Kim, Yong-Youn; Park, Si-Eun
2016-01-01
[Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136
Kim, Yong-Youn; Park, Si-Eun
2016-11-01
[Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo
2014-01-01
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. PMID:25516550
Response of end tidal CO2 pressure to impulse exercise.
Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T
2014-03-01
The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.
Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro
2015-01-01
Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653
Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S
2015-06-01
The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto
2015-02-15
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. Copyright © 2015 the American Physiological Society.
Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K.; Poulios, Athanasios; Jamurtas, Athanasios Z.; Bar-Or, David; Kouretas, Dimitrios
2015-01-01
The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress. PMID:25874019
Annesi, James J
2011-07-01
Lack of success with behavioral weight-management treatments indicates a need for a better understanding of modifiable psychological correlates. Adults with class 2 and 3 obesity (N = 183; Mean(BMI) = 42.0 kg/m(2)) volunteered for a 26-week nutrition and exercise treatment, based on social cognitive theory, that focused on self-efficacy and self-regulation applied to increasing cardiovascular exercise and fruit and vegetable consumption. Improved self-efficacy for controlled eating significantly predicted increased fruit and vegetable consumption (R(2) = .15). Improved self-efficacy for exercise significantly predicted increased exercise (R(2) = .46). When changes in self-regulatory skill usage were stepped into the 2 previous equations, the variances accounted for significantly increased. Increases in fruit and vegetable consumption and exercise significantly predicted weight loss (R(2) = .38). Findings suggest that behavioral theory should guide research on weight-loss treatment, and a focus on self-efficacy and self-regulatory skills applied to specific nutrition and exercise behaviors is warranted.
Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.
Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A
1987-07-01
Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.
Kong, Sangwon; Lee, Kyung Soo; Kim, Junho
2014-01-01
Objective To compare the effect of two different hand exercises on hand strength and vascular maturation in patients who underwent arteriovenous fistula surgery. Methods We recruited 18 patients who had chronic kidney disease and had undergone arteriovenous fistula surgery for hemodialysis. After the surgery, 10 subjects performed hand-squeezing exercise with GD Grip, and other 8 subjects used Soft Ball. The subjects continued the exercises for 4 weeks. The hand grip strength, pinch strength (tip, palmar and lateral pinch), and forearm circumference of the subjects were assessed before and after the hand-squeezing exercise. The cephalic vein size, blood flow velocity and volume were also measured by ultrasonography in the operated limb. Results All of the 3 types of pinch strengths, grip strength, and forearm circumference were significantly increased in the group using GD Grip. Cephalic vein size and blood flow volume were also significantly increased. However, blood flow velocity showed no difference after the exercise. The group using Soft Ball showed a significant increase in the tip and lateral pinch strength and forearm circumference. The cephalic vein size and blood flow volume were also significantly increased. On comparing the effect of the two different hand exercises, hand-squeezing exercise with GD Grip had a significantly better effect on the tip and palmar pinch strength than hand-squeezing exercise with Soft Ball. The effect on cephalic vein size was not significantly different between the two groups. Conclusion The results showed that hand squeezing exercise with GD Grip was more effective in increasing the tip and palmar pinch strength compared to hand squeezing exercise with soft ball. PMID:25379494
Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan
2013-01-01
The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p < 0.05. The following results were obtained from this study; 1. In the change of fatigue substances : Serotonin in the EXP tended to decreased at the 10 min before exercise, 30 min into exercise, post exercise, and recovery 30 min. Serotonin in the CON was significantly greater than the EXP at the10 min before exercise and recovery 30. Ammonia in the EXP was increased at the 10 min before exercise, 30 min into exercise, and post exercise, but significantly decreased at the recovery 30min (p < 0.05). Ammonia in the CON was significantly lower than the EXP at the 10 min before exercise, 30 min into exercise, and post exercise (p < 0.05). Lactate in the EXP was significantly increased at the 30 min into exercise and significantly decreased at the post exercise and recovery 30 min. Lactate in the CON was significantly lower than the EXP at the post exercise (p < 0.05). 2. In the change of muscle damage substances : CK in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. CK in the CON was greater than the EXP. LDH in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. LDH in the CON was higher than the EXP. 3. In the change of energy metabolism substances :Glucose in the EXP tended to decrease at the 10 min before exercise, 30 min into exercise, post exercise and recovery 30 min. Glucose in the CON was significantly greater than the EXP at the recovery 30 min (p < .05). FFA in both EXP and CON was increased at the post exercise and recovery 30 min. % increase for FFA in the EXP was greater than the CON at the post exercise and recovery 30 min. 4. The relationship of the fatigue substances, muscle damage substances and energy metabolism substances after endurance exercise indicated strongly a positive relationship between LDH and ammonia and a negative relationship between LDH and FFA in the EXP. Also, there were a strong negative relationship between glucose and FFA and a positive relationship between glucose and serotonin in the EXP. There was a strong positive relationship between CK and LDH and a strong negative relationship between FFA and glucose in the CON. These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise. PMID:25566428
Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan
2013-12-01
The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p < 0.05. The following results were obtained from this study; 1. In the change of fatigue substances : Serotonin in the EXP tended to decreased at the 10 min before exercise, 30 min into exercise, post exercise, and recovery 30 min. Serotonin in the CON was significantly greater than the EXP at the10 min before exercise and recovery 30. Ammonia in the EXP was increased at the 10 min before exercise, 30 min into exercise, and post exercise, but significantly decreased at the recovery 30min (p < 0.05). Ammonia in the CON was significantly lower than the EXP at the 10 min before exercise, 30 min into exercise, and post exercise (p < 0.05). Lactate in the EXP was significantly increased at the 30 min into exercise and significantly decreased at the post exercise and recovery 30 min. Lactate in the CON was significantly lower than the EXP at the post exercise (p < 0.05). 2. In the change of muscle damage substances : CK in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. CK in the CON was greater than the EXP. LDH in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. LDH in the CON was higher than the EXP. 3. In the change of energy metabolism substances :Glucose in the EXP tended to decrease at the 10 min before exercise, 30 min into exercise, post exercise and recovery 30 min. Glucose in the CON was significantly greater than the EXP at the recovery 30 min (p < .05). FFA in both EXP and CON was increased at the post exercise and recovery 30 min. % increase for FFA in the EXP was greater than the CON at the post exercise and recovery 30 min. 4. The relationship of the fatigue substances, muscle damage substances and energy metabolism substances after endurance exercise indicated strongly a positive relationship between LDH and ammonia and a negative relationship between LDH and FFA in the EXP. Also, there were a strong negative relationship between glucose and FFA and a positive relationship between glucose and serotonin in the EXP. There was a strong positive relationship between CK and LDH and a strong negative relationship between FFA and glucose in the CON. These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.
Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro
2016-02-01
What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma viscosity and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell deformability (e.g. red blood cell membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Kurban, Sevil; Mehmetoglu, Idris; Yerlikaya, Hümeyra F; Gönen, Sait; Erdem, Sami
2011-01-01
Objectives. Our aim was to determine the effect of chronic regular exercise on ischemia-modified albumin (IMA) levels and oxidative stress in type 2 diabetes mellitus (DM). Design and methods. Sixty patients with type 2 DM were randomly divided into two groups as exercise (17 M, 13 F) and non-exercise (12 M, 18 F) groups, each consisting of 30 patients. The exercise group underwent a 3-month aerobic regular exercise consisting of moderate-intensity power walking. The non-exercise subjects remained sedentary throughout the study period. Serum total antioxidant status (TAS), total oxidant status (TOS), and IMA levels of the groups were determined at baseline and 3 months later. Results. There was no significant change in TOS and IMA levels of exercise group but TAS levels were significantly increased (p < 0.05). Also, postexercise systolic (p < 0.001) and diastolic (p < 0.05) blood pressures of the exercise group were significantly lower than the baseline values. In addition, there was no significant change in TAS and TOS levels of the non-exercise group; however, IMA levels were significantly increased (p < 0.01). Conclusion. We have shown, for the first time, that exercise prevents increase in IMA levels in type 2 DM which might have resulted from increased levels of TAS and reduces the risk of ischemia in these patients. These findings show that chronic exercise is beneficial in the prevention of oxidative stress in patients with type 2 DM as documented by decreased IMA levels.
Tanaka, Daichi; Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao
2018-05-26
Acute aerobic exercise improves inhibitory control (IC). This improvement is often associated with increases in perceived exertion during exercise. However, listening to music during aerobic exercise mitigates an exercise-induced increase in perceived exertion. Thus, it is hypothesized that such effects of music may interfere with exercise-induced improvements in IC. To test this hypothesis, we examined the effect of music on post-exercise IC improvements that were induced by moderate-intensity exercise. Fifteen healthy young men performed cycle ergometer exercise with music or non-music. The exercise was performed using a moderate-intensity of 60% of VO 2 peak for 30 min. The music condition was performed while listening to self-selected music. The non-music condition involved no music. To evaluate IC, the Stroop task was administered before exercise, immediately after exercise, and during the 30-min post-exercise recovery period. The rate of perceived exertion immediately before moderate-intensity exercise completed was significantly lower in music condition than in non-music condition. The IC significantly improved immediately after exercise and during the post-exercise recovery period compared to before exercise in both music and non-music conditions. The post-exercise IC improvements did not significantly differ between the two conditions. These findings indicate that self-selected music-induced mitigation of the increase in perceived exertion during moderate-intensity exercise dose not interfere with exercise-induced improvements in IC. Therefore, we suggest that listening to music may be a beneficial strategy in mitigating the increase in perceived exertion during aerobic exercise without decreasing the positive effects on IC. Copyright © 2018 Elsevier Inc. All rights reserved.
Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito
2010-01-01
We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p < 0.01) compared to the baseline. The (NONEX)V(O)(2mus) at each work rate was not significantly increased. In contrast, (NONEX)FBF was significantly increased at 120 W (p < 0.05) and 160 W (p < 0.01) compared to the baseline. These results suggest that the O(2) supply to the non-exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.
Sex differences in autonomic function following maximal exercise.
Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo
2015-01-01
Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.
Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation
Gahreman, Daniel; Wang, Rose; Boutcher, Yati; Boutcher, Stephen
2015-01-01
Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo. PMID:26184298
Effects of posture on exercise performance - Measurement by systolic time intervals.
NASA Technical Reports Server (NTRS)
Spodick, D. H.; Quarry-Pigott, V. M.
1973-01-01
Because posture significantly influences cardiac performance, the effects of moderate supine and upright ergometer exercise were compared on the basis of proportional (+37%) rate increments over resting control. Supine exercise produced significant decreases in left ventricular ejection time (LVET), pre-ejection period (PEP), and isovolumic contraction time (IVCT). Ejection time index (ETI) and corrected ejection time (LVETc) did not change significantly. Upright exercise produced greater decreases in PEP and LVET, but despite the rate increase there was no change in LVET, which resulted in sharp increases in ETI and LVETc. The discordant directional effects on LVET and its rate-correcting indices between the two postures were consistent with hemodynamic studies demonstrating lack of stroke volume change during supine exercise and increased stroke volume over control during light to moderate upright exercise.
Exercise-induced hand tremor: a possible test for beta 2-adrenoceptor selectivity in man?
Abila, B; Wilson, J F; Marshall, R W; Richens, A
1986-01-01
The effects of intravenous doses of propranolol, sotalol, timolol, atenolol and placebo on exercise-induced tachycardia and exercise-induced increases in hand tremor were assessed in four healthy volunteers. All active drugs produced significant reductions in exercise-induced tachycardia. Exercise caused consistent significant increases in hand tremor which were blocked by the three non-cardioselective drugs but not by atenolol or placebo. The blockade of exercise-induced hand tremor is suggested as a possible test for the assessment of the selectivity of beta-adrenoceptor blockade in man. PMID:2874824
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-03-01
The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn't have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn't show statistically significant difference, it tended to increase in the pilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-01-01
[Purpose] The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. [Methods] We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. [Results] As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn’t have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn’t show statistically significant difference, it tended to increase in the pilates group (NS). [Conclusion] These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption. PMID:25566441
The effect of exercise on plasma lipids and LDL subclass metabolism in miniature swine.
Stucchi, A F; Terpstra, A H; Foxall, T L; Nicolosi, R J; Smith, S C
1991-05-01
The effects of exercise on plasma lipids and lipoproteins, high density lipoprotein (HDL) subclass cholesterol levels, and low density lipoprotein (LDL) subclass composition and metabolism were studied in Yucatan miniature swine following 2 yr of training. The exercise protocol produced significant training effects. Post-heparin lipolytic activity was also significantly increased. Although plasma cholesterol and triglycerides did not differ significantly (P = 0.08) between the exercised and control groups, multivariate analysis indicated a strong association between lipoprotein lipase (LPL) and HDL2-C (P less than 0.0001). Although HDL-C levels rose only slightly (P less than 0.09) with exercise, a significant shift was noted in the distribution of cholesterol from the HDL3 to the HDL2 fractions, perhaps mediated by the substantial increase in LPL activity. Exercise had little effect on the chemical composition of the major lipoprotein classes; however, the triglyceride content of the lighter LDL1 subclass was significantly reduced. In the more dense LDL2 subclass, exercise resulted in a significant decrease in triglycerides concomitant with a significant increase in free cholesterol levels. In contrast with the small reductions in fractional catabolic rates (FCR) in either subclass, production rates of the exercised group were reduced, which accounted for the reduction in LDL subclass pool size. These data indicate that exercise produces subtle but significant changes in lipoprotein metabolism that have been previously associated with reduced risk of atherosclerosis.
Association of a behaviorally based high school health education curriculum with increased exercise.
Annesi, James J; Trinity, John; Mareno, Nicole; Walsh, Stephanie M
2015-06-01
Increasing exercise in children and adolescents through academic classes is an understudied area. Potential benefits include associated improvements in health, psychosocial, and quality-of-life factors. A sample of 98 students (M(age) = 14.3) from high school health education classes received six, 40-min lessons incorporating cognitive-behavioral methods to increase exercise over 6 weeks. Significant within-group improvements in exercise, mood, and body satisfaction were found, with slightly larger effect sizes identified for the boys. Increase in exercise was significantly associated with reduced mood distress (β = -.17, p < .001). For the girls only, change in body satisfaction significantly mediated that relationship, and a reciprocal relationship between changes in mood and body satisfaction was also identified. Incorporation of lessons emphasizing goal setting and self-regulation within high school health education classes may foster increased exercise and associated improvements in mood and body satisfaction. For girls, the positive effects may reinforce one another. © The Author(s) 2014.
Park, Ji-Hye; Lee, Junga; Oh, Minsuk; Park, Hyuna; Chae, Jisuk; Kim, Dong-Il; Lee, Mikyoung; Yoon, Yong Jin; Lee, Chulwon; Kim, Nam Kyu; Jones, Lee W.; Kim, Seung Il; Park, Se Ho; Jeon, Justin Y.
2016-01-01
Purpose The purpose of this study was to examine the effect of an oncologists’ exercise recommendation with and without exercise motivation package on the amount of exercise participation and quality of life (QOL) in breast and colon cancer survivors. Methods A total of 162 early stage breast and colorectal cancer survivors who completed primary and adjuvant treatments were recruited for this study. Participants were randomly assigned into one of three groups: 1) control (N=59), 2) Oncologists’ exercise recommendation (N=53), and 3) Oncologists’ exercise recommendation with exercise motivation package (N=50). At baseline and after 4 weeks, the level of exercise participation and QOL were assessed. Results A total of 130 (80.7%) participants completed the 4-week assessment. The result showed that participants who only received oncologists’ exercise recommendation did not increase their exercise participation level. But participants who received oncologist’s exercise recommendation with motivation package significantly increased the level of exercise participation [4.30±7.84 Metabolic Equivalent of Task (MET) hour per week, p<001] compared with that of the control group and significantly improved role functioning, pain and diarrhea. Conclusion Oncologists’ exercise recommendation may not be enough to increase exercise participation.. Exercise motivation package with oncologists’ exercise recommendation may be ideal to increase exercise participation to cancer survivor Implications of cancer survivors The providence of exercise motivation package in addition to oncologists’ exercise recommendation to increase the level of exercise among breast and colorectal cancer survivors should be considered. PMID:25965782
Annesi, James J
2013-01-01
Although research indicates that treatment-induced improvements in self-regulation, mood, and self-efficacy significantly predict increased exercise and improved eating, moderation by participants' personal characteristics is largely unknown. Severely obese adults (N = 414; 47% White, 53% African American) volunteered for a behavioral exercise and nutrition treatment and demonstrated significant within-group improvements in self-efficacy for exercise, self-regulation for exercise, mood, self-efficacy for controlled eating, self-regulation for controlled eating, exercise volume, and fruit and vegetable intake over 26 weeks. After testing age, sex, and race/ethnicity as possible moderators of the prediction of changes in exercise volume and fruit and vegetable consumption by changes in self-regulation, mood, and self-efficacy, only age significantly moderated change in volume of exercise. Implications for theory and treatment were discussed.
Liao, Zhi-Yin; Chen, Jin-Liang; Xiao, Ming-Han; Sun, Yue; Zhao, Yu-Xing; Pu, Die; Lv, An-Kang; Wang, Mei-Li; Zhou, Jing; Zhu, Shi-Yu; Zhao, Ke-Xiang; Xiao, Qian
2017-11-01
Sarcopenia is an age-related syndrome characterized by progressive loss of muscle mass and function. Exercise is an important strategy to prolong life and increase muscle mass, and resveratrol has been shown a variety beneficial effects on skeletal muscle. In the present study, we investigated the potential efficacy of using short-term exercise (six weeks), resveratrol (150mg/kg/day), or combined exercise+resveratrol (150mg/kg/day) on gastrocnemius muscle mass, grip strength, cross-sectional area and microscopic morphology in aged rats, and explored the potential mechanism at the apoptosis level. Six months old SD rats were used as young control group and 24months old SD rats were adopted as aged group. After six weeks intervention, the data provide evidence that exercise, resveratrol or their combination significantly increase the relative grip strength and muscle mass in aged rats (P<0.05). Electron microscopy discovered a significant increase in sarcomere length, I-band and H-zone in aged rats (P<0.05), and exercise, resveratrol or their combination significantly reduced the increasement (P<0.05). Moreover, light microscopy revealed a significant increase on Feret's diameter and cross-sectional area (CSA) in aged rats (P<0.05), but exercise and resveratrol did not show significant effects on them (P>0.05). Furthermore, exercise, resveratrol or their combination significantly increased the expression of p-AMPK and SIRT1, decreased the expression of acetyl P53 and Bax/Bcl-2 ratio in aged rats (P<0.05). These findings show that aged rats show significant changes in gastrocnemius muscle morphology and ultrastructure, and the protective effects of exercise, resveratrol and their combination are probably associated with anti-apoptotic signaling pathways through activation of AMPK/Sirt1. Copyright © 2017 Elsevier Inc. All rights reserved.
Matsumoto, M; Hanrath, P; Kremer, P; Tams, C; Langenstein, B A; Schlüter, M; Weiter, R; Bleifeld, W
1982-01-01
In order to evaluate left ventricular function during dynamic exercise transoesophageal M-mode recordings of the left ventricle were carried out with a newly developed transducer gastroscope system. Twelve healthy subjects performed a graded supine bicycle exercise test. Stable and good quality images of the left ventricle at rest and during exercise at different steps up to a maximum workload of 100 watts were obtained in all patients. Isotonic maximum exercise resulted in a significant increase in fractional shortening of the left ventricle, peak shortening rate, and peak lengthening rate of the left ventricular minor axis. Left ventricular end-diastolic dimension decreased significantly. With increasing workload the pressure rate product increased significantly. It is concluded that transoesophageal M-mode echocardiography is a useful method of evaluating left ventricular performance during dynamic exercise. Images PMID:7082515
Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.
2016-01-01
Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases structural strength after 8 weeks, making bones best able to resist fracture. PMID:27008546
Pang, Minhui; Yang, Jianwei; Rao, Jiaming; Wang, Haiqing; Zhang, Jiayi; Wang, Shengyong; Chen, Xiongfei; Dong, Xiaomei
2018-02-01
Exercise induces the expression of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) in skeletal muscle, which promotes the cleavage of fibronectin type III domain-containing protein 5 (FNDC5) to irisin. To explore the relationship between irisin and its regulators, we analyzed the plasma irisin levels and the muscle levels of FNDC5 and PGC-1α after exercise. Male C57BL/6J mice underwent a treadmill exercise (60% of VO 2max ) for 30 min or one hour (h), and blood and gastrocnemius samples were collected before exercise (pre-exercise), immediately after exercise, and during 24-h recovery after 1-h exercise. We found that plasma irisin levels were significantly increased during exercise (P < 0.05), while FNDC5 protein levels were not significantly increased. Moreover, PGC-1α mRNA and protein levels were significantly increased during 30-min exercise, but were decreased during 1-h exercise. After 1-h exercise, the irisin levels peaked at 6 h (20.71 ± 0.25 ng/ml) and decreased to pre-exercise levels by 24 h (15.45 ± 0.27 ng/ml). Likewise, PGC-1α mRNA and protein levels were increased at 1 h and maintained at elevated levels for 6 h; thereafter, the expression levels of PGC1-α protein were decreased to pre-exercise levels at 12 h. Thus, the restoration of PGC-1α expression to the pre-exercise levels was followed by the decrease in plasma irisin levels. By contrast, during 24-h recovery, the expression levels of FNDC5 mRNA and protein were maintained at elevated levels. These results suggest that the coordinated expression of FNDC5 and PGC-1α may contribute to the increased levels of plasma irisin after exercise.
Automatic activation of exercise and sedentary stereotypes.
Berry, Tanya; Spence, John C
2009-09-01
We examined the automatic activation of "sedentary" and "exerciser" stereotypes using a social prime Stroop task. Results showed significantly slower response times between the exercise words and the exercise control words and between the sedentary words and the exercise control words when preceded by an attractive exerciser prime. Words preceded by a normal-weight exerciser prime showed significantly slower response times for sedentary words over sedentary control words and exercise words. An overweight sedentary prime resulted in significantly slower response times for sedentary words over exercise words and exercise control words. These results highlight the need for increased awareness of how active and sedentary lifestyles are portrayed in the media.
Disseminating self-help: positive psychology exercises in an online trial.
Schueller, Stephen M; Parks, Acacia C
2012-06-25
The recent growth of positive psychology has led to a proliferation in exercises to increase positive thoughts, behaviors, and emotions. Preliminary evidence suggests that these exercises hold promise as an approach for reducing depressive symptoms. These exercises are typically researched in isolation as single exercises. The current study examined the acceptability of several multi-exercise packages using online dissemination. The purpose of this study was to investigate methods of dissemination that could increase the acceptability and effectiveness of positive psychology exercises. To achieve this goal, we compared the use of positive psychology exercises when delivered in packages of 2, 4, or 6 exercises. Self-help-seeking participants enrolled in this study by visiting an online research portal. Consenting participants were randomly assigned to receive 2, 4, or 6 positive psychology exercises (or assessments only) over a 6-week period. These exercises drew from the content of group positive psychotherapy. Participants visited an automated website that distributed exercise instructions, provided email reminders, and contained the baseline and follow-up assessments. Following each exercise, participants rated their enjoyment of the exercise, answered how often they had used each technique, and completed outcome measures. In total, 1364 individuals consented to participate. Attrition rates across the 2-, 4-, and 6-exercise conditions were similar at 55.5% (181/326), 55.8% (203/364), and 52.7% (168/319) respectively but were significantly greater than the attrition rate of 42.5% (151/355) for the control condition (χ(2)(3) = 16.40, P < .001). Participants in the 6-exercise condition were significant more likely than participants in the 4-exercise condition to use both the third (F(1,312) = 5.61, P = .02) and fourth (F(1,313 )= 6.03, P = .02) exercises. For 5 of the 6 exercises, enjoyment was related to continued use of the exercise at 6-week follow-up (r's = .12 to .39). All conditions produced significant reductions in depressive symptoms (F(1,656) = 94.71, P < .001); however, a significant condition by time interaction (F(3,656) = 4.77, P = .003) indicated that this reduction was larger in the groups that received 2 or 4 exercises compared with the 6-exercise or control condition. Increasing the number of exercises presented to participants increased the use of the techniques and did not increase dropout. Participants may be more likely to use these skills when presented with a variety of options. Increasing the number of exercises delivered to participants produced a curvilinear relationship with those in the 2- and 4-exercise conditions reporting larger decreases in depressive symptoms than participants in the 6-exercise or control conditions. Although research generally offers a single exercise to test isolate effects, this study supports that studying variability in dissemination can produce important findings.
Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.
Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro
2016-01-01
Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.
Lipolytic signaling in response to acute exercise is altered in female mice following ovariectomy
Wohlers, Lindsay M.; Jackson, Kathryn C.; Spangenburg, Espen E.
2011-01-01
Impaired ovarian function alters lipid metabolism, ultimately resulting in increased visceral fat mass. Currently, we have a poor understanding of alterations in signaling events regulating lipolysis after ovarian function declines. The purpose of this study was to determine if cellular mechanisms regulating lipolysis are altered in mice after ovariectomy (OVX) and if OVX mice exhibit impaired lipolytic signaling when stimulated by acute exercise. SHAM and OVX mice were divided into two groups: control (SHAM cont; OVX cont) or acute treadmill exercise (SHAM ex; OVX ex). The omental/mesenteric (O/M) fat mass of all OVX mice was significantly greater than the SHAM mice. Serum glycerol and blood glucose levels were significantly elevated in OVX cont compared to SHAM cont. Treadmill exercise increased serum glycerol levels only in SHAM mice, with no exercise-induced change detected in OVX mice. NEFA levels were significantly elevated by acute exercise in the SHAM and OVX groups. In O/M fat from both OVX groups there were significant increases in cytosolic ATGL and PLIN2 in the fat cake fraction with concurrent reductions in PLIN1 in the fat cake compared to SHAM. Further, exercise induced significant increases in HSL Ser660 phosphorylation in SHAM mice, but not OVX mice. This suggests that reduced ovarian function has significant effects on critical lipolytic cell signaling mechanisms in O/M adipose tissue. PMID:21815195
Christ, Emanuel R; Egger, Andrea; Allemann, Sabin; Buehler, Tania; Kreis, Roland; Boesch, Chris
2016-01-21
Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.
Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro
2016-06-01
Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.
Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros
2010-01-01
We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965
Sakai, Akinori; Oshige, Toshihisa; Zenke, Yukichi; Yamanaka, Yoshiaki; Nagaishi, Hitoshi; Nakamura, Toshitaka
2010-01-01
The aim of this study was to test the effect of unipedal standing exercise on bone mineral density (BMD) of the hip in postmenopausal women. Japanese postmenopausal women (n = 94) were assigned at random to an exercise or control group (no exercise). The 6-month exercise program consisted of standing on a single foot for 1 min per leg 3 times per day. BMD of the hip was measured by dual-energy X-ray absorptiometry. There was no significant difference in age and baseline hip BMD between the exercise group (n = 49) and control group (n = 45). Exercise did not improve hip BMD compared with the control group. Stepwise regression analysis identified old age as a significant determinant (p = 0.034) of increased hip total BMD at 6 months after exercise. In 31 participants aged >/=70 years, the exercise group (n = 20) showed significant increase in the values of hip BMD at the areas of total (p = 0.008), intertrochanteric (p = 0.023), and Ward's triangle (p = 0.032). The same parameters were decreased in the control group (n = 11). The percent changes in hip BMD of the exercise group were not significantly different from those of the control group either in the participants with low baseline hip total BMD (<80% of the young adult mean) or high baseline hip total BMD (> or =80% of the young adult mean). In conclusion, unipedal standing exercise for 6 months did not improve hip BMD in Japanese postmenopausal women. Effect of exercise on hip total BMD was age dependent. In participants aged > or =70 years, the exercise significantly increased hip total BMD.
Effects of smoking and aerobic exercise on male college students' metabolic syndrome risk factors.
Kim, Jee-Youn; Yang, Yuhao; Sim, Young-Je
2018-04-01
[Purpose] The aim was to investigate the effects of university students' smoking and aerobic exercise on metabolic syndrome risk factors. [Subjects and Methods] Twenty-three male students were randomly assigned to the following groups: exercise smoker (n=6), non-exercise smoker (n=6), exercise non-smoker (n=6), and non-exercise non-smoker (n=5). A basketball exercise program was conducted three times per week (70 minutes per session) for 8 weeks with exercise intensity set at 50-80% of heart rate reserve. After 8 weeks, the variables of risk factors for metabolic syndrome were obtained. [Results] Systolic blood pressure and diastolic blood pressure were significantly decreased in the exercise non-smoker group and significantly increased in the non-exercise smoker group. Waist circumference was significantly reduced in both exercise groups regardless of smoking and significantly increased in the non-exercise smoker group. Triglyceride, high-density lipoprotein-cholesterol, and fasting plasma glucose showed no differences between the groups. [Conclusion] Obesity and smoking management should be conducted together for students as well as for those with metabolic syndrome risk factors. It is recommended that more students participate in such programs, and exercise programs should be further developed and diversified to prevent metabolic syndrome and cardiovascular diseases.
[Acute physical exercise increases homocysteine concentrations in young trained male subjects].
Maroto-Sánchez, Beatriz; Valtueña, Jara; Albers, Ulrike; Benito, Pedro J; González-Gross, Marcela
2013-01-01
High levels of homocysteine (Hcy) have been identified as a cardiovascular risk factor. Regarding physical exercise, the results are contradictory. The aim of this study was to determine the influence of maximal intensity exercise and submaximal constant exercise on total serum homocysteine concentrations (tHcy) and other related parameters. Ten physically active male subjects (mean age: 23.51 ± 1.84), performed two treadmill tests, a maximal test and a stable submaximal test at an intensity of 65% of maximal oxygen uptake (VO2max). Serum concentrations of tHcy, Folate, Vitamin B12 and creatinine were analysed before and after each test. Significant increase in serum tHcy concentrations after the maximal (p < 0.05) and submaximal (p < 0.01) tests were observed. Folate and vitamin B12 concentrations also increased significantly after both tests (p < 0.05). Creatinine levels increased only after the maximal test (p < 0.001). A statistically significant inverse relationship was found between folate and tHcy concentrations (p < 0.05) at all the measurement points. THcy levels increased significantly after acute exercise in both maximum and submaximal intensity exercises. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Leucocytosis, Thrombocytosis, and Plasma Osmolality During Rest and Exercise: A Hypothesis
NASA Technical Reports Server (NTRS)
McKenzie, M. A.; Greenleaf, John E.; Looft-Wilson, R.; Barnes, P. R.
1999-01-01
The mechanism for inducing leucocytosis (increase in white blood cells) and thrombocytosis (increase in platelets) during exercise is unclear. Because plasma osmolality (Osm) may influence T-cell proliferation, Osm and the number of leucocytes (WBC) and platelets in blood were measured periodically during a 90 min rest period, and were compared with those during upright sitting ergometer exercise in six unt.rained, healthy men who cycled for 70 min at 71% of their maximal oxygen uptake (V prime O(sub 2(sub max)). There were 6 experiments in which the subjects drank different fluid formula-t4ilons (10 ml/kg) of various ionic and osmotic concentrations intermittently during 60 min of the rest period and during the exercise period. Osmolality, and WBC and platelet counts increased significantly (p<0.05) within the first 10 min of exercise, but the additional 60 min of exercise did not significantly change the leucocytosis or thrombocytosis. There were low but significant correlations between individual values of total WBC and total Osm during exercise (r(sub 0.001(2),284) = 0.39) and during rest plus exercise (r(sub 0.001(2),499) = 0.43). With combined data from the six experiments, mean Osm correlated highly and significantly with both mean WBC (r(sub 0.001(2),6) = 0.95, p < 0.001) and mean platelets (r(sub 0.001(2),6) = 0.94, p < 0.01) during the exercise phase. These data indicate that increases in leucocytes, thrombocytes, and osmolality occur primarily within the first 10 min of high-intensity exercise, but neither hypovolemia nor hyperthermia during exercise contributed to the leucocytosis, thrombocytosis, or hyperosmolality. The high correlations between plasma Osm and WBC or platelet counts suggest changes in osmolality may contribute to the mechanism of leucocytosis and thrombocytosis induced by exercise.
Drenowatz, Clemens; Evensen, Line H; Ernstsen, Linda; Blundell, John E; Hand, Gregory A; Shook, Robin P; Hébert, James R; Burgess, Stephanie; Blair, Steven N
2017-11-01
An increase in energy intake due to alterations in hedonic appetite sensations may, at least in part, contribute to lower-than-expected weight loss in exercise interventions. The aim of this study was to examine cross-sectional and longitudinal associations between habitual exercise participation and food cravings in free-living young adults. A total of 417 adults (49% male, 28 ± 4 years) reported frequency and duration of walking, aerobic exercise, resistance exercise and other exercise at baseline and every 3 months over a 12-month period. Food cravings were assessed via the Control of Eating Questionnaire at baseline and 12-month follow-up. Cross-sectional analyses revealed more frequent cravings for chocolate and a greater difficulty to resist food cravings in women compared to men (p < 0.01). Only with resistance exercise significant sex by exercise interaction effects were observed with favorable responses in men but not in women. Significant main effects were shown for walking and aerobic exercise with exercisers reporting more frequent food cravings for chocolate and fruits and greater difficulty to resist eating compared to non-exercisers (p < 0.05). Longitudinal analyses revealed significant interaction effects for other exercise (p < 0.05) with favorable results in men but not women. Furthermore, significant main effects were observed for aerobic exercise, resistance exercise and total exercise with an increase in exercise being associated with a reduced difficulty to resist food cravings (p < 0.05). The association between exercise participation and hedonic appetite sensations varies by exercise type and sex. Even though exercise was associated with more frequent and greater difficulty to food cravings in the cross-sectional analyses, which may be attributed to greater energy demands, longitudinal results indicate beneficial effects of increased exercise on appetite control, particularly in men. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cho, Misuk; Jeon, Hyewon
2013-06-01
[Purpose] We examined the effects of an abdominal drawing-in bridge exercise using a pressure biofeedback unit on different bases on the thickness of trunk and abdominal muscles, and lumbar stability. [Subjects] Thirty healthy young adults (2 males, 28 females) took part in this study. The subjects were randomly and equally assigned to a stable bridge exercise group and an unstable bridge exercise group. [Methods] The subjects performed bridge exercises using an abdominal drawing-in method on a stable base and on an unstable base, and changes in their abdominal muscle thickness and on the stable and on unstable bases lumbar stability were evaluated. [Results] After the intervention, the stable bridge exercise group showed a statistically significantly increased muscle thickness in the transversus abdominis, and the unstable bridge exercise group showed significantly increased muscle thicknesses of the transversus abdominis and internal obliques in static and dynamic lumbar stability. The unstable bridge exercise group showed significant increase after performing the exercise. [Conclusion] Lumbar stability exercise, with the compensation of the lumbar spine minimized, using an abdominal drawing-in method on an unstable support of base is effective and efforts to prevent the compensation may induce a greater exercise effect.
Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.
Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B
2013-09-01
Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use of stretching exercises, increased muscular strength in the studied groups, and can induce an increase in IGF-1 levels.
Herrmann, Stephen D.; Willis, Erik A.; Honas, Jeffery J.; Lee, Jaehoon; Washburn, Richard A.; Donnelly, Joseph E.
2015-01-01
Objective To compare energy intake, total daily energy expenditure (TDEE), non-exercise energy expenditure (NEEx), resting metabolic rate (RMR), non-exercise physical activity (NEPA), and sedentary time between participants with weight loss <5% (non-responders) vs. ≥5% (responders) in response to exercise. Methods Overweight/obese (BMI 25–40 kg/m2), adults (18–30 yrs.) were randomized to exercise: 5 day/week, 400 or 600 kcal/session, 10 months. Results Forty participants responded and 34 did not respond to the exercise protocol. Non-responder energy intake was higher vs. responders, significant only in men (p=0.034). TDEE increased only in responders (p=0.001). NEEx increased in responders and decreased in non-responders, significant only in men (p=0.045). There were no within or between-group differences for change in RMR. NEPA increased in responders and decreased in non-responders (group-by-time interactions: total sample, p=0.049; men, p=0.016). Sedentary time decreased in both groups, significant only in men. Conclusion Men who did not lose weight in response to exercise (<5%) had higher energy intake and lower NEEx compared to men losing ≥5%. No significant differences in any parameters assessed were observed between women who lost <5% vs. those losing ≥5. Factors associated with the weight loss response to exercise in women warrant additional investigation. PMID:26193059
Kato, Yushi; Sawada, Atsushi; Numao, Shigeharu; Suzuki, Masashige
2011-01-01
We have previously reported on the possibility that light resistance exercise performed with a high plasma amino acid concentration resulting from the ingestion of a high-protein snack (HPS; 15 g protein, 18 g sugar) 3 h after a basal meal promotes the utilization of amino acids in peripheral tissues such as muscle in both rats and humans. In the present study, we further examined the effectiveness of a daily routine involving ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise (dumbbell exercise) in increasing the mass and strength of human muscle. Ten young adult males were subject to the following 3 conditions for 5 wk each, with sufficient recovery period between each condition: (1) Snack-Exercise (SE), (2) Snack-Sedentary (SS), and (3) No snack-Exercise (NE). The SE group showed a significant increase in lean body mass and total cross-sectional area (CSA) of the right forearm muscles along with a significant decrease in body fat mass. The SS group showed no change in body composition. Furthermore, the SE group showed significant increase in grip strength and isometric knee extensor muscle strength, while the SS group showed no increase in muscle strength. The NE group showed significant increase in grip strength. In conclusion, daily routine ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise is effective in increasing the mass and strength of human muscle.
Obokata, Masaru; Nagata, Yasufumi; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki
2017-03-01
Exercise-induced pulmonary hypertension (EIPH) may develop even at low workloads in heart failure (HF) patients. Ventricular-arterial stiffening plays an important role in the pathophysiology of HF with preserved ejection fraction (HFpEF). This study aimed to compare the response of ventricular-arterial coupling and PH during low-level exercise between HFpEF and HF with reduced EF (HFrEF). Echocardiography was performed at rest and during 10 W of bicycle exercise in HFpEF (n = 37) and HFrEF (n = 43). Load-independent contractility (end-systolic elastance [Ees], preload recruitable stroke work [PRSW], and peak power index [PWRI]), arterial afterload (arterial elastance [Ea]), and ventricular-arterial interaction (Ea/Ees) were measured with the use of a noninvasive single-beat technique. EIPH was defined as an estimated pulmonary arterial systolic pressure (PASP) of ≥50 mm Hg at 10 W of exercise. PASP was significantly increased during 10 W of exercise in both HF types, and ~50% of HFpEF patients developed EIPH. Arterial afterload was increased significantly during exercise in both groups. HFrEF and HFpEF patients showed a significant increase in LV contractility assessed by Ees, PRSW, and PWRI during exercise. Although Ea/Ees ratio decreased significantly in HFrEF, reduction in Ea/Ees was attenuated because of blunted Ees increases in patients with HFpEF compared with HFrEF. Even at low-level exercise, ~50% of HFpEF patients developed EIPH. Reduction in Ea/Ees was attenuated owing to less Ees increase in HFpEF compared with HFrEF. Further studies are needed to elucidate the association between ventricular-arterial coupling and EIPH in HFpEF. Copyright © 2016 Elsevier Inc. All rights reserved.
Barkley, Sherry A; Fahrenwald, Nancy L
2013-01-01
Adherence to independent exercise is an essential outcome of cardiac rehabilitation (CR), yet limited theory-based interventions to improve adherence exist. This study tested the effects of an intervention based on Bandura's conceptualization of self-efficacy. The self-efficacy coaching intervention (SCI), a supplement to standard care, was designed to increase self-efficacy for independent exercise and independent exercise behavior in CR. We examined whether the SCI vs. attention control (AC) resulted in improved exercise self-efficacy (ESE), barriers self-efficacy (BARSE), and minutes of independent exercise for CR participants (n = 65). While between-group differences did not reach significance (p > .10) for any of the outcome measures, significant within-group changes were noted in BARSE scores and independent exercise (p < .001) for the SCI group. Change in independent exercise for the AC group was also significant (p =. 006). Further study is needed to explore whether short-term changes translate into maintenance of independent exercise participation after program completion.
Effects of Pilates Exercise on Salivary Secretory Immunoglobulin A Levels in Older Women.
Hwang, Yoonyoung; Park, Jonghoon; Lim, Kiwon
2016-07-01
We examined the effects of a Pilates exercise program on the mucosal immune function in older women. The study population comprised 12 older women who were divided into a Pilates group (PG, n = 6) and a control group (CG, n = 6). Saliva samples were obtained from both groups before and after the experimental period for salivary secretory immunoglobulin A level measurement. In addition, acute high-intensity exercises were performed before and after the three-month Pilates exercise program. After three months, salivary flow was significantly higher in the PG than in the CG. After the acute high-intensity exercises were performed following the three-month Pilates exercise program, the salivary flow rate was significantly higher at all time points. The S-IgA secretion rate significantly increased 30 min after acute high-intensity exercise performed following the three-month Pilates exercise program. This study suggests that regular participation in a moderate-intensity Pilates exercise program can increase salivary flow rate and S-IgA secretion in older women.
Taguchi, T; Kishikawa, H; Motoshima, H; Sakai, K; Nishiyama, T; Yoshizato, K; Shirakami, A; Toyonaga, T; Shirontani, T; Araki, E; Shichiri, M
2000-07-01
Acute exercise induces glucose uptake in skeletal muscle in vivo, but the molecular mechanism of this phenomenon remains to be identified. In this study, we evaluated the involvement of bradykinin in exercise-induced glucose uptake in humans and rats. In human studies, plasma bradykinin concentrations increased significantly during an ergometer exercise (20 minutes) in 8 healthy normoglycemic subjects and 6 well-controlled type 2 diabetic patients (mean hemoglobin A1c [HbA1c], 6.4% +/- 0.6%), but not in 6 poorly controlled type 2 diabetics (mean HbA1c, 11.6% +/- 2.6%). In rat studies, plasma bradykinin concentrations also significantly increased after 1 hour of swimming in nondiabetic and mildly diabetic (streptozotocin [STZ] 45 mg/kg intravenously [IV]) rats, but not in rats with severe diabetes (STZ 65 mg/kg IV). Glucose influx (maximum velocity [Vmax]) and GLUT-4 translocation in skeletal muscle of nondiabetic rats significantly increased after 1 hour of swimming, but these increases were abrogated by subcutaneous infusion of bradykinin B2 receptor antagonist HOE-140 (400 microg x kg(-1) x d(-1)). Insulin-stimulated tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity in response to insulin injection (20 U/kg IV) in the portal vein were significantly attenuated in exercised rats pretreated with HOE-140 compared with saline-treated exercised rats. Our results suggest that plasma bradykinin concentrations increase in response to acute exercise and this increase is affected by blood glucose status in diabetic patients. Moreover, the exercise-induced increase in bradykinin may be involved in modulating exercise-induced glucose transport through an increase of GLUT-4 translocation, as well as enhancement of the insulin signal pathway, during the postexercise period in skeletal muscle, resulting in a decrease of blood glucose.
Acute hormonal responses in elite junior weightlifters.
Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T
1992-02-01
To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)
Kanda, Kazue; Sugama, Kaoru; Sakuma, Jun; Kawakami, Yasuo; Suzuki, Katsuhiko
2014-01-01
This investigation determined whether existing muscle damage markers and organ damage markers respond to an acute eccentric exercise protocol and are associated with affected muscle symptoms. Nine healthy-young men completed one-leg calf-raise exercise with their right leg on a force plate. They performed 10 sets of 40 repetitions of exercise at 0.5 Hz with a load corresponding to half of their body weight, with 3 min rest between sets. The tenderness of medial gastrocnemius, lateral gastrocnemius and soleus, and the ankle active range of motion (ROM) were assessed before, immediately after, 24 h and 48 h, 72 h, 96 h and 168 h after exercise. Blood and urine were collected pre-exercise and 2 h, 4 h, 24 h, 48 h, 72 h and 96 h post-exercise. Serum was analyzed for creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and aldolase (ALD) activities. We also determined heart-type fatty acid-binding protein (H-FABP), intestinal-type fatty acid-binding protein (I-FABP) and liver-type fatty acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), interleukin (IL)-17A, IL-23, nerve growth factor (NGF), soluble-Endothelial (sE)-selectin, s-Leukocyte (L)-selectin, s-Platelets (P)-selectin, and 8-isoprostane in plasma and urine. The tenderness of proximal and middle gastrocnemius increased significantly 72 h (p < 0.05, p < 0.01) after exercise. Ankle active ROM in dorsal flexion decreased significantly 48 h (p < 0.05) and 72 h (p < 0.01) after exercise. CK and ALD activities significantly increased at 72 h (p < 0.05) and remained elevated at 96 h (p < 0.01) postexercise compared to pre-exercise values. Also, ALD which showed relatively lower interindividual variability was significantly correlated with tenderness of middle gastrocnemius at 72 h. LDH activity significantly increased 96 h postexercise (p < 0.01), whereas the increase in AST and ALT activities 96 h post-exercise was not significantly different from pre-exercise values. There were no significant changes in FABPs, NGAL, IL-17A, IL-23, NGF, selectins and 8-isoprostanes in plasma and urine. In conclusion, calf-raise exercise induced severe local muscle damage symptoms which were accompanied by increases in both serum CK and ALD activities, but we could not detect any changes in examined markers of organ damage, inflammation and oxidative stress. Further research is needed to determine other more sensitive biomarkers and the underlying mechanisms of exercise-induced muscle damage.
Disseminating Self-Help: Positive Psychology Exercises in an Online Trial
Parks, Acacia C
2012-01-01
Background The recent growth of positive psychology has led to a proliferation in exercises to increase positive thoughts, behaviors, and emotions. Preliminary evidence suggests that these exercises hold promise as an approach for reducing depressive symptoms. These exercises are typically researched in isolation as single exercises. The current study examined the acceptability of several multi-exercise packages using online dissemination. Objective The purpose of this study was to investigate methods of dissemination that could increase the acceptability and effectiveness of positive psychology exercises. To achieve this goal, we compared the use of positive psychology exercises when delivered in packages of 2, 4, or 6 exercises. Methods Self-help–seeking participants enrolled in this study by visiting an online research portal. Consenting participants were randomly assigned to receive 2, 4, or 6 positive psychology exercises (or assessments only) over a 6-week period. These exercises drew from the content of group positive psychotherapy. Participants visited an automated website that distributed exercise instructions, provided email reminders, and contained the baseline and follow-up assessments. Following each exercise, participants rated their enjoyment of the exercise, answered how often they had used each technique, and completed outcome measures. Results In total, 1364 individuals consented to participate. Attrition rates across the 2-, 4-, and 6-exercise conditions were similar at 55.5% (181/326), 55.8% (203/364), and 52.7% (168/319) respectively but were significantly greater than the attrition rate of 42.5% (151/355) for the control condition (χ2 3 = 16.40, P < .001). Participants in the 6-exercise condition were significant more likely than participants in the 4-exercise condition to use both the third (F 1,312 = 5.61, P = .02) and fourth (F 1,313 = 6.03, P = .02) exercises. For 5 of the 6 exercises, enjoyment was related to continued use of the exercise at 6-week follow-up (r’s = .12 to .39). All conditions produced significant reductions in depressive symptoms (F 1,656 = 94.71, P < .001); however, a significant condition by time interaction (F 3,656 = 4.77, P = .003) indicated that this reduction was larger in the groups that received 2 or 4 exercises compared with the 6-exercise or control condition. Conclusion Increasing the number of exercises presented to participants increased the use of the techniques and did not increase dropout. Participants may be more likely to use these skills when presented with a variety of options. Increasing the number of exercises delivered to participants produced a curvilinear relationship with those in the 2- and 4-exercise conditions reporting larger decreases in depressive symptoms than participants in the 6-exercise or control conditions. Although research generally offers a single exercise to test isolate effects, this study supports that studying variability in dissemination can produce important findings. PMID:22732765
[Acute and remote biochemical and physiological effects of exhaustive weightlifting exercise].
Minigalin, A D; Shumakov, A R; Baranova, T I; Danilova, M A; Kalinskiĭ, M I; Morozov, V I
2011-01-01
The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.
Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K
2000-11-01
Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.
Baghaiee, Behrouz; Aliparasti, Mohammad Reza; Almasi, Shohreh; Siahkuhian, Marefat; Baradaran, Behzad
2016-06-01
Energy production is a necessary process to continue physical activities, and exercise is associated with more oxygen consumption and increase of oxidative stress. what seems important is the numerical relationship between antioxidant and free radicals. Although the activity of some enzymes increases with physical activities, but it is possible that gene expression of this enzyme is not changed during exercise. The aim of the present study is to investigate the antioxidant enzymes gene expression and changes in malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in men and women affected by a session of incremental exercise and to carefully and numerically assess the relationship between MDA changes and gene expression and activity of antioxidant enzymes. 12 active men and 12 active women (21 - 24 years old) participated voluntarily in this study. Peripheral blood samples were taken from the subjects in three phases, before and after graduated exercise test (GXT) and 3 hours later (recovery). The gene expression of manganese superoxide dismutase (MnSOD) enzyme increased significantly in women in the recovery phase (P < 0.05). Catalase gene expression significantly increased in men in both phases (immediately & recovery) (P < 0.05). But the changes in active women were only significant immediately after the exercise. TAC levels increased significantly in men in the recovery phase and in active women immediately after the exercise (P < 0.05). MDA activity also increased significantly in men in both phases (P < 0.05). However, in women the increase was significant only in the recovery phase (P < 0.05). There was a reverse relationship between changes in MnSOD and copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) levels and MDA in men (P < 0.05). In active women there was also a significant relationship between changes in MDA and gene expression of Cu/ZnSOD and TAC (P < 0.05). The increase in free radicals during incremental exercises challenges gene expression and activity of antioxidant enzymes. However, despite the negative effects of free radicals, in women, activity and gene expression of antioxidant enzymes respond appropriately to free radicals.
Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H.
2018-01-01
Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS) induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day) on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months). C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB) expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and activating Nrf2 signalling pathways. PMID:29692875
Jia, G Y; Han, T; Gao, L; Wang, L; Wang, S C; Yang, L; Zhang, J; Guan, Y Y; Yan, N N; Yu, H Y; Xiao, H J; Di, F S
2018-01-20
Objective: To investigate the effect of dietary control combined with different exercise modes on plasma vaspin, irisin, and metabolic parameters in patients with non-alcoholic fatty liver disease (NAFLD) through a randomized open parallel-controlled study. Methods: The patients aged 30-65 years who visited Tianjin Third Central Hospital from January 2013 to December 2014 and were diagnosed with NAFLD by liver ultrasound and fat content determination were screening, and 474 patients were enrolled in this randomized controlled trial and divided into aerobic exercise group, resistance exercise group, and control group. All patients received dietary intervention. The three groups were compared in terms of biochemical parameters, fat content, NFS score, energy metabolic parameters, body composition index, and levels of vaspin and irisin at baseline and after 6 months of intervention. SPSS 19.0 was used for statistical analysis. The t -test, the Mann-Whitney U test, the chi-square test, and an analysis of variance were used for comparison between groups. The multiple imputation method was used for missing data, and the results were included in the intention-to-treat analysis. Results: There were no significant differences in age, sex, anthropometrical parameters, and biochemical parameters between the three groups at baseline. Compared with dietary control alone, aerobic exercise and resistance exercise helped to achieve significant reductions in waist circumference, diastolic pressure, percentage of body fat, volatile fatty acid, fasting blood glucose, homeostasis model assessment of insulin resistance, triglyceride, low-density lipoprotein cholesterol, free fatty acid, uric acid, alanine aminotransferase, and liver fat content after 6 months of intervention ( P < 0.05). The aerobic exercise group had a significant increase in non-protein respiratory quotient and significant reductions in body mass index and aspartate aminotransferase after intervention, as well as a significant increase in resting energy expenditure and significant reductions in abdominal fat ratio and total cholesterol after 6 months of resistance exercise ( P < 0.05). The aerobic exercise group and the resistance exercise group had a significant reduction in vaspin and a significant increase in irisin after intervention ( P < 0.05), and the resistance exercise group had significantly greater changes in these two adipokines than the aerobic exercise group ( P < 0.05). Conclusion: Exercise therapy is an effective method for the treatment of metabolism-associated diseases, and a combination of resistance and aerobic exercises is more reasonable and effective in clinical practice. As a relatively safe exercise mode, resistance exercise can also effectively improve the metabolic state of NAFLD patients.
Lovell, Geoff P; Ansari, Walid El; Parker, John K
2010-01-01
Many individuals do not engage in sufficient physical activity due to low perceived benefits and high perceived barriers to exercise. Given the increasing incidence of obesity and obesity related health disorders, this topic requires further exploration. We used the Exercise Benefits/Barriers Scale to assess perceived benefit and barrier intensities to exercise in 200 non-exercising female university students (mean age 19.3 years, SD = 1.06) in the UK. Although our participants were selected because they self reported themselves to be non-exercising, however they reported significantly higher perceived benefits from exercise than perceived barriers to exercise [t(199) = 6.18, p < 0.001], and their perceived benefit/barrier ratio was 1.33. The greatest perceived benefit from exercise was physical performance followed by the benefits of psychological outlook, preventive health, life enhancement, and then social interaction. Physical performance was rated significantly higher than all other benefits. Psychological outlook and preventive health were not rated significantly different, although both were significantly higher than life enhancement and social interaction. Life enhancement was also rated significantly higher than social interaction. The greatest perceived barrier to exercise was physical exertion, which was rated significantly higher than time expenditure, exercise milieu, and family discouragement barriers. Implications from this investigation for the design of physical activity programmes include the importance, for females, of a perception of high benefit/barrier ratio that could be conducive to participation in exercise. Applied interventions need to assist female students to ‘disengage’ from or overcome any perceived ‘unpleasantness’ of physical exertion during physical activity (decrease their perceived barriers), and to further highlight the multiple health and other benefits of regular exercising (increase their perceived benefits). PMID:20617003
Lovell, Geoff P; El Ansari, Walid; Parker, John K
2010-03-01
Many individuals do not engage in sufficient physical activity due to low perceived benefits and high perceived barriers to exercise. Given the increasing incidence of obesity and obesity related health disorders, this topic requires further exploration. We used the Exercise Benefits/Barriers Scale to assess perceived benefit and barrier intensities to exercise in 200 non-exercising female university students (mean age 19.3 years, SD = 1.06) in the UK. Although our participants were selected because they self reported themselves to be non-exercising, however they reported significantly higher perceived benefits from exercise than perceived barriers to exercise [t(199) = 6.18, p < 0.001], and their perceived benefit/barrier ratio was 1.33. The greatest perceived benefit from exercise was physical performance followed by the benefits of psychological outlook, preventive health, life enhancement, and then social interaction. Physical performance was rated significantly higher than all other benefits. Psychological outlook and preventive health were not rated significantly different, although both were significantly higher than life enhancement and social interaction. Life enhancement was also rated significantly higher than social interaction. The greatest perceived barrier to exercise was physical exertion, which was rated significantly higher than time expenditure, exercise milieu, and family discouragement barriers. Implications from this investigation for the design of physical activity programmes include the importance, for females, of a perception of high benefit/barrier ratio that could be conducive to participation in exercise. Applied interventions need to assist female students to 'disengage' from or overcome any perceived 'unpleasantness' of physical exertion during physical activity (decrease their perceived barriers), and to further highlight the multiple health and other benefits of regular exercising (increase their perceived benefits).
High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.
Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M
2013-12-01
IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.
TSUBONE, Hirokazu; HANAFUSA, Masakazu; ENDO, Maiko; MANABE, Noboru; HIRAGA, Atsushi; OHMURA, Hajime; AIDA, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy. PMID:24833996
Tsubone, Hirokazu; Hanafusa, Masakazu; Endo, Maiko; Manabe, Noboru; Hiraga, Atsushi; Ohmura, Hajime; Aida, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy.
Kałka, Dariusz; Domagała, Zygmunt; Dworak, Jacek; Womperski, Krzysztof; Rusiecki, Lesław; Marciniak, Wojciech; Adamus, Jerzy; Pilecki, Witold
2013-01-01
In addition to a beneficial effect on exercise tolerance and an associated reduction of global cardiovascular risk, modification of physical activity has a positive effect on the quality of life, reducing, among other things, the severity of erectile dysfunction (ED). The specific nature of sexual activity, which combines the need to maintain appropriate exercise tolerance and good erection quality, prompted us to evaluate the association between exercise tolerance and severity of ED in an intervention group of subjects with ischaemic heart disease (IHD) and ED in the context of cardiac rehabilitation (CR). A total of 138 men treated invasively for IHD (including 99 treated with percutaneous coronary intervention and 39 treated with coronary artery bypass grafting) who scored 21 or less in the initial IIEF-5 test were investigated. Subjects were randomised into two groups. The study group included 103 subjects (mean age 62.07 ± 8.59 years) who were subjected to a CR cycle. The control group included 35 subjects (mean age 61.43 ± 8.81 years) who were not subjected to any CR. All subjects filled out an initial and final IIEF-5 questionnaire and were evaluated twice with a treadmill exercise test. The CR cycle was carried out for a period of 6 months and included interval endurance training on a cycle ergometer (three times a week) and general fitness exercises and resistance training (twice a week). The CR cycle in the study group resulted in a statistically significant increase in exercise tolerance (7.15 ± 1.69 vs. 9.16 ± 1.84 METs,p < 0.05) and an increase in erection quality (12.51 ± 5.98 vs. 14.39 ± 6.82, p < 0.05) which was not observed in the control group. A significant effect of age on a progressive decrease in exercise tolerance and erection quality was found in the study group. Exercise tolerance and erection quality were also negatively affected by hypertension and smoking. A significant correlation between exercise tolerance and erection quality prior to the rehabilitation cycle indicates better erection quality in patients with better effort tolerance. The improvement in exercise tolerance did not correlate significantly with initial exercise tolerance or age of the subjects. In contrast, a significantly higher increase in erection quality was observed in younger subjects with the lowest baseline severity of ED.The relative increase in exercise tolerance in the group subjected to CR was significantly higher than the relative increase in erection quality but these two effects were not significantly correlated with each other. 1. In subjects with IHD and ED, erection quality is significantly correlated with exercise tolerance. 2. Exercise training had a positive effect on both exercise tolerance and erection quality but the size of these two effects was different and they ran independently of each other.
Negrao, Marcelo V; Alves, Cleber R; Alves, Guilherme B; Pereira, Alexandre C; Dias, Rodrigo G; Laterza, Mateus C; Mota, Gloria F; Oliveira, Edilamar M; Bassaneze, Vinícius; Krieger, Jose E; Negrao, Carlos E; Rondon, Maria Urbana P B
2010-09-01
Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 ± 1 yr) and CT+CC (n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT+CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
NASA Technical Reports Server (NTRS)
Siconolfi, S. F.; Charles, J. B.; Moore, A. D. Jr; Barrows, L. H.
1994-01-01
The effects of regular aerobic exercise on orthostatic tolerance have been the subject of a long-standing controversy that will influence the use of exercise during space flight. To examine these effects, astronauts performed continuous (CE) aerobic exercise (n = 8), interval (IE) aerobic exercise (n = 4), or no (NE) exercise (n = 5) during flights of 7 to 11 days. Heart rate (HR) responses to an orthostatic challenge (stand test) were measured 10 days before flight and on landing day. VO(2peak) (graded treadmill exercise) was measured 7 to 21 days before and 2 days after flight. No significant differences across the groups were observed in standing HRs before or after flight. However, the within-group mean HRs significantly increased in the NE (71-89 beats/min) and CE (60-85 beats/min) groups after space flight. The HRs for the IE group did not significantly increase (75-86 beats/min) after space flight. VO(2peak) decreased (P < .05) in the NE (-9.5%) group, but did not change in the CE (-2.4%) and IE (1%) groups. The relationship (r = 0.237) between the delta HR and delta VO(2peak) was not significant. These preliminary results indicate that: (1) continuous exercise does not affect the orthostatic HR response after space flight; (2) interval exercise may minimize an increase in the postflight orthostatic HR; and (3) both exercise protocols can maintain VO(2peak).
Gender-related difference in arterial elastance during exercise in patients with hypertension.
