) and 9 ± 7% ( P < 0.001) increases in quadriceps volume, respectively ( P < 0.001), which were greater after CE ( P = 0.01). Both AE and CE increased distance walked in the incremental shuttle walk test [28 ± 44 m ( P = 0.01) and 32 ± 45 m ( P = 0.01), respectively]. In nondialysis CKD, the addition of resistance exercise to aerobic exercise confers greater increases in muscle mass and strength than aerobic exercise alone.

  18. Writing Exercises from "Exercise Exchange." Volume II.

    ERIC Educational Resources Information Center

    Duke, Charles R., Ed.

    Reflecting current practices in the teaching of writing, the exercises in this compilation were drawn from the journal "Exercise Exchange." The articles are arranged into six sections: sources for writing; prewriting; modes for writing; writing and reading; language, mechanics, and style; and revising, responding, and evaluating. Among the topics…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massie, B.; Kramer, B.L.; Topic, N.

    Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responsesmore » at rest were decreases in left and right ventricular end-diastolic volumes from 388 + 81 to 350 + 77 ml (p < 0.01) and from 52 + 26 to 43 + 20 volume units (p < 0.01), respectively, and in their corresponding filling pressures, from 24 + 10 to 17 + 9 mm Hg and 10 + 5 to and + 5 mm Hg (both p < 0.01). Altough stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 + 6% to 22 + 5% and from 25 + 9% to 29 + 11%, respectively (both p < 0.01). During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. Thus, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.« less

  20. Impact of Diet and/or Exercise Intervention on Infrapatellar Fat Pad Morphology: Secondary Analysis from the Intensive Diet and Exercise for Arthritis (IDEA) Trial.

    PubMed

    Pogacnik Murillo, Aarón Leonardo; Eckstein, Felix; Wirth, Wolfgang; Beavers, Daniel; Loeser, Richard F; Nicklas, Barbara J; Mihalko, Shannon L; Miller, Gary D; Hunter, David J; Messier, Stephen P

    2017-01-01

    The infrapatellar fat pad (IPFP) represents intra-articular adipose tissue that may contribute to intra-articular inflammation and pain by secretion of proinflammatory cytokines. Here we examined the impact of weight loss by diet and/or exercise interventions on the IPFP volume. Intensive Diet and Exercise for Arthritis (IDEA) was a single-blinded, single-center, 18-month, prospective, randomized controlled trial that enrolled 454 overweight and obese older adults with knee pain and radiographic osteoarthritis. Participants were randomized to 1 of 3 groups: exercise-only control (E), diet-induced weight loss (D), and diet-induced weight loss + exercise (D+E). In a subsample (n = 106; E: n = 36, D: n = 35, and D+E: n = 35), magnetic resonance images were acquired at baseline and at the 18-month follow-up, from which we analyzed IPFP volume, surface areas, and thickness in this secondary analysis. The average weight loss amounted to 1.0% in the E group, 10.5% in the D group, and 13.0% in the D+E group. A significant (p < 0.01) reduction in IPFP volume was observed in the E (2.1%), D (4.0%), and D+E (5.2%) groups. The IPFP volume loss in the D+E group was significantly greater than that in the E group (p < 0.05) when not adjusting for parallel comparisons. Across intervention groups, there were significant correlations between IPFP volume change, individual weight loss (r = 0.40), and change in total body fat mass (dual-energy X-ray absorptiometry; r = 0.44, n = 88) and in subcutaneous thigh fat area (computed tomography; r = 0.32, n = 82). As a potential link between obesity and knee osteoarthritis, the IPFP was sensitive to intervention by diet and/or exercise, and its reduction was correlated with changes in weight and body fat. © 2017 S. Karger AG, Basel.

  1. Exercise facilitates early recognition of cardiac and vascular remodeling in chronic thromboembolic pulmonary hypertension in swine.

    PubMed

    Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne

    2018-03-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po 2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.

  2. Lower-volume muscle-damaging exercise protects against high-volume muscle-damaging exercise and the detrimental effects on endurance performance.

    PubMed

    Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2015-07-01

    This study examined whether lower-volume exercise-induced muscle damage (EIMD) performed 2 weeks before high-volume muscle-damaging exercise protects against its detrimental effect on running performance. Sixteen male participants were randomly assigned to a lower-volume (five sets of ten squats, n = 8) or high-volume (ten sets of ten squats, n = 8) EIMD group and completed baseline measurements for muscle soreness, knee extensor torque, creatine kinase (CK), a 5-min fixed-intensity running bout and a 3-km running time-trial. Measurements were repeated 24 and 48 h after EIMD, and the running time-trial after 48 h. Two weeks later, both groups repeated the baseline measurements, ten sets of ten squats and the same follow-up testing (Bout 2). Data analysis revealed increases in muscle soreness and CK and decreases in knee extensor torque 24-48 h after the initial bouts of EIMD. Increases in oxygen uptake [Formula: see text], minute ventilation [Formula: see text] and rating of perceived exertion were observed during fixed-intensity running 24-48 h after EIMD Bout 1. Likewise, time increased and speed and [Formula: see text] decreased during a 3-km running time-trial 48 h after EIMD. Symptoms of EIMD, responses during fixed-intensity and running time-trial were attenuated in the days after the repeated bout of high-volume EIMD performed 2 weeks after the initial bout. This study demonstrates that the protective effect of lower-volume EIMD on subsequent high-volume EIMD is transferable to endurance running. Furthermore, time-trial performance was found to be preserved after a repeated bout of EIMD.

  3. Dose-response effects of aerobic exercise on energy compensation in postmenopausal women: combined results from two randomized controlled trials.

    PubMed

    McNeil, J; Brenner, D R; Courneya, K S; Friedenreich, C M

    2017-08-01

    Despite the clear health benefits of exercise, exercised-induced weight loss is often less than expected. The term 'exercise energy compensation' is used to define the amount of weight loss below what is expected for the amount of exercise energy expenditure. We examined the dose-response effects of exercise volume on energy compensation in postmenopausal women. Data from Alberta Physical Activity and Breast Cancer Prevention (ALPHA) and Breast Cancer and Exercise Trial in Alberta (BETA) were combined for the present analysis. The ALPHA and BETA trials were two-centred, two-armed, 12-month randomized controlled trials. The ALPHA trial included 160 participants randomized to 225 min per week of aerobic exercise, and the BETA trial randomized 200 participants to each 150 and 300 min per week of aerobic exercise. All participants were aged 50-74 years, moderately inactive (<90 min per week of exercise), had no previous cancer diagnosis and a body mass index between 22 and 40 kg m -2 . Energy compensation was based on changes in body composition (dual-energy X-ray absorptiometry scan) and estimated exercise energy expenditure from completed exercise volume. Associations between Δenergy intake, ΔVO 2peak and Δphysical activity time with energy compensation were assessed. No differences in energy compensation were noted between interventions. However, there were large inter-individual differences in energy compensation between participants; 9.4% experienced body composition changes that were greater than expected based on exercise energy expenditure, 64% experienced some degree of energy compensation and 26.6% experienced weight gain based on exercise energy expenditure. Increases in VO 2peak were associated with reductions in energy compensation (β=-3.44 ml kg -1  min -1 , 95% confidence interval for β=-4.71 to -2.17 ml kg -1  min -1 ; P=0.0001). Large inter-individual differences in energy compensation were noted, despite no differences between activity doses. In addition, increases in VO 2peak were associated with lower energy compensation. Future studies are needed to identify behavioral and metabolic factors that may contribute to this large inter-individual variability in energy compensation.

  4. Exercise Equipment: Neutral Buoyancy

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  5. Exercise protects myelinated fibers of white matter in a rat model of depression.

    PubMed

    Xiao, Qian; Wang, Feifei; Luo, Yanmin; Chen, Linmu; Chao, Fenglei; Tan, Chuanxue; Gao, Yuan; Huang, Chunxia; Zhang, Lei; Liang, Xin; Tang, Jing; Qi, Yingqing; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Tang, Yong

    2018-02-15

    The antidepressive effects of exercise have been a focus of research and are hypothesized to remodel the brain networks constructed by myelinated fibers. However, whether the antidepressant effects of exercise are dependent on changes in white matter myelination are unknown. Therefore, we chose chronic unpredictable stress (CUS) as a model of depression and designed an experiment. After a 4-week CUS period, 40 animals were tested using the sucrose preference test (SPT) and the open field test (OFT). The depressed rats then underwent 4-week running exercise. Next, electron microscopy and unbiased stereological methods were used to investigate white matter changes in the rats. After the 4-week CUS stimulation, body weight, sucrose preference and scores on the OFT were significantly lower in the depression rats than in the unstressed rats (p < .05). After undergoing a 4-week running exercise, the depression rats showed a significantly greater sucrose preference than the depression control rats without running exercise (p < .05). Furthermore, the white matter parameters of the depression rats (including the white matter volumes, the length and volumes of myelinated fibers, and the volumes and thickness of the myelin sheaths) were significantly reduced after the CUS period (p < .05). However, these white matter parameters were significantly increased after running exercise (p < .05). The present study is the first to provide evidence that running exercise has positive effects on white matter and the myelinated fibers of white matter in depressed rats, and this evidence might provide an important theoretical basis for the exercise-mediated treatment of depression. © 2017 Wiley Periodicals, Inc.

  6. Does exercise pulmonary hypertension exist?

    PubMed

    Lau, Edmund M; Chemla, Denis; Whyte, Kenneth; Kovacs, Gabor; Olschewski, Horst; Herve, Philippe

    2016-09-01

    The exercise definition of pulmonary hypertension using a mean pulmonary artery pressure threshold of greater than 30 mmHg was abandoned following the 4th World Pulmonary Hypertension Symposium in 2008, as this definition was not supported by evidence and healthy individuals frequently exceed this threshold. Meanwhile, the clinical value of exercise pulmonary hemodynamic testing has also been questioned. Recent data support the notion that an abnormal pulmonary hemodynamic response during exercise (or exercise pulmonary hypertension) is associated with symptoms and exercise limitation. Pathophysiologic mechanisms accounting for the development of exercise pulmonary hypertension include increased vascular resistance, excessive elevation in left atrial pressure and/or increased volume of trapped air during exercise, resulting in a steep rise in pulmonary artery pressure relative to cardiac output. Recent evidence suggests that exercise pulmonary hypertension may be defined by a mean pulmonary artery pressure surpassing 30 mmHg together with a simultaneous total pulmonary resistance exceeding 3 WU. Exercise pulmonary hypertension is a clinically relevant entity and an improved definition has been suggested based on new evidence. Exercise pulmonary hemodynamics may help unmask early or latent disease, particularly in populations that are at high risk for the development of pulmonary hypertension.

  7. Strategies for hydration and energy provision during soccer-specific exercise.

    PubMed

    Clarke, N D; Drust, B; MacLaren, D P M; Reilly, T

    2005-12-01

    The aim of the present study was to investigate the effect of manipulating the provision of sports drink during soccer-specific exercise on metabolism and performance. Soccer players (N = 12) performed a soccer-specific protocol on three occasions. On two, 7 mL/kg carbohydrate-electrolyte (CHOv) or placebo (PLA) solutions were ingested at 0 and 45 min. On a third, the same total volume of carbohydrate-electrolyte was consumed (CHOf) in smaller volumes at 0, 15, 30, 45, 60, and 75 min. Plasma glucose, glycerol, non-esterified free fatty acids (NEFA), cortisol, and CHO oxidation were not significantly different between CHOv and CHOf (P > 0.05). Sprint power was not significantly affected (P > 0.05) by the experimental trials. This study demonstrates when the total volume of carbohydrate consumed is equal, manipulating the timing and volume of ingestion elicits similar metabolic responses without affecting exercise performance.

  8. How much work is expended for respiration?

    PubMed

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  9. Heart rate variability and aerobic fitness.

    PubMed

    De Meersman, R E

    1993-03-01

    Heart rate variability, a noninvasive marker of parasympathetic activity, diminishes with aging and is augmented after exercise training. Whether habitual exercise over time can attenuate this loss is unknown. This cross-sectional investigation compared 72 male runners, aged 15 to 83 to 72 age- and weight-matched sedentary control subjects for the amplitude of their heart rate variability. Heart rate variability was assessed during rest while subjects were breathing at a rate of 6 breaths per minute and at an augmented tidal volume (tidal volume = 30% of vital capacity). Fitness levels were assessed with on-line, open-circuit spirometry while subjects were performing an incremental stress test. Overall results between the two groups showed that the physically active group had significantly higher fitness levels (p < 0.001), which were associated with significantly higher levels of heart rate variability, when compared with their sedentary counterparts (p < 0.001). These findings provide suggestive evidence for habitual aerobic exercise as a beneficial modulator of heart rate variability in an aging population.

  10. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  11. The effectiveness of session rating of perceived exertion to monitor resistance training load in acute burns patients.

    PubMed

    Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W

    2017-02-01

    Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load

    PubMed Central

    Chantler, Paul D.; Melenovsky, Vojtech; Schulman, Steven P.; Gerstenblith, Gary; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2012-01-01

    Effective arterial elastance(EA) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in EA during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined EA and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive EA[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). EA varied with exercise intensity: the ΔEA between rest and peak exercise along with its determinants, differed among individuals and ranged from −44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔEAI. Individuals with the largest increase in ΔEA(group 3;ΔEA≥0.98 mmHg.m2/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔEA<0.22 mmHg.m2/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise. PMID:22003052

  13. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  14. The preventive effect of nedocromil or furosemide alone or in combination on exercise-induced asthma in children.

    PubMed

    Novembre, E; Frongia, G; Lombardi, E; Veneruso, G; Vierucci, A

    1994-08-01

    Recent evidence suggests that inhaled nedocromil and furosemide are effective in preventing asthma by ultrasonically nebulized distilled water, allergen, and exercise. There are, however, no studies that compare the effects of these two drugs. The aim of this study was to investigate the effect of inhaled furosemide (30 mg), nedocromil (4 mg), the combination of these two drugs, and placebo aerosol in preventing exercise-induced asthma. Twenty-four children with exercise-induced asthma, aged 6 to 16 years, performed a treadmill test before and 20 minutes after a single dose of drug(s) in a double-blind trial. Lung function measurements were taken before drug administration, before the exercise test (20 minutes after drug administration), and then 2, 4, 6, 8, 10, 15, 20, and 30 minutes after the exercise test. Both active drugs performed significantly better than placebo. In fact, the exercise challenge resulted in a mean maximum fall in forced expiratory volume in 1 second of 28.46% +/- 13.84% after administration of placebo, but of only 15.42% +/- 8.35% after administration of nedocromil (p < 0.001) and of 11.37% +/- 9.14% after administration of furosemide (p < 0.001). When the two drugs were given together, there was a statistically significant additive effect because the mean maximum fall in forced expiratory volume in 1 second was 5.75% +/- 3.57% (nedocromil vs nedocromil + fluorsemide: p < 0.001; furosemide vs nedocromil + furosemide: p < 0.01). This study suggests that nedocromil and furosemide provide a comparable effect in preventing exercise-induced asthma in children. The combined administration of the two drugs significantly increases the protective effects, suggesting a potential therapeutic use.

  15. Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke.

    PubMed

    Hung, Ching-Hsia; Chang, Nen-Chung; Cheng, Bor-Chih; Lin, Mao-Tsun

    2005-05-01

    Heat shock protein (HSP) 72 expression protects against arterial hypotension in rat heatstroke. HSP72 can also be induced in multiple organs, including hearts from rats with endurance exercise. We validated the hypothesis that progressive exercise preconditioning may confer cardiovascular protection during heatstroke by inducing the overexpression of HSP72 in multiple organs. To deal with the matter, we assessed the effects of heatstroke on mean arterial pressure, heart rate, cardiac output, stroke volume, total peripheral vascular resistance, colonic temperature, blood gases, and serum or tissue levels of tumor necrosis factor-alpha (TNF-alpha) in urethane-anesthetized rats pretreated without or with progressive exercise training for 1, 2, or 3 weeks. In addition, HSP72 expression in multiple organs was determined in different groups of animals. Heatstroke was induced by exposing the rats to a high blanket temperature (43 degrees C); the moment at which mean arterial pressure decreased from the peak value was taken as the time of heatstroke onset. Previous exercise training for 3 weeks, but not 1 or 2 weeks, conferred significant protection against hyperthermia, arterial hypotension, decreased cardiac output, decreased stroke volume, decreased peripheral vascular resistance, and increased levels of serum or tissue TNF-alpha during heatstroke and correlated with overexpression of HSP72 in multiple organs, including heart, liver, and adrenal gland. However, 10 days after 3 weeks of progressive exercise training, when HSP72 expression in multiple organs returned to basal values, the beneficial effects exerted by 3 weeks of exercise training were no longer observed. These results strongly suggest that HSP72 preconditioning with progressive exercise training protects against hyperthermia, circulatory shock, and TNF-alpha overproduction during heatstroke.

  16. A community-based exercise intervention transitions metabolically abnormal obese adults to a metabolically healthy obese phenotype

    PubMed Central

    Dalleck, Lance C; Van Guilder, Gary P; Richardson, Tara B; Bredle, Donald L; Janot, Jeffrey M

    2014-01-01

    Background Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness. Methods and results Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kg · m2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (P<0.05) transitioned to metabolically healthy, increasing the total number of MHO persons by 73% (from 37 to 64). Compared with the lowest quartiles of relative energy expenditure and change in fitness, participants in the highest quartiles were 11.6 (95% confidence interval: 2.1–65.4; P<0.05) and 7.5 (95% confidence interval: 1.5–37.5; P<0.05) times more likely to transition from MAO to MHO, respectively. Conclusion Community-based exercise transitions MAO adults to metabolically healthy. MAO adults who engaged in higher volumes of exercise and experienced the greatest increase in fitness were significantly more likely to become metabolically healthy. Community exercise may be an effective model for primary prevention of cardiovascular disease. PMID:25120373

  17. The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes.

    PubMed

    Goedecke, Julia H; Micklesfield, Lisa K

    2014-01-01

    It is well known that obesity is a major risk factor for type 2 diabetes (T2D), while exercise is known to reduce body fatness and attenuate the risk of T2D. The aim of this chapter is to examine the interactions between exercise, obesity and body fat distribution, and the risk for T2D. Firstly, we show that body fatness, in particular visceral adipose tissue (VAT) accumulation, is associated with insulin resistance and incident T2D. We then show that aerobic exercise of sufficient intensity and volume results in a decrease in body fat and VAT. Conversely, sedentary behavior and physical inactivity are associated with increased body fat and VAT. Finally, the chapter examines the interaction between physical activity (PA), obesity and risk for T2D and shows that both obesity and PA are significant independent predictors of incident T2D, but the magnitude of risk imparted by high levels of body fat is much greater than that of low levels of PA. Further, we show that obese physically active individuals are at greater risk for incident T2D than normal-weight physically inactive individuals. The mechanisms underlying this complex interaction include the ability of exercise to increase free fatty acid oxidation to match high rates of lipolysis associated with obesity, as well as the effects of exercise on adipokine, cytokine and myokine secretion. Exercise, of sufficient volume and intensity, is therefore recommended to reduce obesity, centralization of body fat, and risk of T2D.

  18. Cigarette smoking decreases dynamic inspiratory capacity during maximal exercise in patients with type 2 diabetes.

    PubMed

    Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki

    2012-06-01

    To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.

  19. Physiological Responses to Acute Exercise-Heat Stress

    DTIC Science & Technology

    1988-01-01

    muscle contraction and to dissipate the associated heat release. In hot environments, the core to skin temperature gradient is reduced to skin blood flow needs to be relatively high (compared to cooler environments) to achieve heat transfer sufficient for thermal balance. In addition, sweat secretion can result in a reduced plasma (by dehydration) and thus blood volume. Both high skin blood flow and reduced plasma volume can reduce

  20. Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I).

    PubMed

    Vanhees, L; De Sutter, J; GeladaS, N; Doyle, F; Prescott, E; Cornelissen, V; Kouidi, E; Dugmore, D; Vanuzzo, D; Börjesson, M; Doherty, P

    2012-08-01

    Over the last decades, more and more evidence is accumulated that physical activity (PA) and exercise interventions are essential components in primary and secondary prevention for cardiovascular disease. However, it is less clear whether and which type of PA and exercise intervention (aerobic exercise, dynamic resistive exercise, or both) or characteristic of exercise (frequency, intensity, time or duration, and volume) would yield more benefit in achieving cardiovascular health. The present paper, as the first of a series of three, will make specific recommendations on the importance of these characteristics for cardiovascular health in the population at large. The guidance offered in this series of papers is aimed at medical doctors, health practitioners, kinesiologists, physiotherapists and exercise physiologists, politicians, public health policy makers, and the individual member of the public. Based on previous and the current literature, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding type, volume, and intensity of PA and exercise.

  1. Cardiopulmonary Exercise Testing in Patients with Asymptomatic or Equivocal Symptomatic Aortic Stenosis: Feasibility, Reproducibility, Safety and Information Obtained on Exercise Physiology.

    PubMed

    van Le, Douet; Jensen, Gunnar Vagn Hagemann; Carstensen, Steen; Kjøller-Hansen, Lars

    2016-01-01

    The aim of this study was to determine the feasibility, reproducibility, safety and information obtained on exercise physiology from cardiopulmonary exercise testing (CPX) in patients with aortic stenosis. Patients with an aortic valve area (AVA) <1.3 cm2 who were judged asymptomatic or equivocal symptomatic underwent CPX and an inert gas rebreathing test. Only those where comprehensive evaluation of CPX results indicated haemodynamic compromise from aortic stenosis were referred for valve replacement. The mean patient age was 72 (±9) years; an AVA index <0.6 cm2/m2 and equivocal symptomatic status were found in 90 and 70%, respectively. CPX was feasible in 130 of the 131 patients. The coefficients of repeatability by test-retest were 5.4% (pVO2) and 4.6% (peak O2 pulse). A pVO2 <83% of the expected was predicted by a lower stroke volume at exercise, lower peak heart rate and FEV1, and higher VE/VCO2, but not by AVA index. Equivocal symptomatic status and a low gradient but high valvulo-arterial impedance were associated with a lower pVO2, but not with an inability to increase stroke volume. In total, 18 patients were referred for valve replacement. At 1 year, no cardiovascular deaths had occurred. CPX was feasible and reproducible and provided comprehensive data on exercise physiology. A CPX-guided treatment strategy was safe up to 1 year. © 2015 S. Karger AG, Basel.

  2. Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.

    PubMed

    Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng

    2013-09-01

    Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.

  3. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise.

    PubMed

    Church, David D; Hoffman, Jay R; Mangine, Gerald T; Jajtner, Adam R; Townsend, Jeremy R; Beyer, Kyle S; Wang, Ran; La Monica, Michael B; Fukuda, David H; Stout, Jeffrey R

    2016-07-01

    This study compared the acute and chronic response of circulating plasma brain-derived neurotrophic factor (BDNF) to high-intensity low-volume (HI) and low-intensity high volume (HV) resistance training. Twenty experienced resistance-trained men (23.5 ± 2.6 y, 1.79 ± 0.05 m, 75.7 ± 13.8 kg) volunteered for this study. Before the resistance training program (PRE), participants performed an acute bout of exercise using either the HI [3-5 reps; 90% of one repetition maximum (1RM)] or HV (10-12 reps; 70% 1RM) training paradigm. The acute exercise protocol was repeated after 7 wk of training (POST). Blood samples were obtained at rest (BL), immediately (IP), 30 min (30P), and 60 min (60P) post exercise at PRE and POST. A three-way repeated measure ANOVA was used to analyze acute changes in BDNF concentrations during HI and HV resistance exercise and the effect of 7 wk of training. No training × time × group interaction in BDNF was noted (P = 0.994). Significant main effects for training (P = 0.050) and time (P < 0.001) in BDNF were observed. Significant elevations in BDNF concentrations were seen from BL at IP (P = 0.001), 30P (P < 0.001), and 60P (P < 0.001) in both HI and HV combined during PRE and POST. BDNF concentrations were also observed to increase from PRE to POST when collapsed across groups and time. No significant group × training interaction (P = 0.342), training (P = 0.105), or group (P = 0.238) effect were noted in the BDNF area under the curve response. Results indicate that BDNF concentrations are increased after an acute bout of resistance exercise, regardless of training paradigm, and are further increased during a 7-wk training program in experienced lifters. Copyright © 2016 the American Physiological Society.

  4. Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.

    2001-01-01

    This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.

  6. Blood rheology effect of submaximal exercise on young subjects.

    PubMed

    Romagnoli, Marco; Alis, Rafael; Martinez-Bello, Vladimir; Sanchis-Gomar, Fabian; Aranda, Rafael; Gómez-Cabrera, Mari-Carmen

    2014-01-01

    Nowadays cardiac and metabolic diseases are a matter of concern. Exercise is a valid treatment and method of prevention for not only adults, but also young subjects. Physical activity causes transient blood rheology impairment in adults. However little is known about the effects of exercise on blood flow characteristics in young subjects. The aim of the study was to assess the effects of a light aerobic exercise session on blood rheology in young subjects. Ten young subjects (aged 12-16 years) performed 1 hour of submaximal aerobic exercise (70% HRmax). Blood samples were drawn just before and after exercise. We determined blood and plasma viscosity, fibrinogen, erythrocyte deformability and aggregability. No changes in blood viscosity (p > 0.05), erythrocyte aggregation (p > 0.05) and fibrinogen (p > 0.05) were observed. Hematocrit (p = 0.025) and plasma viscosity (p = 0.018) rose with exercise, while erythrocyte elongation index lowered (p < 0.001). Plasma volume slightly reduced which may explain the lack of changes in blood viscosity. The results of the present study indicate a similar hemorheological response to submaximal exercise in both young people and adults.

  7. Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude

    PubMed Central

    Ainslie, Philip N.; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Tymko, Michael M.; Day, Trevor A.; Bakker, Akke; Shave, Rob

    2015-01-01

    Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To determine whether intrinsic myocardial performance is a limiting factor in the generation of SV at HA, we assessed left ventricular (LV) systolic and diastolic mechanics and volumes in 10 healthy participants (aged 32 ± 7; mean ± SD) at rest and during exercise at sea level (SL; 344 m) and after 10 days at 5,050 m. In contrast to SL, LV end-diastolic volume was ∼19% lower at rest (P = 0.004) and did not increase during exercise despite a greater untwisting velocity. Furthermore, resting SV was lower at HA (∼17%; 60 ± 10 vs. 70 ± 8 ml) despite higher LV twist (43%), apical rotation (115%), and circumferential strain (17%). With exercise at HA, the increase in SV was limited (12 vs. 22 ml at SL), and LV apical rotation failed to augment. For the first time, we have demonstrated that EDV does not increase upon exercise at high altitude despite enhanced in vivo diastolic relaxation. The increase in LV mechanics at rest may represent a mechanism by which SV is defended in the presence of a reduced EDV. However, likely because of the higher LV mechanics at rest, no further increase was observed up to 50% peak power. Consequently, although hypoxia does not suppress systolic function per se, the capacity to increase SV through greater deformation during submaximal exercise at HA is restricted. PMID:25749445

  8. Adaptation of exercise ventilation during an actively-induced hyperthermia following passive heat acclimation.

    PubMed

    Beaudin, Andrew E; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2009-09-01

    Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).

  9. Exercise Thermoregulation in Men after One and 24-hours of 6 Degree Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Ertl, A. C.; Dearborn, A. S.; Weldhofer, A. R.; Bernauer, E. M.; Greenleaf, J. E.

    1998-01-01

    Exercise thermoregulation exercise is dependent on heat loss by increased skin blood flow (convective and conductive heat loss) and through enhanced sweating (evaporative heat loss). Reduction of plasma volume (PV), increased plasma osmolality, physical deconditioning, and duration of exposure to simulated and actual microgravity reduces the ability to thermoregulate during exercise.

  10. Effect of simulated weightlessness on exercise-induced anaerobic threshold

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Karst, G. M.; Kirby, C. R.; Goldwater, D. J.

    1986-01-01

    The effect of simulated weightlessness, induced by ten days of continuous bedrest (BR) in the -6 deg head-down position, on the exercise-induced anaerobic threshold (AT) was determined by comparing specific ventilatory and gas-exchange measurements during an incremental ergometer test performed before and after BR. The primary index for determining the exercise-induced AT values of each subject was visual identification of the workrate or oxygen uptake (VO2) at which the ratio of the expired minute ventilation volume (VE) to VO2 exhibited a systematic increase without a concomitant increase in the VE/VCO2 value. Following BR, the mean VO2max of the subjects decreased by 7.0 percent, and the AT decreased from a mean of 1.26 L/min VO2 before BR to 0.95 L/min VO2 after BR. The decrease in AT was manifested by a decrease in both absolute and relative workrates. The change in AT correlated significantly with the change in plasma volume but not with the change in VO2max. The results suggest that the reduction in AT cannot be completely explained by the reduction in VO2, and that the AT decrease is associated with the reduction in intravascular fluid volume.

  11. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  12. Physiological adaptations to low-volume, high-intensity interval training in health and disease.

    PubMed

    Gibala, Martin J; Little, Jonathan P; Macdonald, Maureen J; Hawley, John A

    2012-03-01

    Exercise training is a clinically proven, cost-effective, primary intervention that delays and in many cases prevents the health burdens associated with many chronic diseases. However, the precise type and dose of exercise needed to accrue health benefits is a contentious issue with no clear consensus recommendations for the prevention of inactivity-related disorders and chronic diseases. A growing body of evidence demonstrates that high-intensity interval training (HIT) can serve as an effective alternate to traditional endurance-based training, inducing similar or even superior physiological adaptations in healthy individuals and diseased populations, at least when compared on a matched-work basis. While less well studied, low-volume HIT can also stimulate physiological remodelling comparable to moderate-intensity continuous training despite a substantially lower time commitment and reduced total exercise volume. Such findings are important given that 'lack of time' remains the most commonly cited barrier to regular exercise participation. Here we review some of the mechanisms responsible for improved skeletal muscle metabolic control and changes in cardiovascular function in response to low-volume HIT. We also consider the limited evidence regarding the potential application of HIT to people with, or at risk for, cardiometabolic disorders including type 2 diabetes. Finally, we provide insight on the utility of low-volume HIT for improving performance in athletes and highlight suggestions for future research.

  13. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes.

    PubMed

    Aengevaeren, Vincent L; Mosterd, Arend; Braber, Thijs L; Prakken, Niek H J; Doevendans, Pieter A; Grobbee, Diederick E; Thompson, Paul D; Eijsvogels, Thijs M H; Velthuis, Birgitta K

    2017-07-11

    Higher levels of physical activity are associated with a lower risk of cardiovascular events. Nevertheless, there is debate on the dose-response relationship of exercise and cardiovascular disease outcomes and whether high volumes of exercise may accelerate coronary atherosclerosis. We aimed to determine the relationship between lifelong exercise volumes and coronary atherosclerosis. Middle-aged men engaged in competitive or recreational leisure sports underwent a noncontrast and contrast-enhanced computed tomography scan to assess coronary artery calcification (CAC) and plaque characteristics. Participants reported lifelong exercise history patterns. Exercise volumes were multiplied by metabolic equivalent of task (MET) scores to calculate MET-minutes per week. Participants' activity was categorized as <1000, 1000 to 2000, or >2000 MET-min/wk. A total of 284 men (age, 55±7 years) were included. CAC was present in 150 of 284 participants (53%) with a median CAC score of 35.8 (interquartile range, 9.3-145.8). Athletes with a lifelong exercise volume >2000 MET-min/wk (n=75) had a significantly higher CAC score (9.4 [interquartile range, 0-60.9] versus 0 [interquartile range, 0-43.5]; P =0.02) and prevalence of CAC (68%; adjusted odds ratio [OR adjusted ]=3.2; 95% confidence interval [CI], 1.6-6.6) and plaque (77%; OR adjusted =3.3; 95% CI, 1.6-7.1) compared with <1000 MET-min/wk (n=88; 43% and 56%, respectively). Very vigorous intensity exercise (≥9 MET) was associated with CAC (OR adjusted =1.47; 95% CI, 1.14-1.91) and plaque (OR adjusted =1.56; 95% CI, 1.17-2.08). Among participants with CAC>0, there was no difference in CAC score ( P =0.20), area ( P =0.21), density ( P =0.25), and regions of interest ( P =0.20) across exercise volume groups. Among participants with plaque, the most active group (>2000 MET-min/wk) had a lower prevalence of mixed plaques (48% versus 69%; OR adjusted =0.35; 95% CI, 0.15-0.85) and more often had only calcified plaques (38% versus 16%; OR adjusted =3.57; 95% CI, 1.28-9.97) compared with the least active group (<1000 MET-min/wk). Participants in the >2000 MET-min/wk group had a higher prevalence of CAC and atherosclerotic plaques. The most active group, however, had a more benign composition of plaques, with fewer mixed plaques and more often only calcified plaques. These observations may explain the increased longevity typical of endurance athletes despite the presence of more coronary atherosclerotic plaque in the most active participants. © 2017 American Heart Association, Inc.

  15. Submaximal Exercise VO2 and Q During 30-Day 6 degree Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Erti, A. C.

    1995-01-01

    Submaximal exercise (61+3% peak VO2) metabolism was measured before (AC day-2) and on bed rest day 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N=5) control, and isotonic exercise (ITE, N=7)and isokinetic exercise (IKE, N=7) training groups. Training was conducting supine for two 30-min periods/d for 6 d/wk: ITE was 60-90% peak VO2: IKE was peak knee flexion-extension at 100 deg/s. Supine submaximal exercise 102 decreased significantly (*p<0.05) by 10.3%, with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output (Q) change of -14.5%* (ITE) and -203%* (IKE), but different from change in peak VO2 (+1.4% with ITE and - 10.2%, with IKE) and plasma volume of -3.7% (ITE) and - 18.0% * (IKE). Thus, reduction of submaximal V02 during prolonged bed rest appears to respond to submaximal Q but is not related to change in peak VO2 or plasma volume.

  16. Ways of increasing muscular activity by means of isometric muscular exertion

    NASA Technical Reports Server (NTRS)

    Kovalik, A. V.

    1980-01-01

    The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.

  17. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    PubMed

    Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi

    2018-01-01

    The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  18. The effects of a heat acclimation protocol in persons with spinal cord injury.

    PubMed

    Trbovich, Michelle B; Kiratli, Jenny B; Price, Mike J

    2016-12-01

    Persons without spinal cord injury (SCI) physiologically acclimate between seven to fourteen consecutive days of exercise in the heat. Decreased resting and exercise core temperature, decreased heart rate, increased plasma volume and increased thermal comfort during exercise are changes consistent with heat acclimation. Autonomic dysfunction after SCI impairs heat dissipation through sweating and vasodilation. The purpose of this study is to determine if seven consecutive days of exercise in the heat would result in physiologic changes consistent with heat acclimation in persons with SCI. Ten persons with SCI divided into two groups: tetraplegia (n=5) and paraplegia (n=5) exercised in 35°C using an arm ergometer at 50% W peak for 30min followed by 15min rest. This protocol was repeated over seven consecutive days. Heart rate (HR), skin temperature, aural temperature (T aur ), rate of perceived exertion (RPE), rate of perceived thermal strain (RPTS), and plasma volume (PV) were measured throughout the protocol. There were no significant differences in resting T aur exercise T aur , mean skin temperature, HR, PV, RPE or RPTS over the 7 days for either the tetraplegic or paraplegic group. Participants with SCI did not demonstrate the ability to dissipate heat more efficiently over 7 days of exercise at 35°C. The lack of heat acclimation seen in persons with SCI has implications for the athlete and non-athlete alike. For the SCI athlete, inability to acclimate will impair performance and endurance especially in warm environments, compared to the person without SCI. For the SCI non-athlete, there is a greater risk of heat-related illness in warm environments that can negatively affect participation in outdoor activities and thus quality of life. Published by Elsevier Ltd.

  19. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    PubMed

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P <0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG ( P <0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  20. The Effect of Passive Heat Stress and Exercise-Induced Dehydration on the Compensatory Reserve During Simulated Hemorrhage.

    PubMed

    Gagnon, Daniel; Schlader, Zachary J; Adams, Amy; Rivas, Eric; Mulligan, Jane; Grudic, Gregory Z; Convertino, Victor A; Howard, Jeffrey T; Crandall, Craig G

    2016-09-01

    Compensatory reserve represents the proportion of physiological responses engaged to compensate for reductions in central blood volume before the onset of decompensation. We hypothesized that compensatory reserve would be reduced by hyperthermia and exercise-induced dehydration, conditions often encountered on the battlefield. Twenty healthy males volunteered for two separate protocols during which they underwent lower-body negative pressure (LBNP) to hemodynamic decompensation (systolic blood pressure <80 mm Hg). During protocol #1, LBNP was performed following a passive increase in core temperature of ∼1.2°C (HT) or a normothermic time-control period (NT). During protocol #2, LBNP was performed following exercise during which: fluid losses were replaced (hydrated), fluid intake was restricted and exercise ended at the same increase in core temperature as hydrated (isothermic dehydrated), or fluid intake was restricted and exercise duration was the same as hydrated (time-match dehydrated). Compensatory reserve was estimated with the compensatory reserve index (CRI), a machine-learning algorithm that extracts features from continuous photoplethysmograph signals. Prior to LBNP, CRI was reduced by passive heating [NT: 0.87 (SD 0.09) vs. HT: 0.42 (SD 0.19) units, P <0.01] and exercise-induced dehydration [hydrated: 0.67 (SD 0.19) vs. isothermic dehydrated: 0.52 (SD 0.21) vs. time-match dehydrated: 0.47 (SD 0.25) units; P <0.01 vs. hydrated]. During subsequent LBNP, CRI decreased further and its rate of change was similar between conditions. CRI values at decompensation did not differ between conditions. These results suggest that passive heating and exercise-induced dehydration limit the body's physiological reserve to compensate for further reductions in central blood volume.

  1. Training practices and ergogenic aids used by male bodybuilders.

    PubMed

    Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi

    2013-06-01

    Bodybuilding involves performing a series of poses on stage where the competitor is judged on aesthetic muscular appearance. The purpose of this study was to describe training practices and ergogenic aids used by competitive bodybuilders and to determine whether training practices comply with current recommendations for muscular hypertrophy. A web-based survey was completed by 127 competitive male bodybuilders. The results showed that during the off-season phase of training (OFF), the majority of respondents performed 3-6 sets per exercise (95.3%), 7-12 repetition maximum (RM) per set (77.0%), and 61- to 120-seconds recovery between sets and exercises (68.6%). However, training practices changed 6 weeks before competition (PRE), where there was an increased number of respondents who reported undertaking 3-4 sets per exercise at the expense of 5-6 sets per exercise (p < 0.001), an increase in the number reporting 10-15RM per set from 7-9RM per set (p < 0.001), and an increase in the number reporting 30-60 seconds vs. 61-180 seconds recovery between sets and exercises (p < 0.001). Anabolic steroid use was high among respondents competing in amateur competitions (56 of 73 respondents), whereas dietary supplementation was used by all respondents. The findings of this study demonstrate that competitive bodybuilders comply with current resistance exercise recommendations for muscular hypertrophy; however, these changed before competition during which there is a reduction resistance training volume and intensity. This alteration, in addition to an increase in aerobic exercise volume, is purportedly used to increase muscle definition. However, these practices may increase the risk of muscle mass loss in natural compared with amateur bodybuilders who reportedly use drugs known to preserve muscle mass.

  2. Smoking before isometric exercise amplifies myocardial stress and dysregulates baroreceptor sensitivity and cerebral oxygenation.

    PubMed

    Anyfanti, Panagiota; Triantafyllidou, Eleftheria; Papadopoulos, Stavros; Triantafyllou, Areti; Nikolaidis, Michalis G; Kyparos, Antonios; Vrabas, Ioannis S; Douma, Stella; Zafeiridis, Andreas; Dipla, Konstantina

    2017-06-01

    This crossover study examined whether acute cardiovascular responses, baroreceptor sensitivity (BRS), and brain oxygenation during isometric exercise are altered after cigarette smoking. Twelve young, habitual smokers randomly performed a smoking and a control protocol, during which participants smoked one cigarette (0.9 mg nicotine) or a sham cigarette, before exercise. Testing involved baseline, a 5-minute smoking, a 10-minute post-smoking rest, 3-minute handgrip exercise (30% maximum voluntary contraction), and recovery. Beat-to-beat blood pressure, heart rate (HR), and cerebral oxygenation (near infrared spectroscopy) were continuously monitored. Double-product, stroke volume (SV), cardiac output, systemic vascular resistance and BRS were assessed. During post-smoking rest, systolic or diastolic blood pressure (140.8 ± 12.1/87.0 ± 6.9 vs. 125.9 ± 7.1/77.3 ± 5.5 mm Hg), HR, and double product were higher in the smoking versus the control protocol, whereas BRS was lower (P < .05). During handgrip exercise, smoking resulted in greater HR and double product (17,240 ± 3893 vs. 15,424 ± 3173 mm Hg·bpm) and lower BRS versus the control protocol (P < .05), without significant differences in stroke volume and systemic vascular resistance between protocols. During recovery, smoking elicited a delayed return of brain oxygenation indices, lower BRS, and higher double product. Smoking a cigarette shortly before the exercise session amplifies myocardial stress and dysregulates autonomic function and cerebral oxygenation during exercise and recovery, even in young habitual smokers, perceived as free from long-term cardiovascular effects of smoking. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Effects of High Intensity Training and High Volume Training on Endothelial Microparticles and Angiogenic Growth Factors

    PubMed Central

    Achtzehn, Silvia; Schmitz, Theresa; Bloch, Wilhelm; Mester, Joachim; Werner, Nikos

    2014-01-01

    Aims Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. Methods 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. Results VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. Conclusion Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis. PMID:24770423

  4. Perceiving Cardiac Rehabilitation Staff as Mainly Responsible for Exercise: A Dilemma for Future Self-Management.

    PubMed

    Flora, Parminder K; McMahon, Casey J; Locke, Sean R; Brawley, Lawrence R

    2018-03-01

    Cardiac rehabilitation (CR) exercise therapy facilitates patient recovery and better health following a cardiovascular event. However, post-CR adherence to self-managed (SM)-exercise is suboptimal. Part of this problem may be participants' view of CR staff as mainly responsible for help and program structure. Does post-CR exercise adherence for those perceiving high CR staff responsibility suffer as a consequence? Participants in this prospective, observational study were followed over 12 weeks of CR and one month afterward. High perceived staff responsibility individuals were examined for a decline in the strength of adherence-related social cognitions and exercise. Those high and low in perceived staff responsibility were also compared. High perceived staff responsibility individuals reported significant declines in anticipated exercise persistence (d = .58) and number of different SM-exercise options (d = .44). High versus low responsibility comparisons revealed a significant difference in one-month post-CR SM-exercise volume (d = .67). High perceived staff responsibility individuals exercised half of the amount of low responsibility counterparts at one month post-CR. Perceived staff responsibility and CR SRE significantly predicted SM-exercise volume, R 2 adj = .10, and persistence, R 2 adj = .18, one month post-CR. Viewing helpful well-trained CR staff as mainly responsible for participant behavior may be problematic for post-CR exercise maintenance among those more staff dependent. © 2017 The International Association of Applied Psychology.

  5. Load Bearing Equipment for Bone and Muscle

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  6. Exercise-induced neuroplasticity in human Parkinson's disease: What is the evidence telling us?

    PubMed

    Hirsch, Mark A; Iyer, Sanjay S; Sanjak, Mohammed

    2016-01-01

    While animal models of exercise and PD have pushed the field forward, few studies have addressed exercise-induced neuroplasticity in human PD. As a first step toward promoting greater international collaboration on exercise-induced neuroplasticity in human PD, we present data on 8 human PD studies (published between 2008 and 2015) with 144 adults with PD of varying disease severity (Hoehn and Yahr stage 1 to stage 3), using various experimental (e.g., randomized controlled trial) and quasi-experimental designs on the effects of cognitive and physical activity on brain structure or function in PD. We focus on plasticity mechanisms of intervention-induced increases in maximal corticomotor excitability, exercise-induced changes in voxel-based gray matter volume changes and increases in exercise-induced serum levels of brain derived neurotrophic factor (BDNF). Finally, we provide a future perspective for promoting international, collaborative research on exercise-induced neuroplasticity in human PD. An emerging body of evidence suggests exercise triggers several plasticity related events in the human PD brain including corticomotor excitation, increases and decreases in gray matter volume and changes in BDNF levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    PubMed

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings suggest the importance of examining whether increasing nonexercise, lifestyle physical activities may produce measurable cognitive benefits and affect hippocampal volume through molecular pathways unique to those related to moderate-intensity exercise. © 2014 Wiley Periodicals, Inc.

  8. Blood Flow After Exercise-Induced Muscle Damage

    PubMed Central

    Selkow, Noelle M.; Herman, Daniel C.; Liu, Zhenqi; Hertel, Jay; Hart, Joseph M.; Saliba, Susan A.

    2015-01-01

    Context: The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. Objective: To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). Intervention(s): To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. Main Outcome Measure(s): Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. Results: We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. Conclusions: Whereas eccentric muscle damage resulted in increased blood flow, ice did not decrease muscle perfusion 48 hours after exercise. Therefore, ice does not seem to decrease muscle perfusion when blood flow is elevated, as it would be during inflammation. PMID:25658816

  9. An overview of the issues: physiological effects of bed rest and restricted physical activity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Bloomfield, S. A.; Greenleaf, J. E.

    1997-01-01

    Reduction of exercise capacity with confinement to bed rest is well recognized. Underlying physiological mechanisms include dramatic reductions in maximal stroke volume, cardiac output, and oxygen uptake. However, bed rest by itself does not appear to contribute to cardiac dysfunction. Increased muscle fatigue is associated with reduced muscle blood flow, red cell volume, capillarization and oxidative enzymes. Loss of muscle mass and bone density may be reflected by reduced muscle strength and higher risk for injury to bones and joints. The resultant deconditioning caused by bed rest can be independent of the primary disease and physically debilitating in patients who attempt to reambulate to normal active living and working. A challenge to clinicians and health care specialists has been the identification of appropriate and effective methods to restore physical capacity of patients during or after restricted physical activity associated with prolonged bed rest. The examination of physiological responses to bed rest deconditioning and exercise training in healthy subjects has provided significant information to develop effective rehabilitation treatments. The successful application of acute exercise to enhance orthostatic stability, daily endurance exercise to maintain aerobic capacity, or specific resistance exercises to maintain musculoskeletal integrity rather than the use of surgical, pharmacological, and other medical treatments for clinical conditions has been enhanced by investigation and understanding of underlying mechanisms that distinguish physical deconditioning from the disease. This symposium presents an overview of cardiovascular and musculoskeletal deconditioning associated with reduced physical work capacity following prolonged bed rest and exercise training regimens that have proven successful in ameliorating or reversing these adverse effects.

  10. Wood chewing by stabled horses: diurnal pattern and effects of exercise.

    PubMed

    Krzak, W E; Gonyou, H W; Lawrence, L M

    1991-03-01

    Nine yearling horses, stabled in individual stalls, were used in a trial to determine the diurnal pattern of wood chewing and the effects of exercise on this behavior. The trial was a Latin square design conducted over three 2-wk periods during which each horse was exposed to each of the three following treatments: 1) no exercise (NE), 2) exercise after the morning feeding (AM), and 3) exercise in the afternoon (PM). Horses were fed a complete pelleted feed in the morning and both pelleted feed and long-stemmed hay in the afternoon. Exercise consisted of 45 min on a mechanical walker followed by 45 min in a paddock with bare soil. Each stall was equipped with two untreated spruce boards during each period for wood chewing. Wood chewing was evaluated by videotaping each horse for 22 h during each period, determining the weight and volume of the boards before and after each period, and by visual appraisal of the boards. Intake of trace mineralized salt was also measured. Wood chewing occurred primarily between 2200 and 1200. All measures of wood chewing were correlated when totals for the entire 6 wk were analyzed. When analysis was performed on 2-wk values, videotape results were not correlated with volume or weight loss of boards. Horses chewed more when on the NE treatment (511 s/d) than when on AM or PM (57 and 136 s/d, respectively; P less than .05). Salt intake tended to be greater for NE than for the other treatments (P less than .10).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.

    PubMed

    Mao, Tso-Yen; Fu, Li-Lan; Wang, Jong-Shyan

    2011-08-01

    Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O(2) condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H(2)O(2) that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H(2)O(2). However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H(2)O(2) was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.

  12. Vascular Uptake of Six Rehydration Drinks at Rest and Exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Geelen, G.; Jackson, C. G. R.; Saumet, J.-L.; Juhos, L. T.; Keil, L. C.; Fegan-Meyer, D.; Dearborn, A.; Hinghofer-Szalkay, H.; Whittam, J. H.

    1996-01-01

    A report presents data on the effectiveness of each of six rehydration fluids in restoring total body water and plasma volume in human subjects during rest and exercise. One of the six fluids was water sweetened with aspartame: the others were water containing various amounts of sodium chloride and/or sodium citrate, plus various amounts of aspartame and/or other carbohydrates. In one experiment, five men who had previously dehydrated themselves for 24 hours drank one of the rehydration fluids, then sat for 70 minutes. Pretest plasma volumes were measured and changes in plasma volumes were calculated. This procedure was repeated at weekly intervals until all six rehydration fluids had been tested. Another similar experiment involved four men who exercised on a cycle ergometer for 70 minutes in the supine position after drinking the fluids.

  13. Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians

    PubMed Central

    Yan, Huimin; Behun, Michael A.; Cook, Marc D.; Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Halliwill, John R.; Fernhall, Bo

    2016-01-01

    Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL. PMID:27074034

  14. Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians.

    PubMed

    Yan, Huimin; Behun, Michael A; Cook, Marc D; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2016-01-01

    Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL.

  15. Sclerostin antibody and interval treadmill training effects in a rodent model of glucocorticoid-induced osteopenia.

    PubMed

    Achiou, Zahra; Toumi, Hechmi; Touvier, Jérome; Boudenot, Arnaud; Uzbekov, Rustem; Ominsky, Michael S; Pallu, Stéphane; Lespessailles, Eric

    2015-12-01

    Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M+S: 25mg/kg/day) and were submitted or not to treadmill interval training exercise (1h/day, 5 days/week) for 9 weeks (M+E, M+E+S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans

    PubMed Central

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros

    2010-01-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965

  17. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans.

    PubMed

    Sugita, Masaaki; Kapoor, Mahendra P; Nishimura, Akinobu; Okubo, Tsutomu

    2016-03-01

    The aim of this study was to investigate the effects of green tea catechins (GTC) on oxidative stress metabolites in healthy individuals while at rest and during exercise. The effects investigated included response to fat metabolism, blood lactate concentrations, and rating of perceived exertion. In a paralleled, crossover, randomized controlled study, 16 trained male gymnastic students were randomly divided into two groups. The rest group (n = 8; GTC-NEX) received a single dose of 780 mg GTC with water but no exercise; the exercise group (n = 8; GTC-EX) received a similar dose of GTC but were instructed to exercise. This was followed by a crossover study with similar exercise regime as a placebo group (PL-EX) that received water only. Blood samples were collected at baseline and after 60 and 120 min of GTC intake. Oxidative stress blood biomarkers using the diacron reactive oxygen metabolite (d-ROMs) and biological antioxidant potential (BAP) tests; urinary 8-hydroxydeoxyguanosine (8-OHdG); 8-OHdG/creatinine; and blood lactate concentrations were analyzed. During the cycle ergometer exercise, volume of maximal oxygen uptake, volume of oxygen consumption, volume of carbon dioxide, and respiratory exchange ratio were measured from a sample of respiratory breath gas collected during low, moderate, and high intensity exercising, and the amount of fat burning and sugar consumption were calculated. Analysis of variance was used to determine statistical significance (P < 0.05) between and among the groups. Levels of postexercise oxidative stress metabolites BAP and d-ROMs were found significant (P < 0.0001) in the PL-EX and GTC-EX groups, and returned to pre-exercise levels after the recovery period. Levels of d-ROMs showed no significant difference from baseline upon GTC intake followed by resting and a resting recovery period in the GTC-NEX group. BAP levels were significant upon GTC intake followed by resting (P = 0.04), and after a resting recovery period (P = 0.0006) in the GTC-NEX group. Urinary 8-OHdG levels were significant (P < 0.005) for all groups after the recovery period. A significant difference was noticed between the ratios of resting BAP to d-ROMs and exercise-induced BAP to d-ROMs (P = 0.022) after 60 min of GTC intake, as well as resting 8-OHdG and exercise-induced 8-OHdG levels (P = 0.004) after the recovery period. Oxidative potentials were higher when exercise was performed at low to moderate intensity, accompanied by lower blood lactate concentration and higher amounts of fat oxidation. The results of the present study indicate that single-dose consumption of GTC influences oxidative stress biomarkers when compared between the GTC-NEX and GTC-EX groups, which could be beneficial for oxidative metabolism at rest and during exercise, possibly through the catechol-O-methyltransferase mechanism that is most often cited in previous studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes

    PubMed Central

    Thomassen, Martin; Gunnarsson, Thomas P.; Christensen, Peter M.; Pavlovic, Davor; Shattock, Michael J.

    2016-01-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10–12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–95% of peak aerobic power output) 1–2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca2+ handling. PMID:26791827

  19. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults.

    PubMed

    Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah

    2016-05-01

    Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    PubMed

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+) pump activity and muscle K(+) homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling. Copyright © 2016 the American Physiological Society.

  1. Exercise Versus +Gz Acceleration Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular variables. Plasma volume (% delta) was uniformly decreased by 8% to 14% (P < 0.05) at tilt-tolerance pre- vs. post-training for all regimens indicating no effect of these training regimens on the level of vascular fluid shifts.

  2. Comparisons in the Recovery Response From Resistance Exercise Between Young and Middle-Aged Men.

    PubMed

    Gordon, Joseph A; Hoffman, Jay R; Arroyo, Eliott; Varanoske, Alyssa N; Coker, Nicholas A; Gepner, Yftach; Wells, Adam J; Stout, Jeffrey R; Fukuda, David H

    2017-12-01

    Gordon, JA III, Hoffman, JR, Arroyo, E, Varanoske, AN, Coker, NA, Gepner, Y, Wells, AJ, Stout, JR, and Fukuda, DH. Comparisons in the recovery response from resistance exercise between young and middle-aged men. J Strength Cond Res 31(12): 3454-3462, 2017-The purpose of this study was to compare the effects of a bout of high-volume isokinetic resistance exercise protocol (HVP) on lower-body strength and markers of inflammation and muscle damage during recovery between young and middle-aged adult men. Nineteen recreationally trained men were classified as either a young adult (YA: 21.8 ± 2.0 years; 90.7 ± 11.6 kg) or a middle-aged adult (MA: 47.0 ± 4.4 years; 96.0 ± 21.5 kg) group. The HVP consisted of 8 sets of 10 repetitions, with 1 minute of rest between each set, performed on an isokinetic dynamometer at 60°·s. Maximal voluntary isometric contractions and isokinetic peak torque (PKT) and average torque (AVGT) (measured at 240° and 60°·s, respectively) were assessed at baseline (BL), immediately post (IP), 120 minutes, 24, and 48 hours after HVP. Blood was obtained at BL, IP, 30, 60, 120 minute, 24, and 48 hours after HVP to assess muscle damage and inflammation. All performance data were analyzed using repeated measures analysis of covariance, whereas all inflammatory and muscle damage markers were analyzed using a 2-way (time × group) repeated measures analysis of variance. Results revealed no between-group differences for PKT, AVGT, or rate of torque development at 200 ms (RTD200). No between-group differences in myoglobin, creatine kinase, C-reactive protein, or interleukin-6 were observed. Although BL differences in muscle performance were observed between YA and MA, no between-group differences were noted in performance recovery measures from high-volume isokinetic exercise in recreationally trained men. These results also indicate that the inflammatory and muscle damage response from high-volume isokinetic exercise is similar between recreationally trained, young, and middle-aged adult men.

  3. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.

    PubMed

    King, Michelle A; Clanton, Thomas L; Laitano, Orlando

    2016-01-15

    Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.

  4. (–)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle

    PubMed Central

    Nogueira, Leonardo; Ramirez-Sanchez, Israel; Perkins, Guy A; Murphy, Anne; Taub, Pam R; Ceballos, Guillermo; Villarreal, Francisco J; Hogan, Michael C; Malek, Moh H

    2011-01-01

    Abstract The flavanol (–)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (–)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water–exercise (W-Ex), (3) (–)-epicatechin ((–)-Epi), and (4) (–)-epicatechin–exercise ((–)-Epi-Ex). Animals received 1 mg kg−1 of (–)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (–)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (–)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (–)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (–)-epicatechin alone. These findings indicate that (–)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (–)-epicatechin and its potential clinical application as an exercise mimetic. PMID:21788351

  5. [Course of ejection fraction, regurgitation fraction and ventricular volumes during exertion in chronic aortic insufficiency. Study using technetium 99m gamma-cineangiography].

    PubMed

    Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P

    1985-06-01

    Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Exercise-induced bronchoconstriction and atopy in Tunisian athletes

    PubMed Central

    Sallaoui, Ridha; Chamari, Karim; Mossa, Abbas; Tabka, Zouhair; Chtara, Moktar; Feki, Youssef; Amri, Mohamed

    2009-01-01

    Background This study is a cross sectional analysis, aiming to evaluate if atopy is as a risk factor for exercise induced bronchoconstriction (EIB) among Tunisian athletes. Methods Atopy was defined by a skin prick test result and EIB was defined as a decrease of at least 15% in forced expiratory volume in one second (FEV1) after 8-min running at 80–85% HRmaxTheo. The study population was composed of 326 athletes (age: 20.8 ± 2.7 yrs – mean ± SD; 138 women and 188 men) of whom 107 were elite athletes. Results Atopy was found in 26.9% (88/326) of the athletes. Post exercise spirometry revealed the presence of EIB in 9.8% of the athletes including 13% of the elite athletes. Frequency of atopy in athletes with EIB was significantly higher than in athletes without EIB [62.5% vs 23.1%, respectively]. Conclusion This study showed that atopic Tunisian athletes presented a higher risk of developing exercise induced bronchoconstriction than non-atopic athletes. PMID:19196480

  7. Comparison of Flow and Volume Incentive Spirometry on Pulmonary Function and Exercise Tolerance in Open Abdominal Surgery: A Randomized Clinical Trial.

    PubMed

    Kumar, Amaravadi Sampath; Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan

    2016-01-01

    Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni's 't'-test. Exercise tolerance was analysed by Paired 'T'-test. Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1(st), 2(nd) and 3(rd) postoperative day when compared with preoperative day. On 4(th) and 5(th) postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance.

  8. No effect of artificial gravity on lung function with exercise training during head-down bed rest

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting

    2016-04-01

    The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

  9. High-intensity interval training programme for obese youth (HIP4YOUTH): A pilot feasibility study.

    PubMed

    Lee, SoJung; Spector, Jenna; Reilly, Stephanie

    2017-09-01

    Recently, there has been growing interest in high-intensity interval training (HIT) as a strategy to improve health. In this pilot study, we examined the feasibility of a 4-week low-volume HIT and its effects on cardiorespiratory fitness (CRF), blood pressure (BP) and enjoyment in overweight and obese youth. Twelve adolescents (body mass index (BMI): 34.8 ± 3.9 kg · m ‒ 2 , 14.9 ± 1.5 years) participated in 12 sessions of HIT (10 × 60 s cycling bouts eliciting ~90% maximal heart rate, interspersed with 90 s recovery, 30 min/session, 3 sessions/week) over ~4 weeks. All the participants completed the study and exercise attendance averaged 92%. Despite no changes in body weight and total fat, HIT resulted in significant (P < 0.01) increases in CRF (pre: 20.1 versus post: 22.2 ml · kg ‒1 · min ‒1 ) and exercise time (pre: 425 versus post: 509 s) during peak oxygen uptake test, and a reduction in resting systolic BP (pre: 115.8 versus post: 107.6 mmHg). The majority of study participants (83%) enjoyed HIT and more than half of the participants (58%) reported that HIT is a more enjoyable form of exercise compared to other types of exercises. Low-volume HIT is a useful strategy to promote exercise participation and improve cardiovascular health in overweight and obese youth.

  10. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  11. [Cardiovascular resistance to orthostatic stress in athletes after aerobic exercise].

    PubMed

    Mel'nikov, A A; Popov, S G; Vikulov, A D

    2014-01-01

    In the paper cardiovascular resistance to orthostatic stress in the athletes in the two-hour recovery period after prolonged aerobic exercise was investigated. The reaction of the cardiac (stroke volume and cardiac output) and peripheral blood volumes in the lower and upper limbs, abdominal and neck regions in response to the tilt-test before and during two hours after exercise (30 min, heart rate = 156 +/- 8 beats/min) was determined by impedance method: It is found that: (1) at baseline distribution of blood flow in favor of the neck-region in response to the tilt-test, in spite of the decrease in cardiac output, was more efficient in athletes, that was due to a large decrease in blood flow to the lower extremities, and increased blood flow in the neck region; (2) after exercise it was established symptoms of potential orthostatic intolerance: postural hypotension and tachycardia, reduced peripheral pulse blood volume, expressed in a standing position, and reduced effectiveness of the distribution of blood flow in the direction of the neck region; (3) the abilityto effectively distribute blood flow in favor of the neck region in athletes after exercise remained elevated, which was due to a large decrease in blood flow in the abdominal region at the beginning, and in the lower limbs at the end of the recovery period.

  12. Physical Activity, Health Benefits, and Mortality Risk

    PubMed Central

    Kokkinos, Peter

    2012-01-01

    A plethora of epidemiologic evidence from large studies supports unequivocally an inverse, independent, and graded association between volume of physical activity, health, and cardiovascular and overall mortality. This association is evident in apparently healthy individuals, patients with hypertension, type 2 diabetes mellitus, and cardiovascular disease, regardless of body weight. Moreover, the degree of risk associated with physical inactivity is similar to, and in some cases even stronger than, the more traditional cardiovascular risk factors. The exercise-induced health benefits are in part related to favorable modulations of cardiovascular risk factors observed by increased physical activity or structured exercise programs. Although the independent contribution of the exercise components, intensity, duration, and frequency to the reduction of mortality risk is not clear, it is well accepted that an exercise volume threshold defined at caloric expenditure of approximately 1,000 Kcal per week appears to be necessary for significant reduction in mortality risk. Further reductions in risk are observed with higher volumes of energy expenditure. Physical exertion is also associated with a relatively low and transient increase in risk for cardiac events. This risk is significantly higher for older and sedentary individuals. Therefore, such individuals should consult their physician prior to engaging in exercise. “Walking is man’s best medicine”Hippocrates PMID:23198160

  13. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)

    PubMed Central

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M.; Mahnken, Andreas H.; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Background Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Methods Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. Results During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. Conclusions In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed. PMID:28273102

  14. Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the National Emphysema Treatment Trial Research Group.

    PubMed

    Naunheim, Keith S; Wood, Douglas E; Mohsenifar, Zab; Sternberg, Alice L; Criner, Gerard J; DeCamp, Malcolm M; Deschamps, Claude C; Martinez, Fernando J; Sciurba, Frank C; Tonascia, James; Fishman, Alfred P

    2006-08-01

    The National Emphysema Treatment Trial defined subgroups of patients with severe emphysema in whom lung-volume-reduction surgery (LVRS) improved survival and function at 2 years. Two additional years of follow-up provide valuable information regarding durability. A total of 1218 patients with severe emphysema were randomized to receive LVRS or medical treatment. We present updated analyses (4.3 versus 2.4 years median follow-up), including 40% more patients with functional measures 2 years after randomization. The intention-to-treat analysis of 1218 randomized patients demonstrates an overall survival advantage for LVRS, with a 5-year risk ratio (RR) for death of 0.86 (p = 0.02). Improvement was more likely in the LVRS than in the medical group for maximal exercise through 3 years and for health-related quality of life (St. George's Respiratory Questionnaire [SGRQ]) through 4 years. Updated comparisons of survival and functional improvement were consistent with initial results for four clinical subgroups of non-high-risk patients defined by upper-lobe predominance and exercise capacity. After LVRS, the upper-lobe patients with low exercise capacity demonstrated improved survival (5-year RR, 0.67; p = 0.003), exercise throughout 3 years (p < 0.001), and symptoms (SGRQ) through 5 years (p < 0.001 years 1 to 3, p = 0.01 year 5). Upper-lobe-predominant and high-exercise-capacity LVRS patients obtained no survival advantage but were likely to improve exercise capacity (p < 0.01 years 1 to 3) and SGRQ (p < 0.01 years 1 to 4). Effects of LVRS are durable, and it can be recommended for upper-lobe-predominant emphysema patients with low exercise capacity and should be considered for palliation in patients with upper-lobe emphysema and high exercise capacity.

  15. Effects of Baseline Levels of Flexibility and Vertical Jump Ability on Performance Following Different Volumes of Static Stretching and Potentiating Exercises in Elite Gymnasts

    PubMed Central

    Donti, Olyvia; Tsolakis, Charilaos; Bogdanis, Gregory C.

    2014-01-01

    This study examined the effects of baseline flexibility and vertical jump ability on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) following different volumes of stretching and potentiating exercises. ROM and CMJ were measured after two different warm-up protocols involving static stretching and potentiating exercises. Three groups of elite athletes (10 male, 14 female artistic gymnasts and 10 female rhythmic gymnasts) varying greatly in ROM and CMJ, performed two warm-up routines. One warm-up included short (15 s) static stretching followed by 5 tuck jumps, while the other included long static stretching (30 s) followed by 3x5 tuck jumps. ROM and CMJ were measured before, during and for 12 min after the two warm-up routines. Three-way ANOVA showed large differences between the three groups in baseline ROM and CMJ performance. A type of warm-up x time interaction was found for both ROM (p = 0.031) and CMJ (p = 0.016). However, all athletes, irrespective of group, responded in a similar fashion to the different warm-up protocols for both ROM and CMJ, as indicated from the lack of significant interactions for group (condition x group, time x group or condition x time x group). In the short warm-up protocol, ROM was not affected by stretching, while in the long warm-up protocol ROM increased by 5.9% ± 0.7% (p = 0.001) after stretching. Similarly, CMJ remained unchanged after the short warm-up protocol, but increased by 4.6 ± 0.9% (p = 0.012) 4 min after the long warm- up protocol, despite the increased ROM. It is concluded that the initial levels of flexibility and CMJ performance do not alter the responses of elite gymnasts to warm-up protocols differing in stretching and potentiating exercise volumes. Furthermore, 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance despite an increase in flexibility in these highly-trained athletes. Key Points The initial levels of flexibility and vertical jump ability have no effect on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) of elite gymnasts following warm-up protocols differing in stretching and potentiating exercise volumes Stretching of the main leg muscle groups for only 15 s has no effect on ROM of elite gymnasts In these highly-trained athletes, one set of 5 tuck jumps during warm-up is not adequate to increase CMJ performance, while 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance (by 4.6% above baseline), despite a 5.9% increase in flexibility due to the 30 s stretching exercises PMID:24570613

  16. Maximal Strength Performance and Muscle Activation for the Bench Press and Triceps Extension Exercises Adopting Dumbbell, Barbell, and Machine Modalities Over Multiple Sets.

    PubMed

    Farias, Déborah de Araújo; Willardson, Jeffrey M; Paz, Gabriel A; Bezerra, Ewertton de S; Miranda, Humberto

    2017-07-01

    Farias, DdA, Willardson, JM, Paz, GA, Bezerra, EdS, and Miranda, H. Maximal strength performance and muscle activation for the bench press and triceps extension exercises adopting dumbbell, barbell and machine modalities over multiple sets. J Strength Cond Res 31(7): 1879-1887, 2017-The purpose of this study was to investigate muscle activation, total repetitions, and training volume for 3 bench press (BP) exercise modes (Smith machine [SMBP], barbell [BBP], and dumbbell [DBP]) that were followed by a triceps extension (TE) exercise. Nineteen trained men performed 3 testing protocols in random order, which included: (P1) SMBP + TE; (P2) BBP + TE; and (P3) DBP + TE. Each protocol involved 4 sets with a 10-repetition maximum (RM) load, immediately followed by a TE exercise that was also performed for 4 sets with a 10RM load. A 2-minute rest interval was adopted between sets and exercises. Surface electromyographic activity was assessed for the pectoralis major (PM), anterior deltoid (AD), biceps brachii (BB), and triceps brachii (TB). The results indicated that significantly higher total repetitions were achieved for the DBP (31.2 ± 3.2) vs. the BBP (27.8 ± 4.8). For the TE, significantly greater volume was achieved when this exercise was performed after the BBP (1,204.4 ± 249.4 kg) and DBP (1,216.8 ± 287.5 kg) vs. the SMBP (1,097.5 ± 193 kg). The DBP elicited significantly greater PM activity vs. the BBP. The SMBP elicited significantly greater AD activity vs. the BBP and DBP. During the different BP modes, the SMBP and BBP elicited significantly greater TB activity vs. the DBP. However, the DBP elicited significantly greater BB activity vs. the SMBP and BBP, respectively. During the succeeding TE exercise, significantly greater activity of the TB was observed when this exercise was performed after the BBP vs. the SMBP and DBP. Therefore, it seems that the variation in BP modes does influence both repetition performance and muscle activation patterns during the TE when these exercises are performed in succession.