Park, Sungha; Ha, Jong-Won; Shim, Chi Young; Choi, Eui-Young; Kim, Jin-Mi; Ahn, Jeong-Ah; Lee, Se-Wha; Rim, Se-Joong; Chung, Namsik
2008-04-01
Exercise intolerance and heart failure with preserved ejection fraction are common in females. Recently, arterial stiffness has been suggested to be a significant contributor in the development of heart failure. How gender difference affects arterial stiffening and its response to exercise is not well known. We hypothesized that arterial elastance index during exercise would be more abnormal in females with hypertension than males. Arterial elastance index was estimated as arterial end systolic pressure/stroke volume controlled for body surface area and was measured at rest and during graded supine bicycle exercise (25 watts, 3-minute increments) in 298 patients with hypertension (149 males; 149 females; mean age, 59). The subjects were divided into 2 groups by gender. Exercise duration was significantly shorter in females compared to males (692+/-222 versus 483+/-128 seconds, P<0.001). Although arterial elastance index at baseline was significantly higher in males, the magnitude of increase was steeper in females with the magnitude of change at 75 W of exercise being significantly higher in females compared to males (0.69+/-0.83 versus 0.43+/-0.69, P=0.018). Arterial elastance index at each stage of exercise up to 75 W was independently associated with decreased exercise duration. In conclusion, despite lower arterial elastance index at rest, the increase during exercise was steeper in women with hypertension, suggesting a gender-related difference in dynamic arterial stiffness. The arterial elastance index during exercise was significantly associated with exercise duration in patients with hypertension.
Effect of resistance exercise training combined with relatively low vascular occlusion.
Sumide, Takahiro; Sakuraba, Keishoku; Sawaki, Keisuke; Ohmura, Hirotoshi; Tamura, Yoshifumi
2009-01-01
Previous studies have demonstrated that a low-intensity resistance exercise, combined with vascular occlusion, results in a marked increase in muscular size and strength. We investigated the optimal pressure for reduction of muscle blood flow with resistance exercise to increase the muscular strength and endurance. Twenty-one subjects were randomly divided into four groups by the different application of vascular occlusion pressure at the proximal of thigh: without any pressure (0-pressure group), with a pressure of 50mmHg (50-pressure group), with a pressure of 150mmHg (150-pressure group), and with a pressure of 250mmHg (250-pressure group). The isokinetic muscle strength at angular velocities of 60 and 180 degrees /s, total muscle work, and the cross-sectional knee extensor muscle area were assessed before and after exercise. Exercise was performed three times a week over an 8-week period at an intensity of approximately 20% of one-repetition maximum for straight leg raising and hip joint adduction and maximum force for abduction training. A significant increase in strength at 180 degrees /s was noted after exercise in all subjects who exercised under vascular occlusion. Total muscle work increased significantly in the 50- and 150-pressure groups (P<0.05, P<0.01, respectively). There was no significant increase in cross-sectional knee extensor muscle area in any groups. In conclusion, resistance exercise with relatively low vascular occlusion pressure is potentially useful to increase muscle strength and endurance without discomfort.
Toyama, Kensuke; Sugiyama, Seigo; Oka, Hideki; Hamada, Mari; Iwasaki, Yuri; Horio, Eiji; Rokutanda, Taku; Nakamura, Shinichi; Spin, Joshua M; Tsao, Philip S; Ogawa, Hisao
2017-01-01
Objective Hypercholesterolemia, a risk factor in cognitive impairment, can be treated with statins. However, cognitive decline associated with "statins" (HMG-CoA reductase inhibitors) is a clinical concern. This pilot study investigated the effects of combining statins and regular exercise on cognitive function in coronary artery disease (CAD) patients with prior mild cognitive decline. Methods We recruited 43 consecutive CAD patients with mild cognitive decline. These patients were treated with a statin and weekly in-hospital aerobic exercise for 5 months. We measured serum lipids, exercise capacity, and cognitive function using the mini mental state examination (MMSE). Results Low-density lipoprotein cholesterol levels were significantly decreased, and maximum exercise capacity (workload) was significantly increased in patients with CAD and mild cognitive decline after treatment compared with before. Combined statin-exercise therapy significantly increased the median (range) MMSE score from 24 (22-25) to 25 (23-27) across the cohort (p<0.01). Changes in body mass index (BMI) were significantly and negatively correlated with changes in the MMSE. After treatment, MMSE scores in the subgroup of patients that showed a decrease in BMI were significantly improved, but not in the BMI-increased subgroup. Furthermore, the patients already on a statin at the beginning of the trial displayed a more significant improvement in MMSE score than statin-naïve patients, implying that exercise might be the beneficial aspect of this intervention as regards cognition. In a multivariate logistic regression analysis adjusted for age >65 years, sex, and presence of diabetes mellitus, a decrease in BMI during statin-exercise therapy was significantly correlated with an increase in the MMSE score (odds ratio: 4.57, 95% confidence interval: 1.05-20.0; p<0.05). Conclusion Statin-exercise therapy may help improve cognitive dysfunction in patients with CAD and pre-existing mild cognitive decline.
Kim, Ki-Jong; Kim, Young-Eok; Jun, Hyun-Ju; Lee, Jin-Su; Ji, Sung-Ha; Ji, Sang-Goo; Seo, Tae-Hwa; Kim, Young-Ok
2014-03-01
[Purpose] The purpose of this study was to implement combined muscle strengthening and proprioceptive exercises to examine the effects of combined exercises on functional ankle instability. [Subjects and Methods] Experiments were conducted with 30 adult males and females. The study subjects were randomly assigned to either a control group (Group A), a muscle strengthening exercise group (Group B), or a combined muscle strengthening and proprioceptive exercise group (Group C) consisting of 10 subjects each. In Group A, measurements were only conducted before and after the experiment without any intervention, whereas the exercise programs for Group B and Group C were implemented three days per week for four weeks. [Results] Muscle strength showed significant increases in Groups B and C compared with the control group during plantar flexion, dorsiflexion, inversion, and eversion. The Cumberland ankle instability tool showed significant increases in Group B and Group C compared with Group A and significant increases in Group C compared with Group B. [Conclusion] Applying combined muscle strengthening and proprioceptive exercises to those who have functional ankle instability is more effective than applying only muscle strengthening exercises.
Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi
2017-07-01
During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.
Stupin, Marko; Stupin, Ana; Rasic, Lidija; Cosic, Anita; Kolar, Luka; Seric, Vatroslav; Lenasi, Helena; Izakovic, Kresimir; Drenjancevic, Ines
2018-02-01
The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined. Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry. At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise. Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.
Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K
2016-02-15
Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.
Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian
2017-10-01
Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in pulmonary corticosterone levels in ob/ob mice, which is in parallel with the favorable effects of exercise on obesity-associated pulmonary inflammation. Exercise training increases pulmonary 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression but has no significant effect on 11β-HSD2 expression in both lean and ob/ob mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local glucocorticoid activation and suppression of pulmonary inflammation in obese mice. Copyright © 2017 the American Physiological Society.
Effect of nifedipine on choroidal blood flow regulation during isometric exercise.
Schmidl, Doreen; Prinz, Ana; Kolodjaschna, Julia; Polska, Elzbieta; Luksch, Alexandra; Fuchsjager-Mayrl, Gabriele; Garhofer, Gerhard; Schmetterer, Leopold
2012-01-25
To determine whether nifedipine, an L-type calcium channel blocker, alters choroidal blood flow (ChBF) regulation during isometric exercise in healthy subjects. The study was carried out in a randomized, placebo-controlled, double-masked, two-way crossover design. Fifteen healthy male subjects were randomly assigned to receive either placebo or nifedipine on two different study days. Subfoveal ChBF was measured with laser Doppler flowmetry while the study participants performed isometric exercise (squatting). This was performed before drug administration and during infusion of nifedipine and placebo, respectively. Mean arterial pressure (MAP) and intraocular pressure (IOP) were measured noninvasively, and ocular perfusion pressure (OPP) was calculated as ⅔ MAP-IOP. MAP and OPP increased significantly during all squatting periods (P < 0.01). The increase in ChBF was less pronounced than the increase in OPP during isometric exercise. Nifedipine did not alter the OPP increase in response to isometric exercise, but it significantly augmented the exercise-induced increase in ChBF (P < 0.001 vs. placebo). Although ChBF increased by a maximum of 14.2% ± 9.2% during the squatting period when placebo was administered, the maximum increase during administration of nifedipine was 23.2% ± 7.2%. In conclusion, the data of the present study suggest that nifedipine augments the ChBF response to an experimental increase in OPP. In addition, it confirms that the choroidal vasculature has a significant regulatory capacity over wide ranges of OPPs during isometric exercise. (ClinicalTrials.gov number, NCT00280462.).
Adherence to exercise and affective responses: comparison between outdoor and indoor training.
Lacharité-Lemieux, Marianne; Brunelle, Jean-Pierre; Dionne, Isabelle J
2015-07-01
Postmenopausal women, despite their increased cardiovascular risk, do not meet physical activity recommendations. Outdoor exercise bouts induce more positive affective responses than the same indoor exercise. Outdoor training could therefore increase exercise adherence. This study aims to compare the long-term effects of outdoor and indoor training on affective outcomes and adherence to exercise training in postmenopausal women. In a 12-week randomized trial, 23 healthy (body mass index, 22-29 kg/m) postmenopausal women (aged 52-69 y) were assigned to either outdoor training or indoor training and performed three weekly 1-hour sessions of identical aerobic and resistance training. Adherence, affective valence (Feeling Scale), affective states (Exercise-Induced Feeling Inventory), and rating of perceived exertion were measured during exercise sessions, whereas depression symptoms (Beck Depression Inventory) and physical activity level (Physical Activity Scale for the Elderly) were assessed before and after the intervention. After 12 weeks of training, exercise-induced changes in affective valence were higher for the outdoor training group (P ≤ 0.05). A significant group-by-time interaction was found for postexercise tranquility (P ≤ 0.01), with a significant increase outdoors and a significant decrease indoors (both P ≤ 0.05). A time effect was revealed for positive engagement, which decreased across time in the indoor group (P ≤ 0.05). Adherence to training (97% vs 91%) was significantly higher outdoors (P ≤ 0.01). Between baseline and week 12, depression symptoms decreased and physical activity level increased only for the outdoor group (P ≤ 0.01 and P ≤ 0.05, respectively). Outdoor training enhances affective responses to exercise and leads to greater exercise adherence than indoor training in postmenopausal women.
Dinçer, Şensu; Altan, Mehmet; Terzioğlu, Duygu; Uslu, Ezel; Karşidağ, Kubilay; Batu, Şule; Metin, Gökhan
2016-11-01
We aimed to investigate the effects of a regular exercise program on exercise capacity, blood biochemical profiles, certain antioxidant and oxidative stress parameters of type 2 Diabetes mellitus (DM) patients. Thirty one type 2 DM patients (ages ranging from 42-65 years) who have hemoglobin A1c (HbA1c) levels ≥7.5% and ≤9.5% were included to study and performed two cardiopulmonary exercise tests (CPET) before and after the exercise program. Subjects performed aerobic exercise training for 90 minutes a day; 3 days a week during 12 weeks. Blood samples were collected to analyze certain oxidant and antioxidant parameters (advanced oxidation protein products [AOPP], ferric reducing ability of plasma [FRAP], malondialdehyde [MDA], and sialic acid [SA]), blood lipid profile, fasting blood glucose (FBG) and HbA1c. At the end of the program HbA1c and FBG, triglyceride (TG) and very-low-density lipoprotein (VLDL) levels decreased and high-density lipoprotein (HDL) increased significantly (P=0.000, P=0.001, P=0.008, P=0,001 and P=0.02, respectively). AOPP, FRAP, SA levels of the patients increased significantly following first CPET (P=0.000, P=0.049, P=0.014 respectively). At the end of the exercise program AOPP level increased significantly following last CPET. Baseline SA level increased significantly following exercise program (P=0.002). We suggest that poor glycemic control which plays the major role in the pathogenesis of DM and its complications would be improved by 12 weeks of a regular exercise program. Whereas the acute exercise induces protein oxidation, regularly aerobic training may enhance the antioxidant status of type 2 DM patients.
Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru
2010-09-01
In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.
Mizuno, Sahiro; Arai, Mari; Todoko, Fumihiko; Yamada, Eri; Goto, Kazushige
2017-01-01
Purpose: To examine the effects of wearing a lower-body compression garment with different body coverage areas during prolonged running on exercise performance and muscle damage. Methods: Thirty male subjects were randomly assigned to one of three groups: (1) wearing a compression tights with 15 mmHg to thigh [n = 10, CT group], (2) wearing a compression socks with 15 mmHg to calf [n = 10, CS group], and (3) wearing a lower-body garment with < 5 mmHg to thigh and calf [n = 10, CON group]. The exercise consisted of 120 min of uphill running at 55% of V˙O2max. Heart rate (HR), rate of perceived exertion (RPE), and running economy (evaluated by VO2) were monitored during exercise every 10 min. Changes in maximum voluntary contraction (MVC) of knee extension and plantar flexion, height of counter movement jump (CMJ) and drop jump (DJ), and scores of subjective feelings of muscle soreness and fatigue were evaluated before exercise, and 60 and 180 min after exercise. Blood samples were collected to determine blood glucose, lactate, serum free fatty acid, myoglobin (Mb), high-sensitivity C-reactive protein, and plasma interleukin-6 concentrations before exercise (after 20 min of rest), at 60 min of exercise, immediately after exercise, and 60 and 180 min after exercise. Results: Changes in HR, RPE, and running economy during exercise did not differ significantly among the three groups. MVC of knee extension and plantar flexion, and DJ decreased significantly following exercise, with no difference among groups. The serum Mb concentration increased significantly with exercise in all groups, whereas the area under the curve for Mb concentration during 180 min post-exercise was significantly lower in the CT group (13,833 ± 1,397 pg/mL 180 min) than in the CON group (24,343 ± 3,370 pg/mL 180 min, P = 0.03). Conclusion: Wearing compression garment on the thigh significantly attenuated the increase in serum Mb concentration after exercise, suggesting that exercise-induced muscle damage was attenuated. PMID:29123488
Uddin, Golam M; Youngson, Neil A; Sinclair, David A; Morris, Margaret J
2016-01-01
Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD(+)). Recent studies have shown that NAD(+) levels can be increased by using the NAD(+) precursor, nicotinamide mononucleotide (NMN) leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD) induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across five groups: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group). After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 min), 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight) was injected (i.p.) daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD(+) levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD(+) only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.
Resistance exercise training and the orthostatic response
NASA Technical Reports Server (NTRS)
McCarthy, J. P.; Bamman, M. M.; Yelle, J. M.; LeBlanc, A. D.; Rowe, R. M.; Greenisen, M. C.; Lee, S. M.; Spector, E. R.; Fortney, S. M.
1997-01-01
Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4-14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance.
Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.
2010-01-01
Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498
Hazar, Muhsin; Otag, Aynur; Otag, Ilhan; Sezen, Mehmet; Sever, Ozan
2014-11-04
Exercise results in oxidative enzyme increase and micro-injuries in skeletal muscles. The aim of this study was to investigate the effect of maximal aerobic exercise on serum muscle enzymes in professional field hockey players. This study aims to determine the effect of increasing maximal aerobic exercise on creatine kinase (CK), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels. 31 young professional field hockey players (13 female and 18 male players) volunteered for this study. All participants underwent the shuttle run test. Blood samples were taken from each participant before the shuttle run test. Post test blood samples were taken immediately after exercise and one hour after respectively. Pre and post test CK, CK-MB, AST and ALT values were measured by means of auto analyzer using original kits. The acute post test measure of the CK level increased in male (p=0.002) and female (p=0.00) sportsmen. CK-MB values obtained one hour after the exercise was lower than those before the exercise in males (p=0.02). In females (p=0.017) and males (p=0.05) AST activity significantly increased immediately after exercise and decreased to resting activity 1 h recovery. ALT significantly increased immediately after exercise in female (p=0.03) and male (p=0.00) athletes and after 1 h recovery ALT activities decreased below resting values. The timing and severity of exercise used in our study increased CK values, decreased CK-MB values and AST, ALT values increased in female and male field hockey players.
Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility
NASA Astrophysics Data System (ADS)
Fajrin, F.; Kusnanik, N. W.; Wijono
2018-01-01
High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.
NASA Technical Reports Server (NTRS)
Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.
1994-01-01
Exercise within a lower body negative pressure (LBNP) chamber in supine posture was compared with similar exercise against Earth's gravity (without LBNP) in upright posture in nine healthy male volunteers. We measured footward force with a force plate, pressure in soleus and tibialis anterior muscles of the leg with transducer-tipped catheters, calf volume by strain gauge plethysmography, heart rate, and systolic and diastolic blood pressures during two conditions: 1) exercise in supine posture within an LBNP chamber during 100-mmHg LBNP (exercise-LBNP) and 2) exercise in upright posture against Earth's gravity without LBNP (exercise-1 G). Subjects exercised their ankle joints (dorsi- and plantarflexions) for 5 min during exercise-LBNP and for 5 min during exercise-1 G. Mean footward force produced during exercise-LBNP (743 +/- 37 N) was similar to that produced during exercise-1 G (701 +/- 24 N). Peak contraction pressure in the antigravity soleus muscle during exercise-LBNP (115 +/- 10 mmHg) was also similar to that during exercise-1 G (103 +/- 13 mmHg). Calf volume increased significantly by 3.3 +/- 0.5% during exercise-LBNP compared with baseline values. Calf volume did not increase significantly during exercise-1 G. Heart rate was significantly higher during exercise-LBNP (99 +/- 5 beats/min) than during exercise-1 G (81 +/- 3 beats/min). These results indicate that exercise in supine posture within an LBNP chamber can produce similar musculoskeletal stress in the legs and greater systemic cardiovascular stress than exercise in the upright posture against Earth's gravity.
A time course of bone response to jump exercise in C57BL/6J mice.
Umemura, Yoshihisa; Baylink, David J; Wergedal, Jon E; Mohan, Subburaman; Srivastava, Apurva K
2002-01-01
Exercise, by way of mechanical loading, provides a physiological stimulus to which bone tissue adapts by increased bone formation. The mechanical stimulus due to physical activity depends on both the magnitude and the duration of the exercise. Earlier studies have demonstrated that jump training for 4 weeks produces a significant bone formation response in C57BL/6J mice. An early time point with significant increase in bone formation response would be helpful in: (1) designing genetic quantitative trait loci (QTL) studies to investigate genes regulating the bone adaptive response to mechanical stimulus; and (2) mechanistic studies to investigate early stimulus to bone tissue. Consequently, we investigated the bone structural response after 2, 3, and 4 weeks of exercise with a loading cycle of ten jumps a day. We used biochemical markers and peripheral quantitative computed tomography (pQCT) of excised femur to measure bone density, bone mineral content (BMC), and area. Four-week-old mice were separated into control ( n = 6) and jump groups ( n = 6), and the latter groups of mice were subjected to jump exercise of 2-week, 3-week, and 4-week duration. Data (pQCT) from a mid-diaphyseal slice were used to compare bone formation parameters between exercise and control groups, and between different time points. There was no statistically significant change in bone response after 2 weeks of jump exercise as compared with the age-matched controls. After 3 weeks of jump exercise, the periosteal circumference, which is the most efficient means of measuring adaptation to exercise, was increased by 3% ( P < 0.05), and total and cortical area were increased by 6% ( P < 0.05) and 11% ( P < 0.01), respectively. Total bone mineral density (BMD) increased by 11% ( P < 0.01). The biggest changes were observed in cortical and total BMC, with the increase in total BMC being 12% ( P < 0.01). Interestingly, the increase in BMC was observed throughout the length of the femur and was not confined to the mid-diaphysis. Consistent with earlier studies, mid-femur bone mass and area remained significantly elevated in the 4-week exercise group when compared with the control group of mice. The levels of the biochemical markers osteocalcin, skeletal alkaline phosphatase, and C-telopeptide were not significantly different between the exercise and control groups, indicating the absence of any systemic response due to the exercise. We conclude that a shorter exercise regimen, of 3 weeks, induced a bone response that was greater than or equal to that of 4 weeks of jump exercise reported earlier.
Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A
2015-10-01
Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p < 0.0001) and homeostatic model assessment of insulin resistance (HOMA-IR; 846.5 ± 1723.3%, p < 0.01). Mediation analyses showed that increases in chemerin explained a substantial amount of the diet-induced increases in insulin and HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.
Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S; Soya, Hideaki
2012-08-07
Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5'-bromo-2'deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5'-bromo-2'deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation.
Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S.; Soya, Hideaki
2012-01-01
Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5′-bromo-2′deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5′-bromo-2′deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation. PMID:22807478
Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun
2014-09-01
The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein.
Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun
2014-01-01
[Purpose] The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. [Methods] There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. [Results] The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. [Conclusion] It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein. PMID:25566463
Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.
2016-01-01
Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348
Effects of Exercise on Liver Fat and Metabolism in Alcohol Drinkers.
Houghton, David; Hallsworth, Kate; Thoma, Christian; Cassidy, Sophie; Hardy, Timothy; Heaps, Sarah; Hollingsworth, Kieren G; Taylor, Roy; Day, Christopher P; Masson, Steven; McPherson, Stuart; Anstee, Quentin M; Trenell, Michael I
2017-10-01
Exercise is an important component of obesity-associated disorders and has been shown to reduce markers of nonalcoholic fatty liver disease (NAFLD). However, little is known about how these effects are influenced by alcohol intake. The authors performed a randomized controlled trial to investigate the effects of exercise on hepatic triglyceride content (HTGC) and metabolism in overweight or obese patients who consume alcohol. The authors performed a prospective study of 27 patients (mean 54 ± 11 years of age, body mass index [BMI] 31 ± 4 kg/m 2 ) with >5% HTGC in the United Kingdom, consuming alcohol (mean 221 ± 75 g/week). Anthropometry, body composition, HTGC, and abdominal fat were measured using plethysmography and magnetic resonance imaging. Subjects were assigned to groups that exercised (3 times/week on nonconsecutive days) for 12 weeks (n = 14) or continued standard care (control group, n = 13), maintaining baseline weight and alcohol consumption. The exercise program consisted of aerobic exercise (static cycling) and a circuit of resistance exercise (free weights and machines). Patients were examined at baseline and at 12 weeks; data collected on HTGC, body composition, metabolic control, circulating inflammatory, and fibrosis markers were assessed at baseline and at 12 weeks. Between-group differences were evaluated using an unpaired t test and within-group differences using a paired t test. The primary outcomes for this study were changes in HTGC between baseline and 12 weeks. After 12 weeks, there was no significant difference between the exercise and control groups in HTGC (reduction of 0.1% ± 2.1% in exercisers vs increase of 0.5 ± 2.1% in control group; P > .05). At week 12, the exercise group had significant reductions in subcutaneous fat (loss of 23 ± 28 cm 2 in the exercisers vs increase of 12 ± 19 cm 2 in the control group; P < .01), and whole body fat (loss of 2.1 ± 1.1 kg in the exercisers vs increase of 0.2 ± 2.1 kg; P < .01). The exercise group also had a significantly greater increase in lean body mass (increase of 1.9 ± 1.4 kg for the exercisers vs increase of 0.7 ± 1.5 kg for the control group; P < .01) and a significantly greater reduction in level of cytokeratin 18 (reduction of 49 ± 82 U/L in exercisers vs increase of 17 ± 38 U/L in control group; P < .05). There were no differences between groups in changes in metabolic factors or markers of inflammation. In a randomized controlled trial of obese individuals who consume alcohol, exercise significantly improved body composition and reduced hepatocyte apoptosis (cytokeratin 18), but did not reduce HTGC. This finding could indicate that alcohol consumption reduces the effects of exercise on NAFLD observed in previous studies. Clinical care teams should look to use exercise as part of the management strategy for people consuming alcohol, but optimal benefit may be as an adjunct to alcohol reduction and weight management strategies. (ISRCTN.com, Number: ISRCTN90597099). Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Duncan, Michael J; Smith, Mike; Bryant, Elizabeth; Eyre, Emma; Cook, Kathryn; Hankey, Joanne; Tallis, Jason; Clarke, Neil; Jones, Marc V
2016-01-01
The aim of this study was to investigate if the effects of changes in physiological arousal on timing performance can be accurately predicted by the catastrophe model. Eighteen young adults (8 males, 10 females) volunteered to participate in the study following ethical approval. After familiarisation, coincidence anticipation was measured using the Bassin Anticipation Timer under four incremental exercise conditions: Increasing exercise intensity and low cognitive anxiety, increasing exercise intensity and high cognitive anxiety, decreasing exercise intensity and low cognitive anxiety and decreasing exercise intensity and high cognitive anxiety. Incremental exercise was performed on a treadmill at intensities of 30%, 50%, 70% and 90% heart rate reserve (HRR) respectively. Ratings of cognitive anxiety were taken at each intensity using the Mental Readiness Form 3 (MRF3) followed by performance of coincidence anticipation trials at speeds of 3 and 8 mph. Results indicated significant condition × intensity interactions for absolute error (AE; p = .0001) and MRF cognitive anxiety intensity scores (p = .05). Post hoc analysis indicated that there were no statistically significant differences in AE across exercise intensities in low-cognitive anxiety conditions. In high-cognitive anxiety conditions, timing performance AE was significantly poorer and cognitive anxiety higher at 90% HRR, compared to the other exercise intensities. There was no difference in timing responses at 90% HRR during competitive trials, irrespective of whether exercise intensity was increasing or decreasing. This study suggests that anticipation timing performance is negatively affected when physiological arousal and cognitive anxiety are high.
Laurent, Mourot; Daline, Teffaha; Malika, Bouhaddi; Fawzi, Ounissi; Philippe, Vernochet; Benoit, Dugue; Catherine, Monpère; Jacques, Regnard
2009-04-01
Rehabilitation programs involving immersed exercises are more and more frequently used, with severe cardiac patients as well. This study investigated whether a rehabilitation program including water-based exercises has additional effects on the cardiovascular system compared with a traditional land-based training in heart disease patients. Twenty-four male stable chronic heart failure patients and 24 male coronary artery disease patients with preserved left ventricular function participated in the study. Patients took part in the rehabilitation program performing cycle endurance exercises on land. They also performed gymnastic exercises either on land (first half of the participants) or in water (second half). Resting plasma concentration of nitric oxide metabolites (nitrate and nitrite) and catecholamine were evaluated, and a symptom-limited exercise test on a cycle ergometer was performed before and after the rehabilitation program. In the groups performing water-based exercises, the plasma concentration of nitrates was significantly increased (P = 0.035 for chronic heart failure and P = 0.042 for coronary artery disease), whereas it did not significantly change in the groups performing gymnastic exercise on land. No changes in plasma catecholamine concentration occurred. In every group, the cardiorespiratory capacity of patients was significantly increased after rehabilitation. The water-based exercises seemed to effectively increase the basal level of plasma nitrates. Such changes may be related to an enhancement of endothelial function and may be of importance for the health of the patients.
Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin
2016-01-01
Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise. PMID:27547577
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-10-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-01-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644
Chung, Nana; Park, Jonghoon; Lim, Kiwon
2017-01-01
[Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes. PMID:28715885
Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity.
Torma, Ferenc; Koltai, Erika; Nagy, Enikő; Ziaaldini, Mohammad Mosaferi; Posa, Aniko; Koch, Lauren G; Britton, Steven L; Boldogh, Istvan; Radak, Zsolt
2014-01-01
The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-08-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.
Müller, Thomas; Muhlack, Siegfried
2008-06-01
Levodopa (LD) application improves motor symptoms and reduces cortisol levels in patients with Parkinson's disease (PD). Endurance exercise enhances cortisol release in proportion to the intensity of the effort and thus may counteract the LD associated cortisol decrease. We measured levels of cortisol and LD over an 1-h long interval following administration of soluble 200 mg LD/50 mg benserazide with concomitant maximal grip strength assessment in 16 PD patients under cued conditions during rest and endurance exercise. The motor response, the plasma levels of cortisol and LD did not significantly differ between both conditions. Cortisol concentrations significantly decreased even during exercise. Grip strength only significantly went up during rest. Endurance exercise did not counteract the LD associated decreased cortisol release. Since cortisol improves muscle function, the lack of increase in maximal grip strength following LD administration during exercise may contribute to reduced exercise capacity, which is reported by PD patients.
White, Andrea T; Davis, Scott L; Wilson, Thad E
2003-03-01
The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI.
Beneficial effects of exercise and its molecular mechanisms on depression in rats
Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.
2008-01-01
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283
Cameron-Tucker, Helen L; Wood-Baker, Richard; Owen, Christine; Joseph, Lyn; Walters, E Haydn
2014-01-01
Both exercise and self-management are advocated in pulmonary rehabilitation for people with chronic obstructive pulmonary disease (COPD). The widely used 6-week, group-based Chronic Disease Self-Management Program (CDSMP) increases self-reported exercise, despite supervised exercise not being a program component. This has been little explored in COPD. Whether adding supervised exercise to the CDSMP would add benefit is unknown. We investigated the CDSMP in COPD, with and without a formal supervised exercise component, to address this question. Adult outpatients with COPD were randomized to the CDSMP with or without one hour of weekly supervised exercise over 6 weeks. The primary outcome measure was 6-minute walk test distance (6MWD). Secondary outcomes included self-reported exercise, exercise stage of change, exercise self-efficacy, breathlessness, quality of life, and self-management behaviors. Within- and between-group differences were analyzed on an intention-to-treat basis. Of 84 subjects recruited, 15 withdrew. 6MWD increased similarly in both groups: CDSMP-plus-exercise (intervention group) by 18.6±46.2 m; CDSMP-alone (control group) by 20.0±46.2 m. There was no significant difference for any secondary outcome. The CDSMP produced à small statistically significant increase in 6MWD. The addition of a single supervised exercise session did not further increase exercise capacity. Our findings confirm the efficacy of a behaviorally based intervention in COPD, but this would seem to be less than expected from conventional exercise-based pulmonary rehabilitation, raising the question of how, if at all, the small gains observed in this study may be augmented.
AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH
2011-01-01
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369
Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.
Pal, Sangita; Chaki, Biswajit; Chattopadhyay, Sreya; Bandyopadhyay, Amit
2018-04-01
Pal, S, Chaki, B, Chattopadhyay, S, and Bandyopadhyay, A. High-intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: a comparative study. J Strength Cond Res 32(4): 1045-1052, 2018-The purpose of this study was to examine the sex variation in high-intensity exercise induced oxidative stress and muscle damage among 44 sedentary postpubertal boys and girls through estimation of postexercise release pattern of muscle damage markers like creatine kinase, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and oxidative stress markers like extent of lipid peroxidation (thiobarbituric acid-reactive substances) and catalase activity. Muscle damage markers like creatine kinase, LDH, ALT, and AST were measured before, immediately after, and 24 and 48 hours after high-intensity incremental treadmill running. Oxidative stress markers like thiobarbituric acid-reactive substances and catalase activity were estimated before and immediately after the exercise. Lipid peroxidation and serum catalase activity increased significantly in both groups after exercise (p < 0.001) with postexercise values and percentage increase significantly higher in postpubertal boys as compared to girls (p < 0.001). Creatine kinase and LDH activity also increased significantly above pre-exercise level at 24 and 48 hours after exercise in both the sexes, (p < 0.001) with values significantly higher for boys than the girls (p < 0.001). Although ALT and AST increased significantly in both the groups after exercise, the pattern of postexercise release of these markers were found to be similar in both the groups. Accordingly, it has been concluded from the present investigation that high-intensity exercise induces significant oxidative stress and increases indices of skeletal muscle damage in both postpubertal girls and boys. However, postpubertal girls are relatively better protected from oxidative stress and muscle damage as compared to the boys of similar age and physical activity level. It is further evident that sex difference may not be apparent for all the biomarkers of muscle damage in this age group.
Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2011-06-01
The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.
Giraldo, E; Garcia, J J; Hinchado, M D; Ortega, E
2009-01-01
It is still not really known what is the optimal level of exercise that improves, but does not impair or overstimulate the innate immune function. This is especially the case in women, who have higher basal levels of 'inflammatory markers' than men. The aim of this work was to evaluate differences in the magnitude of the stimulation of the innate/inflammatory response following a single bout of moderate or intense exercise in sedentary women, all of them in the follicular phase of their menstrual cycle. Changes in stress and sexual hormones were also evaluated. Changes induced by exercise (45 min at 55% VO(2) max vs. 1 h at 70% VO(2) max on a cycle ergometer) in the phagocytic process (chemotaxis, phagocytosis, and microbicide capacity against Candida albicans) and in serum concentrations of IL-1beta, IL-2, IFN-gamma, IL-12, IL-6, and IL-4 (ELISA) were evaluated. Parallel determinations were also made of serum or plasma concentrations of catecholamines (HPLC) and cortisol, oestradiol, and progesterone (electrochemiluminescence immunoassay). Both exercise intensities increased chemotaxis, phagocytosis, and microbicide capacity of the neutrophils. However, the increase in chemotaxis was greater after moderate exercise. All the cytokines assayed were affected by exercise intensity. IFN-gamma increased significantly only immediately after the intense exercise; IL-1beta increased following both exercise intensities, although at 24 h it only remained elevated after the intense exercise; IL-12 only increased 24 h after the intense exercise, and IL-2 only showed a significant decrease following the moderate exercise. IL-6 increased immediately after both exercise intensities, but more so after moderate exercise. While IL-4 (an anti-inflammatory cytokine) increased following the moderate exercise, it decreased after the intense exercise. Both moderate and intense exercise increased norepinephrine and decreased cortisol, both of which returned to basal levels after 24 h. Only the intense exercise affected the epinephrine, oestradiol, and progesterone concentrations, with increases in epinephrine and oestradiol immediately after exercise, and a decrease in progesterone after 24 h. Both moderate and intense exercise stimulate the phagocytic process of neutrophils in sedentary women, but the profile of pro-/anti-inflammatory cytokine release seems to be better following the moderate exercise. The possible participation of stress (catecholamines and cortisol) and sex (oestradiol and progesterone) hormones in these intensity-dependent immune changes is discussed. Copyright 2009 S. Karger AG, Basel.
Physical Exercise as Therapy for Frailty.
Aguirre, Lina E; Villareal, Dennis T
2015-01-01
Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.
Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K
1998-01-01
We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-01-01
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders. PMID:26694434
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-12-16
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders.
Lee, Dong-Kyu; Kang, Min-Hyeok; Kim, Ji-Won; Kim, Yang-Gon; Park, Ji-Hyuk; Oh, Jae-Seop
2013-01-01
Abdominal strengthening exercises are important for stroke patients; however, there is a lack of research on therapeutic exercises for increasing abdominal muscle activity in stroke patients. We investigated the effects of non-paretic arm exercises using a tubing band on abdominal muscle activity in stroke patients. In total, 18 hemiplegic subjects (13 males, 5 females) were recruited. All subjects performed non-paretic arm exercises involving three different shoulder movements (extension, flexion, and horizontal abduction) using an elastic tubing band. Surface electromyography (EMG) signals were recorded from the rectus abdominis (RA), external oblique (EO), and internal oblique (IO) muscles bilaterally during non-paretic arm exercises. EMG activities of abdominal muscles during non-paretic arm extension and horizontal abduction were increased significantly versus shoulder flexion when subjects performed the arm exercise in a seated position. Muscle activity of the EO was significantly greater in the paretic than the non-paretic side during non-paretic arm extension and horizontal abduction. We suggest that non-paretic arm extension and horizontal abduction exercises using an elastic tubing band may be effective in increasing abdominal muscle activity.
Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried
2007-07-11
Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.
Tam, Nicoladie D
2013-01-01
This study aims to identify the acute effects of physical exercise on specific cognitive functions immediately following an increase in cardiovascular activity. Stair-climbing exercise is used to increase the cardiovascular output of human subjects. The color-naming Stroop Test was used to identify the cognitive improvements in executive function with respect to processing speed and error rate. The study compared the Stroop results before and immediately after exercise and before and after nonexercise, as a control. The results show that there is a significant increase in processing speed and a reduction in errors immediately after less than 30 min of aerobic exercise. The improvements are greater for the incongruent than for the congruent color tests. This suggests that physical exercise induces a better performance in a task that requires resolving conflict (or interference) than a task that does not. There is no significant improvement for the nonexercise control trials. This demonstrates that an increase in cardiovascular activity has significant acute effects on improving the executive function that requires conflict resolution (for the incongruent color tests) immediately following aerobic exercise more than similar executive functions that do not require conflict resolution or involve the attention-inhibition process (for the congruent color tests).
Prado, Eduardo Seixas; de Rezende Neto, José Melquiades; de Almeida, Rosemeire Dantas; Dória de Melo, Marcelia Garcez; Cameron, Luiz-Claudio
2011-06-28
Hyperammonaemia is related to both central and peripheral fatigue during exercise. Hyperammonaemia in response to exercise can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA). In the present study, we determined the effect of short-term KAAA supplementation on ammonia production in subjects eating a low-carbohydrate diet who exercise. A total of thirteen male cyclists eating a ketogenic diet for 3 d were divided into two groups receiving either KAAA (KEx) or lactose (control group; LEx) supplements. Athletes cycled indoors for 2 h, and blood samples were obtained at rest, during exercise and over the course of 1 h during the recovery period. Exercise-induced ammonaemia increased to a maximum of 35 % in the control group, but no significant increase was observed in the supplemented group. Both groups had a significant increase (approximately 35 %) in uraemia in response to exercise. The resting urate levels of the two groups were equivalent and remained statistically unchanged in the KEx group after 90 min of exercise; an earlier increase was observed in the LEx group. Glucose levels did not change, either during the trial time or between the groups. An increase in lactate levels was observed during the first 30 min of exercise in both groups, but there was no difference between the groups. The present results suggest that the acute use of KAAA diminishes exercise-induced hyperammonaemia.
The Effects of Aerobic Exercise on Estrogen Metabolism in Healthy Premenopausal Women
Smith, Alma J.; Phipps, William R.; Thomas, William; Schmitz, Kathryn H.; Kurzer, Mindy S.
2013-01-01
Background It is well accepted that exercise can decrease breast cancer risk. Limited clinical evidence suggests that this risk could be mediated through changes in estrogen metabolism in premenopausal women. Our objective was to investigate the effects of exercise on premenopausal estrogen metabolism pertinent to breast cancer risk. Methods Sedentary, healthy, young eumenorrheic women were randomized into an intervention of 30 minutes of moderate-to-vigorous aerobic exercise 5 times a week for approximately 16 weeks (n = 212), or into a usual-lifestyle sedentary control group (n = 179). Urinary levels of estrogens (estrone [E1], estradiol, and estriol) and nine estrogen metabolites were measured at baseline and at study end by liquid chromatography/tandem mass spectrometry. The ratios of 2-hydroxyestrone to 16α-hydroxyestrone (2-OHE1/16α-OHE1) and 2-OHE1 to 4-hydroxyestrone (2- OHE1/4-OHE1) were also calculated. Results The exercise intervention resulted in significant increases in aerobic fitness and lean body mass, and a significant decrease in percent body fat. For exercisers who completed the study (n = 165), 2-OHE1/16α-OHE1 increased significantly (P = 0.043), while E1 decreased significantly (P = 0.030) in control participants (n = 153). The change from baseline in 2-OHE1/16α-OHE1 was significantly different between groups (P = 0.045), even after adjustment for baseline values. Conclusions The exercise intervention resulted in a significant increase in the 2-OHE1/16α-OHE1 ratio, but no differences in other estrogen metabolites or ratios. Impact Our results suggest that changes in premenopausal estrogen metabolism may be a mechanism by which increased physical activity lowers breast cancer risk. PMID:23652373
Djordjevic, B; Baralic, I; Kotur-Stevuljevic, J; Stefanovic, A; Ivanisevic, J; Radivojevic, N; Andjelkovic, M; Dikic, N
2012-08-01
The purpose of the current study was to examine the effect of Astaxanthin (Asx) supplementation on muscle enzymes as indirect markers of muscle damage, oxidative stress markers and antioxidant response in elite young soccer players. Thirty-two male elite soccer players were randomly assigned in a double-blind fashion to Asx and placebo (P) group. After the 90 days of supplementation, the athletes performed a 2 hour acute exercise bout. Blood samples were obtained before and after 90 days of supplementation and after the exercise at the end of observational period for analysis of thiobarbituric acid-reacting substances (TBARS), advanced oxidation protein products (AOPP), superoxide anion (O2•¯), total antioxidative status (TAS), sulphydril groups (SH), superoxide-dismutase (SOD), serum creatine kinase (CK) and aspartate aminotransferase (AST). TBARS and AOPP levels did not change throughout the study. Regular training significantly increased O2•¯ levels (main training effect, P<0.01). O2•¯ concentrations increased after the soccer exercise (main exercise effect, P<0.01), but these changes reached statistical significance only in the P group (exercise x supplementation effect, P<0.05). TAS levels decreased significantly post- exercise only in P group (P<0.01). Both Asx and P groups experienced increase in total SH groups content (by 21% and 9%, respectively) and supplementation effect was marginally significant (P=0.08). Basal SOD activity significantly decreased both in P and in Asx group by the end of the study (main training effect, P<0.01). All participants showed a significant decrease in basal CK and AST activities after 90 days (main training effect, P<0.01 and P<0.001, respectively). CK and AST activities in serum significantly increased as result of soccer exercise (main exercise effect, P<0.001 and P<0.01, respectively). Postexercise CK and AST levels were significantly lower in Asx group compared to P group (P<0.05) The results of the present study suggest that soccer training and soccer exercise are associated with excessive production of free radicals and oxidative stress, which might diminish antioxidant system efficiency. Supplementation with Asx could prevent exercise induced free radical production and depletion of non-enzymatic antioxidant defense in young soccer players.
Karakilcik, A Z; Halat, R; Zerin, M; Celik, H; Nazligul, Y
2014-10-01
Exercise may increase production of reactive oxygen species (ROS) enhancing oxidative stress. Antioxidants can efficiently scavenge ROS before they initiate oxidative damage of biomolecules such as enzymes, nucleic acids, lipids and lipoproteins in the body. Vitamin C, an important antioxidant, may affect oxidative stress in living organism. Therefore, this study was carried out to investigate the effects of exercise and vitamin C on thiobarbituric acid-reactive substance (TBARS), lipid profile, erythrocyte and platelet indices in young soccer players. This investigation was carried out on twenty two male volunteer players in three groups. The first group was examined as a control. The second group was only exposed to exercise. The third group was exposed to exercise plus vitamin C (500 mg/day) administered per oral. The players were 23.50±0.59 year-old, 67.66±1.52 kg body weight and 1.74±0.03 m height. Blood samples were collected in vacutainer tubes for analysis of biochemical and hematological parameters. While the levels of high density lipoprotein-cholesterol (HDL-C) were significantly increased (P<0.05) with only exercise, the cholesterol and low density lipoprotein-cholesterol (LDL-C) were decreased (P<0.05 to P<0.01) with exercise and exercise plus vitamin C treatment. While TBARS levels were increased (P<0.05) with exercise training, it was decreased (P<0.05) with exercise plus vitamin C treatment. The platelet counts (PLT), mean platelet volume (MPV), plateletcrit (PCT) and red blood cell distribution width (RDW) were significantly decreased (P<0.05) with exercise plus vitamin C. There were significantly correlations (P<0.05 to P<0.01) between lipid values and erythrocyte and platelet indices. In light of these results, exercise may play a role in decreasing of LDL-C and in increasing of HDL-C. In addition, exercise plus vitamin C may diminish TBARS-levels and may affect the values of PLT, MPV, PCT and RDW in young soccer players.
Acute supplementation with keto analogues and amino acids in rats during resistance exercise.
de Almeida, Rosemeire Dantas; Prado, Eduardo Seixas; Llosa, Carlos Daniel; Magalhães-Neto, Anibal; Cameron, Luiz-Claudio
2010-11-01
During exercise, ammonia levels are related to the appearance of both central and peripheral fatigue. Therefore, controlling the increase in ammonia levels is an important strategy in ameliorating the metabolic response to exercise and in improving athletic performance. Free amino acids can be used as substrates for ATP synthesis that produces ammonia as a side product. Keto analogues act in an opposite way, being used to synthesise amino acids whilst decreasing free ammonia in the blood. Adult male rats were divided into four groups based on receiving either keto analogues associated with amino acids (KAAA) or a placebo and resistance exercise or no exercise. There was an approximately 40% increase in ammonaemia due to KAAA supplementation in resting animals. Exercise increased ammonia levels twofold with respect to the control, with a smaller increase (about 20%) in ammonia levels due to exercise. Exercise itself causes a significant increase in blood urea levels (17%). However, KAAA reduced blood urea levels to 75% of the pre-exercise values. Blood urate levels increased 28% in the KAAA group, independent of exercise. Supplementation increased glucose levels by 10% compared with control animals. Exercise did not change glucose levels in either the control or supplemented groups. Exercise promoted a 57% increase in lactate levels in the control group. Supplementation promoted a twofold exercise-induced increase in blood lactate levels. The present results suggest that an acute supplementation of KAAA can decrease hyperammonaemia induced by exercise.
Monga, Manoj; Macias, Brandon; Groppo, Eli; Kostelec, Monica; Hargens, Alan
2006-07-01
Prolonged exposure to microgravity during spaceflight causes metabolic changes that increase the risk of renal stone formation. Studies during the Gemini, Apollo, Skylab and Shuttle missions demonstrated alterations in renal function, fluid homeostasis and bone resorption that result in increased urinary supersaturation of calcium oxalate, brushite, sodium urate and uric acid. Developing countermeasures to increased urinary supersaturation is an important priority as the duration of space missions increases. A total of 11 sets of identical twins remained on 6-degree head down, tilt bed rest for 30 days to simulate prolonged microgravity. One twin per pair was randomly selected to exercise while supine in a lower body negative pressure chamber 6 days weekly for 40 minutes, followed by 5 minutes of resting lower body negative pressure at 50 mm Hg. The other twin served as a nonexercise control. Pressure in the exercise lower body negative pressure chamber (52 to 63 mm Hg) was adjusted to produce footward forces equivalent to those for upright running on Earth at 1.0 to 1.2 x body weight. Pre-bed rest urinary stone risk profiles were done elsewhere after 5 days of a standardized diet, consisting of 170 mEq sodium, 1,000 mg calcium, 0.8 gm/kg animal protein and 2,500 kcal, and then throughout the bed rest and recovery phases of the protocol. A significant increase in urinary calcium after just 1 week of bed rest was noted in the nonexercise control group (p = 0.001). However, no such increase was noted in the exercise group. Brushite supersaturation increased significantly from bed rest in each group, although the increase was significantly higher in the nonexercise control group than in the exercise group (p = 0.006). Calcium oxalate supersaturation increased during bed rest in the exercise group (p = 0.004). It trended toward a higher level in the nonexercise control group, although this did not achieve significance (p = 0.055) Mean urine volume +/- SD was significantly higher in the nonexercise control group than in the exercise group at bed rest week 2 and at week 3 (2.01 +/- 0.21 vs 1.63 0.18 l and 2.03 +/- 0.22 vs 1.81 +/- 0.20, respectively). Urinary pH was significantly higher in the nonexercise control group than in the exercise group at week 1 and week 3 (6.62 +/- 0.7 vs 6.49 +/- 0.5 and 6.58 +/- 0.6 vs 6.49 +/- 0.8, respectively, p = 0.01). Bed rest significantly alters the urinary environment to favor calculous formation. Lower body negative pressure chamber treadmill exercise offers some protection against increases in stone risk during simulated microgravity, particularly with regard to the risks of hypercalciuria and brushite stone formation. The use of lower body negative pressure to augment aerobic exercise in space may decrease the risk of stone formation in astronauts. Adjunct measures, including aggressive hydration and alkalinization therapy, should be considered.
Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A.; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy
2010-01-01
NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise. PMID:20739506
Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy; Musi, Nicolas
2010-11-01
NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise.
Does vigorous exercise have a neuroprotective effect in Parkinson disease?
2011-01-01
Parkinson disease (PD) is progressive, with dementia and medication-refractory motor problems common reasons for late-stage nursing-home placement. Increasing evidence suggests that ongoing vigorous exercise/physical fitness may favorably influence this progression. Parkinsonian animal models reveal exercise-related protection from dopaminergic neurotoxins, apparently mediated by brain neurotrophic factors and neuroplasticity (predicted from in vitro studies). Similarly, exercise consistently improves cognition in animals, also linked to enhanced neuroplasticity and increased neurotrophic factor expression. In these animal models, immobilization has the opposite effect. Brain-derived neurotrophic factor (BDNF) may mediate at least some of this exercise benefit. In humans, exercise increases serum BDNF, and this is known to cross the blood–brain barrier. PD risk in humans is significantly reduced by midlife exercise, documented in large prospective studies. No studies have addressed whether exercise influences dementia risk in PD, but exercised patients with PD improve cognitive scores. Among seniors in general, exercise or physical fitness has not only been associated with better cognitive scores, but midlife exercise significantly reduces the later risk of both dementia and mild cognitive impairment. Finally, numerous studies in seniors with and without dementia have reported increased cerebral gray matter volumes associated with physical fitness or exercise. These findings have several implications for PD clinicians. 1) Ongoing vigorous exercise and physical fitness should be highly encouraged. 2) PD physical therapy programs should include structured, graduated fitness instruction and guidance for deconditioned patients with PD. 3) Levodopa and other forms of dopamine replenishment therapy should be utilized to achieve the maximum capability and motivation for patients to maintain fitness. PMID:21768599
Effect of Exercise on Serum Sex Hormones in Men: A 12-Month Randomized Clinical Trial
HAWKINS, VIVIAN N.; FOSTER-SCHUBERT, KAREN; CHUBAK, JESSICA; SORENSEN, BESS; ULRICH, CORNELIA M.; STANCYZK, FRANK Z.; PLYMATE, STEPHEN; STANFORD, JANET; WHITE, EMILY; POTTER, JOHN D.; MCTIERNAN, ANNE
2011-01-01
Purpose The effect of exercise on androgens in middle-aged to older men is poorly understood, and it could have implications for several aspects of health. This analysis was conducted to examine the effects of long-term aerobic exercise on serum sex hormones in middle-aged to older men. Methods One hundred two sedentary men, ages 40–75 yr, were randomly assigned to a 12-month exercise intervention or a control group (no change in activity). The combined facility- and home-based exercise program consisted of moderate/vigorous-intensity aerobic activity for 60 min·d−1, 6 d·wk−1. Serum concentrations of testosterone, free testosterone, dihydrotestosterone (DHT), 3α-androstanediol glucuronide (3α-Diol-G), estradiol, free estradiol, and sex hormone–binding globulin (SHBG) were measured at baseline, 3, and 12 months. Results Exercisers trained a mean of 370 min·wk−1 (102% of goal), with only two dropouts. Cardiopulmonary fitness (V̇O2max) increased 10.8% in exercisers and decreased by 1.8% in controls (P < 0.001). DHT increased 14.5% in exercisers versus 1.7% in controls at 3 months (P = 0.04); at 12 months, it remained 8.6% above baseline in exercisers versus a 3.1% decrease in controls (P = 0.03). SHBG increased 14.3% in exercisers versus 5.7% in controls at 3 months (P = 0.04); at 12 months, it remained 8.9% above baseline in exercisers versus 4.0% in controls (P = 0.13). There were significant trends toward increasing DHT and SHBG, with greater increases in V̇O2max at 3 and 12 months in exercisers. No statistically significant differences were observed for testosterone, free testosterone, 3α-Diol-G, estradiol, or free estradiol in exercisers versus controls. Conclusions A yearlong, moderate-intensity aerobic exercise program increased DHT and SHBG, but it had no effect on other androgens in middle-aged to older men. PMID:18202581
Burg, Matthew M.; Schwartz, Joseph E.; Kronish, Ian M.; Diaz, Keith M.; Alcantara, Carmela; Duer-Hefele, Joan; Davidson, Karina W.
2017-01-01
Background Psychosocial stress contributes to heart disease in part by adversely affecting maintenance of health behaviors, while exercise can reduce stress. Assessing the bi-directional relationship between stress and exercise has been limited by lack of real-time data, and theoretical and statistical models. This lack may hinder efforts to promote exercise maintenance. Purpose We test the bi-directional relationship between stress and exercise using real-time data for the average person, and the variability – individual differences – in this relationship. Methods A single cohort randomized controlled experiment. Healthy young adults (n=79) who reported only intermittent exercise, completed 12 months of stress monitoring by ecological momentary assessment (at the beginning of, end of, and during the day), and continuous activity monitoring by Fitbit. A random coefficients linear mixed model was used to predict end-of-day stress from the occurrence/non-occurrence of exercise that day; a logistic mixed model was used to predict the occurrence/non-occurrence of exercise from ratings of anticipated stress. Separate regression analyses were also performed for each participant. Sensitivity analysis tested all models, restricted to the first 180 days of observation (prior to randomization). Results We found a significant average inverse (i.e., negative) effect of exercise on stress and of stress on exercise. There was significant between-person variability. Of N=69, exercise was associated with a stress reduction for 15, a stress increase for 2, and no change for the remainder. We also found that an increase in anticipated stress reported the previous night or that morning was associated with a significant 20–22% decrease (OR=0.78–0.80) in the odds of exercising that day. Of N=69, this increase in stress reduced the likelihood of exercise for 17, increased the odds for 1, and had no effect for the remainder. We were unable to identify psychosocial factors that moderate the individual differences in these effects. Conclusions The relationship of stress to exercise can be uni- or bi-directional, and varies from person to person. A precision medicine approach may improve exercise uptake. PMID:28290065
Kraemer, William J; Fragala, Maren S; van Henegouwen, Wendy R H Beijersbergen; Gordon, Scott E; Bush, Jill A; Volek, Jeff S; Triplett, N Travis; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Luk, Hui-Ying; Mastro, Andrea M
2013-04-01
Proenkephalin Peptide F [107-140] is an enkephalin-containing peptide found predominantly within the adrenal medulla, co-packaged with epinephrine within the chromaffin granules. In vivo studies indicate that Peptide F has classic opioid analgesia effects; in vitro studies suggest potential immune cell interactions. In this investigation we examined patterns of Peptide F concentrations in different bio-compartments of the blood at rest and following sub-maximal cycle exercise to determine if Peptide F interacts with the white blood cell (WBC) bio-compartment during aerobic exercise. Eight physically active men (n=8) performed sub-maximal (80-85% V˙O2peak) cycle ergometer exercise for 30 min. Plasma Peptide F and WBC Peptide F immunoreactivity were examined pre-exercise, mid-exercise and immediately post-, 5-min post-, 15-min post-, 30-min post- and 60-min post-exercise and at similar time-points during a control condition (30 min rest). Peptide F concentrations significantly (p<0.05) increased at 5 and 60 min post-exercise, compared to pre-exercise concentrations. No significant increases in Peptide F concentrations in the WBC fraction were observed during or after exercise. However, a significant decrease was observed at 30 min post-exercise. An ultradian pattern of Peptide F distribution was apparent during rest. Furthermore, concentrations of T cells, B cells, NK cells, and total WBCs demonstrated significant changes in response to aerobic exercise. Data indicated that Peptide F was bound in significant molar concentrations in the WBC fraction and that this biocompartment may be one of the tissue targets for binding interactions. These data indicate that Peptide F is involved with immune cell modulation in the white blood circulatory biocompartment of blood. Copyright © 2013. Published by Elsevier Inc.
Chokan, Kou; Murakami, Hideki; Endo, Hirooki; Mimata, Yoshikuni; Yamabe, Daisuke; Tsukimura, Itsuko; Oikawa, Ryosuke; Doita, Minoru
2016-04-01
T2 mapping was used to quantify moisture content of the lumbar spinal disk nucleus pulposus (NP) and annulus fibrosus before and after exercise stress, and after rest, to evaluate the intervertebral disk function. To clarify water retention in intervertebral disks of the lumbar vertebrae by performing magnetic resonance imaging before and after exercise stress and quantitatively measuring changes in moisture content of intervertebral disks with T2 mapping. To date, a few case studies describe functional evaluation of articular cartilage with T2 mapping; however, T2 mapping to the functional evaluation of intervertebral disks has rarely been applied. Using T2 mapping might help detect changes in the moisture content of intervertebral disks, including articular cartilage, before and after exercise stress, thus enabling the evaluation of changes in water retention shock absorber function. Subjects, comprising 40 healthy individuals (males: 26, females: 14), underwent magnetic resonance imaging T2 mapping before and after exercise stress and after rest. Image J image analysis software was then used to set regions of interest in the obtained images of the anterior annulus fibrosus, posterior annulus fibrosus, and NP. T2 values were measured and compared according to upper vertebrae position and degeneration grade. T2 values significantly decreased in the NP after exercise stress and significantly increased after rest. According to upper vertebrae position, in all of the upper vertebrae positions, T2 values for the NP significantly decreased after exercise stress and significantly increased after rest. According to the degeneration grade, in the NP of grade 1 and 2 cases, T2 values significantly decreased after exercise stress and significantly increased after rest. T2 mapping could be used to not only diagnose the degree of degeneration but also evaluate intervertebral disk function. 3.
The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise
Jäger, Ralf; Metzger, Jan; Lautmann, Karin; Shushakov, Vladimir; Purpura, Martin; Geiss, Kurt-Reiner; Maassen, Norbert
2008-01-01
Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements. Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism. PMID:18269769
The effect of Pilates exercise on body composition in sedentary overweight and obese women.
Şavkin, Raziye; Aslan, Ummuhan B
2017-11-01
Pilates is a popular exercise approach among women. Still there is poor empirical quantitative evidence indicating a positive effect of Pilates exercises on body composition. The aim of our study is to determine the effects of Pilates exercises on body composition in sedentary overweight and obese women. Thirty-seven women, aged between 30 to 50 (43.79±4.88) years, included the study. Subjects are randomly divided into Pilates group (N.=19) and control group (N.=18). Pilates exercises was given for 90 minutes, 3 times/week, for 8 week with a gradual strength increase of 11-17 in the Rating of Perceived Exercise. Control group did not participate in any physical activity program. Bioelectric Impedance Analysis was used for determine the body composition of participants. Weight, Body Mass Index (BMI), body fat mass, lean body mass, waist, abdomen and hip circumference were measured at pre- and post-training period. In Pilates group, weight, BMI, fat percentage, waist, abdomen and hip circumference decreased significantly after training (P<0.05) while no significant difference was observed in lean body mass (P>0.05). In control group, abdomen and hip circumference increased significantly (P<0.05) as the other parameters showed the tendency for an increase, but no significant difference (P<0.05). The results of this study indicate that 8 weeks Pilates exercises have positive effects on body composition in sedentary overweight and obese women. Pilates exercises can be applied for improving body composition.
Shokri, Saeed; Aitken, Robert John; Abdolvahhabi, Mirabbas; Abolhasani, Farid; Ghasemi, Fahimeh Mohammad; Kashani, Iraj; Ejtemaeimehr, Shahram; Ahmadian, Shahin; Minaei, Bagher; Naraghi, Mohammad Ali; Barbarestani, Mohammad
2010-04-01
Anabolic-androgenic steroids are used at high doses by athletes for improving athletic ability, physical appearance and muscle mass. Unfortunately, the abuse of these agents has significantly increased. It has been established that exercise and high doses of anabolic-androgenic steroids may influence the hypothalamic-pituitary-gonadal axis, which can in turn affect testicular apoptosis. However, the effect of the combination of exercise and high dose of anabolic-androgenic steroids on testicular apoptosis is not known. We investigated the combined effects of exercise and high doses of nandrolone decanoate on apoptosis in the spermatogenic cell lineage. Five groups of male Wistar strain albino rats were treated as follows for 8 weeks: solvent of nandrolone decanoate (peanut oil) as a vehicle (Sham); nandrolone decanoate (10 mg/kg/weekly) (nandrolone decanoate); exercise (1 hr/day, 5 days a week) (exercise); nandrolone decanoate (10 mg/kg/weekly) and exercise (1 hr/day, 5 days a week) (nandrolone decanoate exercise); and sedentary control without any injection or exercise (Control). Apoptosis in the male germ line was characterized by TUNEL, caspase-3 assay and transmission electron microscopy. The weights of the testis and accessory sex organs, as well as sperm parameters significantly decreased in the experimental groups relative to the sham and control groups (p < or = 0.05). Germ cell apoptosis and a significant decrease in the number of germ cell layers in nandrolone decanoate exercise-treated testes were observed (p < or = 0.05). Exercise training seems to increase the extent of apoptotic changes caused by supraphysiological dose of nandrolone decanoate in rats, which in turn affects fertility.
Body temperature modulates the antioxidant and acute immune responses to exercise.
Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni
2012-06-01
The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.
Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.
Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I
2017-10-01
To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.
Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco Veríssimo; Thomé, Fernando Saldanha
2017-01-01
Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.