  17. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    PubMed

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that exercise training in pediatric brain tumor patients treated with radiation has a beneficial impact on brain structure. We argue that exercise training should be incorporated into the development of neuro-rehabilitative treatments for long-term pediatric brain tumor survivors and other populations with acquired brain injury. (ClinicalTrials.gov, NCT01944761).

  18. APEX (Air Pollution Exercise) Volume 20: Reference Materials.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Reference Materials Manual is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. For the purposes of the gaming exercise, APEX…

  19. Russian Basic Course: Military Situations, Exercises 1-35.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    Thirty-five military situations treated in this volume provide exercises in the use of practical military terminology received from the United States Army General School. Each exercise is devoted to a specific topic, and in each case lists of new words and idioms together with their English equivalents are provided. Lessons consist primarily of…

  20. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. La Palabra es Nuestra: Primaria para Adultos. Segunda Parte, Volumen 1-2. Edicion Experimental (The Language Is Ours: Primer for Adults. Part Two, Volumes 1-2. Experimental Edition).

    ERIC Educational Resources Information Center

    Instituto Nacional para la Educacion de los Adultos, Mexico City (Mexico).

    These workbooks are part of a Mexican series of instructional materials designed for Spanish speaking adults who are in the process becoming literate or have recently become literate in their native language. They provide readings and exercises for developing literacy skills. Pictures and fill-in-the blank exercises appear frequently. Volume 1…

  2. Right and Left Ventricular Function and Mass in Male Elite Master Athletes: A Controlled Contrast-Enhanced Cardiovascular Magnetic Resonance Study.

    PubMed

    Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen

    2016-05-17

    It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); P<0.001; right ventricular mass/body surface area, 36±7 and 24±5 g/m(2); P<0.001) and indexed left ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); P<0.001; right ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); P<0.001) were significantly increased in athletes in comparison with control subjects. Right ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.

  3. Inadequate Loading Stimulus on ISS Results in Bone and Muscle Loss

    NASA Technical Reports Server (NTRS)

    Rice, A. J.; Genc, K. O.; Maender, C. C.; Gopalakrishnan, R.; Kuklis, M. M.; Cavanagh, P. R.

    2011-01-01

    INTRODUCTION Exercise has been the primary countermeasure to combat musculoskeletal changes during International Space Station (ISS) missions. However, these countermeasures have not been successful in preventing loss of bone mineral density (BMD) or muscle volume in crew members. METHODS We examined lower extremity loading during typical days on-orbit and on Earth for four ISS crew members. In-shoe forces were monitored using force-measuring insoles placed inside the shoes. BMD (by DXA), muscle volumes (by MRI), and strength were measured before and after long-duration spaceflight (181 +/- 15 days). RESULTS The peak forces measured during ISS activity were significantly less than those measured in 1g for the same activities. Typical single-leg loads on-orbit during walking and running were 0.89 +/- 0.17 body weights (BW) and 1.28 +/- 0.18 BW compared to 1.18 +/- 0.11 BW and 2.36 +/- .22 BW in 1g, respectively [2]. Crew members were only loaded for an average of 43.17 +/- 14.96 min a day while performing exercise on-orbit even though 146.8 min were assigned for exercise each day. Areal BMD decreased in the femoral neck and total hip by 0.71 +/- 0.34% and 0.81 +/- 0.21% per month, respectively. Changes in muscle volume were observed in the lower extremity (-10 to -16% calf; -4 to -7% thigh) but there were no changes in the upper extremity (+0.4 to -0.8%). Decrements in isometric and isokinetic strength at the knee (range: -10.4 to -24.1%), ankle (range: -4 to -22.3%), and elbow (range: -7.5 to - 16.7%) were also observed. Knee extension endurance tests showed an overall decline in total work (-14%) but an increased resistance to fatigue post-flight. DISCUSSION AND CONCLUSIONS Our findings support the conclusion that the measured exercise durations and/or loading stimuli were insufficient to protect bone and muscle health.

  4. Development and field test of a responsible alcohol service program. Volume 3, Final results

    DOT National Transportation Integrated Search

    1988-08-01

    A Program of Responsible Alcohol Service was developed to enable servers and managers in establishments selling alcoholic beverages to exercise responsibility in their service of alcohol in order to prevent injury to and by intoxicated patrons. The P...

  5. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat

    PubMed Central

    2014-01-01

    Background This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Methods Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Results Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). Conclusions The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition. PMID:24490869

  6. Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration

    PubMed Central

    Bae, Yoon Jung; Lee, Yong Soo; Kim, Byeong Jo

    2012-01-01

    The purpose of this study was to determine the effects of beverage temperature and composition on weight retention and fluid balance upon voluntary drinking following exercise induced-dehydration. Eight men who were not acclimated to heat participated in four randomly ordered testing sessions. In each session, the subjects ran on a treadmill in a chamber maintained at 37℃ without being supplied fluids until 2% body weight reduction was reached. After termination of exercise, they recovered for 90 min under ambient air conditions and received one of the following four test beverages: 10℃ water (10W), 10℃ sports drink (10S), 26℃ water (26W), and 26℃ sports drink (26S). They consumed the beverages ad libitum. The volume of beverage consumed and body weight were measured at 30, 60, and 90 min post-recovery. Blood samples were taken before and immediately after exercise as well as at the end of recovery in order to measure plasma parameters and electrolyte concentrations. We found that mean body weight decreased by 1.8-2.0% following exercise. No differences in mean arterial pressure, plasma volume, plasma osmolality, and blood electrolytes were observed among the conditions. Total beverage volumes consumed were 1,164 ± 388, 1,505 ± 614, 948 ± 297, and 1,239 ± 401 ml for 10W, 10S, 26W, and 26S respectively (P > 0.05). Weight retention at the end of recovery from dehydration was highest in 10S (1.3 ± 0.7 kg) compared to 10W (0.4 ± 0.5 kg), 26W (0.4 ± 0.4 kg), and (0.6 ± 0.4 kg) (P < 0.005). Based on these results, carbohydrate/electrolyte-containing beverages at cool temperature were the most favorable for consumption and weight retention compared to plain water and moderate temperature beverages. PMID:22586501

  7. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight

  8. Effects of furosemide on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.

    PubMed

    Weiss, D J; Geor, R J; Burger, K

    1996-06-01

    To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.

  9. Pre-Exercise Ingestion of Pickle Juice, Hypertonic Saline, or Water and Aerobic Performance and Thermoregulation

    PubMed Central

    Peikert, Jarett; Miller, Kevin C.; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Context: Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. Objective: To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Design: Crossover study. Setting: Controlled laboratory study. Patients or Other Participants: Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Intervention(s): Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Main Outcome Measure(s): Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Results: Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Conclusions: Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space. PMID:24568225

  10. Video game-based exercises for balance rehabilitation: a single-subject design.

    PubMed

    Betker, Aimee L; Szturm, Tony; Moussavi, Zahra K; Nett, Cristabel

    2006-08-01

    To investigate whether coupling foot center of pressure (COP)-controlled video games to standing balance exercises will improve dynamic balance control and to determine whether the motivational and challenging aspects of the video games would increase a subject's desire to perform the exercises and complete the rehabilitation process. Case study, pre- and postexercise. University hospital outpatient clinic. A young adult with excised cerebellar tumor, 1 middle-aged adult with single right cerebrovascular accident, and 1 middle-aged adult with traumatic brain injury. A COP-controlled, video game-based exercise system. The following were calculated during 12 different tasks: the number of falls, range of COP excursion, and COP path length. Postexercise, subjects exhibited a lower fall count, decreased COP excursion limits for some tasks, increased practice volume, and increased attention span during training. The COP-controlled video game-based exercise regime motivated subjects to increase their practice volume and attention span during training. This in turn improved subjects' dynamic balance control.

  11. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers.

    PubMed

    Paraiso, Lara Ferreira; Gonçalves-E-Oliveira, Ana Flávia Mayrink; Cunha, Lucas Moreira; de Almeida Neto, Omar Pereira; Pacheco, Adriana Garcia; Araújo, Karinne Beatriz Gonçalves; Garrote-Filho, Mário da Silva; Bernardino Neto, Morun; Penha-Silva, Nilson

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins.

  12. Ventilation Increases with Lower Extremity Venous Occlusion in Young Adults

    PubMed Central

    Keller-Ross, Manda L.; Cowl, Andrielle L.; Cross, Troy; Johnson, Bruce D.; Olson, Thomas P.

    2015-01-01

    Introduction Venous distention via sub-systolic occlusion of the lower limbs may augment ventilation via stimulation of group III/IV afferent neurons. Purpose The purpose of this study was to examine the ventilatory response to graded lower extremity venous occlusion during exercise in healthy adults. Methods Nineteen adults (9 men, 25±5 yr) completed two visits. Visit 1: a maximal cycle ergometry exercise test. Visit 2 included a 30% peak workload cycle exercise with randomized inflations of bilateral thigh pressure tourniquets to 20, 40, 60, 80, 100 mmHg for 2 min each, separated by 2 min of deflation. Three min of cycling occurred prior to cuffing (CTL). Expired minute ventilation (VE), whole body gas exchange, rating of perceived exertion and dyspnea were measured during each session. Results VE increased significantly from the control condition (exercise only, control, CTL) to each occlusion pressure (p<0.05) with the greatest increase at 100 mmHg (CTL to 100 mmHg: 31.5±6.6 to 40.1±10.7 L/min). Respiratory rate (RR) increased as well (CTL to 100 mmHg: 24.8±6.0 to 30.9±11.5 breaths/min, p<0.05, condition effect) with no change in tidal volume (p>0.05). Tidal volume to inspiratory time (VT/TI) increased significantly from the CTL condition to each occlusion pressure (CTL to 100 mmHg: 1.5±0.3 to 1.8±0.4 L/min, p<0.05, all pressures). Dyspnea and RPE increased with all occlusion pressures from CTL exercise (p<0.05, all pressures). Conclusion Our findings suggest that mild-to-moderate venous occlusion of the lower extremity evokes a tachypneic breathing pattern which, in turn, augments VE and perceived breathing effort during exercise. PMID:26484951

  13. Effects of Lung Volume Reduction Surgery on Gas Exchange and Breathing Pattern During Maximum Exercise

    PubMed Central

    Criner, Gerard J.; Belt, Patricia; Sternberg, Alice L.; Mosenifar, Zab; Make, Barry J.; Utz, James P.; Sciurba, Frank

    2009-01-01

    Background: The National Emphysema Treatment Trial studied lung volume reduction surgery (LVRS) for its effects on gas exchange, breathing pattern, and dyspnea during exercise in severe emphysema. Methods: Exercise testing was performed at baseline, and 6, 12, and 24 months. Minute ventilation (V̇e), tidal volume (Vt), carbon dioxide output (V̇co2), dyspnea rating, and workload were recorded at rest, 3 min of unloaded pedaling, and maximum exercise. Pao2, Paco2, pH, fraction of expired carbon dioxide, and bicarbonate were also collected in some subjects at these time points and each minute of testing. There were 1,218 patients enrolled in the study (mean [± SD] age, 66.6 ± 6.1 years; mean, 61%; mean FEV1, 0.77 ± 0.24 L), with 238 patients participating in this substudy (mean age, 66.1 ± 6.8 years; mean, 67%; mean FEV1, 0.78 ± 0.25 L). Results: At 6 months, LVRS patients had higher maximum V̇e (32.8 vs 29.6 L/min, respectively; p = 0.001), V̇co2, (0.923 vs 0.820 L/min, respectively; p = 0.0003), Vt (1.18 vs 1.07 L, respectively; p = 0.001), heart rate (124 vs 121 beats/min, respectively; p = 0.02), and workload (49.3 vs 45.1 W, respectively; p = 0.04), but less breathlessness (as measured by Borg dyspnea scale score) [4.4 vs 5.2, respectively; p = 0.0001] and exercise ventilatory limitation (49.5% vs 71.9%, respectively; p = 0.001) than medical patients. LVRS patients with upper-lobe emphysema showed a downward shift in Paco2 vs V̇co2 (p = 0.001). During exercise, LVRS patients breathed slower and deeper at 6 months (p = 0.01) and 12 months (p = 0.006), with reduced dead space at 6 months (p = 0.007) and 24 months (p = 0.006). Twelve months after patients underwent LVRS, dyspnea was less in patients with upper-lobe emphysema (p = 0.001) and non–upper-lobe emphysema (p = 0.007). Conclusion: During exercise following LVRS, patients with severe emphysema improve carbon dioxide elimination and dead space, breathe slower and deeper, and report less dyspnea. PMID:19420196

  14. ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women.

    PubMed

    Hagberg, James M; McCole, Steve D; Brown, Michael D; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Moore, Geoffrey E

    2002-03-01

    We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.

  15. Stereological Study on the Positive Effect of Running Exercise on the Capillaries in the Hippocampus in a Depression Model.

    PubMed

    Chen, Linmu; Zhou, Chunni; Tan, Chuanxue; Wang, Feifei; Gao, Yuan; Huang, Chunxia; Zhang, Yi; Jiang, Lin; Tang, Yong

    2017-01-01

    Running exercise is an effective method to improve depressive symptoms when combined with drugs. However, the underlying mechanisms are not fully clear. Cerebral blood flow perfusion in depressed patients is significantly lower in the hippocampus. Physical activity can achieve cerebrovascular benefits. The purpose of this study was to evaluate the impacts of running exercise on capillaries in the hippocampal CA1 and dentate gyrus (DG) regions. The chronic unpredictable stress (CUS) depression model was used in this study. CUS rats were given 4 weeks of running exercise from the fifth week to the eighth week (20 min every day from Monday to Friday each week). The sucrose consumption test was used to measure anhedonia. Furthermore, stereological methods were used to investigate the capillary changes among the control group, CUS/Standard group and CUS/Running group. Sucrose consumption significantly increased in the CUS/Running group. Running exercise has positive effects on the capillaries parameters in the hippocampal CA1 and DG regions, such as the total volume, total length and total surface area. These results demonstrated that capillaries are protected by running exercise in the hippocampal CA1 and DG might be one of the structural bases for the exercise-induced treatment of depression-like behavior. These results suggest that drugs and behavior influence capillaries and may be considered as a new means for depression treatment in the future.

  16. Ventilatory response to the onset of passive and active exercise in human subjects.

    PubMed

    Miyamura, M; Ishida, K; Yasuda, Y

    1992-01-01

    Ventilatory responses at the onset of passive and active exercise with different amount of exercising muscle mass were studied in 10 healthy male subjects. Four exercise tests were performed for each subject with appropriate intervals on the same day, i.e., two voluntary exercises of one leg or both legs and two passive exercises of one leg or both legs. Inspiratory minute volume (VI), end-tidal CO2 and O2 partial pressures (PETCO2, PETO2) were measured breath-by-breath using a hot-wire flowmeter, infrared CO2 analyzer, and a rapid O2 analyzer. Average values of VI were obtained from 5 breaths at rest preceding exercise and the first and second breaths after the onset of exercise. The ventilatory response to exercise was calculated as the difference (delta) between the mean of exercise VI and mean of resting VI. In this study, the PETCO2 decreased by about 0.5 Torr in four exercise tests, though the decrement of PETCO2 was not statistically significant. The average values and standard deviation of delta VI were 4.22 +/- 1.63 l/min for the one leg and 6.46 +/- 1.80 l/min for the two legs in the active exercise, and were 2.46 +/- 1.12 l/min for the one leg and 3.44 +/- 1.55 l/min for the two legs in the passive exercise, respectively. These results suggest that in awake conditions, the ventilatory response at the onset of passive or active exercise does not increase additively with the increasing amount of muscle mass being exercised.

  17. Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap.

    PubMed

    Convertino, Victor A; Cooke, William H

    2005-09-01

    Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.

  18. High-Intensity Intermittent Exercise and Autonomic Modulation: Effects of Different Volume Sessions.

    PubMed

    Castrillón, Carlos Iván Mesa; Miranda, Rodolfo Augusto Travagin; Cabral-Santos, Carolina; Vanzella, Lais Manata; Rodrigues, Bruno; Vanderlei, Luiz Carlos Marques; Lira, Fábio Santos; Campos, Eduardo Zapaterra

    2017-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after 2 sessions of high-intensity intermittent exercise at different volumes (1.25 km [HIIE 1.25 ] and 2.5 km [HIIE 2.5 ]). 13 participants determined their maximal aerobic speed (MAS) and completed 2 HIIE (1:1 at 100% MAS) trials. The heart rate was recorded before and after each session. HRV indicators were calculated according to time (RMSSD and SDNN) and frequency (LF, HF and LF/HF ratio) domains. SDNN and RMSSD presented effect of test (F=20.97; p<0.01 and F=21.00; p<0.01, respectively) and moment (F=6.76; p<0.01 and F=12.30; p<0.01, respectively), without interaction. Even though we did not find an interaction effect for any HRV variables, the HIIE 2.5 presented a delay of only 5 min in HRV recovery, when compared to HIIE 1.25 . However, the effects of the test (SDNN, RMSSD, LF-log, and HF-log) indicate higher autonomic stress during the entire recovery period. These findings may indicate that exercise volume interferes with HRV recovery. If so, physically active subjects may choose a lower volume exercise (i. e., HIIE 1.25 ) in order to promote similar physical fitness adaptations with lower loading on autonomic modulation. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…

  20. Hypervolemia in men from drinking hyperhydration fluids at rest and during exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Looftwilson, R.; Wisherd, P. P.; Fung, P. P.; Ertl, A. C.; Jackson, C. G. R.; Barnes, P. R.; Wong, L. G.

    1994-01-01

    To test the hypothesis that drink composition is more important than drink osmolality (Osm) for maintaining and increasing plasma volume (PV) at rest and during exercise, six men (22-39 yr, 76.84 +/- 16.19 kg, 2.99 +/- 0.45 L/min VO2 peak) each underwent six treatments while sitting for 90 min (VO2 = 0.39 L/min) and then performed upright ergometer exercise for 70 min (VO2 = 2.08 +/- 0.33 1/min, 70% +/- 7% VO2 peak). Drink formulations (10 ml/kg body weight, X = 768 ml) for the sitting period were: P1 (55 mEq Na(+), 365 mOsm/kg H2O), P2 (97.1 mEq Na(+), 791 mOsm/kg), P2G (113 mEqNa(+), 80 ml glycerol, 1,382 mOsm/kg, HyperAde (HA) (164 mEq Na(+), 253 mOsm/kg), and 01 and 02 (no drinking). The exercise drink (10 ml/kg, 768 ml) was P1 for all treatments except 02. Plasma volume at rest increased (p less than 0.05) by 4.7% with P1 and by 7.9% with HA. Percent change in PV during exercise was +1% to +3%0(NS) with HA; -6% to 0% (NS) with P1, P2, P2G, and 01; and -8% to -5% (p less than 0.05) with 02. HyperAde, with the lowest osmolality (253 mOsm/kg), maintained PV at rest and during exercise, whereas the other drinks with lower Na(+) and higher osmolality (365 to 1,382 mOsm/kg) did not. But Performance 1 also increased PV at rest. Thus, drink composition may be more important than drink osmolality for increasing plasma volume at rest and for maintaining it during exercise.

  1. Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: A proof-of-concept RCT.

    PubMed

    Kirkham, A A; Shave, R E; Bland, K A; Bovard, J M; Eves, N D; Gelmon, K A; McKenzie, D C; Virani, S A; Stöhr, E J; Warburton, D E R; Campbell, K L

    2017-10-15

    Preclinical studies have reported that a single treadmill session performed 24h prior to doxorubicin provides cardio-protection. We aimed to characterize the acute change in cardiac function following an initial doxorubicin treatment in humans and determine whether an exercise session performed 24h prior to treatment changes this response. Breast cancer patients were randomized to either 30min of vigorous-intensity exercise 24h prior to the first doxorubicin treatment (n=13), or no vigorous exercise for 72h prior to treatment (control, n=11). Echocardiographically-derived left ventricular volumes, longitudinal strain, twist, E/A ratio, and circulating NT-proBNP, a marker of later cardiotoxicity, were measured before and 24-48h after the treatment. Following treatment in the control group, NT-proBNP, end-diastolic and stroke volumes, cardiac output, E/A ratio, strain, diastolic strain rate, twist, and untwist velocity significantly increased (all p≤0.01). Whereas systemic vascular resistance (p<0.01) decreased, and ejection fraction (p=0.02) and systolic strain rate (p<0.01) increased in the exercise group only. Relative to control, the exercise group had a significantly lower NT-proBNP (p<0.01) and a 46% risk reduction of exceeding the cut-point used to exclude acute heart failure. The first doxorubicin treatment is associated with acutely increased NT-proBNP, echocardiographic parameters of myocardial relaxation, left ventricular volume overload, and changes in longitudinal strain and twist opposite in direction to documented longer-term changes. An exercise session performed 24h prior to treatment attenuated NT-proBNP release and increased systolic function. Future investigations should verify these findings in a larger cohort and across multiple courses of doxorubicin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.

    PubMed

    Benton, Melissa J; Waggener, Green T; Swan, Pamela D

    2016-03-01

    This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.

  3. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men

    PubMed Central

    Barbosa, Thales C.; Vianna, Lauro C.; Fernandes, Igor A.; Prodel, Eliza; Rocha, Helena N. M.; Garcia, Vinicius P.; Rocha, Natalia G.; Secher, Niels H.

    2016-01-01

    Key points The increase in blood pressure observed during physical activities is exaggerated in patients with hypertension, exposing them to a higher cardiovascular risk.Neural signals from the skeletal muscles appear to be overactive, resulting in this abnormal response in hypertensive patients.In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity.Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure of hypertensive men during cycling exercise to a level comparable to that of normotensive men.Skeletal muscle afferent overactivity causes the abnormal cardiovascular response to exercise and was reverted in this experimental model, appearing as potential target for treatment. Abstract Hypertensive patients present an exaggerated increase in blood pressure and an elevated cardiovascular risk during exercise. Although controversial, human studies suggest that group III and IV skeletal muscle afferents might contribute to this abnormal response. In the present study, we investigated whether attenuation of the group III and IV muscle afferent signal of hypertensive men eliminates the exaggerated increase in blood pressure occurring during exercise. Eight hypertensive men performed two sessions of 5 min of cycling exercise at 40 W. Between sessions, the subjects were provided with a lumbar intrathecal injection of fentanyl, a μ‐opioid receptor agonist, aiming to attenuate the central projection of opioid‐sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P < 0.05), whereas the increase in heart rate, stroke volume, cardiac output and vascular conductance was similar (P > 0.05). Fentanyl inhibited the blood pressure response to exercise in the hypertensive group (+11 ± 2 mmHg) to a level comparable to that of the normotensive group (P > 0.05). Moreover, fentanyl increased the responses of vascular conductance and stroke volume to exercise (P < 0.05), whereas the heart rate response was attenuated (P < 0.05) and the cardiac output response was maintained (P > 0.05). The results of the present study show that attenuation of the exercise pressor reflex normalizes the blood pressure response to cycling exercise in hypertensive individuals. PMID:26659384

  4. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry--part II (volume sources).

    PubMed

    Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J

    2012-09-01

    The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology.

    PubMed

    Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick

    2017-07-01

    Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.

  6. Do clinicians prescribe exercise similarly in patients with different cardiovascular diseases? Findings from the EAPC EXPERT working group survey.

    PubMed

    Hansen, Dominique; Rovelo Ruiz, Gustavo; Doherty, Patrick; Iliou, Marie-Christine; Vromen, Tom; Hinton, Sally; Frederix, Ines; Wilhelm, Matthias; Schmid, Jean-Paul; Abreu, Ana; Ambrosetti, Marco; Garcia-Porrero, Esteban; Coninx, Karin; Dendale, Paul

    2018-05-01

    Background Although disease-specific exercise guidelines for cardiovascular disease (CVD) are widely available, it remains uncertain whether these different exercise guidelines are integrated properly for patients with different CVDs. The aim of this study was to assess the inter-clinician variance in exercise prescription for patients with various CVDs and to compare these prescriptions with recommendations from the EXercise Prescription in Everyday practice and Rehabilitative Training (EXPERT) tool, a digital decision support system for integrated state-of-the-art exercise prescription in CVD. Design The study was a prospective observational survey. Methods Fifty-three CV rehabilitation clinicians from nine European countries were asked to prescribe exercise intensity (based on percentage of peak heart rate (HR peak )), frequency, session duration, programme duration and exercise type (endurance or strength training) for the same five patients. Exercise prescriptions were compared between clinicians, and relationships with clinician characteristics were studied. In addition, these exercise prescriptions were compared with recommendations from the EXPERT tool. Results A large inter-clinician variance was found for prescribed exercise intensity (median (interquartile range (IQR)): 83 (13) % of HR peak ), frequency (median (IQR): 4 (2) days/week), session duration (median (IQR): 45 (18) min/session), programme duration (median (IQR): 12 (18) weeks), total exercise volume (median (IQR): 1215 (1961) peak-effort training hours) and prescription of strength training exercises (prescribed in 78% of all cases). Moreover, clinicians' exercise prescriptions were significantly different from those of the EXPERT tool ( p < 0.001). Conclusions This study reveals significant inter-clinician variance in exercise prescription for patients with different CVDs and disagreement with an integrated state-of-the-art system for exercise prescription, justifying the need for standardization efforts regarding integrated exercise prescription in CV rehabilitation.

  7. Using resting-state fMRI to assess the effect of aerobic exercise on functional connectivity of the DLPFC in older overweight adults.

    PubMed

    Prehn, Kristin; Lesemann, Anne; Krey, Georgia; Witte, A Veronica; Köbe, Theresa; Grittner, Ulrike; Flöel, Agnes

    2017-08-23

    Cardiovascular fitness is thought to exert beneficial effects on brain function and might delay the onset of cognitive decline. Empirical evidence of exercise-induced cognitive enhancement, however, has not been conclusive, possibly due to short intervention times in clinical trials. Resting-state functional connectivity (RSFC) has been proposed asan early indicator for intervention-induced changes. Here, we conducted a study in which healthy older overweight subjects took either part in a moderate aerobic exercise program over 6months (AE group; n=11) or control condition of non-aerobic stretching and toning (NAE group; n=18). While cognitive and gray matter volume changes were rather small (i.e., appeared only in certain sub-scores without Bonferroni correction for multiple comparisons or using small volume correction), we found significantly increased RSFC after training between dorsolateral prefrontal cortex and superior parietal gyrus/precuneus in the AE compared to the NAE group. This intervention study demonstrates an exercise-induced modulation of RSFC between key structures of the executive control and default mode networks, which might mediate an interaction between task-positive and task-negative brain activation required for task switching. Results further emphasize the value of RSFC asa sensitive biomarker for detecting early intervention-related cognitive improvements in clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evidence-Based Exercise Recommendations to Reduce Hepatic Fat Content in Youth- a Systematic Review and Meta-Analysis.

    PubMed

    Medrano, María; Cadenas-Sanchez, Cristina; Álvarez-Bueno, Celia; Cavero-Redondo, Iván; Ruiz, Jonatan R; Ortega, Francisco B; Labayen, Idoia

    2018-02-13

    The main purposes of this study were to elucidate the effects of supervised-exercise training (ET) interventions on hepatic fat content and on non-alcoholic fatty liver disease (NAFLD) prevalence in children and adolescents and to provide information about the optimal ET prescription (type, intensity, volume, and frequency) needed to reduce hepatic fat content in youths. Supervised-ET interventions performed in children and adolescents (6-19 years) that provided results of exercise effects on hepatic fat content or NAFLD prevalence were included. Supervised-exercise significantly reduced hepatic fat content compared to the control groups. Lifestyle interventions that included supervised-ET significantly reduced the prevalence of NAFLD. This systematic review and meta-analysis shows that supervised-ET could be an effective strategy in the management and prevention of NAFLD in children and adolescents. Both aerobic and resistance ET, at vigorous or moderate-to-vigorous intensities, with a volume ≥60 min/session and a frequency ≥3 sessions/week, aiming to improve cardiorespiratory fitness and muscular strength, had benefits on hepatic fat content reduction in youth. These data concur with the international recommendations of physical activity for health promotion in youth and may be useful when designing ET programs to improve and prevent hepatic steatosis in the pediatric population. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  10. A Single Session of Low-Volume High-Intensity Interval Exercise Reduces Ambulatory Blood Pressure in Normotensive Men.

    PubMed

    Dantas, Teresa C B; Farias Junior, Luiz F; Frazão, Danniel T; Silva, Paulo H M; Sousa Junior, Altieres E; Costa, Ingrid B B; Ritti-Dias, Raphael M; Forjaz, Cláudia L M; Duhamel, Todd A; Costa, Eduardo C

    2017-08-01

    Dantas, TCB, Farias Junior, LF, Frazão, DT, Silva, PHM, Sousa Junior, AE, Costa, IBB, Ritti-Dias, RM, Forjaz, CLM, Duhamel, TA, and Costa, EC. A single session of low-volume high-intensity interval exercise reduces ambulatory blood pressure in normotensive men. J Strength Cond Res 31(8): 2263-2269, 2017-The magnitude and duration of postexercise hypotension (PEH) may provide valuable information on the efficacy of an exercise approach to blood pressure (BP) control. We investigated the acute effect of a time-efficient high-intensity interval exercise (HIIE) on ambulatory BP. Twenty-one normotensive men (23.6 ± 3.6 years) completed 2 experimental sessions in a randomized order: (a) control (no exercise) and (b) low-volume HIIE: 10 × 1 minute at 100% of maximal treadmill velocity interspersed with 1 minute of recovery. After each experimental session, an ambulatory BP monitoring was initiated. Paired sample t-test was used to compare BP averages for awake, asleep, and 20-hour periods between the control and the low-volume HIIE sessions. A 2-way repeated measures analysis of variance was used to analyze hourly BP after both experimental sessions. Blood pressure averages during the awake (systolic: 118 ± 6 vs. 122 ± 6 mm Hg; diastolic: 65 ± 7 vs. 67 ± 7 mm Hg) and 20-hour (systolic: 115 ± 7 vs. 118 ± 6 mm Hg; diastolic: 62 ± 7 vs. 64 ± 7 mm Hg) periods were lower after the low-volume HIIE compared with the control (p ≤ 0.05). Systolic and diastolic PEH presented medium (Cohen's d = 0.50-0.67) and small (Cohen's d = 0.29) effect sizes, respectively. Systolic PEH occurred in a greater magnitude during the first 5 hours (3-5 mm Hg). No changes were found in asleep BP (p > 0.05). In conclusion, a single session of low-volume HIIE reduced ambulatory BP in normotensive men. The PEH occurred mainly in systolic BP during the first 5 hours postexercise.

  11. Exercise beliefs and behaviours of individuals with Joint Hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type.

    PubMed

    Simmonds, Jane V; Herbland, Anthony; Hakim, Alan; Ninis, Nelly; Lever, William; Aziz, Qasim; Cairns, Mindy

    2017-11-10

    To explore exercise beliefs and behaviours of individuals with Joint Hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type and to explore patient experiences of physiotherapy. A cross sectional questionnaire survey design was used to collect quantitative and qualitative data from adult members of the Hypermobility Syndromes Association and Ehlers-Danlos Syndrome Support UK. Descriptive and inferential statistics were used to analyse the data. Qualitative data was analysed thematically. 946 questionnaires were returned and analysed. Participants who received exercise advice from a physiotherapist were 1.75 more likely to report high volumes of weekly exercise (odds ratio [OR] = 1.75, 95% confidence interval [CI] = 1.30-2.36, p < 0.001) than those with no advice. Participants who believed that exercise is important for long-term management were 2.76 times more likely to report a high volume of weekly exercise compared to the participants who did not hold this belief (OR = 2.76, 95% CI = 1.38-5.50, p = 0.004). Three themes emerged regarding experience of physiotherapy; physiotherapist as a partner, communication - knowledge, experience and safety. Pain, fatigue and fear are common barriers to exercise. Advice from a physiotherapist and beliefs about the benefits of exercise influenced the reported exercise behaviours of individuals with Ehlers-Danlos syndrome - hypermobility type in this survey. Implications for rehabilitation Exercise is a cornerstone of treatment for Ehlers-Danlos syndrome/Ehlers-Danlos syndrome - hypermobility type. Pain, fatigue and fear of injury are frequently reported barriers to exercise. Advice from physiotherapists may significantly influence exercise behaviour. Physiotherapists with condition specific knowledge and good verbal and non-verbal communication facilitate a positive therapeutic experience.

  12. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    ERIC Educational Resources Information Center

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  13. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  14. Crew Exercise

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  15. The effect of habitual waterpipe tobacco smoking on pulmonary function and exercise capacity in young healthy males: A pilot study.