Botticelli, G; Bacchi Modena, A; Bresciani, D; Villa, P; Aguzzoli, L; Florio, P; Nappi, R E; Petraglia, F; Genazzani, A R
1992-12-01
The effect of an acute physical stress on hormone secretions before and after a 10-day naltrexone treatment in untrained healthy and amenorrheic women was investigated. Plasma levels of pituitary (LH, FSH, prolactin, GH, ACTH, beta-endorphin) and adrenal (cortisol, androstenedione, testosterone) hormones were measured at rest and in response to 60 min of physical exercise. The test was done both before and after a 10-day naltrexone (50 mg/day) treatment. Graded levels of treadmill exercise (50, 70 and 90% of maximal oxygen uptake (VO2) every 20 min) was used as physical stressor. While mean +/- SE plasma LH levels in control women were higher than in amenorrheic patients and increased following the naltrexone treatment (p < 0.01), no significant differences of basal plasma hormonal levels were observed between amenorrheic and eumenorrheic women, both before and after naltrexone treatment. Physical exercise at 90% VO2 induced a significant increase in plasma GH, ACTH, beta-endorphin, cortisol, androstenedione and testosterone levels in controls before naltrexone treatment (p < 0.01). The mean increase in plasma androstenedione and testosterone levels in control women was significantly higher after naltrexone treatment (p < 0.01). In amenorrheic patients before naltrexone, physical exercise induced an increase in plasma prolactin and GH levels, but not in plasma ACTH, beta-endorphin, cortisol, testosterone and androstenedione. After naltrexone treatment, the exercise induced a significant plasma ACTH, beta-endorphin and cortisol levels, while the increase of plasma prolactin levels was significantly higher than before treatment (p < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-01-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141
Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control.
Wood, Helen E; Mitchell, Gordon S; Babb, Tony G
2009-09-30
Small increases in external dead space (V(D)) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased V(D) and STM. Men were studied at rest and during cycle exercise (10-50W) without (Control) and with added V(D) (200-600ml). With added V(D), V(T) increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, V(T) increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and V(D) on mean inspiratory flow indicated that the augmented exercise ventilatory response with added V(D) (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased V(D) and STM.
Mizuno, Sahiro
2017-01-01
Objective To investigate the effect of wearing a lower body compression garment (CG) exerting different pressure levels during prolonged running on exercise-induced muscle damage and the inflammatory response. Methods Eight male participants completed three exercise trials in a random order. The exercise consisted of 120 min of uphill running at 60% of VO2max. The exercise trials included 1) wearing a lower-body CG with 30 mmHg pressure [HIGH]; 2) wearing a lower-body CG with 15 mmHg pressure [MED]; and 3) wearing a lower-body garment with < 5 mmHg pressure [CON]. Heart rate (HR), and rate of perceived exertion for respiration and legs were monitored continuously during exercise. Time-course change in jump height was evaluated before and immediately after exercise. Blood samples were collected to determine blood glucose, lactate, serum creatine kinase, myoglobin, free fatty acids, glycerol, cortisol, and plasma interleukin-6 (IL-6) concentrations before exercise, 60 min of the 120 min exercise period, immediately after exercise, and 60 min after exercise. Results Jump height was significantly higher immediately after the exercise in the MED trial compared with that in the HIGH trial (P = 0.04). Mean HR during the 120 min exercise was significantly lower in the MED trial (162 ± 4 bpm) than that in the CON trial (170 ± 4 bpm, P = 0.01). Plasma IL-6 concentrations increased significantly with exercise in all trials, but the area under the curve during exercise was significantly lower in the MED trial (397 ± 58 pg/ml·120 min) compared with that in the CON trial (670 ± 86 pg/ml·120 min, P = 0.04). Conclusion Wearing a lower body CG exerting medium pressure (approximately 15 mmHg) significantly attenuated decrease in jump performance than that with wearing a lower body CG exerting high pressure (approximately 30 mmHg). Furthermore, exercise-induced increases in HR and the inflammatory response were significantly smaller with CG exerted 15mmHg than that with garment exerted < 5 mmHg. PMID:28562650
Demarzo, Marcelo Marcos Piva; Garcia, Sérgio Britto
2004-12-08
Aberrant crypt foci (ACF) have been used for early detection of factors that influence colorectal carcinogenesis in rats. It has been observed that exhaustive exercise increases free radical DNA oxidative damage and depresses immune function, events also related to the increased risk for cancer development. Fifteen days after a single exhaustive swimming bout in untrained rats treated with a colon carcinogen, we observed a statistically significant increased number of ACF when compared to the non-exercised group. Thus, we concluded that exhaustive exercise increased the susceptibility for colon cancer in rats. From our finding and literature data, we hypothesize that, similarly to the suggested relationship between exercise and infections, exercise could be protective against cancer or it could increase the risk for this disease depending on its type, dose and duration.
Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.
Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2013-05-01
The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young
2017-06-01
We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p < .05). At 60MAE, ROS concentration was higher following HI (2.5 ± 1.2 mM) than after LI (1.5 ± 0.5 mM) and MI (1.4 ± 0.3 mM) conditions (p < .05). Plasma NO IAE increased significantly after MI and HI exercise (p < .05). Serum BDNF, NGF, and S-100b levels were significantly higher IAE following MI and HI exercise (p < .05). BDNF and S-100b were higher IAE following MI (29.6 ± 3.4 ng/mL and 87.1 ± 22.8 ng/L, respectively) and HI (31.4 ± 3.8 ng/mL and 100.6 ± 21.2 ng/L, respectively) than following LI (26.5 ± 3.0 ng/mL and 64.8 ± 19.2 ng/L, respectively) exercise (p < .05). 60MAE, S-100b was higher following HI (71.1 ± 14.5 ng/L) than LI (56.2 ± 14.7 ng/L) exercise (p < .05). NSE levels were not significantly different among all intensity conditions and time points (p > .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.
Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes.
Ayres, S; Baer, J; Subbiah, M T
1998-01-01
To determine plasma lipid peroxidation parameters in eumenorrheic and amenorrheic athletes and to evaluate differences in their response to exercise-induced oxidative stress. In female athletes, intense physical exercise has been shown to be associated with an increased occurrence of menstrual dysfunction with lower levels of E2. Recently, a protective role has been demonstrated for estrogens as free radical scavengers. Comparison of eumenorrheic and amenorrheic athletes before and after an acute bout of exercise. Academic Research Environment. Seven eumenorrheic (normally menstruating) and seven amenorrheic (<3 menses/year) female athletes aged 18 to 35 years participating in regular training. Plasma and low-density lipoprotein oxidation parameters, plasma E2 and vitamin E levels, and creatine kinase activity. Both the amenorrheic and eumenorrheic athletes demonstrated a significant decrease in the lag time of conjugated diene formation after exercise (P < 0.01), with greater magnitude of change occurring in the amenorrheic athletes (P < 0.05). In addition, postexercise samples from amenorrheic (but not eumenorrhic) athletes showed a significant (P < 0.01) increase in oxysterol formation as compared to baseline values. Amenorrheic athletes also demonstrated a significantly higher baseline creatine kinase activity and a nonsignificant (P = 0.04) trend of an increase in creatine kinase activity after exercise. The results of this study shows that amenorrheic female athletes demonstrate an increased potential for lipid peroxidation after exercise. This could be related to lower plasma E2 levels in this group, considering the strong free radical scavenging ability of estrogens identified recently.
Daskalopoulou, Stella S; Cooke, Alexandra B; Gomez, Yessica-Haydee; Mutter, Andrew F; Filippaios, Andreas; Mesfum, Ertirea T; Mantzoros, Christos S
2014-09-01
Irisin, a recently discovered myokine, has been shown to induce browning of white adipose tissue, enhancing energy expenditure and mediating some of the beneficial effects of exercise. We aimed to estimate the time frame of changes in irisin levels after acute exercise and the effect of different exercise workloads and intensities on circulating irisin levels immediately post-exercise. In a pilot study, four healthy subjects (22.5±1.7 years) underwent maximal workload exercise (maximal oxygen consumption, VO2 max) and blood was drawn at prespecified intervals to define the time frame of pre- and post-exercise irisin changes over a 24-h period. In the main study, 35 healthy, non-smoking (23.0±3.3 years) men and women (n=20/15) underwent three exercise protocols ≥48-h apart, in random order: i) maximal workload (VO2 max); ii) relative workload (70% of VO2 max/10 min); and iii) absolute workload (75 W/10 min). Blood was drawn immediately pre-exercise and 3 min post-exercise. In the pilot study, irisin levels increased by 35% 3 min post-exercise, then dropped and remained relatively constant. In the main study, irisin levels post-exercise were significantly higher than those of pre-exercise after all workloads (all, P<0.001). Post-to-pre-exercise differences in irisin levels were significantly different between workloads (P=0.001), with the greatest increase by 34% following maximal workload (P=0.004 vs relative and absolute). Circulating irisin levels were acutely elevated in response to exercise, with a greater increase after maximal workload. These findings suggest that irisin release could be a function of muscle energy demand. Future studies need to determine the underlying mechanisms of irisin release and explore irisin's therapeutic potential. © 2014 European Society of Endocrinology.
Camerino, Saulo Rodrigo Alves e Silva; Lima, Rafaela Carvalho Pereira; França, Thássia Casado Lima; Herculano, Edla de Azevedo; Rodrigues, Daniela Souza Araújo; Gouveia, Marcos Guilherme de Sousa; Cameron, L C; Prado, Eduardo Seixas
2016-02-01
Alterations of cerebral function, fatigue and disturbance in cognitive-motor performance can be caused by hyperammonemia and/or hot environmental conditions during exercise. Exercise-induced hyperammonemia can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA) to improve exercise tolerance. In the present study, we evaluated KAAA supplementation on ammonia metabolism and cognitive-motor performance after high-intensity exercise under a low heat stress environment. Sixteen male cyclists received a ketogenic diet for 2 d and were divided into two groups, KAAA (KEx) or placebo (CEx) supplementation. The athletes performed a 2 h cycling session followed by a maximum test (MAX), and blood samples were obtained at rest and during exercise. Cognitive-motor tasks were performed before and after the protocol, and the exhaustion time was used to evaluate physical performance. The hydration status was also evaluated. The CEx group showed a significant increase (∼ 70%) in ammonia concentration at MAX, which did not change in the KEx group. The non-supplemented group showed a significant increase in uremia. Both the groups had a significant increase in blood urate concentrations at 120 min, and an early significant increase from 120 min was observed in the CEx group. There was no change in the glucose concentrations of the two groups. A significant increase in lactate was observed at the MAX moment in both groups. There was no significant difference in the exhaustion times between the groups. No changes were observed in the cognitive-motor tasks after the protocol. We suggest that KAAA supplementation decreases ammonia concentration during high-intensity exercise but does not affect physical or cognitive-motor performances under a low heat stress environment.
Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł
2017-01-01
Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103
Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L.; Huang, Chih-Yang; Kuo, Chia-Hua
2015-01-01
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Conclusion: Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge. PMID:25617625
Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua
2015-01-01
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.
Wright, Katherine E; Lyons, Thomas S; Navalta, James W
2013-05-01
The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.
Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung
2016-09-01
[Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external oblique (EO), gluteus maximus (GM), and biceps femoris (BF) was measured using surface electromyography. Data analysis was performed using the mean scores of three trials performed under each condition. [Results] There was a significant increase in bilateral EO and contralateral GM with the one-legged bridge compared with the one-legged bridge with sling exercise. Muscle activation of the ipsilateral GM and BF was significantly less during the one-legged bridge exercise compared to the one-legged bridge with sling exercise, and was significantly greater during the one-legged bridge with hip abduction compared to the one-legged bridge exercise. The muscle activation of the contralateral GM and BF was significantly greater with the one-legged bridge with hip abduction compared to the general bridge exercise. [Conclusion] With the one-legged bridge with hip abduction, the ipsilateral EO, GM and BF muscle activities were significantly greater than those of the one-legged bridge exercise. The muscle activation of all trunk and contralateral lower extremity muscles increased with the bridge with sling exercises compared with general bridge exercises.
Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)
1994-01-01
Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.
Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.
2015-01-01
Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p < 0.0001) and homeostatic model assessment of insulin resistance (HOMA-IR; 846.5 ± 1723.3%, p < 0.01). Mediation analyses showed that increases in chemerin explained a substantial amount of the diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641
Functional role of AMP-activated protein kinase in the heart during exercise.
Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J
2005-04-11
AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.
Spoo, J W; Zoran, D L; Downey, R L; Bischoff, K; Wakshlag, J J
2015-10-01
The aim of the study was to assess the physiological and antioxidant status before and after a 4 h search and rescue field exercise, with handlers, under warm-weather conditions performing activities compared to a control group of similarly trained dogs at rest. Serum chemistry demonstrated a decrease in serum sodium (Na) and potassium (K) in both exercising and control groups, however only Na was decreased significantly (P < 0.05) after exercise and hematocrits (HCTs) remained unchanged. The exercise group demonstrated significantly decreased serum phosphorus (P) and magnesium (Mg) compared to pre-exercise values, as did the control group (P < 0.025). There was also a significant increase in creatinine kinase concentrations in the exercise groups (P < 0.025). Serum non-esterified fatty acids were increased only in the exercise group after exercise, suggesting fat mobilization to produce energy. The mean total serum antioxidant potential in searching dogs was no different from the pre- and post-exercise values in the control dogs. Serum vitamin E concentrations did not differ between the two groups, with a decreasing trend in both groups. There was a modest decrease in serum uric acid in the control group, while there was a significant rise after exercise in the searching group (P < 0.01). Multiple changes in serum chemistry, HCTs and blood gases were documented in this study, and were similar to those observed after other endurance activities. The lack of hemoconcentration in this field search exercise suggested that even in extreme environmental conditions (heat and humidity), dogs with access to water do not experience significant dehydration or diminished antioxidant status. Copyright © 2015. Published by Elsevier Ltd.
Enea, C; Boisseau, N; Ottavy, M; Mulliez, J; Millet, C; Ingrand, I; Diaz, V; Dugué, B
2009-06-01
The objective of this study was to ascertain the effects of menstrual cycle, oral contraception, and training status on the exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Twenty-eight healthy women were assigned to an untrained group (n = 16) or a trained group (n = 12) depending on their training background. The untrained group was composed of nine oral contraceptive users (OC+) and seven eumenorrheic women (OC-). The trained group was composed of OC+ subjects only. All the OC+ subjects were taking the same low-dose oral contraception. Three laboratory sessions were organised in a randomised order: a prolonged exercise test until exhaustion, a short-term exhaustive exercise test, and a control session. Blood specimens were collected before, during and after the exercise tests and at the same time of the day during the control session. Basal circulating testosterone was significantly lower in trained as compared to untrained subjects. In all subjects, the prolonged exhaustive exercise induced a significant increase in circulating DHEA-s and testosterone. The short-term exercise induced a significant increase in circulating DHEA-s in untrained eumenorrheic and in trained OC users only. Menstrual phases in OC- did not influence the responses. It was found that exhaustive physical exercise induced an increase in circulating DHEA-s and testosterone in young women. Oral contraception may limit short-term exercise-induced changes.
Body cooling in human males by cold-water immersion after vigorous exercise.
McDonald, A; Goode, R C; Livingstone, S D; Duffin, J
1984-03-01
Five male subjects were immersed to neck level in a whole-body water calorimeter (water temperature 19 degrees C) on two occasions. One immersion was preceded by 30 min of exercise on a treadmill at 80% of the subjects' maximum heart rate, while the other was preceded by no exercise (control). Ventilation, oxygen consumption, hand-grip strength, and heat loss (measured by calorimetry) results showed no significant differences between resting and exercise trials. Minute ventilation and oxygen consumption increased during the immersion but the magnitude of the increase varied among subjects. There was a significant decrease is isometric hand-grip strength after 30 min of immersion. Rectal temperatures fell faster (0.031 degree C +/- 0.004 degree C/min) for exercised subjects than for controls (0.019 degree C +/- 0.005 degree C/min) between 10 and 45 min of immersion (P less than 0.01). It appears that vigorous preimmersion exercise may shorten survival time in cold water due to an increase in cooling rate.
Ranjbar, Rouhollah; Ahmadi, Mohammad Amin; Zar, Abdossaleh; Krustrup, Peter
2017-06-01
Studies have shown that acute exercise can increase serum concentrations of cardiac biomarkers, including cardiac troponin T (cTnT). We investigated the acute effects of intermittent (IE) and continuous (CE) exercise at the same cardiac workload on myocardial necrosis biomarkers in sedentary men. Eleven sedentary healthy men aged 22.3±1.9years completed the study. The subjects were divided into two groups and performed, in random order, IE (intensity alternating between 50% (2min) and 80% (1min) HRreserve) or CE (60% HRreserve). The study was designed as a single-blinded randomised crossover trial performed on two distinct experimental days separated by a 1-week washout period. Each session consisted of 40min of aerobic exercise, either IE or CE, on a treadmill. Blood samples were taken before (PRE), immediately after (POST) and 1h after (POST-1) each exercise session. hs-cTnT significantly increased immediately after exercise in both protocols and remained elevated at POST-1 (P<0.05). There was no significant difference between POST and POST-1 values(P>0.05). Neither CE nor IE caused any significant change in CK-MB (P>0.05). The results also showed that HR and RPP increased significantly following both exercise protocols (P=0.001). In summary, both CE and IE results in increased serum concentrations of hs-cTnT in sedentary men. However, this increase does not seem to be caused by the irreversible death of cardiomyocytes. CE resulted in a greater hs-cTnT concentration than IE. Copyright © 2017 Elsevier B.V. All rights reserved.
Gottlieb-Vedi, M; Lindholm, A
1997-05-17
The responses in heart rate, plasma lactate and rectal temperature of standardbred trotters to draught loaded interval exercise on a treadmill and a race track were studied. The horses were exercised with incrementally increasing trotting speeds for two-minute intervals with draught loads of 10, 20 and 30 kilopond (kp) in three different tests. Each trotting interval was followed by two-minute periods at a walk without a draught load. Measurements of heart rate and plasma lactate were made at the end of each interval and the rectal temperature was taken at the end of the exercise. The heart rate and plasma lactate levels were significantly lower on the treadmill than on the track in the tests with 10 kp, but no significant differences were found between the treadmill and track exercise tests with the heavier draught resistances. No differences were observed in rectal temperature between treadmill and track conditions. From these findings it was concluded that the workload was significantly greater on the race track compared to the treadmill when the draught resistance was low (10 kp). Although the workload increased on both the race track and the treadmill as draught resistance increased, at the heavier draught resistances track exercise was no longer more demanding than exercise on the treadmill.
Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser
2016-01-01
We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.
An, Sang Min; Park, Jong Suk; Kim, Sang Ho
2014-03-01
The purpose of this research was to investigate the effects of exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise on caffeine concentration of energy drink. The volunteers for this study were 15 male university student. 15 subjects were taken basic physical examinations such as height, weight and BMI before the experiment. Primary tests were examined of VO2max per weight of each subjects by graded exercise test using Bruce protocol. Each of five subject was divided 3 groups (CON, ECGⅠ, ECGⅡ) by matched method based on weight and VO2max per weight what gained of primary test for minimize the differences of exercise capacity and ingestion of each groups. For the secondary tests, the groups of subjects were taken their materials before and after exercise as a blind test. After the ingestion, subjects were experimented on exercise test of VO2max 80% by treadmill until the all-out. Heart rate was measured by 1minute interval, and respiratory variables were analyzed VO2, VE, VT, RR and so on by automatic respiratory analyzer. And exercise exhaustion time was determined by stopwatch. Moreover, HRV was measured after exercise and recovery 3 min. Among the intake groups, ECGⅡ was showed the longest of exercise exhaustion time more than CON group (p = .05). Result of heart rate during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). Result of RPE during exercise according to intake groups, there was significant differences of each time (p < .001), however, not significant differences of each groups and group verse time (p > .05). In conclusion, EDGⅡ showed the significant increase of exercise exhaustion time more than CON group (p=.05) and not significant differences in HR, RPE, RER, HRV, HRR, blood pressure (p > .05). Therefore, 2.5 mg/kg(-1) ingestion of energy drink might be positive effect to increase exercise performance capacity without side-effect in cardiovascular disease.
Bailey, Christine A; Brooke-Wavell, Katherine
2010-04-01
Exercise can increase bone strength, but to be effective in reducing fracture risk, exercise must be feasible enough to be adopted into daily life and influence potentially vulnerable skeletal sites such as the superolateral cortex of the femoral neck, where thinning is associated with increased fracture risk. Brief, high-impact exercise increases femoral neck bone density but the optimal frequency of such exercise and the location of bone accrual is unknown. This study thus examined (1) the effectiveness of different weekly frequencies of exercise on femoral neck BMD and (2) whether BMD change differed between hip sites using a high-impact, unilateral intervention. Healthy premenopausal women were randomly assigned to exercise 0, 2, 4, or 7 days/week for 6 months. The exercise intervention incorporated 50 multidirectional hops on one randomly selected leg. BMD was measured by DXA at baseline and after 6 months of exercise. Changes in the exercise leg were compared between groups using ANCOVA, with change in the control leg and baseline BMD as covariates. RM-MANOVA was conducted to determine whether bone changes from exercise differed between hip sites. 61 women (age 33.6+/-11.1 years) completed the intervention. Compliance amongst exercisers was 86.7+/-10.6%. Peak ground reaction forces during exercise increased from 2.5 to 2.8 times body weight. The change in femoral neck BMD in the exercise limb (adjusted for change in the control limb and baseline BMD) differed between groups (p=0.015), being -0.3% (-1.2 to 0.6), 0.0% (-1.0 to 1.0), 0.9% (-0.1 to 2.0) and 1.8% (0.8 to 2.8) in those exercising 0, 2, 4 and 7 days per week, respectively. When BMD changes at upper neck, lower neck and trochanter were compared using RM-MANOVA, a significant exercise effect was observed (p=0.048), but this did not differ significantly between sites (p=0.439) despite greatest mean increases at the upper femoral neck. Brief, daily hopping exercises increased femoral neck BMD in premenopausal women but less frequent exercise was not effective. Brief high-impact exercise may have a role in reducing hip fragility, but may need to be performed frequently for optimal response. Copyright 2009 Elsevier Inc. All rights reserved.
Kerling, A; Kück, M; Tegtbur, U; Grams, L; Weber-Spickschen, S; Hanke, A; Stubbs, B; Kahl, K G
2017-06-01
Brain derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of major depressive disorder (MDD). Existing data on exercise treatment in people with MDD are inconsistent concerning the effect of exercise on BDNF pointing either to increased or unaltered BDNF concentrations. However, studies in non-depressed persons demonstrated a significant effect on resting peripheral BDNF concentrations in aerobic training interventions. Given the lack of clarity mentioned above, the current study aimed at examining the effect of adjunctive exercise on serum BDNF levels in guideline based treated patients with MDD. 42 depressed inpatients were included, and randomized either to a 6 week structured and supervised exercise intervention plus treatment as usual (EXERCISE, n=22), or to treatment as usual (TAU, n=20). BDNF serum concentrations were assessed before and after the intervention in both study groups with established immunoassays. Serum BDNF slightly decreased in the TAU group, whilst there was an increase in BDNF levels in the exercise group. There was a significant time x group effect concerning sBDNF (p=0.030) with repeated ANOVA measures with age and BMI as covariates, suggesting an increase in BDNF concentrations in the EXERCISE group compared to TAU. Though there was no statistic difference in the antidepressant medication between EXERCISE and TAU potential interactions between exercise and medication on the effects of exercise in BDNF cannot be excluded. Gender was not considered as a covariate in ANOVA due to the small number of objects. Exercise training given as adjunct to standard guideline based treatment appears to have additional effects on BDNF serum concentrations in people with MDD. Our results add further evidence to the beneficial effects of exercise in the treatment of MDD. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Association of von Willebrand factor blood levels with exercise hypertension.
Nikolic, Sonja B; Adams, Murray J; Otahal, Petr; Edwards, Lindsay M; Sharman, James E
2015-05-01
A hypertensive response to moderate intensity exercise (HRE) is associated with increased cardiovascular risk. The mechanisms of an HRE are unclear, although previous studies suggest this may be due to haemostatic and/or haemodynamic factors. We investigated the relationships between an HRE with haemostatic and hemodynamic indices. Sixty-four participants (57 ± 10 years, 71 % male) with indication for exercise stress testing underwent cardiovascular assessment at rest and during moderate intensity exercise, from which 20 participants developed an HRE (defined as moderate exercise systolic BP ≥ 170 mmHg/men and ≥ 160 mmHg/women). Rest, exercise and post-exercise blood samples were analysed for haemostatic markers, including von Willebrand factor (vWf), and haemodynamic measures of brachial and central blood pressure (BP), aortic stiffness and systemic vascular resistance index (SVRi). HRE participants had higher rest vWf compared with normotensive response to exercise (NRE) participants (1,927 mU/mL, 95 % CI 1,240-2,615, vs. 1,129 mU/mL, 95 % CI 871-1,386; p = 0.016). vWf levels significantly decreased from rest to post-exercise in HRE participants (p = 0.005), whereas vWf levels significantly increased from rest to exercise in NRE participants (p = 0.030). HRE participants also had increased triglycerides, rest BP, aortic stiffness and exercise SVRi (p < 0.05 for all). Rest vWf predicted exercise brachial systolic BP (β = 0.220, p = 0.043; adjusted R (2) = 0.451, p < 0.001) independent of age, sex, body mass index, triglycerides, rest brachial systolic BP and aortic stiffness. Increased rest blood levels of vWf are independently associated with moderate intensity exercise systolic BP. These findings implicate abnormalities in haemostasis as a possible factor contributing to HRE at moderate intensity.
Gutmann, B; Zimmer, P; Hülsdünker, T; Lefebvre, J; Binnebößel, S; Oberste, M; Bloch, W; Strüder, H K; Mierau, A
2018-03-06
Acute physical exercise (APE) induces an increase in the individual alpha peak frequency (iAPF), a cortical parameter associated with neural information processing speed. The aim of this study was to further scrutinize the influence of different APE intensities on post-exercise iAPF as well as its time course after exercise cessation. 95 healthy young (18-35 years) subjects participated in two randomized controlled experiments (EX1 and EX2). In EX1, all participants completed a graded exercise test (GXT) until exhaustion and were randomly allocated into different delay groups (immediately 0, 30, 60 and 90 min after GXT). The iAPF was determined before, immediately after as well as after the group-specific delay following the GXT. In EX2, participants exercised for 35 min at either 45-50%, 65-70% or 85-90% of their maximum heart rate (HR max ). The iAPF was determined before, immediately after as well as 20 min after exercise cessation. In EX1, the iAPF was significantly increased immediately after the GXT in all groups. This effect was not any more detectable after 30 min following exercise cessation. In EX2, a significant increase of the iAPF was found only after high-intensity (85-90% HR max ) exercise. The results indicate intense or exhaustive physical exercise is required to induce a transient increase in the iAPF that persists about 30 min following exercise cessation. Based on these findings, further research will have to scrutinize the behavioral implications associated with iAPF modulations following exercise. Copyright © 2018. Published by Elsevier B.V.
Wang, Wanyi; Ding, Zhenping; Solares, Geoffrey J.; Choi, Soon-Mi; Wang, Bo; Yoon, Aram; Farrar, Roger P.; Ivy, John L.
2017-01-01
The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway. PMID:28296942
NASA Astrophysics Data System (ADS)
Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.
1990-03-01
The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.
Peake, Jonathan; Peiffer, Jeremiah J; Abbiss, Chris R; Nosaka, Kazunori; Okutsu, Mitsuharu; Laursen, Paul B; Suzuki, Katsuhiko
2008-03-01
We investigated the influence of rectal temperature on the immune system during and after exercise. Ten well-trained male cyclists completed exercise trials (90 min cycling at 60% VO(2max) + 16.1 - km time trial) on three separate occasions: once in 18 degrees C and twice in 32 degrees C. Twenty minutes after the trials in 32 degrees C, the cyclists sat for approximately 20 min in cold water (14 degrees C) on one occasion, whereas on another occasion they sat at room temperature. Rectal temperature increased significantly during cycling in both conditions, and was significantly higher after cycling in 32 degrees C than in 18 degrees C (P < 0.05). Leukocyte counts increased significantly during cycling but did not differ between the conditions. The concentrations of serum interleukin (IL)-6, IL-8 and IL-10, plasma catecholamines, granulocyte-colony stimulating factor, myeloperoxidase and calprotectin increased significantly following cycling in both conditions. The concentrations of serum IL-8 (25%), IL-10 (120%), IL-1 receptor antagonist (70%), tumour necrosis factor-alpha (17%), plasma myeloperoxidase (26%) and norepinephrine (130%) were significantly higher after cycling in 32 degrees C than in 18 degrees C. During recovery from exercise in 32 degrees C, rectal temperature was significantly lower in response to sitting in cold water than at room temperature. However, immune changes during 90 min of recovery did not differ significantly between sitting in cold water and at room temperature. The greater rise in rectal temperature during exercise in 32 degrees C increased the concentrations of serum IL-8, IL-10, IL-1ra, TNF-alpha and plasma myeloperoxidase, whereas the greater decline in rectal temperature during cold water immersion after exercise did not affect immune responses.
Chengji, Wang; Xianjin, Fan
2018-04-01
To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n = 10), Diabetic exercise group 1 (DEG1, n = 11), Diabetic exercise group 2 (DEG2, n = 11) and Diabetic exercise group 3 (DEG3, n = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P < 0.01), only GSP decrease was statistically significant ( P < 0.05) in DEG1 and DEG2, PAI-1 in three exercise groups were significantly reduced ( P < 0.05), plasma vWF levels in the three exercise groups were significantly lower than those in the DCG group ( P < 0.01); PKC levels decreased dramatically in the three exercise groups and DAG levels decrease slightly ( P < 0.05), but with no significant difference. Compared with DCG, the serum level of NO was significantly higher ( P < 0.05), and eNOS level was significantly elevated ( P < 0.05). T-NOS elevation was statistically significant in DEG1 ( P < 0.05). Low- and moderate-intensity exercise can better control blood glucose level in diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P < 0.05), serum NO increased ( P < 0.05) and eNOS increased ( P < 0.05) significantly. Therefore, it is inferred that exercise improves the biological mechanism of diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.
Hong, Young-Pyo; Lee, Hyo-Chul; Kim, Hyun-Tae
2015-01-01
[Purpose] We investigated the effects of 8 weeks of treadmill exercise on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and synapsin I protein expression and on the number of 5-bromo-2'-deoxyuridine-5'-mono-phosphate (BrdU)-positive cells in the dentate gyrus of the hippocampus in socially isolated rats. Additionally, we examined the effects of exercise on the number of serotonin (5-HT)- and tryptophan hydroxylase (TPH)-positive cells in the raphe nuclei and on depression behaviors induced by social isolation. [Methods] Forty male Sprague-Dawley rats were divided into four groups: (1) group housing and control group (GCG, n = 10); (2) group housing and exercise group (GEG, n = 10); (3) isolated housing and control group (ICG, n = 10); and (4) isolated housing and exercise group (IEG, n = 10). After 1 week of housing under the normal condition of 3 animals per cage, rats were socially isolated via transfer to individual cages for 8 weeks. Rats were then subjected to treadmill exercise for 5 days per week for 8 weeks during which time the speed of the treadmill was gradually increased. [Results] Compared to the GCG, levels of NGF, BDNF, and synapsin I were significantly decreased in the ICG and significantly increased in the IEG (p < 0.001 respectively). Significantly more BrdU-positive cells in the GEG were present as compared to the GCG and ICG, and more BrdU-positive cells were found in the IEG as compared to the ICG (p < 0.001). 5-HT-positive cells in the GEG were significantly increased compared to the GCG and ICG, and more of these cells were found in the IEG as compared to the ICG (p < 0.01). TPH-positive cells in the GEG were significantly increased compared to those in the GCG and ICG (p < 0.05). In the forced swim test, immobility time was significantly increased in the ICG and significantly decreased in the IEG as compared to the ICG (p < 0.01). [Conclusion] These results showed that regular treadmill exercise following social isolation not only increased the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus but also improved depression by increasing the number of serotonergic cells in the raphe nuclei. PMID:25960950
Erceg, David N; Anderson, Lindsey J; Nickles, Chun M; Lane, Christianne J; Weigensberg, Marc J; Schroeder, E Todd
2015-01-01
With the childhood obesity epidemic, efficient methods of exercise are sought to improve health. We tested whether whole body vibration (WBV) exercise can positively affect bone metabolism and improve insulin/glucose dynamics in sedentary overweight Latino boys. Twenty Latino boys 8-10 years of age were randomly assigned to either a control (CON) or 3 days/wk WBV exercise (VIB) for 10-wk. Significant increases in BMC (4.5 ± 3.2%; p=0.01) and BMD (1.3 ± 1.3%; p<0.01) were observed for the VIB group when compared to baseline values. For the CON group BMC significantly increased (2.0 ± 2.2%; p=0.02), with no change in BMD (0.8 ± 1.3%; p=0.11). There were no significant between group changes in BMC or BMD. No significant change was observed for osteocalcin and (collagen type I C-telopeptide) CTx for the VIB group. However, osteocalcin showed a decreasing trend (p=0.09) and CTx significantly increased (p<0.03) for the CON group. This increase in CTx was significantly different between groups (p<0.02) and the effect size of between-group difference in change was large (-1.09). There were no significant correlations between osteocalcin and measures of fat mass or insulin resistance for collapsed data. Although bone metabolism was altered by WBV training, no associations were apparent between osteocalcin and insulin resistance. These findings suggest WBV exercise may positively increase BMC and BMD by decreasing bone resorption in overweight Latino boys.
Beaudin, Andrew E; Clegg, Miriam E; Walsh, Michael L; White, Matthew D
2009-09-01
Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).
Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises.
Kopec, Nadia L; Williams, Jane M; Tabor, Gillian F
2018-01-01
OBJECTIVE To compare the kinematics of the thoracic limb of healthy dogs during descent of stairs and a ramp with those during a trot across a flat surface (control). ANIMALS 8 privately owned dogs. PROCEDURES For each dog, the left thoracic limb was instrumented with 5 anatomic markers to facilitate collection of 2-D kinematic data during each of 3 exercises (descending stairs, descending a ramp, and trotting over a flat surface). The stair exercise consisted of 4 steps with a 35° slope. For the ramp exercise, a solid plank was placed over the steps to create a ramp with a 35° slope. For the flat exercise, dogs were trotted across a flat surface for 2 m. Mean peak extension, peak flexion, and range of movement (ROM) of the shoulder, elbow, and carpal joints were compared among the 3 exercises. RESULTS Mean ROM for the shoulder and elbow joints during the stair exercise were significantly greater than during the flat exercise. Mean peak extension of the elbow joint during the flat exercise was significantly greater than that during both the stair and ramp exercises. Mean peak flexion of the elbow joint during the stair exercise was significantly greater than that during the flat exercise. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that descending stairs may be beneficial for increasing the ROM of the shoulder and elbow joints of dogs. Descending stair exercises may increase elbow joint flexion, whereas flat exercises may be better for targeting elbow joint extension.
Aerobic Exercise Training and Arterial Changes in African-Americans versus Caucasians
Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2015-01-01
African-Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared to their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. Purpose The purpose of this study was to examine the effect of 8 weeks of moderate-high intensity aerobic training in young healthy sedentary AA and CA men and women. Methods Sixty-four healthy volunteers (men = 28, women = 36) with mean age = 24 underwent measures of arterial structure, function and blood pressure variables at baseline, post-4 week control period and 8 weeks post-training. Results There was a significant increase in VO2peak amongst both groups post exercise training. Brachial systolic blood pressure decreased significantly following control period in both groups but not following exercise training. Carotid pulse pressure decreased significantly in both groups post exercise training as compared to baseline. There was no change in any of the other blood pressure variables. AAs had a higher intima-media thickness at baseline and post-control period, but significantly decreased following exercise training compared to CAs. AAs had significantly lower baseline forearm blood flow and RH compared to CAs, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (cPWV) and wave-reflection (AIx) between the two groups at any time point. Conclusions This is the first study to show that, 8 weeks of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AAs, making it comparable to the CAs and with minimal effects on blood pressure variables. PMID:26225767
Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians.
Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, B O
2016-01-01
African Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared with their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. The purpose of this study was to examine the effect of 8 wk of moderate- to high-intensity aerobic training in young healthy sedentary AA and CA men and women. Sixty-four healthy volunteers (men, 28; women, 36) with mean age 24 yr underwent measures of arterial structure, function, and blood pressure (BP) variables at baseline, after the 4-wk control period, and 8 wk after training. There was a significant increase in VO2peak among both groups after exercise training. Brachial systolic BP decreased significantly after the control period in both groups but not after exercise training. Carotid pulse pressure decreased significantly in both groups after exercise training as compared with that in baseline. There was no change in any of the other BP variables. AA had higher intima-media thickness at baseline and after the control period but it significantly decreased after exercise training compared with that of CA. AA had significantly lower baseline forearm blood flow and reactive hyperemia compared with those of CA, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (central pulse wave velocity) and wave-reflection (augmentation index) between the two groups at any time point. This is the first study to show that 8 wk of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AA, making it comparable with the CA and with minimal effects on BP variables.
Burg, Matthew M; Schwartz, Joseph E; Kronish, Ian M; Diaz, Keith M; Alcantara, Carmela; Duer-Hefele, Joan; Davidson, Karina W
2017-12-01
Psychosocial stress contributes to heart disease in part by adversely affecting maintenance of health behaviors, while exercise can reduce stress. Assessing the bi-directional relationship between stress and exercise has been limited by lack of real-time data and theoretical and statistical models. This lack may hinder efforts to promote exercise maintenance. We test the bi-directional relationship between stress and exercise using real-time data for the average person and the variability-individual differences-in this relationship. An observational study was conducted within a single cohort randomized controlled experiment. Healthy young adults, (n = 79) who reported only intermittent exercise, completed 12 months of stress monitoring by ecological momentary assessment (at the beginning of, end of, and during the day) and continuous activity monitoring by Fitbit. A random coefficients linear mixed model was used to predict end-of-day stress from the occurrence/non-occurrence of exercise that day; a logistic mixed model was used to predict the occurrence/non-occurrence of exercise from ratings of anticipated stress. Separate regression analyses were also performed for each participant. Sensitivity analysis tested all models, restricted to the first 180 days of observation (prior to randomization). We found a significant average inverse (i.e., negative) effect of exercise on stress and of stress on exercise. There was significant between-person variability. Of N = 69, exercise was associated with a stress reduction for 15, a stress increase for 2, and no change for the remainder. We also found that an increase in anticipated stress reported the previous night or that morning was associated with a significant 20-22% decrease (OR = 0.78-0.80) in the odds of exercising that day. Of N = 69, this increase in stress reduced the likelihood of exercise for 17, increased the odds for 1, and had no effect for the remainder. We were unable to identify psychosocial factors that moderate the individual differences in these effects. The relationship of stress to exercise can be uni- or bi-directional and varies from person to person. A precision medicine approach may improve exercise uptake.
Neto, Gabriel R; Novaes, Jefferson S; Salerno, Verônica P; Gonçalves, Michel M; Batista, Gilmário R; Cirilo-Sousa, Maria S
2018-01-01
The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72-96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.
The effect of active core exercise on fitness and foot pressure in Taekwondo club students.
Yoon, Seong-Deok; Sung, Dong-Hun; Park, Gi Duck
2015-02-01
[Purpose] The effects of core training using slings and Togus on the improvement of posture control in Taekwondo club students, that is, balance ability, were investigated. To that end, changes in the Taekwondo players' balance ability resulting from active core training for eight weeks were examined through fitness and foot pressure. [Subjects] The present study was conducted with 13 male Taekwondo players of K University in Deagu, South Korea. Once the experiment process was explained, consent was obtained from those who participated voluntarily. [Methods] Air cushions (Germany), Jumpers (Germany), and Aero-Steps (Germany) were used as lumbar stabilization exercise tools. As a method of training proprioceptive senses by stimulating somatesthesia in standing postures, the subjects performed balance squats, supine pelvic lifts, and push-up plus exercise using slings while standing on an Aero-Step and performed hip extension parallel squats (Wall Gym Ball), and standing press-ups on a Togu using their own weight. The subjects performed four sets of these isometric exercises while maintaining an exercise time per set at 30 seconds in each session and repeated this session three times per week. [Result] Left grip strength significantly increased and number of sit-ups, which indicates muscle endurance, also significantly increased after the eight weeks exercise compared with before the exercise. The values measured during the sit and reach test, which indicate flexibility, also significantly increase after the eight weeks of exercise compared with before the exercise but only in the left foot. [Conclusion] The result of present study suggest that active core exercise using Slings and Togus can be applied as a very effective exercise program for enhancing balance, which is an important physical factor for Taekwondo club students.
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat.
Martins, C; Kulseng, B; King, N A; Holst, J J; Blundell, J E
2010-04-01
The magnitude of exercise-induced weight loss depends on the extent of compensatory responses. An increase in energy intake is likely to result from changes in the appetite control system toward an orexigenic environment; however, few studies have measured how exercise impacts on both orexigenic and anorexigenic peptides. The aim of the study was to investigate the effects of medium-term exercise on fasting/postprandial levels of appetite-related hormones and subjective appetite sensations in overweight/obese individuals. We conducted a longitudinal study in a university research center. Twenty-two sedentary overweight/obese individuals (age, 36.9 +/- 8.3 yr; body mass index, 31.3 +/- 3.3 kg/m(2)) took part in a 12-wk supervised exercise programme (five times per week, 75% maximal heart rate) and were requested not to change their food intake during the study. We measured changes in body weight and fasting/postprandial plasma levels of glucose, insulin, total ghrelin, acylated ghrelin (AG), peptide YY, and glucagon-like peptide-1 and feelings of appetite. Exercise resulted in a significant reduction in body weight and fasting insulin and an increase in AG plasma levels and fasting hunger sensations. A significant reduction in postprandial insulin plasma levels and a tendency toward an increase in the delayed release of glucagon-like peptide-1 (90-180 min) were also observed after exercise, as well as a significant increase (127%) in the suppression of AG postprandially. Exercise-induced weight loss is associated with physiological and biopsychological changes toward an increased drive to eat in the fasting state. However, this seems to be balanced by an improved satiety response to a meal and improved sensitivity of the appetite control system.
Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko
2017-04-01
We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow in healthy subjects during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior cerebral blood flow, were continuously measured during an exercise trial using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high-intensity dynamic exercise, -11.5 ± 12.2% and -18.0 ± 16.8%, means ± SD, respectively) despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to carefully consider which cerebral artery to measure, regardless of exercise mode. NEW & NOTEWORTHY We examined whether transcranial Doppler-determined flow velocity in the posterior cerebral artery can be used as an index of cerebral blood flow during exercise. However, the changes in posterior cerebral artery flow velocity during exercise do not reflect vertebral artery blood flow. Copyright © 2017 the American Physiological Society.
Abdollahi, Farzane; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Masumi, Yaser; Binayi, Fateme
2016-01-01
Anabolic steroids used to improve muscular strength and performance in athletics. Its long-term consumption may induce cardiovascular adverse effects. We assessed the risk of ventricular arrhythmias in rats which subjected to chronic nandrolone plus high-intensity endurance exercise. Animals were grouped as; control (CTL), exercise (Ex): 8 weeks under exercise, vehicle group (Arach): received arachis oil, and Nan group: received nandrolone decanoate 5 mg/kg twice a week for 8 weeks, Arach+Ex group, and Nan+Ex. Finally, under anesthesia, arrhythmia was induced by infusion of 1.5 μg/0.1 mL/min of aconitine IV and ventricular arrhythmias were recorded for 15 min. Then, animals' hearts were excised and tissue samples were taken. Nandrolone plus exercise had no significant effect on blood pressure but decreased the heart rate (P<0.01) and increased the RR (P<0.01) and JT intervals (P<0.05) of electrocardiogram. Nandrolone+exercise significantly increased the ventricular fibrillation (VF) frequency and also decreased the VF latency (P<0.05 versus CTL group). Combination of exercise and nandrolone could not recover the decreasing effects of nandrolone on animals weight gain but, it enhanced the heart hypertrophy index (P<0.05). In addition, nandrolone increased the level of hydroxyproline (HYP) and malondialdehyde (MDA) but had not significant effect on glutathione peroxidase of heart. Exercise only prevented the effect of nandrolone on HYP. Nandrolone plus severe exercise increases the risk of VF that cannot be explained only by the changes in redox system. The intensification of cardiac hypertrophy and prolongation of JT interval may be a part of involved mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Does repeated and heavy exercise impair blood rheology in carriers of sickle cell trait?
Tripette, Julien; Hardy-Dessources, Marie-Dominique; Sara, Fagnété; Montout-Hedreville, Mona; Saint-Martin, Christian; Hue, Olivier; Connes, Philippe
2007-11-01
To determine if the time courses of hemorheologic parameters are different between carriers of sickle cell trait (SCT) and subjects with normal hemoglobin in response to exercise. Observational and comparative study. Testing was conducted in a laboratory of exercise physiology. Nine carriers of sickle cell trait (SCT group) and 7 subjects with normal hemoglobin (CONT group) performed an exercise protocol of the repetition of 3 successive maximal ramp exercise tests. Blood was sampled at rest (TR), at the end of each of the 3 tests (T1, T2, T3), and during the immediate (T2h) and late (T24h, T48h) recovery periods. Blood and plasma viscosity (etab and etap, respectively), hematocrit (Hct), and red blood cell (RBC) rigidity (Tk and k indexes) were determined. In both groups, etab significantly increased in response to exercise but the SCT group had significantly higher etab at T3 and T2h. etab then returned to baseline value at T2h in the CONT group and at T24h in the SCT group. Tk and k were not changed by exercise but significantly increased above baseline value in both groups at T24h and T48h. The increase in Tk and k during late recovery was higher in the SCT group than in the CONT group, indicating that SCT carriers had significantly higher RBC rigidity than the CONT group at that time. The hemorheologic changes induced by exercise in the SCT carriers could trigger microcirculatory disorders during the recovery.
Effects of an Aerobic Exercise Program on Community-Based Adults with Mental Retardation.
ERIC Educational Resources Information Center
Pommering, Thomas L.; And Others
1994-01-01
Evaluation of a 10-week aerobic exercise program on 14 community-based adults with mental retardation found a 91.3% attendance rate and significant increases in maximal oxygen consumption, oxygen pulse, maximum ventilation, exercise stress test duration, and flexibility. However, no significant changes were observed in weight or body composition.…
Pervaiz, Nabeel; Hoffman-Goetz, Laurie
2012-01-01
Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.
The effects of prone bridge exercise on trunk muscle thickness in chronic low back pain patients.
Kong, Yong-Soo; Lee, Woo-Jin; Park, Seol; Jang, Gwon-Uk
2015-07-01
[Purpose] This study aimed to investigate the effects of prone bridge exercise on trunk muscle thickness. [Subjects and Methods] Thirty-seven chronic low back pain patients participated in this study. Each participant was randomly assigned to one of three exercise groups, namely, a prone bridge exercise group, supine bridge exercise on a Swiss ball group, and supine bridge exercise group. The thicknesses of the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) were measured using ultrasound. [Results] After eight weeks of training, the three groups showed significant increases in the thicknesses of the TrA, IO, and EO. Among the groups, TrA and IO showed significantly different muscle thicknesses. [Conclusion] The prone bridge exercise significantly affected the thicknesses of the TrA, IO, and EO unlike the supine bridge exercises. Based on the results of this study, the prone bridge exercise is a more effective method to improve trunk stability than conventional supine bridge exercises.
Staib, Jessica L.; Tümer, Nihal; Powers, Scott K.
2010-01-01
Myocardial heat shock protein 72 (HSP72) expression, mediated by its transcription factor heat shock factor 1 (HSF1), increases following exercise. However, the up-stream stimuli governing exercise-induced HSF1 activation and subsequent HSP72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal promoting nuclear HSF1 migration and activation of HSP72 expression. Therefore, these experiments tested the hypothesis that preventing exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced body temperature was manipulated by exercising male rats in either cold (4°C) or warm (22°C) ambient conditions. Warm exercise increased both body temperature (+ 3°C) and myocardial protein oxidation whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by 9-fold and increased myocardial HSP72 protein levels by 3-fold compared to cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1 indicating that other transcriptional or posttranscriptional regulatory mechanisms are involved in exercise-induced HSP72 expression. PMID:18931043
Incidence of swallowing during exercise in horses with dorsal displacement of the soft palate.
Pigott, J H; Ducharme, N G; Mitchell, L M; Soderholm, L V; Cheetham, J
2010-11-01
The relationship between dorsal displacement of the soft palate (DDSP) and swallowing is unclear. To quantify the relationship between DDSP and swallowing in horses at exercise. The frequency of swallowing increases immediately prior to DDSP in horses at exercise. Videoendoscopic and upper airway pressure data were collated from horses with a definitive diagnosis of DDSP at exercise. Horses with no upper airway abnormalities were matched by age, breed and sex and used as controls. Sixty-nine horses were identified with a definitive diagnosis of DDSP during the study interval. Airway pressure data were available for 42 horses. The majority of horses displaced at high exercising speeds while accelerating; a smaller number displaced during deceleration after peak speed had been reached. Horses swallowed significantly more frequently in the 1 min immediately preceding DDSP than in the control horses at equivalent speeds. DDSP at exercise results in a significant increase in tracheal expiratory pressure, a significant decrease in pharyngeal expiratory pressure and a significantly less negative pharyngeal inspiratory pressure compared to matched controls and compared to the pressures during the 1 min interval prior to DDSP. There was no significant difference between any measure of airway pressure before or after a swallow when examined at each time interval in the DDSP population. The frequency of swallowing decreases with increasing speed in normal horses. In contrast, the frequency of swallowing increases immediately prior to onset of DDSP. This is not a result of pharyngeal and tracheal pressure changes. The increased frequency of swallowing observed prior to DDSP may be related to the aetiology of the disease. © 2010 EVJ Ltd.
Kim, Seong-Gil; Lee, Jung-Ho
2015-01-01
This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Excercise Within LBNP as an Artificial Gravity Countermeasure
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Watenpaugh, D. E.; Lee, S. M. C.; Meyer, R. S.; Macias, B.; Tanaka, K.; Kimura, S.; Steinbach, G.; Groppo, E.; Khalili, N.;
2003-01-01
Previous exercise in space has lacked sufficient loads to maintain preflight cardiovascular and musculoskeletal mass and function. Lower body negative pressure (LBNP) produces a static force equivalent to one Earth body weight by each 52 mm Hg of LBNP during supine posture. LBNP also provides transmural blood pressures simulating upright exercise. Thus, this artificial-gravity concept may help maintain cardiovascular and musculoskeletal systems of crewmembers during prolonged exposure to microgravity. Currently available, bungee cord assisted, treadmill exercise is limited by harness discomfort, lower than normal loads, abnormal post-flight gait, and the absence of gravitational blood pressures within the vascular system. PURPOSE: This project evaluates a method to create artificial gravity using supine LBNP treadmill exercise to prevent loss of physiologic function in microgravity simulated by 30 days of bed rest. Identical twins were used as volunteers so that statistical power could be maximized. This countermeasure is being transitioned to space flight. CURRENT STATUS OF RESEARCH Methods: Six sets of identical twins (6 females and 14 males, 21-36 years) remained in 6 head-down tilt (HDT) bed rest for 30 days to simulate prolonged microgravity. Six subjects were randomly selected to exercise supine in an LBNP chamber for 40 minutes six days per week (EX group), while their twin brothers served as non-exercise controls (CON). Pressure within the exercise LBNP chamber was adjusted to increase load, hence increasing exercise intensity. During supine treadmill exercise, LBNP (52-63 mmHg) was applied to produce foot ward forces equivalent to those for upright running on Earth at 1.0-1.2 times body weight (BW) and subjects performed an interval exercise protocol (40-80% peak exercise capacity [VO2pk]). Five minutes of resting LBNP immediately followed each exercise session. Results: Orthostatic tolerance time decreased significantly after 30 days bed rest in the CON group, but was relatively maintained in the EX group. VO2pk was maintained in EX males, but not in CON males. Isokinetic knee strength (extension, peak torque) decreased significantly in CON males, but was preserved in EX males. The EX group had significantly higher spine muscle strength after bed rest than the CON group. The cross-sectional area of spinal muscle at L4/5 level decreased significantly in the CON group but not in the EX group. Urinary n-telopeptide excretion, an index of bone resorption, was increased during bed rest in CON, but not in EX subjects. This suggests protection by LBNP exercise against the increase in bone resorption typically seen in simulated and actual microgravity. Significant changes in bone mineral density (BMD) in the spine and ribs were observed in CON subjects, but not in EX subjects. Conclusions: Our treadmill exercise protocol within LBNP plus a short period of post-exercise LBNP maintains orthostatic responses, upright exercise capacity and other important physiologic parameters during bed rest. These results document the efficacy of our apparatus and exercise protocol for maintaining physiologic structure and function during long-duration microgravity as simulated by 30 days of HDT bed rest. FUTURE PLANS: More sets of female identical twins are needed to reach significance. The LBNP exercise chamber will be redesigned for flight.
Pierce, Doris R.; Doma, Kenji; Leicht, Anthony S.
2018-01-01
Background: This systematic review and meta-analysis quantified the effect of acute exercise mode on arterial stiffness and wave reflection measures including carotid-femoral pulse wave velocity (cf-PWV), augmentation index (AIx), and heart rate corrected AIx (AIx75). Methods: Using standardized terms, database searches from inception until 2017 identified 45 studies. Eligible studies included acute aerobic and/or resistance exercise in healthy adults, pre- and post-intervention measurements or change values, and described their study design. Data from included studies were analyzed and reported in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. Meta-analytical data were reported via forest plots using absolute differences with 95% confidence intervals with the random effects model accounting for between-study heterogeneity. Reporting bias was assessed via funnel plots and, individual studies were evaluated for bias using the Cochrane Collaboration's tool for assessing risk of bias. A modified PEDro Scale was applied to appraise methodological concerns inherent to included studies. Results: Acute aerobic exercise failed to change cf-PWV (mean difference: 0.00 ms−1 [95% confidence interval: −0.11, 0.11], p = 0.96), significantly reduced AIx (−4.54% [−7.05, −2.04], p = 0.0004) and significantly increased AIx75 (3.58% [0.56, 6.61], p = 0.02). Contrastingly, acute resistance exercise significantly increased cf-PWV (0.42 ms−1 [0.17, 0.66], p = 0.0008), did not change AIx (1.63% [−3.83, 7.09], p = 0.56), and significantly increased AIx75 (15.02% [8.71, 21.33], p < 0.00001). Significant heterogeneity was evident within all comparisons except cf-PWV following resistance exercise, and several methodological concerns including low applicability of exercise protocols and lack of control intervention were identified. Conclusions: Distinct arterial stiffness and wave reflection responses were identified following acute exercise with overall increases in both cf-PWV and AIx75 following resistance exercise potentially arising fromcardiovascular and non-cardiovascular factors that likely differ from those following aerobic exercise. Future studies should address identified methodological limitations to enhance interpretation and applicability of arterial stiffness and wave reflection indices to exercise and health. PMID:29487535
McMorris, Terry; Sproule, John; Turner, Anthony; Hale, Beverley J
2011-03-01
The purpose of this study was to compare, using meta-analytic techniques, the effect of acute, intermediate intensity exercise on the speed and accuracy of performance of working memory tasks. It was hypothesized that acute, intermediate intensity exercise would have a significant beneficial effect on response time and that effect sizes for response time and accuracy data would differ significantly. Random-effects meta-analysis showed a significant, beneficial effect size for response time, g=-1.41 (p<0.001) but a significant detrimental effect size, g=0.40 (p<0.01), for accuracy. There was a significant difference between effect sizes (Z(diff)=3.85, p<0.001). It was concluded that acute, intermediate intensity exercise has a strong beneficial effect on speed of response in working memory tasks but a low to moderate, detrimental one on accuracy. There was no support for a speed-accuracy trade-off. It was argued that exercise-induced increases in brain concentrations of catecholamines result in faster processing but increases in neural noise may negatively affect accuracy. 2010 Elsevier Inc. All rights reserved.
Bär, Karl-Jürgen; Herbsleb, Marco; Schumann, Andy; de la Cruz, Feliberto; Gabriel, Holger W.; Wagner, Gerd
2016-01-01
Regular physical exercise leads to increased vagal modulation of the cardiovascular system. A combination of peripheral and central processes has been proposed to underlie this adaptation. However, specific changes in the central autonomic network have not been described in human in more detail. We hypothesized that the anterior hippocampus known to be influenced by regular physical activity might be involved in the development of increased vagal modulation after a 6 weeks high intensity intervention in young healthy men (exercise group: n = 17, control group: n = 17). In addition to the determination of physical capacity before and after the intervention, we used resting state functional magnetic resonance imaging and simultaneous heart rate variability assessment. We detected a significant increase of the power output at the anaerobic threshold of 11.4% (p < 0.001), the maximum power output Pmax of 11.2% (p < 0.001), and VO2max adjusted for body weight of 4.7% (p < 0.001) in the exercise group (EG). Comparing baseline (T0) and post-exercise (T1) values of parasympathetic modulation of the exercise group, we observed a trend for a decrease in heart rate (p < 0.06) and a significant increase of vagal modulation as indicated by RMSSD (p < 0.026) during resting state. In the whole brain analysis, we found that the connectivity pattern of the right anterior hippocampus (aHC) was specifically altered to the ventromedial anterior cortex, the dorsal striatum and to the dorsal vagal complex (DVC) in the brainstem. Moreover, we observed a highly significant negative correlation between increased RMSSD after exercise and decreased functional connectivity from the right aHC to DVC (r = −0.69, p = 0.003). This indicates that increased vagal modulation was associated with functional connectivity between aHC and the DVC. In conclusion, our findings suggest that exercise associated changes in anterior hippocampal function might be involved in increased vagal modulation. PMID:27092046
Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G
2016-08-01
Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.
The invisible benefits of exercise.
Ruby, Matthew B; Dunn, Elizabeth W; Perrino, Andrea; Gillis, Randall; Viel, Sasha
2011-01-01
To examine whether--and why--people underestimate how much they enjoy exercise. Across four studies, 279 adults predicted how much they would enjoy exercising, or reported their actual feelings after exercising. Main outcome measures were predicted and actual enjoyment ratings of exercise routines, as well as intention to exercise. Participants significantly underestimated how much they would enjoy exercising; this affective forecasting bias emerged consistently for group and individual exercise, and moderate and challenging workouts spanning a wide range of forms, from yoga and Pilates to aerobic exercise and weight training (Studies 1 and 2). We argue that this bias stems largely from forecasting myopia, whereby people place disproportionate weight on the beginning of a workout, which is typically unpleasant. We demonstrate that forecasting myopia can be harnessed (Study 3) or overcome (Study 4), thereby increasing expected enjoyment of exercise. Finally, Study 4 provides evidence for a mediational model, in which improving people's expected enjoyment of exercise leads to increased intention to exercise. People underestimate how much they enjoy exercise because of a myopic focus on the unpleasant beginning of exercise, but this tendency can be harnessed or overcome, potentially increasing intention to exercise. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
The effects of high-intensity exercise on neural responses to images of food.
Crabtree, Daniel R; Chambers, Edward S; Hardwick, Robert M; Blannin, Andrew K
2014-02-01
Acute bouts of high-intensity exercise modulate peripheral appetite regulating hormones to transiently suppress hunger. However, the effects of physical activity on central appetite regulation have yet to be fully investigated. We used functional magnetic resonance imaging (fMRI) to compare neural responses to visual food stimuli after intense exercise and rest. Fifteen lean healthy men [mean ± SD age: 22.5 ± 3.1 y; mean ± SD body mass index (in kg/m(2)): 24.2 ± 2.4] completed two 60-min trials-exercise (EX; running at ∼70% maximum aerobic capacity) and a resting control trial (REST)-in a counterbalanced order. After each trial, an fMRI assessment was completed in which images of high- and low-calorie foods were viewed. EX significantly suppressed subjective appetite responses while increasing thirst and core-body temperature. Furthermore, EX significantly suppressed ghrelin concentrations and significantly enhanced peptide YY release. Neural responses to images of high-calorie foods significantly increased dorsolateral prefrontal cortex activation and suppressed orbitofrontal cortex (OFC) and hippocampus activation after EX compared with REST. After EX, low-calorie food images increased insula and putamen activation and reduced OFC activation compared with REST. Furthermore, left pallidum activity was significantly elevated after EX when low-calorie images were viewed and was suppressed when high-calorie images were viewed, and these responses correlated significantly with thirst. Exercise increases neural responses in reward-related regions of the brain in response to images of low-calorie foods and suppresses activation during the viewing of high-calorie foods. These central responses are associated with exercise-induced changes in peripheral signals related to appetite-regulation and hydration status. This trial was registered at www.clinicaltrials.gov as NCT01926431.
Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop
2016-10-01
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p<0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p<0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lack of ventilatory threshold in patients with chronic obstructive pulmonary disease.