    PubMed

    Hawari, F I; Obeidat, N A; Ghonimat, I M; Ayub, H S; Dawahreh, S S

    2017-01-01

    Evidence regarding the health effects of habitual waterpipe smoking is limited, particularly in young smokers. Respiratory health and cardiopulmonary exercise tests were compared in young male habitual waterpipe smokers (WPS) versus non-smokers. 69 WPS (≥3 times/week for three years) and 69 non-smokers were studied. Respiratory health was assessed through the American Thoracic Society and the Division of Lung Diseases (ATS-DLD-78) adult questionnaire. Pulmonary function and cardiopulmonary exercise tests were performed. Self-reported respiratory symptoms, forced expiratory volume in first second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC ratio, forced expiratory flow between 25 and 75% of FVC (FEF 25-75% ), peak expiratory flow (PEF), exercise time, peak end-tidal CO 2 tension (PetCO 2 ), subject-reported leg fatigue and dyspnea; peak O 2 uptake (VO 2 max), and end-expiratory lung volume (EELV) change from baseline (at peak exercise) were measured. WPS were more likely than non-smokers to report respiratory symptoms. WPS also demonstrated: shorter exercise time; lower peak VO 2 ; higher perceived dyspnea at mid-exercise; lower values of the following: FEV 1 , FVC, PEF, and EELV change. Habitual waterpipe tobacco smoking in young seemingly healthy individuals is associated with a greater burden of respiratory symptoms and impaired exercise capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparative Effectiveness of Low-Volume Time-Efficient Resistance Training Versus Endurance Training in Patients With Heart Failure.

    PubMed

    Munch, Gregers Winding; Rosenmeier, Jaya Birgitte; Petersen, Morten; Rinnov, Anders Rasmussen; Iepsen, Ulrik Winning; Pedersen, Bente Klarlund; Mortensen, Stefan Peter

    2018-05-01

    Cardiorespiratory fitness is positively related to heart failure (HF) prognosis, but lack of time and low energy are barriers for adherence to exercise. We, therefore, compared the effect of low-volume time-based resistance exercise training (TRE) with aerobic moderate-intensity cycling (AMC) on maximal and submaximal exercise capacity, health-related quality of life, and vascular function. Twenty-eight HF patients (New York Heart Association class I-II) performed AMC (n = 14) or TRE (n = 14). Maximal and submaximal exercise capacity, health-related quality of life, and vascular function were evaluated before and after a 6-wk training intervention with 3 training sessions per week. The AMC group and the TRE group trained for 45 and 25 min per training session, respectively. During the training sessions, the TRE and AMC groups trained at 60 ± 4% and 59 ± 2% (mean ± standard deviation) of (Equation is included in full-text article.)O2peak, respectively. The energy expenditure was significantly greater in AMC than in TRE (P < .05). The (Equation is included in full-text article.)O2peak and Wattpeak increased in AMC group (P < .001) and TRE group (P = .001), with no differences between groups. Six-minute walk distance also increased in both groups (AMC, P = .006 and TRE, P = .036), with no difference between groups. Health-related quality of life improved equally in the 2 groups, whereas vascular function did not change in either group. These results demonstrate that AMC and TRE equally improved exercise capacity and health-related quality of life in lower New York Heart Association-stage HF patients, despite less time required as well as lower energy expenditure during TRE than during AMC. Therefore, TRE might represent a time-efficient exercise modality for improving adherence to exercise in patients with class I-II HF.

  17. Differences in muscle strength after ACL reconstruction do not influence cardiorespiratory responses to isometabolic exercise

    PubMed Central

    Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.

    2014-01-01

    Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral perfusion capacities that could elicit higher levels of peripheral cardiorepiratory stimulus during exercise. PMID:24838811

  18. Early Childhood Policy Focus: Healthy Eating and Physical Activity. Early Childhood Highlights. Volume 2, Issue 3

    ERIC Educational Resources Information Center

    Murphey, David; Mackintosh, Bonnie; McCoy-Roth, Marci

    2011-01-01

    The importance of good nutrition and exercise is well known, and parents have long worried about their children's diets and envied their high energy levels. Like so many life style habits, patterns of nutrition and exercise behaviors are typically established in early childhood. Poor diet and lack of exercise contribute to obesity, which has been…

  19. Nutrition and exercise in the management of liver cirrhosis

    PubMed Central

    Toshikuni, Nobuyuki; Arisawa, Tomiyasu; Tsutsumi, Mikihiro

    2014-01-01

    Liver cirrhosis (LC) patients often have protein-energy malnutrition (PEM) and decreased physical activity. These conditions often lead to sarcopenia, which is the loss of skeletal muscle volume and increased muscle weakness. Recent studies have demonstrated that PEM and sarcopenia are predictors for poor survival in LC patients. Nutrition and exercise management can improve PEM and sarcopenia in those patients. Nutrition management includes sufficient dietary intake and improved nutrient metabolism. With the current high prevalence of obesity, the number of obese LC patients has increased, and restriction of excessive caloric intake without the exacerbation of impaired nutrient metabolism is required for such patients. Branched chain amino acids are good candidates for supplemental nutrients for both obese and non-obese LC patients. Exercise management can increase skeletal muscle volume and strength and improve insulin resistance; however, nutritional status and LC complications should be assessed before an exercise management regimen is implemented in LC patients. The establishment of optimal exercise regimens for LC patients is currently required. In this review, we describe nutritional status and its clinical impact on the outcomes of LC patients and discuss general nutrition and exercise management in LC patients. PMID:24966599

  20. Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training

    PubMed Central

    Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza

    2013-01-01

    Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762

  1. Exercise countermeasures for spaceflight.

    PubMed

    Convertino, V A; Sandler, H

    1995-01-01

    The authors present a physiological basis for the use of exercise as a weightlessness countermeasure, outline special considerations for the development of exercise countermeasures, review and evaluate exercise used during space flight, and provide new approaches and concepts for the implementation of novel exercise countermeasures for future space flight. The discussion of the physiological basis for countermeasures examines maximal oxygen uptake, blood volume, metabolic responses to work, muscle function, bone loss, and orthostatic instability. The discussion of considerations for exercise prescriptions during space flight includes operational considerations, type of exercise, fitness considerations, age and gender, and psychological considerations. The discussion of exercise currently used in space flight examines cycle ergometry, the treadmill, strength training devices, electrical stimulation, and the Penguin suit worn by Russian crews. New approaches to exercise countermeasures include twin bicycles, dynamic resistance exercisers, maximal exercise effects, grasim (gravity simulators), and the relationship between exercise and LBNP.

  2. Limited Ventricular Preload is the Main Reason for Reduced Stress Reserve After Atrial Baffle Repair.

    PubMed

    Eicken, Andreas; Michel, Julia; Hager, Alfred; Tanase, Daniel; Kaemmerer, Harald; Cleuziou, Julie; Hess, John; Ewert, Peter

    2017-02-01

    The atrial baffle repair (ABR) significantly improved the fate of patients with transposition of the great arteries (TGA). However, these patients show impaired exercise tolerance and some present severe decline of systemic ventricular function. Intrinsic myocardial weakness, low heart rate response to exercise and diastolic filling impairment are discussed to be causative. Forty-nine long-term survivors with TGA (median age 23.7 year) after ABR were catheterized with measured oxygen consumption in four conditions (baseline, volume, atrial pacing, dobutamine) and the results were compared to 10 normal controls. Median cardiac output was significantly lower in the ABR group (2.2 vs. 2.6 l/min/m 2 ; p = 0.015), and systemic resistance was significantly elevated (28.9 vs. 22.2 U m 2 ; p = 0.04) in comparison with normals. While stroke volume rose by 27% in the control group, it dropped by 7% in patients after ABR at atrial pacing (80/min). Stroke volume increase after dobutamine was significantly lower after ABR in comparison with normal controls (34 vs. 106%; p = 0.001). Higher NYHA class (p = 0.043), degree of tricuspid regurgitation (p = 0.009) and ventricular function (p = 0.028) were associated with lower stroke volume increase. Limited exercise capability of patients after ABR for TGA is primarily due to limited diastolic filling of the ventricles due to stiff non-compliant atrial pathways. Elevated systemic resistance may lead to severe myocardial hypertrophy with possible ischemia and contribute to the multifactorial decline of ventricular function in some patients.

  3. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    NASA Astrophysics Data System (ADS)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  4. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  5. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  6. The effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients.

    PubMed

    Lee, Dong-Kyu; Kim, Se-Hun

    2018-05-01

    [Purpose] This study aims to identify the effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. [Subjects and Methods] The study included 24 chronic stroke patients who were randomly assigned, 12 each, to the experimental and control groups, and received neurodevelopmental treatment. Moreover, the experimental group underwent respiratory exercise. In each patient, the trunk control was measured using the Trunk Impairment Scale (TIS); muscle activity of the trunk, through the surface electromyogram; and pulmonary function, using the pneumatometer. [Results] The intragroup comparison showed significant differences in TIS, Forced vital capacity (FVC), Forced expiratory volume at one second (FEV1), Rectus Abdominis (RA), Internal Oblique (IO) and External Oblique (EO) in the experimental group. The intergroup comparison showed that the differences in TIS, FVC, FEV1, RA, IO and EO within the experimental group appeared significant relative to the control group. [Conclusion] Based on these results, this study proved that respiratory exercise was effective in improving trunk control, pulmonary function, and trunk muscle activity in patients with chronic stroke.

  7. Relation of N-Terminal Pro-B-Type Natriuretic Peptide and Left Ventricular Diastolic Function to Exercise Tolerance in Patients With Significant Valvular Heart Disease and Normal Left Ventricular Systolic Function.

    PubMed

    Hwang, Ji-Won; Park, Sung-Ji; Cho, Eun Jeong; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo

    2017-06-01

    An association between N-terminal prohormone brain natriuretic peptide (NT-proBNP) and exercise tolerance in patients with valvular heart disease (VHD) has been suggested; however, there are few data available regarding this relation. The aim of this study is to evaluate the correlation between exercise tolerance and NT-proBNP in patients with asymptomatic or mildly symptomatic significant VHD and normal left ventricular ejection fraction (LV EF). A total of 96 patients with asymptomatic or mildly symptomatic VHD and normal LV EF (≥50%) underwent cardiopulmonary exercise echocardiography. NT-proBNP levels were determined at baseline and after exercise in 3 hours. Patients were divided in 2 groups based on lower (<26 ml/kg/min, n = 47) or higher (≥26 ml/kg/min, n = 49) peak oxygen consumption (VO 2 ) as a representation of exercise tolerance. In the 2 groups, after adjusting for age and gender, the NT-proBNP level after exercise in 3 hours, left atrial volume index before exercise, right ventricular systolic pressure before exercise, E velocity after exercise, and E/e' ratio after exercise varied significantly. In addition, peak VO 2 was inversely related to NT-proBNP before (r = -0.352, p <0.001) and after exercise (r = -0.351, p <0.001). The NT-proBNP level before exercise was directly related to the left atrial volume index, E/e' ratio, and right ventricular systolic pressure before and after exercise. NT-proBNP after exercise was also directly related to the same parameters. NT-proBNP levels both before and after exercise were higher in the group with lower exercise tolerance. In conclusion, through the correlation among exercise tolerance, NT-proBNP, and parameters of diastolic dysfunction, we demonstrated that diastolic dysfunction and NT-proBNP could predict exercise tolerance in patients with significant VHD and normal LV EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Baduanjin Exercise Prevents post-Myocardial Infarction Left Ventricular Remodeling (BE-PREMIER trial): Design and Rationale of a Pragmatic Randomized Controlled Trial.

    PubMed

    Mao, Shuai; Zhang, Xiaoxuan; Shao, Biying; Hu, Xiyan; Hu, Yanan; Li, Winny; Guo, Liheng; Zhang, Minzhou

    2016-06-01

    Left ventricular (LV) remodeling following myocardial infarction (MI) is an established prognostic factor for adverse cardiovascular events and the leading cause of heart failure. Empirical observations have suggested that Baduanjin exercise, an important component of traditional Chinese Qigong, may exert potential benefits on cardiopulmonary function. However, the impact of a Baduanjin exercise-based cardiac rehabilitation program for patients recovering from a recent MI has yet to be assessed. The aim of this trial is to evaluate the potential role of Baduanjin exercise in preventing the maladaptive progression to adverse LV remodeling in patients post-MI. A total of 110 clinically stable patients following an MI after undergoing successful infarct-related artery reperfusion will be randomly assigned to the Baduanjin exercise group or usual exercise control group. In addition to usual physical activity, participants in the Baduanjin exercise group will participate in a 45 min Baduanjin exercise training session twice a week, for a total of 12 weeks. The primary endpoint will be the percentage change in LV end-diastolic volume index (LVEDVi) assessed using echocardiography from baseline to 6 months. The results of this study may provide novel evidence on the efficacy of Baduanjin exercise therapy in post-MI patients in reversing adverse LV remodeling and improving clinical outcome. Clinical Trials.gov: NCT02693795.

  9. The influence of continuous versus interval walking exercise on knee joint loading and pain in patients with knee osteoarthritis.

    PubMed

    Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R

    2017-07-01

    To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.

  10. A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology.

    PubMed

    Fairman, Ciaran M; Zourdos, Michael C; Helms, Eric R; Focht, Brian C

    2017-08-01

    To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.

  11. Urinary Incontinence and Levels of Regular Physical Exercise in Young Women.

    PubMed

    Da Roza, T; Brandão, S; Mascarenhas, T; Jorge, R N; Duarte, J A

    2015-08-01

    The purpose of this study was to determine the influence of different levels of regular physical exercise on the frequency of urinary incontinence in young nulliparous women from the northern region of Portugal. Participants (n=386) self-reported demographic variables, frequency, and time spent practicing organized exercise per week, as well as completed the International Consultation on Incontinence Questionnaire-Short Form. The level of exercise was calculated based on the time (in minutes) usually spent per week in organized exercise. 19.9% of Portuguese nulliparous women reported incontinence symptoms. Considering the distribution of urinary incontinence among the different quartiles of organized exercise, women from the 4(th)quartile (those who train for competitive purposes) demonstrated highest relative frequency (p=0.000) and a 2.53 greater relative risk to develop (95% CIs,1.3-2.7) incontinence compared to women from the 1(st) quartile (inactive). Women who practice exercise for recreational purposes (2(nd) and 3(rd) quartiles) did not show significant differences in the urinary incontinence prevalence and relative risk of developing it compared to women from the 1(st) quartile. The results showed that women participating in organized exercise involving high volume training for competition are potentially at risk of developing urinary incontinence, although organized exercise undertaken without the intent to compete seems to be safe for maintaining urinary continence. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.; Sawin, C. F.

    1975-01-01

    The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.

  13. A nutrition and conditioning intervention for natural bodybuilding contest preparation: observations and suggestions.

    PubMed

    Gentil, Paulo

    2015-01-01

    Bodybuilding is full of myths and practices that are contrary to the scientific literature, which can lead to health problems. Adopting a scientifically designed approach is very important, as it may help bodybuilders to achieve better results while preserving their health. However, I have some criticism regarding some practices adopted in the referred article as ad libitum ingestion of sugar-free cordial and flavored tea and the performance of the exercise in fasted state, as it seems to bring no benefit and have some potential problems. Some suggestion are made in order to preserve FFM, like changing training split and exercise selection; increasing carbohydrate ingestion and decreasing protein intake; changing the resistance training stimuli and reducing the volume of aerobic exercises and increase its intensity.

  14. The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review.

    PubMed

    Li, Mo-Yi; Huang, Mao-Mao; Li, Shu-Zhen; Tao, Jing; Zheng, Guo-Hua; Chen, Li-Dian

    2017-07-01

    Physical activity may play a role in both the prevention and slowing of brain volume loss and may be beneficial in terms of improving the functional connectivity of brain regions. But much less is known about the potential benefit of aerobic exercise for the structure and function of the default mode network (DMN) brain regions. This systematic review examines the effects of aerobic exercise on the structure and function of DMN brain regions in human adulthood. Seven electronic databases were searched for prospective controlled studies published up to April 2015. The quality of the selected studies was evaluated with the Cochrane Collaboration's tool for assessing the risk of bias. RevMan 5.3 software was applied for data analysis. Finally, 14 studies with 631 participants were identified. Meta-analysis revealed that aerobic exercise could significantly increase right hippocampal volume (SMD = 0.26, 95% CI 0.01-0.51, p = 0.04, I 2 = 7%, 4 studies), and trends of similar effects were observed in the total (SMD = 0.12, 95% CI -0.17 to 0.41, p = 0.43, I 2 = 0%, 5 studies), left (SMD = 0.12, 95% CI -0.13 to 0.37, p = 0.33, I 2 = 14%, 4 studies), left anterior (SMD = 0.12, 95% CI -0.16 to 0.40, p = 0.41, I 2 = 74%, 2 studies) and right anterior (SMD = 0.10, 95% CI -0.17 to 0.38, p = 0.46, I 2 = 76%, 4 studies) hippocampal volumes compared to the no-exercise interventions. A few studies reported that relative to no-exercise interventions, aerobic exercise could significantly decrease the atrophy of the medial temporal lobe, slow the anterior cingulate cortex (ACC) volume loss, increase functional connectivity within the hippocampus and improve signal activation in the cingulate gyrus and ACC. The current review suggests that aerobic exercise may have positive effects on the right hippocampus and potentially beneficial effects on the overall and other parts of the hippocampus, the cingulate cortex and the medial temporal areas of the DMN. Moreover, aerobic exercise may increase functional connectivity or activation in the hippocampus, cingulate cortex and parahippocampal gyrus regions of the DMN. However, considering the quantity and limitations of the included studies, the conclusion could not be drawn so far. Additional randomized controlled trials (RCTs) with rigorous designs and longer intervention periods are needed in the future.

  15. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II.

    PubMed

    Vanhees, L; Geladas, N; Hansen, D; Kouidi, E; Niebauer, J; Reiner, Z; Cornelissen, V; Adamopoulos, S; Prescott, E; Börjesson, M; Bjarnason-Wehrens, B; Björnstad, H H; Cohen-Solal, A; Conraads, V; Corrado, D; De Sutter, J; Doherty, P; Doyle, F; Dugmore, D; Ellingsen, Ø; Fagard, R; Giada, F; Gielen, S; Hager, A; Halle, M; Heidbüchel, H; Jegier, A; Mazic, S; McGee, H; Mellwig, K P; Mendes, M; Mezzani, A; Pattyn, N; Pelliccia, A; Piepoli, M; Rauch, B; Schmidt-Trucksäss, A; Takken, T; van Buuren, F; Vanuzzo, D

    2012-10-01

    In a previous paper, as the first of a series of three on the importance of characteristics and modalities of physical activity (PA) and exercise in the management of cardiovascular health within the general population, we concluded that, in the population at large, PA and aerobic exercise capacity clearly are inversely associated with increased cardiovascular disease risk and all-cause and cardiovascular mortality and that a dose–response curve on cardiovascular outcome has been demonstrated in most studies. More and more evidence is accumulated that engaging in regular PA and exercise interventions are essential components for reducing the severity of cardiovascular risk factors, such as obesity and abdominal fat, high BP, metabolic risk factors, and systemic inflammation. However, it is less clear whether and which type of PA and exercise intervention (aerobic exercise, dynamic resistive exercise, or both) or characteristic of exercise (frequency, intensity, time or duration, and volume) would yield more benefit for each separate risk factor. The present paper, therefore, will review and make recommendations for PA and exercise training in the management of cardiovascular health in individuals with cardiovascular risk factors. The guidance offered in this series of papers is aimed at medical doctors, health practitioners, kinesiologists, physiotherapists and exercise physiologists, politicians, public health policy makers, and individual members of the public. Based on previous and the current literature overviews, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding type, volume, and intensity of PA and regarding appropriate risk evaluation during exercise in individuals with cardiovascular risk factors.

  16. Beetroot-based gel supplementation improves handgrip strength, forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes.

    PubMed

    de Oliveira, Gustavo Vieira; Nascimento, Luiz; Volino-Souza, Mônica; Mesquita, Jacilene; Alvares, Thiago

    2018-03-22

    The ergogenic effect of beetroot on the exercise performance of trained cyclists, runners, kayakers, and swimmers has been demonstrated. However, whether or not beetroot supplementation presents a beneficial effect on the exercise performance of jiu-jitsu athletes (JJA) remains inconclusive. Therefore, present study assessed the effect of beetroot-based gel (BG) supplementation on maximal voluntary contraction (MVC), exercise time until fatigue (ETF), muscle O2 saturation (SmO2), blood volume (tHb), and plasma nitrate and lactate in response to handgrip isotonic exercise (HIE) in JJA. In a randomized, crossover, double-blind design, 12 JJA performed three sets of HIE at 40% of the MVC until fatigue after 8 days (8th dose was offered 120 min previous exercise) of BG supplementation or a nitrate-depleted gel (PLA), and forearm SmO2 and tHb were continuously monitored by using near-infrared spectroscopy. Blood samples were taken before, immediately after exercise, and 20 min after exercise recovery in PLA and BG condition. MVC was evaluated at baseline and 20 min after HIE. There was a significant reduction in ∆MVC decline after HIE in BG condition. Forearm SmO2 during exercise recovery was significantly greater only after BG supplementation. No significant difference in ETF and tHb were observed between both BG and PLA in response to HIE. Plasma nitrate increased only after BG, whereas the exercise-induced increase in plasma lactate was significantly lower in BG when compared to PLA. In conclusion, BG supplementation may be a good nutritional strategy to improve forearm SmO2 and prevent force decline in response to exercise in JJA.

  17. Effects of β-Hydroxy-β-methylbutyrate Free Acid Ingestion and Resistance Exercise on the Acute Endocrine Response

    PubMed Central

    Townsend, Jeremy R.; Hoffman, Jay R.; Gonzalez, Adam M.; Jajtner, Adam R.; Boone, Carleigh H.; Robinson, Edward H.; Mangine, Gerald T.; Wells, Adam J.; Fragala, Maren S.; Fukuda, David H.; Stout, Jeffrey R.

    2015-01-01

    Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation. PMID:25792982

  18. Current ISS Exercise Countermeasures: Where are we now?

    NASA Technical Reports Server (NTRS)

    Hayes, J. C.; Loerch, L.; Davis-Street, J.; Haralson, Cortni; Sams, C.

    2006-01-01

    Current International Space Station (ISS) crew schedules include 1.5 h/d for completion of resistive exercise and 1 h/d of aerobic exercise , 6 d/wk. While ISS post flight decrements in muscle strength, bone m ineral density, and aerobic capacity improved in some crewmembers, de conditioning was still evident even with this volume of exercise. Res ults from early ISS expeditions show maximum loss in bone mineral density of the lumbar spine and pelvis in excess of 1.5% per month, with all crewmembers demonstrating significant bone loss in one or more re gions. Similarly, post flight muscle strength losses in the hamstring and quadriceps muscle groups exceeded 30% in the immediate post miss ion period in some crewmembers. Measures of aerobic capacity early in the mission show average decrements of 15%, but with onboard aerobic exercise capability, the crew has been able to "train up" over the co urse of the mission. These findings are highly variable among crewmem bers and appear to be correlated with availability and reliability of the inflight resistive exercise device (RED), cycle ergometer, and t readmill. This suite of hardware was installed on ISS with limited op erational evaluation in groundbased test beds. As a result, onorbit hardware constraints have resulted in inadequate physical stimulus, d econditioning, and increased risk for compromised performance during intra and extravehicular activities. These issues indicate that the c urrent ISS Countermeasures System reliability or validity are not ade quate for extendedduration exploration missions. Learning Objective: A better understanding of the status of ISS exercise countermeasures , their ability to protect physiologic systems, and recommendations for exploration exercise countermeasures.

  19. Electrolyte and Plasma Changes After Ingestion of Pickle Juice, Water, and a Common Carbohydrate-Electrolyte Solution

    PubMed Central

    Miller, Kevin C.; Mack, Gary; Knight, Kenneth L.

    2009-01-01

    Abstract Context: Health care professionals advocate that athletes who are susceptible to exercise-associated muscle cramps (EAMCs) should moderately increase their fluid and electrolyte intake by drinking sport drinks. Some clinicians have also claimed drinking small volumes of pickle juice effectively relieves acute EAMCs, often alleviating them within 35 seconds. Others fear ingesting pickle juice will enhance dehydration-induced hypertonicity, thereby prolonging dehydration. Objective: To determine if ingesting small quantities of pickle juice, a carbohydrate-electrolyte (CHO-e) drink, or water increases plasma electrolytes or other selected plasma variables. Design: Crossover study. Setting: Exercise physiology laboratory. Patients or Other Participants: Nine euhydrated, healthy men (age  =  25 ± 2 years, height  =  179.4 ± 7.2 cm, mass  =  86.3 ± 15.9 kg) completed the study. Intervention(s): Resting blood samples were collected preingestion (−0.5 minutes); immediately postingestion (0 minutes); and at 1, 5, 10, 15, 20, 25, 30, 45, and 60 minutes postingestion of 1 mL/kg body mass of pickle juice, CHO-e drink, or tap water. Main Outcome Measure(s): Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume were analyzed. Urine specific gravity, osmolality, and volume were also measured to characterize hydration status. Results: Mean fluid intake was 86.3 ± 16.7 mL. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma osmolality, and plasma volume did not change during the 60 minutes after ingestion of each fluid (P ≥ .05). Water ingestion slightly decreased plasma potassium concentration at 60 minutes (0.21 ± 0.14 mg/dL [0.21 ± 0.14 mmol/L]; P ≤ .05). Conclusions: At these volumes, ingestion of pickle juice and CHO-e drink did not cause substantial changes in plasma electrolyte concentrations, plasma osmolality, or plasma volume in rested, euhydrated men. Concern that ingesting these volumes of pickle juice might exacerbate an athlete's risk of dehydration-induced hypertonicity may be unwarranted. If EAMCs are caused by large electrolyte loss due to sweating, these volumes of pickle juice or CHO-e drink are unlikely to restore any deficit incurred by exercise. PMID:19771282

  20. Are Older Adults Who Volunteer to Participate in an Exercise Study Fitter and Healthier than Non-Volunteers? The participation bias of the study population.

    PubMed

    de Souto Barreto, Philipe; Ferrandez, Anne-Marie; Saliba-Serre, Bérengère

    2012-07-09

    BACKGROUND: Participation bias in exercise studies is poorly understood among older adults. This study was aimed at looking into whether older persons who volunteer to participate in an exercise study differ from non-volunteers. METHODS: A self-reported questionnaire on physical activity and general health was mailed out to 1000 persons, aged 60 or over, who were covered by the medical insurance of the French National Education System. Among them, 535 answered it and sent it back. Two hundred and thirty-three persons (age 69.7 ±7.6, 65.7% women) said they would volunteer to participate in an exercise study and 270 (age 71.7 ±8.8, 62.2% women) did not. RESULTS: Volunteers were younger and more educated than non-volunteers, but they did not differ in sex. They had less physical function decline and higher volumes of physical activity than non-volunteers. Compared to volunteers, non-volunteers had a worse self-reported health and suffered more frequently from chronic pain. Multiple logistic regressions showed that good self-reported health, absence of chronic pain, and lower levels of physical function decline were associated with volunteering to participate in an exercise study. CONCLUSIONS: Volunteers were fitter and healthier than non-volunteers. Therefore, caution must be taken when generalizing the results of exercise intervention studies.

  1. High intensity training in obesity: a Meta‐analysis

    PubMed Central

    Theel, W.; Kasteleyn, M. J.; Franssen, F. M. E.; Hiemstra, P. S.; Rudolphus, A.; Taube, C.; Braunstahl, G. J.

    2017-01-01

    Summary Introduction High Intensity training (HIT) is a time‐effective alternative to traditional exercise programs in adults with obesity, but the superiority in terms of improving cardiopulmonary fitness and weight loss has not been demonstrated. Objective to determine the effectiveness of HIT on cardiopulmonary fitness and body composition in adults with obesity compared to traditional (high volume continuous) exercise. Methods A systematic search of the main health science databases was conducted for randomized controlled trials comparing HIT with traditional forms of exercise in people with obesity. Eighteen studies were included in the meta‐analysis. The (unstandardized) mean difference of each outcome parameters was calculated and pooled with the random effects model. Results HIT resulted in greater improvement of cardiopulmonary fitness (VO2max) (MD 1.83, 95% CI 0.70, 2.96, p<0.005; I2=31%) and a greater reduction of %body fat (MD ‐1.69, 95% CI ‐3.10, ‐0.27, p=0.02, I2=30%) compared to traditional exercise. Overall effect for BMI was not different between HIT and traditional exercise. Conclusion Training at high intensity is superior to improve cardiopulmonary fitness and to reduce %body fat in adults with obesity compared to traditional exercise. Future studies are needed to design specific HIT programs for the obese with regard to optimal effect and long‐term adherence. PMID:29071102

  2. The Influence of Short-Term Scoliosis-Specific Exercise Rehabilitation on Pulmonary Function in Patients with AIS.

    PubMed

    Moramarco, Marc; Fadzan, Maja; Moramarco, Kathryn; Heller, Amy; Righter, Sonia

    2016-01-01

    To investigate the short-term outcomes of treatment utilizing an outpatient scoliosis- specific back school program in thirty-six patients with adolescent idiopathic scoliosis (AIS). Improved signs and symptoms of AIS have been reported in response to curve-patternspecific exercise therapy programs. Additional outcome studies are needed. Thirty-six patients with adolescent idiopathic scoliosis (AIS), 33 females and 3 males, completed a twenty-hour multimodal exercise program (Schroth Best Practice® - SBP) for five to seven days at Scoliosis 3DC(SM). Average age was 13.89 years and average Cobb angles were 36.92° thoracic and 33.92° lumbar. The sample was comprised of patients under treatment from August 2011 to February 2015 who never had scoliosis-related surgery and who were not undergoing brace treatment. SBP program components included physio-logic® exercises, mobilizations, activities of daily living (ADLs), 3-D Made Easy®, and Schroth exercises. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), chest expansion (CE), and angle of trunk rotation (ATR) were clinical parameters used to evaluate results of this outpatient scoliosis-specific exercise program. Highly significant improvements were noted in FVC, FEV1, CE and Scoliometer(TM) readings. A short-term outpatient SBP program was found to have a positive influence on FVC, FEV1, ATR, and CE. We will present long-term results in a subsequent study.

  3. Exercise modality modulates body temperature regulation during exercise in uncompensable heat stress.

    PubMed

    Schlader, Zachary J; Raman, Aaron; Morton, R Hugh; Stannard, Stephen R; Mündel, Toby

    2011-05-01

    This study evaluated exercise modality [i.e. self-paced (SP) or fixed-intensity (FI) exercise] as a modulator of body temperature regulation under uncompensable heat stress. Eight well-trained male cyclists completed (work-matched) FI and SP cycling exercise bouts in a hot (40.6 ± 0.2°C) and dry (relative humidity 23 ± 3%) environment estimated to elicit 70% of [Formula: see text]O(2)max. Exercise intensity (i.e. power output) decreased over time in SP, which resulted in longer exercise duration (FI 20.3 ± 3.4 min, SP 23.2 ± 4.1 min). According to the heat strain index, the modification of exercise intensity in SP improved the compensability of the thermal environment which, relative to FI, was likely a result of the reductions in metabolic heat production (i.e. [Formula: see text]O(2)). Consequently, the rate of rise in core body temperature was higher in FI (0.108 ± 0.020°C/min) than in SP (0.082 ± 0.016°C/min). Interestingly, cardiac output, stroke volume, and heart rate during exercise were independent of exercise modality. However, core body temperature (FI 39.4 ± 0.3°C, SP 39.1 ± 0.4°C), blood lactate (FI 2.9 ± 0.8 mmol/L, SP 2.3 ± 0.7 mmol/L), perceived exertion (FI 18 ± 2, SP 16 ± 2), and physiological strain (FI 9.1 ± 0.9, SP 8.3 ± 1.1) were all higher in FI compared to SP at exhaustion/completion. These findings indicate that, when exercise is SP, behavioral modification of metabolic heat production improves the compensability of the thermal environment and reduces thermoregulatory strain. Therefore, under uncompensable heat stress, exercise modality modulates body temperature regulation.

  4. Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery

    PubMed Central

    Chandra, Divay; Lipson, David A.; Hoffman, Eric A.; Hansen-Flaschen, John; Sciurba, Frank C.; DeCamp, Malcolm M.; Reilly, John J.; Washko, George R.

    2010-01-01

    Rationale: It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). Objectives: To study the role of perfusion scintigraphy in patient selection for LVRS. Methods: We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non–high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non–upper lobe–predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Measurements and Main Results: Among 284 of 1,045 patients with upper lobe–predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe–predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non–upper lobe–predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Conclusions: Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe–predominant emphysema when there is low rather than high perfusion to the upper lung. PMID:20538961

  5. Comparison of reduction of edema after rest and after muscle exercises in treatment of chronic venous insufficiency

    PubMed Central

    Quilici, Belczak Cleusa Ema; Gildo, Cavalheri; de Godoy, Jose Maria Pereira; Quilici, Belczak Sergio; Augusto, Caffaro Roberto

    2009-01-01

    Aim The aim of this work was to compare the reduction in edema obtained in the conservative treatment of phlebopathies after resting and after performing a muscle exercise program in the Trendelenburg position. Methods Twenty-eight limbs of 24 patients with venous edema of distinct etiologies and classified as between C3 and C5 using CEAP classification. Volumetric evaluation by water displacement was carried out before and after resting in the Trendelenburg position and after performing programmed muscle exercises 24 hours later under identical conditions of time, position and temperature. For the statistical analysis the paired t-test was used with an alpha error of 5% being considered acceptable. Results The average total volume of the lower limbs was 3,967.46 mL. The mean reduction in edema obtained after resting was 92.9 mL, and after exercises it was 135.4 mL, giving a statistically significant difference (p-value = 0.0007). Conclusion In conclusion, exercises are more efficient to reduce the edema of lower limbs than resting in the Trendelenburg position. PMID:19602249

  6. Renal handling of salt and water in humans during exercise with or without hydration.

    PubMed

    Mallié, J P; Ait-Djafer, Z; Saunders, C; Pierrat, A; Caira, M V; Courroy, O; Panescu, V; Perrin, P

    2002-01-01

    Plasma sodium (Na+) concentration, i.e. natraemia, results from body tonicity equilibrium. During exercise, a change in body tonicity can result from an imbalance between intake and loss of Na+, potassium (K+) and water (H2O) due to renal and/or extra-renal mechanisms. Whether exercise-induced changes in kidney function could be responsible for such an imbalance was studied by measuring glomerular filtration rate (creatinine clearance), proximal tubule activity (lithium clearance) and renal handling of Na+ and K+ at rest and during exercise. Since hyponatraemia during or after exercise has been reported, we also investigated whether a water load could be appropriately excreted during exercise. Ten young men pedalled on a cycle ergometer at 60% of maximal oxygen uptake for 45 min with (HE, hydrated exercise) or without (DHE, dehydrated exercise) a supply of water. In both conditions, creatinine, lithium, and electrolyte (Na+ + K+) clearances decreased and natraemia did not change. The DHE induced a loss of body mass (-1.29%), decreased diuresis and large extra-renal water loss [mean (SEM)] [880 (73) ml]. The HE led to no loss in body mass, increased diuresis and lower extrarenal water loss [680 (48) ml]. Electrolyte-free water excretion, negative for DHE, represented 60% of diuresis during HE. Thus the kidney, by increasing electrolyte reabsorption mainly in the proximal tubule, and appropriately excreting a water load, seems efficacious in regulating extracellular fluid volume and body tonicity and so not responsible for the imbalance between (Na+ + K+)/H2O intake and loss. Therefore, extra-renal changes could be the main causes of exercise-induced tonicity imbalances which could ultimately lead to dysnatraemia.