Midorikawa, J; Hida, W; Taguchi, O; Okabe, S; Kurosawa, H; Mizusawa, A; Ogawa, H; Ebihara, S; Kikuchi, Y; Shirato, K
1997-01-01
We investigated whether the ventilatory threshold (VET) could be detected in 25 patients with severe chronic obstructive pulmonary disease (COPD). Exercise on a treadmill was performed until symptom-limited maximum oxygen uptake (VO2SL) was obtained. VET was absent in 14 patients (56%, VET(-) group) and present in the others (44%, VET(+) group). Basal pulmonary functions and dyspnea index (VE,SL/MVV) were not different between the two groups. Endurance time and exercise tolerance (VO2SL/bw) were significantly less in VET(-) than in VET(+). In the former group, PaO2 and pH at maximal exercise decreased and PaCO2 increased significantly, but HCO3- did not change compared with the corresponding values before exercise. In the latter group, PaCO2 at maximal exercise increased significantly, and pH and HCO3- decreased significantly compared with the values before exercise, but PaO2 did not. The changes in PaO2 and PaCO2 were not different between the two groups, but changes in pH and HCO3- in VET(+) were greater than those in VET(-). These results suggest that the absence of VET in some COPD patients indicates a lower exercise capacity without producing metabolic acidosis. This may be caused by rapidly developing dyspnea.
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption
SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.
Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.
Klentrou, Panagiota; Giannopoulou, Angeliki; McKinlay, Brandon J; Wallace, Phillip; Muir, Cameron; Falk, Bareket; Mack, Diane
2016-07-01
This study examined changes in salivary testosterone and cortisol following resistance and plyometric exercise protocols in active boys. In a crossover experimental design, 26 peri-pubertal (12- to 14-year-old) soccer players performed 2 exercise trials in random order, on separate evenings, 1 week apart. Each trial included a 30 min control session followed by 30 min of either resistance or plyometric exercise. Saliva was collected at baseline, post-control (i.e., pre-exercise), and 5 and 30 min post-exercise. There were no significant differences in the baseline hormone concentrations between trials or between weeks (p > 0.05). A significant effect for time was found for testosterone (p = 0.02, [Formula: see text] = 0.14), which increased from pre-exercise to 5 min post-exercise in both the resistance (27% ± 5%) and plyometric (12% ± 6%) protocols. Cortisol decreased to a similar extent in both trials (p = 0.009, [Formula: see text] = 0.19) from baseline to post-control and then to 5 min post-exercise, following its typical circadian decrease in the evening hours. However, a significant protocol-by-time interaction was observed for cortisol, which increased 30 min after the plyometrics (+31% ± 12%) but continued to decrease following the resistance protocol (-21% ± 5%). Our results suggest that in young male athletes, multiple modes of exercise can lead to a transient anabolic state, thus maximizing the beneficial effects on growth and development, when exercise is performed in the evening hours.
Bertachi, Arthur; Quirós, Carmen; Giménez, Marga; Conget, Ignacio; Bondia, Jorge
2018-01-01
Continuous glucose monitoring (CGM) plays an important role in treatment decisions for patients with type 1 diabetes under conventional or closed-loop therapy. Physical activity represents a great challenge for diabetes management as well as for CGM systems. In this work, the accuracy of CGM in the context of exercise is addressed. Six adults performed aerobic and anaerobic exercise sessions and used two Medtronic Paradigm Enlite-2 sensors under closed-loop therapy. CGM readings were compared with plasma glucose during different periods: one hour before exercise, during exercise, and four hours after the end of exercise. In aerobic sessions, the median absolute relative difference (MARD) increased from 9.5% before the beginning of exercise to 16.5% during exercise (p < 0.001), and then decreased to 9.3% in the first hour after the end of exercise (p < 0.001). For the anaerobic sessions, the MARD before exercise was 15.5% and increased without statistical significance to 16.8% during exercise realisation (p = 0.993), and then decreased to 12.7% in the first hour after the cessation of anaerobic activities (p = 0.095). Results indicate that CGM might present lower accuracy during aerobic exercise, but return to regular operation a few hours after exercise cessation. No significant impact for anaerobic exercise was found. PMID:29522429
Biagi, Lyvia; Bertachi, Arthur; Quirós, Carmen; Giménez, Marga; Conget, Ignacio; Bondia, Jorge; Vehí, Josep
2018-03-09
Continuous glucose monitoring (CGM) plays an important role in treatment decisions for patients with type 1 diabetes under conventional or closed-loop therapy. Physical activity represents a great challenge for diabetes management as well as for CGM systems. In this work, the accuracy of CGM in the context of exercise is addressed. Six adults performed aerobic and anaerobic exercise sessions and used two Medtronic Paradigm Enlite-2 sensors under closed-loop therapy. CGM readings were compared with plasma glucose during different periods: one hour before exercise, during exercise, and four hours after the end of exercise. In aerobic sessions, the median absolute relative difference (MARD) increased from 9.5% before the beginning of exercise to 16.5% during exercise ( p < 0.001), and then decreased to 9.3% in the first hour after the end of exercise ( p < 0.001). For the anaerobic sessions, the MARD before exercise was 15.5% and increased without statistical significance to 16.8% during exercise realisation ( p = 0.993), and then decreased to 12.7% in the first hour after the cessation of anaerobic activities ( p = 0.095). Results indicate that CGM might present lower accuracy during aerobic exercise, but return to regular operation a few hours after exercise cessation. No significant impact for anaerobic exercise was found.
Nagashima, K; Nose, H; Takamata, A; Morimoto, T
1998-06-01
To assess the impact of continuous negative-pressure breathing (CNPB) on the regulation of skin blood flow, we measured forearm blood flow (FBF) by venous-occlusion plethysmography and laser-Doppler flow (LDF) at the anterior chest during exercise in a hot environment (ambient temperature = 30 degreesC, relative humidity = approximately 30%). Seven male subjects exercised in the upright position at an intensity of 60% peak oxygen consumption rate for 40 min with and without CNPB after 20 min of exercise. The esophageal temperature (Tes) in both conditions increased to 38.1 degreesC by the end of exercise, without any significant differences between the two trials. Mean arterial pressure (MAP) increased by approximately 15 mmHg by 8 min of exercise, without any significant difference between the two trials before CNPB. However, CNPB reduced MAP by approximately 10 mmHg after 24 min of exercise (P < 0.05). The increase in FBF and LDF in the control condition leveled off after 18 min of exercise above a Tes of 37.7 degreesC, whereas in the CNPB trial the increase continued, with a rise in Tes despite the decrease in MAP. These results suggest that CNPB enhances vasodilation of skin above a Tes of approximately 38 degrees C by stretching intrathoracic baroreceptors such as cardiopulmonary baroreceptors.
Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C
2009-12-01
OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.
Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio
2017-12-01
Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.
Haynes, Andrew; Linden, Matthew D; Robey, Elisa; Naylor, Louise H; Ainslie, Philip N; Cox, Kay L; Lautenschlager, Nicola T; Green, Daniel J
2018-04-12
Platelet activation, including the formation of monocyte platelet aggregates (MPAs), contributes to atherosclerosis, thrombus formation and acute coronary syndromes. Regular participation in exercise can lower cardiovascular risk, but little is known regarding the impact of exercise training on platelet function. We investigated the effect of 6 months of walking exercise on platelet function in sedentary older adults without significant cardiovascular disease. Twenty-seven participants were randomly allocated to 6 months of either: no-exercise (n=13) or 3 x 50 mins/wk of supervised centre-based walking (n=14). Circulating and agonist induced MPAs were assessed using flow cytometry before (month 0 0M) and after (month 6 6M) the intervention. Circulating MPAs increased from 0M (3.7 {plus minus} 1.0%) to 6M (4.7 {plus minus} 1.6%) in the no-exercise group (P = 0.009), whereas a non-significant decrease was observed in the walking group (0M 4.3 {plus minus} 1.7% vs 6M 3.7 {plus minus} 1.2, P = 0.052). The change in MPAs between groups was significant (P = 0.001). There were no differences between groups in platelet responses to agonists across the interventions (all P > 0.05). Collectively, these data suggest that the absence of regular exercise may increase MPAs, which are cellular mediators involved in atherosclerosis, whilst regular walking inhibits such increases. The thrombotic function of platelets appear to be relatively unaltered by exercise training. This study provides novel data related to the cardio-protective effects associated with participation in exercise.
Trade-offs between anti-aging dietary supplementation and exercise.
Mendelsohn, Andrew R; Larrick, James W
2013-10-01
In otherwise healthy adults, moderate aerobic exercise extends life span and likely health span by 2-6 years. Exercise improves blood sugar regulation, and resistance exercise increases or maintains muscle mass and is associated with improved cognitive function. On the other hand, evidence for anti-oxidant supplements increasing longevity in humans is lacking. On the contrary, transient hormetic increases in reactive oxygen species (ROS), for example, associated with exercise, are actually associated with increased mammalian health span and life span. Recent studies in humans suggest that anti-oxidants such as vitamins C, E, resveratrol, and acetyl-N-cysteine blunt the beneficial effects of exercise on glucose sensitivity and blood sugar regulation, likely through direct inhibition of ROS signaling. Alternately, other studies suggest that vitamin C has beneficial effects on exercise-associated dysfunction, inhibiting exercise-induced bronchioconstriction. These data suggest that there are tradeoffs between potential benefits and harm from anti-oxidant dietary supplementation. Specific biomolecular interactions for each antioxidant also will be important. Omega-3 (n-3) polyunsaturated fattty acids (PUFAs) have anti-inflammatory activity that is not mediated through direct ROS inhibition. Although data are limited in humans, n-3 PUFAs do not seem to blunt blood sugar regulatory benefits of aerobic exercise and actually increase anabolic activity in skeletal muscle. However, another kind of tradeoff may exist with PUFAs, at least for men. A recent large clinical trial demonstrates an association of omega-3 fatty acids blood levels with increased incidence of prostate cancer, especially aggressive prostate cancer. Together these results suggest that there are significant tradeoffs in the use of dietary supplementation for prevention and treatment of diseases associated with aging. Such tradeoffs may result from underlying intertwined homeostatic mechanisms. For most individuals, moderate exercise is of significant benefit. Careful attention to individual and family medical history and personal genomic data may prove essential to make wise dietary and supplement choices to be combined with exercise.
Winters, Eric R; Petosa, Rick L; Charlton, Thomas E
2003-06-01
To examine whether knowledge of high school students' actions of self-regulation, and perceptions of self-efficacy to overcome exercise barriers, social situation, and outcome expectation will predict non-school related moderate and vigorous physical exercise. High school students enrolled in introductory Physical Education courses completed questionnaires that targeted selected Social Cognitive Theory variables. They also self-reported their typical "leisure-time" exercise participation using a standardized questionnaire. Bivariate correlation statistic and hierarchical regression were conducted on reports of moderate and vigorous exercise frequency. Each predictor variable was significantly associated with measures of moderate and vigorous exercise frequency. All predictor variables were significant in the final regression model used to explain vigorous exercise. After controlling for the effects of gender, the psychosocial variables explained 29% of variance in vigorous exercise frequency. Three of four predictor variables were significant in the final regression equation used to explain moderate exercise. The final regression equation accounted for 11% of variance in moderate exercise frequency. Professionals who attempt to increase the prevalence of physical exercise through educational methods should focus on the psychosocial variables utilized in this study.
Leech, Kristan A; Hornby, T George
2017-03-15
High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.
Leech, Kristan A.
2017-01-01
Abstract High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity–dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury. PMID:27526567
(–)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle
Nogueira, Leonardo; Ramirez-Sanchez, Israel; Perkins, Guy A; Murphy, Anne; Taub, Pam R; Ceballos, Guillermo; Villarreal, Francisco J; Hogan, Michael C; Malek, Moh H
2011-01-01
Abstract The flavanol (–)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (–)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water–exercise (W-Ex), (3) (–)-epicatechin ((–)-Epi), and (4) (–)-epicatechin–exercise ((–)-Epi-Ex). Animals received 1 mg kg−1 of (–)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (–)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (–)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (–)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (–)-epicatechin alone. These findings indicate that (–)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (–)-epicatechin and its potential clinical application as an exercise mimetic. PMID:21788351
Ham, Ok Kyung; Sung, Kyung Mi; Lee, Bo Gyeong; Choi, Hee Won; Im, Eun-Ok
2016-06-01
The purpose was to evaluate the effects of a transtheoretical model (TTM) based exercise counseling offered with music skipping rope exercise on components of the TTM (stages of change, decisional balance, and self-efficacy), body mass index, glucose, and lipid profile of overweight/obese children in Korea. This study used a nonequivalent pretest and posttest experimental study design. A total of 75 overweight/obese children participated in the study. Eight sessions of exercise counseling combined with music skipping rope exercise for 12 weeks were offered for children in the experimental group, while one session of exercise counseling with music skipping rope exercise for 12 weeks was offered for children in the control group. Outcomes were measured at baseline, and 6 months after the intervention. After the intervention, self-efficacy significantly improved among children in the experimental group (p = .049), while these children maintained their baseline BMI at 6-month follow-up (p > .05). Among children in the control group, BMI significantly increased (p < .05). Fasting blood sugar significantly increased for both groups after the intervention (p < .05). However, a greater increase was observed for the control group. Our study partially supports the hypothesis that a TTM-based exercise intervention is effective in maintaining BMI and improving self-efficacy of overweight/obese children. The TTM-based counseling combined with exercise classes has potential to control weight among overweight/obese children, while involvement of parents and children in the development of the theory-based intervention may generate further benefits regarding health and well-being of overweight/obese children. Copyright © 2016. Published by Elsevier B.V.
Association of Physical Exercise on Anxiety and Depression Amongst Adults.
Khanzada, Faizan Jameel; Soomro, Nabila; Khan, Shahidda Zakir
2015-07-01
This study was done to determine the frequency of anxiety, depression among those who exercise regularly and those who do not. Across-sectional study was conducted at different gymnasiums of Karachi in July-August 2013. A total 269 individual's ages were 18 - 45 years completed a self-administered questionnaire to assess the data using simple descriptive statistics. One hundred and thirty four individuals were those who did not perform exercise which included females (55.0%) being more frequently anxious than male (46.4%). Females (39.9%) were more frequently depressed as compared to males (26.4%) less depressed. Chi-square test showed association between anxiety levels and exercise was significantly increased in non-exercisers compared to regular exercisers found to be significant (p=0.015). Individuals who performed regular exercise had a lower frequency of depression (28.9%) than non-exercisers (41.8%). Physical exercise was significantly associated with lower anxiety and depression frequency amongst the studied adult population.
Menstrual Cycle Effects on Perceived Exertion and Pain During Exercise Among Sedentary Women
Bryan, Angela D.; Eaton, Melissa
2011-01-01
Abstract Background Increasing cardiovascular fitness through exercise participation among sedentary people is important for decreasing all-cause mortality. From an intervention perspective, identifying modifiable factors that maximize the successful initiation of exercise is of utmost importance. For women, cyclic hormonal variations can influence aspects of health and health behaviors, from smoking cessation efficacy to physiological responses to exercise. The purpose of this study was to examine the influence of menstrual cycle phase and hormonal contraceptive (HC) use on subjective response to an initial bout of moderate intensity exercise among previously sedentary women (n = 117). Methods Women completed a treadmill exercise challenge session at 65% of their previously determined maximum oxygen consumption (Vo2 max) during the early follicular, late follicular, or luteal phase. Participants reported ratings of perceived exertion and pain using Borg's Rating of Perceived Exertion (RPE) and CR10 scales at 10, 20, and 30 minutes during the exercise session. Results There was a significant menstrual phase × birth control interaction on change in RPE [F(2, 111) = 3.75, p < 0.05] and change in perceived pain [F(2, 110) = 3.31, p < 0.05]. Women in the early follicular phase who were not using HCs had significantly greater increases in RPE and increases in pain compared with women in the late follicular and luteal phases. Conclusions Our results indicate that the use of HC and cycle phase influence sedentary women's subjective response to exercise. These results have important implications for the timing of exercise interventions aimed at increasing exercise among sedentary women. PMID:21219246
Menstrual cycle effects on perceived exertion and pain during exercise among sedentary women.
Hooper, Ann E Caldwell; Bryan, Angela D; Eaton, Melissa
2011-03-01
Increasing cardiovascular fitness through exercise participation among sedentary people is important for decreasing all-cause mortality. From an intervention perspective, identifying modifiable factors that maximize the successful initiation of exercise is of utmost importance. For women, cyclic hormonal variations can influence aspects of health and health behaviors, from smoking cessation efficacy to physiological responses to exercise. The purpose of this study was to examine the influence of menstrual cycle phase and hormonal contraceptive (HC) use on subjective response to an initial bout of moderate intensity exercise among previously sedentary women (n = 117). Women completed a treadmill exercise challenge session at 65% of their previously determined maximum oxygen consumption (Vo(2) max) during the early follicular, late follicular, or luteal phase. Participants reported ratings of perceived exertion and pain using Borg's Rating of Perceived Exertion (RPE) and CR10 scales at 10, 20, and 30 minutes during the exercise session. There was a significant menstrual phase x birth control interaction on change in RPE [F(2, 111) = 3.75, p < 0.05] and change in perceived pain [F(2, 110) = 3.31, p < 0.05]. Women in the early follicular phase who were not using HCs had significantly greater increases in RPE and increases in pain compared with women in the late follicular and luteal phases. Our results indicate that the use of HC and cycle phase influence sedentary women's subjective response to exercise. These results have important implications for the timing of exercise interventions aimed at increasing exercise among sedentary women.
NASA Technical Reports Server (NTRS)
Laurie, Steven S.; Lee, Stuart M. C.; Phillips, Tiffany R.; Dillon, E. Lichar; Sheffield-Moore, Melinda; Urban, Randall J.; Ploutz-Snyder, Lori; Stenger, Michael B.; Bloomberg, Jacob J.
2015-01-01
Cardiovascular adaptations due to spaceflight are modeled with 6deg head-down tilt bed rest (BR) and result in decreased orthostatic tolerance. We investigated if high-intensity resistive and aerobic exercise with and without testosterone supplementation would improve the heart rate (HR) response to a 3.5-min stand test and how quickly these changes recovered following BR. During 70 days of BR male subjects performed no exercise (Control, n=10), high intensity supine resistive and aerobic exercise (Exercise, n=9), or supine exercise plus supplemental testosterone (Exercise+T, n=8; 100 mg i.m., weekly in 2-week on/off cycles). We measured HR for 2 min while subjects were prone and for 3 min after standing twice before and 0, 1, 6, and 11 days after BR. Mixed-effects linear regression models were used to evaluate group, time, and interaction effects. Compared to pre-bed rest, prone HR was elevated on BR+0 and BR+1 in Control, but not Exercise or Exercise+T groups, and standing HR was greater in all 3 groups. The increase in prone and standing HR in Control subjects was greater than either Exercise or Exercise+T groups and all groups recovered by BR+6. The change in HR from prone to standing more than doubled on BR+0 in all groups, but was significantly less in the Exericse+T group compared to the Control, but not Exercise group. Exercise reduces, but does not prevent the increase in HR observed in response to standing. The significantly lower HR response in the Exercise+T group requires further investigation to determine physiologic significance.
de Oliveira, Gustavo Vieira; Nascimento, Luiz; Volino-Souza, Mônica; Mesquita, Jacilene; Alvares, Thiago
2018-03-22
The ergogenic effect of beetroot on the exercise performance of trained cyclists, runners, kayakers, and swimmers has been demonstrated. However, whether or not beetroot supplementation presents a beneficial effect on the exercise performance of jiu-jitsu athletes (JJA) remains inconclusive. Therefore, present study assessed the effect of beetroot-based gel (BG) supplementation on maximal voluntary contraction (MVC), exercise time until fatigue (ETF), muscle O2 saturation (SmO2), blood volume (tHb), and plasma nitrate and lactate in response to handgrip isotonic exercise (HIE) in JJA. In a randomized, crossover, double-blind design, 12 JJA performed three sets of HIE at 40% of the MVC until fatigue after 8 days (8th dose was offered 120 min previous exercise) of BG supplementation or a nitrate-depleted gel (PLA), and forearm SmO2 and tHb were continuously monitored by using near-infrared spectroscopy. Blood samples were taken before, immediately after exercise, and 20 min after exercise recovery in PLA and BG condition. MVC was evaluated at baseline and 20 min after HIE. There was a significant reduction in ∆MVC decline after HIE in BG condition. Forearm SmO2 during exercise recovery was significantly greater only after BG supplementation. No significant difference in ETF and tHb were observed between both BG and PLA in response to HIE. Plasma nitrate increased only after BG, whereas the exercise-induced increase in plasma lactate was significantly lower in BG when compared to PLA. In conclusion, BG supplementation may be a good nutritional strategy to improve forearm SmO2 and prevent force decline in response to exercise in JJA.
Weippert, Matthias; Divchev, Dimitar; Schmidt, Paul; Gettel, Hannes; Neugebauer, Antina; Behrens, Kristin; Wolfarth, Bernd; Braumann, Klaus-Michael; Nienaber, Christoph A
2016-04-19
Regular physical exercise can positively influence cardiac function; however, investigations have shown an increase of myocardial damage biomarkers after acute prolonged endurance exercises. We investigated the effect of repeated sprint vs. moderate long duration exercise on markers of myocardial necrosis, as well as cardiac dimensions and functions. Thirteen healthy males performed two different running sessions (randomized, single blinded cross-over design): 60 minutes moderate intensity continuous training (MCT, at 70% of peak heart rate (HRpeak)) and two series of 12 × 30-second sprints with set recovery periods in-between (RST, at 90% HRpeak). Venous blood samples for cardiac troponin T (cTnT), creatine kinase (CK) and MB isoenzyme (CK-MB) were taken 1 and 4 hours after exercise sessions. After each session electrocardiographic (ECG) and transthoracic echocardiographic (TTE) data were recorded. Results showed that all variables - average heart rate, serum lactate concentration during RST, subjective exertion and cTnT after RST - were significantly higher compared to MCT. CK and CK-MB significantly increased regardless of exercise protocol, while ECG and TTE indicated normal cardiac function. Our results provide evidence that RST contributes significantly to cTnT and CK release. This biomarker increase seems to reflect a physiological rather than a pathological phenomenon in healthy, exercising subjects.
Weippert, Matthias; Divchev, Dimitar; Schmidt, Paul; Gettel, Hannes; Neugebauer, Antina; Behrens, Kristin; Wolfarth, Bernd; Braumann, Klaus-Michael; Nienaber, Christoph A.
2016-01-01
Regular physical exercise can positively influence cardiac function; however, investigations have shown an increase of myocardial damage biomarkers after acute prolonged endurance exercises. We investigated the effect of repeated sprint vs. moderate long duration exercise on markers of myocardial necrosis, as well as cardiac dimensions and functions. Thirteen healthy males performed two different running sessions (randomized, single blinded cross-over design): 60 minutes moderate intensity continuous training (MCT, at 70% of peak heart rate (HRpeak)) and two series of 12 × 30-second sprints with set recovery periods in-between (RST, at 90% HRpeak). Venous blood samples for cardiac troponin T (cTnT), creatine kinase (CK) and MB isoenzyme (CK-MB) were taken 1 and 4 hours after exercise sessions. After each session electrocardiographic (ECG) and transthoracic echocardiographic (TTE) data were recorded. Results showed that all variables - average heart rate, serum lactate concentration during RST, subjective exertion and cTnT after RST - were significantly higher compared to MCT. CK and CK-MB significantly increased regardless of exercise protocol, while ECG and TTE indicated normal cardiac function. Our results provide evidence that RST contributes significantly to cTnT and CK release. This biomarker increase seems to reflect a physiological rather than a pathological phenomenon in healthy, exercising subjects. PMID:27090032
Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M
1996-01-01
To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle contractions. However, the hypothesized interplay between muscle damage, increased PGE2 production, DOMS sensations, and reduced isokinetic muscle performance was not substantiated by the present results.
Windsor, Phyllis M; Nicol, Kathleen F; Potter, Joan
2004-08-01
Advice to rest and take things easy if patients become fatigued during radiotherapy may be detrimental. Aerobic walking improves physical functioning and has been an intervention for chemotherapy-related fatigue. A prospective, randomized, controlled trial was performed to determine whether aerobic exercise would reduce the incidence of fatigue and prevent deterioration in physical functioning during radiotherapy for localized prostate carcinoma. Sixty-six men were randomized before they received radical radiotherapy for localized prostate carcinoma, with 33 men randomized to an exercise group and 33 men randomized to a control group. Outcome measures were fatigue and distance walked in a modified shuttle test before and after radiotherapy. There were no significant between group differences noted with regard to fatigue scores at baseline (P = 0.55) or after 4 weeks of radiotherapy (P = 0.18). Men in the control group had significant increases in fatigue scores from baseline to the end of radiotherapy (P = 0.013), with no significant increases observed in the exercise group (P = 0.203). A nonsignificant reduction (2.4%) in shuttle test distance at the end of radiotherapy was observed in the control group; however, in the exercise group, there was a significant increase (13.2%) in distance walked (P = 0.0003). Men who followed advice to rest and take things easy if they became fatigued demonstrated a slight deterioration in physical functioning and a significant increase in fatigue at the end of radiotherapy. Home-based, moderate-intensity walking produced a significant improvement in physical functioning with no significant increase in fatigue. Improved physical functioning may be necessary to combat radiation fatigue.
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-01-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-12-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M.
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise. PMID:27471471
Pulmonary Artery Wedge Pressure Relative to Exercise Work Rate in Older Men and Women.
Esfandiari, Sam; Wright, Stephen P; Goodman, Jack M; Sasson, Zion; Mak, Susanna
2017-07-01
An augmented pulmonary artery wedge pressure (PAWP) response may explain exercise intolerance in some humans. However, routine use of exercise hemodynamic testing is limited by a lack of data from normal older men and women. Our objective was to evaluate the exercise PAWP response and the potential for sexual dimorphism in healthy, nondyspneic older adults. Thirty-six healthy volunteers (18 men [54 ± 7 yr] and 18 women [58 ± 6 yr]) were studied at rest (control) and during two stages of semi-upright cycle ergometry, at heart rates of 100 bpm (light exercise) and 120 bpm (moderate exercise). Right heart catheterization was performed to measure pulmonary pressures. The PAWP response to exercise was assessed in context of exercise work rate and body size. At control, PAWP was similar between men and women. Work rates were significantly smaller in women at comparable HR (P < 0.001). PAWP increased similarly at light exercise, with no further increase at moderate exercise. When indexed to work rate alone or work rate adjusted to body weight and height, the PAWP response at light and moderate exercise was significantly elevated in women compared with men (P < 0.05 condition-sex interaction). The change in PAWP relative to the increase in cardiac output did not exceed 2 mm Hg·L·min in any volunteer at moderate exercise. The similar rise in the PAWP response to submaximal exercise occurs despite lower work rate in healthy older women compared with men, even when adjusted for smaller body size. It is important to consider sex in the development of normal reference ranges for exercise hemodynamic testing.
Interstitial pH, K(+), lactate, and phosphate determined with MSNA during exercise in humans
NASA Technical Reports Server (NTRS)
MacLean, D. A.; Imadojemu, V. A.; Sinoway, L. I.
2000-01-01
The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.
Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao
2016-07-01
Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.
Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie
2017-07-01
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Shen, C-L; Chyu, M-C; Yeh, J K; Zhang, Y; Pence, B C; Felton, C K; Brismée, J-M; Arjmandi, B H; Doctolero, S; Wang, J-S
2012-05-01
Postmenopausal women with osteopenia received green tea polyphenols (GTP) supplement and/or Tai Chi exercise for 6 months. Bone turnover biomarkers, calcium metabolism, and muscle strength were measured. This study showed that GTP supplementation and Tai Chi exercise increased bone formation biomarkers and improved bone turnover rate. Tai Chi exercise increased serum parathyroid hormone. GTP supplementation, Tai Chi exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia. This study evaluated the effect of GTP supplementation and Tai Chi (TC) exercise on serum markers of bone turnover (bone-specific alkaline phosphatase, BAP, and tartrate-resistant acid phosphatase, TRAP), calcium metabolism, and muscle strength in postmenopausal osteopenic women. One hundred and seventy-one postmenopausal osteopenic women were randomly assigned to four groups: (1) placebo (500 mg starch/day), (2) GTP (500 mg GTP/day), (3) placebo + TC (placebo plus TC training at 60 min/session, three sessions/week), and (4) GTP + TC (GTP plus TC training). Overnight fasting blood and urine samples were collected at baseline, 1, 3, and 6 months for biomarker analyses. Muscle strength was evaluated at baseline, 3, and 6 months. One hundred and fifty subjects completed the 6-month study. Significant increases in BAP level due to GTP intake (at 1 month) and TC (at 3 months) were observed. Significant increases in the change of BAP/TRAP ratio due to GTP (at 3 months) and TC (at 6 months) were also observed. Significant main effect of TC on the elevation in serum parathyroid hormone level was observed at 1 and 3 months. At 6 months, muscle strength significantly improved due to GTP, TC, and GTP + TC interventions. Neither GTP nor TC affected serum TRAP, serum and urinary calcium, and inorganic phosphate. In summary, GTP supplementation and TC exercise increased BAP and improved BAP/TRAP ratio. TC exercise increased serum parathyroid hormone. GTP supplementation, TC exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia.
Going, Scott; Lohman, Timothy; Houtkooper, Linda; Metcalfe, Lauve; Flint-Wagner, Hilary; Blew, Robert; Stanford, Vanessa; Cussler, Ellen; Martin, Jane; Teixeira, Pedro; Harris, Margaret; Milliken, Laura; Figueroa-Galvez, Arturo; Weber, Judith
2003-08-01
Osteoporosis is a major public health concern. The combination of exercise, hormone replacement therapy, and calcium supplementation may have added benefits for improving bone mineral density compared to a single intervention. To test this notion, 320 healthy, non-smoking postmenopausal women, who did or did not use hormone replacement therapy (HRT), were randomized within groups to exercise or no exercise and followed for 12 months. All women received 800 mg calcium citrate supplements daily. Women who exercised performed supervised aerobic, weight-bearing and weight-lifting exercise, three times per week in community-based exercise facilities. Regional bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. Women who used HRT, calcium, and exercised increased femoral neck, trochanteric and lumbar spine bone mineral density by approximately 1-2%. Trochanteric BMD was also significantly increased by approximately 1.0% in women who exercised and used calcium without HRT compared to a negligible change in women who used HRT and did not exercise. The results demonstrate that regional BMD can be improved with aerobic, weight-bearing activity combined with weight lifting at clinically relevant sites in postmenopausal women. The response was significant at more sites in women who used HRT, suggesting a greater benefit with hormone replacement and exercise compared to HRT alone.
Anderson-Hanley, Cay; Barcelos, Nicole M; Zimmerman, Earl A; Gillen, Robert W; Dunnam, Mina; Cohen, Brian D; Yerokhin, Vadim; Miller, Kenneth E; Hayes, David J; Arciero, Paul J; Maloney, Molly; Kramer, Arthur F
2018-01-01
Prior research has found that cognitive benefits of physical exercise and brain health in older adults may be enhanced when mental exercise is interactive simultaneously, as in exergaming. It is unclear whether the cognitive benefit can be maximized by increasing the degree of mental challenge during exercise. This randomized clinical trial (RCT), the Aerobic and Cognitive Exercise Study (ACES) sought to replicate and extend prior findings of added cognitive benefit from exergaming to those with or at risk for mild cognitive impairment (MCI). ACES compares the effects of 6 months of an exer-tour (virtual reality bike rides) with the effects of a more effortful exer-score (pedaling through a videogame to score points). Fourteen community-dwelling older adults meeting screening criteria for MCI (sMCI) were adherent to their assigned exercise for 6 months. The primary outcome was executive function, while secondary outcomes included memory and everyday cognitive function. Exer-tour and exer-score yielded significant moderate effects on executive function (Stroop A/C; d 's = 0.51 and 0.47); there was no significant interaction effect. However, after 3 months the exer-tour revealed a significant and moderate effect, while exer-score showed little impact, as did a game-only condition. Both exer-tour and exer-score conditions also resulted in significant improvements in verbal memory. Effects appear to generalize to self-reported everyday cognitive function. Pilot data, including salivary biomarkers and structural MRI, were gathered at baseline and 6 months; exercise dose was associated with increased BDNF as well as increased gray matter volume in the PFC and ACC. Improvement in memory was associated with an increase in the DLPFC. Improved executive function was associated with increased expression of exosomal miRNA-9. Interactive physical and cognitive exercise (both high and low mental challenge) yielded similarly significant cognitive benefit for adherent sMCI exercisers over 6 months. A larger RCT is needed to confirm these findings. Further innovation and clinical trial data are needed to develop accessible, yet engaging and effective interventions to combat cognitive decline for the growing MCI population. ClinicalTrials.gov ID: NCT02237560.
Anderson-Hanley, Cay; Barcelos, Nicole M.; Zimmerman, Earl A.; Gillen, Robert W.; Dunnam, Mina; Cohen, Brian D.; Yerokhin, Vadim; Miller, Kenneth E.; Hayes, David J.; Arciero, Paul J.; Maloney, Molly; Kramer, Arthur F.
2018-01-01
Prior research has found that cognitive benefits of physical exercise and brain health in older adults may be enhanced when mental exercise is interactive simultaneously, as in exergaming. It is unclear whether the cognitive benefit can be maximized by increasing the degree of mental challenge during exercise. This randomized clinical trial (RCT), the Aerobic and Cognitive Exercise Study (ACES) sought to replicate and extend prior findings of added cognitive benefit from exergaming to those with or at risk for mild cognitive impairment (MCI). ACES compares the effects of 6 months of an exer-tour (virtual reality bike rides) with the effects of a more effortful exer-score (pedaling through a videogame to score points). Fourteen community-dwelling older adults meeting screening criteria for MCI (sMCI) were adherent to their assigned exercise for 6 months. The primary outcome was executive function, while secondary outcomes included memory and everyday cognitive function. Exer-tour and exer-score yielded significant moderate effects on executive function (Stroop A/C; d's = 0.51 and 0.47); there was no significant interaction effect. However, after 3 months the exer-tour revealed a significant and moderate effect, while exer-score showed little impact, as did a game-only condition. Both exer-tour and exer-score conditions also resulted in significant improvements in verbal memory. Effects appear to generalize to self-reported everyday cognitive function. Pilot data, including salivary biomarkers and structural MRI, were gathered at baseline and 6 months; exercise dose was associated with increased BDNF as well as increased gray matter volume in the PFC and ACC. Improvement in memory was associated with an increase in the DLPFC. Improved executive function was associated with increased expression of exosomal miRNA-9. Interactive physical and cognitive exercise (both high and low mental challenge) yielded similarly significant cognitive benefit for adherent sMCI exercisers over 6 months. A larger RCT is needed to confirm these findings. Further innovation and clinical trial data are needed to develop accessible, yet engaging and effective interventions to combat cognitive decline for the growing MCI population. ClinicalTrials.gov ID: NCT02237560 PMID:29780318
The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes
Tedjasaputra, Vince; Sá, Rui Carlos; Arai, Tatsuya J.; Holverda, Sebastiaan; Theilmann, Rebecca J.; Chen, William T.; Wagner, Peter D.; Davis, Christopher K.; Kim Prisk, G.
2013-01-01
Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg−1·min−1) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels. PMID:23640585
Minigalin, A D; Shumakov, A R; Novozhilov, A V; Samsonova, A V; Kos'mina, E A; Kalinskiĭ, M I; Baranova, T I; Kubasov, I V; Morozov, V I
2015-01-01
The aim of this study was to examine the effect of exhaustive weightlifting exercise on electrical and biochemical variables and performance capacity in young male subjects. The onset of exercise (80-50% 1RM) was associated with a decrease in the amount of work performed, which was followed by a steady performance capacity at 40-10% 1RM. There were no significant changes of m. rectus femoris EMG maximal amplitude though it tended to be increased during the first half of exercise. A significant blood lactate concentration increase indicated that an anaerobic metabolism was a predominant mechanism of muscle contraction energy-supply. CK level in blood plasma did not change but plasma myoglobin concentration doubled immediately post-exercise. The data presented here suggest that decrease in performance capacity was likely due to progressive "refusal of work" of the fast motor units and work prolongation of weaker, intermediate and slow motor units. Unchangeable CK activity and relatively small increase in myoglobin concentration in plasma suggest that used weightlifting exercise did not induced substantial damage in myocytes' membranes in our subjects.
The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme.
Ligtenberg, Antoon J M; Brand, Henk S; van den Keijbus, Petra A M; Veerman, Enno C I
2015-11-01
Saliva secretion is regulated by the autonomic nervous system. Parasympathic stimuli increase the secretion of water and mucin MUC5B, whereas sympathetic stimuli such as physical exercise increase the secretion of amylase and other proteins. In the present study we investigated the effect of physical exercise, as a sympathetic stimulus, on salivary flow rate and output of MUC5B, amylase, lysozyme and total protein. Unstimulated whole saliva was collected before exercise (1), after 10 min exercise with moderate intensity by running with a heart rate around 130 beats per minute (2), followed by 10 min exercise with high intensity by running to exhaustion (3) and after 30 min recovery (4). Salivary flow rate, protein and MUC5B concentration, and amylase and lysozyme activity were determined. Saliva protein composition was analysed using SDS-PAGE and immunoblotting. Salivary flow rate, protein and lysozyme secretion increased after exercise with moderate intensity and increased further after exercise with high intensity (p<0.01). Amylase and MUC5B increased after exercise with moderate intensity (p<0.0001), but did not differ significantly between moderate and high exercise intensity. SDS-PAGE analysis and immunoblotting showed that, especially after exercise with high intensity, the concentrations of several other salivary proteins, including MUC7, albumin, and extra-parotid glycoprotein, also increased. Exercise may not only lead to the anticipated increase in amylase and protein secretion, but also to an increase in salivary flow rate and MUC5B secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Psychobiological Responses to Aerobic Exercise in Individuals With Posttraumatic Stress Disorder.
Crombie, Kevin M; Brellenthin, Angelique G; Hillard, Cecilia J; Koltyn, Kelli F
2018-02-01
Previous reports have shown improvements in mood and increases in endocannabinoids in healthy adults following a session of aerobic exercise, but it is unclear whether adults with posttraumatic stress disorder (PTSD) experience similar responses. The purpose of this study was to examine psychobiological responses (plasma endocannabinoids [eCBs], mood, and pain) to aerobic exercise in a sample of adults with a diagnosis of PTSD (n = 12) and healthy controls (n = 12). Participants engaged in an aerobic exercise session in which they ran on a treadmill for 30 min at a moderate intensity (70 to 75% maximum heart rate [MHR]). Results indicated improvements in mood states and reductions in pain for both groups following exercise, ds = 0.19 to 1.53. Circulating concentrations of N-arachidonylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), and oleoylethanolamide (OEA) significantly increased (ps = .000 to .050) following the aerobic exercise session for both groups. There were no significant time, group, or interaction effects (ps = .062 to .846) for palmitoylethanolamide (PEA) and 2-oleoylglycerol (2-OG). Although eCBs increased significantly for both groups, within-group effect size calculations indicated the healthy controls experienced a greater magnitude of change for AEA when compared with adults with PTSD, d = 1.21 and d = 0.45, respectively; as well as for 2-AG, d = 0.43 and d = 0.21, respectively. The findings from this study indicated that adults with and without PTSD reported significant mood improvements following 30 min of moderate-intensity aerobic exercise. In addition, the endocannabinoid system was activated in adults with and without PTSD, although effect sizes suggest that adults with PTSD may have a blunted endocannabinoid response to exercise. Copyright © 2018 International Society for Traumatic Stress Studies.
Chen, Yi-Ming; Lin, Che-Li; Wei, Li; Hsu, Yi-Ju; Chen, Kuan-Neng; Huang, Chi-Chang; Kao, Chin-Hsung
2016-01-01
Exercise and fitness training programs have attracted the public’s attention in recent years. Sports nutrition supplementation is an important issue in the global sports market. Purpose: In this study, we designed a power exercise training (PET) program with a mouse model based on a strength and conditional training protocol for humans. We tested the effect of supplementation with functional branched-chain amino acid (BCAA)-rich sake protein (SP) to determine whether the supplement had a synergistic effect during PET and enhanced athletic performance and resistance to fatigue. Methods: Male ICR mice were divided into three groups (n = 8 per group) for four-week treatment: sedentary controls with vehicle (SC), and PET and PET groups with SP supplementation (3.8 g/kg, PET + SP). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time as well as changes in body composition and anti-fatigue activity levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The biochemical parameters were measured at the end of the experiment. Results: four-week PET significantly increased grip strength and exhaustive swimming time and decreased epididymal fat pad (EFP) weight and area. Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid (UA) were significantly increased. PET + SP supplementation significantly decreased serum lactate, ammonia and CK levels after the 15-min swimming exercise. The resting serum levels of AST, ALT, CREA and UA were all significantly decreased with PET + SP. Conclusion: The PET program could increase the exercise performance and modulate the body composition of mice. PET with SP conferred better anti-fatigue activity, improved biochemical profiles, and may be an effective ergogenic aid in strength training. PMID:26907336
Chen, Yi-Ming; Lin, Che-Li; Wei, Li; Hsu, Yi-Ju; Chen, Kuan-Neng; Huang, Chi-Chang; Kao, Chin-Hsung
2016-02-20
Exercise and fitness training programs have attracted the public's attention in recent years. Sports nutrition supplementation is an important issue in the global sports market. In this study, we designed a power exercise training (PET) program with a mouse model based on a strength and conditional training protocol for humans. We tested the effect of supplementation with functional branched-chain amino acid (BCAA)-rich sake protein (SP) to determine whether the supplement had a synergistic effect during PET and enhanced athletic performance and resistance to fatigue. Male ICR mice were divided into three groups (n = 8 per group) for four-week treatment: sedentary controls with vehicle (SC), and PET and PET groups with SP supplementation (3.8 g/kg, PET + SP). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time as well as changes in body composition and anti-fatigue activity levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The biochemical parameters were measured at the end of the experiment. four-week PET significantly increased grip strength and exhaustive swimming time and decreased epididymal fat pad (EFP) weight and area. Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid (UA) were significantly increased. PET + SP supplementation significantly decreased serum lactate, ammonia and CK levels after the 15-min swimming exercise. The resting serum levels of AST, ALT, CREA and UA were all significantly decreased with PET + SP. The PET program could increase the exercise performance and modulate the body composition of mice. PET with SP conferred better anti-fatigue activity, improved biochemical profiles, and may be an effective ergogenic aid in strength training.
Vaegter, H B; Hoeger Bement, M; Madsen, A B; Fridriksson, J; Dasa, M; Graven-Nielsen, T
2017-01-01
Exercise causes an acute decrease in the pain sensitivity known as exercise-induced hypoalgesia (EIH), but the specificity to certain pain modalities remains unknown. This study aimed to compare the effect of isometric exercise on the heat and pressure pain sensitivity. On three different days, 20 healthy young men performed two submaximal isometric knee extensions (30% maximal voluntary contraction in 3 min) and a control condition (quiet rest). Before and immediately after exercise and rest, the sensitivity to heat pain and pressure pain was assessed in randomized and counterbalanced order. Cuff pressure pain threshold (cPPT) and pain tolerance (cPTT) were assessed on the ipsilateral lower leg by computer-controlled cuff algometry. Heat pain threshold (HPT) was recorded on the ipsilateral foot by a computer-controlled thermal stimulator. Cuff pressure pain tolerance was significantly increased after exercise compared with baseline and rest (p < 0.05). Compared with rest, cPPT and HPT were not significantly increased by exercise. No significant correlation between exercise-induced changes in HPT and cPPT was found. Test-retest reliability before and after the rest condition was better for cPPT and CPTT (intraclass correlation > 0.77) compared with HPT (intraclass correlation = 0.54). The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. The effect of isometric exercise on pain tolerance may be relevant for patients in chronic musculoskeletal pain as a pain-coping strategy. WHAT DOES THIS STUDY ADD?: The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the heat and pressure pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. © 2016 European Pain Federation - EFIC®.
Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.
2007-01-01
Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964
The effects of virtual reality game exercise on balance and gait of the elderly
Park, Eun-Cho; Kim, Seong-Gil; Lee, Chae-Woo
2015-01-01
[Purpose] The aim of this study was to examine the effects of ball exercise as a general exercise on the balance abilities of elderly individuals by comparing ball exercise with virtual reality exercise. [Subjects and Methods] Thirty elderly individuals residing in communities were randomly divided into a virtual reality game group and a ball exercise group and conducted exercise for 30 min 3 times a week for 8 weeks. [Results] Step length increased significantly, and the average sway speed and Timed Up and Go time significantly decreased in both groups. A comparison of sway length after the intervention between the two groups revealed that the virtual reality game exercise resulted in a reduction than the ball exercise. [Conclusion] The results of this study indicated that the virtual reality game exercise may improve balance and gait of elderly individuals in communities. PMID:25995578
Effect of exercise and protein intake on energy expenditure in adolescents.
Barenys, M; Recasens, M A; Martí-Henneberg, C; Salas-Salvadó, J
1993-12-01
In order to evaluate the influence of physical exercise and protein intake on Resting Metabolic Rate (RMR) and Postprandial Energy Expenditure (PEE), 16 healthy, normal-weight, 15 year-old, adolescent males at the same stage of pubertal development were studied. They were assigned to two dietary groups receiving the same energy intake (1.3 x by measured RMR) and different proportions of macronutrients (13% protein, 39% fat, 48% CHO in Group A; 30% protein, 32% fat, 38% CHO in Group B). An increase in postprandial energy expenditure, relative to basal, was observed in all individuals. The postprandial energy expenditure was higher in group B than in group A. Postprandial Post-exercise Thermogenesis (expressed as Kcal/3 h) was significantly higher in group B than group A (p < 0.05). Although the RMR on the test day was not different between the groups, the RMR on day 2 was significantly higher than on day 1 in group B (p < 0.01). In group B, the post-exercise RQ was significantly lower than the preexercise RQ (p < 0.01). It is concluded that in normal-weight-adolescents, a hyperproteic diet followed by moderately-intensive exercise induces increases in EE and decreases in RQ in the postprandial post-exercise period and is accompanied by increase in the RMR the following day.
Host, H H; Hansen, P A; Nolte, L A; Chen, M M; Holloszy, J O
1998-07-01
Endurance exercise training induces a rapid increase in the GLUT-4 isoform of the glucose transporter in muscle. In fasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that high muscle glycogen may decrease insulin-stimulated glucose transport. This study was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with an exercise-induced increase in GLUT-4. Rats were trained by means of swimming for 6 h/day for 2 days. Rats fasted overnight after the last exercise bout had an approximately twofold increase in epitrochlearis muscle GLUT-4 and an associated approximately twofold increase in maximally insulin-stimulated glucose transport activity. Epitrochlearis muscles of rats fed rodent chow after exercise were glycogen supercompensated (86.4 +/- 4.8 micromol/g wet wt) and showed no significant increase in maximally insulin-stimulated glucose transport above the sedentary control value despite an approximately twofold increase in GLUT-4. Fasting resulted in higher basal muscle glucose transport rates in both sedentary and trained rats but did not significantly increase maximally insulin-stimulated transport in the sedentary group. We conclude that carbohydrate feeding that results in muscle glycogen supercompensation prevents the increase in maximally insulin-stimulated glucose transport associated with an exercise training-induced increase in muscle GLUT-4.
Effect of orofacial exercises on oral aperture in adults with systemic sclerosis
Yuen, Hon K.; Marlow, Nicole M.; Reed, Susan G.; Summerlin, Lisa M.; Leite, Renata S.; Mahoney, Samantha; Silver, Richard M.
2012-01-01
Purpose To examine the effect of a home orofacial exercise program on increasing oral aperture among adults with systemic sclerosis (SSc). Method Forty-eight adults with SSc were assigned randomly to the multi-faceted oral health intervention or usual dental care control group. Participants with an oral aperture of < 40 mm in the intervention group received an orofacial exercise program, which included daily manual mouth-stretching and oral augmentation exercises twice a day with a total of 6 minutes for 6 months. The outcome measure was oral aperture which was measured at baseline, 3-months, and 6-months intervals. Results A significantly larger increase in oral aperture for participants received the orofacial exercise program was found when compared to those in the usual care at 3 months (P=0.01), but not at 6 months evaluation. Participants’ adherence rate to the exercise program was low (48.9%). Conclusions The orofacial exercise program intervention for adults with SSc and microstomia did not show significant improvement at 6 months. In addition to the low exercise adherence rate, insufficient frequencies, repetitions, and durations of the orofacial exercises may contribute to these results. PMID:21951278
Exercise, adipokines and pediatric obesity: a meta-analysis of randomized controlled trials.
García-Hermoso, A; Ceballos-Ceballos, R J M; Poblete-Aro, C E; Hackney, A C; Mota, J; Ramírez-Vélez, R
2017-04-01
Adipokines are involved in the etiology of diabetes, insulin resistance, and the development of atherosclerosis and other latent-onset complications. The objective of this meta-analysis was to determine the effectiveness of exercise interventions on adipokines in pediatric obesity. A computerized search was made using three databases. The analysis was restricted to studies that examined the effect of exercise interventions on adipokines (adiponectin, leptin, resistin and visfatin) in pediatric obesity (6-18 years old). Fourteen randomized controlled trials (347 youths) were included. Weighted mean difference (WMD) and 95% confidence intervals were calculated. Exercise was associated with a significant increase in adiponectin (WMD=0.882 μg ml -1 , 95% CI, 0.271-1.493) but did not alter leptin and resistin level. Likewise, exercise intensity and change in body fat; as well as total exercise program duration, duration of the sessions, and change in body fat all significantly influenced the effect of exercise on adiponectin and leptin, respectively. Exercise seems to increase adiponectin levels in childhood obesity. Our results also suggested that exercise on its own, without the concomitant presence of changes in body composition levels, does not affect leptin levels.
Diet and sex modify exercise and cardiac adaptation in the mouse
Chen, Hao; Luczak, Elizabeth; McKee, Laurel A.; Regan, Jessica; Watson, Peter A.; Stauffer, Brian L.; Khalpey, Zain I; Mckinsey, Timothy A.; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A.
2014-01-01
The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex. PMID:25398983
Diet and sex modify exercise and cardiac adaptation in the mouse.
Konhilas, John P; Chen, Hao; Luczak, Elizabeth; McKee, Laurel A; Regan, Jessica; Watson, Peter A; Stauffer, Brian L; Khalpey, Zain I; Mckinsey, Timothy A; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A
2015-01-15
The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.
De Crée, C; Ball, P; Seidlitz, B; Van Kranenburg, G; Geurten, P; Keizer, H A
1997-10-01
It has been hypothesized that exercise-related hypo-estrogenemia occurs as a consequence of increased competition of catecholestrogens (CE) for catechol-O-methyltransferase (COMT). This may result in higher norepinephrine (NE) concentrations, which could interfere with normal gonadotropin pulsatility. The present study investigates the effects of training on CE responses to acute exercise stress. Nine untrained eumenorrheic women (mean percentage of body fat +/-SD: 24.8 +/- 3.1%) volunteered for an intensive 5-day training program. Resting, submaximal, and maximal (tmax) exercise plasma CE, estrogen, and catecholamine responses were determined pre- and post training in both the follicular (FPh) and luteal phase (LPh). Acute exercise stress increased total primary estrogens (E) but had little effect on total 2-hydroxyestrogens (2-OHE) and 2-hydroxyestrogen-monomethylethers (2-MeOE) (= O-methylated CE after competition for catechol-O-methyltransferase). This pattern was not significantly changed by training. However, posttraining LPh mean (+/-SE) plasma E, 2-OHE, and 2-MeOE concentrations were significantly lower (P < 0.05) at each exercise intensity (for 2-OHE: 332 +/- 47 vs. 422 +/- 57 pg/mL at tmax; for 2-MeOE: 317 +/- 26 vs. 354 +/- 34 pg/mL at tmax). Training produced opposite effects on 2-OHE:E ratios (an estimation of CE formation) during acute exercise in the FPh (reduction) and LPh (increase). The 2-MeOE:2-OHE ratio (an estimation of CE activity) showed significantly higher values at tmax in both menstrual phases after training (FPh: +11%; LPh: +23%; P < 0.05). After training, NE values were significantly higher (P < 0.05). The major findings of this study were that: training lowers absolute concentrations of plasma estrogens and CE; the acute exercise challenge altered plasma estrogens but had little effect on CE; estimation of the formation and activity of CE suggests that formation and O-methylation of CE proportionately increases. These findings may be of importance for NE-mediated effects on gonadotropin release.
Lorenz, Tierney Ahrold; Meston, Cindy May
2014-01-01
Background In laboratory studies, exercise immediately before sexual stimuli improved sexual arousal of women taking antidepressants [1]. We evaluated if exercise improves sexual desire, orgasm, and global sexual functioning in women experiencing antidepressant-induced sexual side effects. Methods Fifty-two women who were reporting antidepressant sexual side effects were followed for 3 weeks of sexual activity only. They were randomized to complete either three weeks of exercise immediately before sexual activity (3×/week) or 3 weeks of exercise separate from sexual activity (3×/week). At the end of the first exercise arm, participants crossed to the other. We measured sexual functioning, sexual satisfaction, depression, and physical health. Results Exercise immediately prior to sexual activity significantly improved sexual desire and, for women with sexual dysfunction at baseline, global sexual function. Scheduling regular sexual activity significantly improved orgasm function; exercise did not increase this benefit. Neither regular sexual activity nor exercise significantly changed sexual satisfaction. Conclusions Scheduling regular sexual activity and exercise may be an effective tool for the behavioral management of sexual side effects of antidepressants. PMID:24754044
Lorenz, Tierney Ahrold; Meston, Cindy May
2014-03-01
In laboratory studies, exercise immediately before sexual stimuli improved sexual arousal of women taking antidepressants [1]. We evaluated if exercise improves sexual desire, orgasm, and global sexual functioning in women experiencing antidepressant-induced sexual side effects. Fifty-two women who were reporting antidepressant sexual side effects were followed for 3 weeks of sexual activity only. They were randomized to complete either three weeks of exercise immediately before sexual activity (3×/week) or 3 weeks of exercise separate from sexual activity (3×/week). At the end of the first exercise arm, participants crossed to the other. We measured sexual functioning, sexual satisfaction, depression, and physical health. Exercise immediately prior to sexual activity significantly improved sexual desire and, for women with sexual dysfunction at baseline, global sexual function. Scheduling regular sexual activity significantly improved orgasm function; exercise did not increase this benefit. Neither regular sexual activity nor exercise significantly changed sexual satisfaction. Scheduling regular sexual activity and exercise may be an effective tool for the behavioral management of sexual side effects of antidepressants
Javanshir, Khodabakhsh; Amiri, Mohsen; Mohseni Bandpei, Mohammad Ali; De las Penas, Cesar Fernandez; Rezasoltani, Asghar
2015-01-01
The effect of different exercise programs on cervical flexor muscles dimensions in patients with chronic neck pain is yet to be demonstrated. The purpose of this study was to assess the effect of two exercise programs; craniocervical flexion (CCF) and cervical flexion (CF), on flexor muscles dimensions in patients with chronic neck pain. Following ethical approval, 60 patients were randomly assigned into either a CCF group or a CF group. Patients in the CCF group were given CCF exercises and those in the CF group received CF exercises. All patients received interventions for a period of ten weeks. Pain intensity and functional disability were assessed using numerical pain rate scale and neck disability index, respectively. Dimensions of longus colli (LC) and sternoclidomastoid (SCM) muscles were measured using ultrasonography (US). All measurements were taken before and after interventions. Following intervention, the CCF group demonstrated a significant increase in LC muscle dimensions including cross sectional area, width and thickness compared with the CF group. A statistically significant increase was found on SCM thickness in the CF group. Following intervention, SCM thickness measurement in the CCF group showed no significant changes. Statistically significant decrease on pain intensity and disability were also found in both groups. Present findings demonstrated that craniocervical flexion program which specifically recruiting deep cervical flexor muscles increased LC muscle dimension significantly and CF program as an endurance training program increased SCM thickness.
Using Behavioral Analytics to Increase Exercise: A Randomized N-of-1 Study.
Yoon, Sunmoo; Schwartz, Joseph E; Burg, Matthew M; Kronish, Ian M; Alcantara, Carmela; Julian, Jacob; Parsons, Faith; Davidson, Karina W; Diaz, Keith M
2018-04-01
This intervention study used mobile technologies to investigate whether those randomized to receive a personalized "activity fingerprint" (i.e., a one-time tailored message about personal predictors of exercise developed from 6 months of observational data) increased their physical activity levels relative to those not receiving the fingerprint. A 12-month randomized intervention study. From 2014 to 2015, 79 intermittent exercisers had their daily physical activity assessed by accelerometry (Fitbit Flex) and daily stress experience, a potential predictor of exercise behavior, was assessed by smartphone. Data collected during the first 6 months of observation were used to develop a person-specific "activity fingerprint" (i.e., N-of-1) that was subsequently sent via email on a single occasion to randomized participants. Pre-post changes in the percentage of days exercised were analyzed within and between control and intervention groups. The control group significantly decreased their proportion of days exercised (10.5% decrease, p<0.0001) following randomization. By contrast, the intervention group showed a nonsignificant decrease in the proportion of days exercised (4.0% decrease, p=0.14). Relative to the decrease observed in the control group, receipt of the activity fingerprint significantly increased the likelihood of exercising in the intervention group (6.5%, p=0.04). This N-of-1 intervention study demonstrates that a one-time brief message conveying personalized exercise predictors had a beneficial effect on exercise behavior among urban adults. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Growth hormone isoforms release in response to physiological and pharmacological stimuli.
Pagani, S; Cappa, M; Meazza, C; Ubertini, G; Travaglino, P; Bozzola, E; Bozzola, M
2008-06-01
Ten healthy subjects used to performing regular physical activity and eight subjects affected by idiopathic isolated GH deficiency (GHD) were enrolled; 22- and 20-kDa GH secretion and its biological activity were evaluated in response to pharmacological stimuli such as arginine, L-dopa or glucagon in GHD children, while the hormonal response to exercise was studied according to Bruce protocol in healthy subjects. We found a significant increase in 22- and 20-kDa GH level in healthy subjects after monitored physical exercise (MPE; basal 0.28+/-0.12 vs 7.37+/-2.08 ng/ml and basal 0.076+/-0.04 vs 0.18+/-0.05 ng/ml, respectively). Furthermore, the 22-kDa/20-kDa ratio significantly increased in children who had undergone MPE and the GH bioactivity basal mean value also increased significantly after exercise (basal 2.86+/-0.76 vs 7.64+/-1.9 ng/ml). The mean value of 22-kDa GH in GHD patients increased significantly following GH pharmacological stimulation (2.78+/-0.63 ng/ml) when compared with mean basal (0.20+/-0.11 ng/ml) value. In the GHD group the basal concentration of 20-kDa GH significantly increased following GH pharmacological stimulation (0.34+/-0.11 vs 0.72+/-0.2 ng/ml); the 22-kDa/20-kDa ratio significantly increased too. Likewise, GH bioactivity in children with GHD increased significantly after pharmacological stimulation test (basal 2.53+/-0.56 vs 7.33+/-1.26 ng/ml). Both GH isoform concentrations and their biological activity are significantly increased in healthy subjects after submaximal exercise protocol and in GHD children after pharmacological stimuli.
Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira
2013-01-01
Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.
Kim, Hye Jin; Lee, Won Jun
2017-09-30
Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition
Influence of eccentric actions on the metabolic cost of resistance exercise
NASA Technical Reports Server (NTRS)
Dudley, Gary A.; Golden, Catherine L.; Tesch, Per A.; Harris, Robert T.; Buchanan, Paul
1991-01-01
The contributions of concentric (con) and eccentric (ecc) muscle actions are evaluated with respect to increasing the metabolic cost of resistance exercise. Male subjects perform leg exercise with either con and ecc actions or only con actions while the net energy cost of the exercise is measured by oxygen consumption data. In both groups, the con actions require 290 J/kg body weight of total work, with an energy cost of 0.003 cal/J. The energy costs for the con/ecc actions of the second group is increased by 14 percent. The metabolic cost of leg exercise is concluded to be primarily generated by the con leg actions, and ecc leg actions increase the resistance with only a slight increase in required energy. The findings are significant for practical applications that emphasize the conservation of energy expenditure during exercise in spacecraft environments.