  7. Exploiting significance of physical exercise in prevention of gastrointestinal disorders.

    PubMed

    Bilski, Jan; Mazur-Bialy, Agnieszka; Magierowski, Marcin; Kwiecien, Slawomir; Wojcik, Dagmara; Ptak-Belowska, Agata; Surmiak, Marcin; Targosz, Aneta; Magierowska, Katarzyna; Brzozowski, Tomasz

    2018-05-21

    Physical activity can be involved in the prevention of gastrointestinal (GI)-tract diseases, however, the results regarding the volume and the intensity of exercise considered as beneficial for protection of gastrointestinal organs are conflicting. The main objective of this review is to provide a comprehensive and updated overview on the beneficial and harmful effects of physical activity on the gastrointestinal tract. We attempted to discuss recent evidence regarding the association between different modes and intensity levels of exercise and physiological functions of the gut and gut pathology. The regular, moderate exercise can exert a beneficial effect on GI-tract disorders such as reflux esophagitis, peptic ulcers, cholelithiasis, constipation and inflammatory bowel disease (IBD) leading to the attenuation of the symptoms. This voluntary exercise has been shown to reduce the risk of colorectal cancer. On the other hand, there is considerable evidence that the high-intensity training or prolonged endurance training can exert a negative influence on GI-tract resulting in the exacerbation of symptoms. Physical activity can exhibit a beneficial effect on a variety of gastrointestinal diseases, however, this effect depends upon the exercise mode, duration and intensity. The accumulated evidence indicate that management of gastrointestinal problems and their relief by the exercise seems to be complicated and require adjustments of physical activity training, dietary measures and medical monitoring of symptoms. More experimental and clinical studies on the effects of physical activity on GI-tract disorders are warranted. Especially, the association between the exercise intensity and data addressing the underlying mechanism(s) of the exercise as the complementary therapy in the treatment of gastrointestinal disorders, require further determination in animal models and humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes

    PubMed Central

    Stomby, Andreas; Otten, Julia; Ryberg, Mats; Nyberg, Lars; Olsson, Tommy; Boraxbekk, Carl-Johan

    2017-01-01

    Type 2 diabetes is associated with impaired episodic memory functions and increased risk of different dementing disorders. Diet and exercise may potentially reverse these impairments. In this study, sedentary individuals with type 2 diabetes treated by lifestyle ± metformin were randomized to a Paleolithic diet (PD, n = 12) with and without high intensity exercise (PDEX, n = 12) for 12 weeks. Episodic memory function, associated functional brain responses and hippocampal gray matter volume was measured by magnetic resonance imaging. A matched, but not randomized, non-interventional group was included as a reference (n = 6). The PD included a high intake of unsaturated fatty acids and protein, and excluded the intake of dairy products, grains, refined sugar and salt. The exercise intervention consisted of 180 min of supervised aerobic and resistance exercise per week. Both interventions induced a significant weight loss, improved insulin sensitivity and increased peak oxygen uptake without any significant group differences. Furthermore, both interventions were associated with increased functional brain responses within the right anterior hippocampus, right inferior occipital gyrus and increased volume of the right posterior hippocampus. There were no changes in memory performance. We conclude that life-style modification may improve neuronal plasticity in brain areas linked to cognitive function in type 2 diabetes. Putative long-term effects on cognitive functions including decreased risk of dementing disorders await further studies. Clinical trials registration number: Clinicaltrials. gov NCT01513798. PMID:29255413

  9. A Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes.

    PubMed

    Stomby, Andreas; Otten, Julia; Ryberg, Mats; Nyberg, Lars; Olsson, Tommy; Boraxbekk, Carl-Johan

    2017-01-01

    Type 2 diabetes is associated with impaired episodic memory functions and increased risk of different dementing disorders. Diet and exercise may potentially reverse these impairments. In this study, sedentary individuals with type 2 diabetes treated by lifestyle ± metformin were randomized to a Paleolithic diet (PD, n = 12) with and without high intensity exercise (PDEX, n = 12) for 12 weeks. Episodic memory function, associated functional brain responses and hippocampal gray matter volume was measured by magnetic resonance imaging. A matched, but not randomized, non-interventional group was included as a reference ( n = 6). The PD included a high intake of unsaturated fatty acids and protein, and excluded the intake of dairy products, grains, refined sugar and salt. The exercise intervention consisted of 180 min of supervised aerobic and resistance exercise per week. Both interventions induced a significant weight loss, improved insulin sensitivity and increased peak oxygen uptake without any significant group differences. Furthermore, both interventions were associated with increased functional brain responses within the right anterior hippocampus, right inferior occipital gyrus and increased volume of the right posterior hippocampus. There were no changes in memory performance. We conclude that life-style modification may improve neuronal plasticity in brain areas linked to cognitive function in type 2 diabetes. Putative long-term effects on cognitive functions including decreased risk of dementing disorders await further studies. Clinical trials registration number: Clinicaltrials. gov NCT01513798.

  10. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  11. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magrane, D.

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % ofmore » tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.« less

  12. Breathing pattern and chest wall volumes during exercise in patients with cystic fibrosis, pulmonary fibrosis and COPD before and after lung transplantation.

    PubMed

    Wilkens, H; Weingard, B; Lo Mauro, A; Schena, E; Pedotti, A; Sybrecht, G W; Aliverti, A

    2010-09-01

    Pulmonary fibrosis (PF), cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often cause chronic respiratory failure (CRF). In order to investigate if there are different patterns of adaptation of the ventilatory pump in CRF, in three groups of lung transplant candidates with PF (n=9, forced expiratory volume in 1 s (FEV(1))=37+/-3% predicted, forced vital capacity (FVC)=32+/-2% predicted), CF (n=9, FEV(1)=22+/-3% predicted, FVC=30+/-3% predicted) and COPD (n=21, FEV(1)=21+/-1% predicted, FVC=46+/-2% predicted), 10 healthy controls and 16 transplanted patients, total and compartmental chest wall volumes were measured by opto-electronic plethysmography during rest and exercise. Three different breathing patterns were found during CRF in PF, CF and COPD. Patients with COPD were characterised by a reduced duty cycle at rest and maximal exercise (34+/-1%, p<0.001), while patients with PF and CF showed an increased breathing frequency (49+/-6 and 34+/-2/min, respectively) and decreased tidal volume (0.75+/-0.10 and 0.79+/-0.07 litres) (p<0.05). During exercise, end-expiratory chest wall and rib cage volumes increased significantly in patients with COPD and CF but not in those with PF. End-inspiratory volumes did not increase in CF and PF. The breathing pattern of transplanted patients was similar to that of healthy controls. There are three distinct patterns of CRF in patients with PF, CF and COPD adopted by the ventilatory pump to cope with the underlying lung disease that may explain why patients with PF and CF are prone to respiratory failure earlier than patients with COPD. After lung transplantation the chronic adaptations of the ventilatory pattern to advanced lung diseases are reversible and indicate that the main contributing factor is the lung itself rather than systemic effects of the disease.

  13. Estimating the Volumes of Solid Figures with Curved Surfaces.

    ERIC Educational Resources Information Center

    Cohen, Donald

    1991-01-01

    Several examples of solid figures that calculus students can use to exercise their skills at estimating volume are presented. Although these figures are bounded by surfaces that are portions of regular cylinders, it is interesting to note that their volumes can be expressed as rational numbers. (JJK)

  14. Pulmonary rehabilitation in lung transplant candidates.

    PubMed

    Li, Melinda; Mathur, Sunita; Chowdhury, Noori A; Helm, Denise; Singer, Lianne G

    2013-06-01

    While awaiting lung transplantation, candidates may participate in pulmonary rehabilitation to improve their fitness for surgery. However, pulmonary rehabilitation outcomes have not been systematically evaluated in lung transplant candidates. This investigation was a retrospective cohort study of 345 pre-transplant pulmonary rehabilitation participants who received a lung transplant between January 2004 and June 2009 and had available pre-transplant exercise data. Data extracted included: 6-minute walk tests at standard intervals; exercise training details; health-related quality-of-life (HRQL) measures; and early post-transplant outcomes. Paired t-tests were used to examine changes in the 6MW distance (6MWD), exercise training volume and HRQL during the pre-transplant period. We evaluated the association between pre-transplant 6MWD and transplant hospitalization outcomes. The final 6MWD prior to transplantation was only 15 m less than the listing 6MWD (n = 200; p = 0.002). Exercise training volumes increased slightly from the start of the pulmonary rehabilitation program until transplant: treadmill, increase 0.69 ml/kg/min (n = 238; p < 0.0001); biceps resistance training, 18 lbs. × reps (n = 286; p < 0.0001); and quadriceps resistance training, 15 lbs. × reps (n = 278; p < 0.0001). HRQL measures declined. A greater final 6MWD prior to transplant correlated with a shorter length of stay in the hospital (n = 207; p = 0.003). Exercise capacity and training volumes are well preserved among lung transplant candidates participating in pulmonary rehabilitation, even in the setting of severe, progressive lung disease. Participants with greater exercise capacity prior to transplantation have more favorable early post-transplant outcomes. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Effects of Early Bedside Cycle Exercise on Intracranial Pressure and Systemic Hemodynamics in Critically Ill Patients in a Neurointensive Care Unit.

    PubMed

    Thelandersson, Anneli; Nellgård, Bengt; Ricksten, Sven-Erik; Cider, Åsa

    2016-12-01

    Physiotherapy is an important part of treatment after severe brain injuries and stroke, but its effect on intracranial and systemic hemodynamics is minimally investigated. Therefore, the aim of this study was to assess the effects of an early bedside cycle exercise on intracranial and systemic hemodynamics in critically ill patients when admitted to a neurointensive care unit (NICU). Twenty critically ill patients suffering from brain injuries or stroke were included in this study performed in the NICU at Sahlgrenska University Hospital. One early implemented exercise session was performed using a bedside cycle ergometer for 20 min. Intracranial and hemodynamic variables were measured two times before, three times during, and two times after the bedside cycling exercise. Analyzed variables were intracranial pressure (ICP), cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), heart rate (HR), peripheral oxygen saturation (SpO 2 ), cardiac output (CO), stroke volume (SV), and stroke volume variation (SVV). The cycling intervention was conducted within 7 ± 5 days after admission to the NICU. Cycle exercise increased MAP (p = 0.029) and SV (p = 0.003) significantly. After exercise CO, SV, MAP, and CPP decreased significantly, while no changes in HR, SVV, SpO 2 , or ICP were noted when compared to values obtained during exercise. There were no differences in data obtained before versus after exercise. Early implemented exercise with a bedside cycle ergometer, for patients with severe brain injuries or stroke when admitted to a NICU, is considered to be a clinically safe procedure.

  16. [Glycemic control through physical exercise in type 2 diabetes systematic review].

    PubMed

    Quílez Llopiz, Pablo; Reig García-Galbis, Manuel

    2015-04-01

    In Spain, nearly 14% of the population is diabetic, 95% corresponds to Type 2 Diabetes Mellitus patients. Poor glycemic control increases morbidity and mortality. There are three pillars in the treatment of type 2 diabetes: diet, medication and exercise. However, the potential for prescribing exercise training has not been fully exploited. To analyze the effect of different exercise modalities (AE, RT, Combo, HIIT) on glycemic control in patients with type 2 diabetes mellitus. The reserch was performed in 3 electronic databases (Pubmed, Scopus and Proquest), including publications from 2011 to the present, publications undertaking interventions with AE, RT, Combo or HIIT, and those that measured capillary glucose, CGMS or HbA1c. Of the 386 articles found, 14 met the inclusion criteria. These items were classified according to exercise intervention modality (AE, RT, Combo, HIIT) and whether glycemic control was measured as a result of continued training or 24-48h post-workout. EA, RT, Combo and HIIT show efficacy in glycemic control in both the continuous training and 24-48h post-training. To achieve certain benefits in glycemic control, prescribing a structured frequency, volume and intensity training is required. Combo is the modality that gets better results through continued training. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Stress, Aging and Thirst

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1998-01-01

    After growth during adolesence, total body water decreases progressively with aging from 65% of body weight to about 53% of body weight in the 70th decade; a majority of the loss occurs from the extracellular volume, from 42% to about 25%, respectively. Cellular volume also reaches equilibrium in the 70th decade at about 25% of body weight. Various stresses such as exercise, heat and attitude exposure, ad prior dehydration attenuate voluntary fluid intake (involuntary dehydration). Voluntary fluid intake appears to decrease with aging (involuntary dehydration in this sense aging can be considered as a stress. Kidney function and muscle mass (80% water) decrease somewhat with aging, and voluntary fluid intake (thirst) is also attenuated. Thirst is stimulated by increasing osmolality (hypernatremia) of the extracellular fluid and by decreased extracellular volume (mainly plasma volume) which act to increase intracellular fluid volume osmolality to activiate drinking. The latter decreases fluid compartment osmolality which ' It terminates drinking. However, this drinking mechanism seems to be attenuated with aging such that increasing plasma osmolality no longer stimulates fluid intake appropriately. Hypernatremia in the elderly has been associated all too frequently with greater incidence of bacterial infection and increased mortality. Involuntary dehydration can be overcome in young men by acclimation to an intermittent exercise-in-heat training program. Perhaps exercise training in the elderly would also increase voluntary fluid intake and increase muscle mass to enhance retention of water.

  18. Prevention of bedrest-induced physical deconditioning by daily dobutamine infusions. Implications for drug-induced physical conditioning.

    PubMed Central

    Sullivan, M J; Binkley, P F; Unverferth, D V; Ren, J H; Boudoulas, H; Bashore, T M; Merola, A J; Leier, C V

    1985-01-01

    The effects of intermittent infusions of dobutamine were studied in young normal male subjects during a period of bedrest deconditioning to determine whether this synthetic catechol affects physical conditioning processes in humans. 24 volunteers were placed at bedrest and randomized to daily 2-h treatments of saline infusions (control), dobutamine infusions, or maintenance exercise (control). Exercise, hemodynamic, and metabolic studies were performed at base line and at the termination of the 3-wk treatment period. Maximal exercise (duration, oxygen consumption, and workload) fell for the saline group and remained unchanged for the dobutamine and exercise groups. Hemodynamics during exercise were maintained the same as pretreatment base line for the dobutamine and exercise groups, whereas stroke volume and cardiac output dropped and heart rate rose for the saline group. The metabolic profile showed an increased blood lactate response at rest and during submaximal exercise after 3 wk of bedrest for the saline group, and essentially no change for the exercise and the dobutamine groups. Extraction of oxygen across the exercising lower limb rose for the dobutamine group, as did the activity of the skeletal muscle oxidative enzymes, citrate synthetase, and succinate dehydrogenase. In contrast to the exercise control group, the saline and dobutamine groups developed orthostatic hypotension, tachycardia, and accentuation of the renin-aldosterone response over the 3-wk treatment period; for the saline group, this is best explained by the observed fall in blood volume and for the dobutamine group, by the blunting of vascular vasoconstrictive responses. During a period of bedrest deconditioning in humans, infusions of dobutamine maintain many of the physiologic expressions of physical conditioning. PMID:3932470

  19. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury.

    PubMed

    Tweedy, Sean M; Beckman, Emma M; Geraghty, Timothy J; Theisen, Daniel; Perret, Claudio; Harvey, Lisa A; Vanlandewijck, Yves C

    2017-02-01

    Traumatic spinal cord injury (SCI) may result in tetraplegia (motor and/or sensory nervous system impairment of the arms, trunk and legs) or paraplegia (motor and/or sensory impairment of the trunk and/or legs only). The adverse effects of SCI on health, fitness and functioning are frequently compounded by profoundly sedentary behaviour. People with paraplegia (PP) and tetraplegia (TP) have reduced exercise capacity due to paralysis/paresis and reduced exercising stroke volume. TP often further reduces exercise capacity due to lower maximum heart-rate and respiratory function. There is strong, consistent evidence that exercise can improve cardiorespiratory fitness and muscular strength in people with SCI. There is emerging evidence for a range of other exercise benefits, including reduced risk of cardio-metabolic disease, depression and shoulder pain, as well as improved respiratory function, quality-of-life and functional independence. Exercise recommendations for people with SCI are: ≥30min of moderate aerobic exercise on ≥5d/week or ≥20min of vigorous aerobic ≥3d/week; strength training on ≥2d/week, including scapula stabilisers and posterior shoulder girdle; and ≥2d/week flexibility training, including shoulder internal and external rotators. These recommendations may be aspirational for profoundly inactive clients and stratification into "beginning", "intermediate" and "advanced" will assist application of the recommendations in clinical practice. Flexibility exercise is recommended to preserve upper limb function but may not prevent contracture. For people with TP, Rating of Perceived Exertion may provide a more valid indication of exercise intensity than heart rate. The safety and effectiveness of exercise interventions can be enhanced by initial screening for autonomic dysreflexia, orthostatic hypotension, exercise-induced hypotension, thermoregulatory dysfunction, pressure sores, spasticity and pain. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  1. Cardiovascular response to prescribed detraining among recreational athletes.

    PubMed

    Pedlar, Charles R; Brown, Marcel G; Shave, Robert E; Otto, James M; Drane, Aimee; Michaud-Finch, Jennifer; Contursi, Miranda; Wasfy, Meagan M; Hutter, Adolph; Picard, Michael H; Lewis, Gregory D; Baggish, Aaron L

    2018-04-01

    Exercise-induced cardiac remodeling (EICR) and the attendant myocardial adaptations characteristic of the athlete's heart may regress during periods of exercise reduction or abstinence. The time course and mechanisms underlying this reverse remodeling, specifically the impact of concomitant plasma volume (PV) contraction on cardiac chamber size, remain incompletely understood. We therefore studied recreational runners ( n = 21, age 34 ± 7 yr; 48% male) who completed an 18-wk training program (~7 h/wk) culminating in the 2016 Boston Marathon after which total exercise exposure was confined to <2 h/wk (no single session >1 h) for 8 wk. Cardiac structure and function, exercise capacity, and PV were assessed at peak fitness (10-14 days before) and at 4 wk and 8 wk postmarathon. Mixed linear modeling adjusting for age, sex, V̇o 2peak , and marathon finish time was used to compare data across time points. Physiological detraining was evidenced by serial reductions in treadmill performance. Two distinct phases of myocardial remodeling and hematological adaptation were observed. After 4 wk of detraining, there were significant reductions in PV (Δ -6.0%, P < 0.01), left ventricular (LV) wall thickness (Δ -8.1%, <0.05), LV mass (Δ -10.3%, P < 0.001), and right atrial area (Δ -8.2%, P < 0.001). After 8 wk of detraining, there was a significant reduction in right ventricle chamber size (end-diastolic area Δ = -8.0%, P < 0.05) without further concomitant reductions in PV or LV wall thickness. Abrupt reductions in exercise training stimulus result in a structure-specific time course of reverse cardiac remodeling that occurs largely independently of PV contraction. NEW & NOTEWORTHY Significant reverse cardiac remodeling, previously documented among competitive athletes, extends to recreational runners and occurs with a distinct time course. Initial reductions in plasma volume and left ventricular (LV) mass, driven by reductions in wall thickness, are followed by contraction of the right ventricle. Consistent with data from competitive athletes, LV chamber volumes appear less responsive to detraining and may be a more permanent adaptation to sport.

  2. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  3. Comparison of Acute Physiological and Psychological Responses Between Moderate Intensity Continuous Exercise and three Regimes of High Intensity Training.

    PubMed

    Green, Nicole; Wertz, Timothy; LaPorta, Zachary; Mora, Adam; Serbas, Jasmine; Astorino, Todd A

    2017-07-19

    High intensity interval training (HIIT) elicits similar physiological adaptations as moderate intensity continuous training (MICT) despite less time commitment. However, there is debate whether HIIT is more aversive than MICT. This study compared physiological and perceptual responses between MICT and three regimes of HIIT. Nineteen active adults (age = 24.0 ± 3.3 yr) unfamiliar with HIIT initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (VO2 max) and determine workload for subsequent sessions, whose order was randomized. Sprint interval training (SIT) consisted of six 20 s bouts of "all-out" cycling at 140% of maximum watts (Wmax). Low volume (HIITLV) and high volume HIIT (HIITHV) consisted of eight 60 s bouts at 85% Wmax and six 2 min bouts at 70% Wmax, respectively. MICT consisted of 25 min at 40% Wmax. Across regimes, work was not matched. Heart rate, VO2, blood lactate concentration (BLa), affect, and rating of perceived exertion (RPE) were assessed during exercise. Ten minutes post-exercise, Physical Activity Enjoyment (PACES) was measured via a survey. Results revealed significantly higher (p<0.05) VO2, heart rate, BLa, and RPE in SIT, HIITLV, and HIITHV versus MICT. Despite a decline in affect during exercise (p<0.01) and significantly lower affect (p<0.05) during all HIIT regimes versus MICT at 50, 75, and 100 % of session duration, PACES was similar across regimes (p=0.65) although it was higher in women (p=0.03). Findings from healthy adults unaccustomed to interval training demonstrate that HIIT and SIT are perceived as enjoyable as MICT despite being more aversive.

  4. Perfusion scintigraphy and patient selection for lung volume reduction surgery.

    PubMed

    Chandra, Divay; Lipson, David A; Hoffman, Eric A; Hansen-Flaschen, John; Sciurba, Frank C; Decamp, Malcolm M; Reilly, John J; Washko, George R

    2010-10-01

    It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). To study the role of perfusion scintigraphy in patient selection for LVRS. We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non-high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non-upper lobe-predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Among 284 of 1,045 patients with upper lobe-predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe-predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non-upper lobe-predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe-predominant emphysema when there is low rather than high perfusion to the upper lung.

  5. Exercise Responses to Gravity-Independent Flywheel Aerobic and Resistance Training.

    PubMed

    Owerkowicz, Tomasz; Cotter, Joshua A; Haddad, Fadia; Yu, Alvin M; Camilon, Marinelle L; Hoang, Theresa N; Jimenez, Daniel J; Kreitenberg, Arthur; Tesch, Per A; Caiozzo, Vincent J; Adams, Gregory R

    2016-02-01

    Although several exercise systems have been developed to mitigate the physiological deconditioning that occurs in microgravity, few have the capacity to positively impact multiple physiological systems and still meet the volume/mass requirements needed for missions beyond low Earth orbit. The purpose of this study was to test the gravity-independent Multi-Mode Exercise Device (M-MED) for both resistance (RE) and aerobic (AE) training stimuli. Eight men and nine women (mean age 22.0 ± 0.4 yr) completed 5 wk of training on the M-MED: RE 4 × 7 squats 2 d/wk, and AE 4 × 4-min rowing bouts at ∼90% Vo2max 3 d/wk. Pre- and post-training data collection included an aerobic capacity test, MR imaging, strength testing, and vastus lateralis muscle biopsy. Vo2max increased 8%, 3RM strength 18%, and quadriceps femoris cross-sectional area (CSA) 10%. Knee extensor strength increased at all isokinetic speeds tested. Subjects also demonstrated improved fatigue resistance in knee extension. At the cellular and molecular level, the biopsy revealed increases in mixed myofiber CSA (13%), citrate synthase activity (26%), total RNA concentration (24%), IGF-I mRNA (77%), and Type IIa myosin heavy chain (MHC) mRNA (8%), and a concomitant decrease in Type IIx MHC mRNA (-23%). None of the changes were gender-specific. Both the functional outcomes and biomarker changes indicate that a very low volume of M-MED exercise results in robust adaptation in the cardiovascular and musculoskeletal systems. The M-MED has the potential to provide a wide range of countermeasure exercises and should be considered for testing in ground-based spaceflight simulation.

  6. [Endurance training and cardial adaptation (athlete's heart)].

    PubMed

    Dickhuth, Hans-Hermann; Röcker, Kai; Mayer, Frank; König, Daniel; Korsten-Reck, Ulrike

    2004-06-01

    One essential function of the cardiovascular system is to provide an adequate blood supply to all organs, including the skeletal muscles at rest and during exercise. Adaptation to chronic exercise proceeds mainly via the autonomic nervous system. On the one hand, peripheral muscles influence the autonomic reactions through "feedback" control via ergoreceptors, in particular, mechano- and chemoreceptors. On the other hand, there is central control in the sense of a "feed forward" regulation, e. g., the reaction of an athlete before competition. Along with other influential factors, such as circulatory presso-, chemo-, and volume receptors, the incoming impulses are processed in vegetative centers.A cardiovascular reaction, then, is the result of nerval and humoral sympathetic and parasympathetic activity. At rest, the parasympathetic tone dominates. It reduces heart frequency and conduction velocity. The high vagal tone is initially reduced with increasing physical exertion and switches at higher intensity to increasingly sympathetic activation. This mechanism of reaction to exercise is supported by inverse central and peripheral transmissions.Chronic endurance training leads to an improved local aerobic capacity of the exercised musculature. At rest, it augments parasympathetic activity when the muscle mass is sufficiently large, i. e., 20-30% of the skeletal musculature. The extent of the adaptation depends on individual factors, such as scope, intensity of training, and type of muscle fiber. A higher vagal tone delays the increase in the sympathetic tone during physical exertion. The regulatory range of heart rate, contractility, diastolic function, and blood pressure is increased. In addition, adaptation results in functional and structural changes in the vascular system. Cardiocirculatory work is economized, and maximum performance and oxygen uptake are improved. Endurance training exceeding an individual limit causes harmonic enlargement and hypertrophy of the heart. The thickness of both, the septum and posterior wall increases to the same extent as the interior volume. The mass/volume ratio, and therefore the maximum systolic wall stress, remains constant in contrast to pathologic forms of hypertrophy. Adaptations, including function and size of the heart, show a regression in healthy inactive persons without any structural heart disease.

  7. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  8. Non-invasive assessment of respiratory muscle function and its relationship to exercise tolerance in patients with chronic obstructive pulmonary disease.

    PubMed

    Chlumský, J; Filipova, P; Terl, M

    2006-01-01

    Most patients with chronic obstructive pulmonary disease (COPD) have impaired respiratory muscle function. Maximal oesophageal pressure correlates closely with exercise tolerance and seems to predict the distance walked during the 6-min walk test. This study assessed the non-invasive parameters of respiratory muscle function in 41 patients with COPD to investigate their relationship to pulmonary function tests and exercise tolerance. The COPD patients, who demonstrated the full range of airway obstruction severity, had a mean forced expiratory volume in 1 s of 42.5% predicted (range, 20 - 79% predicted). Both the maximal inspiratory muscle strength and non-invasive tension-time index were significantly correlated with the degree of lung hyperinflation, as expressed by the ratio of residual volume to total lung capacity, and the distance walked in 6 min. We conclude that respiratory muscle function was influenced mainly by lung hyperinflation and that it had an important effect on exercise tolerance in COPD patients.

  9. Exercise Responses after Inactivity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1986-01-01

    The exercise response after bed rest inactivity is a reduction in the physical work capacity and is manifested by significant decreases in oxygen uptake. The magnitude of decrease in maximal oxygen intake V(dot)O2max is related to the duration of confinement and the pre-bed-rest level of aerobic fitness; these relationships are relatively independent of age and gender. The reduced exercise performance and V(dot)O2max following bed rest are associated with various physiological adaptations including reductions in blood volume, submaximal and maximal stroke volume, maximal cardiac output, sceletal muscle tone and strength, and aerobic enzyme capacities, as well as increases in venous compliance and submaximal and maximal heart rate. This reduction in physiological capacity can be partially restored by specific countermeasures that provide regular muscular activity or orhtostatic stress or both during the bed rest exposure. The understanding of these physiological and physical responses to exercise following bed rest inactivity has important implications for the solution to safety and health problems that arise in clinical medicine, aerospace medicine, sedentary living, and aging.

  10. Effects of a Single Bout of Resistance Exercise in Different Volumes on Endothelium Adaptations in Healthy Animals.

    PubMed

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Macedo, Fabricio Nunes; Mesquita, Thássio Ricardo Ribeiro; Quintans, Lucindo José; Santana-Filho, Valter Joviniano de; Lauton-Santos, Sandra; Santos, Márcio Roberto Viana

    2017-05-01

    Resistance exercise (RE) has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO) synthesis in the mesenteric artery of healthy animals. Male Wistar rats were divided into three groups: Control (Ct); low-volume RE (LV, 5 sets x 10 repetitions) and high-volume RE (HV, 15 sets x 10 repetitions). The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM). The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME) completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis. O exercício resistido (ER) tem sido recomendado para pacientes com doenças cardiovasculares. Recentemente, alguns estudos demonstraram que a intensidade de uma sessão de ER exerce um efeito sobre a disfunção endotelial. No entanto, não há dados sobre os efeitos de diferentes volumes de ER sobre a função endotelial. O objetivo deste estudo foi avaliar os efeitos de diferentes volumes de ER, realizados em uma única sessão, sobre a vasodilatação dependente do endotélio e síntese de óxido nítrico (NO) em artéria mesentérica de animais saudáveis. Ratos Wistar machos foram divididos em três grupos: Controle (Ct); baixo volume (BV, 5 séries x 10 repetições) e alto volume de ER (AV, 15 séries x 10 repetições). Foi estabelecida a intensidade de 70% do teste de repetição máxima. Após o protocolo de exercício, anéis de artéria mesentérica foram utilizados na avaliação da reatividade vascular, e outras artérias mesentéricas foram preparadas para a detecção da produção de NO por fluorescência com para do DAF-FM. A resposta à insulina pela síntese de NO foi avaliada estimulando-se os anéis vasculares com insulina (10nM). A resposta máxima do relaxamento induzido por insulina foi aumentada somente no grupo AV em comparação ao grupo Ct. Além disso, a inibição da síntese do NO (L-NAME), aboliu completamente o relaxamento vascular induzido por insulina em ratos exercitados. A produção de NO mostrou um aumento dependente do volume no endotélio e no músculo liso. No endotélio, apenas os grupos Ct e BV mostraram aumento significativo na síntese de NO quando comparado aos seus respectivos grupos sob condição basal. No entanto, no músculo liso, a fluorescência foi aumentada em todos os grupos quando comparados aos seus respectivos grupos sob a condição basal. Nossos resultados sugerem que uma única sessão de ER foi capaz de promover adaptações no endotélio vascular. Além disso, nós observamos que este efeito é volume-dependente e o volume de 15 séries x10 repetições induziu o maior aumento na síntese de NO.

  11. Catecholamines and obesity: effects of exercise and training.

    PubMed

    Zouhal, Hassane; Lemoine-Morel, Sophie; Mathieu, Marie-Eve; Casazza, Gretchen A; Jabbour, Georges

    2013-07-01

    Excess body fat in obese individuals can affect the catecholamine response to various stimuli. Indeed, several studies report lower plasma catecholamine concentrations in obese subjects compared with nonobese subjects in response to submaximal or maximal exercise. This low catecholamine response reflects decreased sympathetic nervous system (SNS) activity. Although the relationship between the SNS and obesity is not well established, some authors have suggested that low SNS activity may contribute to the development of obesity. A decreased catecholamine response could affect α- and β-adrenoceptor sensitivity in adipose tissue, reducing lipolysis and increasing fat stores. Few studies have examined the effects of obesity on the plasma catecholamine response at rest and during exercise in adolescents. It is interesting to note that the effects of age, sex, and degree of obesity and the impact of very intense exercise on the catecholamine response have not yet been well examined. Moreover, the hormonal concentrations measured in the majority of obesity studies did not take into account plasma volume changes. This methodological factor can also undoubtedly influence plasma catecholamine results.

  12. Exercise thermoregulation in men after 1 and 24-hours of 6 degrees head-down tilt

    NASA Technical Reports Server (NTRS)

    Ertl, A. C.; Dearborn, A. S.; Weidhofer, A. R.; Bernauer, E. M.; Greenleaf, J. E.

    2000-01-01

    BACKGROUND: Exercise thermoregulation is dependent on heat loss by increased skin blood flow (convective and conductive heat loss) and through enhanced sweating (evaporative heat loss). Reduction of plasma volume (PV), increased plasma osmolality, physical deconditioning, and duration of exposure to simulated and actual microgravity reduces the ability to thermoregulate during exercise. HYPOTHESIS: We hypothesized that 24 h of head down tilt (HDT24) would alter thermoregulatory responses to a submaximal exercise test and result in a higher exercise rectal temperature (Tre) when compared with exercise Tre after 1 h of head down tilt (HDT1). METHODS: Seven men (31+/-SD 6 yr, peak oxygen uptake (VpO2peak) of 44+/-6 ml x kg(-1) x min(-1)) were studied during 70 min of supine cycling at 58+/-SE 1.5% VO2peak at 22.0 degrees C Tdb and 47% rh. RESULTS: Relative to pre-tilt sitting chair rest data, HDT1 resulted in a 6.1+/-0.9% increase and HDT24 in a 4.3+/-2.3% decrease in PV (delta = 10.4% between experiments, p<0.05) while plasma osmolality remained unchanged (NS). Pre-exercise Tre was elevated after HDT24 (36.71 degrees C +/-0.06 HDT1 vs. 36.93 degrees C+/-0.11 HDT24, p<0.05). The 70 min of exercise did not alter this relationship (p<0.05) with respective end exercise increases in Tre to 38.01 degrees C and 38.26 degrees C (degrees = 1.30 degrees C (HDT1) and 1.33 degrees C (HDT24)). While there were no pre-exercise differences in mean skin temperature (Tsk), a significant (p<0.05) time x treatment interaction occurred during exercise: after min 30 in HDT24 the Tsk leveled off at 31.1 degrees C, while it continued to increase reaching 31.5 degrees C at min 70 in HDT1. A similar response (NS) occurred in skin blood velocity. Neither local sweating rates nor changes in body weight during exercise of -1.63+/-0.24 kg (HDT1) or - 1.33+/-0.09 kg (HDT24) were different (NS) between experiments. CONCLUSION: While HDT24 resulted in elevated pre-exercise Tre, reduced PV, attenuation of Tsk and skin blood velocity during exercise, the absolute increase in exercise Tre was not altered. But if sweat rate and cutaneous vascular responses were similar at different core temperatures (unchanged thermoregulation), the Tre offset could have been caused by the HDT-induced hypovolemia.

  13. Physical Activity and Mortality in Patients With Stable Coronary Heart Disease.

    PubMed

    Stewart, Ralph A H; Held, Claes; Hadziosmanovic, Nermin; Armstrong, Paul W; Cannon, Christopher P; Granger, Christopher B; Hagström, Emil; Hochman, Judith S; Koenig, Wolfgang; Lonn, Eva; Nicolau, José C; Steg, Philippe Gabriel; Vedin, Ola; Wallentin, Lars; White, Harvey D

    2017-10-03

    Recommendations for physical activity in patients with stable coronary heart disease (CHD) are based on modest evidence. The authors analyzed the association between self-reported exercise and mortality in patients with stable CHD. A total of 15,486 patients from 39 countries with stable CHD who participated in the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) study completed questions at baseline on hours spent each week taking mild, moderate, and vigorous exercise. Associations between the volume of habitual exercise in metabolic equivalents of task hours/week and adverse outcomes during a median follow-up of 3.7 years were evaluated. A graded decrease in mortality occurred with increased habitual exercise that was steeper at lower compared with higher exercise levels. Doubling exercise volume was associated with lower all-cause mortality (unadjusted hazard ratio [HR]: 0.82; 95% confidence interval [CI]: 0.79 to 0.85; adjusting for covariates, HR: 0.90; 95% CI: 0.87 to 0.93). These associations were similar for cardiovascular mortality (unadjusted HR: 0.83; 95% CI: 0.80 to 0.87; adjusted HR: 0.92; 95% CI: 0.88 to 0.96), but myocardial infarction and stroke were not associated with exercise volume after adjusting for covariates. The association between decrease in mortality and greater physical activity was stronger in the subgroup of patients at higher risk estimated by the ABC-CHD (Age, Biomarkers, Clinical-Coronary Heart Disease) risk score (p for interaction = 0.0007). In patients with stable CHD, more physical activity was associated with lower mortality. The largest benefits occurred between sedentary patient groups and between those with the highest mortality risk. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Effects of Strength Training Sessions Performed with Different Exercise Orders and Intervals on Blood Pressure and Heart Rate Variability.

    PubMed

    Lemos, Sandro; Figueiredo, Tiago; Marques, Silvio; Leite, Thalita; Cardozo, Diogo; Willardson, Jeffrey M; Simão, Roberto

    2018-01-01

    This study compared the effect of a strength training session performed at different exercise orders and rest intervals on blood pressure and heart rate variability (HRV). Fifteen trained men performed different upper body exercise sequences [large to small muscle mass (SEQA) and small to large muscle mass (SEQB)] in randomized order with rest intervals between sets and exercises of 40 or 90 seconds. Fifteen repetition maximum loads were tested to control the training intensity and the total volume load. The results showed, significant reductions for systolic blood pressure (SBP) for all sequences compared to baseline and, post-exercise: SEQA90 at 20, 30, 40, 50 and 60 minutes; SEQA40 and SEQB40 at 20 minutes and SEQB90 at 10, 20, 30, 40, 50 and 60 minutes. For diastolic blood pressure (DBP), significant reductions were found for three sequences compared to baseline and, post-exercise: SEQA90 and SEQA40 at 50 and 60 minutes; SEQB40 at 10, 30 and 60 minutes. For HRV, there were significant differences in frequency domain for all sequences compared to baseline. In conclusion, when performing upper body strength training sessions, it is suggested that 90 second rest intervals between sets and exercises promotes a post-exercise hypotensive response in SBP. The 40 second rest interval between sets and exercises was associated with greater cardiac stress, and might be contraindicated when working with individuals that exhibit symptoms of cardiovascular disease.

  15. Concurrent exercise training: do opposites distract?

    PubMed Central

    Coffey, Vernon G.

    2016-01-01

    Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998

  16. The Effect of Omega-3 Fatty Acid Supplementation on the Inflammatory Response to eccentric strength exercise.

    PubMed

    Jouris, Kelly B; McDaniel, Jennifer L; Weiss, Edward P

    2011-01-01

    Omega-3 fatty acids (omega-3) have anti-inflammatory properties. However, it is not known if omega-3 supplementation attenuates exercise-induced inflammation. We tested the hypothesis that omega-3 supplementation reduces inflammation that is induced by eccentric arm curl exercise. Healthy adult men and women (n=11; 35 ± 10 y) performed eccentric biceps curls on two occasions, once after 14d of dietary omega-3 restriction (control trial) and again after 7d of 3,000 mg/d omega-3 supplementation (omega-3 trial). Before and 48 h after eccentric exercise, signs of inflammation was assessed by measuring soreness ratings, swelling (arm circumference and arm volume), and temperature (infrared skin sensor). Arm soreness increased (p < 0.0001) in response to eccentric exercise; the magnitude of increase in soreness was 15% less in the omega-3 trial (p = 0.004). Arm circumference increased after eccentric exercise in the control trial (p = 0.01) but not in the omega-3 trial (p = 0.15). However, there was no difference between trials (p = 0.45). Arm volume and skin temperature did not change in response to eccentric exercise in either trial. These findings suggest that omega-3 supplementation decreases soreness, as a marker of inflammation, after eccentric exercise. Based on these findings, omega-3 supplementation could provide benefits by minimizing post-exercise soreness and thereby facilitate exercise training in individuals ranging from athletes undergoing heavy conditioning to sedentary subjects or patients who are starting exercise programs or medical treatments such as physical therapy or cardiac rehabilitation. Key pointsDietary supplementation with omega-3 fatty acids has been shown to reduce inflammation in numerous inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and Chrohn's disease.Although strenuous exercise is known to cause acute increases in inflammation, it is not clear if omega-3 fatty acid supplementation attenuates this adverse response to exercise.Our research demonstrates that 3000 mg·d-1 omega-3 fatty acid supplementation minimizes the severe, delayed-onset muscle soreness that results from strenuous eccentric strength exercise.This information, along with a plethora of information showing that omega-3 fatty acid supplementation has other health benefits, demonstrates that a readily available over the counter nutritional supplement (i.e. omega-3 fatty acids) reduces delayed-onset soreness caused by strenuous strength exercise.This information has obvious relevance to athletic populations but also to other groups such as physical therapy patients and newly admitted cardiac rehabilitation patients, as muscle soreness, if left unchecked, can slow the progress in adapting to a new exercise program.Furthermore, as inflammation is known to be involved in the pathogenesis if numerous diseases, including heart disease, cancer, and diabetes, it is likely prudent for individuals to use inflammation-attenuating interventions, such as omega-3 supplementation, to keep inflammatory responses to physical activity at a minimum.

  17. Exercise cardiac output following Skylab missions - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Mauldin, D. G.; Rummel, J. A.; Michel, E. L.; Sawin, C. F.

    1976-01-01

    Cardiac output was measured during preflight and postflight exercise-stress tests on the Skylab astronauts. In the postflight tests immediately following the 28-, 59-, and 84-d earth orbital missions, the astronauts exhibited an approximate 30% decrease in cardiac output coupled with an approximate 50% decrease in cardiac stroke volume during exercise. These changes were accompanied by elevated heart rates and significant increases in total systemic peripheral vascular resistance. Mean arterial pressure was unchanged. All parameters returned to normal preflight values within 30 d of the end of the orbital period. Duration of the zero-G exposure did not appear to influence either the magnitude of the hemodynamic changes or the time-course of their return to normal. These results are discussed in relation to other cardiovascular findings and possible mechanisms responsible for the observations are outlined.

  18. Effect of Endurance Training on the Determinants of Peak Exercise Oxygen Consumption in Elderly Patients with Stable Compensated Heart Failure and Preserved Ejection Fraction

    PubMed Central

    Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.

    2012-01-01

    Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338

  19. Tricuspid annular plane systolic excursion in the assessment of right ventricular function in children and adolescents after repair of tetralogy of Fallot.

    PubMed

    Mercer-Rosa, Laura; Parnell, Aimee; Forfia, Paul R; Yang, Wei; Goldmuntz, Elizabeth; Kawut, Steven M

    2013-11-01

    Assessing right ventricular (RV) performance is essential for patients with tetralogy of Fallot (TOF). The aim of this study was to investigate the reliability and validity of tricuspid annular plane systolic excursion (TAPSE) against cardiac magnetic resonance imaging measures and cardiopulmonary exercise testing. A retrospective study was performed in 125 outpatients with repaired TOF with available protocol-driven echocardiography, cardiac magnetic resonance imaging, and exercise stress testing obtained as part of a cross-sectional study. TAPSE was measured on the two-dimensional apical four-chamber view on echocardiography by two readers. Multivariate linear regression was used to examine the association between TAPSE and measures of RV function and exercise capacity. The mean age was 12.6 ± 3.3 years, 41 patients (33%) were female, and 104 (83%) were white. TAPSE averaged 1.6 ± 0.37 cm, with an interreader intraclass correlation coefficient of 0.78 (n = 18). TAPSE was significantly associated with cardiac magnetic resonance-based RV stroke volume after adjustment for gender and body surface area (β = 13.8; 95% confidence interval, 2.25-25.30; P = .02). TAPSE was not associated with cardiac magnetic resonance-based RV ejection fraction (P = .77). On exercise testing, TAPSE was not associated with peak oxygen consumption, percentage of predicted oxygen consumption, oxygen pulse, or the ventilatory equivalent for carbon dioxide in patients with maximal exercise stress testing (n = 73 [58%]). TAPSE is reproducibly measured by echocardiography in patients with TOF. It is not associated with RV ejection fraction or exercise performance, and its association with RV stroke volume may be confounded by body size. On the basis of these results, TAPSE is not representative of global RV performance in patients with TOF. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  20. ERCMExpress. Volume 2, Issue 3

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    This issue of the Emergency Response and Crisis Management (ERCM) Technical Assistance Center's "ERCMExpress" promotes emergency exercises as an effective way to validate school safety plans. Simulations of emergency situations, or emergency exercises, are integral to a sound school safety plan. They offer opportunities for district and schools to…

  1. BEGINNING POLISH, VOLUME ONE. YALE LINGUISTIC SERIES.

    ERIC Educational Resources Information Center

    SCHENKER, ALEXANDER M.

    BASED ON A MODERN LINGUISTIC ANALYSIS OF THE POLISH LANGUAGE, THIS TWO-VOLUME TEXT IS APPROPRIATE FOR A ONE-YEAR INTENSIVE COURSE. VOLUME I INCLUDES 25 LESSONS, EACH DIVIDED INTO--SENTENCES (DIALOGS), GRAMMAR, EXERCISES, AND VOCABULARY LISTS. THE INTRODUCTION PRESENTS A BRIEF CONTRASTIVE ANALYSIS OF POLISH AND RUSSIAN, AND THERE IS INCLUDED A…

  2. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function.

    PubMed

    Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp

    2013-12-05

    Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.

  3. Effects of Obstructive Sleep Apnea and Obesity on Exercise Function in Children

    PubMed Central

    Evans, Carla A.; Selvadurai, Hiran; Baur, Louise A.; Waters, Karen A.

    2014-01-01

    Study Objectives: Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Design: Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Setting: Tertiary pediatric hospital. Participants: Healthy weight and obese children, aged 7–12 y. Interventions: N/A. Measurements and Results: Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Conclusions: Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children. Citation: Evans CA, Selvadurai H, Baur LA, Waters KA. Effects of obstructive sleep apnea and obesity on exercise function in children. SLEEP 2014;37(6):1103-1110. PMID:24882905

  4. Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats

    PubMed Central

    Xin, Lei; Sun, Xuejun; Lou, Shujie

    2016-01-01

    Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury. PMID:26942576

  5. The Allocation of Runway Slots by Auction. Volume II. The Airline Management Game and Slot Auction Testing.

    DTIC Science & Technology

    1980-04-15

    schedule their air transportation networks, and learn the performance and financial results through simulation of the resulting traffic flows, costs...players in the role of airline management responsible for airline scheduling and market, fleet and financial planning. The Game Administrator created a...revenues and consequently the financial results for each airline. During this exercise the objective of each airline team was to schedule its flights so

  6. A Preliminary Exercise Study of Japanese Version of High-intensity Interval Aerobic Training (J-HIAT)

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Seino, Satoshi; Ohkawara, Kazunori; Tanaka, Kiyoji; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki

    In a microgravity environment, the volume load on the left ventricle is reduced and the cardiac function deteriorates.Consequently, maximal oxygen consumption (VO2max) decreases during spaceflight. Reduced cardiac function can lead to serious health problems such as cardiac atrophy, diastolic dysfunction, and orthostatic hypotension. An exercise using a bicycle ergometer during spaceflight may help to increase the volume load on the left ventricle. On the other hand, many astronauts also experience weight loss during spaceflight because energy imbalances can occur. Some researchers indicate that excessive exercise may promote the energy deficit and have a negative impact on long-term spaceflight. Therefore, we have been devising an original bicyle erogometer protocol better suited to astronauts experiencing long-term spaceflight.One of our candidate protocols is the 3 × 3 protocol named J-HIAT, i.e., three times 3-min intervals with a 2-min active recovery period between intervals. In response to our preliminary experiments, we concluded that J-HIAT would be a potential protocol to control the increase of energy consumption and to have a significant impact on VO2max and the cardiac function. To further verify this method, we are working on full-scale experiments. In future, we will show the results of these experiments.

  7. A Randomized Phase II Dose-Response Exercise Trial among Colon Cancer Survivors: Purpose, Study Design, Methods, and Recruitment Results

    PubMed Central

    Brown, Justin C.; Troxel, Andrea B.; Ky, Bonnie; Damjanov, Nevena; Zemel, Babette S.; Rickels, Michael R.; Rhim, Andrew D.; Rustgi, Anil K.; Courneya, Kerry S.; Schmitz, Kathryn H.

    2016-01-01

    Background Observational studies indicate that higher volumes of physical activity are associated with improved disease outcomes among colon cancer survivors. The aim of this report is to describe the purpose, study design, methods, and recruitment results of the COURAGE trial, a National Cancer Institute (NCI) sponsored, phase II, randomized, dose-response exercise trial among colon cancer survivors. Methods/Results The primary objective of the COURAGE trial is to quantify the feasibility, safety, and physiologic effects of low-dose (150 min·wk−1) and high-dose (300 min·wk−1) moderate-intensity aerobic exercise compared to usual-care control group over six months. The exercise groups are provided with in-home treadmills and heart rate monitors. Between January and July 2015, 1,433 letters were mailed using a population-based state cancer registry; 126 colon cancer survivors inquired about participation, and 39 were randomized onto the study protocol. Age was associated with inquiry about study participation (P<0.001) and randomization onto the study protocol (P<0.001). No other demographic, clinical, or geographic characteristics were associated with study inquiry or randomization. The final trial participant was randomized in August 2015. Six month endpoint data collection was completed in February 2016. Discussion The recruitment of colon cancer survivors into an exercise trial is feasible. The findings from this trial will inform key design aspects for future phase 2 and phase 3 randomized controlled trials to examine the efficacy of exercise to improve clinical outcomes among colon cancer survivors. PMID:26970181

  8. Resistance exercise load does not determine training-mediated hypertrophic gains in young men

    PubMed Central

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; West, Daniel W. D.; Burd, Nicholas A.; Breen, Leigh; Baker, Steven K.

    2012-01-01

    We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 repetition maximum)] or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1, and 80%-3. Subjects trained each leg with their assigned regime for a period of 10 wk, 3 times/wk. We made pre- and posttraining measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and posttraining biopsies of the vastus lateralis, and a single postexercise (1 h) biopsy following the first bout of exercise, to measure signaling proteins. Training-induced increases in MR-measured muscle volume were significant (P < 0.01), with no difference between groups: 30%-3 = 6.8 ± 1.8%, 80%-1 = 3.2 ± 0.8%, and 80%-3= 7.2 ± 1.9%, P = 0.18. Isotonic maximal strength gains were not different between 80%-1 and 80%-3, but were greater than 30%-3 (P = 0.04), whereas training-induced isometric strength gains were significant but not different between conditions (P = 0.92). Biopsies taken 1 h following the initial resistance exercise bout showed increased phosphorylation (P < 0.05) of p70S6K only in the 80%-1 and 80%-3 conditions. There was no correlation between phosphorylation of any signaling protein and hypertrophy. In accordance with our previous acute measurements of muscle protein synthetic rates a lower load lifted to failure resulted in similar hypertrophy as a heavy load lifted to failure. PMID:22518835

  9. LABORATORY MEASURES OF EXERCISE CAPACITY AND VENTRICULAR CHARACTERISTICS AND FUNCTION ARE WEAKLY ASSOCIATED WITH FUNCTIONAL HEALTH STATUS AFTER FONTAN

    PubMed Central

    McCrindle, Brian W.; Zak, Victor; Sleeper, Lynn A.; Paridon, Stephen M.; Colan, Steven D.; Geva, Tal; Mahony, Lynn; Li, Jennifer S.; Breitbart, Roger E.; Margossian, Renee; Williams, Richard V.; Gersony, Welton M.; Atz, Andrew M.

    2009-01-01

    Background Patients after Fontan are at risk for suboptimal functional health status, and associations with laboratory measures are important for planning interventions and outcome measures for clinical trials. Methods and Results Parents completed the generic Child Health Questionnaire (CHQ) for 511 Fontan Cross-Sectional Study patients aged 6–18 years (61% male). Associations of CHQ Physical and Psychosocial Functioning Summary Scores (FSS) with standardized measurements from prospective exercise testing, echocardiography, magnetic resonance imaging (MRI), and measurement of brain natriuretic peptide (BNP) were determined by regression analyses. For exercise variables for maximal effort patients only, the final model showed higher Physical FSS was associated only with higher maximum work rate, accounting for 9% of variation in Physical FSS. For echocardiography, lower Tei index (particularly for patients with extracardiac lateral tunnel connections), lower indexed end-systolic volume, and the absence of atrioventricular valve regurgitation for patients having Fontan at age <2 years were associated with higher Physical FSS, accounting for 14% of variation in Physical FSS. For MRI, lower mass to end-diastolic volume ratio, and mid-quartiles of indexed end-systolic volume (non-linear) were associated with higher Physical FSS, accounting for 11% of variation. Lower BNP was significantly but weakly associated with higher Physical FSS (1% of variation). Significant associations for Psychosocial FSS with laboratory measures were fewer and weaker than for Physical FSS. Conclusions In relatively healthy Fontan patients, laboratory measures account for a small proportion of the variation in functional health status and, therefore, may not be optimal surrogate endpoints for trials of therapeutic interventions. PMID:20026781

  10. Resistance training using eccentric overload induces early adaptations in skeletal muscle size.

    PubMed

    Norrbrand, Lena; Fluckey, James D; Pozzo, Marco; Tesch, Per A

    2008-02-01

    Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P < 0.05) at all angles measured in FW, such a change was less consistent in WS. There was a marked increase (P < 0.05) in task-specific performance (i.e., load lifted) in WS. Average work showed a non-significant 8.7% increase in FW. Quadriceps muscle volume increased (P < 0.025) in both groups after training. Although the more than twofold greater hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P < 0.025) volume whereas in WS only m. rectus femoris was increased (P < 0.025). Collectively the results of this study suggest more robust muscular adaptations following flywheel than weight stack resistance exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.

  11. Effect of exercise training on cardiopulmonary baroreflex control of forearm vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Mack, G. W.; Convertino, V. A.; Nadel, E. R.

    1993-01-01

    We studied the stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) in four groups of male volunteer subjects: i) unfit, ii) physically fit, iii) before and after 10 wk of endurance training (chronic blood volume expansion), and iv) before and after acute blood volume expansion. We assessed the relationship between reflex stimulus, i.e., changes in central venous pressure and response, i.e., FVR, during unloading of cardiopulmonary mechanoreceptors with lower body negative pressure (LBNP, 0 to -20 mm Hg). The slope of the linear relationship between FVR and CVP, the index of the responsiveness of this baroreflex, was significantly diminished (> 50%) in the fit subjects compared with the unfit. The slope of the FVR-CVP relationship was inversely correlated with the subject's total blood volume, suggesting that blood volume expansion was related to the attenuated CP baroreflex. In the exercise training study, maximal oxygen consumption and blood volume increased following 10 wk of endurance training (N = 14) but were unchanged in the time control group (N = 7). The slope of the FVR-CVP relationship was significantly reduced (32%) following 10 wk of training but was unchanged in the time control group. The reduction in slope of the FVR-CVP relationship was inversely related to the increase in blood volume associated with exercise training. Acute blood volume expansion 8 ml.kg-1 body weight with 5% human serum albumin solution) significantly reduced the slope of the FVR-CVP relationship. These data support the hypothesis that the attenuated forearm vascular reflex in physically fit individuals is related to a training-induced hypervolemia.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Fluid-electrolyte shifts and thermoregulation: Rest and work in heat with head cooling.

    PubMed

    Greenleaf, J E; Van Beaumont, W; Brock, P J; Montgomery, L D; Morse, J T; Shvartz, E; Kravik, S

    1980-08-01

    Plasma volume and thermoregulatory responses were measured, during head and neck cooling with a liquid-cooled neoprene headgear, in four men (21-43 years old) during 60 min of rest, 60 min of ergometer exercise (45% VO2 max), and 30 min of recovery in the supine position at 40.1 degrees C DBT and 40% rh. Compared with control (noncooling) responses, cooling decreased thigh sweating and increased mean skin temperature (Tsk) at rest, and attenuated the increases in thigh sweating by 0.26 mg/min x cm2 (-22.4%, p < 0.05), heart rate by 10 b/min (-8.5%, N.S.), rectal temperature (Tre) by 0.3 degrees C (N.S.), and ventilation by 12.5% (N.S.) during exercise. In recovery, cooling facilitated the decreases in thigh sweat rate, heart rate, Tre, and forearm blood flow, and enhanced the increase in Tsk toward control levels. Cooling had no effect upon plasma protein, osmotic, or electrolyte shifts during rest, exercise, or recovery. Plasma volume (PV) loss during exercise was 11.2% without cooling and 10.9% with cooling. Cooling increased PV by 3% (p < 0.05) during rest, and this differential was maintained throughout the exercise and recovery periods.

  13. Exercise-induced dehydration alters pulmonary function but does not modify airway responsiveness to dry air in athletes with mild asthma

    PubMed Central

    Romer, L. M.

    2017-01-01

    Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (DlCO), were conducted before and after three conditions: 1) 2 h of exercise in the heat with no fluid intake (dehydration), 2) 2 h of exercise with ad libitum fluid intake (control), and 3) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7–15)%, 11 (9–24)%, and 12 (7–20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in DlCO. Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. PMID:28280109

  14. Exercise-induced dehydration alters pulmonary function but does not modify airway responsiveness to dry air in athletes with mild asthma.

    PubMed

    Simpson, A J; Romer, L M; Kippelen, P

    2017-05-01

    Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (Dl CO ), were conducted before and after three conditions: 1 ) 2 h of exercise in the heat with no fluid intake (dehydration), 2 ) 2 h of exercise with ad libitum fluid intake (control), and 3 ) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7-15)%, 11 (9-24)%, and 12 (7-20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in Dl CO Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. Copyright © 2017 the American Physiological Society.

  15. Diaphragmatic mobility in healthy subjects during incentive spirometry with a flow-oriented device and with a volume-oriented device.

    PubMed

    Yamaguti, Wellington Pereira dos Santos; Sakamoto, Eliana Takahama; Panazzolo, Danilo; Peixoto, Corina da Cunha; Cerri, Giovanni Guido; Albuquerque, André Luis Pereira

    2010-01-01

    To compare the diaphragmatic mobility of healthy subjects during incentive spirometry with a volume-oriented device, during incentive spirometry with a flow-oriented device, and during diaphragmatic breathing. To compare men and women in terms of diaphragmatic mobility during these three types of breathing exercises. We evaluated the pulmonary function and diaphragmatic mobility of 17 adult healthy volunteers (9 women and 8 men). Diaphragmatic mobility was measured via ultrasound during diaphragmatic breathing and during the use of the two types of incentive spirometers. Diaphragmatic mobility was significantly greater during the use of the volume-oriented incentive spirometer than during the use of the flow-oriented incentive spirometer (70.16 ± 12.83 mm vs. 63.66 ± 10.82 mm; p = 0.02). Diaphragmatic breathing led to a greater diaphragmatic mobility than did the use of the flow-oriented incentive spirometer (69.62 ± 11.83 mm vs. 63.66 ± 10.82 mm; p = 0.02). During all three types of breathing exercises, the women showed a higher mobility/FVC ratio than did the men. Incentive spirometry with a volume-oriented device and diaphragmatic breathing promoted greater diaphragmatic mobility than did incentive spirometry with a flow-oriented device. Women performed better on the three types of breathing exercises than did men.

  16. Team Training for Command and Control Systems. Volume IV. Recommendations for Simulation Facility.

    DTIC Science & Technology

    1982-04-01

    free - play war gaming exercises. The tactical situation models should allow the researcher to specify certain relevant environmental conditions: weather...emphasizes dynamic free - play and task-oriented responses. The individualized CBT exercises would not necessarily replace or even reduce the amount of time...intercept exercises and bump-heads free - play , but they cannot currently be used to simulate larger-scale, two-sided, free - play engagements. 69 . All

  17. Resistance exercise as a countermeasure to disuse-induced bone loss.

    PubMed

    Shackelford, L C; LeBlanc, A D; Driscoll, T B; Evans, H J; Rianon, N J; Smith, S M; Spector, E; Feeback, D L; Lai, D

    2004-07-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  18. Acute effects of power and resistance exercises on hemodynamic measurements of older women

    PubMed Central

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    Purpose The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. Materials and methods A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m2; systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8–10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Conclusion Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women. PMID:28744114

  19. Resistance exercise as a countermeasure to disuse-induced bone loss

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A. D.; Driscoll, T. B.; Evans, H. J.; Rianon, N. J.; Smith, S. M.; Spector, E.; Feeback, D. L.; Lai, D.

    2004-01-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  20. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  1. Effect of sex on wasted left ventricular effort following maximal exercise.

    PubMed

    Lane, A D; Ranadive, S M; Yan, H; Kappus, R M; Cook, M D; Sun, P; Woods, J A; Wilund, K; Fernhall, B

    2013-09-01

    Wasted left ventricular effort (∆Ew) refers to work required of the left ventricle to eject blood that does not result in increased stroke volume and is related to left ventricular hypertrophy. Literature shows that men and women have differing ventricular and vascular responses to and following exercise. Our purpose was to determine how ∆Ew changes post-exercise in men and women and examine potential mechanisms. We hypothesized a reduction in ∆Ew that would be greater in men and that central pulse wave velocity and wave intensity (WIA) would be related to ∆Ew. Blood pressures, central pulse wave velocity (cPWV), and WIA were obtained at rest, 15 and 30 min after maximal exercise. Both sexes reduced ∆Ew post-maximal exercise (p>0.05 for interaction), but women had higher ∆Ew at each time point (p<0.05). The first peak of WIA increased 15 min post-exercise only in women (p<0.05). cPWV was attenuated (p<0.05) in women at 15 min and men at 30 min (p<0.05) post-exercise with a significant time by sex interaction (p<0.05). WIA (1st peak) was correlated (p<0.05) to ∆Ew in both sexes before and 15 min post-exercise, but cPWV was only associated with ∆Ew in men at 30 min post-exercise. We conclude that both sexes decrease ∆Ew after maximal exercise, but vascular and ventricular changes associated with the attenuation of ∆Ew are not uniform between sexes. © Georg Thieme Verlag KG Stuttgart · New York.

  2. NASA Exercise Physiology and Countermeasures Project Overview

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Ploutz-Snyder, Lori

    2009-01-01

    Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.

  3. Daily timing of salivary cortisol responses and aerobic performance in lean and obese active females.

    PubMed

    Azarbayjani, M A; Vaezepor, F; Rasaee, M J; Tojaril, F; Pournemati, P; Jourkesh, M; Ostojic, S M; Stannard, S R

    2011-01-01

    The main aim of the present study was to study the effects of morning and afternoon physical activities on cortisol responses in obese and lean women. Twenty women volunteered to participate in this study. Subjects were divided into an obese group (BMI =29.1 kg/m2) and a lean group (BMI =19 kg/m2). All subjects participated in an exercise program consisting of treadmill running at 65+/-2 % VO2max until exhaustion. In order to study effects of circadian rhythm, exercise was performed at a similar intensity and in similar environmental conditions at both 8:00 AM and 4:00 PM. Saliva specimens were collected at rest 20 minutes before activity and then immediately after the exercise in both morning and afternoon sessions. Morning and afternoon exercise resulted in a significant increase in salivary cortisol concentrations compared to basal levels in both lean and obese women (p<0.05), though the change in cortisol concentrations were higher in lean. The aerobic function of lean and obese women in the morning and afternoon showed a significant increase of 13.8 % and 5.9 %; respectively, with lean being consistently higher than obese. In conclusion, the stress response to exercise is related to circadian rhythm and individual's body weight. Based on the results of this study, it is suggested that overweight women perform exercises in the afternoon to minimize the stress response for the exercise volume performed (Tab. 1, Fig. 3, Ref. 39). Full Text in free PDF www.bmj.sk.

  4. Effects of Physical Activity and Inactivity on Muscle Fatigue

    PubMed Central

    Bogdanis, Gregory C.

    2012-01-01

    The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being. PMID:22629249

  5. Intensive Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1997-01-01

    Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  6. Very Low Volume Sprint Interval Exercise Suppresses Subjective Appetite, Lowers Acylated Ghrelin, and Elevates GLP-1 in Overweight Individuals: A Pilot Study.

    PubMed

    Holliday, Adrian; Blannin, Andrew K

    2017-04-05

    High-intensity exercise has been shown to elicit a transient suppression of appetite and create a more anorexigenic profile of appetite-associated hormones. It is yet to be fully elucidated whether such a response is observed following very low-volume, intermittent exercise at supramaximal intensity in those who are overweight. Eight overweight individuals (BMI 27.7 ± 1.7 kg·m²) completed resting (REST) and exercise (EX) trials in a counterbalanced order. EX consisted of 4 × 30 s "flat-out" cycling on an ergometer (adapted Wingate test). Two hours post-exercise (or REST), participants were presented with an ad libitum meal. Subjective appetite measures and blood samples were obtained throughout. Subjective appetite, measured using VAS, was significantly lower immediately after exercise compared with REST (38.0 ± 28.5 mm vs. 75.1 ± 26.2 mm, p = 0.018, d = 1.09). This difference remained significant 30 min post-exercise. Acylated ghrelin concentration was suppressed in EX compared with REST immediately post-exercise (113.4 ± 43.0 pg·mL -1 vs. 189.2 ± 91.8 pg·mL -1 , p = 0.03, d = 1.07) and remained lower until the ad libitum test-meal. Area-under-the-curve for GLP-1 concentration was significantly greater for EX, versus REST. There was no difference in absolute ad libitum intake or relative energy intake. As little as 4 × 30 s of "flat-out" cycling was sufficient to elicit a transient suppression of appetite and an enduring suppression of plasma acylated ghrelin. Nonetheless, food intake 2-h post-exercise was unaffected.

  7. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Very Low Volume Sprint Interval Exercise Suppresses Subjective Appetite, Lowers Acylated Ghrelin, and Elevates GLP-1 in Overweight Individuals: A Pilot Study

    PubMed Central

    Holliday, Adrian; Blannin, Andrew K.

    2017-01-01

    High-intensity exercise has been shown to elicit a transient suppression of appetite and create a more anorexigenic profile of appetite-associated hormones. It is yet to be fully elucidated whether such a response is observed following very low-volume, intermittent exercise at supramaximal intensity in those who are overweight. Eight overweight individuals (BMI 27.7 ± 1.7 kg·m2) completed resting (REST) and exercise (EX) trials in a counterbalanced order. EX consisted of 4 × 30 s “flat-out” cycling on an ergometer (adapted Wingate test). Two hours post-exercise (or REST), participants were presented with an ad libitum meal. Subjective appetite measures and blood samples were obtained throughout. Subjective appetite, measured using VAS, was significantly lower immediately after exercise compared with REST (38.0 ± 28.5 mm vs. 75.1 ± 26.2 mm, p = 0.018, d = 1.09). This difference remained significant 30 min post-exercise. Acylated ghrelin concentration was suppressed in EX compared with REST immediately post-exercise (113.4 ± 43.0 pg·mL−1 vs. 189.2 ± 91.8 pg·mL−1, p = 0.03, d = 1.07) and remained lower until the ad libitum test-meal. Area-under-the-curve for GLP-1 concentration was significantly greater for EX, versus REST. There was no difference in absolute ad libitum intake or relative energy intake. As little as 4 × 30 s of “flat-out” cycling was sufficient to elicit a transient suppression of appetite and an enduring suppression of plasma acylated ghrelin. Nonetheless, food intake 2-h post-exercise was unaffected. PMID:28379172

  9. Effects of nasal positive expiratory pressure on dynamic hyperinflation and 6-minute walk test in patients with COPD.

    PubMed

    Wibmer, Thomas; Rüdiger, Stefan; Heitner, Claudia; Kropf-Sanchen, Cornelia; Blanta, Ioanna; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-05-01

    Dynamic hyperinflation is an important target in the treatment of COPD. There is increasing evidence that positive expiratory pressure (PEP) could reduce dynamic hyperinflation during exercise. PEP application through a nasal mask and a flow resistance device might have the potential to be used during daily physical activities as an auxiliary strategy of ventilatory assistance. The aim of this study was to determine the effects of nasal PEP on lung volumes during physical exercise in patients with COPD. Twenty subjects (mean ± SD age 69.4 ± 6.4 years) with stable mild-to-severe COPD were randomized to undergo physical exercise with nasal PEP breathing, followed by physical exercise with habitual breathing, or vice versa. Physical exercise was induced by a standard 6-min walk test (6 MWT) protocol. PEP was applied by means of a silicone nasal mask loaded with a fixed-orifice flow resistor. Body plethysmography was performed immediately pre-exercise and post-exercise. Differences in mean pre- to post-exercise changes in total lung capacity (-0.63 ± 0.80 L, P = .002), functional residual capacity (-0.48 ± 0.86 L, P = .021), residual volume (-0.56 ± 0.75 L, P = .004), S(pO2) (-1.7 ± 3.4%, P = .041), and 6 MWT distance (-30.8 ± 30.0 m, P = .001) were statistically significant between the experimental and the control interventions. The use of flow-dependent expiratory pressure, applied with a nasal mask and a PEP device, might promote significant reduction of dynamic hyperinflation during walking exercise. Further studies are warranted addressing improvements in endurance performance under regular application of nasal PEP during physical activities.