Kemmler, Wolfgang; Kohl, Matthias; Bebenek, Michael; von Stengel, Simon
2015-03-01
Early adulthood is related to changes in lifestyle that negatively affect body weight and health. The aim of the study was to determine the effect of exercise changes on the development of weight and body composition in college students.Sixty-one randomly selected dental (ZMS) and 53 sport students (SLS) were accompanied over 5 years. Body mass, fat and lean body mass (LBM) were determined via DXA-technique. Exercise and physical activity were assessed by questionnaires and interviews.All exercise indices significantly increased in the SLS and significantly decreased in the ZMS. Physical activity slightly increased in both groups. Both cohorts comparably gained body mass, however, the increase in the SLS group can be attributed to LBM-changes with minor changes of fat-mass (2.4 % ± 3.3 % vs. 0.1 ± 1.0 %) whereas ZMS gained fat and LBM in a proportion of 2:1.Maintenance/increase of exercise compensate the negative effects of lifestyle changes on body composition during young adulthood.
Hormonal responses during a prolonged military field exercise with variable exercise intensity.
Kyröläinen, Heikki; Karinkanta, Jari; Santtila, Matti; Koski, Harri; Mäntysaari, Matti; Pullinen, Teemu
2008-03-01
The purpose of the present study was to test the hypothesis that the magnitude of hormonal concentration alterations during a prolonged military field exercise with constant energy intake (EI) is influenced by changes in energy deficit (ED) induced by varying the exercise intensity. Basal serum hormone concentrations were measured in a group of healthy young male volunteers (n = 7) during a 20-day field exercise. During the first week of the exercise, the average ED was 4,000 kcal/day (P-I), in the second week only 450 kcal/day (P-II), and in the last week 1,000 kcal/day (P-III). During the first 5 days of the field exercise, significant increases in cortisol (COR, +32%) and growth hormone (GH, +616%) concentrations were observed, while insulin (INS, -70%), total testosterone (TES, -27%), free testosterone (TES(free), -26%) decreased. However, after these initial responses, COR and GH returned to the pre-exercise level by the beginning of P-II. Also TES and TES(free) recovered to the pre-exercise level by the beginning of P-III, and INS by the end of P-III. The concentration of TES (+29%) increased above the pre-exercise level by the beginning of P-III. Serum thyroxin (T(4)) concentration was significantly lesser (-12%) and urine urea concentration significantly higher (+78%) after the field exercise than before it. Therefore, it can be concluded that the lower levels of ED in the second and third phase (ED <1,000 kcal/day) allowed recovery of hormonal changes observed in the first phase with ED much greater than 1,000 kcal/day.
Mills, Chris; Knight, James; Milligan, Gemma
2015-01-01
Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805
Kroepfl, Julia Maria; Pekovits, Karin; Stelzer, Ingeborg; Fuchs, Robert; Zelzer, Sieglinde; Hofmann, Peter; Sedlmayr, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Mueller, Wolfram
2012-11-01
Circulating hematopoietic progenitor cells (CPCs) may be triggered by physical exercise and/or normobaric hypoxia from the bone marrow. The aim of the study was to investigate the influence of physical exercise and normobaric hypoxia on CPC number and functionality in the peripheral blood as well as the involvement of oxidative stress parameters as possibly active agents. Ten healthy male subjects (25.3±4.4 years) underwent a standardized cycle incremental exercise test protocol (40 W+20 W/min) under either normoxic (FiO2 ∼0.21) or hypoxic conditions (FiO2<0.15, equals 3,500 m, 3 h xposure) within a time span of at least 1 week. Blood was drawn from the cubital vein before and 10, 30, 60, and 120 min after exercise. The number of CPCs in the peripheral blood was analyzed by flow cytometry (CD34/CD45-positive cells). The functionality of cells present was addressed by secondary colony-forming unit-granulocyte macrophage (CFU-GM) assays. To determine a possible correlation between the mobilization of CPCs and reactive oxygen species, parameters for oxidative stress such as malondialdehyde (MDA) and myeloperoxidase (MPO) were obtained. Data showed a significant increase of CPC release under normoxic as well as hypoxic conditions after 10 min of recovery (P<0.01). Most interestingly, although CD34+/CD45dim cells increased in number, the proliferative capacity of CPCs decreased significantly 10 min after cessation of exercise (P<0.05). A positive correlation between CPCs and MDA/MPO levels turned out to be significant for both normoxic and hypoxic conditions (P<0.05/P<0.01). Hypoxia did not provoke an additional effect. Although the CPC frequency increased, the functionality of CPCs decreased significantly after exercise, possibly due to the influence of increased oxidative stress levels.
Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S
2012-10-01
The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.
Barranco, Tomas; Tvarijonaviciute, Asta; Tecles, Fernando; Carrillo, Jose M; Sánchez-Resalt, Cristina; Jimenez-Reyes, Pedro; Rubio, Monica; García-Balletbó, Monserrat; Cerón, Jose J; Cugat, Ramon
2018-06-01
The aim of this study was to evaluate changes in the enzymes creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) in saliva before and after an intense exercise consisting of a futsal match. CK, LDH and AST were analyzed in saliva and serum samples of eleven, injury-free, amateur young men before and 30 minutes, 12 hours and 36 hours after a futsal match. A significant increase in CK, LDH and AST was observed after the game in serum samples. In saliva, although a high interindividual variability was found with some individuals no showing increases, significant increases in CK and LDH were observed after the game. No significant changes were observed in saliva AST after the game. Our study showed for first time that CK and LDH can increase in saliva after an intensive exercise consisting on a futsal match. Results suggest that measurements of CK and LDH in saliva could be potentially used to evaluate possible muscle stress or damage in cases of intensive exercise.
Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.
Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H
2014-01-01
To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).
Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice
Lau, Daphne S.; Connaty, Alex D.; Mahalingam, Sajeni; Wall, Nastashya; Cheviron, Zachary A.; Storz, Jay F.; Scott, Graham R.
2017-01-01
The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice (Peromyscus maniculatus) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1) fuel use during exercise, 2) metabolic enzyme activities, and 3) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise. PMID:28077391
Lee, Jung Bok; Choi, So Young
2015-10-01
The purpose of this study was to investigate the effects of pelvic floor muscle exercise using electric stimulation and biofeedback on maximum pressure of vaginal contraction, vaginal contraction duration and sexual function in women who have had vaginal rejuvenation. The research design was a non-equivalent control group non-synchronized design study. Participants in this study were women who had vaginal rejuvenation at C obstetrics and gynecology hospital. The 15 participants in the experimental group were given pelvic floor muscle exercise using electric stimulation and biofeedback and the 15 participants in the control group received self pelvic floor muscle exercise. For maximum pressure of vaginal contraction, the experimental group showed a statistically significant increase compared to than the control group (t=5.96, p<.001). For vaginal contraction duration, the experimental group also showed a statistically significant increase compared to the control group (t=3.23, p=.003). For women's sexual function, the experimental group showed a significant increase when compared to the control group in total sexual function scores (t=3.41, p=.002). The results indicate that pelvic floor muscle exercise with electric stimulation and biofeedback after vaginal rejuvenation is effective in strengthening vaginal contraction pressure, vaginal contraction and that it also positively functions to increase women's sexual function.
Angın, Ender; Erden, Zafer; Can, Filiz
2015-01-01
The aim of this study was to investigate effects of Clinical Pilates Exercises on bone mineral density (BMD), physical performance and quality of life (QOL) in postmenopausal osteoporosis. Forty-one women were recruited to the study. The subjects were divided into two groups, as the Pilates group and the control group. Subjects were evaluated for BMD at the lumbar region. Physical performance level was measured. Pain intensity level was scored with Visual Analogue Scale. QUALEFFO-41 was used for assessing QOL. BMD values increased in the Pilates group (p < 0.05), while BMD decreased in the control group (p< 0.05). Physical performance test results showed significant increases in the Pilates group (p< 0.05) whereas there was no changes in the control group (p> 0.05). Pain intensity level in the Pilates group was significantly decreased after the exercise (p< 0.05), while it was unchanged in the control group. There were significant increases in all parameters of QOL in the Pilates group. Conversely, some parameters of QOL showed decreases in the control group (p< 0.05). Pilates Exercises is effective to increase BMD; QOL and walking distance and also beneficial to relieve pain. Physiotherapist can use Pilates Exercises for the subjects with osteoporosis in the clinics.
Effects of elastic band exercises on physical ability and muscular topography of elderlyfemales.
Lee, Jung Won; Kim, Suk Bum; Kim, Seong Wook
2018-02-01
[Purpose] This study examined the effects of band exercise types on the physical ability and muscular topography for elderly females. [Subjects and Methods] Twenty-six females older than 65 years were divided into the dynamic band exercise (DBE; n=13) group and the Static band exercise (SBE; n=13) group. Each participant performed 12 weeks of elastic band exercises. Physical abilities were measured by leg extension power, sitting trunk flexion, closed eyes foot balance, and time to get up. Changes in muscle topography were evaluated with Moire measurement equipment for the chest, abdomen, and lumbar region. All results were compared before and after 12 weeks of exercise. [Results] Changes in physical ability were significantly increased in both groups. The scores for the muscular topography of the chest, abdomen, lumbar region, and all body parts was significantly improved in both groups for closed eyes foot balance. There were more improvements in the DBE group. [Conclusion] Two types of static and dynamic elastic band exercises effectively changed the physical fitness and muscle topography of elderly females. Therefore, to increase the effects of exercise, dynamic band exercises are considered useful. Because band exercises are simple, they can be used to maintain the health of elderly people.
Arazi, Hamid; Simaei, Esmat; Taati, Behzad
2016-10-01
Smoking is known as a serious global public health problem, and is also an important risk factor for oral diseases and cause of oxidative stress and cellular damage. Saliva is the first biological medium encountered during inhalation of cigarette smoke. Additionally, previous studies demonstrated that exhaustive aerobic exercise could increase oxidative stress and cellular damage. Therefore, the main aim of this study was to compare the response of salivary antioxidants (peroxides (POX), uric acid (UA), 1-1dipheny l-2-picrylhydrazyl hydrate (DPPH) of exhaustive aerobic exercise between healthy smoker and non-smoker young girls. Ten smokers and 10 non-smokers were enrolled for this study. Subjects performed a progressive cycle ergometer with an initial load of 50 W that was increased 50Wevery 3 minutes at the speed of 60rpm, until exhaustion. Un-stimulated saliva samples were collected before, immediately and 1 hour after exercise. The results showed that POX activity and UA concentration significantly increased immediately after exercise in both groups when compared to the pre exercise values (P<0.01). The level of salivary POX of non-smokers were greater than smokers immediately after exercise (P<0.01). Aerobic exercise caused a decrease in salivary DPPH activity immediately and 1 h after exercise in both groups (P<0.01). When the DPPH values were compared between smoker and non-smoker subjects, a significant decrease was observed in smokers immediately and 1 h after exercise (P<0.01). In conclusion, aerobic exercise was induced oxidative stress in both groups but oxidative stress in smoking females was greater.
Valim, Valéria; Natour, Jamil; Xiao, Yangming; Pereira, Abraão Ferraz Alves; Lopes, Beatriz Baptista da Cunha; Pollak, Daniel Feldman; Zandonade, Eliana; Russell, Irwin Jon
2013-01-01
To evaluate the effects of aerobic training and stretching on serum levels of serotonin (5HT) and its main metabolite 5-hydroxindolacetic acid (5HIAA). Twenty-two women with FM were randomized into one of two exercise modalities (aerobic walking exercise or stretching exercise) to be accomplished three times a week for 20 weeks. The serum levels of 5HT and 5HIAA were evaluated before and after the exercise program by high performance liquid chromatography (HPLC) with colorimetric detection. Within group analysis (pre-post) showed that serum levels of both 5HT and 5HIAA changed significantly in the aerobic group during the 20-week course of therapy (5HT: P = 0,03; 5HIAA: P = 0,003). In the stretching group, however, no statistically significant change was observed (5HT: P=0,491; 5HIAA: P=0,549). Between group statistical comparisons of laboratory measures disclosed that aerobic training was superior to stretching in that it significantly increased the levels of 5HIAA (F test = 6.61; P = 0.01), but the average difference between groups on the levels of 5HT did not meet significance criteria (F test = 3.42; P = 0.08). Aerobic training increases the 5HIAA and 5HT levels and it could explain why aerobic exercise can improve symptoms in fibromyalgia syndrome patient more than stretching exercise.
Exercise enhances creativity independently of mood
Steinberg, Hannah; Sykes, Elizabeth A; Moss, Tim; Lowery, Susan; LeBoutillier, Nick; Dewey, Alison
1997-01-01
Objectives It has been widely accepted in the literature that various forms of physical exercise, even in a single session, enhance positive mood. It has also been shown that physical exercise may sometimes enhance creative thinking, but the evidence is inconclusive. Positive moods can favour creative thinking, but the opposite has also been reported and these relations are unclear. There is a large anecdotal literature suggesting that creative people sometimes use bodily movement to help overcome “blocks”. The aim of this study was to establish whether post-exercise creative thinking was attributable to improved mood. Methods The responses of 63 participants to an exercise (aerobic workout or aerobic dance) and a “neutral” video watching condition were compared. Mood was measured using an adjective list, and creative thinking was tested by three measures of the Torrance test. Results Analysis of variance showed a large and significant increase in positive mood after exercise (P<0.001) and a significant decrease in positive mood after video watching (P<0.001). A significant increase between the creative thinking scores of the two conditions was found on the flexibility (variety of responses) measure (P<0.05). A multifactorial analysis of all data failed to show a significant covariance of creative thinking with the two measures of mood (P>0.05). Conclusions These results suggest that mood and creativity were improved by physical exercise independently of each other. ImagesFigure 1Figure 2 PMID:9298561
One arm exercise induces significant interarm diastolic blood pressure difference.
Hong, Dezhi; Wang, Jiwei; Su, Hai; Xu, Jingsong; Liu, Yanna; Peng, Qiang; Wang, Lijuan
2011-06-01
This study is designed to investigate the inducing effect of one arm exercise on interarm difference (IAD) in the blood pressure (BP). Fifty healthy young participants were included in the study. Three-minute exercises of the right arm elbow flexion and extension were performed. The bilateral brachial BP was simultaneously measured with two automatic BP measurement devices before (basic) and immediately 0, 5, 10, 15, 20, and 30 min after exercise. The absolute difference in the systolic BP (SBP) and diastolic BP (DBP) between the left and right BP of at least 10 mmHg was recognized as sIAD and dIAD. The baseline data of the SBP and DBP in left and right arms revealed no significant difference (SBP: 110 ± 10 vs. 111 ± 11 mmHg; DBP: 66 ± 8 vs. 66 ± 9 mmHg, both not significant). The prevalence of dIAD was 2% at the baseline. However, this prevalence increased to 80% at 0 min, as right arm exercise induced the right DBP decrease and left DBP increase, and then the prevalence decreased gradually within a 30-min recovery period. The prevalence of sIAD was zero at the baseline and the maximal prevalence was 8% during the 20-min postexercise period. One arm exercise can lead to a significant IAD in DBP. Any arm exercise should be avoided before BP measurement.
Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig
2014-01-01
Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.
Lee, Dong-Rour; Kim, Laurentius Jongsoon
2016-08-01
Many studies have explored closed kinetic chain (CKC) shoulder exercises (SEs) with a sling because they are safer and more effective than open-chain exercises, especially in early stages of treatment. However, the application of CKC SE in youth baseball players has rarely been attempted, although teenage baseball players also experience shoulder pain. To investigate the effects of CKC SE on the peak torque of shoulder internal rotation (IR) and external rotation (ER) in youth baseball players. Single-group pretest, posttest. Biomechanics laboratory. 23 Little League Baseball players with subacromial impingement syndrome. The CKC SE with a sling was CKC shoulder-flexion exercise, extension exercise, IR exercise, and ER exercise. This exercise regimen was conducted 2 or 3 times/wk for 8 wk. The peak torque of shoulder IR and ER was measured using an isokinetic dynamometer. Concentric shoulder rotation was performed, with 5 repetitions at an angular velocity of 60°/s and 15 at 180°/s. The IR and ER peak torque significantly increased at each angular velocity after the exercise program. In particular, the increase in IR and ER peak torque values was statistically significant at an angular velocity of 180°/s. CKC SE was effective in increasing shoulder IR and ER strength, demonstrating its potential benefits in the prevention and treatment of shoulder injury. In addition, increased IR peak torque appears to improve throwing velocity in baseball players.
Intestinal fatty acid-binding protein and gut permeability responses to exercise.
March, Daniel S; Marchbank, Tania; Playford, Raymond J; Jones, Arwel W; Thatcher, Rhys; Davison, Glen
2017-05-01
Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. Two-way repeated measures ANOVA revealed an arm × time interaction for L/R and I-FABP (P < 0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P < 0.001) and Col (148% of pre, P < 0.001) with post-exercise values significantly lower with Col (P < 0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P = 0.002) but not in the Col arm (107%, P = 0.862) with post-exercise values significantly lower with Col (P = 0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P = 0.044) but not visit two (P = 0.200) although overall plots/patterns do appear similar for each. These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute.
Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P
2018-05-01
We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Done, Aaron J; Traustadóttir, Tinna
2016-12-01
Older individuals who exercise regularly exhibit greater resistance to oxidative stress than their sedentary peers, suggesting that exercise can modify age-associated loss of resistance to oxidative stress. However, we recently demonstrated that a single bout of exercise confers protection against a subsequent oxidative challenge in young, but not older adults. We therefore hypothesized that repeated bouts of exercise would be needed to increase resistance to an oxidative challenge in sedentary older middle-aged adults. Sedentary older middle-aged men and women (50-63 years, n = 11) participated in an 8-week exercise intervention. Maximal oxygen consumption was measured before and after the intervention. The exercise intervention consisted of three sessions per week, for 45 min at an intensity corresponding to 70-85 % maximal heart rate (HR max ). Resistance to oxidative stress was measured by F 2 -isoprostane response to a forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial before and after the exercise intervention. The intervention elicited a significant increase in maximal oxygen consumption (VO 2max ) (P < 0.0001). Baseline levels of F 2 -isoprostanes pre- and post-intervention did not differ, but the F 2 -isoprostane response to the I/R trial was significantly lower following the exercise intervention (time-by-trial interaction, P = 0.043). Individual improvements in aerobic fitness were associated with greater improvements in the F 2 -isoprostane response (r = -0.761, P = 0.011), further supporting the role of aerobic fitness in resistance to oxidative stress. These data demonstrate that regular exercise with improved fitness leads to increased resistance to oxidative stress in older middle-aged adults and that this measure is modifiable in previously sedentary individuals.
Spin exercise improves semantic fluency in previously sedentary older adults.
Nocera, Joe R; McGregor, Keith M; Hass, Chris J; Crosson, Bruce
2015-01-01
Studies suggest improvements of neurocognitive function among older adults who undergo aerobic exercise training. This study sought to examine the impact of an aerobic exercise intervention on verbal fluency in sedentary older adults. Twenty community-dwelling older adults were recruited and enrolled in either a spin exercise group or a control condition. Participants were evaluated with an estimated V02max test and on measures of letter, category, and switching verbal fluency both before and after a 12-week intervention period. Spin exercise resulted in a significant improvement in category (semantic) verbal fluency when compared with the control group (15% vs. 2% increase, respectively; P = .001). Spin exercise also resulted in a significant improvement in estimated V02max (P = .005). Also important, the spin exercise group demonstrated a high level of adherence (mean adherence = 82.5%). Spin exercise can be an effective mode of aerobic exercise to improve semantic fluency in previously sedentary older adults.
Odje, O E; Ramsey, J M
1995-01-01
The literature on the response of erythrocyte 2,3-diphosphoglycerate (2,3-DPG) following exercise is replete with inconsistencies, and recent studies have shown that the time of blood sampling during and following exercise, as well as the duration of exercise, are important in evaluating the response of 2,3-DPG. Experiments were designed to measure the response of 2,3-DPG following short-term strenuous exercise in two groups of untrained men. Twelve men, 19-22 years old (study 1), exercised on a bicycle ergometer at 122.5 W for 10 min and red blood cell (RBC) 2,3-DPG was measured at 0 and 50 min following exercise. The level of 2,3-DPG (mumol.ml-1 RBC) increased after exercise (P < 0.05), but this increase was not significant when 2,3-DPG was expressed as mol.mol-1 hemoglobin (Hb). However, following 50 min of rest, 2,3-DPG (mol.mol-1 Hb) decreased significantly. In a second group (study 2), nine other men, aged 18-19 years, exercised at the same workload for 15 min and 2,3-DPG was measured at 0, 30, 60, 180, and 330 min respectively after exercise, and no significant mean changes in the level of the phosphate were observed. Findings from these studies suggest that 2,3-DPG does not provide a compensatory adjustment to facilitate oxygen delivery in the hypoxia of short-term strenuous exercise in untrained males immediately following exercise and when recovery intervals of up to 330 min are also examined. It is suggested that 2,3-DPG be reported as mol.mol-1 Hb, since the phosphate exists on Hb in an equimolar ratio in normal physiological states.
A repeated measures experiment of green exercise to improve self-esteem in UK school children.
Reed, Katharine; Wood, Carly; Barton, Jo; Pretty, Jules N; Cohen, Daniel; Sandercock, Gavin R H
2013-01-01
Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called 'green exercise' affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = -0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = -0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise.
Muscular exercise can cause highly pathological liver function tests in healthy men
Pettersson, Jonas; Hindorf, Ulf; Persson, Paula; Bengtsson, Thomas; Malmqvist, Ulf; Werkström, Viktoria; Ekelund, Mats
2008-01-01
Aim To investigate the effect of intensive muscular exercise (weightlifting) on clinical chemistry parameters reflecting liver function in healthy men. Methods Fifteen healthy men, used to moderate physical activity not including weightlifting, performed an 1 h long weightlifting programme. Blood was sampled for clinical chemistry parameters [aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LD), gamma-glutamyl transferase (γGT), alkaline phosphatase (ALP), bilirubin, creatine kinase (CK) and myoglobin] at repeated intervals during 7 days postexercise and at a follow-up examination 10–12 days postexercise. Results Five out of eight studied clinical chemistry parameters (AST, ALT, LD, CK and myoglobin) increased significantly after exercise (P < 0.01) and remained increased for at least 7 days postexercise. Bilirubin, γGT and ALP remained within the normal range. Conclusion The liver function parameters, AST and ALT, were significantly increased for at least 7 days after the exercise. In addition, LD and, in particular, CK and myoglobin showed highly elevated levels. These findings highlight the importance of imposing restrictions on weightlifting prior to and during clinical studies. Intensive muscular exercise, e.g. weightlifting, should also be considered as a cause of asymptomatic elevations of liver function tests in daily clinical practice. What is already known about this subject The occurrence of idiosyncratic drug hepatotoxicity is a major problem in all phases of clinical drug development and the leading cause of postmarketing warnings and withdrawals.Physical exercise can result in transient elevations of liver function tests.There is no consensus in the literature on which forms of exercise may cause changes in liver function tests and to what extent. What this study adds Weightlifting results in profound increases in liver function tests in healthy men used to moderate physical activity, not including weightlifting.Liver function tests are significantly increased for at least 7 days after weightlifting.It is important to impose relevant restrictions on heavy muscular exercise prior to and during clinical studies. PMID:17764474
Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni
2016-09-01
Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.
Muscular exercise can cause highly pathological liver function tests in healthy men.
Pettersson, Jonas; Hindorf, Ulf; Persson, Paula; Bengtsson, Thomas; Malmqvist, Ulf; Werkström, Viktoria; Ekelund, Mats
2008-02-01
The occurrence of idiosyncratic drug hepatotoxicity is a major problem in all phases of clinical drug development and the leading cause of postmarketing warnings and withdrawals. Physical exercise can result in transient elevations of liver function tests. There is no consensus in the literature on which forms of exercise may cause changes in liver function tests and to what extent. Weightlifting results in profound increases in liver function tests in healthy men used to moderate physical activity, not including weightlifting. Liver function tests are significantly increased for at least 7 days after weightlifting. It is important to impose relevant restrictions on heavy muscular exercise prior to and during clinical studies. To investigate the effect of intensive muscular exercise (weightlifting) on clinical chemistry parameters reflecting liver function in healthy men. Fifteen healthy men, used to moderate physical activity not including weightlifting, performed an 1 h long weightlifting programme. Blood was sampled for clinical chemistry parameters [aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LD), gamma-glutamyl transferase (gamma GT), alkaline phosphatase (ALP), bilirubin, creatine kinase (CK) and myoglobin] at repeated intervals during 7 days postexercise and at a follow-up examination 10-12 days postexercise. Five out of eight studied clinical chemistry parameters (AST, ALT, LD, CK and myoglobin) increased significantly after exercise (P < 0.01) and remained increased for at least 7 days postexercise. Bilirubin, gamma GT and ALP remained within the normal range. The liver function parameters, AST and ALT, were significantly increased for at least 7 days after the exercise. In addition, LD and, in particular, CK and myoglobin showed highly elevated levels. These findings highlight the importance of imposing restrictions on weightlifting prior to and during clinical studies. Intensive muscular exercise, e.g. weightlifting, should also be considered as a cause of asymptomatic elevations of liver function tests in daily clinical practice.
Barbalho, Matheus; Gentil, Paulo; Raiol, Rodolfo; Fisher, James; Steele, James; Coswig, Victor
2018-05-15
Barbalho, M, Gentil, P, Raiol, R, Fisher, J, Steele, J, and Coswig, V. Influence of adding single-joint exercise to a multijoint resistance training program in untrained young women. J Strength Cond Res XX(X): 000-000, 2018-The aim of the present study was to investigate the effects of adding single-joint (SJ) exercises to a multijoint (MJ) resistance training (RT) program on muscle strength and anthropometric measures of young women. Twenty untrained women were divided into a group that performed only MJ exercises or a group that performed both SJ and MJ exercises (MJ + SJ). Before and after 8 weeks of training, the participants were tested for 10 repetition maximum (10RM). Flexed arm circumference and triceps and biceps skinfold thickness were also measured. Both groups significantly decreased biceps (-3.60% for MJ and -3.55% for MJ + SJ) and triceps skinfold (-3.05% for MJ and -2.98% for MJ + SJ), with no significant difference between them. Flexed arm circumference significantly increased in both groups; however, increases in MJ + SJ (4.39%) were significantly greater than MJ (3.50%). Increases in 10RM load in elbow extension (28.2% for MJ and 28.0% for MJ + SJ), elbow flexion (29.8% for MJ and 28.7% for MJ + SJ), and knee extension (26.92% for MJ and 23.86% for MJ + SJ) were all significant and not different between groups. The results showed that adding SJ exercises to an MJ RT program resulted in no benefits in muscle performance or anthropometric changes in untrained women.
The Pro- and Anti-Inflammatory Cytokine Response to Exercise in Adolescent Swimmers
Wilson, Lori D.; Zaldivar, Frank P.; Schwindt, Christina D.; Cooper, Dan M.
2014-01-01
Objective Whether or not individuals with allergy and asthma experience different patterns of change in the balance of both pro- and anti-inflammatory mediators with acute exercise is not known. We hypothesized that adolescent swimmers with a clinical diagnosis of respiratory allergy would have an exaggerated proinflammatory response to laboratory exercise relative to a no-allergy comparison group. Methods Adolescent swimmers (17 with clinical symptoms of respiratory allergy (CSRA) and 17 in comparison group) completed the American Thoracic Society (ATS) exercise challenge on cycle ergometer. Blood was collected at baseline and immediately post-exercise. All study tests were conducted at the Institute for Clinical Translational Science at the University of California, Irvine. Circulating cytokines, growth factors, and adhesion molecules were measured using ELISAs including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), IL-6, IL-10, P-selectin, and immunoglobulin E (IgE). Results There was a trend toward higher resting levels of TNF-α in the CSRA group (P = 0.076). Exercise induced a significant increase in P-selectin and TGF-β1 in both groups. TNF-α increased significantly (17%) in the comparison group (pre = 0.6, post = 0.7 pg/mL), but not in the CSRA group. IL-6 increased significantly in the CSRA group (pre = 0.7, post = 0.8 pg/mL), but not in the comparison group. Circulating levels of IL-4 and IL-10 were not altered immediately post-exercise in either group. Conclusions A short bout of intense exercise increased inflammatory growth factors and adhesion molecules, namely TGF-β1 and P-selectin, both of which are known to be involved in allergic airway diseases. Differences in resting IL-6 and TNF-α and exercise alterations in these cytokines may also contribute to allergic disease in adolescent elite swimmers. PMID:25414542
Physical Exercise Promotes Recovery of Neurological Function after Ischemic Stroke in Rats
Zheng, Hai-Qing; Zhang, Li-Ying; Luo, Jing; Li, Li-Li; Li, Menglin; Zhang, Qingjie; Hu, Xi-Quan
2014-01-01
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway. PMID:24945308
[Aquatic exercise in the treatment of children with cerebral palsy].
Dimitrijević, Lidija; Bjelaković, Bojko; Lazović, Milica; Stanković, Ivona; Čolović, Hristina; Kocić, Mirjana; Zlatanović, Dragan
2012-01-01
Aquatic exercise is one of the most popular supplementary treatments for children with neuro-motor impairment, especially for cerebral palsy (CP). As water reduces gravity force which increases postural stability, a child with CP exercises more easily in water than on land. The aim of the study was to examine aquatic exercise effects on gross motor functioning, muscle tone and cardiorespiratory endurance in children with spastic CP. The study included 19 children of both sexes, aged 6 to 12 years, with spastic CP. They were included in a 12-week aquatic exercise program, twice a week. Measurements of GMFM (gross motor function measurement), spasticity (MAS-Modified Ashworth Scale), heart rate (HR) and maximal oxygen consumption (VO2max) were carried out before and after treatment. The measurement results were compared before and after treatment. GMFM mean value before therapy was 80.2% and statistically it was significantly lower in comparison to the same value after therapy, which was 86.2% (p < 0.05). The level of spasticity was considerably decreased after therapy; the mean value before treatment was 3.21 according to MAS, and after treatment it was 1.95 (p < 0.001). After treatment there was a statistically significant improvement of cardiorespiratory indurance, i.e., there was a significant decrease in the mean value of HR and a significant increase of VO2max (p < 0.001). Aquatic exercise program can be useful in improving gross motor functioning, reducing spasticity and increasing cardiorespiratory endurance in children with spastic CP.
Hypothalamic, rectal, and muscle temperatures in exercising dogs - Effect of cooling
NASA Technical Reports Server (NTRS)
Kruk, B.; Kaciuba-Uscilko, H.; Nazar, K.; Greenleaf, J. E.; Kozlowski, S.
1985-01-01
An experimental investigation of the mechanisms of performance prolongation during exercise is presented. Measurements were obtained of the rectal, muscle, and hypothalamic temperature of dogs during treadmill exercise at an ambient temperature of 22 + or - 1 C, with and without cooling by use of ice packs. In comparison with exercise without cooling, exercise with cooling was found to: (1) increase exercise duration from 90 + or - 14 to 145 + or - 15 min; (2) attenuate increases in hypothalamic, rectal and muscle temperature; (3) decrease respiratory and heart rates; and (4) lower blood lactic acid content. It is shown that although significant differences were found between the brain, core, and muscle temperatures during exercise with and without cooling, an inverse relation was observed between muscle temperature and the total duration of exercise. It is suggested that sustained muscle hyperthermia may have contributed to the limitation of working ability in exercise with and without cooling.
Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women.
Schoene, R B; Robertson, H T; Pierson, D J; Peterson, A P
1981-06-01
To investigate the influence of the midluteal and midfollicular phases of the menstrual cycle on exercise performance and ventilatory drives, we studied six outstanding female athletes, six controls with normal menstrual cycles, and six outstanding athletes who were amenorrheic. In all menstruating subjects resting minute ventilation (Ve) and mouth occlusion pressures (P0.1) were higher in the luteal phase (p less than k0.0001 and p less than 0.02, respectively),. Hypoxic (expressed as the hyperbolic shape parameter A) and hypercapnic (expressed as S, deltaVE/delta PAco2) ventilatory responses were increase in the luteal phase (p less than 0.01). The athletes had lower A values during the luteal phase than the nonathletes (p less than 0.001). Maximal exercise response, expressed either as total exercise time or maximum O2 consumption or CO2 production (VO2 max or Vco2 max) was decreased during the luteal phase but was significantly different at a p less than 0.05 level only among the nonathletes. Ventilatory equivalent (VE/VO2) during progressive exercise on a bicycle ergometer was significantly increased during the luteal phase. The amenorrheic athletes showed no changes between the two test periods. The luteal phase of the menstrual cycle induced increases in ventilatory drives and exercise ventilation in both athletes and controls, but the athletes, in contrast to controls, demonstrated no significant decrease in exercise performance in the luteal phase.
Effect of a lateral step-up exercise protocol on quadriceps and lower extremity performance.
Worrell, T W; Borchert, B; Erner, K; Fritz, J; Leerar, P
1993-12-01
Closed kinetic chain exercises have been promoted as more functional and more appropriate than open kinetic chain exercises. Limited research exists demonstrating the effect of closed kinetic chain exercise on quadriceps and lower extremity performance. The purpose of this study was to determine the effect of a lateral step-up exercise protocol on isokinetic quadriceps peak torque and the following lower extremity activities: 1) leg press, 2) maximal step-up repetitions with body weight plus 25%, 3) hop for distance, and 4) 6-m timed hop. Twenty subjects participated in a 4-week training period, and 18 subjects served as controls. For the experimental group, a repeated measure ANOVA comparing pretest and posttest values revealed significant improvements in the leg press (p < or = .05), step-ups (p < or = .05), hop for distance (p < or = .05), and hop for time (p < or = .05) and no significant increase in isokinetic quadriceps peak torque (p > or = .05). Over the course of the training period, weight used for the step-up exercise increased (p < or = .05), repetitions decreased (p < or = .05), and step-up work did not change (p > or = .05). For the control group, no significant change (p > or = .05) occurred in any variable. The inability of the isokinetic dynamometer to detect increases in quadriceps performance is important because the isokinetic values are frequently used as criteria for return to functional activities. We conclude that closed kinetic chain testing and exercise provide additional means to assess and rehabilitate the lower extremity.
Text messaging improves preoperative exercise in patients undergoing bariatric surgery.
Lemanu, Daniel P; Singh, Primal P; Shao, Robert Y; Pollock, Terina T; MacCormick, Andrew D; Arroll, Bruce; Hill, Andrew G
2018-06-25
To investigate whether a text message intervention improves adherence to preoperative exercise advice prior to laparoscopic sleeve gastrectomy (LSG). A single-blinded parallel design 1:1 ratio randomized controlled trial was performed in patients undergoing LSG as a single-stage bariatric procedure for morbid obesity. The intervention group received preoperative daily text messages. The primary outcome was adherence to preoperative exercise advice as assessed by the number of participants partaking in ≥450 metabolic equivalent minutes (METmin -1 ) exercise activity per week preoperatively. Eighty-eight patients were included in the analysis with 44 allocated to each arm. Adherence and exercise activity increased significantly from baseline in the exposure group (EG) but not in the control group (CG). Adherence was significantly higher in the EG at the end of the intervention period compared to the CG. Despite increased exercise activity, there was no improvement in 6-min walk test or surgical recovery. A daily text message intervention improved adherence to preoperative exercise advice, but this did not correlate with improved surgical recovery. © 2018 Royal Australasian College of Surgeons.
NASA Technical Reports Server (NTRS)
Kaciuba-Uscilko, Hanna; Brzezinska, Zofia; Greenleaf, John E.
1976-01-01
Effects of thyroxine on temperature and metabolism during exercise were studied in dogs after beta-adrenergic blockade. Dogs performed 60 min treadmill exercise of moderate intensity 5 and 72 h following thyroxine injected s. c. in a single dose of 0.1 mg/kg b.w. Thyroxine increased significantly the lipolytic response to exercise as well as blood lactate (LA) concentrations and rectal temperature (T(sub re)) during exercise as early as 5 h following the hormone administration. The changes became more pronounced 72 h after the injection. At rest T(sub re), blood FFA (free fatty acid) and LA levels in the thyroxine-treated dogs did not differ from the control values, and blood glucose was slightly, but significantly higher. Propranolol given intravenously in a dose of 0.25 mg/kg at 30 min of the exercise performed 72 h following thyroxine injection abolished the plasma FFA rise, and inhibited to a certain extent increases in T(sub re) and blood LA concentrations during the next 30 min of exercise.
Task-induced activation and hemispheric dominance in cerebral circulation during gum chewing.
Ono, T; Hasegawa, Y; Hori, K; Nokubi, T; Hamasaki, T
2007-10-01
In elderly persons, it is thought that maintenance of masticatory function may have a beneficial effect on maintenance of cerebral function. However, few studies on cerebral circulation during mastication exist. This study aimed to verify a possible increase in cerebral circulation and the presence of cerebral hemispheric dominance during gum chewing. Twelve healthy, young right-handed subjects with normal dentition were enrolled. Bilateral middle cerebral arterial blood flow velocities (MCAV), heart rate, and arterial carbon dioxide levels were measured during a handgrip exercise and gum chewing. During gum chewing, electromyography of the bilateral masseter muscle was recorded.MCAV and heart rate significantly increased during exercise compared to values at rest. During gum chewing, there were no differences in the rate of increase in MCAV between the working and non-working sides, but during the handgrip exercise, the rate of increase in MCAV was significantly greater for the non-working side than for the working side. During gum chewing,muscle activity on the working side was significantly greater than that on the non-working side. These results suggest that during gum chewing, cerebral circulation increases bilaterally and does not show contralateral dominance, as it does during the handgrip exercise.
Willoughby, Darryn S.; Taylor, Lemuel
2004-01-01
The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key Points Eccentric muscle actions do not preferentially increase serum myostatin. Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG. Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol. PMID:24624007
Mood and selective attention in the cold: the effect of interval versus continuous exercise.
Muller, Matthew D; Muller, Sarah M; Kim, Chul-Ho; Ryan, Edward J; Gunstad, John; Glickman, Ellen L
2011-07-01
Both mood and cognitive function are altered in cold environments. Body warming through exercise may improve Stroop interference score and lessen total negative mood. The purpose of this study was to determine the effect of equal caloric bouts of interval (INT) and continuous (CONT) exercise on mood and selective attention in the cold. Eleven young men underwent two experimental trials in 5°C air. Both trials consisted of 90 min acute cold exposure (ACE), 30 min exercise (INT vs. CONT), and 60 min recovery (REC). The Profile of Mood States (POMS) and Stroop Color Word Test (SCWT) were administered at four time points. Mean body temperature decreased during ACE, increased during exercise, and decreased during REC. Repeated measures analysis of variance revealed a main effect for time for several of the POMS sub scores. In particular, negative mood was significantly decreased after exercise relative to ACE and then significantly increased during REC. Further, CONT appears to be more effective than INT at decreasing negative mood. Components of the SCWT supported both the arousal and distraction theories for simple perception, but no significant effects were shown for the interference score. In the cold, exercise decreases negative mood but does not appear to affect selective attention. Further mechanistic studies could determine the best mode and intensity of exercise for improving cognitive function in the cold.
Więcek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Wiecha, Szczepan; Kantorowicz, Malgorzata; Szygula, Zbigniew
2017-01-01
Oxidative stress could be the result of an increase in ATP resynthesis during exercise. The aim of the study was to compare prooxidant-antioxidant balance (PAB) disturbances induced by exercise at maximal intensity in young men with differing body compositions. Thirty-nine subjects were selected from 1549 volunteers aged 18-30, based on lean body mass (LBM) and body fat percentage (%BF), and then assigned into one of the following groups: control group (CON), including subjects with average LBM (59.0-64.3 kg) and average %BF (14.0-18.5%); high body fat (HBF) group, including subjects with high %BF (>21.5%) and average LBM; and high lean body mass (HLBM) group, including subjects with high LBM (>66.3 kg) and average %BF. Participants' physical activity was determined. A running test with a gradually increased load was used. Before and 3 minutes after exercise, total oxidative status (TOS) and total antioxidant capacity (TAC) were determined in the plasma, and the Oxidative Stress Index (OSI = TOS/TAC) was calculated. Maximal oxygen uptake (VO2max) was comparable in the HBF and HLBM groups (53.12±1.51 mL/kg and 50.25±1.27 mL/kg, respectively) and significantly lower compared to the CON group (58.23±1.62 mL/kg). The CON, HBF and HLBM groups showed similar significant (P<0.05) increases in TOS levels (36%, 35% and 31%, respectively). Post-exercise TAC increased by 8% in the HBF and HLBM groups (P<0.05), compared to the 3% increase in the CON group (P>0.05). There was significant negative correlation between OSI, measured before and after exercise, and participants' physical activity. There was no correlation between OSI and VO2max, BM, LBM, %BF and BMI. Exercise at maximal intensity causes a similar increase in TOS and in TAC in subjects with increased %BF and elevated content of LBM and regardless of body composition, the ratios of TOS/TAC concentrations before and after maximal-intensity exercise, have lower values in people with higher physical activity levels and are not dependent on aerobic performance (VO2max).
Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho
2016-01-01
[Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749
Tsuji, Bun; Honda, Yasushi; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi
2012-11-01
Elevation of core temperature leads to increases in ventilation in both resting subjects and those engaged in prolonged exercise. We compared the characteristics of the hyperthermic hyperventilation elicited during passive heating at rest and during prolonged moderate and light exercise. Twelve healthy men performed three trials: a rest trial in which subjects were passively heated using hot-water immersion (41°C) and a water-perfused suit and two exercise trials in which subjects exercised at 25% (light) or 50% (moderate) of peak oxygen uptake in the heat (37°C and 50% relative humidity) after first using water immersion (18°C) to reduce resting esophageal temperature (T(es)). This protocol enabled detection of a T(es) threshold for hyperventilation during the exercise. When minute ventilation (Ve) was expressed as a function of T(es), 9 of the 12 subjects showed T(es) thresholds for hyperventilation in all trials. The T(es) thresholds for increases in Ve during light and moderate exercise (37.1 ± 0.4 and 36.9 ± 0.4°C) were both significantly lower than during rest (38.3 ± 0.6°C), but the T(es) thresholds did not differ between the two exercise intensities. The sensitivity of Ve to increasing T(es) (slope of the T(es)-Ve relation) above the threshold was significantly lower during moderate exercise (8.7 ± 3.5 l · min(-1) · °C(-1)) than during rest (32.5 ± 24.2 l · min(-1) · °C(-1)), but the sensitivity did not differ between light (10.4 ± 13.0 l · min(-1) · °C(-1)) and moderate exercise. These results suggest the core temperature threshold for hyperthermic hyperventilation and the hyperventilatory response to increasing core temperature in passively heated subjects differs from that in exercising subjects, irrespective of whether the exercise is moderate or light.
Villelabeitia-Jaureguizar, Koldobika; Vicente-Campos, Davinia; Berenguel Senen, Alejandro; Verónica Hernández Jiménez, Verónica; Lorena Ruiz Bautista, Lorena; Barrios Garrido-Lestache, María Elvira; López Chicharro, Jose
2018-05-10
Mechanical efficiency (ME) refers to the ability of an individual to transfer energy consumed by external work. A decreased ME, could represent an increased energy cost during exercise and may, therefore, be limited in terms of physical activity. This study aimed to compare the influence of two different exercise protocols: moderate continuous training (MCT) versus high intensity interval training (HIIT), as part of a cardiac rehabilitation program on ME values among coronary patients. 110 coronary patients were assigned to either HIIT or MCT groups for 8 weeks. Incremental exercise tests in a cycle ergometer were performed to obtain VO₂peak. Net energy expenditure (EE) and ME were obtained at intensities corresponding to the first (VT₁) and second (VT₂) ventilatory thresholds, and at VO₂peak. Both exercise programs significantly increase VO₂peak with a higher increase in the HIIT group (2.96 ± 2.33 mL/kg/min vs. 3.88 ± 2.40 mL/kg/min, for patients of the MCT and HIIT groups respectively, p < 0.001). The ME at VO₂peak and VT₂ only significantly increased in the HIIT group. At VT₁, ME significantly increased in both groups, with a greater increase in the HIIT group (2.20 ± 6.25% vs. 5.52 ± 5.53%, for patients of the MCT and HIIT groups respectively, p < 0.001). The application of HIIT to patients with chronic ischemic heart disease of low risk resulted in a greater improvement in VO₂peak and in ME at VT₁, than when MCT was applied. Moreover, only the application of HIIT brought about a significant increase in ME at VT₂ and at VO₂peak.
Dantas, Wagner Silva; Marcondes, José Antonio Miguel; Shinjo, Samuel Katsuyuki; Perandini, Luiz Augusto; Zambelli, Vanessa Olzon; Neves, Willian Das; Barcellos, Cristiano Roberto Grimaldi; Rocha, Michele Patrocínio; Yance, Viviane Dos Reis Vieira; Pereira, Renato Tavares Dos Santos; Murai, Igor Hisashi; Pinto, Ana Lucia De Sá; Roschel, Hamilton; Gualano, Bruno
2015-11-01
The aim of this study was to examine the effects of acute exercise on insulin signaling in skeletal muscle of women with polycystic ovary syndrome (PCOS) and controls (CTRL). Fifteen women with obesity and PCOS and 12 body mass index-matched CTRL participated in this study. Subjects performed a 40-min single bout of exercise. Muscle biopsies were performed before and 60 min after exercise. Selected proteins were assessed by Western blotting. CTRL, but not PCOS, showed a significant increase in PI3-k p85 and AS160 Thr 642 after a single bout of exercise (P = 0.018 and P = 0.018, respectively). Only PCOS showed an increase in Akt Thr 308 and AMPK phosphorylation after exercise (P = 0.018 and P = 0.018, respectively). Total GLUT4 expression was comparable between groups (P > 0.05). GLUT4 translocation tended to be significantly higher in both groups after exercise (PCOS: P = 0.093; CTRL: P = 0.091), with no significant difference between them (P > 0.05). A single bout of exercise elicited similar GLUT4 translocation in skeletal muscle of PCOS and CTRL, despite a slightly differential pattern of protein phosphorylation. The absence of impairment in GLUT4 translocation suggests that PCOS patients with obesity and insulin resistance may benefit from exercise training. © 2015 The Obesity Society.
Matsumura, Melissa D; Zavorsky, Gerald S; Smoliga, James M
2015-06-01
Ginger possesses analgesic and pharmacological properties mimicking non-steroidal antiinflammatory drugs. We aimed to determine if ginger supplementation is efficacious for attenuating muscle damage and delayed onset muscle soreness (DOMS) following high-intensity resistance exercise. Following a 5-day supplementation period of placebo or 4 g ginger (randomized groups), 20 non-weight trained participants performed a high-intensity elbow flexor eccentric exercise protocol to induce muscle damage. Markers associated with muscle damage and DOMS were repeatedly measured before supplementation and for 4 days following the exercise protocol. Repeated measures analysis of variance revealed one repetition maximum lift decreased significantly 24 h post-exercise in both groups (p < 0.005), improved 48 h post-exercise only in the ginger group (p = 0.002), and improved at 72 (p = 0.021) and 96 h (p = 0.044) only in the placebo group. Blood creatine kinase significantly increased for both groups (p = 0.015) but continued to increase only in the ginger group 72 (p = 0.006) and 96 h (p = 0.027) post-exercise. Visual analog scale of pain was significantly elevated following eccentric exercise (p < 0.001) and was not influenced by ginger. In conclusion, 4 g of ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise but does not influence indicators of muscle damage or DOMS. Copyright © 2015 John Wiley & Sons, Ltd.
Zondervan, Daniel K; Friedman, Nizan; Chang, Enoch; Zhao, Xing; Augsburger, Renee; Reinkensmeyer, David J; Cramer, Steven C
2016-01-01
Individuals with chronic stroke have limited options for hand rehabilitation at home. Here, we sought to determine the feasibility and efficacy of home-based MusicGlove therapy. Seventeen participants with moderate hand impairment in the chronic phase of stroke were randomized to 3 wk of home-based exercise with either the MusicGlove or conventional tabletop exercises. The primary outcome measure was the change in the Box and Blocks test score from baseline to 1 mo posttreatment. Both groups significantly improved their Box and Blocks test score, but no significant difference was found between groups. The MusicGlove group did exhibit significantly greater improvements than the conventional exercise group in motor activity log quality of movement and amount of use scores 1 mo posttherapy (p = 0.007 and p = 0.04, respectively). Participants significantly increased their use of MusicGlove over time, completing 466 gripping movements per day on average at study end. MusicGlove therapy was not superior to conventional tabletop exercises for the primary end point but was nevertheless feasible and led to a significantly greater increase in self-reported functional use and quality of movement of the impaired hand than conventional home exercises. ClinicalTrials.gov; "Influence of Timing on Motor Learning"; NCT01769326; https://clinicaltrials.gov/ct2/show/NCT01769326.
Steeves, Jeremy A; Bassett, David R; Fitzhugh, Eugene C; Raynor, Hollie; Cho, Chi; Thompson, Dixie L
2016-04-01
Physical activity (PA) is enjoyable, but there are barriers to participation. TV viewing is highly enjoyable with limited barriers. Exercising while viewing TV may impact enjoyment, exercise self-efficacy, and barriers to PA, compared with exercising without TV. 58 sedentary, overweight adults were randomized to 1 of 2 PA prescriptions: one that increased PA during TV viewing (TV Commercial Stepping), and another that focused solely on PA (Walking). Random effects models tested changes in enjoyment of TV and PA, exercise self-efficacy, and barriers to PA across time (baseline, 3, and 6 months) and PA prescription during a 6-month PA intervention. At baseline, TV was more enjoyable than PA. Over the 6-month intervention, enjoyment of TV viewing did not change, but enjoyment of PA and exercise self-efficacy significantly increased, while barriers to PA significantly decreased for both groups compared with baseline (P < .05). While enjoyment of TV viewing remained constant, PA became more enjoyable, confidence to exercise increased, and barriers to being active were reduced for previously sedentary adults participating in a behavioral PA intervention. These findings highlight the importance of encouraging inactive adults to engage in some form of PA, whether it occurs with or without TV viewing.
de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A
2005-08-01
We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.
Cesar, Liliana; Suarez, Samuel Vasallo; Adi, Jennipher; Adi, Nikhil; Vazquez-Padron, Roberto; Yu, Hong; Ma, Qi; Goldschmidt-Clermont, Pascal J.; Agatston, Arthur; Kurlansky, Paul; Webster, Keith A.
2011-01-01
Background Diet and exercise promote cardiovascular health but their relative contributions to atherosclerosis are not fully known. The transition from a sedentary to active lifestyle requires increased caloric intake to achieve energy balance. Using atherosclerosis-prone ApoE-null mice we sought to determine whether the benefits of exercise for arterial disease are dependent on the food source of the additional calories. Methods and Results Mice were fed a high-fat diet (HF) for 4.5 months to initiate atherosclerosis after which time half were continued on HF while the other half were switched to a high protein/fish oil diet (HP). Half of each group underwent voluntary running. Food intake, running distance, body weight, lipids, inflammation markers, and atherosclerotic plaque were quantified. Two-way ANOVA tests were used to assess differences and interactions between groups. Exercised mice ran approximately 6-km per day with no difference between groups. Both groups increased food intake during exercise and there was a significant main effect of exercise F((1,44) = 9.86, p<0.01) without interaction. Diet or exercise produced significant independent effects on body weight (diet: F(1,52) = 6.85, p = 0.012; exercise: F(1,52) = 9.52, p<0.01) with no significant interaction. The combination of HP diet and exercise produced a greater decrease in total cholesterol (F(1, 46) = 7.9, p<0.01) and LDL (F(1, 46) = 7.33, p<0.01) with a large effect on the size of the interaction. HP diet and exercise independently reduced TGL and VLDL (p<0.05 and 0.001 respectively). Interleukin 6 and C-reactive protein were highest in the HF-sedentary group and were significantly reduced by exercise only in this group. Plaque accumulation in the aortic arch, a marker of cardiovascular events was reduced by the HP diet and the effect was significantly potentiated by exercise only in this group resulting in significant plaque regression (F1, 49 = 4.77, p<0.05). Conclusion In this model exercise is beneficial to combat dyslipidemia and protect from atherosclerosis only when combined with diet. PMID:21359188
The Relationship of Exercise to Fatigue and Quality of Life in Women With Breast Cancer
1999-08-01
exercise study during the first 3 cycles of chemotherapy. Weight change, body mass index, anorexia, nausea, caloric expenditure during exercise and... caloric expenditure increased, fatigue declined. However, the effects of exercise intensity were only significant for the least fatigue (p=.0402) and...Exercise dose and fatigue 25 Table 7. Least squares means and standard errors for four measures of daily fatigue by caloric expenditure . Caloric
Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content
Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.
2012-01-01
Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309
Eek, Frida; Ostergren, P-O
2009-07-01
On account of the increasing worldwide problems associated with overweight and obesity, the aim of the present study was to examine BMI change over 5 years in relation to different lifestyle-, demographic- and psychosocial work-related factors. A cohort of 9913 persons responded to an identical survey in 2000 and 2005. BMI change over the period was examined in relation to gender, age, educational level, physical activity, job strain, and baseline BMI. Mean BMI as well as prevalence of overweight and obesity increased in the cohort; most among younger persons. In all groups but younger women, BMI increase was greatest in the lowest baseline BMI quartile. Low education was associated with increased BMI at baseline, but not with BMI change over time except among young women. Exercisers had lower BMI than non-exercising persons, and exercise pattern over time was also significantly associated with BMI change. The greatest BMI increase was found among exercise drop-outs, while those who had taken up exercise during the study period were the only group who did not show a significant BMI increase over the study period. Job strain showed inconsistent associations with BMI change. Although socioeconomic differences in BMI were observed, these inequalities did not appear to be increasing, except among young women. Persons with a low initial BMI increased more in weight than persons with a high initial BMI. Exercise behaviour appeared to be an important factor for maintaining, or avoiding heavy increase in, BMI.
Oscillation of tissue oxygen index in non-exercising muscle during exercise.
Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T
2015-09-01
The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.
Leicht, Anthony; Crowther, Robert; Golledge, Jonathan
2015-05-18
This study examined the impact of regular supervised exercise on body fat, assessed via anthropometry, and eating patterns of peripheral arterial disease patients with intermittent claudication (IC). Body fat, eating patterns and walking ability were assessed in 11 healthy adults (Control) and age- and mass-matched IC patients undertaking usual care (n = 10; IC-Con) or supervised exercise (12-months; n = 10; IC-Ex). At entry, all groups exhibited similar body fat and eating patterns. Maximal walking ability was greatest for Control participants and similar for IC-Ex and IC-Con patients. Supervised exercise resulted in significantly greater improvements in maximal walking ability (IC-Ex 148%-170% vs. IC-Con 29%-52%) and smaller increases in body fat (IC-Ex -2.1%-1.4% vs. IC-Con 8.4%-10%). IC-Con patients exhibited significantly greater increases in body fat compared with Control at follow-up (8.4%-10% vs. -0.6%-1.4%). Eating patterns were similar for all groups at follow-up. The current study demonstrated that regular, supervised exercise significantly improved maximal walking ability and minimised increase in body fat amongst IC patients without changes in eating patterns. The study supports the use of supervised exercise to minimize cardiovascular risk amongst IC patients. Further studies are needed to examine the additional value of other lifestyle interventions such as diet modification.
Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M; Abid, Hinnah; Morse, Dawn M; Klaus, Katherine A; Lanza, Ian R
2017-04-01
Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults.
Lalia, Antigoni Z.; Dasari, Surendra; Robinson, Matthew M.; Abid, Hinnah; Morse, Dawn M.; Klaus, Katherine A.; Lanza, Ian R.
2017-01-01
Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults. PMID:28379838
Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.
2014-01-01
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711
Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Yiannaki, Efi; Markala, Dimitra; Papadopoulos, Nikolaos; Triantafyllou, Areti; Anyfanti, Panagiota; Petidis, Konstantinos; Garypidou, Vasileia; Doumas, Michael; Ferro, Albert; Douma, Stella
2014-04-01
Acute exercise may exert deleterious effects on the cardiovascular system through a variety of pathophysiological mechanisms, including increased platelet activation. However, the degree of exercise-induced platelet activation in untreated hypertensive (UH) individuals as compared with normotensive (NT) individuals has yet to be established. Furthermore, the effect of antihypertensive treatment on exercise-induced platelet activation in essential hypertension (EH) remains unknown. Study 1 consisted of 30 UH and 15 NT subjects. UH subjects who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker (ARB; valsartan). Circulating monocyte-platelet aggregates (MPA) and platelet P-selectin were measured as platelet activation markers at baseline, immediately after a treadmill exercise test, and 10, 30, and 90 minutes later. Maximal platelet activation was observed at 10 minutes after peak exercise in both groups. In UH subjects, MPA levels remained increased at 30 minutes after peak exercise, despite BP fall to baseline levels. MPA levels were significantly higher in UH subjects than NT subjects at maximal exercise and at 10 and 30 minutes of recovery. Post-treatment MPA levels increased significantly only at 10 minutes into recovery and were similar to those of NT subjects. Acute high-intensity exercise exaggerates platelet activation in untreated patients with EH compared with NT individuals. Angiotensin II receptor blockade with adequate BP control greatly improves exercise-induced platelet activation in EH. Further studies are needed to clarify whether this phenomenon depends purely on BP lowering or benefits also from the pleiotropic effects of ARBs.
Atar, Murat; Söylemez, Haluk; Oguz, Fatih; Beytur, Ali; Altunoluk, Bülent; Kahraman, Bayram; Islamoglu, Yahya; Soylu, Ahmet
2013-06-01
The aim of this study was to investigate the effects of acute exercise on the diameter of the spermatic vein, and on the duration of reflux in patients with varicocele. The study included 38 patients with complaints of infertility and scrotal pain between 2009 and 2010. The diagnoses were made by physical examination and colour Doppler ultrasound, with both performed before and after exercise tests. The mean age of the participants was 25.7 ± 4.9 years. During the first examination, the grades of the varicoceles detected were as follows: grade I, n = 7; II, n = 10; and III, n = 21. The diameters of veins in patients with grades I, II and III varicocele were 2.1 mm, 2.9 mm and 4.2 mm, respectively, before exercise, whereas they were 2.6 mm, 3.2 mm and 4.3 mm, respectively, after exercise. In patients with grade I varicoceles, compared with pre-exercise values, the diameter of the left spermatic vein and duration of reflux measured during Valsalva manoeuvres were increased significantly after exercise (p = 0.042 and p = 0.034, respectively); similar results were obtained for the patients with grade II varicoceles (p = 0.007 and p = 0.008, respectively). However, the minimal relative increase in cases with grade III varicoceles was not statistically significant (p > 0.05). This study demonstrates that acute exercise increases the spermatic vein diameter and reflux time in patients with varicoceles. These outcomes demonstrate that acute exercise may be an aggravating factor for varicocele, as seen in chronic exercise.
Petidis, Konstantinos; Douma, Stella; Doumas, Michael; Basagiannis, Ilias; Vogiatzis, Konstantinos; Zamboulis, Chrysanthos
2008-01-01
Background Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function. Methods Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A2, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise. Results Our results during exercise showed a) platelet activation (increased thromboxane B2, TXB2), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups). Conclusion Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB2 levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications. PMID:18505546
Zorgati, Houssem; Prieur, Fabrice; Vergniaud, Thomas; Cottin, François; Do, Manh-Cuong; Labsy, Zakaria; Amarantini, David; Gagey, Olivier; Lasne, Françoise; Collomp, Katia
2014-08-01
All systemically administered glucocorticoids (GC) are prohibited in-competition, because of the potential ergogenic effects. Although short-term GC intake has been shown to improve performance during submaximal exercise, literature on its impact during brief intense exercise appears to be very scant. The purpose of this study was to examine the ergogenic and metabolic effects of prednisone during repeated bouts of high-intensity exercise. In a double-blind randomized protocol, ten recreational male athletes followed two 1-week treatments (Cor: prednisone, 60mg/day or Pla: placebo). At the end of each treatment, they hopped on their dominant leg for 30s three times consecutively and then hopped until exhaustion, with intervals of 5min of passive recovery. Blood and saliva samples were collected at rest and 3min after each exercise bout to determine the lactate, interleukin-6, interleukin-10, TNF-alpha, DHEA and testosterone values. The absolute peak force of the dominant leg was significantly increased by Cor but only during the first 30-s hopping bout (p<0.05), whereas time to exhaustion was not significantly changed after Cor treatment vs Pla (Pla: 119.9±24.7; Cor: 123.1±29.5s). Cor intake lowered basal and end-exercise plasma interleukin-6 and saliva DHEA (p<0.01) and increased interleukin-10 (p<0.01), whereas no significant change was found in blood lactate and TNF-alpha or saliva testosterone between Pla and Cor. According to these data, short-term glucocorticoid intake did not improve endurance performance during repeated bouts of high-intensity exercise, despite the significant initial increase in absolute peak force and anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.