  10. Cardiorespiratory effects of inelastic chest wall restriction.

    PubMed

    Miller, Jordan D; Beck, Kenneth C; Joyner, Michael J; Brice, A Glenn; Johnson, Bruce D

    2002-06-01

    We examined the effects of chest wall restriction (CWR) on cardiorespiratory function at rest and during exercise in healthy subjects in an attempt to approximate the cardiorespiratory interactions observed in clinical conditions that result in restrictive lung and/or chest wall changes and a reduced intrathoracic space. Canvas straps were applied around the thorax and abdomen so that vital capacity was reduced by >35%. Data were acquired at rest and during cycle ergometry at 25 and 45% of peak workloads. CWR elicited significant increases in the flow-resistive work performed on the lung (160%) and the gastric pressure-time integral (>400%) at the higher workload, but it resulted in a decrease in the elastic work performed on the lung (56%) compared with control conditions. With CWR, heart rate increased and stroke volume (SV) fell, resulting in >10% fall in cardiac output at rest and during exercise at matched workloads (P < 0.05). Blood pressure and catecholamines were significantly elevated during CWR exercise conditions (P < 0.05). We conclude that CWR significantly impairs SV during exercise and that a compensatory increase in heart rate does not prevent a significant reduction in cardiac output. O(2) consumption appears to be maintained via increased extraction and a redistribution of blood flow via sympathetic activation.

  11. Training Manual: Dictionary of Occupational Titles.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Human Resources, Atlanta.

    The training manual was developed as a tool for understanding the occupational information and descriptive data presented in the Dictionary of Occupational Titles (DOT) (Volumes 1 and 2 and Supplements 1 and 2). Exercises are provided in workbook form to increase an understanding of the occupational information presented. Exercises coordinated…

  12. The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.

    ERIC Educational Resources Information Center

    Roitman, J. L.; Brewer, J. P.

    This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…

  13. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  14. Use of Enterococcus faecalis and Bacillus atrophaeus as surrogates to establish and maintain laboratory proficiency for concentration of water samples using ultrafiltration.

    PubMed

    Mapp, Latisha; Klonicki, Patricia; Takundwa, Prisca; Hill, Vincent R; Schneeberger, Chandra; Knee, Jackie; Raynor, Malik; Hwang, Nina; Chambers, Yildiz; Miller, Kenneth; Pope, Misty

    2015-11-01

    The U.S. Environmental Protection Agency's (EPA) Water Laboratory Alliance (WLA) currently uses ultrafiltration (UF) for concentration of biosafety level 3 (BSL-3) agents from large volumes (up to 100-L) of drinking water prior to analysis. Most UF procedures require comprehensive training and practice to achieve and maintain proficiency. As a result, there was a critical need to develop quality control (QC) criteria. Because select agents are difficult to work with and pose a significant safety hazard, QC criteria were developed using surrogates, including Enterococcus faecalis and Bacillus atrophaeus. This article presents the results from the QC criteria development study and results from a subsequent demonstration exercise in which E. faecalis was used to evaluate proficiency using UF to concentrate large volume drinking water samples. Based on preliminary testing EPA Method 1600 and Standard Methods 9218, for E. faecalis and B. atrophaeus respectively, were selected for use during the QC criteria development study. The QC criteria established for Method 1600 were used to assess laboratory performance during the demonstration exercise. Based on the results of the QC criteria study E. faecalis and B. atrophaeus can be used effectively to demonstrate and maintain proficiency using ultrafiltration. Published by Elsevier B.V.

  15. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study.

    PubMed

    Rico-Sanz, J; Rankinen, T; Joanisse, D R; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C; Bouchard, C

    2003-07-07

    The associations of the C34T polymorphism of the adenosine monophosphate deaminase 1 (AMPD1) gene with cardiorespiratory phenotypes were tested during cycling exercise at absolute and relative power outputs progressing to exhaustion before and after endurance training for 20 wk in the HERITAGE Family Study cohort (n = 779). Since no blacks were mutant homozygotes (TT), only whites were considered for analysis (400 normal homozygotes, CC; 97 heterozygotes, CT; and 6 TT). For sedentary state, cycling at the absolute power output of 50 W resulted in a higher rating of perceived exertion in TT (P < 0.0001). At the relative intensity of 60% of Vo(2 max), stroke volume was lower in TT (P < 0.05). Maximal values for power output, systolic blood pressure, heart rate, Vco(2), and respiratory exchange ratio were lower in TT (P < 0.05). The cardiorespiratory training response at 50 W and at 60% of Vo(2 max) was similar across C34T-AMPD1 genotypes. However, the maximal values for ventilation, Vo(2), and Vco(2) during exercise increased less in TT (P < 0.01). The results indicate that subjects with the TT genotype at the C34T AMPD1 gene have diminished exercise capacity and cardiorespiratory responses to exercise in the sedentary state. Furthermore, the training response of ventilatory phenotypes during maximal exercise is more limited in TT.

  16. (−)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats

    PubMed Central

    Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.

    2013-01-01

    Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  17. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    PubMed

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  18. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.

  19. Muscle Oxygen Supply Impairment during Exercise in Poorly Controlled Type 1 Diabetes

    PubMed Central

    TAGOUGUI, SEMAH; LECLAIR, ERWAN; FONTAINE, PIERRE; MATRAN, RÉGIS; MARAIS, GAELLE; AUCOUTURIER, JULIEN; DESCATOIRE, AURÉLIEN; VAMBERGUE, ANNE; OUSSAIDENE, KAHINA; BAQUET, GEORGES; HEYMAN, ELSA

    2015-01-01

    ABSTRACT Purpose Aerobic fitness, as reflected by maximal oxygen (O2) uptake (V˙O2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Methods Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c <7.0%; T1D-I, n = 12 with inadequate glycemic control, HbA1c >8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine V˙O2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Results Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, V˙O2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Conclusions Poorly controlled patients displayed lower V˙O2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of microvascular dysfunction occurring even before overt microangiopathy. PMID:24983346

  20. Recovery after exercise in the heat--factors influencing fluid intake

    NASA Technical Reports Server (NTRS)

    Mack, G. W.

    1998-01-01

    The restoration of body fluid balance following dehydration induced by exercise will occur through regulatory responses which stimulate ingestion of water and sodium ions. A number of different afferent signalling systems are necessary to generate appropriate thirst or sodium appetite. The primary sensory information of naturally occurring thirst is derived from receptors sensing cell volume and the volume of the extracellular fluid compartment. Sensory information from the oropharyngeal region is also an important determinant of thirst. The interaction of these various afferent signalling systems within the central nervous system determines the extent of fluid replacement following dehydration.

  1. Injuries in Sedentary Individuals Enrolled in a 12-Month, Randomized, Controlled, Exercise Trial

    PubMed Central

    Campbell, Kristin L.; Foster-Schubert, Karen; Xiao, Liren; Cadmus Bertram, Lisa A.; Duggan, Catherine; Irwin, Melinda; McTiernan, Anne

    2014-01-01

    Background The risk of musculoskeletal injury with the introduction of moderate-to-vigorous exercise in sedentary adults is not well established. The purpose of this report is to examine the effect of a 12-month exercise intervention on musculoskeletal injury and bodily pain in predominately overweight, sedentary, men (n=102) and women (n=100), aged 40–75 years. Methods Participants were randomized to a moderate-to-vigorous aerobic exercise intervention (EX) (6 d/wk, 60 min/d, 60–85% max. heart rate) or usual lifestyle control (CON). Participants completed a self-report of musculoskeletal injury and body pain at baseline and 12-months. Results The number of individuals reporting an injury (CON; 27% vs. EX; 28%, p= .95) did not differ by group. The most commonly injured site was lower leg/ankle/foot. The most common causes of injury were sports/physical activity, home maintenance or “other”. In the control group, bodily pain increased over the 12 months compared to the exercise group (CON −7.9, EX −1.4, p=.05). Baseline demographics and volume of exercise were not associated with injury risk. Conclusions Previously sedentary men and women randomized to a 12-month aerobic exercise intervention with a goal of 360 min/wk reported the same number of injuries as those in the control group and less bodily pain. PMID:22368219

  2. Altered gas-exchange at peak exercise in obese adolescents: implications for verification of effort during cardiopulmonary exercise testing.

    PubMed

    Marinus, Nastasia; Bervoets, Liene; Massa, Guy; Verboven, Kenneth; Stevens, An; Takken, Tim; Hansen, Dominique

    2017-12-01

    Cardiopulmonary exercise testing is advised ahead of exercise intervention in obese adolescents to assess medical safety of exercise and physical fitness. Optimal validity and reliability of test results are required to identify maximal exercise effort. As fat oxidation during exercise is disturbed in obese individuals, it remains an unresolved methodological issue whether the respiratory gas exchange ratio (RER) is a valid marker for maximal effort during exercise testing in this population. RER during maximal exercise testing (RERpeak), and RER trajectories, was compared between obese and lean adolescents and relationships between RERpeak, RER slope and subject characteristics (age, gender, Body Mass Index [BMI], Tanner stage, physical activity level) were explored. Thirty-four obese (BMI: 35.1±5.1 kg/m²) and 18 lean (BMI: 18.8±1.9 kg/m²) adolescents (aged 12-18 years) performed a maximal cardiopulmonary exercise test on bike, with comparison of oxygen uptake (VO2), heart rate (HR), expiratory volume (VE), carbon dioxide output (VCO2), and cycling power output (W). RERpeak (1.09±0.06 vs. 1.14±0.06 in obese vs. lean adolescents, respectively) and RER slope (0.03±0.01 vs. 0.05±0.01 per 10% increase in VO2, in obese vs. lean adolescents, respectively) was significantly lower in obese adolescents, and independently related to BMI (P<0.05). Adjusted for HRpeak and VEpeak, RERpeak and RER slope remained significantly lower in obese adolescents (P<0.05). RER trajectories (in relation to %VO2peak and %Wpeak) were significantly different between groups (P<0.001). RERpeak is significantly lowered in obese adolescents. This may have important methodological implications for cardiopulmonary exercise testing in this population.

  3. Impaired Skeletal Muscle Vasodilation during Exercise in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Nelson, Ashley D.; Garten, Ryan S.; Ryan, John J.; Nativi-Nicolau, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2016-01-01

    Background Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. Methods We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n = 21; 68 ± 2 yrs) and healthy controls (n = 20; 71 ± 2 yrs). Results HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15W; HFpEF, n = 13; Controls, n = 16), LBF was not different at 0W and 5W, but was 15-25% lower in HFpEF compared to controls at 10W and 15W (P < 0.001). Likewise, leg vascular conductance (LVC), an index of vasodilation, was not different at 0W and 5W, but was 15-20% lower in HFpEF compared to controls at 10W and 15W (P < 0.05). In contrast to these peripheral deficits, exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. Conclusions These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population. PMID:26970959

  4. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  5. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    PubMed

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due to a lower respiratory rate (30 ± 1 versus 26 ± 2 breaths min(-1), P < 0.05). The reduced ventilation resulted in lower P aO 2 (97.6 ± 2.5 versus 79.5 ± 3.0 mmHg, P < 0.05) and increased P(aCO(2)) (37.3 ± 0.9 versus 43.5 ± 1.1 mmHg, P < 0.05), with significant improvement in ventilatory efficiency (reduction in the ventilatory equivalent for carbon dioxide; P < 0.05 for all). The control subjects had no change in ventilation or measures of arterial blood gases. These data suggest that inhibition of afferent feedback from locomotor muscle significantly reduces the ventilatory response to exercise in HF patients.

  6. Replacement of daily load attenuates but does not prevent changes to the musculoskeletal system during bed rest.

    PubMed

    Cavanagh, Peter R; Rice, Andrea J; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Owings, Tammy M; Comstock, Bryan; Cardoso, Tamre; Ilaslan, Hakan; Smith, Scott M; Licata, Angelo A

    2016-12-01

    The dose-response effects of exercise in reduced gravity on musculoskeletal health have not been well documented. It is not known whether or not individualized exercise prescriptions can be effective in preventing the substantial loss in bone mineral density and muscle function that have been observed in space flight and in bed rest. In this study, typical daily loads to the lower extremities were quantified in free-living subjects who were then randomly assigned to control or exercise groups. Subjects were confined to 6-degree head-down bed rest for 84 days. The exercise group performed individually prescribed 1 g loaded locomotor exercise to replace their free-living daily load. Eleven subjects (5 exercise, 6 control) completed the protocol. Volumetric bone mineral density results from quantitative computed tomography demonstrated that control subjects lost significant amounts of bone in the intertrochanteric and total hip regions ( p  < 0.0125), whereas the exercise group showed no significant change from baseline in any region ( p  > 0.0125). Pre-and post-bed rest muscle volumes were calculated from analysis of magnetic resonance imaging data. The exercise group retained a larger percentage of their total quadriceps and gastrocnemius muscle volume (- 7.2% ± 5.9, - 13.8% ± 6.1, respectively) than their control counterparts (- 23.3% ± 5.9, - 33.0 ± 8.2, respectively; p  < 0.01). Both groups significantly lost strength in several measured activities ( p  < 0.05). The declines in peak torque during repeated exertions of knee flexion and knee extension were significantly less in the exercise group than in the control group ( p  < 0.05) but work done was not significantly different between groups ( p  > 0.05). The decline in VO 2max was 17% ± 18 in exercising subjects ( p  < 0.05) and 31% ± 13 in control subjects ( p  = 0.003; difference between groups was not significant p  = 0.26). Changes in blood and urine measures showed trends but no significant differences between groups ( p  > 0.05). In summary, the decline in a number of important measures of musculoskeletal and cardiovascular health was attenuated but not eliminated by a subject-specific program of locomotor exercise designed to replace daily load accumulated during free living. We conclude that single daily bouts of exposure to locomotor exercise can play a role in a countermeasures program during bed rest, and perhaps space flight, but are not sufficient in their own right to ensure musculoskeletal or cardiovascular health.

  7. Influence of exercise on plasma ammonia and urea after ingestion beverages of carbohydrate electrolyte

    NASA Astrophysics Data System (ADS)

    Rusip, Gusbakti; Mukti Suhartini, Sri; Boon Suen, Ang

    2018-03-01

    Ingestion of beverages with carbohydrate electrolyte during exercise can delay fatigue. Fatigue caused by the decreasing of glycogen deposit source and indefensible reproduced ATP result in the improvement of IMP and ammonia during fatigue. The aim of this research was to observe the alteration of plasma ammonia and urea before, during and after exercise, after ingestion beverages of carbohydrate - electrolyte. Ten male subjects (age 18-30 years) were subjected to there cycle ergometer at 60% of VO2max with a pedal speed of 60 rpm until there is fatigued. The subject was given a drink of carbohydrate-electrolyte at a concentration of 6%, 12% and a flavored water placebo (P) to consume the volume of 3 ml/kg BW every 20 minutes. Blood samples were taken at rest and every 20 minutes until fatigue for analyzing plasma ammonia and urea. Mean exercise until fatigue show that no difference for three beverages. However, plasma ammonia and urea were significantly increase compared before and after exercise (p<0.001). Results of plasma ammonia before exercise for beverages CHO 12% (HC) (31.86±1.93μml/l vs 86.50±5.13μml/l), for CHO 6% (MC) (33.08±1.43μml/l vs 90.68±3.41μml/l), for no carbohydrate (P) (33.64±1.93μml/l vs 93.12 ± 2.91μml/l). Whereas plasma urea before exercise for beverages CHO 12% (4.75±0.12mmol/l vs 5.44±0.10mmol/l), for CHO 6% (4.88±0.20mmol/l vs 5.22± 0.10mmol/l), for Placebo (4.88±0.20mmol/l vs 5.54±0.24mmol/l). Conclusions that increase of plasma ammonia of during fatigue, can become the criteria for determining intensity exercise until fatigue results are better than plasma lactate.

  8. Influence of taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery.

    PubMed

    Kim, Dae-Young; Seo, Byoung-Do; Choi, Pan-Am

    2014-04-01

    [Purpose] This study was conducted to determine the influence of Taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery. [Subjects and Methods] Fourteen healthy university students were recruited and divided into an exercise group and a control group (n = 7 in each group). The subjects who participated in the experiment were subjected to an exercise loading test in which anaerobic threshold, value of ventilation, oxygen uptake, maximal oxygen uptake, heart rate, and maximal values of ventilation / heart rate were measured during the exercise, immediately after maximum exercise loading, and at 1, 3, 5, 10, and 15 min of recovery. [Results] At the anaerobic threshold time point, the exercise group showed a significantly longer time to reach anaerobic threshold. The exercise group showed significantly higher values for the time to reach VO2max, maximal values of ventilation, maximal oxygen uptake and maximal values of ventilation / heart rate. Significant changes were observed in the value of ventilation volumes at the 1- and 5-min recovery time points within the exercise group; oxygen uptake and maximal oxygen uptake were significantly different at the 5- and 10-min time points; heart rate was significantly different at the 1- and 3-min time points; and maximal values of ventilation / heart rate was significantly different at the 5-min time point. The exercise group showed significant decreases in blood lactate levels at the 15- and 30-min recovery time points. [Conclusion] The study results revealed that Taekwondo as a security martial arts training increases the maximal oxygen uptake and anaerobic threshold and accelerates an individual's recovery to the normal state of cardiorespiratory fitness and blood lactate level. These results are expected to contribute to the execution of more effective security services in emergencies in which violence can occur.

  9. Use of plasma creatine kinase pharmacokinetics to estimate the amount of excercise-induced muscle damage in Beagles.

    PubMed

    Chanoit, G P; Lefebvre, H P; Orcel, K; Laroute, V; Toutain, P L; Braun, J P

    2001-09-01

    To assess the effects of moderate exercise on plasma creatine kinase (CK) pharmacokinetics and to estimate exercise-induced muscle damage in dogs. 6 untrained adult Beagles. The study was divided into 3 phases. In phase 1, dogs ran for 1 hour at a speed of 9 km/h, and samples were used to determine the area under the plasma CK activity versus time curve (AUC) induced by exercise. In phases 2 and 3, pharmacokinetics of CK were calculated in dogs during exercise and at rest, respectively. Values for AUC and plasma clearance (CI) were used to estimate muscle damage. At rest, values for Cl, steady-state volume of distribution (Vdss), and mean retention time (MRT) were 0.32+/-0.02 ml/kg of body weight/min, 57+/-173 ml/kg, and 3.0+/-0.57 h, respectively. During exercise, Cl decreased significantly (0.26+/-0.03 ml/kg/min), MRT increased significantly, (4.4+/-0.97 h), and Vdss remained unchanged. Peak of plasma CK activity (151+/-58.8 U/L) was observed 3 hours after completion of exercise. Estimated equivalent amount of muscle corresponding to the quantity of CK released was 41+/-29.3 mg/kg. These results revealed that exercise had a minor effect on CK disposition and that the equivalent amount of muscle damaged by moderate exercise was negligible. This study illustrates the relevance for use of the minimally invasive and quantitative pharmacokinetic approach when estimating muscle damage.

  10. Blood electrolytes and exercise in relation to temperature regulation in man.

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1973-01-01

    It is shown that the body temperature rise during physical exercise is a regulated process and is not due to a failure of heat-dissipating mechanisms. Core and skin temperatures do not provide sufficient information to account for the control of sweating during exercise. Evidence is presented that suggests an association between equilibrium levels of rectal temperature and the osmotic concentration of the blood with essentially no influence from variations in plasma volume.-

  11. The creatine kinase response to resistance exercise.

    PubMed

    Koch, A J; Pereira, R; Machado, M

    2014-03-01

    Resistance exercise can result in localized damage to muscle tissue. This damage may be observed in sarcolemma, basal lamina, as well as, in the contractile elements and the cytoskeleton. Usually the damage is accompanied by release of enzymes such as creatine kinase (CK) and lactate dehydrogenase, myoglobin and other proteins into the blood. Serum CK has been proposed as one of the best indirect indicators of muscle damage due to its ease of identification and the relatively low cost of assays to quantify it. Thus, CK has been used as an indicator of the training intensity and a diagnostic marker of overtraining. However, some issues complicate CK's use in this manner. There is great interindividual variability in serum CK, which complicates the assignment of reliable reference values for athletes. Furthermore, factors such as training level, muscle groups involved, and gender can influence CK levels to a greater extent than differences in exercise volume completed. This review will detail the process by which resistance exercise induces a rise in circulating CK, illuminate the various factors that affect the CK response to resistance exercise, and discuss the relative usefulness of CK as a marker of training status, in light of these factors.

  12. Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution?

    PubMed

    Kuo, Chia-Hua; Harris, M Brennan

    2016-07-01

    Fat burning, defined by fatty acid oxidation into carbon dioxide, is the most described hypothesis to explain the actual abdominal fat reducing outcome of exercise training. This hypothesis is strengthened by evidence of increased whole-body lipolysis during exercise. As a result, aerobic training is widely recommended for obesity management. This intuition raises several paradoxes: first, both aerobic and resistance exercise training do not actually elevate 24 h fat oxidation, according to data from chamber-based indirect calorimetry. Second, anaerobic high-intensity intermittent training produces greater abdominal fat reduction than continuous aerobic training at similar amounts of energy expenditure. Third, significant body fat reduction in athletes occurs when oxygen supply decreases to inhibit fat burning during altitude-induced hypoxia exposure at the same training volume. Lack of oxygen increases post-meal blood distribution to human skeletal muscle, suggesting that shifting the postprandial hydrocarbons towards skeletal muscle away from adipose tissue might be more important than fat burning in decreasing abdominal fat. Creating a negative energy balance in fat cells due to competition of skeletal muscle for circulating hydrocarbon sources may be a better model to explain the abdominal fat reducing outcome of exercise than the fat-burning model.

  13. Blood electrolytes and exercise in relation to temperature regulation in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1973-01-01

    Current knowledge and theories about the relation of blood electrolytes and exercise to thermoregulation in man are reviewed. It is shown that the elevation of body temperature during physical exercise is a regulated process and is not due to a failure of the heat dissipating mechanisms. Core and skin temperatures do not provide sufficient information to account for the control of sweating during exercise. Evidence is presented that suggests an association between equilibrium levels of rectal temperature and the osmotic concentration of the blood with essentially no influence of variations in plasma volume.

  14. Coagulability and Rheology: Hematologic Benefits From Exercise, Fish, and Aspirin. Implications for Athletes and Nonathletes.

    PubMed

    Eichner, E R

    1986-10-01

    In brief: Physical activity makes the blood more fluid and less likely to clot. The healthy hematologic adaptations to exercise (enhanced fibrinolysis, expanded plasma volume, decreased hematocrit, increased red cell deformability, and decreased blood viscosity) seem to enhance the delivery of oxygen and decrease the risk of thrombosis. Regular exercise, then, by changing the blood, may offer the elite athlete enhanced performance and the general population reduced risk of heart attack. Increased amounts of fish in the diet and-for selected persons-low-dose aspirin, may be useful antithrombotic adjuncts to exercise.

  15. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects.

    PubMed

    Belviranli, Muaz; Okudan, Nilsel; Kabak, Banu

    2017-07-19

    The objective of the study was to determine the effects of acute high-intensity interval training (HIIT) on hematological parameters in sedentary men. Ten healthy, non-smoker, and sedentary men aged between 18 and 24 years participated in the study. All subjects performed four Wingate tests with 4 min intervals between the tests. Blood samples were collected at pre-exercise, immediately after, 3 and 6 h after the fourth Wingate test. Hematological parameters were analyzed in these samples. The results showed that hematocrit percentage, hemoglobin values, red cell count, mean cell volume, platelet count, total white cell count, and counts of the white cell subgroups increased immediately after the acute HIIT and their values began to return to resting levels 3 h after exercise, and completely returned to resting levels 6 h after exercise. In conclusion, acute HIIT causes an inflammatory response in blood.

  16. Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning. A Compendium of Research (1950-1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.

  17. [Research on human movement with noninvasive tissue oximeter using near infrared spectroscopy].

    PubMed

    Lin, Hong; Xi, Yu-bao; Yu, Hui

    2014-06-01

    The present paper discusses how to monitor and analyze the relative change in muscle oxygen content in quadriceps tissue, and measures and records the change in blood lactate acid concentration, blood volume and heart rate when eight players who are good at middle-distance races perform grade incremental intensity exercise on cycle ergometer by using noninvasive tissue oximeter with near infrared spectroscopy produced by China independently. The results show that muscle oxygen content has a close relationship (p < 0.01)with exercise load, blood lactic acid, blood volume and heart rate. When determined muscle oxygen content and blood lactate acid concentration was determined for many times to the same person, the test proved regular falling and rising. There was no significant changes when analyzed each set of the data was analyzed through horizontal comparison. It verifies we can judge the subjects's endurable exercise intensity and the upward inflection point of blood lactic acid corresponding to the decreasing inflection point of blood lactate acid concentration & muscle oxygen content according to the muscle oxygen content change of skeletal muscle while exercising. This paper shows NIRS research status and present situation in sports field through investigation, and analyzes the main trouble and research tendency in the future. By understanding NIRS technology gradually, the authors can realize that the muscle oxygen content which measured by noninvasive tissue oximeter using near infrared spectroscopy produced by China independently is a sensitive, nondestructive, up-to-date and reliable index, it has irreplaceable advantages when compared with traditional invasive, excised and fussy test methods.

  18. Concurrent exercise training: do opposites distract?

    PubMed

    Coffey, Vernon G; Hawley, John A

    2017-05-01

    Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Induced venous pooling and cardiorespiratory responses to exercise after bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.

    1982-01-01

    Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.

  20. Bed-rest studies: Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.

  1. Pressure-Volume Work Exercises Illustrating the First and Second Laws.

    ERIC Educational Resources Information Center

    Hoover, William G.; Moran, Bill

    1979-01-01

    Presented are two problem exercises involving rapid compression and expansion of ideal gases which illustrate the first and second laws of thermodynamics. The first problem involves the conversion of gravitational energy into heat through mechanical work. The second involves the mutual interaction of two gases through an adiabatic piston. (BT)

  2. The Relationship Between Lower Limb Bone and Muscle in Military Recruits, Response to Physical Training, and Influence of Smoking Status

    PubMed Central

    Puthucheary, Zudin; Kordi, Mehdi; Rawal, Jai; Eleftheriou, Kyriacos I.; Payne, John; Montgomery, Hugh E.

    2015-01-01

    The relationship between bone and skeletal muscle mass may be affected by physical training. No studies have prospectively examined the bone and skeletal muscle responses to a short controlled exercise-training programme. We hypothesised that a short exercise-training period would affect muscle and bone mass together. Methods: Femoral bone and Rectus femoris Volumes (RFVOL) were determined by magnetic resonance imaging in 215 healthy army recruits, and bone mineral density (BMD) by Dual X-Ray Absorptiometry (DXA) and repeated after 12 weeks of regulated physical training. Results: Pre-training, RFVOL was smaller in smokers than non-smokers (100.9 ± 20.2 vs. 108.7 ± 24.5, p = 0.018; 96.2 ± 16.9 vs. 104.8 ± 21.3, p = 0.002 for dominant/non-dominant limbs), although increases in RFVOL with training (of 14.2 ± 14.5% and 13.2 ± 15.6%] respectively, p < 0.001) were independent of prior smoking status. Pre-training RFVOL was related to bone cortical volume (r2 = 0.21 and 0.30, p < 0.001 for dominant and non-dominant legs), and specifically to periosteal (r2 = 0.21 and 0.23, p < 0.001) volume. Pre-training dominant RFVOL was independently associated with Total Hip BMD (p < 0.001). Training-related increases in RFVOL and bone volumes were related. Whilst smokers demonstrated lower muscle mass than non-smokers, differences were abolished with training. Training-related increases in muscle mass were related to increases in periosteal bone volume in both dominant and non-dominant legs. PMID:25792356

  3. Results of a Survey Software Development Project Management in the U.S. Aerospace Industry. Volume III. Major Problems.

    DTIC Science & Technology

    1979-12-18

    simplifies the staffing of a project and assures the experience is ’ recyclable ’." "Staff or members are considered ’universal experts’. During estimation...impact of changes upon the original system." "Project reviews are typically exercises in trivia ." [Keider, 1974] ____ ,,, , _ 55 "First, [lesson

  4. Pre-exercise ingestion of pickle juice, hypertonic saline, or water and aerobic performance and thermoregulation.

    PubMed

    Peikert, Jarett; Miller, Kevin C; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Crossover study. Controlled laboratory study. Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space.

  5. Importance of exercise immunology in health promotion.

    PubMed

    Neto, J C Rosa; Lira, F S; de Mello, M T; Santos, Ronaldo Vagner T

    2011-11-01

    Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.

  6. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites

    PubMed Central

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-01-01

    Background The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. Objectives The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Patients and Methods Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Results Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. Conclusions The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs). PMID:27826403

  7. Pilates Method for Lung Function and Functional Capacity in Obese Adults.

    PubMed

    Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia

    2015-01-01

    Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made ​​up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not find specific studies with obese people, justifying the need for future studies.

  8. High-volume plasma exchange in a patient with acute liver failure due to non-exertional heat stroke in a sauna.

    PubMed

    Chen, Kuan-Jung; Chen, Tso-Hsiao; Sue, Yuh-Mou; Chen, Tzay-Jinn; Cheng, Chung-Yi

    2014-10-01

    Heat stroke is a life-threatening condition characterized by an increased core body temperature (over 40°C) and a systemic inflammatory response, which may lead to a syndrome of multiple organ dysfunction. Heat stroke may be due to either strenuous exercise or non-exercise-induced exposure to a high environmental temperature. Current management of heat stroke is mostly supportive, with an emphasis on cooling the core body temperature and preventing the development of multiple organ dysfunction. Prognosis of heat stroke depends on the severity of organ involvement. Here, we report a rare case of non-exercise-induced heat stroke in a 73-year-old male patient who was suffering from acute liver failure after prolonged exposure in a hot sauna room. We successfully managed this patient by administering high-volume plasma exchange, and the patient recovered completely after treatment. © 2014 Wiley Periodicals, Inc.

  9. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: A randomized study

    PubMed Central

    Mina, Daniel Santa; Connor, Michael K.; Alibhai, Shabbir M.H.; Toren, Paul; Guglietti, Crissa; Matthew, Andrew G.; Trachtenberg, John; Ritvo, Paul

    2013-01-01

    Background Androgen deprivation therapy (ADT) has significant deleterious effects on body composition that may be accompanied by unfavourable changes in adipokine levels. While exercise has been shown to improve a number of side effects associated with ADT for prostate cancer, no studies have assessed the effect of exercise on adiponectin and leptin levels, which have been shown to alter the mitogenic environment. Methods: Twenty-six men with prostate cancer treated with ADT were randomized to home-based aerobic exercise training or resistance exercise training for 24 weeks. Adiponectin, leptin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) were analyzed by ELISA (enzyme-linked immunosorbent assay), in addition to physical activity volume, peak aerobic capacity, and anthropometric measurements, at baseline, 3 months and 6 months. Results: Resistance exercise significantly reduced IGF-1 after 3 months (p = 0.019); however, this change was not maintained at 6 months. At 6 months, IGFBP-3 was significantly increased compared to baseline for the resistance training group (p = 0.044). In an exploratory analysis of all exercisers, favourable changes in body composition and aerobic fitness were correlated with favourable levels of leptin, and favourable leptin:adiponectin and IGF-1:IGFBP-3 ratios at 3 and 6 months. Conclusions: Home-based exercise is correlated with positive changes in adipokine levels and the IGF-axis that may be related to healthy changes in physical fitness and body composition. While the improvements of adipokine markers appear to be more apparent with resistance training compared to aerobic exercise, these findings must be considered cautiously and require replication from larger randomized controlled trials to clarify the role of exercise on adipokines and IGF-axis proteins for men with prostate cancer. PMID:24282459

  10. Influence of Disease Severity and Exercise Limitation on Exercise Training Intensity and Load and Health Benefits From Pulmonary Rehabilitation in Patients with COPD: AN EXPLORATORY STUDY.

    PubMed

    Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K

    2018-04-11

    Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.

  11. NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    Hand, B D; McCole, S D; Brown, M D; Park, J J; Ferrell, R E; Huberty, A; Douglass, L W; Hagberg, J M

    2006-12-01

    We tested whether the G894T and T-786C NOS3 polymorphisms were associated with exercise cardiovascular (CV) hemodynamics in sedentary, physically active, and endurance-trained postmenopausal women. CV hemodynamic parameters including heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures and cardiac output (Q), as determined by acetylene rebreathing, stroke volume (SV), arteriovenous oxygen difference (a-vO2 diff), and total peripheral resistance (TPR) were measured during submaximal (40, 60, 80 %) and maximal (approximately 100 % VO2max) exercise. NOS3 G894T genotype was not significantly associated, either independently or interactively with habitual physical activity (PA) level, with SBP, Q, TPR, or a-vO2 diff during submaximal or maximal exercise. However, NOS3 894T non-carriers had a higher submaximal exercise HR than NOS3 894T allele carriers (120 +/- 2 vs. 112 +/- 2 beats/min, p = 0.007). NOS3 894T allele carriers had a higher SV than 894T non-carriers (78 +/- 2 vs. 72 +/- 2 ml/beat, p = 0.03) during submaximal exercise. NOS3 894T non-carriers also had a higher maximal exercise HR averaged across habitual PA groups than T allele carrier women (165 +/- 2 vs. 158 +/- 2 beats/min, p = 0.04). NOS3 894T allele carriers also tended to have a higher SV during maximal exercise than 894T non-carriers (70 +/- 2 vs. 64 +/- 2 ml/beat, p = 0.08). NOS3 T-786C genotype was not significantly associated, either independently or interactively, with any of the CV hemodynamic measures during submaximal or maximal exercise. These results suggest an association of NOS3 G894T genotype with submaximal and maximal exercise CV hemodynamic responses, especially HR, in postmenopausal women.

  12. Pharmacokinetics of detomidine administered to horses at rest and after maximal exercise.

    PubMed

    Hubbell, J A E; Sams, R A; Schmall, L M; Robertson, J T; Hinchcliff, K W; Muir, W W

    2009-05-01

    Increased doses of detomidine are required to produce sedation in horses after maximal exercise compared to calm or resting horses. To determine if the pharmacokinetics of detomidine in Thoroughbred horses are different when the drug is given during recuperation from a brief period of maximal exercise compared to administration at rest. Six Thoroughbred horses were preconditioned by exercising them on a treadmill. Each horse ran a simulated race at a treadmill speed that caused it to exercise at 120% of its maximal oxygen consumption. One minute after the end of exercise, horses were treated with detomidine. Each horse was treated with the same dose of detomidine on a second occasion a minimum of 14 days later while standing in a stocks. Samples of heparinised blood were obtained at various time points on both occasions. Plasma detomidine concentrations were determined by liquid chromatography-mass spectrometry. The plasma concentration vs. time data were analysed by nonlinear regression analysis. Median back-extrapolated time zero plasma concentration was significantly lower and median plasma half-life and median mean residence time were significantly longer when detomidine was administered after exercise compared to administration at rest. Median volume of distribution was significantly higher after exercise but median plasma clearance was not different between the 2 administrations. Detomidine i.v. is more widely distributed when administered to horses immediately after exercise compared to administration at rest resulting in lower peak plasma concentrations and a slower rate of elimination. The dose requirement to produce an equivalent effect may be higher in horses after exercise than in resting horses and less frequent subsequent doses may be required to produce a sustained effect.

  13. Changes in Brain Volume and Cognition in a Randomized Trial of Exercise and Social Interaction in a Community-Based Sample of Non-Demented Chinese Elders

    PubMed Central

    Mortimer, James A.; Ding, Ding; Borenstein, Amy R.; DeCarli, Charles; Guo, Qihao; Wu, Yougui; Zhao, Qianhua; Chu, Shugang

    2013-01-01

    Physical exercise has been shown to increase brain volume and improve cognition in randomized trials of non-demented elderly. Although greater social engagement was found to reduce dementia risk in observational studies, randomized trials of social interventions have not been reported. A representative sample of 120 elderly from Shanghai, China was randomized to four groups (Tai Chi, Walking, Social Interaction, No Intervention) for 40 weeks. Two MRIs were obtained, one before the intervention period, the other after. A neuropsychological battery was administered at baseline, 20 weeks, and 40 weeks. Comparison of changes in brain volumes in intervention groups with the No Intervention group were assessed by t-tests. Time-intervention group interactions for neuropsychological measures were evaluated with repeated-measures mixed models. Compared to the No Intervention group, significant increases in brain volume were seen in the Tai Chi and Social Intervention groups (p < 0.05). Improvements also were observed in several neuropsychological measures in the Tai Chi group, including the Mattis Dementia Rating Scale score (p = 0.004), the Trailmaking Test A (p = 0.002) and B (p = 0.0002), the Auditory Verbal Learning Test (p = 0.009), and verbal fluency for animals (p = 0.01). The Social Interaction group showed improvement on some, but fewer neuropsychological indices. No differences were observed between the Walking and No Intervention groups. The findings differ from previous clinical trials in showing increases in brain volume and improvements in cognition with a largely non-aerobic exercise (Tai Chi). In addition, intellectual stimulation through social interaction was associated with increases in brain volume as well as with some cognitive improvements. PMID:22451320

  14. The Lichfield bone study: the skeletal response to exercise in healthy young men

    PubMed Central

    Eleftheriou, Kyriacos I.; Kehoe, Anthony; James, Laurence E.; Payne, John R.; Skipworth, James R.; Puthucheary, Zudin A.; Drenos, Fotios; Pennell, Dudley J.; Loosemore, Mike; World, Michael; Humphries, Steve E.; Haddad, Fares S.; Montgomery, Hugh E.

    2012-01-01

    The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm3, P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm3, P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm3, P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response. PMID:22114178

  15. Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders.

    PubMed

    Mortimer, James A; Ding, Ding; Borenstein, Amy R; DeCarli, Charles; Guo, Qihao; Wu, Yougui; Zhao, Qianhua; Chu, Shugang

    2012-01-01

    Physical exercise has been shown to increase brain volume and improve cognition in randomized trials of non-demented elderly. Although greater social engagement was found to reduce dementia risk in observational studies, randomized trials of social interventions have not been reported. A representative sample of 120 elderly from Shanghai, China was randomized to four groups (Tai Chi, Walking, Social Interaction, No Intervention) for 40 weeks. Two MRIs were obtained, one before the intervention period, the other after. A neuropsychological battery was administered at baseline, 20 weeks, and 40 weeks. Comparison of changes in brain volumes in intervention groups with the No Intervention group were assessed by t-tests. Time-intervention group interactions for neuropsychological measures were evaluated with repeated-measures mixed models. Compared to the No Intervention group, significant increases in brain volume were seen in the Tai Chi and Social Intervention groups (p < 0.05). Improvements also were observed in several neuropsychological measures in the Tai Chi group, including the Mattis Dementia Rating Scale score (p = 0.004), the Trailmaking Test A (p = 0.002) and B (p = 0.0002), the Auditory Verbal Learning Test (p = 0.009), and verbal fluency for animals (p = 0.01). The Social Interaction group showed improvement on some, but fewer neuropsychological indices. No differences were observed between the Walking and No Intervention groups. The findings differ from previous clinical trials in showing increases in brain volume and improvements in cognition with a largely non-aerobic exercise (Tai Chi). In addition, intellectual stimulation through social interaction was associated with increases in brain volume as well as with some cognitive improvements.

  16. Balancing exercise and food intake with lactation to promote post-partum weight loss.

    PubMed

    Lovelady, Cheryl

    2011-05-01

    Excess weight gain during pregnancy and post-partum weight retention are risk factors for obesity. While many studies report average weight retained from pregnancy is only 0·5-3·0 kg; between 14 and 20% of women are 5 kg heavier at 6-18 months post-partum than they were before pregnancy. Among normal-weight women, lactation usually promotes weight loss to a moderate extent, but not among those with BMI≥35 kg/m2. While exercise and energy restriction may promote weight loss during lactation, their effect on milk volume and composition and, consequently, infant growth must be considered. The effect of exercise on lactation performance has been investigated. Moderate aerobic exercise of 45 min/d, 5 d/week improved cardiovascular fitness, plasma lipids and insulin response; however, it did not promote post-partum weight loss. Breast milk volume and composition were not affected. The effect of exercise with energy restriction in overweight women on the growth of their infants has also been studied. At 1 month post-partum, women restricted their energy intake by 2092 kJ/d and exercised 45 min/d, 4 d/week for 10 weeks. Women in the diet and exercise group lost more weight than the control group (4·8 (sd 1·7) kg v. 0·8 (sd 2·3) kg); however, there were no differences in infant growth. Based on the current evidence, it is recommended that once lactation is established, overweight women may restrict their energy intake by 2092 kJ/d and exercise aerobically 4 d/week to promote a weight loss of 0·5 kg/week.

  17. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    PubMed

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  18. Efficacy and feasibility of a novel tri-modal robust exercise prescription in a retirement community: a randomized, controlled trial.

    PubMed

    Baker, Michael K; Kennedy, David J; Bohle, Philip L; Campbell, Deena S; Knapman, Leona; Grady, Jodie; Wiltshire, James; McNamara, Maria; Evans, William J; Atlantis, Evan; Fiatarone Singh, Maria A

    2007-01-01

    To test the feasibility and efficacy of current guidelines for multimodal exercise programs in older adults. Randomized, controlled trial. Retirement village. Thirty-eight subjects (14 men and 24 women) aged 76.6 +/- 6.1. A wait list control or 10 weeks of supervised exercise consisting of high-intensity (80% of one-repetition maximum (1RM)) progressive resistance training (PRT) 3 days per week, moderate-intensity (rating of perceived exertion 11 to 14/20) aerobic training 2 days per week, and progressive balance training 1 day per week. Blinded assessments of dynamic muscle strength (1RM), balance, 6-minute walk, gait velocity, chair stand, stair climb, depressive symptoms, self-efficacy, and habitual physical activity level. Higher baseline strength and psychological well-being were associated with better functional performance. Strength gains over 10 weeks averaged 39+/-31% in exercise, versus 21+/-24% in controls (P=.10), with greater improvements in hip flexion (P=.01), hip abduction (P=.02), and chest press (P=.04) in the exercise group. Strength adaptations were greatest in exercises in which the intended continuous progressive overload was achieved. Stair climb power (12.3+/-15%, P=.002) and chair stand time (-7.1+/-15%, P=.006) improved significantly and similarly in both groups. Reduction in depressive symptoms was significantly related to compliance (attendance rate r=-0.568, P=.009, PRT progression in loading r=-0.587, P=.02, and total volume of aerobic training r=-0.541, P=.01), as well as improvements in muscle strength (r=-0.498, P=.002). Robust physical and psychological adaptations to exercise are linked, although volumes and intensities of multiple exercise modalities sufficient to cause significant adaptation appear difficult to prescribe and adhere to simultaneously in older adults.

  19. Plasma volume shifts with immersion at rest and two exercise intensities.

    PubMed

    Ertl, A C; Bernauer, E M; Hom, C A

    1991-04-01

    Eight men were studied to determine the effect of cycling exercise on plasma volume (PV) during water immersion to the xiphoid process (WIX). In all protocols the subjects were seated upright. After 30 min of rest, subjects were immersed in 34.5 degrees C water and seated on a cycling ergometer. During three 1 h WIX protocols, subjects either remained at rest (No Ex) or pedaled from minutes 20 to 30 at 38% (Ex1) or 62% (Ex2) of peak oxygen consumption (VO2peak). Hematocrit (Hct) and hemoglobin concentration [( Hb]) from venous blood samples were compared pre-WIX and at minutes 20, 30, 40, and 60. Percent change in PV (delta PV) was calculated from pre-WIX Hct and [Hb] within each protocol. Hct and [Hb] decreased after 20 min of resting WIX (P less than 0.017). In the No Ex protocol, there were no further significant changes in these variables, with delta PV values of +10.4% at minute 20 and at a peak of +13.5% at minute 40. In Ex1 and Ex2, cycling increased Hct and [Hb] (P less than 0.01, minute 30 vs No Ex), with delta PV values at minute 30 of +3.7% and -0.9%, respectively, vs +12.8% in No Ex. Minute 60 values between protocols were not significantly different (mean delta PV of +10.8 +/- 0.6% SD). The hemodilution associated with WIX was either partially or completely attenuated by cycling exercise; the degree of hemoconcentration was related to exercise intensity. The exercise-induced hemoconcentration was reversed by 30 min of resting WIX. Exercise during WIX appears to cause similar decreases in PV, as does exercise in air provided that postural hemoconcentration prior to exercise is not already maximal.

  20. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  1. Cardiovascular Drift during Training for Fitness in Patients with Metabolic Syndrome.

    PubMed

    Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallares, Jesus Garcia; Mora-Rodriguez, Ricardo

    2017-03-01

    The health benefits of a training program are largely influenced by the exercise dose and intensity. We sought to determine whether during a training bout of continuous versus interval exercise the workload needs to be reduced to maintain the prescribed target heart rate (HR). Fourteen obese (31 ± 4 kg·m) middle-age (57 ± 8 yr) individuals with metabolic syndrome, underwent two exercise training bouts matched by energy expenditure (i.e., 70 ± 5 min of continuous exercise [CE] or 45 min of interval exercise, high-intensity interval training [HIIT]). All subjects completed both trials in a randomized order. HR, power output (W), percent dehydration, intestinal and skin temperature (TINT and TSK), mean arterial pressure, cardiac output (CO), stroke volume (SV), and blood lactate concentration (La) were measured at the initial and latter stages of each trial to assess time-dependent drift. During the HIIT trial, power output was lowered by 30 ± 16 W to maintain the target HR, whereas a 10 ± 11 W reduction was needed in the CE trial (P < 0.05). Energy expenditure, CO, and SV declined with exercise time only in the HIIT trial (15%, 10%, and 13%, respectively). During HIIT, percent dehydration, TINT, and TSK increased more than during the CE trial (all P = 0.001). Mean arterial pressure and La were higher in HIIT without time drift in any trial. Our findings suggests that while CE results in mild power output reductions to maintain target HR, the increasingly popular HIIT results in marked reductions in power output, energy expenditure, and CO (21%, 15%, and 10%, respectively). HIIT based on target HR may result in lower than expected training adaptations because of workload adjustments to avoid HR drift.

  2. Long-Term Exercise Training for an Individual With Mixed Corticobasal Degeneration and Progressive Supranuclear Palsy Features: 10-Year Case Report Follow-up

    PubMed Central

    Boeve, Bradley F.; Petersen, Cheryl M.; Dvorak, Leah; Kantarci, Kejal

    2014-01-01

    Background and Purpose This case report describes the effects of long-term (10-year) participation in a community exercise program for a client with mixed features of corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The effects of exercise participation on both functional status and brain volume are described. Case Description A 60-year-old male dentist initially reported changes in gait and limb coordination. He received a diagnosis of atypical CBD at age 66 years; PSP was added at age 72 years. At age 70 years, the client began a therapist-led community group exercise program for people with Parkinson disease (PD). The program included trunk and lower extremity stretching and strengthening, upright balance and strengthening, and both forward and backward treadmill walking. The client participated twice weekly for 1 hour for 10 years and was reassessed in years 9 to 10. Outcomes Falls (self-reported weekly over the 10-year period of the study by the client and his wife) decreased from 1.9 falls per month in year 1 to 0.3 falls per month in year 10. Balance, walking endurance, and general mobility declined slightly. Gait speed (both comfortable and fast) declined; the client was unable to vary gait speed. Quantitative brain measurements indicated a slow rate of whole brain volume loss and ventricular expansion compared with clients with autopsy-proven CBD or PSP. Discussion This client has participated consistently in a regular group exercise program for 10 years. He has reduced fall frequency, maintained balance and endurance, and retained community ambulation using a walker. Combined with the slow rate of brain volume loss, this evidence supports the efficacy of a regular exercise program to prolong longevity and maintain function in people with CBD or PSP. PMID:24114439

  3. Prolonged adenosine triphosphate infusion and exercise hyperemia in humans.

    PubMed

    Shepherd, John R A; Joyner, Michael J; Dinenno, Frank A; Curry, Timothy B; Ranadive, Sushant M

    2016-09-01

    In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand. Copyright © 2016 the American Physiological Society.

  4. Thermoregulatory adaptations associated with training and heat acclimation.

    PubMed

    Geor, R J; McCutcheon, L J

    1998-04-01

    The large metabolic heat load generated as a consequence of muscular work requires activation of thermoregulatory mechanisms in order to prevent an excessive and potentially dangerous rise in body temperature during exercise. Although the horse has highly efficient heat dissipatory mechanisms, there are a number of circumstances in which the thermoregulatory system may be overwhelmed, resulting in the development of critical hyperthermia. The risk for development of life-threatening hyperthermia is greatest when (1) the horse is inadequately conditioned for the required level of physical performance; (2) exercise is undertaken in hot and particularly, in hot and humid ambient conditions; and (3) there is an impairment to thermoregulatory mechanisms (e.g., severe dehydration, anhidrosis). Both exercise training under cool to moderate ambient conditions and a period of repeated exposure to, and exercise in, hot ambient conditions (heat acclimation) will result in a number of physiologic adaptations conferring improved thermoregulatory ability. These adaptations include an expanded plasma volume, greater stability of cardiovascular function during exercise, and an improved efficiency of evaporative heat loss as a result of alterations in the sweating response. Collectively, these adjustments serve to attenuate the rise in core body temperature in response to a given intensity of exercise. The magnitude of the physiologic adaptations occurring during exercise training and heat acclimation is a reflection of the thermal load imposed on the horse. Therefore, when compared with a period of training in cool conditions, the larger thermal stimulus associated with repeated exercise in hot ambient conditions will invoke proportionally greater thermoregulatory adaptations. Although it is not possible to eliminate the effects of adverse environmental conditions on exercise performance, it is clear that a thorough exercise training program together with a subsequent period of acclimatization will serve to ameliorate the impact of the environment. Based on our current understanding of the nature and extent of thermoregulatory adaptations in the horse, the following conclusions can be made: 1. A 2- to 3-month period of exercise training geared toward the specific athletic endeavor to be undertaken will result in substantial improvements in thermoregulatory capacity and is an absolute requirement for horses required to compete in hot ambient conditions. 2. Although physical training in a cool environment improves physiologic responses to exercise at high ambient temperatures, a 2-week period of moderate exercise training in these more adverse conditions is necessary for optimization of thermoregulatory function and physical performance. 3. Heat acclimation does not reduce the need for close monitoring of horses during training and competition in the heat. This is particularly true in hot, humid ambient conditions, where the biophysical limitations to sweat evaporation can result in development of severe hyperthermia, regardless of the state of training or heat acclimation.

  5. Optimization of Skill Retention in the U. S. Army through Initial Training Analysis and Design: Skill Sustainment Exercises. Volume 3.

    DTIC Science & Technology

    1983-05-01

    Firing data cards. PROCEDURES I. Prior to live fire exercises all firers must be oriented on range procedures. 2. Preparatory marksmanship training...Ordnance detail. 2. Range safety officer. 7. Medical personnel. 3. Firing line safety NCOs. 8. Control tower operators. i 4. Scorer (I per firer ). 9. Pit...phones and wire (for PIT commo). PROCEDURES I. Prior to live fire exercises, all firers must be oriented on range procedures. 2. Scorers are responsible

  6. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.

  7. Dysphagia Management in Acute and Sub-acute Stroke

    PubMed Central

    Vose, Alicia; Nonnenmacher, Jodi; Singer, Michele L.; González-Fernández, Marlís

    2014-01-01

    Swallowing dysfunction is common after stroke. More than 50% of the 665 thousand stroke survivors will experience dysphagia acutely of which approximately 80 thousand will experience persistent dysphagia at 6 months. The physiologic impairments that result in post-stroke dysphagia are varied. This review focuses primarily on well-established dysphagia treatments in the context of the physiologic impairments they treat. Traditional dysphagia therapies including volume and texture modifications, strategies such as chin tuck, head tilt, head turn, effortful swallow, supraglottic swallow, super-supraglottic swallow, Mendelsohn maneuver and exercises such as the Shaker exercise and Masako (tongue hold) maneuver are discussed. Other more recent treatment interventions are discussed in the context of the evidence available. PMID:26484001

  8. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis.

    PubMed

    Merlotti, C; Ceriani, V; Morabito, A; Pontiroli, A E

    2017-05-01

    Aim of this review is to compare visceral and subcutaneous fat loss with all available strategies (diet and exercise, weight-loss promoting agents and bariatric surgery). Eighty-nine studies, all full papers, were analyzed to evaluate visceral and subcutaneous fat changes, measured through ultrasound, computerized tomography, magnetic resonance imaging and expressed as thickness, weight, area and volume. Studies were included in a meta-analysis (random-effects model). Intervention effect (absolute and percent changes of visceral and subcutaneous fat) was expressed as standardized mean differences, with 95% confidence intervals. Publication bias was formally assessed. The result was that subcutaneous fat was greater than visceral fat when measured as area, volume and weight, not as thickness; decrease of subcutaneous fat was greater than visceral fat when measured as area, volume and weight, not as thickness; percent decrease of visceral fat was always greater than percent decrease of subcutaneous fat, with no differences between different strategies. No intervention preferentially targets visceral fat. Basal visceral fat depots are smaller than basal subcutaneous fat depots. Visceral fat loss is linked to subcutaneous fat loss. With all strategies, percent decrease of visceral fat prevails on subcutaneous fat loss.

  9. Adenoviral beta-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy.

    PubMed

    Gupta, Dipin; Molina, Ezequiel J; Palma, Jon; Gaughan, John P; Long, Walter; Macha, Mahender

    2008-10-01

    We hypothesized that intracoronary adenoviral-mediated delivery of betaARKct would improve heart failure associated pathophysiologic abnormalities related to exercise capacity, cardiac contractility, systemic inflammation and volume overload. After aortic banding, a cohort of Sprague-Dawley rats was followed by echocardiography. When an absolute decline of 25% in fractional shortening was detected, animals were randomized to intracoronary delivery of Ad.ssARKct (n=14), Ad.beta-Gal (n=13), or followed without any other further intervention (n=18). Assessment of exercise tolerance and hemodynamic profile and measurement of markers of systemic inflammation and volume overload was performed at 7, 14, and 21 days after gene delivery. Data were analyzed using ANOVA. Animals receiving Ad.ssARKct showed improved exercise tolerance compared to Ad.Gal-treated animals at 14 days (507+/-26 s vs. 408+/-19 s, P=0.01) and 21 days (526+/-55 s vs. 323+/-19 s, P<0.001) following injection. Animals receiving Ad.ssARKct demonstrated improved +dP/dtmax (mean+/-SD, 5,581+/-960 mmHg/s vs. 3,134+/-438 mmHg/s, P<0.01) and -dP/dtmax (mean+/-SD, -3,494+/-1,269 mmHg/s vs. -1,925+/-638 mmHg/s, P<0.01) compared to Ad.Gal-treated animals at 7 days. These differences were observed up to 21 days following injection. Serum levels of IL-1, IL-6, and TNF-alpha, as well as ANP were also decreased in animals receiving Ad.betaARKct. Genetic modulation of heart failure using the betaARKct gene was associated with improved exercise capacity and cardiac function as well as amelioration in heart failure-associated profiles of systemic inflammation and volume overload.

  10. The interrelationship of research in the laboratory and the field to assess hydration status and determine mechanisms involved in water regulation during physical activity.

    PubMed

    Stachenfeld, Nina S

    2014-05-01

    Changes in skin blood and sweating are the primary mechanisms for heat loss in humans. A hot, humid environment concomitant with dehydration limits the ability to increase skin blood flow for the purpose of transferring heat from the body core to skin surface and evaporate sweat to maintain core temperature within safe limits during exercise. Adequate hydration improves thermoregulation by maintaining blood volume to support skin blood flow and sweating. Humans rely on fluid intake to maintain total body water and blood volume, and have developed complex mechanisms to sense changes in the amount and composition of fluid in the body. This paper addresses the interrelationship of research in the laboratory and the field to assess hydration status involved in body water and temperature regulation during exercise. In the controlled setting of a research laboratory, investigators are able to investigate the contributions of volume and tonicity of fluid in the plasma to body water and temperature regulation during exercise and recovery. For example, laboratory studies have shown that tonicity in a rehydration beverage maintains the thirst mechanism (and stimulates drinking), and contributes to the ongoing stimulation of renal fluid retention hormones, ultimately leading to a more complete rehydration. Research in the field cannot control the environment precisely, but these studies provide a natural, 'real-life' setting to study fluid and temperature regulation during exercise. The conditions encountered in the field are closest to the environment during competition, and data collected in the field can have an immediate impact on performance and safety during exercise. There is an important synergy between these two methods of collecting data that support performance and protect athletes from harm during training and improve performance during competition.

  11. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  12. A comparison of head motion and prefrontal haemodynamics during upright and recumbent cycling exercise.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2017-11-01

    The aim of this observational study was to compare head motion and prefrontal haemodynamics during exercise using three commercial cycling ergometers. Participants (n = 12) completed an incremental exercise test to exhaustion during upright, recumbent and semi-recumbent cycling. Head motion (using accelerometry), physiological data (oxygen uptake, end-tidal carbon dioxide [P ET CO 2 ] and heart rate) and changes in prefrontal haemodynamics (oxygenation, deoxygenation and blood volume using near infrared spectroscopy [NIRS]) were recorded. Despite no difference in oxygen uptake and heart rate, head motion was higher and P ET CO 2 was lower during upright cycling at maximal exercise (P<0·05). Analyses of covariance (covariates: head motion P>0·05; P ET CO 2 , P<0·01) revealed that prefrontal oxygenation was higher during semi-recumbent than recumbent cycling and deoxygenation and blood volume were higher during upright than recumbent and semi-recumbent cycling (respectively; P<0·05). This work highlights the robustness of the utility of NIRS to head motion and describes the potential postural effects upon the prefrontal haemodynamic response during upright and recumbent cycling exercise. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Effect of Chronic Athletic Activity on Brown Fat in Young Women

    PubMed Central

    Singhal, Vibha; Maffazioli, Giovana D.; Ackerman, Kate E.; Lee, Hang; Elia, Elisa F.; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M.; Misra, Madhusmita

    2016-01-01

    Background The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. Purpose We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. Methods The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18–25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Results Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Conclusions Our study shows a trend for lower BAT in young female athletes compared with non-athletes, and shows associations of brown fat with menstrual status and body composition. Brown fat may undergo adaptive reductions with increasing energy deficit. PMID:27243823

  14. Effects of vitamin C and exercise on lipid profile, platelet and erythrocyte indices in young soccer players.

    PubMed

    Karakilcik, A Z; Halat, R; Zerin, M; Celik, H; Nazligul, Y

    2014-10-01

    Exercise may increase production of reactive oxygen species (ROS) enhancing oxidative stress. Antioxidants can efficiently scavenge ROS before they initiate oxidative damage of biomolecules such as enzymes, nucleic acids, lipids and lipoproteins in the body. Vitamin C, an important antioxidant, may affect oxidative stress in living organism. Therefore, this study was carried out to investigate the effects of exercise and vitamin C on thiobarbituric acid-reactive substance (TBARS), lipid profile, erythrocyte and platelet indices in young soccer players. This investigation was carried out on twenty two male volunteer players in three groups. The first group was examined as a control. The second group was only exposed to exercise. The third group was exposed to exercise plus vitamin C (500 mg/day) administered per oral. The players were 23.50±0.59 year-old, 67.66±1.52 kg body weight and 1.74±0.03 m height. Blood samples were collected in vacutainer tubes for analysis of biochemical and hematological parameters. While the levels of high density lipoprotein-cholesterol (HDL-C) were significantly increased (P<0.05) with only exercise, the cholesterol and low density lipoprotein-cholesterol (LDL-C) were decreased (P<0.05 to P<0.01) with exercise and exercise plus vitamin C treatment. While TBARS levels were increased (P<0.05) with exercise training, it was decreased (P<0.05) with exercise plus vitamin C treatment. The platelet counts (PLT), mean platelet volume (MPV), plateletcrit (PCT) and red blood cell distribution width (RDW) were significantly decreased (P<0.05) with exercise plus vitamin C. There were significantly correlations (P<0.05 to P<0.01) between lipid values and erythrocyte and platelet indices. In light of these results, exercise may play a role in decreasing of LDL-C and in increasing of HDL-C. In addition, exercise plus vitamin C may diminish TBARS-levels and may affect the values of PLT, MPV, PCT and RDW in young soccer players.

  15. In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice.

    PubMed

    Biedermann, Sarah; Fuss, Johannes; Zheng, Lei; Sartorius, Alexander; Falfán-Melgoza, Claudia; Demirakca, Traute; Gass, Peter; Ende, Gabriele; Weber-Fahr, Wolfgang

    2012-07-16

    Voluntary exercise has tremendous effects on adult hippocampal plasticity and metabolism and thus sculpts the hippocampal structure of mammals. High-field (1)H magnetic resonance (MR) investigations at 9.4 T of metabolic and structural changes can be performed non-invasively in the living rodent brain. Numerous molecular and cellular mechanisms mediating the effects of exercise on brain plasticity and behavior have been detected in vitro. However, in vivo attempts have been rare. In this work a method for voxel based morphometry (VBM) was developed with automatic tissue segmentation in mice using a 9.4 T animal scanner equipped with a (1)H-cryogenic coil. The thus increased signal to noise ratio enabled the acquisition of high resolution T2-weighted images of the mouse brain in vivo and the creation of group specific tissue class maps for the segmentation and normalization with SPM. The method was used together with hippocampal single voxel (1)H MR spectroscopy to assess the structural and metabolic differences in the mouse brain due to voluntary wheel running. A specific increase of hippocampal volume with a concomitant decrease of hippocampal glutamate levels in voluntary running mice was observed. An inverse correlation of hippocampal gray matter volume and glutamate concentration indicates a possible implication of the glutamatergic system for hippocampal volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bronchoscopic Lung Volume Reduction with Endobronchial Valves in Low-FEV1 Patients.

    PubMed

    Darwiche, Kaid; Karpf-Wissel, Rüdiger; Eisenmann, Stephan; Aigner, Clemens; Welter, Stefan; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Freitag, Lutz; Oezkan, Filiz

    2016-01-01

    Bronchoscopic lung volume reduction (BLVR) with valves has been shown to improve lung function, exercise capacity, and quality of life in patients with emphysema, but only few patients with forced expiratory volume in 1 s (FEV1) ≤20% predicted have been included in former studies. Although the procedure can be performed safely, pneumothorax is a frequent complication, which can be critical for these very severely diseased patients. The aim of the study was to assess the safety of BLVR in patients with a very advanced stage of emphysema, as indicated by FEV1 ≤20% predicted. Patients in whom BLVR was performed between January 2013 and August 2015 were included in this analysis if their baseline predicted FEV1 was ≤20%. BLVR, performed only if collateral ventilation was absent, achieved complete occlusion of the target lobe. All patients were closely monitored and were not discharged before the fourth day after BLVR. Twenty patients with FEV1 ≤20% predicted were included in the analysis. Lung volume reduction was achieved in 65% of the cases. Pneumothorax occurred in 4 cases (20%). No patient died. Lung function and exercise tolerance improved after 1 and 3 months, respectively. BLVR with valves can be safely performed in patients with FEV1 ≤20% predicted when close postprocedural monitoring is provided. Improvement in lung function and exercise capacity can be achieved. © 2016 S. Karger AG, Basel.

  17. Cardiovascular adaptations in weightlessness: The influence of in-flight exercise programs on the cardiovascular adjustments during weightlessness and upon returning to Earth

    NASA Technical Reports Server (NTRS)

    Bennett, C. H.

    1981-01-01

    The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.

  18. Excess Ventilation in Chronic Obstructive Pulmonary Disease-Heart Failure Overlap. Implications for Dyspnea and Exercise Intolerance.

    PubMed

    Rocha, Alcides; Arbex, Flavio F; Sperandio, Priscilla A; Souza, Aline; Biazzim, Ligia; Mancuso, Frederico; Berton, Danilo C; Hochhegger, Bruno; Alencar, Maria Clara N; Nery, Luiz E; O'Donnell, Denis E; Neder, J Alberto

    2017-11-15

    An increased ventilatory response to exertional metabolic demand (high [Formula: see text]e/[Formula: see text]co 2 relationship) is a common finding in patients with coexistent chronic obstructive pulmonary disease and heart failure. We aimed to determine the mechanisms underlying high [Formula: see text]e/[Formula: see text]co 2 and its impact on operating lung volumes, dyspnea, and exercise tolerance in these patients. Twenty-two ex-smokers with combined chronic obstructive pulmonary disease and heart failure with reduced left ventricular ejection fraction undertook, after careful treatment optimization, a progressive cycle exercise test with capillary (c) blood gas collection. Regardless of the chosen metric (increased [Formula: see text]e-[Formula: see text]co 2 slope, [Formula: see text]e/[Formula: see text]co 2 nadir, or end-exercise [Formula: see text]e/[Formula: see text]co 2 ), ventilatory inefficiency was closely related to Pc CO 2 (r values from -0.80 to -0.84; P < 0.001) but not dead space/tidal volume ratio. Ten patients consistently maintained exercise Pc CO 2 less than or equal to 35 mm Hg (hypocapnia). These patients had particularly poor ventilatory efficiency compared with patients without hypocapnia (P < 0.05). Despite the lack of between-group differences in spirometry, lung volumes, and left ventricular ejection fraction, patients with hypocapnia had lower resting Pa CO 2 and lung diffusing capacity (P < 0.01). Excessive ventilatory response in this group was associated with higher exertional Pc O 2 . The group with hypocapnia, however, had worse mechanical inspiratory constraints and higher dyspnea scores for a given work rate leading to poorer exercise tolerance compared with their counterparts (P < 0.05). Heightened neural drive promoting a ventilatory response beyond that required to overcome an increased "wasted" ventilation led to hypocapnia and poor exercise ventilatory efficiency in chronic obstructive pulmonary disease-heart failure overlap. Excessive ventilation led to better arterial oxygenation but at the expense of earlier critical mechanical constraints and intolerable dyspnea.

  19. The effects of different materials of protective gloves on thermoregulatory responses.

    PubMed

    Hayashi, C; Tokura, H

    1999-01-01

    The effects of two kinds of protecting gloves for pesticide spraying made of different materials on thermoregulatory responses during exercise were studied at ambient temperature of 28 degrees C and relative humidity of 60% in six healthy females, aged 19. One kind of gloves was made of polyurethane (A) and the other of Goretex (B) with cotton lining in each glove. Both kinds of gloves had almost the same volume. Main results of the experiment were summarised as follows: (1) during the exercise an increase of rectal temperature was inhibited more effectively in B than in A; (2) skin temperature of hand was significantly lower in B than in A; (3) absolute humidity and temperature inside the gloves were significantly lower during the period from the gripping bar exercise to the end of the experiment; (4) the number of contractions by the handgrip exercise performed immediately after the second turning of the screw was significantly smaller in A than in B. The findings presented suggest that the gloves made of Goretex material could reduce thermal strain during intermittent work in warm environmental conditions.

  20. Effect of exercise test on pulmonary function of obese adolescents.

    PubMed

    Faria, Alethéa Guimarães; Ribeiro, Maria Angela G O; Marson, Fernando Augusto Lima; Schivinski, Camila Isabel S; Severino, Silvana Dalge; Ribeiro, José Dirceu; Barros Filho, Antônio A

    2014-01-01

    to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

Top