Romano, Michele; Carabalona, Roberta; Petrilli, Silvia; Sibilla, Paolo; Negrini, Stefano
2006-01-01
Objective To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. Setting Outpatient care. Patients 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. Interventions Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours). Main outcome measure Pressure detected by the F-Socket System between the rib hump and the pad of the brace. Results In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure. Conclusion Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked. PMID:16859544
Cell-derived microparticles promote coagulation after moderate exercise.
Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang
2011-07-01
Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.
Leelarungrayub, Donrawee; Khansuwan, Raphiphat; Pothongsunun, Prapas; Klaphajone, Jakkrit
2011-01-01
Aim of this study was to evaluate the effects of short-term (7 days) N-acetylcysteine (NAC) at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO(2max)), total antioxidant capacity (TAC), lactate, creatine kinase (CK), and tumor necrotic factor-alpha (TNF-α). Twenty-nine sedentary men (13 controls; 16 in the supplement group) from a randomized control were included. At before and after supplementation, fatigue index (FI) was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO(2max). Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO(2max) increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO(2max), maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.
Patients with a hypertensive response to exercise have impaired left ventricular diastolic function.
Takamura, Takeshi; Onishi, Katsuya; Sugimoto, Tadafumi; Kurita, Tairo; Fujimoto, Naoki; Dohi, Kaoru; Tanigawa, Takashi; Isaka, Naoki; Nobori, Tsutomu; Ito, Masaaki
2008-02-01
An exaggerated increase in systolic blood pressure prolongs myocardial relaxation and increases left ventricular (LV) chamber stiffness, resulting in an increase in LV filling pressure. We hypothesize that patients with a marked hypertensive response to exercise (HRE) have LV diastolic dysfunction leading to exercise intolerance, even in the absence of resting hypertension. We recruited 129 subjects (age 63+/-9 years, 64% male) with a preserved ejection fraction and a negative stress test. HRE was evaluated at the end of a 6-min exercise test using the modified Bruce protocol. Patients were categorized into three groups: a group without HRE and without resting hypertension (control group; n=30), a group with HRE but without resting hypertension (HRE group; n=25), and a group with both HRE and resting hypertension (HTN group; n=74). Conventional Doppler and tissue Doppler imaging were performed at rest. After 6-min exercise tests, systolic blood pressure increased in the HRE and HTN groups, compared with the control group (226+/-17 mmHg, 226+/-17 mmHg, and 180+/-15 mmHg, respectively, p<0.001). There were no significant differences in LV ejection fraction, LV end-diastolic diameter, and early mitral inflow velocity among the three groups. However, early diastolic mitral annular velocity (E') was significantly lower and the ratio of early diastolic mitral inflow velocity (E) to E' (E/E') was significantly higher in patients of the HRE and HTN groups compared to controls (E': 5.9+/-1.6 cm/s, 5.9+/-1.7 cm/s, 8.0+/-1.9 cm/s, respectively, p<0.05). In conclusion, irrespective of the presence of resting hypertension, patients with hypertensive response to exercise had impaired LV longitudinal diastolic function and exercise intolerance.
Silva, Bruno M; Barbosa, Thales C; Neves, Fabricia J; Sales, Allan K; Rocha, Natalia G; Medeiros, Renata F; Pereira, Felipe S; Garcia, Vinicius P; Cardoso, Fabiane T; Nobrega, Antonio C L
2014-12-01
Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene decrease expression and activation of eNOS in vitro, which is associated with lower post-exercise increase in vasodilator reactivity in vivo. However, it is unknown whether such polymorphisms are associated with other eNOS-related phenotypes during recovery from exercise. Therefore, we investigated the impact of an eNOS haplotype containing polymorphic alleles at loci -786 and 894 on the recovery of cardiovascular autonomic function from exercise. Sedentary, non-obese, healthy subjects were enrolled [n = 107, age 32 ± 1 years (mean ± SEM)]. Resting autonomic modulation (heart rate variability, systolic blood pressure variability, and spontaneous baroreflex sensitivity) and vascular reactivity (forearm hyperemic response post-ischemia) were assessed at baseline, 10, 60, and 120 min after a maximal cardiopulmonary exercise test. Besides, autonomic function was assessed by heart rate recovery (HRR) immediately after peak exercise. Haplotype analysis showed that vagal modulation (i.e., HF n.u.) was significantly higher, combined sympathetic and vagal modulation (i.e., LF/HF) was significantly lower and total blood pressure variability was significantly lower post-exercise in a haplotype containing polymorphic alleles (H2) compared to a haplotype with wild type alleles (H1). HRR was similar between groups. Corroborating previous evidence, H2 had significantly lower post-exercise increase in vasodilator reactivity than H1. In conclusion, a haplotype containing polymorphic alleles at loci -786 and 894 had enhanced recovery of autonomic modulation from exercise, along with unchanged HRR, and attenuated vasodilator reactivity. Then, these results suggest an autonomic compensatory response of a direct deleterious effect of eNOS polymorphisms on the vascular function. Copyright © 2014 Elsevier B.V. All rights reserved.
Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo
2016-07-01
The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.
Li, Zhijun; Muller, Matthew D; Wang, Jianli; Sica, Christopher T; Karunanayaka, Prasanna; Sinoway, Lawrence I; Yang, Qing X
2017-07-01
To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48. © 2016 International Society for Magnetic Resonance in Medicine.
McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James
2014-01-01
Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.
Oropharyngeal exercises in the treatment of obstructive sleep apnoea: our experience.
Verma, Roshan K; Johnson J, Jai Richo; Goyal, Manoj; Banumathy, N; Goswami, Upendra; Panda, Naresh K
2016-12-01
Oropharyngeal exercises are new, non-invasive, cost effective treatment modality for the treatment of mild to moderate obstructive sleep apnoea. It acts by increasing the tone of pharyngeal muscles, is more physiological, and effects are long lasting. The aim of our present study was to evaluate the effect of oropharyngeal exercises in the treatment of mild to moderate obstructive sleep apnoea. Twenty patients of mild to moderate obstructive sleep apnoea syndrome (OSAS) were given oropharyngeal exercise therapy for 3 months divided into three phases in graded level of difficulty. Each exercise had to be repeated 10 times, 5 sets per day at their home. Oropharyngeal exercises were derived from speech-language pathology and included soft palate, tongue, and facial muscle exercises. Anthropometric measurements, snoring frequency, intensity, Epworth daytime sleepiness and Berlin sleep questionnaire, and full polysomnography were performed at baseline and at study conclusion. Body mass index (25.6 ± 3.1) did not change significantly at the end of the study period. There was significant reduction in the neck circumference (38.4 ± 1.3 to 37.8 ± 1.6) at the end of the study. Significant improvement was seen in symptoms of daytime sleepiness, witnessed apnoea, and snoring intensity. Significant improvement was also seen in sleep indices like minimum oxygen saturation, time duration of Sao2 < 90 %, sleep efficiency, arousal index, and total sleep time N3 stage of sleep at the end of study. Graded oropharyngeal exercise therapy increases the compliance and also reduces the severity of mild to moderate OSAS.
A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.
Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D
2017-06-01
Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.
[Basic mechanisms of QRS voltage changes on ECG of healthy subjects during the exercise test].
Saltykova, M M
2015-01-01
Electrocardiography is the most commonly used technique for detection stress-induced myocardial ischemia. However, the sensitivity of ECG-criteria is not high. One of the major problem is the difficulty in differentiating ECG changes caused by various factors. The aim of this study was to evaluate the dependence of the QRS voltage changes during exercise on parameters of central hemodynamics, gender particularities and to reveal mechanisms causing these changes. To eliminate the effect of changes in cardiomyocytes transmembrane potentials under the influence of the neurotransmitters of the autonomic nervous system during stepwise increasing exercises and/or due to a lack of ATP results from inadequate myocardial blood flow only healthy subjects not older than 35 years were included in the study (7 men and 7 women) and only periods of ventricular depolarization (QRS complex on the ECG) were included in the analysis. We compared the changes of QRS waves during exercise sessions with two upper and one lower limbs in both men and women. The exercise load was twice bigger in exercise with one leg relative to exercise with two arms. Responses of heart rate and systolic arterial pressure were similar. Amplitude of S-wave in left chest leads significantly increased in both sessions without significant difference between augmentations in the sessions and in groups of men and women. Significant relationship between the S wave augmentation and the peak systolic arterial pressure were revealed. Furthermore, the QRS changes during the exercise with vertical and a horizontal torso position were compared to assess the impact of diastolic arterial pressure and displacement of the diaphragm and heart rotation due to increase of abdominal pressure during the last steps of exercise. The obtained results allow us to exclude the impact of the heart position and size changes, as well as the exercise load on S-wave changes and make a conclusion about the dependence of this parameter on the value of systolic blood pressure.
Stewart, Glenn M; Kavanagh, Justin J; Koerbin, Gus; Simmonds, Michael J; Sabapathy, Surendran
2014-01-01
Although markers of myocyte injury, electrolyte disturbances and an autonomic imbalance have been reported following exercise, the effect of prolonged strenuous activity on cardiac electrical conduction is not well understood. This study examined atrial and ventricular conduction dynamics during recovery from exercise. Electrocardiographic intervals were obtained from eight highly-trained males before, during recovery (15, 30, 45 and 60 min post-exercise) and 24 h after a prolonged bout of strenuous exercise. Time-domain, frequency-domain and non-linear analyses of the RR, PR and QT intervals were analysed to investigate the effect of exercise on autonomic modulation and cardiac electrical conduction. Serum electrolyte and high-sensitivity cardiac troponin T (hs-cTnT) concentrations were measured before exercise, and after 60 min and 24 h of recovery. The root mean square of the successive differences of RR, PR and QT intervals was significantly reduced during recovery (p < 0.05). Normalised low- and high-frequency power of RR intervals significantly increased and decreased, respectively, during recovery. Approximate entropy of PR and QT intervals, and the QT-variability index significantly increased during recovery. All measures except mean QT interval (pre 422 ± 10 ms vs 24 h post 442 ± 11 ms, p = 0.013) returned to pre-exercise values after 24 h. Serum hs-cTnT was significantly elevated 60 min after exercise (pre 5.2 ± 0.7 ng L(-1) vs 60 min post 27.4 ± 6.2 ng L(-1), p = 0.01) and correlated with exercising heart rate (R(2) = 0.89, p < 0.001). Serum electrolyte concentrations were unchanged (p > 0.05). The results suggest suppressed parasympathetic and/or sustained sympathetic modulation of heart rate during recovery, concomitant with perturbations in atrial and ventricular conduction dynamics. Exercise-induced hs-cTnT release was heart rate dependent.
Ba, Abdoulaye; Delliaux, Stephane; Bregeon, Fabienne; Levy, Samuel; Jammes, Yves
2009-01-01
Because blood acidosis and arterial oxygenation (PaO(2)) play key roles in the chemoreflex control of cardiac activity, we hypothesized that heart rate (HR) decay rate after maximal exercise may be linked to post-exercise increase in blood lactate (LA) level and/or the resting PaO(2). Twenty healthy subjects and thirty five patients at risks of cardiovascular diseases (20 obeses; 15 patients with chronic obstructive pulmonary disease, COPD) performed a maximal cycling exercise. During the recovery period, HR was continuously measured for consecutive 10-s epochs allowing to compute linear or second order polynomial equations and to calculate every minute HR variations compared to peak HR value (DeltaHR). PaO(2) was measured at rest and post-exercise maximal LA level was determined. A second order polynomial equation (y = a(2) x (2) + b(2) x + c) best fitted the post-exercise HR decay rate. The a(2) and b(2) coefficients and DeltaHR did not depend on age, sex, and body mass index. Despite a large scattering of HR decay rate, even present in healthy subjects, a(2) and DeltaHR were significantly lower in obeses and COPDs. In the whole population, both a(2) coefficient and DeltaHR were negatively correlated with maximal post-exercise LA level. DeltaHR was lowered in hypoxemic patients. Thus, the slowest post-exercise HR decay rate was measured in subjects having the highest peak LA increase or hypoxemia. Thus, even in healthy subjects, the post-exercise HR decay rate is lowered in individuals having an accentuated exercise-induced LA increase and/or hypoxemia. The mechanisms of delayed post-exercise HR recovery are only suspected because significant correlations cannot assess cause-to-effect relationships.
Schultz, Martin G; Otahal, Petr; Cleland, Verity J; Blizzard, Leigh; Marwick, Thomas H; Sharman, James E
2013-03-01
The prognostic relevance of a hypertensive response to exercise (HRE) is ill-defined in individuals undergoing exercise stress testing. The study described here was intended to provide a systematic review and meta-analysis of published literature to determine the value of exercise-related blood pressure (BP) (independent of office BP) for predicting cardiovascular (CV) events and mortality. Online databases were searched for published longitudinal studies reporting exercise-related BP and CV events and mortality rates. We identified for review 12 longitudinal studies with a total of 46,314 individuals without significant coronary artery disease, with total CV event and mortality rates recorded over a mean follow-up of 15.2±4.0 years. After adjustment for age, office BP, and CV risk factors, an HRE at moderate exercise intensity carried a 36% greater rate of CV events and mortality (95% CI, 1.02-1.83, P = 0.039) than that of subjects without an HRE. Additionally, each 10mm Hg increase in systolic BP during exercise at moderate intensity was accompanied by a 4% increase in CV events and mortality, independent of office BP, age, or CV risk factors (95% CI, 1.01-1.07, P = 0.02). Systolic BP at maximal workload was not significantly associated with the outcome of an increased rate of CV, whether analyzed as a categorical (HR=1.49, 95% CI, 0.90-2.46, P = 0.12) or a continuous (HR=1.01, 95% CI, 0.98-1.04, P = 0.53) variable. An HRE at moderate exercise intensity during exercise stress testing is an independent risk factor for CV events and mortality. This highlights the need to determine underlying pathophysiological mechanisms of exercise-induced hypertension.
Schroeder, Mariana; Shbiro, Liat; Gelber, Vered; Weller, Aron
2010-04-01
Given the alarming increase in childhood, adolescent and adult obesity there is an imperative need for understanding the early factors affecting obesity and for treatments that may help prevent or at least moderate it. Exercise is frequently considered as an effective treatment for obesity however the empirical literature includes many conflicting findings. In the present study, we used the OLETF rat model of early-onset hyperphagia-induced obesity to examine the influence of early exercise on peripheral adiposity-related parameters in both males and females. Rats were provided voluntary access to running wheels from postnatal day (PND) 22 until PND45. We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and leptin, adiponectin, corticosterone and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake. Early voluntary exercise reduced intake, adiposity and leptin in the OLETF males following a sharp reduction in adipocyte size despite a significant increase in fat cell number. Exercising males from the lean LETO control strain presented stable intake, but reduced body fat, feeding efficiency and increased plasma creatinine, suggesting an increment in muscle mass. OLETF females showed reduced feeding efficiency and liver fat, and a significant increase in brown fat. Exercising LETO control females increased intake, body weight and creatinine, but no changes in body fat. Overall, OLETF rats presented higher adiponectin levels than controls in both basal and post-exercise conditions. The results suggest an effective early time frame, when OLETF males can be successfully "re-programmed" through voluntary exercise; in OLETF females the effect is much more moderate. Findings expose sex-dependent peripheral mechanisms in coping with energy challenges. Copyright 2010 Elsevier Inc. All rights reserved.
Using memories to motivate future behaviour: an experimental exercise intervention.
Biondolillo, Mathew J; Pillemer, David B
2015-01-01
This study tested a novel memory-based experimental intervention to increase exercise activity. Undergraduate students completed a two-part online survey ostensibly regarding college activity choices. At Time 1, they completed questionnaires that included assessments of exercise-related attitudes, motivation and self-reported behaviours. Next, they described a memory of a positive or negative experience that would increase their motivation to exercise; students in a control condition did not receive a memory prompt. Finally, they rated their intentions to exercise in the future. Eight days following Time 1, students received a Time 2 survey that included an assessment of their self-reported exercise during the prior week. Students in the positive memory condition reported higher levels of subsequent exercise than those in the control condition; students in the negative memory condition reported intermediate levels of exercise. Activating a positive motivational memory had a significant effect on students' self-reported exercise activity even after controlling for prior attitudes, motivation and exercise activity.
Shen, W F; Roubin, G S; Fletcher, P J; Choong, C Y; Hutton, B F; Harris, P J; Kelly, D T
1985-02-01
The effects of upright and supine position on cardiac response to exercise were assessed by radionuclide ventriculography in 15 patients with moderate to severe aortic regurgitation (AR) and in 10 control subjects. In patients with AR, heart rate was higher during upright exercise, but systolic and diastolic blood pressure and left ventricular (LV) output were similar during both forms of exercise. LV stroke volume and end-diastolic volume were not altered during supine exercise. LV end-systolic volume increased and ejection fraction decreased during supine exercise, but both were unchanged during upright exercise. Of 15 patients, 5 in the upright and 12 in the supine position had an abnormal LV ejection fraction response to exercise (p less than 0.01). Right ventricular ejection fraction increased and regurgitant index decreased with both forms of exercise and was not significantly different between the 2 positions. Thus, posture is important in determining LV response to exercise in patients with moderate to severe AR.
Asrress, Kaleab N; Williams, Rupert; Lockie, Timothy; Khawaja, Muhammed Z; De Silva, Kalpa; Lumley, Matthew; Patterson, Tiffany; Arri, Satpal; Ihsan, Sana; Ellis, Howard; Guilcher, Antoine; Clapp, Brian; Chowienczyk, Philip J; Plein, Sven; Perera, Divaka; Marber, Michael S; Redwood, Simon R
2017-07-04
The mechanisms governing exercise-induced angina and its alleviation by the most commonly used antianginal drug, nitroglycerin, are incompletely understood. The purpose of this study was to develop a method by which the effects of antianginal drugs could be evaluated invasively during physiological exercise to gain further understanding of the clinical impact of angina and nitroglycerin. Forty patients (mean age, 65.2±7.6 years) with exertional angina and coronary artery disease underwent cardiac catheterization via radial access and performed incremental exercise using a supine cycle ergometer. As they developed limiting angina, sublingual nitroglycerin was administered to half the patients, and all patients continued to exercise for 2 minutes at the same workload. Throughout exercise, distal coronary pressure and flow velocity and central aortic pressure were recorded with sensor wires. Patients continued to exercise after nitroglycerin administration with less ST-segment depression ( P =0.003) and therefore myocardial ischemia. Significant reductions in afterload (aortic pressure, P =0.030) and myocardial oxygen demand were seen (tension-time index, P =0.024; rate-pressure product, P =0.046), as well as an increase in myocardial oxygen supply (Buckberg index, P =0.017). Exercise reduced peripheral arterial wave reflection ( P <0.05), which was not further augmented by the administration of nitroglycerin ( P =0.648). The observed increases in coronary pressure gradient, stenosis resistance, and flow velocity did not reach statistical significance; however, the diastolic velocity-pressure gradient relation was consistent with a significant increase in relative stenosis severity (k coefficient, P <0.0001), in keeping with exercise-induced vasoconstriction of stenosed epicardial segments and dilatation of normal segments, with trends toward reversal with nitroglycerin. The catheterization laboratory protocol provides a model to study myocardial ischemia and the actions of novel and established antianginal drugs. Administration of nitroglycerin causes changes in the systemic and coronary circulation that combine to reduce myocardial oxygen demand and to increase supply, thereby attenuating exercise-induced ischemia. Designing antianginal therapies that exploit these mechanisms may provide new therapeutic strategies. © 2017 The Authors.
Predictors of women's exercise maintenance after cardiac rehabilitation.
Moore, Shirley M; Dolansky, Mary A; Ruland, Cornelia M; Pashkow, Fredric J; Blackburn, Gordon G
2003-01-01
Less than 50% of persons who participate in cardiac rehabilitation (CR) programs maintain an exercise regimen for as long as 6 months after completion. This study was conducted to identify factors that predict women's exercise following completion of a CR program. In this prospective, descriptive study, a convenience sample of 60 women were recruited at completion of a phase II CR program. Exercise was measured using a heart rate wristwatch monitor over 3 months. Predictor variables collected at the time of the subjects' enrollment were age, body mass index, cardiac functional status, comorbidity, muscle or joint pain, motivation, mood state, social support, self-efficacy, perceived benefits or barriers, and prior exercise. Of women, 25% did not exercise at all following completion of a CR program and only 48% of the subjects were exercising at 3 months. Different predictors were found of the various dimensions of exercise maintenance. Predictors of exercise frequency were comorbidity and instrumental social support. Instrumental social support was the only predictor of exercise persistence. Comorbidity was the only predictor of exercise intensity. The only predictor of the total amount of exercise was benefits or barriers. Interventions aimed at increasing women's exercise should focus on increasing their problem-solving abilities to reduce barriers to exercise and increase social support by family and friends. Because comorbidity was a significant predictor of exercise, women should be encouraged to use exercise techniques that reduce impact on muscles and joints (eg, swimming) or exercising for short periods several times a day.
Ye, Ping-xian; Ye, Ping-zhen; Zhu, Jian-hua; Chen, Wei; Gao, Dan-chen
2014-05-01
To investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension. A randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment. After treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05). In patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.
Light, A.R.; Bateman, L.; Jo, D.; Hughen, R. W.; VanHaitsma, T.A.; White, A.T.; Light, K.C.
2011-01-01
Objectives To determine mRNA expression differences in genes involved in signaling and modulating sensory fatigue, and muscle pain in patients with Chronic Fatigue Syndrome (CFS) and Fibromyalgia Syndrome (FM) at baseline, and following moderate exercise. Design Forty eight Patients with CFS-only, or CFS with comorbid FM, 18 Patients with FM that did not meet criteria for CFS, and 49 healthy Controls underwent moderate exercise (25 minutes at 70% maximum age predicted heart-rate). Visual-analogue measures of fatigue and pain were taken before, during, and after exercise. Blood samples were taken before, and 0.5, 8, 24, and 48 hours after exercise. Leukocytes were immediately isolated from blood, number coded for blind processing and analyses, and flash frozen. Using real-time, quantitative PCR, the amount of mRNA for 13 genes (relative to control genes) involved in sensory, adrenergic, and immune functions was compared between groups at baseline, and following exercise. Changes in amounts of mRNA were correlated with behavioral measures, and functional clinical assessments. Results No gene expression changes occurred following exercise in Controls. In 71% of CFS patients, moderate exercise increased most sensory and adrenergic receptor’s and one cytokine gene’s transcription for 48 hours. These post-exercise increases correlated with behavioral measures of fatigue and pain. In contrast, for the other 29% of CFS patients, adrenergic α-2A receptor’s transcription was decreased at all time points after exercise; other genes were not altered. History of orthostatic intolerance was significantly more common in the α-2A decrease subgroup. FM only patients showed no post-exercise alterations in gene expression, but their pre-exercise baseline mRNA for two sensory ion channels and one cytokine were significantly higher than Controls. Conclusions At least two subgroups of CFS patients can be identified by gene expression changes following exercise. The larger subgroup showed increases in mRNA for sensory and adrenergic receptors and a cytokine. The smaller subgroup contained most of the CFS patients with orthostatic intolerance, showed no post-exercise increases in any gene, and was defined by decreases in mRNA for α-2A. FM only patients can be identified by baseline increases in 3 genes. Post-exercise increases for 4 genes meet published criteria as an objective biomarker for CFS, and could be useful in guiding treatment selection for different subgroups. PMID:21615807
Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy.
Nguyen, Lan; Chung, Jessica; Lam, Lien; Tsoutsman, Tatiana; Semsarian, Christopher
2007-07-10
Clinical outcome in familial hypertrophic cardiomyopathy (FHC) may be influenced by modifying factors such as exercise. Transgenic mice which overexpress the human disease-causing cTnI gene mutation, Gly203Ser (designated cTnI-G203S), develop all the characteristic phenotypic features of FHC. To study the modifying effect of exercise in early disease, mice underwent swimming exercise at an early age prior to the development of the FHC phenotype. In non-transgenic and cTnI-wt mice, swimming resulted in a significant increase in left ventricular wall thickness and contractility on echocardiography, consistent with a physiological hypertrophic response to exercise. In contrast, cTnI-G203S mice showed no increase in these parameters, indicating an abnormal response to exercise. The lack of a physiological response to exercise may indicate an important novel mechanistic insight into the role of exercise in triggering adverse events in FHC.
Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A
1996-12-01
Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.
Rosene, J M; Matthews, T D; Mcbride, K J; Galla, A; Haun, M; Mcdonald, K; Gagne, N; Lea, J; Kasen, J; Farias, C
2015-12-01
The purpose of this investigation was to determine the effects of 3 d of creatine supplementation on thermoregulation and isokinetic muscular performance. Fourteen males performed two exercise bouts following 3 d of creatine supplementation and placebo. Subjects exercised for 60 min at 60-65% of VO2max in the heat followed by isokinetic muscular performance at 60, 180, and 300°·s(-1). Dependent variables for pre- and postexercise included nude body weight, urine specific gravity, and serum creatinine levels. Total body water, extracellular water and intracellular water were measured pre-exercise. Core temperature was assessed every 5 min during exercise. Peak torque and Fatigue Index were used to assess isokinetic muscular performance. Core temperature increased during the run for both conditions. Total body water and extracellular water were significantly greater (P<0.05) following creatine supplementation. No significant difference (P>0.05) was found between conditions for intracellular water, nude body weight, urine specific gravity, and serum creatinine. Pre-exercise scores for urine specific gravity and serum creatinine were significantly less (P<0.05) versus post-exercise. No significant differences (P>0.05) were found in peak torque values or Fatigue Index between conditions for each velocity. A significant (P<0.05) overall velocity effect was found for both flexion and extension. As velocity increased, mean peak torque values decreased. Three d of creatine supplementation does not affect thermoregulation during submaximal exercise in the heat and is not enough to elicit an ergogenic effect for isokinetic muscle performance following endurance activity.
Does exercise training affect resting metabolic rate in adolescents with obesity?
Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P
2017-01-01
We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.
An investigation into the exercise behaviours of regionally based Australian pregnant women.
Hayman, Melanie; Short, Camille; Reaburn, Peter
2016-08-01
Regular exercise during pregnancy is a recommended prenatal care strategy with short and long-term health benefits to mother and child. Unfortunately, most pregnant women are insufficiently active to obtain health benefits and there is evidence that activity levels decrease overall during pregnancy. Physical activity among regionally based women is lower than that of urban-based women within Australia. However, little is currently known about exercise behaviours of regionally based Australian pregnant women. To successfully promote exercise among regionally based pregnant women, a greater understanding of exercise behaviours must first be explored. This study investigated exercise behaviours in a sample of regionally based Australian pregnant women. Regionally based Australian pregnant women (n=142) completed a modified version of the Godin Leisure-Time Exercise Questionnaire examining exercise behaviours before and during pregnancy. Women self-reported their exercise behaviours, including exercise frequency, intensity, time and type, before and during pregnancy. Chi-square analysis revealed significantly less (χ(2)=31.66, p<0.05) women participated in exercise during pregnancy (61%) compared to before pregnancy (87%). During pregnancy, respondents exercised at a significantly lower frequency (χ(2)=111.63, p<0.05), intensity (χ(2)=67.41, p<0.05), shorter time/duration (χ(2)=114.33, p<0.05), and significantly less (χ(2)=8.55, p<0.05) women (8%) are meeting 'exercise during pregnancy' guidelines compared to women before pregnancy (49%) meeting physical activity guidelines. Exercise during pregnancy decreases to levels significantly lower than what is currently recommended. Public health initiatives that promote exercise among Australian pregnant women should aim to increase frequency, intensity, time and type of exercise to be undertaken during pregnancy. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Blood Viscosity Responses to Exercise and Conditioning in Women
1983-10-20
cope with the dis- comfort of exercise induced by acidosis then becomes a major determinant of the duration of exercise . Physiology of Aerobic...long term strenuous activity an increased loss of red blood cells may occur. ’ This has been termed "sports anemia." Exercise - induced loss of red cells...may be significant factors in some cases. ’ ’ With improved training regimens and improvements in running shoes, exercise induced "sports anemia" is
Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise
Styner, Maya; Thompson, William R.; Galior, Kornelia; Uzer, Gunes; Wu, Xin; Kadari, Sanjay; Case, Natasha; Xie, Zhihui; Sen, Buer; Romaine, Andrew; Pagnotti, Gabriel M.; Rubin, Clinton T.; Styner, Martin A.; Horowitz, Mark C.; Rubin, Janet
2014-01-01
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population. PMID:24709686
Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P
2015-04-01
The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.
Konishi, Kana; Kimura, Tetsuya; Yuhaku, Atsushi; Kurihara, Toshiyuki; Fujimoto, Masahiro; Hamaoka, Takafumi; Sanada, Kiyoshi
2017-01-01
A decline in executive function could have a negative influence on the control of actions in dynamic situations, such as sports activities. Mouth rinsing with a carbohydrate solution could serve as an effective treatment for preserving the executive function in exercise. The purpose of this study was to examine the effects of mouth rinsing with a carbohydrate solution on executive function after sustained moderately high-intensity exercise. Eight young healthy participants completed 65 min of running at 75% V̇O 2 max with two mouth-rinsing conditions: with a carbohydrate solution (CHO) or with water (CON). Executive function was assessed before and after exercise by using the incongruent task of the Stroop Color and Word Test. The levels of blood glucose; and plasma adrenocorticotropic hormone (ACTH), epinephrine, and norepinephrine (NE) were evaluated. A two-way repeated-measures ANOVA, with condition (CHO and CON) and time (pre-exercise and post-exercise) as factors, was used to examine the main and interaction effects on the outcome measures. The reaction time in the incongruent condition of the Stroop test significantly increased after exercise in CON (pre-exercise 529 ± 45 ms vs. post-exercise 547 ± 60 ms, P = 0.029) but not in CHO (pre-exercise 531 ± 54 ms vs. post-exercise 522 ± 80 ms), which resulted in a significant interaction (condition × time) on the reaction time ( P = 0.028). The increased reaction time in CON indicates a decline in the executive function, which was attenuated in CHO. Increases in plasma epinephrine and NE levels demonstrated a trend toward attenuation accompanying CHO ( P < 0.085), which appeared to be associated with the preservation of executive function. The blood glucose concentration showed neither significant interactions nor main effects of condition. These findings indicate that mouth rinsing with a carbohydrate solution attenuated the decline in executive function induced by sustained moderately high-intensity exercise, and that such attenuation seems to be unrelated to carbohydrate metabolic pathway but rather attributed, in part, to the inhibition of the excessive release of stress hormones.
Waltman, N L; Twiss, J J; Ott, C D; Gross, G J; Lindsey, A M; Moore, T E; Berg, K; Kupzyk, K
2010-08-01
This study examined whether 24 months of weight training exercises enhanced the effectiveness of risedronate, calcium, and vitamin D in maintaining or improving bone mineral density (BMD) in 223 postmenopausal breast cancer survivors. Subjects who were > or =50% adherent to exercise had no improvement in BMD but were less likely to lose BMD. This study examined whether (1) postmenopausal breast cancer survivors (BCS) with bone loss taking 24 months of risedronate, calcium, and vitamin D had increased bone mineral density (BMD) at the total hip, femoral neck, L1-L4 spine, total radius and 33% radius, and decreased bone turnover; (2) subjects who also participated in strength/weight training (ST) exercises had greater increases in BMD and greater decreases in bone turnover; and (3) subjects who also exercised were more likely to preserve (at least maintain) BMD. Postmenopausal BCS (223) were randomly assigned to exercise plus medication or medication only groups. Both groups received 24 months of 1,200 mg of calcium and 400 IU of vitamin D daily and 35 mg of risedronate weekly, and the exercise group additionally had ST exercises twice weekly. After 24 months, women who took medications without exercising had significant improvements in BMD at the total hip (+1.81%) and spine (+2.85%) and significant decreases in Alkphase B (-8.7%) and serum NTx (-16.7%). Women who also exercised had additional increases in BMD at the femoral neck (+0.29%), total hip (+0.34%), spine (+0.23%), total radius (+0.30%), and additional decreases in Alkphase B (-2.4%) and Serum NTx (-6.5%). Additional changes in BMD and bone turnover with exercise were not significant. Subjects who were > or =50% adherent to exercise were less likely to lose BMD at the total hip (chi-square [1] = 4.66, p = 0.03) and femoral neck (chi-square [1] = 4.63, p = 0.03). Strength/weight training exercises may prevent loss of BMD in postmenopausal BCS at risk for bone loss.
Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi
2017-01-01
The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.
Cardiorespiratory effects of inelastic chest wall restriction.
Miller, Jordan D; Beck, Kenneth C; Joyner, Michael J; Brice, A Glenn; Johnson, Bruce D
2002-06-01
We examined the effects of chest wall restriction (CWR) on cardiorespiratory function at rest and during exercise in healthy subjects in an attempt to approximate the cardiorespiratory interactions observed in clinical conditions that result in restrictive lung and/or chest wall changes and a reduced intrathoracic space. Canvas straps were applied around the thorax and abdomen so that vital capacity was reduced by >35%. Data were acquired at rest and during cycle ergometry at 25 and 45% of peak workloads. CWR elicited significant increases in the flow-resistive work performed on the lung (160%) and the gastric pressure-time integral (>400%) at the higher workload, but it resulted in a decrease in the elastic work performed on the lung (56%) compared with control conditions. With CWR, heart rate increased and stroke volume (SV) fell, resulting in >10% fall in cardiac output at rest and during exercise at matched workloads (P < 0.05). Blood pressure and catecholamines were significantly elevated during CWR exercise conditions (P < 0.05). We conclude that CWR significantly impairs SV during exercise and that a compensatory increase in heart rate does not prevent a significant reduction in cardiac output. O(2) consumption appears to be maintained via increased extraction and a redistribution of blood flow via sympathetic activation.
Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun
2016-06-01
[Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.
Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.
2001-01-01
This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.
van Gemert, Willemijn A M; van der Palen, Job; Monninkhof, Evelyn M; Rozeboom, Anouk; Peters, Roelof; Wittink, Harriet; Schuit, Albertine J; Peeters, Petra H
2015-01-01
This study investigates the effect of a modest weight loss either by a calorie restricted diet or mainly by increased physical exercise on health related quality of life (HRQoL) in overweight-to-obese and inactive postmenopausal women. We hypothesize that HRQoL improves with weight loss, and that exercise-induced weight loss is more effective for this than diet-induced weight loss. The SHAPE-2 trial was primarily designed to evaluate any additional effect of weight loss by exercise compared with a comparable amount of weight loss by diet on biomarkers relevant for breast cancer risk. In the present analysis we focus on HRQoL. We randomly assigned 243 eligible women to a diet (n = 97), exercise (n = 98), or control group (n = 48). Both interventions aimed for 5-6 kg weight loss. HRQoL was measured at baseline and after 16 weeks by the SF-36 questionnaire. Data of 214 women were available for analysis. Weight loss was 4.9 kg (6.1%) and 5.5 kg (6.9%) with diet and exercise, respectively. Scores of the SF-36 domain 'health change' increased significantly by 8.8 points (95% CI 1.6;16.1) with diet, and by 20.5 points (95% CI 13.2;27.7) with exercise when compared with control. Direct comparison of diet and exercise showed a statistically significantly stronger improvement with exercise. Both intervention groups showed a tendency towards improvements in most other domains, which were more pronounced in the exercise group, but not statistically different from control or each other. In a randomized trial in overweight-to-obese and inactive postmenopausal women a comparable 6%-7% weight loss was achieved by diet-only or mainly by exercise and showed improvements in physical and mental HRQoL domains, but results were not statistically significant in either the diet or exercise group. However, a modest weight loss does lead to a positive change in self-perceived health status. This effect was significantly larger with exercise-induced weight loss than with comparable diet-induced weight loss. ClinicalTrials.gov NCT01511276.
Changes in exercise and post-exercise core temperature under different clothing conditions
NASA Astrophysics Data System (ADS)
Kenny, Glen P.; Reardon, Francis D.; Thoden, Jim S.; Giesbrecht, Gordon G.; Kenny, G.
This study evaluates the effect of different levels of insulation on esophageal (Tes) and rectal (Tre) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). Tes was similar at the start of exercise for each condition and baseline Tre was 0.4°C higher than Tes. The hourly equivalent rate of increase in Tes during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise Tes was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for Tre was demonstrated, except that end-exercise Tre for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in Tes during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise Tre decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition Tre was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, Tes is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than Tre. Physiological mechanisms are discussed as possible explanations for the differences in response.
Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J
2014-09-01
Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in repeated exercise training. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Papathanasiou, George; Georgakopoulos, Dimitris; Papageorgiou, Effie; Zerva, Efthimia; Michalis, Lampros; Kalfakakou, Vasiliki; Evangelou, Angelos
2013-01-01
There is an established link between smoking, abnormal heart rate (HR) values, and impaired cardiovascular health in middle-aged or older populations. The purpose of this study was to examine the effects of smoking on resting HR and on HR responses during and after exercise in young adults. A sample of 298 young adults (159 men), aged 20-29 years old, were selected from a large population of health-science students based on health status, body mass index, physical activity, and smoking habit. All subjects underwent a maximal Bruce treadmill test and their HR was recorded during, at peak, and after termination of exercise. Smokers had significantly higher resting HR values than non-smokers. Both female and male smokers showed a significantly slower HR increase during exercise. Female smokers failed to reach their age-predicted maximum HR by 6.0 bpm and males by 3.6 bpm. The actual maximum HR achieved (HRmax) was significantly lower for both female smokers (191.0 bpm vs.198.0 bpm) and male smokers (193.2 bpm vs.199.3 bpm), compared to non-smokers. Heart rate reserve was also significantly lower in female (114.6 bpm vs. 128.1 bpm) and male smokers (120.4 bpm vs. 133.0 bpm). During recovery, the HR decline was significantly attenuated, but only in female smokers. Females had a higher resting HR and showed a higher HR response during sub-maximal exercise compared to males. Smoking was found to affect young smokers' HR, increasing HR at rest, slowing HR increase during exercise and impairing their ability to reach the age-predicted HRmax. In addition, smoking was associated with an attenuated HR decline during recovery, but only in females.
Kang, Seol-Jung; Ko, Kwang-Jun; Baek, Un-Hyo
2016-07-01
[Purpose] This study evaluated the effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in patients with Type 2 diabetes mellitus. [Subjects and Methods] The subjects were 16 female patients with Type 2 diabetes mellitus selected among the participants of a chronic disease management exercise class at C Region Public Health Center in South Korea. Subjects were randomly assigned to the exercise group (n=8; age, 55.97 ± 7.37) or the control group (n=8; age, 57.53 ± 4.63) The exercise group performed aerobic and resistance exercises for 60 minutes per day, 3 times per week for 12 weeks. Anthropometric measurements, biochemical markers, physical fitness, and heart rate variability were examined. [Results] After 12 weeks of exercise, weight, body fat percentage, waist circumference, blood glucose, insulin resistance, glycated hemoglobin level, systolic blood pressure, and diastolic blood pressure significantly decreased and cardiorespiratory fitness and muscular strength significantly increased in the exercise group. Although heart rate variability measures showed favorable changes with the exercise program, none were significant. [Conclusion] Although the exercise program did not show notable changes in heart rate variability in patients with Type 2 diabetes within the timeframe of the study, exercise may contribute to the prevention and control of cardiovascular autonomic neuropathy.
Eyigör, Sibel; Karapolat, Hale; Ibisoğlu, Uğur; Durmaz, Berrin
2008-01-01
The aim of this study was to determine if transcutaneous electrical nerve stimulation (TENS) or therapeutic ultrasound (US) increase the effectiveness of exercise on pain, function, muscle strength and quality of life for knee osteoarthritis (OA). Forty-five patients with primary knee OA diagnosis according to American College Rheumatology criteria were sequentially divided into 3 random groups. The patients in group 1 received TENS (with superficial heat and exercise), group 2 received US (with superficial heat and exercise), and group 3 acted as controls (superficial heat and exercise). Outcome measures were included as visual analog scale (VAS), a 20-meter walking test, Lequesne index, WOMAC scores, isokinetic muscle testing, and the Short Form 36 (SF 36). All treatment groups, physical modalities were carried out for a total fifteen sessions. All of the patients were subjected to six weeks of exercise program. All of the treatment groups had significant improvement on activity VAS, 20 meter walking test, Lequesne index, WOMAC scores, and most of the sub-scores of SF36 when compared with their initial status (p<0.05). All of the treatment groups, a significant muscle strength gain in most of the angular velocity in knee extensor PT values after the treatment (p<0.05). However there was no statistically significant difference after the treatment between the all treatment groups (p>0.05). All of the treatment groups were effective on pain, function, muscle strength and quality of life in patients with knee OA. Statistically significant differences could not be found between the treatment groups. The exercise program, as it is cheaper, more easily performed and efficient, may be preferable for the treatment of knee OA. It is difficult to say, TENS or US could increase the effectiveness of isokinetic exercise for pain, function, muscle strength and quality of life of knee OA in this study.
Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Keil, L. C.; Bernauer, E. M.; Greenleaf, J. E.
1981-01-01
The influence of work intensity on plasma volume, osmolality, vasopressin and renin activity and the interrelationships between these responses are investigated. Plasma volume, renin activity and osmotic, sodium and arginine vasopressin concentrations were measured in venous blood samples taken from 15 healthy male subjects before and after six minutes of bicycle ergometer exercise at 100, 175 and 225 W. Plasma volume is found to decrease significantly with increasing work intensity, while increases in Na(+) concentration, osmolality and vasopressin are only observed to be significant when the work intensity exceeds 40% maximal aerobic capacity and plasma resin activity increased linearly at all work levels. In addition, significant correlations are observed between plasma volume and osmolality and sodium changes, and between vasopressin and osmolality and sodium content changes. Data thus support the hypotheses that (1) vasopressin may be the primary controlling endocrine for fluid and electrolyte levels following exercise; (2) an exercise intensity greater than 40% maximal aerobic capacity is required to stimulate vasopressin release through changes in plasma osmolality; and (3) the stimulation of the renin-angiotensin system is a more general stress response.
Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.
Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N
2014-09-01
The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.
The effect of preseason training on mucosal immunity in male basketball players.
Azarbayjani, M; Nikbakht, H; Rasaee, M J
2011-12-01
This study examined the effects of pre season training on restring level and acute response of mucosal immunity in male basketball players. Twenty male basketball players performed 8 weeks progressive exercise training, consisting of interval and continuous parts. Five mL un-stimulated saliva was collected from each subject before, immediately and one hour after the end of one bout of exercise to exhaustion on treadmill at the beginning of the first week and end of 8 weeks to determine the acute responses. At the beginning of each 2 weeks (resting state) induced changes in basal mucosal immunity was evaluated. The concentration of sIgA and total protein was measured by the ELISA and Bradford methods respectively. One bout exercise training at beginning of first week decreased significantly sIgA level but not at the end of 8th week. Total protein did not change significantly at 1st week after exercise, but at eight week significantly increased and remained at high level until one hour after exercise. sIgA to total protein ratio at first week significantly decreased and remained constant one hour after exercise. At the eight week sIgA decreased significantly immediately after exercise and remained low until one hour after exercise. The comparison of sIgA and total protein levels indicates significant decrease after eight weeks training. These results suggest that repetition of single bout of exercise training have a cumulative effect on the mucosal immune system.
Al-Sharif, Fadwa Al-Ghalib; Al-Jiffri, Osama Hussien; El-Kader, Shehab Mahmoud Abd; Ashmawy, Eman Mohamed
2014-03-01
Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. To compare the effects of mild and moderate intensity treadmill walking exercises on markers of bone metabolism and hand grip strength in male patients with moderate hemophilia A. Fifty male patients with moderate hemophilia, and age range from 25 to 45 years. The subjects were randomly assigned into 2 equal groups; the first group (A) received moderate intensity aerobic exercise training. The second group (B) received mild intensity aerobic exercise training. There was a 32.1% and 24.8% increase in mean values of serum calcium and hand grip strength respectively and 22.7 % reduction in mean values of parathyroid hormone in moderate exercise training group (A). While there was a 15.1 % and 15 % increase in mean values of Serum Calcium and Hand grip strength respectively and 10.3 % reduction in mean values of parathyroid hormone in mild exercise training group(B). The mean values of serum calcium and hand grip strength were significantly increased, while the mean values of parathyroid hormone were significantly decreased in both groups . There were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Moderate intensity aerobic exercise training on treadmill is appropriate to improve markers of bone metabolism and hand grip strength in male patients with hemophilia A.
Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin
2015-01-01
The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study. PMID:26506374
Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin
2015-10-21
The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.
Cardiovascular responses to plyometric exercise are affected by workload in athletes.
Arazi, Hamid; Asadi, Abbas; Mahdavi, Seyed Amir; Nasiri, Seyed Omid Mirfalah
2014-01-01
With regard to blood pressure responses to plyometric exercise and decreasing blood pressure after exercise (post-exercise hypotension), the influence of different workloads of plyometric exercise on blood pressure is not clear. The purpose of this investigation was to examine the effects of a low, moderate and high workload of plyometric exercise on the post-exercise systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and rate-pressure product (RPP) responses in athletes. TEN MALE ATHLETES (AGE: 22.6 ±0.5 years; height: 178.2 ±3.3 cm; and body mass: 75.2 ±2.8 kg) underwent PE protocols involving 5 × 10 reps (Low Workload - LW), 10 × 10 reps (Moderate Workload - MW), and 15 × 10 reps (High Workload - HW) depth jump exercise from a 50-cm box in 3 non-consecutive days. After each exercise session, SBP, DBP and HR were measured every 10 min for a period of 70 min. No significant differences were observed among post-exercise SBP and DBP when the protocols (LW, MW and HW) were compared. The MW and HW protocols showed greater increases in HR compared with LW. Also the HW indicated greater increases than LW in RPP at post-exercise (p < 0.05). All protocols increased SBP, HR and RPP responses at the 10(th) and 20(th) min of post-exercise. With regard to different workloads of plyometric exercise, HW condition indicated greater increases in HR and RPP and strength and conditioning professionals and athletes must keep in their mind that HW of plyometric exercise induces greater cardiovascular responses.
Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A
2016-03-01
A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.
Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung
2015-01-01
In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.
NASA Astrophysics Data System (ADS)
Satriani, W. H.; Redjeki, S.; Kartinah, N. T.
2017-08-01
Increased neuroplasticity induced by complex aerobic physical exercise is associated with improved cognitive function in adult mice. Increased cognitive function is assumed to be based on increased synapse formation. One of the regions of the brain that is important in cognitive function is the hippocampus, which plays a role in memory formation. Post synaptic density-95 (PSD-95) is an adhesion protein of the post-synaptic density scaffolding that is essential to synaptic stabilization. As we age, the PSD-95 molecule matures the synapses needed for the formation of the basic circuitry of the nervous system in the brain. However, during the growth period, synapse elimination is higher than its formation. This study aims to determine whether complex aerobic exercise can improve cognitive function and PSD-95 levels in the hippocampus of juvenile mice during their growth stage. The mice performed complex aerobic exercise starting at five weeks of age and continuing for seven weeks with a gradual increase of 8 m/min. At eight weeks it was increased to 10 m/min. The exercise was done for five days of each week. The subjects of the study were tested for cognition one week before being sacrificed (at 12 weeks). The PSD-95 in the hippocampus was measured with ELISA. The results showed that there was a significant difference in cognitive function, where p < 0.05, between the group that was given complex aerobic exercise and a control group that did not. However, the PSD-95 levels did not differ significantly between the two groups. The results of this study indicate that early complex aerobic exercise can improve cognitive ability in adulthood but does not increase the levels of PSD-95 in adults.
Exercise versus Nonexercise Activity: E-diaries Unravel Distinct Effects on Mood.
Reichert, Markus; Tost, Heike; Reinhard, Iris; Schlotz, Wolff; Zipf, Alexander; Salize, Hans-Joachim; Meyer-Lindenberg, Andreas; Ebner-Priemer, Ulrich W
2017-04-01
The association between physical activity and mood is of major importance to increase physical activity as a prevention strategy for noncommunicable diseases and to improve mental health. Unfortunately, existing studies examining how physical activity and mood wax and wane within persons over time in everyday life do show ambiguous findings. Taking a closer look at these studies reveals that the aggregation levels differ tremendously. Whereas mood is conceptualized as a three-dimensional construct, physical activity is treated as a global construct not taking into account its distinct components like exercise (such as jogging) and nonexercise activity (NEA; such as climbing stairs). To overcome these limitations, we conducted an ambulatory assessment study on the everyday life of 106 adults over 7 d continuously measuring NEA via accelerometers and repeatedly querying for mood in real time via GPS-triggered e-diaries. We used multilevel modeling to derive differential within-subject effects of exercise versus NEA on mood and to conduct analyses on the temporal course of effects. Analyses revealed that exercise increased valence (beta = 0.023; P < 0.05) and calmness (beta = 0.022; P < 0.05). A tendency of decreasing energetic arousal (beta = -0.029) lacked significance. NEA, parameterized as 15-min episodes of physical activity intensity in everyday life, increased energetic arousal (beta = 0.135; P < 0.001) and decreased calmness (stand. beta = -0.080; P < 0.001). A tendency of increasing valence (beta = 0.014) lacked significance. Using longer time intervals for NEA revealed similar findings, thus confirming our findings. Exercise and NEA differed regarding their within-subject effects on mood, whereas exercise increased valence and calmness, NEA increased energetic arousal and decreased calmness. Therefore, it appears necessary to clearly differentiate between exercise and NEA regarding their within-subject effects on mood dimensions in both research and treatment.
Krishnan, Vidya S; White, Zoe; Terrill, Jessica R; Hodgetts, Stuart I; Fitzgerald, Melinda; Shavlakadze, Tea; Harvey, Alan R; Grounds, Miranda D
2017-10-01
The ability of resistance exercise, initiated from mid-life, to prevent age-related changes in old sciatic nerves, was investigated in male and female C57BL/6J mice. Aging is associated with cellular changes in old sciatic nerves and also loss of skeletal muscle mass and function (sarcopenia). Mature adult mice aged 15 months (M) were subjected to increasing voluntary resistance wheel exercise (RWE) over a period of 8 M until 23 M of age. This prevented sarcopenia in the old 23 M aged male and female mice. Nerves of control sedentary (SED) males at 3, 15 and 23 M of age, showed a decrease in the myelinated axon numbers at 15 and 23 M, a decreased g-ratio and a significantly increased proportion of myelinated nerves containing electron-dense aggregates at 23 M. Myelinated axon and nerve diameter, and axonal area, were increased at 15 M compared with 3 and 23 M. Exercise increased myelinated nerve profiles containing aggregates at 23 M. S100 protein, detected with immunoblotting was increased in sciatic nerves of 23 M old SED females, but not males, compared with 15 M, with no effect of exercise. Other neuronal proteins showed no significant alterations with age, gender or exercise. Overall the RWE had no cellular impact on the aging nerves, apart from an increased number of old nerves containing aggregates. Thus the relationship between cellular changes in aging nerves, and their sustained capacity for stimulation of old skeletal muscles to help maintain healthy muscle mass in response to exercise remains unclear.
Veasey, Rachel C; Haskell-Ramsay, Crystal F; Kennedy, David O; Wishart, Karl; Maggini, Silvia; Fuchs, Caspar J; Stevenson, Emma J
2015-07-27
Exercise undertaken in a fasted state can lead to higher post-exercise mental fatigue. The administration of a vitamin and mineral complex with guaraná (MVM + G) has been shown to attenuate mental fatigue and improve performance during cognitively demanding tasks. This placebo-controlled, double-blind, randomized, balanced cross-over study examined the effect of MVM + G consumed prior to morning exercise on cognitive performance, affect, exertion, and substrate metabolism. Forty active males (age 21.4 ± 3.0 year; body mass index (BMI) 24.0 ± 2.4 kg/m2; maximal oxygen consumption (V̇O2max) 57.6 ± 7.3 mL/min/kg) completed two main trials, consuming either MVM + G or placebo prior to a 30-min run at 60% V̇O2max. Supplementation prior to exercise led to a small but significant reduction in Rating of Perceived Exertion (RPE) during exercise compared to the placebo. The MVM + G combination also led to significantly increased accuracy of numeric working memory and increased speed of picture recognition, compared to the placebo. There were no significant effects of supplementation on any other cognitive or mood measures or on substrate metabolism during exercise. These findings demonstrate that consuming a vitamin and mineral complex containing guaraná, prior to exercise, can positively impact subsequent memory performance and reduce perceived exertion during a moderate-intensity run in active males.
Veasey, Rachel C.; Haskell-Ramsay, Crystal F.; Kennedy, David O.; Wishart, Karl; Maggini, Silvia; Fuchs, Caspar J.; Stevenson, Emma J.
2015-01-01
Exercise undertaken in a fasted state can lead to higher post-exercise mental fatigue. The administration of a vitamin and mineral complex with guaraná (MVM + G) has been shown to attenuate mental fatigue and improve performance during cognitively demanding tasks. This placebo-controlled, double-blind, randomized, balanced cross-over study examined the effect of MVM + G consumed prior to morning exercise on cognitive performance, affect, exertion, and substrate metabolism. Forty active males (age 21.4 ± 3.0 year; body mass index (BMI) 24.0 ± 2.4 kg/m2; maximal oxygen consumption (V̇O2max) 57.6 ± 7.3 mL/min/kg) completed two main trials, consuming either MVM + G or placebo prior to a 30-min run at 60% V̇O2max. Supplementation prior to exercise led to a small but significant reduction in Rating of Perceived Exertion (RPE) during exercise compared to the placebo. The MVM + G combination also led to significantly increased accuracy of numeric working memory and increased speed of picture recognition, compared to the placebo. There were no significant effects of supplementation on any other cognitive or mood measures or on substrate metabolism during exercise. These findings demonstrate that consuming a vitamin and mineral complex containing guaraná, prior to exercise, can positively impact subsequent memory performance and reduce perceived exertion during a moderate-intensity run in active males. PMID:26225993
Van Rensburg, Kate Janse; Taylor, Adrian; Hodgson, Tim
2009-11-01
Attentional bias towards smoking-related cues is increased during abstinence and can predict relapse after quitting. Exercise has been found to reduce cigarette cravings and desire to smoke during temporary abstinence and attenuate increased cravings in response to smoking cues. To assess the acute effects of exercise on attentional bias to smoking-related cues during temporary abstinence from smoking. In a randomized cross-over design, on separate days regular smokers (n = 20) undertook 15 minutes of exercise (moderate intensity stationary cycling) or passive seating following 15 hours of nicotine abstinence. Attentional bias was measured at baseline and post-treatment. The percentage of dwell time and direction of initial fixation was assessed during the passive viewing of a series of paired smoking and neutral images using an Eyelink II eye-tracking system. Self-reported desire to smoke was recorded at baseline, mid- and post-treatment and post-eye-tracking task. There was a significant condition x time interaction for desire to smoke, F((1,18)) = 10.67, P = 0.004, eta(2) = 0.36, with significantly lower desire to smoke at mid- and post-treatment following the exercise condition. The percentage of dwell time and direction of initial fixations towards smoking images were also reduced significantly following the exercise condition compared with the passive control. Findings support previous research that acute exercise reduces desire to smoke. This is the first study to show that exercise appears to also influence the salience and attentional biases towards cigarettes.
Stöcker, F; Von Oldershausen, C; Paternoster, F K; Schulz, T; Oberhoffer, R
2017-07-01
Increased local blood supply is thought to be one of the mechanisms underlying oxidative adaptations to interval training regimes. The relationship of exercise intensity with local blood supply and oxygen availability has not been sufficiently evaluated yet. The aim of this study was to examine the effect of six different intensities (40-90% peak oxygen uptake, VO 2peak ) on relative changes in oxygenated, deoxygenated and total haemoglobin (ΔO 2 Hb, ΔHHb, ΔTHb) concentration after exercise as well as end-exercise ΔHHb/ΔVO 2 as a marker for microvascular O 2 distribution. Seventeen male subjects performed an experimental protocol consisting of 3 min cycling bouts at each exercise intensity in randomized order, separated by 5 min rests. ΔO 2 Hb and ΔHHb were monitored with near-infrared spectroscopy of the vastus lateralis muscle, and VO 2 was assessed. ΔHHb/ΔVO 2 increased significantly from 40% to 60% VO 2 peak and decreased from 60% to 90% VO 2 peak. Post-exercise ΔTHb and ΔO 2 Hb showed an overshoot in relation to pre-exercise values, which was equal after 40-60% VO 2peak and rose significantly thereafter. A plateau was reached following exercise at ≥80% VO 2peak . The results suggest that there is an increasing mismatch of local O 2 delivery and utilization during exercise up to 60% VO 2peak . This insufficient local O 2 distribution is progressively improved above that intensity. Further, exercise intensities of ≥80% VO 2peak induce highest local post-exercise O 2 availability. These effects are likely due to improved microvascular perfusion by enhanced vasodilation, which could be mediated by higher lactate production and the accompanying acidosis. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Rahman, Md Mahbubur; Kwon, Han-Sol; Kim, Myung-Jin; Go, Hyeon-Kyu; Oak, Min-Ho; Kim, Do-Hyung
2017-08-01
The objective was to investigate the effects of melatonin and exercise on insulin resistance (IR), hypertension and fatigue syndrome in a rat model of type 2 diabetes mellitus (T2DM). Rats were divided into 5 groups namely normal control (NC), T2DM control group (DC), diabetes plus exercise (DE), diabetes plus oral melatonin supplement (DM) and diabetes plus melatonin and exercise (DME) groups. Melatonin was administered orally 5mg/kg twice daily and 40min swimming/day 5days/week were regimented after diabetes induction. Blood pressure, fasting blood glucose, insulin, IR, serum leptin, lipid profiles, inflammatory cytokines, lipid peroxidation increased significantly (P<0.01) while serum adiponectin, antioxidant activities (superoxide dismutase, glutathione), exercise performance significantly decreased (P<0.001) in the DC group compared with the control group. Combined effects of exercise and melatonin ameliorated markedly hypertension, IR, biochemical alteration induced by diabetes and significantly increased exercise performance (P<0.01). The expression glucose transporter type 4 (GLUT4) mitochondrial biogenesis related proteins such as peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1 α), nuclear respiratory factor (NRFs) and mitochondrial transcription factor-A were up-regulated skeletal and cardiac muscle in the DME group. Melatonin supplementation in combination with exercise behavior may ameliorate IR, hypertension and exercise performance or fatigue possibly by improving antioxidative activities, hyperlipidemia, inflammatory cytokines via up-regulation of GLUT4, PGC-1 α and mitochondrial biogenesis in T2DM rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Augmentation of Deglutitive Thyrohyoid Muscle Shortening by the Shaker Exercise
Mepani, Rachel; Antonik, Stephen; Massey, Benson; Kern, Mark; Logemann, Jerilyn; Pauloski, Barbara; Rademaker, Alfred; Easterling, Caryn
2010-01-01
Earlier studies of the effect of 6 weeks of the Shaker Exercise have shown significant increase in UES opening and anterior excursion of larynx and hyoid during swallowing in patients with upper esophageal sphincter (UES) dysfunction, resulting in elimination of aspiration and resumption of oral intake. This effect is attributed to strengthening of the suprahyoid muscles, as evidenced by comparison of electromyographic changes in muscle fatigue before and after completion of the exercise regime. The effect of this exercise on thyrohyoid muscle shortening is unknown. Therefore the aim of this study was to determine the effect of the exercise on thyrohyoid muscle shortening. We studied 11 dysphagic patients with UES dysfunction. Six were randomized to traditional swallowing therapy and five to the Shaker Exercise. Videofluoroscopy was used to measure deglutitive thyrohyoid shortening before and after completion of assigned therapy regimen. Maximum thyrohyoid muscle shortening occurred at close temporal proximity to the time of maximal thyroid cartilage excursion. The percent change in thyrohyoid distance from initiation of deglutition to maximal anterior/superior hyoid excursion showed no statistically significant difference between the two groups prior to either therapy (p = 0.54). In contrast, after completion of therapy, the percent change in thyrohyoid distance in the Shaker Exercise group was significantly greater compared to the traditional therapy (p = 0.034). The Shaker Exercise augments the thyrohyoid muscle shortening in addition to strengthening the suprahyoid muscles. The combination of increased thyrohyoid shortening and suprahyoid strengthening contributes to the Shaker Exercise outcome of deglutitive UES opening augmentation. PMID:18685891
Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.
Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I
2014-09-01
There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.
Differential activation of parts of the latissimus dorsi with various isometric shoulder exercises.
Park, Se-yeon; Yoo, Won-gyu
2014-04-01
As no study has examined whether the branches of the latissimus dorsi are activated differently in different exercises, we investigated intramuscular differences of components of the latissimus dorsi during various shoulder isometric exercises. Seventeen male subjects performed four isometric exercises: shoulder extension, adduction, internal rotation, and shoulder depression. Surface electromyography (sEMG) was used to collect data from the medial and lateral components of the latissimus dorsi during the isometric exercises. Two-way repeated analysis of variance with two within-subject factors (exercise condition and muscle branch) was used to determine the significance of differences between the branches, and which branch was activated more with the exercise variation. The root mean squared sEMG values for the muscles were normalized using the modified isolation equation (%Isolation) and maximum voluntary isometric contraction (%MVIC). Neither the %MVIC nor %Isolation data differed significantly between muscle branches, while there was a significant difference with exercise. %MVIC was significantly higher with shoulder extension, compared to the other isometric exercises. There was a significant correlation between exercise condition and muscle branch in the %Isolation data. Shoulder extension and adduction and internal rotation increased %Isolation of the medial latissimus dorsi more than shoulder depression. Shoulder depression had the highest value of %Isolation of the lateral latissimus dorsi compared to the other isometric exercises. Comparing the medial and lateral latissimus dorsi, the medial component was predominantly activated with shoulder extension, adduction, and internal rotation, and the lateral component with shoulder depression. Shoulder extension is effective for activating the latissimus dorsi regardless of the intramuscular branch. Copyright © 2014 Elsevier Ltd. All rights reserved.
Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi
2017-08-01
Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.
Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen; Vickers, Austen; Frear, Benjamin; Gilleland, Diana L; Bonner, Daniel E; Thomas, James M; Donley, David A; Lively, Mathew W; Mohamed, Junaith S
2017-11-09
Older men (n = 12) and women (n = 18) 65-80 years of age completed 12 weeks of exercise and took either a placebo or resveratrol (RSV) (500 mg/d) to test the hypothesis that RSV treatment combined with exercise would increase mitochondrial density, muscle fatigue resistance, and cardiovascular function more than exercise alone. Contrary to our hypothesis, aerobic and resistance exercise coupled with RSV treatment did not reduce cardiovascular risk further than exercise alone. However, exercise added to RSV treatment improved the indices of mitochondrial density, and muscle fatigue resistance more than placebo and exercise treatments. In addition, subjects that were treated with RSV had an increase in knee extensor muscle peak torque (8%), average peak torque (14%), and power (14%) after training, whereas exercise did not increase these parameters in the placebo-treated older subjects. Furthermore, exercise combined with RSV significantly improved mean fiber area and total myonuclei by 45.3% and 20%, respectively, in muscle fibers from the vastus lateralis of older subjects. Together, these data indicate a novel anabolic role of RSV in exercise-induced adaptations of older persons and this suggests that RSV combined with exercise might provide a better approach for reversing sarcopenia than exercise alone. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effects of antihypertensive agents on blood pressure during exercise.
Arita, M; Hashizume, T; Wanaka, Y; Handa, S; Nakamura, C; Fujiwara, S; Nishio, I
2001-11-01
The relationship between blood pressure (BP) and cardiovascular morbidity has been appreciated for many years. Casual BP may not be representative of the pressure at other times. It is recognized that BP during exercise may be a more accurate predictor than casual BP. There is, however, little information about the effects of antihypertensive drugs on the BP during exercise. This study was designed to investigate the effects of various antihypertensive agents on BP during exercise. Sixty-four patients (age, 49+/-10 years) with untreated essential hypertension (WHO I, II) were studied during a supine ergometric exercise regimen. A graded exercise test was started at a workload of 50 W, and the load was increased by 25 W every 3 min. The hemodynamic responses to exercise were evaluated by changes in systolic and diastolic BP (SBP, DBP) and heart rate (HR). Plasma norepinephrine (NE) levels were measured at rest and during submaximal exercise, and before and after 4 weeks of treatment with metoprolol (METO), doxazosin (DOXA), trichlormethiazide (TCTZ), nifedipine (NIFE), amlodipine (AMLO) and temocapril (TEMO) between left ventricular mass index (LVMI) and BP values at rest, during exercise, and during the recovery period after exercise were assessed by multiple regression analysis. The stepwise selection (forward conditional) method showed that LVMI was significantly associated with SBP during submaximal exercise and during the recovery period. All antihypertensive treatments decreased SBP and DBP (p<0.01) at rest. METO, AMLO and TEMO significantly lowered SBP (p<0.05) during exercise, whereas DOXA, TCTZ and NIFE induced no change in SBP. The exercise-induced increase of plasma NE was further enhanced by METO and NIFE but not by AMLO, DOXA, or TCTZ, and it was significantly suppressed by TEMO (p<0.01). These results suggest that BP during exercise is more highly associated with the progression of left ventricular hypertrophy (LVH) than is casual BP. Because antihypertensive agents differ in their effects on exercise hemodynamics, we recommend that hemodynamic factors during exercise be considered when selecting the optimal antihypertensive medication for highly active patients.
The role of exercise in the management of rheumatoid arthritis.
Metsios, George S; Stavropoulos-Kalinoglou, Antonis; Kitas, George D
2015-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with significant functional impairment and increased risk for cardiovascular disease. Along with pharmacological therapy, exercise seems to be a very promising intervention to improve disease-related outcomes, including functional ability and systemic manifestations, such as the increased cardiovascular risk. In this review, we discuss the physiological mechanisms by which exercise improves inflammation, cardiovascular risk and psychological health in patients with rheumatoid arthritis (RA) and describe in detail how exercise can be incorporated in the management of this disease using real examples from our clinical practice.
Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira
2015-04-01
The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P < 0.05 was assumed. Exercise induced a significant decrease in glycemia in both diabetic and obese animals. The expression of precursor and processed protein forms of MSTN and the weight of gastrocnemius muscle did not vary in sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.
Mohsenifar, Z; Tashkin, D P; Levy, S E; Bjerke, R D; Clements, P J; Furst, D
1981-05-01
Wasted ventilation fraction (Vd/Vt) normally declines substantially during exercise in persons without lung disease. Failure of Vd/Vt to decrease during exercise has been reported to be one of the earliest abnormalities in patients with dyspnea caused by pulmonary vaso-occlusive disease, suggesting that measurement of Vd/Vt at rest and during exercise are useful in the diagnosis of pulmonary vascular disorders. We studied pulmonary hemodynamic and Vd/Vt responses to exercise in 11 patients in the supine position with suspected pulmonary vascular involvement caused by progressive systemic sclerosis, systemic lupus erythematosus, or recurrent pulmonary emboli, 10 of whom had dyspnea at rest and/or on exertion. In contrast to previous reports of no change or an increase in Vd/Vt during exercise in patients with pulmonary vascular disease, we found Vd/Vt to decrease significantly during exercise in 8 of 9 patients in whom mean pulmonary artery pressures were abnormally elevated at rest and/or during exercise. Our findings suggest that normal responses of Vd/Vt to exercise do not exclude hemodynamically significant pulmonary vaso-occlusive disease.
Lai, Aiping; Chen, Wenhe; Helm, Kelly
2013-01-01
Visfatin is a recently discovered adipokine that contributes to glucose and obesity-related conditions. This study investigates Visfatin RS4730153 polymorphism from the perspectives of its relations with glucose/lipid metabolism and its influence on the effects of exercise-induced weight loss. Eighty-eight obese Han Chinese children and adolescents were randomly selected from a 2008 Shanghai Weight Loss Summer Camp and were supervised to complete a 4 week aerobic exercise training program. Significant differences were observed in before-exercise TG value and exercise-induced HOMA-β change, with the AG group having a much higher TG value than the GG group (P ≤ 0.05), and the latter exhibiting a significantly larger before-and-after exercise HOMA-β change than the former (P ≤ 0.05). However, no significant difference was observed between the two groups in before exercise indices of body shape, function and quality, nor in exercise-induced changes of body shape, function, and quality. Findings suggest that Visfatin RS4730153 homozygous GG genotype may effect adjustment of glucose and lipid metabolism in obese children and adolescents by reducing TG levels and increasing insulin sensitivity to exercise. PMID:23289013
Peake, Jonathan M; Roberts, Llion A; Figueiredo, Vandre C; Egner, Ingrid; Krog, Simone; Aas, Sigve N; Suzuki, Katsuhiko; Markworth, James F; Coombes, Jeff S; Cameron-Smith, David; Raastad, Truls
2017-02-01
Cold water immersion and active recovery are common post-exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion. We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise-trained men 2, 24 and 48 h during recovery after acute resistance exercise. Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery. Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Cold water immersion and active recovery are common post-exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower-body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB-crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB-crystallin and the percentage of type II fibres stained for αB-crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young
2017-05-01
The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.
Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki
2012-06-01
To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.
Al-Jarrah, Muhammed; Matalka, Ismail; Aseri, Hasan Al; Mohtaseb, Alia; Smirnova, Irina V; Novikova, Lesya; Stehno-Bittel, Lisa; Alkhateeb, Ahed
2010-10-11
Endometrial cancer is one of the most common types of gynecologic cancers. The ability of exercise to reduce the risk of endometrial cancer in women with type 2 diabetes has been established, but no studies have examined this link in type 1 diabetes.A randomized, controlled animal study was designed using a standard rat model of type 1 diabetes. The goal of this study was to investigate the ability of exercise to prevent increased levels of endometrial cancer biomarkers, estrogen receptor (ERα) and p16, and endometrial hyperplasia associated with diabetes. FORTY FEMALE RATS WERE RANDOMIZED INTO FOUR GROUPS: sedentary control, exercise control, sedentary or exercised diabetic. Diabetes was induced by alloxan injection. A 4-week treadmill training program was initiated with the development of diabetes. Endometrial tissues were evaluated for hyperplasia and ERα and p16 levels and subcellular localization using microscopy. Severe diabetes lead to hyperplasia in the endometrial tissue in 70% of sedentary diabetic rats. Exercise-trained diabetic rats and the non-diabetic rats displayed no hyperplasia. The expression of ERα increased significantly (p < 0.02) while the expression level of p16 decreased significantly (p < 0.04) in the diabetic sedentary group compared to the non-diabetic groups. Exercise training led to a reversal in the percentage of p16 and ERα positive cells in diabetic rats. Severe diabetes leads to hyperplasia of the endometrial tissue and increased ERα levels and decreased p16 levels in rats, which can be prevented with aerobic exercise. Diabetes; Estrogen receptor alpha; P16; Endometrial hyperplasia; Endometrial cancer; Exercise.
Alkatan, Mohammed; Baker, Jeffrey R; Machin, Daniel R; Park, Wonil; Akkari, Amanda S; Pasha, Evan P; Tanaka, Hirofumi
2016-03-01
Arthritis and its associated joint pain act as significant barriers for adults attempting to perform land-based physical activity. Swimming can be an ideal form of exercise for patients with arthritis. Yet there is no information on the efficacy of regular swimming exercise involving patients with arthritis. The effect of a swimming exercise intervention on joint pain, stiffness, and physical function was evaluated in patients with osteoarthritis (OA). Using a randomized study design, 48 sedentary middle-aged and older adults with OA underwent 3 months of either swimming or cycling exercise training. Supervised exercise training was performed for 45 min/day, 3 days/week at 60-70% heart rate reserve for 12 weeks. The Western Ontario and McMaster Universities Arthritis Index was used to measure joint pain, stiffness, and physical limitation. After the exercise interventions, there were significant reductions in joint pain, stiffness, and physical limitation accompanied by increases in quality of life in both groups (all p < 0.05). Functional capacity as assessed by maximal handgrip strength, isokinetic knee extension and flexion power (15-30% increases), and the distance covered in the 6-min walk test increased (all p < 0.05) in both exercise groups. No differences were observed in the magnitude of improvements between swimming and cycling training. Regular swimming exercise reduced joint pain and stiffness associated with OA and improved muscle strength and functional capacity in middle-aged and older adults with OA. Additionally, the benefits of swimming exercise were similar to the more frequently prescribed land-based cycling training. clinicaltrials.gov NCT01836380.
Menêses, Annelise Lins; Forjaz, Cláudia Lúcia de Moraes; de Lima, Paulo Fernando Marinho; Batista, Rafael Marinho Falcão; Monteiro, Maria de Fátima; Ritti-Dias, Raphael Mendes
2015-03-01
The study aims to evaluate the effects of the order of endurance and resistance exercises on postexercise blood pressure (BP) and hemodynamics in hypertensive women. Nineteen hypertensive women underwent 3 sessions: control (50 minutes rest), endurance (50-60% of heart rate reserve) followed by resistance exercise (50% of 1 repetition maximum) (E + R), and resistance followed by endurance exercise (R + E). Before and 30 minutes after each session, BP, peripheral vascular resistance, cardiac output, stroke volume, and heart rate were measured. Postexercise increases in systolic (E + R: +1 ± 3 mm Hg and R + E: +3 ± 3 mm Hg), diastolic (E + R: +3 ± 1 mm Hg and R + E: +3 ± 2 mm Hg), and mean BP (E + R: +3 ± 1 mm Hg and R + E: +3 ± 2 mm Hg) were significantly lower after the exercise sessions compared with the control session (p ≤ 0.05). The exercise sessions abolished the increases in peripheral vascular resistance (E + R: +0.00 ± 0.04 mm Hg·min·L and R + E: +0.05 ± 0.05 mm Hg·min·L) and the decreases in cardiac output (E + R: +0.04 ± 0.28 L·min and R + E: -0.26 ± 0.28 L·min) observed after the control session (p ≤ 0.05). After the exercise sessions, stroke volume decreased (E + R: -14 ± 3 ml and R + E: -9 ± 4 ml) and heart rate increased (E + R: +5 ± 1 b·min and R + E: +4 ± 1 b·min) in comparison with the control session (p ≤ 0.05). For all the variables, there were no significant differences between the exercise sessions. Regardless of the order of endurance and resistance exercises, combined exercise sessions abolished increases in BP observed in a control condition due to a reduction in peripheral vascular resistance and increases in cardiac output. Thus, combined exercises should be prescribed to individuals with hypertension to control their BP, regardless of the order they are accomplished.
Byrkjeland, Rune; Njerve, Ida U; Anderssen, Sigmund; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein
2015-09-01
Few exercise trials have focused on patients with both type 2 diabetes and coronary artery disease. We investigated the effects of 1 year of exercise training on HbA1c and VO(2peak) in these patients. Patients with type 2 diabetes and coronary artery disease (n = 137) were randomised to combined exercise training or control group. HbA(1c) was measured at the beginning and end of the study. Changes in VO(2peak), and also ventilatory threshold and time to exhaustion, were assessed by cardiopulmonary exercise testing. No differences in changes between the randomised groups were observed in HbA1c and VO(2peak), whereas ventilatory threshold and time to exhaustion increased significantly in the exercise group compared with the controls (p = 0.046 and p = 0.034). In patients without previous acute myocardial infarction and diabetes microvascular complications (n = 46), the exercise group did improve HbA1c and VO(2peak) compared with the controls (p = 0.052 and p = 0.035). No significant effects of exercise training on HbA(1c) or VO(2peak) were observed in patients with type 2 diabetes and coronary artery disease, although improvements were seen in patients without vascular complications beyond coronary artery disease, implying that the degree of vascular disease may influence exercise responses. Ventilatory threshold and time to exhaustion did increase significantly, indicating improved exercise performance despite the minor change in VO(2peak). © The Author(s) 2015.
Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening
Nam, J; Perera, P; Gordon, R; Jeong, Y; Blazek, AD; Kim, DG; Tee, BC; Sun, Z; Eubank, TD; Zhao, Y; Lablebecioglu, B; Liu, S; Litsky, A; Weisleder, NL; Lee, BS; Butterfield, T; Schneyer, AL; Agarwal, S
2015-01-01
Exercise is vital for maintaining bone strength and architecture. Follistatin like 3 (FSTL3), a member of Follistatin family, is a mechanosensitive protein upregulated in response to exercise and is involved in regulating musculoskeletal health, we investigated the potential role of FSTL3 in exercise-driven bone remodeling. Exercise-dependent regulation of bone structure and functions was compared in mice with global Fstl3 gene deletion (Fstl3−/−) and their age-matched Fstl3+/+ littermates. Mice were exercised by low-intensity treadmill walking. The mechanical properties and mineralization were determined by μCT, three-point bending test and sequential incorporation of calcein and alizarin complexone. ELISA, Western-blot analysis and qRT-PCR were used to analyze the regulation of FSTL3 and associated molecules in the serum specimens and tissues. Daily exercise significantly increased circulating FSTL3 levels in mice, rats and humans. Compared to age-matched littermates, Fstl3−/− mice exhibited significantly lower fracture tolerance, having greater stiffness, but lower strain at fracture and yield energy. Furthermore, increased levels of circulating FSTL3 in young mice paralleled greater strain at fracture compared to the lower levels of FSTL3 in older mice. More significantly, Fstl3−/− mice exhibited loss of mechanosensitivity and irresponsiveness to exercise-dependent bone formation as compared to their Fstl3+/+ littermates. In addition, FSTL3 gene deletion resulted in loss of exercise-dependent sclerostin regulation in osteocytes and osteoblasts, as compared to Fstl3+/+ osteocytes and osteoblasts, in vivo and in vitro. The data identifies FSTL3 as a critical mediator of exercise-dependent bone formation and strengthening and point to its potential role in bone health and in musculoskeletal diseases. PMID:25937185
Lee, Haelim; Caguicla, Joy Matthew Cuasay; Park, Sangseo; Kwak, Dong Jick; Won, Deuk-Yeon; Park, Yunjin; Kim, Jeeyoun; Kim, Myungki
2016-01-01
The aim of this study was to investigate the effects of an 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women. In total, 74 postmenopausal women were recruited and randomly allocated to a Pilates exercise group (n=45) and a control group (n=29). Menopausal symptoms were measured through a questionnaire, while lumbar strength was measured through a lumbar extension machine, and lumbar flexibility was measured through sit-and-reach and trunk lift tests performed before and after the Pilates exercise program, respectively. The Pilates exercises consisted of 7–10 min for warm-up, 35–40 min for the main program modified from Pilates Academy International, and 5–7 min for the cool-down, and were performed 3 times a week for 8 weeks. The results showed a significant decrease in menopausal symptoms except urogenital symptoms. Also, the results presented a significant increase in lumbar strength and flexibility after 8 weeks of the Pilates exercise program. We concluded that an 8-week Pilates exercise program is effective in decreasing menopausal symptoms and increasing lumbar strength and flexibility. PMID:27419122
Lee, Haelim; Caguicla, Joy Matthew Cuasay; Park, Sangseo; Kwak, Dong Jick; Won, Deuk-Yeon; Park, Yunjin; Kim, Jeeyoun; Kim, Myungki
2016-06-01
The aim of this study was to investigate the effects of an 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women. In total, 74 postmenopausal women were recruited and randomly allocated to a Pilates exercise group (n=45) and a control group (n=29). Menopausal symptoms were measured through a questionnaire, while lumbar strength was measured through a lumbar extension machine, and lumbar flexibility was measured through sit-and-reach and trunk lift tests performed before and after the Pilates exercise program, respectively. The Pilates exercises consisted of 7-10 min for warm-up, 35-40 min for the main program modified from Pilates Academy International, and 5-7 min for the cool-down, and were performed 3 times a week for 8 weeks. The results showed a significant decrease in menopausal symptoms except urogenital symptoms. Also, the results presented a significant increase in lumbar strength and flexibility after 8 weeks of the Pilates exercise program. We concluded that an 8-week Pilates exercise program is effective in decreasing menopausal symptoms and increasing lumbar strength and flexibility.
The Effects of Regular Exercise Programs for Visually Impaired and Sighted Schoolchildren.
ERIC Educational Resources Information Center
Blessing, D. L.; And Others
1993-01-01
This study examined effects of a 16-week aerobic exercise training program on the cardiovascular fitness and body composition of 30 students with visual impairments. In comparison with traditional physical education provided to sighted students, the exercise training program resulted in a significant increase in cardiovascular fitness and a…
Can an Inquiry Approach Improve College Student Learning in a Teaching Laboratory?
Cogan, John G.
2009-01-01
We present an inquiry-based, hands-on laboratory exercise on enzyme activity for an introductory college biology course for science majors. We measure student performance on a series of objective and subjective questions before and after completion of this exercise; we also measure performance of a similar cohort of students before and after completion of an existing, standard, “direct” exercise over the same topics. Although student performance on these questions increased significantly after completion of the inquiry exercise, it did not increase after completion of the control, standard exercise. Pressure to “cover” many complex topics as preparation for high-stakes examinations such as the Medical College Admissions Test may account for persistence of highly efficient, yet dubiously effective “cookbook” laboratory exercises in many science classes. PMID:19255136
Training effects on ROS production determined by electron paramagnetic resonance in master swimmers.
Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra
2015-01-01
Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min(-1)) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg(-1)·min(-1) PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (-20%) and after IE (-25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function.
De Crée, C; Van Kranenburg, G; Geurten, P; Fujimura, Y; Keizer, H A
1997-12-01
The present study was designed to assess the effects of acute exercise and short-term intensive training on catechol-O-methyltransferase (COMT) activity. COMT inactivates catecholamines and converts primary catecholestrogens (CE) into their O-methylated form yielding the 2- (2-MeOE) and 4-methoxyestrogens (4-MeOE). Blood samples were obtained from 15 previously untrained eumenorrheic women (mean +/- SE, VO2max: 43.8 mL x kg-1 x min-1 +/- 0.6) before and after a 5-d intensive training period, at rest and during incremental exercise. COMT activity was determined in the erythrocytes (RBC-COMT) after incubation of blood lysate with primary CE. The formation of both 2- and 4-MeOE was significantly higher (P < 0.05) during the luteal (LPh) than during the follicular phase (FPh). The amount of 2-MeOE formed (FPh: 4.2 +/- 0.2%; LPh: 4.9 +/- 0.2%) was significantly greater than the produced amount of 4-MeOE (FPh: 1.4 +/- 0.1%; LPh: 1.5 +/- 0.1%) (P < 0.05). Both before and after training, incremental exercise did not significantly alter RBC-COMT activity although we observed a trend for RBC-COMT activity increasing proportionally with the exercise intensity. After a brief period of exhaustive training, during rest the formation of 2-MeOE (FPh: +16.7%, LPh: +15.7%) and 4-MeOE (FPh: +28.6%; LPh: +40%) was significantly (P < 0.05) increased. The results of the present study are consistent with earlier findings reporting increased plasma concentrations of O-methylated CE following training. It is concluded that RBC-COMT activity is increased by brief intensive training, but not by acute exercise. We speculate that an increase in COMT-catalyzed O-methylation of CE may indicate that less COMT is available to deactivate norepinephrine.
Shi, Yali; Cai, Dehua; Wang, Xiaojie; Liu, Xinshen
2012-12-01
Long-term heavy-load exercise can lead to a decrease in the organism's immune response. In this study, we used 100 Kunming (KM) mice to investigate the immune-regulatory effects of Ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice. Peripheral white blood cells (WBC), the absolute value of neutrophils (NEUT), the phagocytic function of macrophages, serum agglutination valence, and the number of plaque-forming cells (PFC) were evaluated 4 weeks after gavaging long-term heavy-load exercising mice with GLP. After exercise, the WBC count in peripheral blood, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells were significantly reduced in the mice not fed GLP. Both medium and high doses of GLP drastically increased peripheral WBC, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells in long-term heavy-load exercising mice. High doses of GLP increased peritoneal macrophage phagocytic rate considerably. With this study, we demonstrate that 4 weeks of heavy-load exercise can lead to exercise-induced immunosuppression in mice. A supplement of GLP fed to these mice improves both non-specific and specific immune responses among these mice. The effect for the high-dose GLP treatment is especially significant.
Ahmed Hamada, Hamada; Hussein Draz, Amira; Koura, Ghada Mohamed; Saab, Ibtissam M.
2017-01-01
[Purpose] This study was carried out to investigate the carryover effect of hip and knee exercises program on functional performance (single legged hop test as functional performance test and Kujala score for functional activities). [Subjects and Methods] Thirty patients with patellofemoral pain syndrome were randomly assigned into two equal groups. Group (A) consisted of 15 patients undergoing hip strengthening exercises for four weeks then measuring all variables followed by additional four weeks of knee exercises program then measuring all variables again. Group (B): consisted of 15 patients undergoing knee exercises program for four weeks then measuring all variables followed by additional four weeks of hip strengthening exercises then measuring all variables. Functional abilities and knee muscles performance were assessed using Kujala questionnaire and single legged hop test respectively pre and after the completion of the first 4 weeks then after 8 weeks for both groups. [Results] Significantly increase in Kujala questionnaire in group A compared with group B was observed. While, there were significant increase in single legged hop performance test in group B compared with group A. [Conclusion] Starting with hip exercises improve the performance of subjects more than functional activities while starting with knee exercises improve the functional activities of subjects more than performance. PMID:28878459
Ahmed Hamada, Hamada; Hussein Draz, Amira; Koura, Ghada Mohamed; Saab, Ibtissam M
2017-08-01
[Purpose] This study was carried out to investigate the carryover effect of hip and knee exercises program on functional performance (single legged hop test as functional performance test and Kujala score for functional activities). [Subjects and Methods] Thirty patients with patellofemoral pain syndrome were randomly assigned into two equal groups. Group (A) consisted of 15 patients undergoing hip strengthening exercises for four weeks then measuring all variables followed by additional four weeks of knee exercises program then measuring all variables again. Group (B): consisted of 15 patients undergoing knee exercises program for four weeks then measuring all variables followed by additional four weeks of hip strengthening exercises then measuring all variables. Functional abilities and knee muscles performance were assessed using Kujala questionnaire and single legged hop test respectively pre and after the completion of the first 4 weeks then after 8 weeks for both groups. [Results] Significantly increase in Kujala questionnaire in group A compared with group B was observed. While, there were significant increase in single legged hop performance test in group B compared with group A. [Conclusion] Starting with hip exercises improve the performance of subjects more than functional activities while starting with knee exercises improve the functional activities of subjects more than performance.
Liao, Lin Yu; Chung, Wei Sheng; Chen, Kuei Min
2017-01-01
The aim of this study was to pilot test the effects of regular senior elastic band exercises on the generation of free radicals and antioxidant enzyme activities in older adults. Long-term regular exercises have positive health promotion outcomes. On the contrary, high-intensity, high-speed and short-term exercises in older adults may increase free radicals and cause chronic disease and ageing effect. A prospective randomized controlled pilot study. Data were collected during 2012. Twenty-five older adults were recruited from a community care centre, southern Taiwan and were randomly assigned to either an experimental or control group. Twenty-two participants completed the study: experimental group (n = 10) and control group (n = 12). The experimental group performed 6-month senior elastic band exercises while the control group kept regular daily routines. Both groups received blood tests (thiobarbituric acid-reacting substances and glutathione peroxidase) 30 minutes before the study began and 1 hour after the final intervention treatment. At the end of the 6-month senior elastic band exercises, no statistically significant differences in thiobarbituric acid-reacting substances and glutathione peroxidase values between the experimental and control groups. No significant differences existed in both thiobarbituric acid-reacting substances and glutathione peroxidase values before and after the 6-month senior elastic band exercises either. Regular senior elastic band exercises did not increase the generation of free radicals and antioxidant enzyme activities. Senior elastic band exercises have the potential to be promoted among older adults in the community as an exercise option without adverse effects on free radicals and have potential for mitigating ageing and increasing disease control. © 2016 John Wiley & Sons Ltd.
[Variation of cognitive functions and glycemia during physical exercise in Ramadan fasting].
Lotfi, S; Madani, M; Tazi, A; Boumahmaza, M; Talbi, M
2010-01-01
During the month of Ramadan, Muslims fast every day from dawn to sunset. Several studies have shown that Ramadan fasting affects biochemical parameters, sleep/wake cycle, behaviour and food habits. The purpose of the study was to evaluate the effect of Ramadan fasting (RF) and physical exercise on cognitive functions, blood glucose. Eleven healthy male volunteers aged 20.45+/-1.65 years were assessed before RF (B.RF), during the 1st week (wk), 3rd wk and 1 wk B.RF, in blood sugar, work memory (WM), visual perception (VP), before exercise (B. Ex) and after exercise (A. Ex) exercise of 1000 m. Compared to control days (B.RF), there were no significant changes in body mass index. Physical performance declined significantly during 1st wk (p<0.001), 3th wk (p<0.013) and before (p<0.046) of RF. At the level of the glycemia, the results show a significant effect of Ramadan by increasing gradually during Ramadan but nevertheless, the values remain lower of 100mg/dl. No significant change was observed between B. Ex and A. Ex value in WM during RF. However, the WM A. Ex value increase significantly during and after RF (respectively 1st wk (p<0.013), 3rd wk (p<0.005) and before (p<0.003). The VP was significantly affected by fasting effect (F=16.84, p<0.001) and exercise effect (F=14.01, p<0.0001), and was progressively increased 15.56% in the 1st wk, 25.69%, the 3rd wk during RF, and 27.07% A.RF, but no significant change was found in errors performances of VP during and after RF. These results showed that the intermittent fasting imply differently effects on cognitive functions and physiological. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Zhang, Yueyang; Kieffer, James D
2017-10-01
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO 2 ) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO 2 of shortnose sturgeon increased significantly from 126.75 mg O 2 h -1 kg -1 at 15 °C to 253.13 mg O 2 h -1 kg -1 at 25 °C. The temperature coefficient (Q 10 ) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO 2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO 2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO 2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO 2 -routine MO 2 ) increased to a maximum value ∼156 mg O 2 h -1 kg -1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.
Stawski, Robert; Walczak, Konrad; Kosielski, Piotr; Meissner, Pawel; Budlewski, Tomasz; Padula, Gianluca; Nowak, Dariusz
2017-01-01
Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body. PMID:28542490
Delayed leukocytosis after hard strength and endurance exercise: Aspects of regulatory mechanisms
Risøy, Bjørn Audun; Raastad, Truls; Hallén, Jostein; Lappegård, Knut T; Bæverfjord, Kjersti; Kravdal, Astrid; Siebke, Else Marie; Benestad, Haakon B
2003-01-01
Background During infections, polymorphonuclear neutrophilic granulocytes (PMN) are mobilized from their bone marrow stores, travel with blood to the affected tissue, and kill invading microbes there. The signal(s) from the inflammatory site to the marrow are unknown, even though a number of humoral factors that can mobilize PMN, are well known. We have employed a standardized, non-infectious human model to elucidate relevant PMN mobilizers. Well-trained athletes performed a 60-min strenuous strength workout of leg muscles. Blood samples were drawn before, during and just after exercise, and then repeatedly during the following day. Cortisol, GH, ACTH, complement factors, high-sensitive CRP (muCRP), IL-6, G-CSF, IL-8 (CXCL8) and MIP-1β (CCL4) were measured in blood samples. PMN chemotaxins in test plasma was assessed with a micropore membrane technique. Results About 5 hr after the workout, blood granulocytosis peaked to about 150% of baseline. Plasma levels of GH increased significantly 30 min into and 5 min after the exercise, but no increase was recorded for the other hormones. No significant correlation was found between concentrations of stress hormones and the subjects' later occurring PMN increases above their individual baselines. Plasma G-CSF increased significantly – but within the normal range – 65 min after the workout. IL-6 increased very slightly within the normal range, and the chemokines IL-8 and MIP-1β did not increase consistently. However, we found a significant increase of hitherto non-identified PMN-chemotactic activity in plasma 35, 50, and 60 min after the exercise. No systemic complement activation was detected, and (mu)CRP was within the reference range at rest, 5 h and 23 h after the exercise. After endurance exercise, similar findings were made, except for a cortisol response, especially from non-elite runners. Conclusion Apparently, a multitude of humoral factors can – directly or indirectly – mobilize PMN from marrow to blood; some of the factors are, others are not known to be, chemotactic. Under different conditions, different selections of these mobilizers may be used. In the late granulocytosis after heavy, long-lasting exercise a number of factors thought capable of mimicking the granulocytosis of infectious diseases were apparently irrelevant. PMID:14667246
Chan, June Maylin; Vittinghoff, Eric; Van Blarigan, Erin Lynn; Hecht, Frederick
2018-01-01
Background Women significantly decrease their activity levels in the transition to motherhood. Digital health technologies are low cost, scalable, and can provide an effective delivery mechanism for behavior change. This is the first study that examines the use of videoconferencing and mobile apps to create exercise groups for mothers. Objective The aim of the study was to test the feasibility, acceptability, and effectiveness of an individually adaptive and socially supportive physical activity intervention incorporating videoconferencing and mobile apps for mothers. Methods The Moms Online Video Exercise Study was an 8-week, 2-armed, Web-based randomized trial comparing the effectiveness of a group exercise intervention with a waitlist control. Healthy mothers with at least 1 child under the age of 12 years were recruited through Facebook and email listservs. Intervention participants joined exercise groups using videoconferencing (Google Hangouts) every morning on weekdays and exercised together in real time, guided by exercise mobile apps (eg, Nike+, Sworkit) of their choice. Waitlist control participants had access to recommended mobile apps and an invitation to join an exercise group after the 8-week study period. Main outcomes assessed included changes in self-reported moderate, vigorous, and moderate to vigorous physical activity (MVPA) minutes per week in aggregate and stratified by whether women met Centers for Disease Control and Prevention guidelines for sufficient aerobic activity at baseline. Outcomes were measured through self-assessed Web-based questionnaires at baseline and 8 weeks. Results The intervention was effective at increasing exercise for inactive women and proved to be feasible and acceptable to all participants. A total of 64 women were randomized, 30 to intervention and 34 to control. Women attended 2.8 sessions per week. There was a strong, but not statistically significant, trend toward increasing moderate, vigorous, and MVPA minutes for all women. As hypothesized, in the prespecified stratum of women who were inactive at baseline (n=51), intervention participants significantly increased their activity by an average of 50 (95% CI 4.0-95.9, P=.03) MVPA minutes per week more than control participants. They had a corresponding statistically significant net increase of 19 (95% CI 3.2-34.8, P=.02) minutes of vigorous activity. Inactive women in the intervention arm also experienced promising reductions in depression, reporting a statistically significant net decrease in their depression score (−3.8, 95% CI −7.0 to −0.6; P=.02). Conclusions We found that a group exercise intervention using videoconferencing and mobile apps was a feasible and acceptable way to deliver a physical activity intervention to mothers. The intervention increased physical activity in inactive mothers. Further studies are needed to better establish how long these changes in physical activity can be maintained and whether these findings can be reproduced in a more diverse population. Trial Registration ClinicalTrials.gov NCT02805140; https://clinicaltrials.gov/ct2/show/NCT02805140 (Archived by WebCite at http://www.webcitation.org/6yYZwRveg) PMID:29776899
Mascarenhas, Maya Nina; Chan, June Maylin; Vittinghoff, Eric; Van Blarigan, Erin Lynn; Hecht, Frederick
2018-05-18
Women significantly decrease their activity levels in the transition to motherhood. Digital health technologies are low cost, scalable, and can provide an effective delivery mechanism for behavior change. This is the first study that examines the use of videoconferencing and mobile apps to create exercise groups for mothers. The aim of the study was to test the feasibility, acceptability, and effectiveness of an individually adaptive and socially supportive physical activity intervention incorporating videoconferencing and mobile apps for mothers. The Moms Online Video Exercise Study was an 8-week, 2-armed, Web-based randomized trial comparing the effectiveness of a group exercise intervention with a waitlist control. Healthy mothers with at least 1 child under the age of 12 years were recruited through Facebook and email listservs. Intervention participants joined exercise groups using videoconferencing (Google Hangouts) every morning on weekdays and exercised together in real time, guided by exercise mobile apps (eg, Nike+, Sworkit) of their choice. Waitlist control participants had access to recommended mobile apps and an invitation to join an exercise group after the 8-week study period. Main outcomes assessed included changes in self-reported moderate, vigorous, and moderate to vigorous physical activity (MVPA) minutes per week in aggregate and stratified by whether women met Centers for Disease Control and Prevention guidelines for sufficient aerobic activity at baseline. Outcomes were measured through self-assessed Web-based questionnaires at baseline and 8 weeks. The intervention was effective at increasing exercise for inactive women and proved to be feasible and acceptable to all participants. A total of 64 women were randomized, 30 to intervention and 34 to control. Women attended 2.8 sessions per week. There was a strong, but not statistically significant, trend toward increasing moderate, vigorous, and MVPA minutes for all women. As hypothesized, in the prespecified stratum of women who were inactive at baseline (n=51), intervention participants significantly increased their activity by an average of 50 (95% CI 4.0-95.9, P=.03) MVPA minutes per week more than control participants. They had a corresponding statistically significant net increase of 19 (95% CI 3.2-34.8, P=.02) minutes of vigorous activity. Inactive women in the intervention arm also experienced promising reductions in depression, reporting a statistically significant net decrease in their depression score (-3.8, 95% CI -7.0 to -0.6; P=.02). We found that a group exercise intervention using videoconferencing and mobile apps was a feasible and acceptable way to deliver a physical activity intervention to mothers. The intervention increased physical activity in inactive mothers. Further studies are needed to better establish how long these changes in physical activity can be maintained and whether these findings can be reproduced in a more diverse population. ClinicalTrials.gov NCT02805140; https://clinicaltrials.gov/ct2/show/NCT02805140 (Archived by WebCite at http://www.webcitation.org/6yYZwRveg). ©Maya Nina Mascarenhas, June Maylin Chan, Eric Vittinghoff, Erin Lynn Van Blarigan, Frederick Hecht. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.05.2018.
Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G
2016-04-01
The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.
Effects of exercise on mobility in people with Parkinson's disease.
van der Kolk, Nicolien M; King, Laurie A
2013-09-15
Parkinson's disease is a prevalent neurodegenerative disorder for which only symptomatic treatment exists. Gait and balance disturbance is common in Parkinson's disease and is a major contributor to increased disability and decreased health-related quality of life and survival. Balance and gait deficits in Parkinson's disease are notoriously difficult to treat and are not significantly helped by pharmacological or surgical treatment. The last two decades have seen a dramatic increase in the research and clinical interest in using exercise as a treatment for mobility problems in people with Parkinson's disease. With exciting advances in basic science research suggesting neurochemical and neuroplastic changes after exercise, an increasing number of high-quality studies are documenting particular aspects of mobility improving after exercise. Exercise has the potential to help both motor (gait, balance, strength) and nonmotor (depression, apathy, fatigue, constipation) aspects of Parkinson's disease as well as secondary complications of immobility (cardiovascular, osteoporosis). This perspective article focuses primarily on recent evidence on the effects of exercise in improving mobility while highlighting the importance of targeted exercise intervention for maximizing the benefits of exercise. Suggestions for exercise guidelines, adherence issues, and directions for future research are provided. © 2013 Movement Disorder Society.
Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-01-01
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556
Kemmler, W; Bebenek, M; von Stengel, S; Bauer, J
2015-02-01
Young adulthood is characterized by profound life-style changes. This study suggests that reduction of sport or exercise, induced by alteration of the occupational situation, negatively impacts generation/maintenance of peak bone mass. In order to compensate occupational-related reductions of physical activity, workplace exercise programs will be helpful. Only few studies have determined the effect of physical activity or physical exercise on bone mineral density (BMD) in the period of late skeletal maturation, i.e. around peak bone mass. The aim of this article was to determine the long-term effect of different levels of physical activity and exercise directly and indirectly derived by occupation during young adulthood. Sixty-one male and female dental students (DES) and 53 male and female sport students (SPS) 21±2 years old were accompanied over the course (4.8±0.5 years) of their study program. BMD at the lumbar spine (LS), hip, and whole body (WB) were determined using dual-energy X-ray absorptiometry. Parameters of physical activity increased non-significantly in both groups with no relevant differences between the groups. Indices of exercise, however, increased significantly in the SPS group while a significant decrease was assessed for the DES group. Independent of gender, BMD of the SPS increased significantly (p≤0.007) at all skeletal sites (LS, 2.4±3.9%; hip, 1.6±3.5%; WB, 1.8±2.8%) while BMD of the DES remained unchanged at LS (-0.6±4.4%, p=0.432) and WB (0.5±1.9%, p=0.092) but decreased significantly at the hip (-1.9±4.3%, p=0.010). BMD-changes at LS, hip, and WB differ significantly between SPS and DES (p≤0.017). Results remained unchanged after adjusting for baseline BMD-values that differed (p=0.030 to p=0.082) in favor of the SPS group. Changes of exercise levels directly or indirectly caused by occupational factors during young adulthood significantly affected generation and/or maintenance of peak bone mass. Compensatory exercise is thus highly relevant for bone health of young adults.
Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming
2007-03-09
Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.
Forced and voluntary exercise differentially affect brain and behavior.
Leasure, J L; Jones, M
2008-10-15
The potential of physical exercise to decrease body weight, alleviate depression, combat aging and enhance cognition has been well-supported by research studies. However, exercise regimens vary widely across experiments, raising the question of whether there is an optimal form, intensity and duration of exertion that would produce maximal benefits. In particular, a comparison of forced and voluntary exercise is needed, since the results of several prior studies suggest that they may differentially affect brain and behavior. In the present study, we employed a novel 8-week exercise paradigm that standardized the distance, pattern, equipment and housing condition of forced and voluntary exercisers. Exercising rats were then compared with sedentary controls on measures previously shown to be influenced by physical activity. Our results indicate that although the distance covered by both exercise groups was the same, voluntary exercisers ran at higher speed and for less total time than forced exercisers. When compared with sedentary controls, forced but not voluntary exercise was found to increase anxiety-like behaviors in the open field. Both forms of exercise increased the number of surviving bromodeoxyuridine (BrdU)+ cells in the dentate gyrus after 8 weeks of exercise, although forced exercisers had significantly more than voluntary exercisers. Phenotypic analysis of BrdU+ cells showed no difference between groups in the percentage of newborn cells that became neurons, however, because forced exercise maximally increased the number of BrdU+ cells, it ultimately produced more neurons than voluntary exercise. Our results indicate that forced and voluntary exercise are inherently different: voluntary wheel running is characterized by rapid pace and short duration, whereas forced exercise involves a slower, more consistent pace for longer periods of time. This basic difference between the two forms of exercise is likely responsible for their differential effects on brain and behavior.
Exercise prescription for the elderly: current recommendations.
Mazzeo, R S; Tanaka, H
2001-01-01
The benefits for elderly individuals of regular participation in both cardiovascular and resistance-training programmes are great. Health benefits include a significant reduction in risk of coronary heart disease, diabetes mellitus and insulin resistance, hypertension and obesity as well as improvements in bone density, muscle mass, arterial compliance and energy metabolism. Additionally, increases in cardiovascular fitness (maximal oxygen consumption and endurance), muscle strength and overall functional capacity are forthcoming allowing elderly individuals to maintain their independence, increase levels of spontaneous physical activity and freely participate in activities associated with daily living. Taken together, these benefits associated with involvement in regular exercise can significantly improve the quality of life in elderly populations. It is noteworthy that the quality and quantity of exercise necessary to elicit important health benefits will differ from that needed to produce significant gains in fitness. This review describes the current recommendations for exercise prescriptions for the elderly for both cardiovascular and strength/resistance-training programmes. However, it must be noted that the benefits described are of little value if elderly individuals do not become involved in regular exercise regimens. Consequently, the major challenges facing healthcare professionals today concern: (i) the implementation of educational programmes designed to inform elderly individuals of the health and functional benefits associated with regular physical activity as well as how safe and effective such programmes can be; and (ii) design interventions that will both increase involvement in regular exercise as well as improve adherence and compliance to such programmes.
Voice Function Differences Following Resting Breathing vs. Submaximal Exercise
Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.
2013-01-01
Objectives/Hypothesis There is little known about how physical exercise may alter physiological parameters of voice production. In this investigation, vocal function and upper airway temperature were examined following a bout of submaximal exercise and compared with a resting breathing condition. It was hypothesized that phonation threshold pressure and perceived phonatory effort would increase, and pharyngeal temperature would decrease following an exercise bout. Study Design Using a within-participant repeated measures design, 18 consented participants (9 men, 9 women) completed the study. Methods A 20-minute equilibration task was immediately followed by 8 minutes of submaximal exercise on a stationary bike in a thermally neutral environment (25°C/40% RH). At the end of the equilibration trial and the exercise trial measures were taken in the following order: pharyngeal temperature, phonation threshold pressure, and perceived phonatory effort. Data were analyzed using paired t-tests with significance set at α<0.05. Results Significantly increased phonation threshold pressure and perceived phonatory effort and significantly decreased pharyngeal temperature (1.9°C) were found, supporting the initial hypotheses. Conclusions Findings from this investigation support the widely held belief that voice use associated with physical activity requires additional laryngeal effort and closure forces. The effect of the temperature reduction in the upper airway on voice function requires further study. PMID:23849683
Personalized exercise for adolescents with diabetes or obesity.
Faulkner, Melissa Spezia; Michaliszyn, Sara Fleet; Hepworth, Joseph T; Wheeler, Mark D
2014-01-01
This study examined adherence to a personalized, community-based exercise intervention by sedentary adolescents with type 1 or type 2 diabetes or those with obesity. We conducted a pretest-posttest investigation to explore the application of an individualized exercise prescription based upon current fitness level for 39 adolescents (20 with type 1 diabetes, 9 with type 2 diabetes, and 10 obese) over 16 weeks in community settings. Subjects were recruited from a university-based pediatric endocrinology clinic in the southwestern United States. Adherence to the exercise prescription was monitored using accelerometers over the entire intervention period. Moderate-to-vigorous physical activity (MVPA) levels significantly increased over sedentary baseline values (p < .001), but the average of 42.5 ± 22.1 min/day of MVPA determined at the end of the study was still less than the recommended 60 min/day. Perceptions of health were significantly increased for the total group following the intervention (p = .008). For those with type 1 diabetes, there was a significant association between MVPA duration and percentage change in HbA1c (r = -.526, p = .02). Recruitment and retention of adolescent participation in daily exercise is challenging. Personalized approaches that include adolescent choices with family support and ongoing motivation can improve individual exercise adherence and a sense of personal health.
Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali
2016-01-01
Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.
Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun
2016-01-01
Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.
Ueda, Shin-ya; Yoshikawa, Takahiro; Katsura, Yoshihiro; Usui, Tatsuya; Nakao, Hayato; Fujimoto, Shigeo
2009-04-01
We examined whether changes in gut hormone levels due to a single bout of aerobic exercise differ between obese young males and normal controls, and attempted to determine the involvement of hormonal changes during exercise in the regulation of energy balance (EB) in these obese subjects. Seven obese and seven age-matched subjects of normal weight participated in exercise and rest sessions. Subjects consumed a standardized breakfast that was followed by constant cycling exercise at 50% VO(2max) or rest for 60 min. At lunch, a test meal was presented, and energy intake (EI) and relative energy intake (REI) were calculated. Blood samples were obtained at 30 min intervals during both sessions for measurement of glucose, insulin, glucagon, ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Plasma levels of PYY and GLP-1 were increased by exercise, whereas plasma ghrelin levels were unaffected by exercise. The areas under the curve (AUC) of the time courses of PYY and GLP-1 levels did not significantly differ between the two groups. In contrast, EI and REI were decreased by exercise in both groups, and energy deficit was significantly larger in obese subjects than in normal controls. The present findings suggest that short-term EB during a single exercise session might be regulated not by increased amounts of these gut hormones per se.
Yanagisawa, O; Otsuka, S; Fukubayashi, T
2014-02-01
To evaluate the effects of cooling between exercise sessions on intramuscular water movement and muscle performance, the lower extremities of nine untrained men were assigned to either a cooling protocol (20-min water immersion, 15 °C) or a noncooling protocol. Each subject performed two exercise sessions involving maximal concentric knee extension and flexion (three repetitions, 60°/s; followed by 50 repetitions, 180°/s). The peak torque at 60°/s and total work, mean power, and decrease rate of torque value at 180°/s were evaluated. Axial magnetic resonance diffusion-weighted images of the mid-thigh were obtained before and after each exercise session. Apparent diffusion coefficient (ADC) values for the quadriceps and hamstrings were calculated for evaluating intramuscular water movement. Both groups exhibited significantly increased ADC values for the quadriceps and hamstrings after each exercise session. These ADC values returned to the pre-exercise level after water immersion. No significant difference was observed in muscle performance from first exercise session to the next in either group, except for increased total work and mean power in knee flexion in the cooled group. Cooling intervention between exercise sessions decreased exercise-induced elevation of intramuscular water movement and had some beneficial effects on muscle endurance of knee flexors, but not knee extensors. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke
2016-01-01
The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p < 0.05). CK and LDH significantly increased (time effect: p < 0.05) after exercise. However, all data were not significant difference among the groups. These results suggest that ingestion of combined HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.
The effect of acute physical and mental stress on soluble cellular adhesion molecule concentration.
Crabb, E Blake; Franco, R Lee; Caslin, Heather L; Blanks, Anson M; Bowen, Mary K; Acevedo, Edmund O
2016-07-15
This study investigated the impact of acute physical and mental stress on serum concentrations of vascular cell adhesion molecule (VCAM)-1 and CX3CL1/fractalkine. Male volunteers (n=20; 21.3±0.55years of age) completed a graded treadmill test to exhaustion and a 20-minute mental stress task (Stroop Color-Word Test, mental arithmetic) on separate, non-consecutive days. Heart rate (HR) was measured at baseline and throughout exercise and mental stress. Blood was collected at baseline (PRE), immediately following (POST) and 30min after (POST30) exercise and mental stress. Soluble VCAM-1 and fractalkine were quantified in participant serum via enzyme-linked immunosorbent assays. Both treadmill exercise and the mental stress task significantly increased participant HR; although, exercise resulted in a substantially greater increase in participant HR compared to mental stress (197.82±11.99 vs. 38.67±3.10% [p<0.001]). VCAM-1 (815.74±139.55 vs. 738.67±131.59ng/mL [p=0.002]) and fractalkine (1.032±0.33 vs. 0.59±0.20ng/mL [p<0.001]) were significantly elevated in participant serum POST maximal exercise before returning to values similar to baseline at POST30. The acute mental stress task did not significantly alter serum VCAM-1 or fractalkine at any time point. In conclusion, maximal aerobic exercise results in a significant elevation of the soluble adhesion molecules VCAM-1 and fractalkine in the serum of adult males that does not occur following laboratory-induced mental stress. The findings of the current investigation may suggest a novel protective role for acute aerobic exercise in vascular health via exercise-induced CAM proteolysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Orlando, Patrick; Silvestri, Sonia; Galeazzi, Roberta; Antonicelli, Roberto; Marcheggiani, Fabio; Cirilli, Ilenia; Bacchetti, Tiziana; Tiano, Luca
2018-12-01
Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q 10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.
Chycki, Jakub; Zając, Tomasz; Maszczyk, Adam; Kurylas, Anna
2017-09-01
Previously it was demonstrated that mineralization and alkalization properties of mineral water are important factors influencing acid-base balance and hydration in athletes. The purpose of this study was to investigate the effects of drinking different types of water on urine pH, specific urine gravity, and post-exercise lactate utilization in response to strenuous exercise. Thirty-six male soccer players were divided into three intervention groups, consuming around 4.0 l/day of different types of water for 7 days: HM (n=12; highly mineralized water), LM (n=12; low mineralized water), and CON (n=12; table water). The athletes performed an exercise protocol on two occasions (before and after intervention). The exercise protocol consisted of 5 bouts of intensive 60-s (120% VO 2max ) cycling separated by 60 s of passive rest. Body composition, urinalysis and lactate concentration were evaluated - before (t0), immediately after (t1), 5' (t2), and 30' (t3) after exercise. Total body water and its active transport (TBW - total body water / ICW - intracellular water / ECW - extracellular water) showed no significant differences in all groups, at both occasions. In the post-hydration state we found a significant decrease of specific urine gravity in HM (1021±4.2 vs 1015±3.8 g/L) and LM (1022±3.1 vs 1008±4.2 g/L). We also found a significant increase of pH and lactate utilization rate in LM. In conclusion, the athletes hydrated with alkaline, low mineralized water demonstrated favourable changes in hydration status in response to high-intensity interval exercise with a significant decrease of specific urine gravity, increased urine pH and more efficient utilization of lactate after supramaximal exercise.
Exercise training guidelines for the elderly.
Evans, W J
1999-01-01
The capacity of older men and women to adapt to increased levels of physical activity is preserved, even in the most elderly. Aerobic exercise results in improvements in functional capacity and reduced risk of developing Type II diabetes in the elderly. High-intensity resistance training (above 60% of the one repetition maximum) has been demonstrated to cause large increases in strength in the elderly. In addition, resistance training result in significant increases in muscle size in elderly men and women. Resistance training has also been shown to significantly increase energy requirements and insulin action of the elderly. We have recently demonstrated that resistance training has a positive effect on multiple risk factors for osteoporotic fracture in previously sedentary postmenopausal women. Because the sedentary lifestyle of a long-term care facility may exacerbate losses of muscle function, we have applied this same training program to frail, institutionalized elderly men and women. In a population of 100 nursing home residents, a randomly assigned high-intensity strength-training program resulted in significant gains in strength and functional status. In addition, spontaneous activity, measured by activity monitors, increased significantly in those participating in the exercise program whereas there was no change in the sedentary control group. Before the strength training intervention, the relationship of whole body potassium and leg strength was seen to be relatively weak (r2 = 0.29, P < 0.001), indicating that in the very old, muscle mass is an important but not the only determining factor of functional status. Thus, exercise may minimize or reverse the syndrome of physical frailty, which is so prevalent among the most elderly. Because of their low functional status and high incidence of chronic disease, there is no segment of the population that can benefit more from exercise than the elderly.
Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco
2017-12-01
Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.
The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats
NASA Technical Reports Server (NTRS)
Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.
2002-01-01
BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no significant effect on cancellous or cortical bone measurements. CONCLUSIONS: Chronic alcohol consumption significantly reduced bone formation. Exercise had no effect on the bone and did not attenuate any of the negative effects of alcohol. The results suggest that alcohol consumption weakens the skeleton and increases the incidence of endurance-exercise-related bone injuries. Thus, individuals who are participating in endurance exercise and consuming alcohol may be at greater risk for exercise-related skeletal injuries. Further investigation of the potential for alcohol to induce detrimental effects on the hearts of individuals participating in endurance exercise is indicated.
Roberts, Llion A.; Figueiredo, Vandre C.; Egner, Ingrid; Krog, Simone; Aas, Sigve N.; Suzuki, Katsuhiko; Markworth, James F.; Coombes, Jeff S.; Cameron‐Smith, David; Raastad, Truls
2016-01-01
Key points Cold water immersion and active recovery are common post‐exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion.We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise‐trained men 2, 24 and 48 h during recovery after acute resistance exercise.Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro‐inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery.Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Abstract Cold water immersion and active recovery are common post‐exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro‐inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower‐body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB‐crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB‐crystallin and the percentage of type II fibres stained for αB‐crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. PMID:27704555
Pontarollo, Francesco; Rapacioli, Giuliana; Bellavite, Paolo
2010-08-01
Electric field measurements of skin potential and electrical currents are physiological indicators of electrodermal activity (EDA) and have been associated with a variety of sensory, cognitive and emotional stimuli. The aim of this study was to investigate the EDA at some hand acupoints before, during and after a physical exercise. EDA of eight points located at the corner of fingernails of hands was measured in 10 healthy young volunteers before, during and after a 14-min acute exercise in a bicycle ergometer. In pre-exercise resting state the parameters were stable and similar between the 8 different tested points, while during exercise a significant increase of current (from 1000-2000 to 4000-8000 nA) was observed, with the maximal values related to the point located on the ulnar side of the little finger, at the base of the nail, corresponding to the Shao chong (HT9) of heart meridian. Copyright 2010 Elsevier Ltd. All rights reserved.
Jones, Matthew D; Taylor, Janet L; Booth, John; Barry, Benjamin K
2016-01-01
Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1-SEPs; Experiment 2-LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = -0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = -0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = -0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = -0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.
Measurement of myocardial free radical production during exercise using EPR spectroscopy.
Traverse, Jay H; Nesmelov, Yuri E; Crampton, Melanie; Lindstrom, Paul; Thomas, David D; Bache, Robert J
2006-06-01
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically instrumented dogs during rest and treadmill exercise (6.4 km/h at 10 degrees grade; and heart rate, 204 +/- 3 beats/min) using electron paramagnetic resonance spectroscopy in conjunction with the spin trap alpha-phenyl-tert-butylnitrone (PBN) (0.14 mol/l) in blood collected from the aorta and coronary sinus (CS). To improve signal detection, the free radical adducts were deoxygenated over a nitrogen stream for 15 min and extracted with toluene. The hyperfine splitting constants of the radicals were alpha(N) = 13.7 G and alpha(H) = 1.0 G, consistent with an alkoxyl or carbon-centered radical. Resting aortic and CS PBN adduct concentrations were 6.7 and 6.3 x 10(8) arbitrary units (P = not significant). Both aortic and CS adduct concentrations increased during exercise, but there was no significant difference between the aortic and CS concentrations. Thus, in contrast to skeletal muscle, submaximal treadmill exercise did not result in detectable free radical production by the heart.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels.
Brellenthin, Angelique G; Crombie, Kevin M; Hillard, Cecilia J; Koltyn, Kelli F
2017-08-01
Acute aerobic exercise improves mood and activates the endocannabinoid (eCB) system in physically active individuals; however, both mood and eCB responses to exercise may vary based on habitual levels of physical activity. This study aimed to examine eCB and mood responses to prescribed and preferred exercises among individuals with low, moderate, and high levels of physical activity. Thirty-six healthy adults (21 ± 4 yr) were recruited from low (≤60 min moderate-vigorous physical activity [MVPA] per week), moderate (150-299 min MVPA per week), and high (≥300 MVPA per week) physical activity groups. Participants performed both prescribed (approximately 70%-75% max) and preferred (i.e., self-selected) aerobic exercise on separate days. Mood states and eCB concentrations were assessed before and after exercise conditions. Both preferred and prescribed exercise resulted in significant increases (P < 0.01) in circulating eCB (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol); however, increases in AEA (P < 0.05) were larger in the prescribed condition. Likewise, both preferred and prescribed exercise elicited positive mood improvements compared with preexercise values, but changes in state anxiety, total mood disturbance, and confusion were greater in the preferred condition (P < 0.05). Changes in 2-arachidonoylglycerol concentrations were found to negatively correlate with changes in depression, tension, and total mood disturbance in the preferred condition (P < 0.05), and changes in AEA were positively associated with changes in vigor in the prescribed condition (P < 0.05). There were no significant group differences for mood or eCB outcomes. These results indicate that eCB and mood responses to exercise do not differ significantly between samples with varying physical activity levels. This study also demonstrates that in addition to prescribed exercise, preferred exercise activates the eCB system, and this activation may contribute to positive mood outcomes with exercise.
Diet and exercise changes following direct-to-consumer personal genomic testing.
Nielsen, Daiva Elena; Carere, Deanna Alexis; Wang, Catharine; Roberts, J Scott; Green, Robert C
2017-05-02
The impacts of direct-to-consumer personal genomic testing (PGT) on health behaviors such as diet and exercise are poorly understood. Our investigation aimed to evaluate diet and exercise changes following PGT and to determine if changes were associated with genetic test results obtained from PGT. Customers of 23andMe and Pathway Genomics completed a web-based survey prior to receiving PGT results (baseline) and 6 months post-results. Fruit and vegetable intake (servings/day), and light, vigorous and strength exercise frequency (days/week) were assessed. Changes in diet and exercise were examined using paired t-tests and linear regressions. Additional analyses examined whether outcomes differed by baseline self-reported health (SRH) or content of PGT results. Longitudinal data were available for 1,002 participants. Significant increases were observed for vegetable intake (mean Δ = 0.11 (95% CI = 0.05, 0.17), p = 0.0003) and strength exercise (Δ = 0.14 (0.03, 0.25), p = 0.0153). When stratified by SRH, significant increases were observed for all outcomes among lower SRH participants: fruit intake, Δ = 0.11 (0.02, 0.21), p = 0.0148; vegetable intake, Δ = 0.16 (0.07, 0.25), p = 0.0005; light exercise, Δ = 0.25 (0.03, 0.47), p = 0.0263; vigorous exercise, Δ = 0.23 (0.06, 0.41), p = 0.0097; strength exercise, Δ = 0.19 (0.01, 0.37), p = 0.0369. A significant change among higher SRH participants was only observed for light exercise, and in the opposite direction: Δ = -0.2468 (-0.06, -0.44), p = 0.0111. Genetic results were not consistently associated with any diet or exercise changes. The experience of PGT was associated with modest, mostly positive changes in diet and exercise. Associations were independent of genetic results from PGT.
Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G
2016-10-01
Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.
Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women.
Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Szygula, Zbigniew
2017-07-01
The aim of this study was to test the hypotheses: (1) there is a negative correlation between protein and lipid oxidative damage following maximal-intensity exercise, and oxygen uptake and work intensity (%VO 2max ) at the respiratory compensation point (RCP) in women and men; (2) nitro-oxidative stress following maximal-intensity exercise results from the intensification of anaerobic processes and muscle fibre micro-damage. Study participants comprised 20 women (21.34±1.57 years) and 20 men (21.97±1.41 years) who performed a treadmill incremental test (IT); VO 2max : 45.08 ± 0.91 and 57.38 ± 1.22 mL kg -1 min -1 for women and men, respectively. The oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine (3-NT) concentration and creatine kinase (CK) as well as lactate dehydrogenase (LDH) activity were measured in the blood serum, and total antioxidative capacity (TAC) and lactate concentration (Lac) were determined in blood plasma before and after IT. After the IT, increases in ox-LDL, 3-NT, CK, and LDH were seen in both groups (P < 0.05). After the IT, an increase in the TAC was only observed in women (P < 0.05). The post-exercise-induced increase in Lac was significantly higher in men than in women. Only in the group of women was a positive correlation (P < 0.05) between the post-exercise increase in TAC and changes in CK activity and LDH found. The gain of ox-LDL and 3-NT following maximal-intensity exercise is independent of VO 2max , oxygen consumption and exercise intensity at RCP. This increase of ox-LDL and 3-NT is indicative of similar lipid and protein damage in women and men. A significant increase in TAC in women following maximal-intensity exercise is the result of muscle fibre micro-injuries.
Physiology of Angina and Its Alleviation With Nitroglycerin
Williams, Rupert; Lockie, Timothy; Khawaja, Muhammed Z.; De Silva, Kalpa; Lumley, Matthew; Patterson, Tiffany; Arri, Satpal; Ihsan, Sana; Ellis, Howard; Guilcher, Antoine; Clapp, Brian; Chowienczyk, Philip J.; Plein, Sven; Perera, Divaka; Marber, Michael S.; Redwood, Simon R.
2017-01-01
Background: The mechanisms governing exercise-induced angina and its alleviation by the most commonly used antianginal drug, nitroglycerin, are incompletely understood. The purpose of this study was to develop a method by which the effects of antianginal drugs could be evaluated invasively during physiological exercise to gain further understanding of the clinical impact of angina and nitroglycerin. Methods: Forty patients (mean age, 65.2±7.6 years) with exertional angina and coronary artery disease underwent cardiac catheterization via radial access and performed incremental exercise using a supine cycle ergometer. As they developed limiting angina, sublingual nitroglycerin was administered to half the patients, and all patients continued to exercise for 2 minutes at the same workload. Throughout exercise, distal coronary pressure and flow velocity and central aortic pressure were recorded with sensor wires. Results: Patients continued to exercise after nitroglycerin administration with less ST-segment depression (P=0.003) and therefore myocardial ischemia. Significant reductions in afterload (aortic pressure, P=0.030) and myocardial oxygen demand were seen (tension-time index, P=0.024; rate-pressure product, P=0.046), as well as an increase in myocardial oxygen supply (Buckberg index, P=0.017). Exercise reduced peripheral arterial wave reflection (P<0.05), which was not further augmented by the administration of nitroglycerin (P=0.648). The observed increases in coronary pressure gradient, stenosis resistance, and flow velocity did not reach statistical significance; however, the diastolic velocity–pressure gradient relation was consistent with a significant increase in relative stenosis severity (k coefficient, P<0.0001), in keeping with exercise-induced vasoconstriction of stenosed epicardial segments and dilatation of normal segments, with trends toward reversal with nitroglycerin. Conclusions: The catheterization laboratory protocol provides a model to study myocardial ischemia and the actions of novel and established antianginal drugs. Administration of nitroglycerin causes changes in the systemic and coronary circulation that combine to reduce myocardial oxygen demand and to increase supply, thereby attenuating exercise-induced ischemia. Designing antianginal therapies that exploit these mechanisms may provide new therapeutic strategies. PMID:28468975
Exercise blood pressure and the risk of future hypertension.
Holmqvist, L; Mortensen, L; Kanckos, C; Ljungman, C; Mehlig, K; Manhem, K
2012-12-01
The aim of this prospective cohort study was to identify which blood pressure measurement during exercise is the best predictor of future hypertension. Further we aimed to create a risk chart to facilitate the evaluation of blood pressure reaction during exercise testing. A number (n=1047) of exercise tests by bicycle ergometry, performed in 1996 and 1997 were analysed. In 2007-2008, 606 patients without hypertension at the time of the exercise test were sent a questionnaire aimed to identify current hypertension. The response rate was 58% (n=352). During the 10-12 years between exercise test and questionnaire, 23% developed hypertension. The strongest predictors of future hypertension were systolic blood pressure (SBP) before exercise (odds ratios (OR) 1.63 (1.31-2.01) for 10 mm Hg difference) in combination with the increase of SBP over time during exercise testing (OR 1.12 (1.01-1.24) steeper increase for every 1 mm Hg min(-1)). A high SBP before exercise and a steep rise in SBP over time represented a higher risk of developing hypertension. A risk chart based on SBP before exercise, increase of SBP over time and body mass index was created. SBP before exercise, maximal SBP during exercise and SBP at 100 W were significant single predictors of future hypertension and the prediction by maximal SBP was improved by adjusting for time/power at which SBP max was reached during exercise testing. Recovery ratio (maximal SBP/SBP 4 min after exercise) was not predictive of future hypertension.
Mueller, Gordon A.; Carpenter, Jeanette; Krapfel, Robert; Figiel, Chester
2007-01-01
Razorback suckers exercised (treatment) in water current (<0.3 m/s) for 10 weeks exhibited greater swimming stamina than unexercised, control fish. When exercised and unexercised razorback suckers were placed together with large predators in 2006, treatment fish had significantly fewer (n = 9, z = 1.69, p = 0.046) mortalities than control fish, suggesting increased stamina improved predator escape skills. Predator/prey tests comparing razorback suckers that had been previously exposed to a predation event with control fish, found treatment fish also had significantly fewer losses than predatornaïve fish (p = 0.017). Similar tests exposing predator-savvy and predator-naïve bonytail with largemouth bass showed a similar trend; predator-savvy bonytail suffered 38 percent fewer losses than control fish. However, there was not a statistically significant difference between the test groups (p = 0.143) due to small sample size. All exercise and predator exposure trials increased the survival rate of razorback sucker and bonytail compared to untreated counterparts.
Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle.
Kraniou, Giorgos N; Cameron-Smith, David; Hargreaves, Mark
2004-09-01
Six untrained, male subjects (23 +/- 1 years old, 84 +/- 5 kg, (O(2)peak)= 3.7 +/- 0.8 l min(-1)) exercised for 60 min at 75 +/- 1%(O(2)peak) on 7 consecutive days. Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by approximately 20% and muscle glycogen concentration by approximately 40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 +/- 1.5 versus 3.4 +/- 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 +/- 3.0 versus 3.4 +/- 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.
Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.
2015-01-01
Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559
Ribeiro, F; Oliveira, N L; Silva, G; Campos, L; Miranda, F; Teixeira, M; Alves, A J; Oliveira, J
2017-03-01
To assess the effects of an exercise-based cardiac rehabilitation programme on daily physical activity levels of patients following myocardial infarction. Subanalysis of two randomised, prospective controlled trials. Outpatient clinic of a secondary hospital. Fifty consecutive patients randomised to the exercise group {n=25; 23 males; mean age 54 [standard deviation (SD) 9] years} or the control group [n=25; 20 males; mean age 58 (SD 9) years]. The exercise group participated in an 8-week aerobic exercise programme plus usual medical care and follow-up. The control group received usual medical care and follow-up. The primary outcome measure was change in time spent undertaking moderate-to-vigorous physical activity per day, assessed by accelerometer over 7 consecutive days. Secondary outcome measures were cardiorespiratory fitness, body mass, and resting blood pressure and heart rate. Moderate-to-vigorous physical activity levels increased significantly in the exercise group [43.2 (SD 36.3) to 53.5 (SD 31.9) minutes/day, P=0.030], and remained unchanged in the control group [40.8 (SD 26.2) to 36.8 (SD 26.5) minutes/day, P=0.241] from baseline to the end of the programme. Cardiorespiratory fitness increased significantly in the exercise group (mean difference 2.8; 95% of the difference 1.3 to 4.4ml/kg/minute, P=0.001) after the 8-week programme. In patients under optimal medication following myocardial infarction, participation in an 8-week exercise-based cardiac rehabilitation programme was found to improve physical activity levels consistent with health-related benefits. Future studies are needed to determine whether the increase in physical activity is maintained in the long term. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Ahmed, Nasar U; Delgado, Michael; Saxena, Anshul
2017-06-01
Recognizing the undisputed health benefits of exercise, physicians' counseling has been included in the Healthy People Objectives since 2000. To address the paucity of data on such counseling at the national level, we examined changing trends and disparities in receiving physicians' counseling on exercise among the physically-able, non-institutionalized U.S. adult population. Data from the 2000, 2005, and 2010 National Health Interview Surveys (NHIS) were examined using logistic regression that included race/ethnicity, age, gender, education, insurance status, number of physician visits in the past year, and body mass index. In 2000, only 22.9% of NIHS respondents had received counseling on exercise, increasing to 33.6% in 2010. Compared with non-Hispanic Whites, non-Hispanic Blacks were 27% less likely to receive exercise advice in 2000 (adjusted odds ratio [AOR] 0.73, 95% confidence interval [CI] 0.61-0.87). In later years, they were equally likely to receive advice. Although decreased over the years, male respondents were significantly (34% to 23%) less likely to report receipt of exercise counseling than female patients (in 2010: AOR 0.77, CI 0.72-0.83). Uninsured respondents were 35% less likely to report receiving exercise advice from their provider in all study years (2010: AOR 0.64, CI 0.59-0.72). Patients with increasing levels of education were increasingly more likely to report receipt of counseling in each successive survey year. The overall prevalence of physicians' counseling on exercise increased moderately between 2000 and 2010. Some disparities narrowed and even reversed but significant disparities continue to exist across gender, insurance status, and education level. Copyright © 2017. Published by Elsevier Inc.
Teffaha, Daline; Mourot, Laurent; Vernochet, Philippe; Ounissi, Fawzi; Regnard, Jacques; Monpère, Catherine; Dugué, Benoit
2011-08-01
Exercise training is included in cardiac rehabilitation programs to enhance physical capacity and cardiovascular function. Among the existing rehabilitation programs, exercises in water are increasingly prescribed. However, it has been questioned whether exercises in water are safe and relevant in patients with stable chronic heart failure (CHF), coronary artery disease (CAD) with normal systolic left ventricular function. The goal was to assess whether a rehabilitation program, including water-based gymnastic exercises, is safe and induces at least similar benefits as a traditional land-based training. Twenty-four male CAD patients and 24 male CHF patients with stable clinical status participated in a 3-week rehabilitation. They were randomized to either a group performing the training program totally on land (CADl, CHFl; endurance + callisthenic exercises) or partly in water (CADw, CHFw; land endurance + water callisthenic exercises). Before and after rehabilitation, left ventricular systolic and cardiorespiratory functions, hemodynamic variables and autonomic nervous activities were measured. No particular complications were associated with both of our programs. At rest, significant improvements were seen in CHF patients after both types of rehabilitation (increases in stroke volume and left ventricular ejection fraction [LVEF]) as well as a decrease in heart rate (HR) and in diastolic arterial pressure. Significant increases in peaks VO(2), HR, and power output were observed in all patients after rehabilitation in exercise test. The increase in LVEF at rest, in HR and power output at the exercise peak were slightly higher in CHFw than in CHFl. Altogether, both land and water-based programs were well tolerated and triggered improvements in cardiorespiratory function. Copyright © 2011 Elsevier Inc. All rights reserved.
Energy and macronutrient intake in the Midwest Exercise Trial-2 (MET-2)
Washburn, Richard A.; Honas, Jeff J.; Ptomey, Lauren T.; Mayo, Matthew S.; Lee, Jaehoon; Sullivan, Debra K.; Lambourne, Kathleen; Willis, Erik A.; Donnelly, Joseph E.
2015-01-01
PURPOSE To examined the effect of exercise training over 10 months at 2 levels of energy expenditure on energy and macronutrient intake in a sample of previously sedentary, overweight/obese young adults. METHODS We conducted a 10 month trial in 141 young adults who were randomized to supervised exercise, 5 days•wk−1 at 400 and 600 kcal•session−1, or non-exercise control. Participants were instructed to maintain their usual ad-libitum diets. Energy/macronutrient intake was assessed at baseline, 3.5, 7 and 10 months over 7-day periods of ad libitum eating in a university cafeteria using digital photography. Foods consumed outside the cafeteria were assessed using multiple-pass recalls. RESULTS There were no significant between group differences in absolute energy intake at baseline or any other time point in the total sample or in men. In women, absolute energy intake was significantly greater in the 600 kcal•session−1 group vs. controls at both 3.5 and 7 months. There were no significant between group differences in relative energy intake (kcal•kg•d−1) at any time point in the total sample, men or women. There were no significant within or between group differences of change in absolute or relative energy intake in any of the 3 study groups in the total sample, or in men or women. No clinically relevant changes in macronutrient intake were observed. CONCLUSION Aerobic exercise training does not significantly alter energy or macronutrient intake in overweight and obese young adults. The possibility of a threshold level beyond which increased exercise energy expenditure fails to produce a more negative energy balance, and potential sex differences in the energy intake response to increased levels of exercise are potentially important. PMID:25574796
The effects of hyperthermia and hypoxia on ventilation during low-intensity steady-state exercise.
Chu, Aaron L; Jay, Ollie; White, Matthew D
2007-01-01
This study assessed whether the elevated sensitivity of ventilation to hypoxia during exercise is accounted for by an elevation of esophageal temperature (T(es)). Eleven males volunteered for two exercise sessions on an underwater, head-out cycle ergometer at a steady-state rate of oxygen consumption (V(.)(O(2))) of approximately 0.87 l/min (SD 0.07). In one exercise session, 31.5 degrees C (SD 1.4) water held T(es) at a normothermic level of approximately 37.1 degrees C, and in the other exercise session, water at 38.2 degrees C (SD 0.1) maintained a hyperthermic T(es) of approximately 38.5 degrees C. After a 30-min rest and 20-min warm-up, exercising participants inhaled air for 10 min [Euoxia 1 (E1)], an isocapnic hypoxic gas mixture with 12% O(2) in N(2) (H1) for the next 10 min and air again [Euoxia 2 (E2)] for the last 10 min. A significant increase in V(.)(E) during all hyperthermia conditions (0.01< P < 0.048) was evident; however, during hyperthermic hypoxia, there was a disproportionate and significant (P = 0.017) increase in V(.)(E) relative to normothermic hypoxia. This was the main explanation for a significant esophageal temperature and gas type interaction (P = 0.012) for V(.)(E). Significant effects of hyperthermia, isocapnic hypoxia, and their positive interaction remained evident after removing the influence of (V(.)(O(2))) on V(.)(E). Serum lactate and potassium concentrations, as well as hemoglobin oxygen saturation, were each not significantly different between normothermic and hyperthermic-hypoxic conditions. In conclusion, the elevated sensitivity of exercise ventilation to hypoxia during exertion appears to be modulated by elevations in esophageal temperature, potentially because of a temperature-mediated stimulation of the peripheral chemoreceptors.
Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice.
Morton, Tiffany L; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya
2016-01-01
Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.
The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).
Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie
2016-08-01
Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.
Ra, Song-Gyu; Miyazaki, Teruo; Kojima, Ryo; Komine, Shoichi; Ishikura, Keisuke; Kawanaka, Kentaro; Honda, Akira; Matsuzaki, Yasushi; Ohmori, Hajime
2017-09-22
The aim of present study was to compare the effects of branched-chain amino acid (BCAA) supplementation taken before or after exercise on delayed onset muscle soreness (DOMS) and exercise-induced muscle damage (EIMD). Fifteen young men (aged 21.5 ± 0.4 years) were given either BCAA (9.6 g·day-1) or placebo before and after exercise (and for 3 days prior to and following the exercise day) in three independent groups: the Control group (placebo before and after exercise), the PRE group (BCAA before exercise and placebo after exercise), and the POST group (placebo before exercise and BCAA after exercise). Participants performed 30 repetitions of eccentric exercise with the non-dominant arm. DOMS, upper arm circumference (CIR), elbow range of motion (ROM), serum creatine kinase (CK), lactate dehydrogenase (LDH), and aldolase, BCAA, and Beta-hydroxy-Beta-methylbutyrate (3HMB) were measured immediately before and after the exercise and on the following 4 days. Serum BCAA and 3HMB concentrations increased significantly in the PRE group immediately after the exercise, recovering to baseline over the following days. In the days following the exercise day, DOMS, CIR, and ROM were significantly improved in the PRE group compared to the Control group, with weaker effects in the POST group. Serum activities of CK, LDH, and aldolase in the days following the exercise day were significantly suppressed in the PRE group compared to Control group. Present study confirmed that repeated BCAA supplementation before exercise had a more beneficial effect in attenuating DOMS and EIMD induced by eccentric exercise than repeated supplementation after exercise.
Goal-setting protocol in adherence to exercise by Italian adults.
Annesi, James J
2002-04-01
A goal-setting protocol, based on research in goal setting and performance and personal construct theory, was tested for its effect on adherence to a new exercise program. The Goal-setting group (n = 50) had significantly less dropout (30%) than the control group (n = 50) (74%). The Goal-setting group also had significantly better attendance (p<.0001). Suggestions for increasing confidence in findings through further research and practical implications of using the protocol to improve exercise maintenance across settings were discussed.
Hu, Yan-Ru; Liu, Xiao-Li; Qiao, De-Cai
2017-03-08
To reveal the possible mechanism of changes of 'substantianigra-ventralislateralis-cortex' pathway neural activity during one bout of exhausting exercise through observing the neural activity coherence between different nucleus and the concentration of extra-cellular glutamate (Glu) and gamma-aminobutyric acid (GABA). Male Wistar rats were randomly divided into neural activity real-time observation group, substantianigra (SNr) extracellular neurotransmitters observation group, ventralislateralis (VL) extracellular neuro-transmitters observation group and supplementary motor area (SMA) extracellular neurotransmitters observation group, 10 rats in each group. For rats of neural activity real-time observation group, by using LFPs and ECoG recording technique, and self-comparison, we simultaneously recorded the dynamic changes of neural activity of rat SNr, VL and SMA during one bout of exhausting exercise. The dynamic changes of ex-tracellular Glu and GABA in rat SNr, VL and SMA were also observed through microdialysis combined high performance liquid chromatography (HPLC) technique and self-comparison method. Based on the behavioral performance, the exhausting exercise process could be di-vided into 5 different stages, the rest condition, auto exercise period, early fatigue period, exhaustion condition and recovery period. The elec-trophysiological study results showed that, the coherence between neural activity in rat SNr, VL and SMA was significant between 0~30 Hz during all the procedure of exhausting exercise. Compared with the rest condition, the microdialysis study showed that the Glu concentrations and Glu/GABA ratio in SNr were decreased significantly during automatic exercise period ( P < 0.05, P < 0.01), the GABA concentrations were increased significantly ( P < 0.05, P < 0.01), while, in VL and cortex, the Glu concentrations and Glu/GABA ratio were increased significantly ( P < 0.05, P < 0.01), the GABA concentrations were decreased significantly ( P < 0.05, P < 0.01). Under early fatigue and ex-haustion conditions, compared with the rest condition,the Glu concentrations and Glu/GABA ratio in SNr were increased significantly ( P < 0.05, P < 0.01), the GABA concentrations were decreased significantly ( P < 0.05, P < 0.01), while the Glu concentrations and Glu/GABA ratio in VL and cortex were decreased significantly ( P < 0.05, P < 0.01), the GABA concentrations were increased significantly ( P < 0.05, P < 0.01). The neural net work communication between 'substantianigra-ventralislateralis-cortex' pathway exists, changes of Glu and GABA in the nucelus of the pathway are one of the factors resulting in the changes of neural activity.
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.
McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L
2014-09-01
African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood. © Georg Thieme Verlag KG Stuttgart · New York.
Williams, N I; Caston-Balderrama, A L; Helmreich, D L; Parfitt, D B; Nosbisch, C; Cameron, J L
2001-06-01
Cross-sectional studies of exercise-induced reproductive dysfunction have documented a high proportion of menstrual cycle disturbances in women involved in strenuous exercise training. However, longitudinal studies have been needed to examine individual susceptibility to exercise-induced reproductive dysfunction and to elucidate the progression of changes in reproductive function that occur with strenuous exercise training. Using the female cynomolgus monkey (Macaca fascicularis), we documented changes in menstrual cyclicity and patterns of LH, FSH, estradiol, and progesterone secretion as the animals developed exercise-induced amenorrhea. As monkeys gradually increased running to 12.3 +/- 0.9 km/day, body weight did not change significantly although food intake remained constant. The time spent training until amenorrhea developed varied widely among animals (7-24 months; mean = 14.3 +/- 2.2 months) and was not correlated with initial body weight, training distance, or food intake. Consistent changes in function of the reproductive axis occurred abruptly, one to two menstrual cycles before the development of amenorrhea. These included significant declines in plasma reproductive hormone concentrations, an increase in follicular phase length, and a decrease in luteal phase progesterone secretion. These data document a high level of interindividual variability in the development of exercise-induced reproductive dysfunction, delineate the progression of changes in reproductive hormone secretion that occur with exercise training, and illustrate an abrupt transition from normal cyclicity to an amenorrheic state in exercising individuals, that is not necessarily associated with weight loss.
Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias
Ghorbani Baravati, Hamideh; Joukar, Siyavash; Fathpour, Hossein; Kordestani, Zeinab
2015-01-01
Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:26396972
Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women.
Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B
2016-12-01
Brain-derived neurotrophic factor (BDNF) has recently emerged as one potential mechanism with which exercise improves mood in major depressive disorder (MDD). This study examined the relationship between changes in serum total BDNF and mood following acute exercise in MDD. It was hypothesized that acute exercise would increase BDNF in an intensity-dependent manner and that changes in BDNF would be significantly related to improvement in depressed mood post-exercise. Twenty-four women (age: 38.6±14.0years) with MDD exercised for 30min on a stationary bicycle at light, moderate and hard exercise intensities and performed a quiet rest session using a within-subjects, randomized and counter-balanced design. Before, 10 and 30min after each session, participants completed the profile of mood states (POMS). Blood was drawn before and within 10min after completion of each session and serum total BDNF (sBDNF) was measured by enzyme-linked immunosorbent assay. Acute exercise-induced changes in POMS Depression and sBDNF were analyzed via 4 session (quiet rest, light, moderate, hard) by 2 measurement (pre, post) ANOVA. Secondary analyses examined the effects of baseline mood and antidepressant usage on sBDNF. Exercise resulted in an acute improvement in depressed mood that was not intensity dependent (p>0.05), resulting in significant acute increases in sBDNF (p=0.006) that were also not intensity-dependent (p>0.05). Acute changes in sBDNF were not significantly correlated to changes in POMS depression at 10m (r=-0.171, p=0.161) or 30m (r=-0.151, p=0.215) post-exercise. The fourteen participants taking antidepressant medications exhibited lower post-exercise sBDNF (p=0.015) than the participants not currently taking antidepressants, although mood responses were similar. Acute exercise is an effective mood-enhancing stimulus, although sBDNF does not appear to play a role in this short-term response. Patients who are not currently taking antidepressant medications and those who have greater pre-exercise depression may experience a greater sBDNF response to exercise, but the clinical significance of this is currently unclear. Circulating BDNF levels are unlikely to be altered by steady-state acute exercise in a linear dose-dependent manner. This does not eliminate its potential relevance in the antidepressant response to chronic exercise training, but suggests that other mechanisms are involved in the acute affective response to exercise in depression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Berry, Michael J.; Justus, Nicholas W.; Hauser, Jordan I.; Case, Ashlee H.; Helms, Christine C.; Basu, Swati; Rogers, Zachary; Lewis, Marc T.; Miller, Gary D.
2014-01-01
Dietary nitrate (NO3−) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3− ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient’s maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3− and nitrite (NO2−) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3− by 938% and NO2− by 379%. Median (+ interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 sec., respectively). Compared to placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3− supplementation can elevate plasma NO3− and NO2− concentrations, improve exercise performance, and reduce blood pressure in COPD patients. PMID:25445634
Berry, Michael J; Justus, Nicholas W; Hauser, Jordan I; Case, Ashlee H; Helms, Christine C; Basu, Swati; Rogers, Zachary; Lewis, Marc T; Miller, Gary D
2015-08-01
Dietary nitrate (NO3(-)) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3(-) ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient's maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3(-) and nitrite (NO2(-)) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3(-) by 938% and NO2(-) by 379%. Median (+interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 s, respectively). Compared with placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3(-) supplementation can elevate plasma NO3(-) and NO2(-) concentrations, improve exercise performance, and reduce blood pressure in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J
2011-01-01
This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a "cybercycle;" a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort.
Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J
2011-01-01
This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a “cybercycle;” a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort. PMID:22087067
Cardiovascular responses to plyometric exercise are affected by workload in athletes
Arazi, Hamid; Mahdavi, Seyed Amir; Nasiri, Seyed Omid Mirfalah
2014-01-01
Introduction With regard to blood pressure responses to plyometric exercise and decreasing blood pressure after exercise (post-exercise hypotension), the influence of different workloads of plyometric exercise on blood pressure is not clear. Aim The purpose of this investigation was to examine the effects of a low, moderate and high workload of plyometric exercise on the post-exercise systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and rate-pressure product (RPP) responses in athletes. Material and methods Ten male athletes (age: 22.6 ±0.5 years; height: 178.2 ±3.3 cm; and body mass: 75.2 ±2.8 kg) underwent PE protocols involving 5 × 10 reps (Low Workload – LW), 10 × 10 reps (Moderate Workload – MW), and 15 × 10 reps (High Workload – HW) depth jump exercise from a 50-cm box in 3 non-consecutive days. After each exercise session, SBP, DBP and HR were measured every 10 min for a period of 70 min. Results No significant differences were observed among post-exercise SBP and DBP when the protocols (LW, MW and HW) were compared. The MW and HW protocols showed greater increases in HR compared with LW. Also the HW indicated greater increases than LW in RPP at post-exercise (p < 0.05). Conclusions All protocols increased SBP, HR and RPP responses at the 10th and 20th min of post-exercise. With regard to different workloads of plyometric exercise, HW condition indicated greater increases in HR and RPP and strength and conditioning professionals and athletes must keep in their mind that HW of plyometric exercise induces greater cardiovascular responses. PMID:24799919
Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Linde, Mattias; Gard, Gunvor; Jensen, Rigmor Højland
2018-01-01
Aim To evaluate aerobic exercise in migraine and co-existing tension-type headache and neck pain. Methods Consecutively recruited persons with migraine and co-existing tension-type headache and neck pain were randomized into an exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 minutes, three times/week. Controls continued usual daily activities. Pain frequency, intensity, and duration; physical fitness, level of physical activity, well-being and ability to engage in daily activities were assessed at baseline, after treatment and at follow-up. Results Fifty-two persons completed the study. Significant between-group improvements for the exercise group were found for physical fitness, level of physical activity, migraine burden and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Within the exercise group, significant reduction was found for migraine frequency, pain intensity and duration, neck pain intensity, and burden of migraine; an increase in physical fitness and well-being. Conclusions Exercise significantly reduced the burden of migraine and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Exercise also reduced migraine frequency, pain intensity and duration, although this was not significant compared to controls. These results emphasize the importance of regular aerobic exercise for reduction of migraine burden.
Dias, Thaisa; Polito, Marcos
2015-01-01
This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values (P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.
Exercise thermoregulation with bed rest, confinement, and immersion deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1997-01-01
Altered thermoregulation following exposure to prolonged (12-14 days) of bed rest and 6 hr of head-down thermoneutral water immersion in humans, and cage confinement (8 weeks) in male, mongrel dogs resulted in occasional increased core temperature (Tcore) at rest, but consistent "excessive" increase in Tcore during submaximal exercise. This excessive increase in Tcore in nonexercising and exercising subjects was independent of the mode (isometric or isotonic) of exercise training during bed rest, and was associated with the consistent hypovolemia in men but not in women taking estrogen supplementation (1.25 mg premarin/ day) which restored plasma volume during bed rest to ambulatory control levels. Post-bed rest exercise sweating (evaporative heat loss) was unchanged or higher than control levels; however, calculated tissue heat conductance was significantly lower in men, and forearm venoconstriction was greater (venous volume was reduced) in women during exercise after bed rest. Because sweating appeared proportional to the increased level of Tcore, these findings suggest that one major factor for the excessive hyperthermia is decreased core to periphery heat conduction. Exercising dogs respond like humans with excessive increase in both rectal (Tre) and exercising muscle temperatures (Tmu) after confinement and, after eight weeks of exercise training on a treadmill following confinement, they had an attenuated rate of increase of Tre even below ambulatory control levels. Intravenous infusion of glucose also attenuated not only the rise in Tre during exercise in normal dogs, but also the excessive rise in Tre and exercising Tmu after confinement. Oral glucose also appeared to reduce the rate of increase in excessive Tre in men after immersion deconditioning. There was a greater rate of rise in Tcore in two cosmonauts during supine submaximal exercise (65% VO2 max) on the fifth recovery day after the 115-day Mir 18 mission. Thus, the excessive rise in core temperature after deconditioning appears to be caused by decreased peripheral vasodilation in humans. Factors related to glucose metabolism may influence this mechanism.
Erythrocyte volume in acidified venous blood from exercising limbs.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.; Rochelle, R. H.
1973-01-01
Five male volunteers performed arm exercises in the sitting position by cranking the pedals of a bicycle ergometer at 50 revolutions per min. The initial mechanical work load of 0 kgm/min was increased every minute by 75 kgm/min until exhaustion occurred. The data obtained show a significant acidification of the venous blood from the working arms and a substantial increase in venous pCO2 during this type of muscular activity. However, the erythrocyte volume remained unaltered during the exercise.
Rutledge, Dana N; Jones, C Jessie
2007-12-01
We determined--in women with fibromyalgia (FM)--effects of essential oils used with a 12-week exercise program on exercise volume, pain, physical performance, and physical function. This was a randomized clinical trial comparing 024 essential oil with sham oil combined with exercise. SETTINGS included community sites in southern California. The study included 20 women randomized to 024 oil, 23 to sham oil. Women were trained in oil application before exercise, at bedtime on exercise days; the 12-week program included weekly group sessions with trained leaders guided by a prerecorded regimen (allowing choice of program level) plus 2 days of home exercise with the recorded regimen. Primary: Exercise volume (number of days exercised multiplied by exercise level--intensity and duration). Secondary: Pain (Brief Pain Inventory), measures of physical performance (30-second chair stands, 6-minute walk, multidimensional balance), and self-reported physical function (Composite Physical Function scale). The average participant was 54 years old, had some college education, was married, Caucasian, and minimally/mildly depressed. There was no significant difference in exercise volume between women using 024 as compared with those using sham oil after 12 weeks (depression as covariate). There were no significant group nor pre- to postexercise changes in pain intensity or interference. There were greater positive changes in 30-second chair stands, 6-minute walk distance, and multidimensional balance scores in the 024 group than in the sham group, but these were not significant. The counterirritant 024 oil was not different from the sham oil in its effect on exercise volume (frequency, exercise level--intensity and duration) for women with FM. It is unknown whether 024 actually decreases local pain when used with exercise. Increases in physical function found, while not significant, may be attributable to the exercise regimen or to the interaction of the oils and exercise regimen.
Blair, C; Walls, J; Davies, N W; Jacobson, G A
2010-08-01
To determine if non-elite athletes undertaking short duration running exercise adjacent to a busy roadway experience increased blood levels of common pollutant volatile organic compounds (benzene, toluene, ethylbenzene and xylene (BTEX)). The study was observational in design. Participants (nine males/one female non-elite athletes) ran for 20 min, near a busy roadway along a 100 m defined course at their own pace. Blood levels of BTEX were determined both pre- and post-exercise by SPME-GC-MS. Environmental BTEX levels were determined by passive adsorption samplers. Subjects completed a mean (range) distance of 4.4 (3.4 to 5.2) km over 20 min (4.5 (3.8 to 5.9) min/km pace), with a mean (SD) exercise intensity of 93 (2.3)% HR(max), and mean (SD) ventilation significantly elevated compared with resting levels (86.2 (2.3) vs 8.7 (0.9) l/min; p<0.001). The mean (SD) environmental levels (time weighted average) were determined as 53.1 (4.2), 428 (83), and 80.0 (3.7) microg/m(3) for toluene, ethylbenzene and xylenes, respectively, while benzene was below the detectable limit due to the short exposure period. Significant increases in blood BTEX levels were observed in runners between pre- and postexercise for toluene (mean increase of 1.4 ng/ml; p=0.002), ethylbenzene (0.7 ng/ml; p=0.0003), m/p-xylene (2.0 ng/ml; p=0.004) and o-xylene (1.1 ng/ml; p=0.002), but no change was observed for benzene. Blood BTEX levels are increased during high-intensity exercise such as running undertaken in areas with BTEX pollution, even with a short duration of exercise. This may have health implications for runners who regularly exercise near roadways.
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.
2013-01-01
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155
Harris, Natalie; Gee, David; d'Acquisto, Debra; Ogan, Dana; Pritchett, Kelly
2015-09-01
Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON).
Harris, Natalie; Gee, David; D’Acquisto, Debra; Ogan, Dana; Pritchett, Kelly
2015-01-01
Background and Aims Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Methods Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. Results The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. Discussion and Conclusions This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON). PMID:26551912
Lin, Hsin-Fu; Chou, Chun-Chung; Chao, Hsiao-Han; Tanaka, Hirofumi
2016-12-01
Muscle damage induced by an acute bout of eccentric exercise results in transient arterial stiffening. In this study, we sought to determine the effects of progressive eccentric resistance exercise training on vascular functions, and whether herb supplementation would enhance training adaptation by ameliorating the arterial stiffening effects. By using a double-blinded randomized placebo-controlled design, older adults were randomly assigned to either the Panax ginseng and Salvia miltiorrhiza supplementation group (N=12) or the placebo group (N=11). After pre-training testing, all subjects underwent 12 weeks of unilateral eccentric-only exercise training on knee extensor. Maximal leg strength and muscle quality increased in both groups (P<0.05). Relative increases in muscle mass were significantly greater in the placebo group than in the herb supplement group. Eccentric exercise training did not elicit any significant changes in muscle damage, oxidative and inflammatory biomarkers. There were no significant changes in blood pressure or endothelium-dependent vasodilation. None of the measures of arterial stiffness changed significantly with eccentric resistance training in both groups. These results suggest that Chinese herb supplementation does not appear to modulate vascular, and inflammatory adaptations to eccentric exercise training in middle-aged and older adults. However, Chinese herb supplementation abolished the increase in muscle mass induced by eccentric resistance training. (Trial registration: ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013). Copyright © 2016 Elsevier Ltd. All rights reserved.
Circulating T-Regulatory Cells, Exercise and the Elite Adolescent Swimmer
Wilson, Lori D.; Zaldivar, Frank P.; Schwindt, Christina D.; Wang-Rodriguez, Jessica; Cooper, Dan M.
2014-01-01
Brief high intensity exercise induces peripheral leukocytosis possibly leading to a higher incidence of allergic symptoms in athletes undergoing excessive training. We studied the exercise-induced alternation of circulating Tregs and FoxP3+ Tregs due to acute intense swim exercise in elite swimmers (n = 22, 12 males, age = 15.4 yrs). Twelve had prior or current rhinitis or asthma and 10 had no current or prior allergy or asthma. Circulating Tregs increased significantly (p < .001) following exercise (pre = 133 ± 11.2, post = 196 ± 17.6) as did FoxP3+ cells (pre = 44, post = 64 cells/µl). Increases in Tregs and FoxP3+ Tregs occurred to the same extent in both groups of adolescent swimmers. PMID:19827454
Muscle irisin response to aerobic vs HIIT in overweight female adolescents.
Archundia-Herrera, Carolina; Macias-Cervantes, Maciste; Ruiz-Muñoz, Bernardo; Vargas-Ortiz, Katya; Kornhauser, Carlos; Perez-Vazquez, Victoriano
2017-01-01
Exercise stimulates the production of fibronectin type III domain-containing protein 5 (FNDC5), which is cleaved to release a protein called irisin. This protein induces browning of white adipose tissue resulting in increased thermogenesis. Different studies have measured circulating irisin at baseline and in response to exercise among a wide variety of individuals; yet, regarding the effect of different exercise intensities in obese adolescent girls, limited insight is available. This study compares the effect of acute aerobic exercise of moderate intensity and high-intensity interval training (HIIT) on irisin levels in skeletal muscle and plasma of sedentary overweight or obese female adolescents. The aerobic group (n = 15) and HIIT group (n = 15) underwent anthropometric and metabolic measurements, electrocardiogram, peak oxygen uptake (VO 2peak ), and two vastus lateralis muscle biopsies before and after session of workout. The session of aerobic exercise included cycling at 65% of their peak heart rate (HRpeak) for 40 min. In the HIIT group, exercise included six bouts of 1 min at 85-95% HRpeak separated by 1 min of recovery. Irisin levels were evaluated in samples of skeletal muscle (western blot) and plasma (ELISA). The levels of expression of irisin in skeletal muscle increased significantly after a session of HIIT (p < 0.05), while aerobic exercise no affect irisin levels. No significant differences between the groups in plasma irisin levels were found. The increase in muscle irisin levels was observed only following HIIT session. No increases in plasma irisin concentration were observed.
Villar, Rodrigo; Hughson, Richard L
2013-03-01
Changes in vascular conductance (VC) are required to counter changes in muscle perfusion pressure (MPP) to maintain muscle blood flow (MBF) during exercise. We investigated the recruitment of VC as a function of peak VC measured in three body positions at two different work rates to test the hypothesis that adaptations in VC compensated changes in MPP at low-power output (LPO), but not at high-power output (HPO). Eleven healthy volunteers exercised at LPO and HPO (repeated plantar flexion contractions at 20-30% maximal voluntary contraction, respectively) in horizontal (HOR), 35° head-down tilt (HDT), and 45° head-up tilt (HUT). Muscle blood flow velocity and popliteal diameter were measured by ultrasound to determine MBF, and VC was estimated by dividing MBF flow by MPP. Peak VC was unaffected by body position. The rates of increase in MBF and VC were significantly faster in HUT and slower in HDT than HOR, and rates were faster in LPO than HPO. During LPO exercise, the increase in, and steady-state values of, MBF were less for HUT and HDT than HOR; the increase in VC was less in HUT than HOR and HDT. During HPO exercise, MBF in the HDT was reduced compared with HOR and HUT, even though VC reached 92% VC peak, which was greater than HOR, which was, in turn, greater than HUT. Reduced MBF during HPO HDT exercise had the functional consequence of a significant increase in muscle electromyographic index, revealing the effects of MPP on O2 delivery during exercise.
Davey, Raymond J; Howe, Warwick; Paramalingam, Nirubasini; Ferreira, Luis D; Davis, Elizabeth A; Fournier, Paul A; Jones, Timothy W
2013-07-01
Exercise increases the risk of hypoglycemia in type 1 diabetes. Recently we reported a biphasic increase in glucose requirements to maintain euglycemia after late-afternoon exercise, suggesting a unique pattern of delayed risk for nocturnal hypoglycemia. This study examined whether this pattern of glucose requirements occurs if exercise is performed earlier in the day. Ten adolescents with type 1 diabetes underwent a hyperinsulinemic euglycemic glucose clamp on 2 different occasions during which they either rested or performed 45 minutes of moderate-intensity exercise at midday. Glucose was infused to maintain euglycemia for 17 hours after exercise. The glucose infusion rate (GIR) to maintain euglycemia, glucose rates of appearance and disappearance, and levels of counterregulatory hormones were compared between conditions. GIRs to maintain euglycemia were not significantly different between groups at baseline (9.8 ± 1.4 and 9.5 ± 1.6 g/h before the exercise and rest conditions, respectively) and did not change in the rest condition throughout the study. In contrast, GIR increased more than 3-fold during exercise (from 9.8 ± 1.4 to 30.6 ± 4.7 g/h), fell within the first hour of recovery, but remained elevated until 11 hours after exercise before returning to baseline levels. The pattern of glucose requirements to maintain euglycemia in response to moderate-intensity exercise performed at midday suggests that the risk of exercise-mediated hypoglycemia increases during and for several hours after moderate-intensity exercise, with no evidence of a biphasic pattern of postexercise risk of hypoglycemia.
Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation.
Lancellotti, Patrizio; Magne, Julien; Dulgheru, Raluca; Ancion, Arnaud; Martinez, Christophe; Piérard, Luc A
2015-05-15
In patients with heart failure, exercise echocardiography can help in risk stratification and decision making. The prognostic significance of exercise pulmonary hypertension (PH) in patients with secondary mitral regurgitation (MR) remains unknown. The aim of the present study was to assess the prognostic value of exercise PH in patients with secondary MR and narrow QRS intervals. From 2005 to 2012, 159 consecutive patients with secondary MR, narrow QRS intervals, left ventricular dysfunction (mean ejection fraction 36 ± 7%), and measurable systolic pulmonary arterial pressure (SPAP) during exercise echocardiography were included. Resting and exercise PH were defined as SPAP >50 and >60 mm Hg, respectively. Exercise PH was more frequent than resting PH (40% vs 13%, p <0.0001). On multivariate logistic regression, the independent determinants of exercise PH were resting SPAP (p <0.0001), exercise MR severity (p <0.0001), and e'-wave velocity (p = 0.004). The incidence of cardiac events during follow-up was significantly higher in patients with exercise PH compared with those without exercise PH (4 years: 40 ± 7% vs 20 ± 5%, p <0.0001). Patients with exercise PH exhibited higher rates of cardiac events and death than those with resting PH. In a multivariate Cox proportional hazards model, exercise PH was independently associated with the occurrence of cardiac events (p <0.0001). In conclusion, in patients with secondary MR, exercise PH is determined mainly by resting SPAP, left ventricular diastolic burden, and exercise MR severity. Exercise PH is a powerful predictor of poor outcomes, with a 5.3-fold increased risk for cardiac-related death during follow-up. These results highlight the added value of exercise echocardiography in secondary MR. Copyright © 2015 Elsevier Inc. All rights reserved.
Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira
2014-01-01
Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.
Gerdle, Björn; Ernberg, Malin; Mannerkorpi, Kaisa; Larsson, Britt; Kosek, Eva; Christidis, Nikolaos; Ghafouri, Bijar
2016-01-01
Background Fibromyalgia syndrome (FMS) is associated with central alterations, but controversies exist regarding the presence and role of peripheral factors. Microdialysis (MD) can be used in vivo to study muscle alterations in FMS. Furthermore for chronic pain conditions such as FMS, the mechanisms for the positive effects of exercise are unclear. This study investigates the interstitial concentrations of algesics and metabolites in the vastus lateralis muscle of 29 women with FMS and 28 healthy women before and after an exercise intervention. Methods All the participants went through a clinical examination and completed a questionnaire. In addition, their pressure pain thresholds (PPTs) in their upper and lower extremities were determined. For both groups, MD was conducted in the vastus lateralis muscle before and after a 15-week exercise intervention of mainly resistance training of the lower limbs. Muscle blood flow and interstitial muscle concentrations of lactate, pyruvate, glutamate, glucose, and glycerol were determined. Results FMS was associated with significantly increased interstitial concentrations of glutamate, pyruvate, and lactate. After the exercise intervention, the FMS group exhibited significant decreases in pain intensity and in mean interstitial concentrations of glutamate, pyruvate, and glucose. The decrease in pain intensity in FMS correlated significantly with the decreases in pyruvate and glucose. In addition, the FMS group increased their strength and endurance. Conclusion This study supports the suggestion that peripheral metabolic and algesic muscle alterations are present in FMS patients and that these alterations contribute to pain. After an exercise intervention, alterations normalized, pain intensity decreased (but not abolished), and strength and endurance improved, all findings that suggest the effects of exercise are partially peripheral. PMID:27695113
Ehrlich, S F; Hedderson, M M; Brown, S D; Sternfeld, B; Chasan-Taber, L; Feng, J; Adams, J; Ching, J; Crites, Y; Quesenberry, C P; Ferrara, A
2017-10-01
To assess the association of regular, unsupervised sports and exercise during pregnancy, by intensity level, with glycaemic control in women with gestational diabetes (GDM). Prospective cohort study of 971 women who, shortly after being diagnosed with GDM, completed a Pregnancy Physical Activity Questionnaire assessing moderate and vigorous intensity sports and exercise in the past 3 months. Self-monitored capillary glucose values were obtained for the 6-week period following the questionnaire, with optimal glycaemic control defined≥80% values meeting the targets<5.3mmol/L for fasting and <7.8mmol/L 1-hour after meals. Logistic regression estimated the odds of achieving optimal control; linear regression estimated activity level-specific least square mean glucose, as well as between-level mean glucose differences. For volume of moderate intensity sports and exercise ([MET×hours]/week), the highest quartile, compared to the lowest, had significantly increased odds of optimal control (OR=1.82 [95% CI: 1.06-3.14] P=0.03). There were significant trends for decreasing mean 1-hour post breakfast, lunch and dinner glycaemia with increasing quartile of moderate activity (all P<0.05). Any participation in vigorous intensity sports and exercise was associated with decreased mean 1-hour post breakfast and lunch glycaemia (both P<0.05). No associations were observed for fasting. Higher volumes of moderate intensity sports and exercise, reported shortly after GDM diagnosis, were significantly associated with increased odds of achieving glycaemic control. Clinicians should be aware that unsupervised moderate intensity sports and exercise performed in mid-pregnancy aids in subsequent glycaemic control among women with GDM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ventilatory responses to dynamic exercise elicited by intramuscular sensors
NASA Technical Reports Server (NTRS)
Smith, S. A.; Gallagher, K. M.; Norton, K. H.; Querry, R. G.; Welch-O'Connor, R. M.; Raven, P. B.
1999-01-01
PURPOSE: Eight subjects, aged 27.0+/-1.6 yr, performed incremental workload cycling to investigate the contribution of skeletal muscle mechano- and metaboreceptors to ventilatory control during dynamic exercise. METHODS: Each subject performed four bouts of exercise: exercise with no intervention (CON); exercise with bilateral thigh cuffs inflated to 90 mm Hg (CUFF); exercise with application of lower-body positive pressure (LBPP) to 45 torr (PP); and exercise with 90 mm Hg thigh cuff inflation and 45 torr LBPP (CUFF+PP). Ventilatory responses and pulmonary gas exchange variables were collected breath-by-breath with concomitant measurement of leg intramuscular pressure. RESULTS: Ventilation (VE) was significantly elevated from CON during PP and CUFF+PP at workloads corresponding to > or = 60% CON peak oxygen uptake (VO2peak) and during CUFF at workloads > or = 80% CON VO2peak, P < 0.05. The VO2 at which ventilatory threshold occurred was significantly reduced from CON (2.17+/-0.28 L x min(-1)) to 1.60+/-0.19 L x min(-1), 1.45+/-0.15 L x min(-1), and 1.15+/-0.11 L x min(-1) during CUFF, PP, and CUFF+PP, respectively. The slope of the linear regression describing the VE/CO2 output relationship was increased from CON by approximately 22% during CUFF, 40% during PP, and 41% during CUFF+PP. CONCLUSIONS: As intramuscular pressure was significantly elevated immediately upon application of LBPP during PP and CUFF+PP without a concomitant increase in VE, it seems unlikely that LBPP-induced increases in VE can be attributed to activation of the mechanoreflex. These findings suggest that LBPP-induced reductions in perfusion pressure and decreases in venous outflow resulting from inflation of bilateral thigh cuffs may generate a metabolite sensitive intramuscular ventilatory stimulus.
Exercise activates the phosphatidylinositol 3-kinase pathway.
Chen, Michael J; Russo-Neustadt, Amelia A
2005-04-27
Physical exercise is known to enhance psychological well-being and coping capacity. Voluntary physical exercise in rats also robustly and rapidly up-regulates hippocampal brain-derived neurotrophic factor (BDNF) mRNA levels, which are potentiated following a regimen of chronic antidepressant treatment. Increased BDNF levels are associated with enhanced activity of cyclic AMP response element binding protein (CREB). So far, relatively little is known about the intracellular signaling mechanisms mediating this effect of exercise. We wished to explore the possibility that exercise and/or antidepressant treatment activate the hippocampal phosphatidylinositol-3 (PI-3) kinase pathway, which mediates cellular survival. In young male Sprague-Dawley rats, we examined the effects of 2 weeks of daily voluntary wheel-running activity and/or tranylcypromine (n = 7 per group) on the levels of the active forms of protein-dependent kinase-1 (PDK-1), PI-3 kinase, phospho-thr308-Akt, phospho-ser473-Akt, and phospho-glycogen synthase kinase-3beta (GSK3beta; inactive form), as well as BDNF, activated CREB, and the phospho-Trk receptor, in the rat hippocampus, and compared these with sedentary saline-treated controls. Immunoblotting analyses revealed that in exercising rats, there was a significant increase in PI-3 kinase expression (4.61 times that of controls, P = 0.0161) and phosphorylation of PDK-1 (2.73 times that of controls, P = 0.0454), thr308-Akt (2.857 times that of controls, P = 0.0082), CREB (60.27 times that of controls, P = 0.05), and Trk (35.3 times that of controls, P < 0.0001) in the hippocampi of exercising animals; BDNF was also increased (3.2 times that of controls), but this was not statistically significant. In rats receiving both exercise and tranylcypromine, BDNF (4.51 times that of controls, P = 0.0068) and PI-3 kinase (4.88 times that of controls, P = 0.0103), and the phospho- forms of Trk (13.67 times that of controls, P = 0.0278), thr308-Akt (3.644 times that of controls, P = 0.0004), GSK-3beta (2.93 times that of controls, P = 0.026), and CREB (88.97 times that of controls, P = 0.0053) were significantly increased. These results suggest that the exercise-induced expression of BDNF is associated with the increased expression of several key intermediates of the PI-3 kinase/Akt pathway, which is known for its role in enhancing neuronal survival.
Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A
1996-02-01
Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.
Predictors of exercise frequency in breast cancer survivors in Taiwan.
Hsu, Hsin-Tien; Dodd, Marylin J; Guo, Su-Er; Lee, Kathryn A; Hwang, Shiow-Li; Lai, Yu-Hung
2011-07-01
To apply social cognitive theory to elucidate factors that motivate change in exercise frequency in breast cancer survivors during the six months after completing cancer treatment. Exercise is now a well-recognised quality-of-life intervention in breast cancer survivors. However, only regular exercise yields long-term benefits. Motivations for exercise have not been analysed in Taiwan patients with cancer. A prospective, longitudinal and repeated measures design was used. A convenience sample of 196 breast cancer survivors was recruited from hospitals in metropolitan areas of north and south Taiwan. Study participants were allowed to select their preferred exercised activities. Exercise behaviour and other factors were then recorded using various standardised instruments. Medical charts were also reviewed. Data were analysed by a linear mixed model and by hierarchical multiple regression equations. Exercise frequency significantly changed over time. Explained variance in exercise frequency change was modest. Baseline exercise frequency was the best significant predictor of exercise frequency during the six-month study. The study also identified possible age-related differences in the effect of social support on exercise. The effect of social support for exercise on exercise frequency was apparently larger in older subjects, especially those over 40 years old, than in younger subjects. Mental health, exercise barriers and exercise outcome expectancy significantly contributed to change in exercise frequency during the six-month study. The analytical results revealed several ways to increase exercise frequency in breast cancer survivors: (1) encourage exercise as early as possible; (2) improve health status and provide social support for exercise, especially in women aged 40 years or older; (3) reduce exercise barriers and promote mental health; (4) reinforce self-efficacy and positive expectations of exercise outcomes and (5) provide strategies for minimising fatigue in early stages of rehabilitation. Relevance to clinical practice. Social cognitive theory provides a useful framework for understanding the motivation to exercise in breast cancer survivors. © 2011 Blackwell Publishing Ltd.
Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki
2014-10-05
We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.
Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.
Bhambhani, Y; Singh, M
1991-11-01
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.
Gomes, Rayana L; Marques Vanderlei, Luiz C; Garner, David M; Ramos Santana, Milana D; de Abreu, Luiz C; Valenti, Vitor E
2017-04-26
Recently there has been increasing interest in the study of ultra-short- term heart rate variability (HRV) in sports performance and exercise physiology. In order to improve standardization of this specific analysis, we evaluated the ultra-short-term HRV analysis through SD1Poincaré index to identify exercise induced responses. We investigated 35 physically active men aged between 18 and 35 years old. Volunteers performed physical exercise on treadmill with intensity of 6.0 km / hour + 1% slope in the first five minutes for physical "warming up." This was followed by 25 minutes with intensity equivalent to 60% of Vmax, with the same slope according to the Conconi threshold. HRV was analyzed in the following periods: the five-minute period before the exercise and the five-minute period immediately after the exercise, the five minutes were divided into five segments of 60 RR intervals. Ultra-short-term RMSSD and SD1 analysis were performed. Ultra-short-term RMSSD and SD1 were significantly (p<0.0001) reduced during the initial five minutes divided into five segments of 60 RR intervals compared to (at rest) control. Heart rate was significantly (p<0.0001) increased 1 min and 3 min immediately after exercise compared to (at rest) control. At rest ultra-short-term SD1 presented significant correlation with short-term (256 RR intervals) RMSSD (r=0.78; p<0.0001), HF (r=0.574; p=0.0007) and SD1 (r=0.78; p<0.0001). Additionally, visual analysis with the Poincaré plot detected changes in HRV after exercise. Ultra-short-term HRV analysis through Poincaré plot identified heart rate autonomic responses induced by aerobic exercise.
Janse Van Rensburg, Kate; Taylor, Adrian; Benattayallah, Abdelmalek; Hodgson, Tim
2012-06-01
Smokers show heightened activation toward smoking-related stimuli and experience increased cravings which can precipitate smoking cessation relapse. Exercise can be effective for modulating cigarette cravings and attenuating reactivity to smoking cues, but the mechanism by which these effects occur remains uncertain. The objective of the study was to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomised crossover design, overnight abstinent smokers (n = 20) underwent an exercise (10-min moderate-intensity stationary cycling) and passive control (seating for the same duration) treatment, following 15 h of nicotine abstinence. After each treatment, participants underwent functional magnetic resonance imaging (fMRI) brain scanning while viewing a random series of blocked smoking or neutral images. Self-reported cravings were assessed at baseline, mid-, and post-treatments. There was a significant interaction effect (treatment × time) for desire to smoke, F (2,32) = 12.5, p < 0.001, with significantly lower scores following the exercise at all time points compared with the control treatment. After both exercise and rest, significant areas of activation were found in areas of the limbic lobe and in areas associated with visual attention in response to smoking-related stimuli. Smokers showed increased activation to smoking images in areas associated with primary and secondary visual processing following rest, but not following a session of exercise. The study shows differing activation towards smoking images following exercise compared to a control treatment and may point to a neuro-cognitive process following exercise that mediates effects on cigarette cravings.
Aakre, Kristin M; Kleiven, Øyunn; Skadberg, Øyvind; Bjørkavoll-Bergseth, Magnus F; Melberg, Tor; Strand, Heidi; Hagve, Tor-Arne; Ørn, Stein
2018-02-01
Copeptin concentrations increase both during acute coronary syndrome and following physical exercise. The relationship between copeptin increase following physical exercise and coronary artery disease (CAD) is uncertain. The aim of this study was to 1) describe the copeptin response following strenuous physical exercise, and 2) investigate the determinants of exercise induced copeptin concentrations, particularly in relation to cardiac biomarkers and CAD. Serum samples were collected from 97 recreational cyclists 24h before, and immediately, 3 and 24h after a 91-km bike race. Three subjects were subsequently diagnosed with significant asymptomatic CAD. Delta copeptin concentrations were correlated to patient characteristics and to biomarker concentrations. Participants were 42.8±9.6years, and 76.3% were male. Copeptin concentrations increased to maximal levels immediately after the race and were normalized in >90% after 3h. A total of 53% and 39% exceeded the 95th and 99th percentile of the assay (10 and 19pmol/L) respectively. In multivariate models, race time, serum sodium, creatinine and cortisol were significant predictors of copeptin levels. There was no correlation between changes in copeptin and changes in cardiac biomarkers (hs-cTnI, hs-cTnT and BNP). Copeptin concentrations were normal in the subjects with asymptomatic CAD. The moderate, short-term, exercise induced copeptin increase observed in the present study was not related to hs-cTn or BNP levels. Copeptin was normal in three asymptomatic recreational athletes with significant CAD. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
T wave alternans during exercise and atrial pacing in humans
NASA Technical Reports Server (NTRS)
Hohnloser, S. H.; Klingenheben, T.; Zabel, M.; Li, Y. G.; Albrecht, P.; Cohen, R. J.
1997-01-01
INTRODUCTION: Evidence is accumulating that microvolt T wave alternans (TWA) is a marker of increased risk for ventricular tachyarrhythmias. Initially, atrial pacing was used to elevate heart rate and elicit TWA. More recently, a noninvasive approach has been developed that elevates heart rate using exercise. METHODS AND RESULTS: In 30 consecutive patients with a history of ventricular tachyarrhythmias, the spectral method was used to detect TWA during both atrial pacing and submaximal exercise testing. The concordance rate for the presence or absence of TWA using the two measurement methods was 84%. There was a patient-specific heart rate threshold for the detection of TWA that averaged 100 +/- 14 beats/min during exercise compared with 97 +/- 9 beats/min during right atrial pacing (P = NS). Beyond this threshold, there was a significant and comparable increase in level of TWA with decreasing pacing cycle length and increasing exercise heart rates. CONCLUSIONS: The present study is the first to demonstrate that microvolt TWA can be assessed reliably and noninvasively during exercise stress. There is a patient-specific heart rate threshold beyond which TWA continues to increase with increasing heart rates. Heart rate thresholds for the onset of TWA measured during atrial pacing and exercise stress were comparable, indicating that heart rate alone appears to be the main factor of determining the onset of TWA during submaximal exercise stress.
Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B
2016-02-01
Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P < 0.01). Myonuclear content increased significantly over time in both the type I (P < 0.01) and type II (P < 0.001) muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P < 0.001). Increases in myonuclear domain size do not appear to drive myonuclear accretion and muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice
Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.
2016-01-01
Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999
Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio; Dos Santos, Ronaldo Vagner Thomatieli
2017-07-03
This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO 2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO₂% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO₂% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses.
Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio
2017-01-01
This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO2% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO2% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses. PMID:28671626
Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui
2014-01-01
[Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046
O'Reilly, D St J; Carter, R; Bell, E; Hinnie, J; Galloway, P J
2003-05-01
The cardio-pulmonary and biochemical changes observed in a case of McArdle's disease, exercising with increasing work rates to exhaustion in the "second-wind" phase of exercise are reported for the first time. A work rate of 275-325 watts was achieved. Venous blood lactate remained unchanged throughout. The plasma ammonium level reached a plateau of approximately 400 mmol/l at 100 watts. At a work rate of 150-175 watts the ratio of O2 consumption to CO2 production increased, the inverse of an anaerobic threshold. Maximal cardiopulmonary responses were achieved at 200 watts. During the final periods of exercise from 200 to 275/325 watts pulmonary ventilation did not significantly change but there was a decrease in the venous blood H+ concentration, and pO2 and in increase in the pCO2. Creatine supplementation at 25 g/day for five days did not improve exercise performance.
Exercise training enhances aerobic capacity in juvenile estuarine crocodiles (Crocodylus porosus).
Owerkowicz, Tomasz; Baudinette, Russell V
2008-06-01
Aerobic capacity (VO2max) of endothermic vertebrates is known to increase with exercise training, but this effect has not been found to-date in non-avian reptiles. We exercised juvenile estuarine crocodiles (Crocodylus porosus) to walk at 0.75-0.88 km/h on a treadmill for up to 20 min a day over 16 weeks, and compared their aerobic performance with that of unexercised crocodiles. In the exercised group, VO2max increased from 6.9 to 8.5 mLO2/kg/min (+28%), and locomotor endurance increased from 3.8 to 6.9 min (+82%). Neither VO2max nor endurance changed significantly in the sedentary group. This finding extends the exercise training effect onto another vertebrate clade, and demonstrates that ectothermic amniotes are capable of elevating their aerobic capacity in response to exercise training. We propose that differences in cardiopulmonary structure and function in non-avian reptiles may be responsible for the absence (in squamates) or presence (in crocodilians) of a strong training effect on aerobic capacity.